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Abstract 
 
We analyze optimal monetary policy under commitment in an economy with uninsurable 
idiosyncratic risk, long-term nominal bonds and costly inflation. Our model features two 
transmission channels of monetary policy: a Fisher channel, arising from the impact of inflation 
on the initial price of long-term bonds, and a liquidity channel. The Fisher channel gives the 
central bank a reason to inflate for redistributive purposes, because debtors have a higher marginal 
utility than creditors. This inflationary motive fades over time as bonds mature and the central 
bank pursues a deflationary path to raise bond prices and thus relax borrowing limits. The result 
is optimal inflation front-loading. Numerically, we find that optimal policy achieves first-order 
consumption and welfare redistribution vis-à-vis a zero inflation policy. 
JEL-Codes: E500, E620, F340. 
Keywords: optimal monetary policy, incomplete markets, Gâteau derivative, nominal debt, 
inflation, redistributive effects, continuous time. 
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1 Introduction

In recent years the redistributive effects of monetary policy have come to the forefront both

of policy discussions and academic research.1 On the research side, aided by the development

of new computational techniques, a burgeoning literature has analyzed the transmission of

monetary policy in macroeconomic models featuring rich household heterogeneity.

By and large, this literature has focused on positive questions, such as what are the different

redistributive channels of monetary policy and how they shape its aggregate and redistribu-

tive effects (e.g. Auclert, 2019; Kaplan, Moll and Violante, 2018). However, progress on the

normative front has been scarcer. This has been particularly true in the context of incomplete-

markets models with uninsurable idiosyncratic risk in the Bewley-Huggett-Aiyagari tradition

(Bewley, 1983; Huggett, 1993; Aiyagari, 1994). Such models have become very popular for ana-

lyzing policy in environments with heterogeneous agents, thanks to their rigorous microfounda-

tions and realistic description of household heterogeneity. But solving for fully optimal policy

in those models is a hard endeavor, because the policy-maker faces an infinite-dimensional,

endogenously-evolving wealth and income distribution. Our paper aims at making progress in

this direction.

Our starting point is Huggett’s (1993) classic model of uninsurable idiosyncratic risk. As in

the latter, households trade non-contingent claims, subject to an exogenous borrowing limit,

in order to smooth consumption in the face of idiosyncratic income shocks. We depart from

Huggett’s real framework with one-period claims by considering nominal bonds with an arbi-

trarily long maturity. This opens two transmission channels of monetary policy. The first is

a variant of the classic Fisher channel (Fisher, 1933): unexpected inflation reduces the initial

(time-0) market price of the long-term nominal bond, and this revaluation of nominal claims

implies a redistribution of resources from creditors to debtors. The second is a liquidity channel :

both expected and unexpected lower inflation raises asset prices, and this enhances households’

liquidity by relaxing their borrowing limit in market value terms.2 We also assume that infla-

tion is costly, which can be rationalized on the basis of nominal rigidities. Finally, we depart

from the standard closed-economy setup by considering a small open economy, with the bonds

being also held (and priced) by risk-neutral foreign investors. Therefore, the real interest rate

in this economy is exogenous and monetary policy transmission does not rely on standard New

Keynesian channels.

In this context, we analyze the Ramsey optimal monetary policy. To address the aforemen-

tioned difficulty of solving for optimal policy in models of this kind we employ a variational

approach, which extends the concept of classical derivatives to infinite-dimensional spaces.

This approach in particular allows us to obtain analytical first-order conditions for the Ramsey

problem. As it turns out, we are able to provide a tight analytical characterization of optimal

1For discussions in policy-making circles, see e.g. Yellen (2016) or Constâncio (2017). For academic analyses
of this issue, see our literature review below.

2This liquidity channel is reminiscent of the one in Aiyagari and McGrattan (1998). These authors show
how, in a similar environment, the fiscal authority’s provision of government debt effectively loosens households’
borrowing constraint.
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monetary policy. We derive an equation for optimal inflation in which the central bank trades

off the disutility costs of inflation with its benefits. The latter are captured by the covariance

between the marginal utility of consumption and the net nominal position (NNP), i.e. the

market value of each household’s net position in the long-term bond.3

This term sheds light on the crucial role played by the Fisher channel in shaping the path of

optimal inflation. In particular, we highlight a ’redistributive inflationary bias’ that is distinct

from the classical inflationary bias in the New Keynesian literature. Since debtors have lower

consumption and (under standard concave preferences) higher marginal utility of consumption

than creditors, the central bank has an incentive to inflate so as to lower the initial (time-0)

price of the long-term nominal bond, thus redistributing resources from creditors to debtors.

The central bank however commits to gradually undoing the initial inflation. Indeed, as bonds

mature progressively, the impact of future inflation on the initial bond price fades with the

planning horizon. In the long-run, the Fisher channel does not operate and inflation is deter-

mined only by the trade-off between the liquidity channel –which calls for negative inflation in

order to increase bond prices and thus loosen the borrowing limit in market-value terms– and

the disutility cost of non-zero inflation. In sum, the Ramsey optimal policy is characterized

by optimal inflation ’front-loading’. In this regard, we find another important result: provided

households are patient enough –in the sense that their discount rate equals the real return

required by international investors– the liquidity channel disappears and optimal long-run in-

flation is exactly zero. This result is reminiscent of the optimality of zero long-run inflation

in standard (representative-agent) New Keynesian models, but it arises from entirely different

reasons.

After calibrating the model, we then solve numerically for the full transitional dynamics.

Initial inflation is first-order in magnitude, reflecting the above mentioned redistributive motive,

and thereafter falls gradually towards its long-run value. The latter is negative, but very close

to zero, consistently with the fact that under our calibration households’ and investors’ discount

rates are very similar. To summarize, the central bank front-loads inflation so as to transitorily

redistribute nominal wealth from creditors to debtors, but commits to gradually undo such

initial inflation. This echoes standard results in the Ramsey optimal capital taxation literature

(see, for instance Chari and Kehoe, 1999, and references therein).4

Besides the aggregate implications, we also analyze the redistributive effects of optimal mon-

etary policy. We show that, relative to a zero-inflation regime, the optimal policy redistributes

consumption from creditors to debtors. These effects find an echo in the welfare analysis. Com-

3In his positive analysis of the redistributive channels of monetary policy, Auclert (2019) shows that the
impact of a monetary policy shock on aggregate consumption through the Fisher channel depends on the
covariance between the NNP and the marginal propensity to consume (MPC). In our normative analysis, we
show instead that it is the covariance of the former object with the marginal utility of consumption that
determines optimal inflation.

4Given our open economy assumption, the above redistributive motive also has a cross-border dimension.
Under our calibration, the domestic economy is a net debtor vis-à-vis the rest of the World, so the central
bank also has an incentive to redistribute from foreign investors to domestic debtors. However, our results show
that, even if the country is assumed to start with a zero net nominal position (thus effectively shutting down
cross-border redistribution at time zero), the purely (and more interesting) domestic redistributive motive is
enough to justify relatively high (first-order) inflation rates in the first few years of the optimal plan.
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pared to a zero inflation policy, optimal inflationary policy achieves welfare gains for debtors

and losses for creditors which, when translated into consumption equivalents, are first-order in

magnitude.

We also compute the optimal monetary policy response to an aggregate shock, such as a fall

in aggregate income. In the analysis of aggregate shocks we focus on the optimal commitment

plan ’from a timeless perspective,’ as discussed in Woodford (2003). We find that inflation

rises slightly on impact, as the central bank tries to partially counteract the negative effect of

the shock on household consumption. However, the inflation reaction is an order of magnitude

smaller than that of the shock itself. Intuitively, the value of sticking to past commitments

to keep inflation near zero weighs more in the central bank’s decision than the value of using

inflation transitorily so as to stabilize consumption in response to an unforeseen event.

Overall, our findings shed some light on current policy and academic debates regarding the

appropriate conduct of monetary policy once household heterogeneity is taken into account. In

particular, our results suggest that, while some inflation may be justified in the short-run so

as to redistribute resources to households with higher marginal utility, a central bank with the

ability to commit should not sustain such an inflationary stance, but should instead promise

to undo it over time. Finally, our results are not meant to suggest that monetary policy is the

best tool to address redistributive issues, as there are probably more direct policy instruments.

What our results indicate is that, in the context of economies with uninsurable idiosyncratic

risk, the optimal design of monetary policy will to some extent reflect redistributive motives,

the more so the less other policies (e.g. fiscal policy) are able to achieve optimal redistributive

outcomes.5

Related literature. Our first main contribution relates to the normative insights on

monetary policy. A recent literature addresses, from a positive perspective, the redistributive

channels of monetary policy transmission in the context of general equilibrium models with

incomplete markets and household heterogeneity. In terms of modeling, our paper is closest to

Auclert (2019), Kaplan, Moll and Violante (2018), Gornemann, Kuester and Nakajima (2016),

Hagedorn et al. (2019), McKay, Nakamura and Steinsson (2016) or Luetticke (2020), who also

employ different versions of the incomplete markets model with uninsurable idiosyncratic risk.6

Other contributions, such as Doepke and Schneider (2006b), Meh, Rı́os-Rull and Terajima

(2010), Sheedy (2014), Werning, (2015), Ravn and Sterk (2017), Challe et al. (2017), Sterk

and Tenreyro (2018), Debortoli and Gaĺı (2018) or Bilbiie (2019) analyze monetary policy in

environments where heterogeneity is kept finite-dimensional. We contribute to this literature

by analyzing optimal monetary policy, in an economy with uninsurable idiosyncratic risk.

As explained before, our analysis focuses on the Fisher channel. The latter channel is a long-

standing topic that has experienced a revival in recent years. Doepke and Schneider (2006a)

document net nominal asset positions across US sectors and household groups and estimate

5Bhandari et al. (2020) and Le Grand et al. (2020) analyze optimal monetary and fiscal policies in economies
with heterogeneous agents.

6For work studying the effects of different aggregate shocks in related environments, see e.g. Guerrieri and
Lorenzoni (2017), Den Haan, Rendahl and Riegler (2018), Auclert, Rognlie and Straub (2019) and Bayer et al.
(2019).
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empirically the redistributive effects of different inflation scenarios; Adam and Zhu (2014)

perform a similar analysis for Euro Area countries. Pugsley and Rubinton (2019) quantify

the distribution of welfare gains and losses of the US “Volcker” disinflation. Auclert (2019)

identifies the redistributive channels of monetary policy, including the Fisher channel, in a

general framework of dynamic consumer optimization and analyzes the importance of these

channels for the aggregate consumption effects of monetary policy shocks using a sufficient

statistics approach. We show how, in a model with uninsurable idiosyncratic risk featuring

long-term nominal debt and costly inflation, the Fisher channel is crucial to shape optimal

monetary policy under commitment. We uncover two novel normative insights. First, dispersion

in net nominal positions gives rise to a ’redistributive inflationary bias’: the central bank has

an incentive to redistribute from creditors to debtors, who have a higher marginal utility of

consumption. Second, inflation is front-loaded as the central bank commits to gradually reduce

inflation in the future. We argue that these results would carry over to more fully-fledged

incomplete-markets models that incorporate the above channels.

Our second main contribution is methodological. We contribute to the emergent literature

on optimal policy problems in general equilibrium models with incomplete markets and unin-

surable idiosyncratic risk. To the best of our knowledge, our paper is the first to solve for a fully

dynamic optimal policy problem in a general equilibrium model with uninsurable idiosyncratic

risk in which the cross-sectional net wealth distribution (an infinite-dimensional, endogenously

evolving object) is a state in the planner’s optimization problem. Even if the model considered

here can be seen as a proof of concept, our methodology has been successfully applied to more

complex settings, such as Bigio and Sannikov (2019), who analyze optimal monetary policy in

an closed-economy incomplete-markets model where credit is intermediated by banks operating

in an over-the-counter market.7

Different papers have analyzed Ramsey problems in incomplete-market models in which

the policy-maker does not need to keep track of the wealth distribution; see Gottardi, Kajii,

and Nakajima (2011), Bilbiie and Ragot (2017), Challe (2020) and Acharya et al. (2019).

This is due either to particular assumptions that facilitate aggregation or to the fact that

the equilibrium net wealth distribution is degenerate at zero. Le Grand et al. (2020) analyze

optimal Ramsey monetary and fiscal policies in a model economy in which heterogeneity is kept

finite-dimensional. In contrast to these papers, we introduce a methodology for computing the

fully dynamic, nonlinear optimal policy under commitment in an incomplete-market setting

where the policy-maker needs to keep track of the entire wealth distribution.

Dyrda and Pedroni (2018) and Itskhoki and Moll (2019) employ numerical optimization to

study optimal dynamic Ramsey taxation in an Aiyagari economy and in a model with het-

erogeneous entrepreneurs, respectively. Dyrda and Pedroni (2018) assume that the paths for

the optimal taxes follow splines with nodes set at a few exogenously selected periods whereas

7Although this paper focuses on optimal monetary policy, the techniques developed here lend themselves
naturally to the analysis of other policy problems, e.g. optimal fiscal policy, in this class of models. Recent work
analyzing fiscal policy issues in incomplete-markets, heterogeneous-agent models includes Heathcote (2005), Oh
and Reis (2012), Kaplan and Violante (2014) and McKay and Reis (2016).
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Itskhoki and Moll (2019) restrict the time paths of the tax policy to be an exponential function

of time.8 Both papers perform a numerical search of the optimal node values or coefficients.

In our paper we do not impose ex ante any parametric form for the optimal policy, instead we

derive analytically the first order conditions using infinite-dimensional calculus and compute

the optimal policy. The computation of the optimal policy thus amounts to solving a standard

heterogenous-agent model over an expanded set of variables that includes the Lagrange multipli-

ers. Our approach improves considerably both the accuracy and the efficiency of the numerical

computations.9 Since this paper was first circulated, two papers have analyzed optimal policies

in models with non-trivial heterogeneity. Bhandari et al. (2020) analyze numerically optimal

fiscal and monetary policy in a heterogeneous agents New Keynesian environment with aggre-

gate uncertainty and show how an across-person insurance motive prevails over conventional

price stabilization motives. Their approach is based on perturbation theory and hence cannot

address environments with exogenous, occasionally binding borrowing limits such as those used

in models à la Aiyagari-Bewley-Huggett, which are precisely the focus of our paper. Açikgöz et

al. (2018) analyze optimal fiscal policy with commitment in an Aiyagari economy. Similar to

us, they solve a Lagrangian problem that includes the first order conditions of the households

as constraints. However, instead of working with the complete income-wealth distribution as a

state variable by means of infinite dimensional calculus, they analyze the problem of individual

agents employing standard calculus and then aggregate, which imposes some extra constraints

on the distributions that can be analyzed. Moreover, none of the above papers focuses on the

implications of long-term nominal debt for the optimal design of monetary policy, which is at

the core of our analysis.

An earlier literature has analyzed optimal monetary policy with heterogeneous agents in the

context of monetary models. See, for instance, Bhattacharya et al. (2005), Costa and Werning

(2008) or more recently Rocheteau et al. (2018). In contrast to these papers, the only role of

money in our economy is as a unit of account, and redistribution operates through the presence

of long-term nominal bonds, which opens the door to Fisher redistribution.

The use of infinite-dimensional calculus in problems with non-degenerate distributions is

employed in Davila et al. (2012), Lucas and Moll (2014) and Nuño and Moll (2018) to find

the first-best and the constrained-efficient allocation in heterogeneous-agents models. In these

papers a social planner directly decides on individual policies in order to control a distribution

of agents subject to idiosyncratic shocks. Here, by contrast, we show how these techniques may

be extended to game-theoretical settings involving several agents who are moreover forward-

looking. This requires the policy-maker to internalize how her promised future decisions affect

private agents’ expectations; the problem is then augmented by introducing costates that reflect

8Similarly, Lippi et al. (2015) perform a numerical search over a grid of values in order to analyze optimal
Markovian monetary policy.

9As an illustration, Dyrda and Pedroni (2018) compute the optimal paths of three taxes employing 15
nodes in total. As reported in their paper, the numerical optimization took 120 hours using 576 cores at a
Supercomputing Institute. In our case, we consider 9600 nodes (800 years at monthly frequency) and the code
runs in less than 5 minutes in a home PC. Notwithstanding, the two models cannot be directly compared, as
the open-economy nature of our model facilitates the computation.
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the value of deviating from the promises made at time zero. This relates to the literature on

mean-field games in mathematics. In particular, the paper is related to Bensoussan, Chau and

Yam (2016), who analyze a model of a major player and a distribution of atomistic agents.

2 Model

We extend the basic Huggett framework to an open-economy setting with nominal, non-

contingent, long-term debt and nominal rigidities. Time is continuous: t ≥ 0. The domes-

tic economy is composed of a measure-one continuum of households. There is a single, freely

traded consumption good, the World price of which is normalized to 1. The domestic price

(equivalently, the nominal exchange rate) at time t is denoted by Pt and evolves according to

dPt = πtPtdt, (1)

where πt is the domestic inflation rate (equivalently, the rate of nominal exchange rate depre-

ciation).

2.1 Households

2.1.1 Income and net assets

Household k ∈ [0, 1] is endowed at time t with ykt units of the good, where ykt follows a two-

state Poisson process: ykt ∈ {y1, y2} , with y1 < y2. The process jumps from state 1 to state 2

with intensity λ1 and vice versa with intensity λ2.

Households trade nominal, non-contingent, long-term bonds (denominated in domestic cur-

rency) with one another and with foreign investors. Following standard practice in the litera-

ture, we model long-term debt in a tractable way by assuming that bonds pay exponentially

decaying coupons (see, for instance, Leland and Toft, 1996). In particular, a bond issued at

time t promises a stream of nominal payments
{
δe−δ(s−t)

}
s∈(t,∞)

, totaling 1 unit of domestic

currency over the (infinite) life of the bond. Thus, from the point of view of time t, a bond

issued at t̃ < t is equivalent to e−δ(t−t̃) newly issued bonds. This implies that a household’s

entire bond portfolio can be summarized by the current total nominal coupon payment, which

we denote by δAkt. One can then interpret δ as the ’amortization rate’ and Akt as the nominal

face value of the bond portfolio. The latter evolves according to

dAkt = (Anewkt − δAkt) dt,

where Anewkt represents the face value of the flow of new bonds purchased at time t. For

households with a negative net position, (−)Akt represents the face value of outstanding net

liabilities (‘debt’ for short). Our formulation also implies that at each t one needs only consider

the price of one bond cohort, e.g. newly issued bonds. Let Qt denote the nominal market price

7



of bonds issued at time t. The budget constraint of household k is then

QtA
new
kt = Pt (ykt − ckt) + δAkt,

where ckt is the household’s consumption. Combining the last two equations, we obtain the

following dynamics for the nominal face value of net wealth,

dAkt =

(
δAkt + Pt (ykt − ckt)

Qt

− δAkt
)
dt. (2)

We define the real face value of net wealth as akt ≡ Akt/Pt. Its dynamics are obtained by

combining equations (1) and (2),

dakt =

[
δakt + ykt − ckt

Qt

− (δ + πt) akt

]
dt, (3)

where δakt+ykt−ckt
Qt

= Anewkt /Pt ≡ anewkt is the real face value of new bonds acquired at t. We

assume that each household faces the following exogenous borrowing limit,

akt ≥ φ, (4)

where φ ≤ 0. Therefore, the real face value of debt (−) akt cannot exceed the level (−)φ ≥ 0. In

Section 5 we analyze the alternative case, considered in Auclert (2019), in which the borrowing

limit is defined in terms of the real market value of net wealth, given by Qtakt in our model.

2.1.2 Preferences

Household have preferences over paths for consumption ckt and domestic inflation πt discounted

at rate ρ > 0,

E0

{� ∞
0

e−ρt [u(ckt)− x (πt)] dt

}
.

The consumption utility function u is bounded and continuous, with u′ > 0, u′′ < 0 for c > 0.

The inflation disutility function x satisfies x′ > 0 for π > 0, x′ < 0 for π < 0, x′′ > 0 for all

π, and x (0) = x′ (0) = 0. Utility costs of inflation can be microfounded on the basis e.g. of

costly price adjustment. In Appendix A we show that a quadratic specification of the form

x (π) = ψ
2
π2, ψ > 0, can be derived in a model version where firms are modeled explicitly and

set prices subject to quadratic price adjustment costs à la Rotemberg (1982).

From now onward we drop subscripts k for ease of exposition. The household chooses

consumption at each point in time in order to maximize its welfare. The value function of the

household at time t can be expressed as

vt(a, y) = max
{cs}s∈[t,∞)

Et
{� ∞

t

e−ρ(s−t) [u(cs)− x (πs)] ds

}
,

subject to the law of motion of net wealth (3) and the borrowing limit (4). We use the shorthand
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notation vit(a) ≡ vt(a, yi) for the value function when household income is low (i = 1) and high

(i = 2). The Hamilton-Jacobi-Bellman (HJB) equation corresponding to the problem above is

ρvit(a) =
∂vit
∂t

+ max
c

{
u(c)− x (πt) + sit (a, c)

∂vit
∂a

}
+ λi [vjt(a)− vit(a)] , (5)

for i, j = 1, 2, and j 6= i, where sit (a, c) is the drift function, given by

sit (a, c) ≡ δa+ yi − c
Qt

− (δ + πt) a, (6)

i = 1, 2. The first order condition for consumption is

u′(cit (a)) =
1

Qt

∂vit(a)

∂a
, (7)

where cit (a) ≡ ct(a, yi). Therefore, household consumption increases with nominal bond prices

and falls with the slope of the value function. Intuitively, a higher bond price (equivalently, a

lower yield) gives the household an incentive to save less and consume more. A steeper value

function, on the contrary, makes it more attractive to save so as to increase net bond holdings.

2.2 Foreign investors

Households trade bonds with competitive risk-neutral foreign investors that can invest elsewhere

at the risk-free real rate r̄. As explained before, bonds are amortized at rate δ. Foreign investors

also discount future nominal payoffs with the accumulated domestic inflation (i.e. exchange

rate depreciation) between the time of the bond purchase and the time such payoffs accrue.

Therefore, the nominal price of the bond at time t is given by

Qt =

� ∞
t

δe−(r̄+δ)(s−t)−
� s
t πududs. (8)

Taking the derivative with respect to time, we obtain

Qt (r̄ + δ + πt) = δ + Q̇t, (9)

where Q̇t ≡ dQt/dt. The ordinary differential equation (9) provides the risk-neutral pricing

of the nominal bond. The boundary condition is limT→∞ e
−(r̄+δ)T−

� T
0 πuduQT = 0. The steady

state bond price is Q∞ = δ
r̄+δ+π∞

, where π∞ is the inflation level in the steady state.

2.3 Central Bank

There is a central bank that chooses monetary policy. We assume that there are no monetary

frictions so that the only role of money is that of a unit of account. The central bank can

trade a short-term (instantaneous) nominal claim with foreign investors. The central bank sets

the instantaneous nominal interest rate Rt of that facility. A no-arbitrage condition implies

9



Rt = r̄ + πt. This is the Fisher equation with a constant real interest rate r̄. Therefore the

monetary authority effectively chooses the inflation rate πt. In Section 3, we will study in

detail the optimal inflation policy of the central bank.

2.4 Equilibrium

The state of the economy at time t is the joint density of net wealth and income, ft(a, y) ≡
{ft(a, yi)}2

i=1 ≡ {fit(a)}2
i=1. Let sit (a, cit(a)) ≡ sit (a) be the drift of individual real net

wealth evaluated at the optimal consumption policy. The density satisfies the normalization∑2
i=1

�∞
φ
fit (a) da = 1. The dynamics of the density are given by the Kolmogorov Forward

(KF) equation,

∂fit(a)

∂t
= − ∂

∂a
[sit (a) fit(a)]− λifit(a) + λjfjt(a), i, j = 1, 2, j 6= i. (10)

Given a central bank interest rate policy {Rt}t≥0 , we define an equilibrium in this economy

as paths for prices {wt, Qt, πt}t≥0, the consumption policy function {ct(·)}t≥0 , the household

value function {vt(·)}t≥0 and the income-wealth density {ft(·)}t≥0 such that, at every time

t, (i) households and firms maximize their corresponding objective functions taking as given

equilibrium prices, (ii) all markets clear. There are three markets in the economy: the bond

market, the labor market, and the goods market. Notice that, given the inflation path, bond

prices can be computed independently of the rest of the economy.

We henceforth use the notation

Eft(a,y) [gt (a, y)] ≡
2∑
i=1

� ∞
φ

gt (a, yi) ft (a, yi) da

to denote the cross-household average at time t of any function gt of individual net wealth and

income levels, or equivalently the aggregate value of such a function (given that the household

population is normalized to 1). We can define some aggregate variables of interest. The

aggregate real face value of net wealth in the economy is āt ≡ Eft(a,y) [a]. Aggregate consumption

is c̄t ≡ Eft(a,y) [ct (a, y)], and aggregate income is ȳt ≡ Eft(a,y) [y]. These quantities are linked by

the current account identity,

dāt
dt

=
δāt + ȳt − c̄t

Qt

− (δ + πt) āt ≡ ānewt − (δ + πt) āt, (11)

For future reference, we may also define the real face value of gross household debt, b̄t ≡∑2
i=1

� 0

φ
(−a) fit (a) da.

2.5 Transmission channels of monetary policy

Before starting the formal analysis of optimal monetary policy, it is worthwhile to briefly

discuss the channels through which inflation operates in this economy. The first one affects all
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households symmetrically, namely the fact that non-zero inflation reduces household welfare as

shown in equation (5). As argued before, such welfare costs from inflation can be microfounded

in a model version with price-setting firms and costly price adjustment. In this sense, this

is a standard channel that is present in the (representative-agent) New Keynesian literature.

Our simple model abstract from other New-Keynesian transmission channels. In particular,

the fixed labor supply precludes changes in aggregate output, despite the presence of nominal

rigidities. This allows us to simplify the analysis and focus on the already hard question of how

to optimally design monetary policy in the presence of uninsurable idiosyncratic risk.

Monetary policy has two additional transmission channels. Both are readily visible if we

first rewrite the model in terms of the real market value of net wealth. Denoting the latter as

amt ≡ Qtat, its dynamics are given by

ȧmt = Q̇tat +Qtȧt = r̄amt + yi − ct, (12)

am0 = Q0a0, (13)

where we have used equations (3) and (9) in the second equality of (12). Also, the borrowing

limit (4) can be expressed in terms of the market value of net wealth as

amt ≥ Qtφ. (14)

Notice first that monetary policy cannot affect the real return on amt , which is given by the

World real interest rate r̄ as shown in equation (12). This is a consequence of the fact that

bonds are priced by competitive foreign investors. However, as shown by equation (13) the

central bank can affect the initial market value of net wealth through changes in the time-0

bond price Q0 −the initial asset position in face value, a0, is predetermined as of time 0. That

is, unanticipated inflation may redistribute net wealth in market value terms from creditors

(those with am0 > 0) to debtors (those with am0 < 0). This is a variant of the classic Fisher

redistributive channel of monetary policy. Notice that it is the entire path of future inflation

{πt}t≥0 that affects the time-0 price of the long-term bond, as shown in the bond pricing

condition (8), which we rewrite here for t = 0,

Q0 =

� ∞
0

δe−(r̄+δ)t−
� t
0 πsdsdt. (15)

The second transmission channel operates by altering households’ ability to borrow. As shown

by equation (14), at any time t the central bank can tighten or relax the borrowing limit in

market value terms by affecting contemporaneous bond prices Qt. In particular, deflationary

policies relax the borrowing limit –expressed in market value terms– by increasing bond prices,

and vice versa for inflationary policies. We denote this channel as the liquidity channel of

monetary policy.
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3 Optimal monetary policy

3.1 Central bank problem

We now turn to the design of the optimal monetary policy. Following standard practice,

we assume that the central bank is utilitarian, i.e. it gives the same Pareto weight to each

household. We consider the case in which the central bank can credibly commit to a future

inflation path (the Ramsey problem).

The central bank is assumed to be benevolent and hence maximizes economy-wide aggregate

welfare, defined as

W0 ≡ Ef0(a,y) [v0 (a, y)] . (16)

It will turn out to be useful to express the above welfare criterion as follows. Lemma 1 in

Appendix B shows how the welfare criterion (16) can alternatively be expressed as

W0 =

� ∞
0

e−ρtEft(a,y) [u (ct (a, y))− x (πt)] dt.

The central bank credibly commits at time zero to an inflation path {πt}t≥0. The value func-

tional of the central bank is given by

W [f0 (·)] = max
{πt,Qt,vt(·),ct(·),ft(·)}t≥0

W0, (17)

subject to the law of motion of the distribution (10), the bond pricing equation (9), and

households’ HJB equation (5) and optimal consumption choice (7).

Notice that the optimal value W and the optimal policies are not ordinary functions, but

functionals, as they map the infinite-dimensional initial distribution f0 (·) into R. In particular,

the optimal inflation path depends on the initial distribution f0 (a, y) and on time: πt ≡
π [f0 (·) , t] . The central bank maximizes welfare taking into account not only the state dynamics

(10), but also households’ HJB equation (5) and investors’ bond pricing condition (9), both of

which are forward-looking. That is, the central bank understands how it can steer households’

and foreign investors’ expectations by committing to an inflation path.

Given an initial distribution f0(a, y), a Ramsey allocation is composed of a sequence of

inflation rates {πt}t≥0 , a household value function {vt (·)}t≥0, a consumption policy {ct (·)}t≥0 ,

a bond price function {Qt}t≥0 and a distribution {ft (·)}t≥0 such that they solve the central

bank problem (17).

The Ramsey problem is an optimal control problem in a suitable function space. In order

to solve this problem, we should construct a Lagrangian in such a space. In Appendix B, we
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show that the Lagrangian L [π,Q, f, v, c] ≡ L0 is given by

L0 ≡
� ∞

0

e−ρt
2∑
i=1

� ∞
φ

{ [u (cit (a))− x (πt)] fit(a) (18)

+ζit (a)

[
−∂fit(a)

∂t
− ∂

∂a
[sit (a) fit(a)]− λifit(a) + λjfjt(a)

]
+θit (a)

[
∂vit
∂t

+ u(cit (a))− x (πt) + sit (a)
∂vit
∂a

+ λi [vjt(a)− vit(a)]− ρvit(a)

]
+ηit (a)

[
u′(cit (a))− 1

Qt

∂vit
∂a

]
}dadt

+

� ∞
0

e−ρtµt

[
Qt (r̄ + πt + δ)− δ − Q̇t

]
dt,

where j = 1, 2, j 6= i and ζ, θ, η and µ are Lagrange multipliers.

Notice that the optimal monetary policy problem is represented in terms of the face value

of net wealth a. The reason is that this problem is mathematically much easier to handle than

its corresponding representation in market value terms (am). The difficulty with the market-

value formulation is that the central bank controls a wealth distribution with a (non-zero)

domain [Qtφ,∞) which depends endogenously on the entire inflation path {πs}s≥t through

bond prices. This complicates both the mathematical and computational solution. However,

the two transmission channels discussed in section 2.5 continue to operate throughout as far as

the dynamics of the net wealth distribution in market value terms is concerned.

3.2 Optimal inflation

In order to maximize the Lagragian (18) with respect to the functions π,Q, f, v, c we employ a

variational approach. In particular, we compute the Gâteaux derivatives, which extend the con-

cept of derivative from R to infinite-dimensional spaces (see Appendix B.1 for further details).

As an example, the Gâteaux derivative with respect to the income-wealth density f is

lim
α→0

L0 [f + αh, π,Q, v, c]− L0 [f, π,Q, v, c]

α

where h is an arbitrary function in the same function space as f . The first-order conditions

require that the Gâteaux derivatives should be zero for any function h.

In Appendix B.2 we show that in equilibrium the Lagrange multiplier ζ associated with

the Kolmogorov Forward equation (10), which represents the social value of an individual

household, coincides with the private value v. In addition, the Lagrange multipliers θ and η

associated with the households’ HJB equation (5) and first-order condition (7), respectively,

are both zero. That is, households’ forward-looking optimizing behavior does not represent

a source of time-inconsistency, as the monetary authority would choose at all times the same

individual consumption and saving policies as the households themselves. Therefore, the only

nontrivial Lagrange multiplier is µt, the one associated with the bond pricing equation (9). As
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shown in the appendix, the first order condition with respect to inflation is

x′ (πt) = Eft(a,y) [−NNPt (a)u′ (ct (a, y))] + µtQt, (19)

where

NNPt(a) ≡ Qtat (20)

is the net nominal position (NNP), i.e. the real market value of a household’s net position in

the long-term bond. The first order condition with respect to bond prices gives us the law of

motion of the costate µt,

dµt
dt

= (ρ− r̄ − πt − δ)µt +
1

Qt

Eft(a,y) [UREt (a, y)u′ (ct (a, y))] , (21)

with initial condition µ0 = 0, where

UREt(a, y) ≡ δat + yt − ct(a, y) (22)

is the unhedged interest rate exposure (URE), defined following Auclert (2019) as the difference

between maturing assets (including income) and liabilities (including planned consumption),

or equivalently the household’s net saving requirement in a given period.

The following proposition characterizes the solution to this problem.

Proposition 1 (Optimal inflation) In addition to equations (10), (9), (5) and (7), if a

solution to the Ramsey problem (17) exists, the inflation path πt must satisfy (19), where the

costate µt follows (21).

Equations (19) and (21) reflect the central bank’s motives to inflate or disinflate under

the Ramsey optimal commitment. Moreover, they encapsulate incentives to redistribute both

among domestic households and between the latter and foreign investors (cross-border redis-

tribution). To see both aspects more clearly, we use the identity cov(x, y) = E(xy)−E(x)E(y)

to express (19) and (21) as:

x′ (πt) =

Domestic net nominal position motive︷ ︸︸ ︷
covft(a,y) [−NNPt (a) ,MUCt (a, y)] (23)

+

Cross-border net nominal position motive︷ ︸︸ ︷
Eft(a,y) [−NNPt (a)]Eft(a,y) [MUCt (a, y)] + µtQt,

and

µt =

� t

0

e−
� t
s (r̄+πz+δ−ρ)dz 1

Qs

{
Domestic interest rate exposure motive︷ ︸︸ ︷

covfs(a,y) [UREs (a, y) ,MUCs (a, y)] (24)

+

Cross-border interest rate exposure motive︷ ︸︸ ︷
Efs(a,y) [UREs (a, y)]Efs(a,y) [MUCs (a, y)]}ds,
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where MUCt (a, y) ≡ u′ (ct (a, y)) denotes the marginal utility of consumption (MUC) of a

household with net wealth-income pair (a, y) and in equation (24) we have solved for µt forward.

According to equation (23), marginal inflation disutility x′ (which is increasing in inflation)

equals the sum of three terms. The first term, covft(·) [−NNPt (·) ,MUCt (·)], represents the

domestic net nominal position motive. It captures the fact that, to the extent that such

covariance is positive such that households with a negative nominal net position (i.e. indebted

households) have a higher marginal utility, then the central bank has an incentive to create

inflation so as to redistribute resources from domestic creditors to domestic debtors. Indeed,

Lemma 2 in the Appendix proves that, given strictly concave preferences, MUC falls with

net wealth, ∂u′/∂a < 0: debtors (those with NNP < 0) have a higher marginal utility of

consumption than creditors (NNP > 0) and hence receive a higher effective weight in the

central bank’s inflation decision. Thus, even if the country has a zero net position vis-à-vis the

rest of the World, as long as there is dispersion in net wealth the central bank has a reason to

redistribute from creditors to debtors.

The second term, Eft(·) [−NNPt (·)]Eft(·) [MUCt (·)], captures the cross-border net nominal

position motive. If the country is a net debtor, such that Eft(·) (−NNPt) > 0, the central bank

has a motive to redistribute wealth from foreign investors to domestic borrowers (who have an

average marginal utility of Eft(·) [MUCt (·)]) as it only cares about the welfare of the latter.

The third term on the right-hand side of equation (23) captures the value to the central

bank of promises about time-t inflation made to foreign investors (the agents effectively pricing

the bond) at time 0. The costate µt is zero at the time of announcing the Ramsey plan

(t = 0), because the central bank is not bound by previous commitments. From then on, it

evolves according to equation (24). In the latter equation, the term covfs(·) [UREs (·) ,MUCs (·)]
represents the domestic interest rate exposure motive. Intuitively, the central bank understands

that a commitment to higher inflation in the future lowers bond prices today, which hurts

−in terms of face value of debt− those households that need to sell new bonds (i.e. those

with URE < 0) and vice versa for those that purchase new bonds (URE > 0). If the former

households have a higher marginal utility than the latter ones, such that the covariance between

URE and MUC is negative, then µt should become more and more negative over time. Indeed

this will be the case both in the theoretical long-run characterization below and in our numerical

analysis of transitional dynamics in Section 4. From equation (23), this would give the central

bank an incentive to reduce inflation over time, thus tempering the above-discussed net nominal

position redistributive motive.

Finally, the term Efs(·) [UREs (·)]Efs(·) [MUCs (·)] captures the cross-border interest rate

exposure motive. Intuitively, to the extent that the domestic economy is a net issuer of new

bonds to the rest of the World, such that Eft(·) [UREt] < 0, then expectations of future inflation

that reduce bond prices today are welfare-detrimental for domestic households in the aggregate,

thus giving the central bank a further incentive to commit to lowering inflation in the future.

Notice how the interest rate exposure motives are discounted at a rate (r̄ + πt + δ − ρ), the

difference between the instantaneous rate at which future nominal coupons are discounted (see
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equation 15) and household’s discount factor ρ.

Equations (23) and (24) provide us with a simple formulation of optimal monetary policy.

They parallel the analysis in Auclert (2019), who analyzes the response of aggregate con-

sumption to a monetary policy shock in a general equilibrium framework with heterogeneous

households. In Auclert (2019), the impact of such a shock through the Fisher and unhedged

interest rate exposure channels depends on the covariances between the marginal propensity

to consume (MPC) and the NNP and URE, respectively. Here, instead, it is the covariance

of the latter objects with the marginal utility of consumption –as opposed to the MPC– that

determines the central bank’s optimal policy. Another important difference is that in Auclert

(2019) the above objects appear contemporaneously. In (24), by contrast, the whole future

path of the covariance between URE and MUC affects current inflation. This reflect the fact

that the Ramsey problem is not time-consistent, due to the presence of the forward-looking

bond pricing condition (8). If at some future point in time t > 0 the central bank decided to re-

optimize given the state at that point, ft (·), the new path for optimal inflation would not need

to coincide with the original path, as the costate at that point would be µt = 0 (corresponding

to a new commitment formulated at time t).

3.3 Further analytical results

Even though equations (23) and (24) provide a tight analytical characterization of the forces be-

hind the optimal inflation path, a closed-form solution for the latter is elusive in this framework.

However, it is possible to obtain a number of analytical results on the optimal inflation policy.

In doing so, we will also establish the mapping between equation (23) and the transmission

channels discussed in section 2.5.

Initial inflation and the redistributive inflationary bias. From now on, we assume

that the economy as a whole is not a net creditor. First we characterize initial inflation.

Proposition 2 (Redistributive inflationary bias at time 0) Provided the aggregate nom-

inal net position is non-positive, Ef0(·) [−NNP0 (a)] /Q0 = −ā0 ≥ 0, then optimal inflation at

time-0 is strictly positive, π0 > 0.

The formal proof can be found in Appendix B.3, although the result follows quite directly

from equation (23) evaluated at time 0 (at which µ0 = 0). As explained above, the strict

concavity of preferences implies that indebted households (NNP < 0) have a higher marginal

utility of consumption than lending ones (NNP > 0) and hence covf0(�) [−NNP0,MUC0] is

strictly positive. Provided the economy as a whole is not a net creditor, i.e. Ef0(�) [−NNP0] ≥ 0,

then the right-hand side of equation (23) is strictly positive. Since x′ (π) > 0 only for π > 0, it

follows that initial inflation must be strictly positive. It is important to stress that this result

is independent of the open economy dimension: even if the economy as a whole is neither a

creditor or a debtor (ā0 = 0), the fact that u′ is strictly decreasing in net wealth implies that,

as long as there is dispersion in net wealth, the central bank will have a reason to inflate.
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To delve further into the forces behind initial optimal inflation, and in particular to establish

the link between initial inflation and the transmission channels discussed in section 2.5, we

evaluate equation (19) at time 0 and express it in terms of the real market value of each

household’s net bond position, amt ≡ Qtat (see derivation in Lemma 3 in Appendix B):

disutility of inflation︷ ︸︸ ︷
x′ (π0) = −Q0

2∑
i=1

� ∞
φQ0

time-0 value function︷ ︸︸ ︷
vi0

(
am

Q0

)
d

dQ0

initial wealth dist. in market value︷ ︸︸ ︷
1

Q0

fi0

(
am

Q0

) dam (25)

= Efm0 (am,y) [−NNP0 (am)MUC0 (am, y)] ,

where fm0 (am, y) denotes the time-0 distribution of net wealth in terms of market value (i.e.,

the distribution of NNPs), given by

fm0 (am, y) =
1

Q0

f0

(
am

Q0

, y

)
, (26)

for am ∈ [φQ0,∞). According to equation (25), the marginal disutility of inflation x′ (π0) must

equal its marginal benefit. The latter reflects the marginal increase in aggregate welfare due

to the fall in the initial bond price Q0, due in turn to the marginal increase in inflation. The

impact of inflation on the initial bond price modifies the initial distribution of net wealth in

terms of market value, in particular by redistributing wealth from creditors to debtors: the fall

in Q0 reduces the market value of creditors’ assets and also reduces the market value of the

debtors’ liabilities. This captures the welfare effect of the Fisher channel. As discussed above,

as long as the country is not a net creditor the central bank has an incentive to redistribute by

creating surprise inflation.

The Fisher channel is not the only one affecting initial inflation. Equation (25) also shows

two subtle ways in which the liquidity channel influences optimal time-0 inflation. First, notice

that the lower limit of the net wealth distribution in market value terms fm0 is given by φQ0 and

is therefore endogenous to policy through its impact on the initial bond price Q0. Second, the

complete path of bond prices affects the time-0 value function vi0 (·) by altering at each time t

the borrowing limit expressed in terms of market value, φQt. Though this channel would call

for a deflationary path in order to improve households’ liquidity, Proposition 2 demonstrates

that this motive takes second place compared to the Fisher redistributive motive. The overall

effect is the bias towards positive initial inflation discussed above.

To the best of our knowledge, this redistributive inflationary bias is a novel result in the

context of incomplete markets models with uninsurable idiosyncratic risk. It is also different

from the classical inflationary bias of discretionary monetary policy originally emphasized by

Kydland and Prescott (1977) and Barro and Gordon (1983). In those papers, and more gener-

ally in the New Keynesian literature, the source of the inflation bias is a persistent attempt by

the monetary authority to raise output above its natural level. Here, by contrast, it arises from

the aggregate welfare gains that can be achieved by redistributing wealth towards indebted

households. Importantly, while the model analyzed here is deliberately simple with a view
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to illustrating our methodology, this redistributive motive to inflate would carry over to fully

fledged models with uninsurable idiosyncratic risk that feature a Fisher channel.

Optimal long-run inflation. As bonds mature progressively, the impact of future inflation

on the initial bond price decreases exponentially with time. This implies that inflation in the far

away future plays no role through the Fisher channel. Long-run inflation will thus be determined

by the trade-off between the liquidity channel, which calls for negative inflation rates in order to

increase bond prices and thus loosen the households’ borrowing limit –in market value terms–,

and the disutility cost of non-zero inflation. Though the exact value of steady-state inflation

cannot be derived analytically for the general case, the following proposition shows how, as

long as households are patient enough, it is exactly zero.

Proposition 3 (Optimal long-run inflation) In the limit as ρ → r̄, the optimal steady-

state inflation rate tends to zero: lim
ρ→r̄

π∞ = 0.

The proof can be found in Appendix B.4. Proposition 3 provides a useful benchmark to

understand the long-run properties of optimal policy when ρ is close to r̄. This will indeed be

the case in our numerical analysis.

Proposition 3 is reminiscent of a well-known result from the New Keynesian literature,

namely that optimal long-run inflation in the standard New Keynesian framework is exactly

zero (see e.g. Benigno and Woodford, 2005). In that framework, the optimality of zero long-

run inflation arises from the fact that, at that level, the welfare gains from trying to exploit

the short-run output-inflation trade-off (i.e. raising output towards its socially efficient level)

exactly cancel out with the welfare losses from permanently worsening that trade-off (through

higher inflation expectations). Key to that result is the fact that, in that model, price-setters

and the (benevolent) central bank have the same (steady-state) discount factor. Here, the

optimality of zero long-run inflation reflects instead the fact that, provided the discount rate

of the investors pricing the bonds is arbitrarily close to that of the central bank, the liquidity

channel becomes ineffective in the long run as households accumulate enough wealth to avoid

the borrowing limit.

The limiting case of instantaneous bonds. The presence of long-term nominal bonds is

key for understanding the front-loaded nature of optimal inflation in our model, i.e. the initial

inflation followed by a gradual disinflationary path. In the next proposition we show how, in

the instantaneous-debt limit, optimal inflation converges to zero right after time 0.

Proposition 4 (Instantaneous bonds) In the limit as δ → ∞, the optimal inflation rate

converges to zero: lim
δ→∞

πt = 0, t > 0.

The proof can be found in Lemma 4. With instantaneous bonds, the Fisher channel loses

its effectiveness and therefore there is no reason for using inflation for redistributive purposes.

Representative agent. To conclude the analytical results, we consider the case of a

representative agent. This can be seen as a special instance of the model above in which

y1 = y2 = y, the borrowing limit is not binding, φ = −∞, and the initial distribution is

18



degenerate at position a0. For simplicity, we also consider the case with log utility u(c) = log(c).

The solution to this problem can be derived analytically, as shown in Lemma 5. Consumption

evolves according to

ct = ρ(

NNP0︷ ︸︸ ︷
Q0a0 + y/r̄)e−(ρ−r̄)t,

which clearly illustrates how the initial market value of debt am0 = Q0a0 determines the whole

path of of consumption. Notice how in this case the central bank can only influence consumption

through the Fisher channel: if the country is a debtor, such that a0 < 0, the central bank may

redistribute from foreign investors to the representative household by reducing bond prices

through surprise inflation. The liquidity channel is not active given the fact that the borrowing

limit is not binding. In this case, the optimal inflation path is pinned down by

x′ (πt) =

−NNP0︷ ︸︸ ︷
(−Q0a0)

MUC0︷ ︸︸ ︷
u′ (c0)︸ ︷︷ ︸

Time-0 optimal inflation(ψπ0)

Qt

Q0

e[−
� t
0 (r̄+δ+πs−ρ)ds]︸ ︷︷ ︸

Dynamic evolution

,

where the first term on the right-hand side accounts for the optimal initial inflation and the

second term describes its dynamics. Notice how the expression determining initial inflation,

x′ (π0) = −NNP0MUC0 > 0, is just a particular instance of equation (23) when only the

cross-border net nominal position motive is present.

Inflation decreases according to Qt/Q0 exp
[
−
� t

0
(r̄ + δ + πs − ρ) ds

]
. This term captures

how the gradual amortization of initially outstanding bonds makes future inflation progressively

ineffective in terms of time-0 redistribution. In the limit as time goes to infinity inflation

converges to zero lim
t→∞

πt = 0. This is so even if the discount factor of households and investors

differ: since the liquidity channel is shut down, the central bank has no incentive to manipulate

inflation in the long-run given its negligible effect on the time-0 bond price.

4 Numerical analysis

4.1 Numerical solution

Despite its tight characterization in Proposition 1, a closed-form solution to the Ramsey problem

remains elusive and hence we need to resort to numerical techniques to compute the equilibrium.

In Appendix C we propose an algorithm to find the solution. The general idea is to guess a path

for inflation and use it to find an equilibrium of this economy. We then use the equilibrium

objects to compute the path of the costate µt from equation (21) and, given the latter, the

optimal inflation path using equation (19). If the latter does not coincide with the initial guess,

we update it and then iterate again until numerical convergence is reached. In order to find

the equilibrium at each iteration, we have to solve the households’ HJB equation and the KF

equation. To this end, we apply a finite difference method similar to the ones employed in

Achdou et al. (2017) or Nuño and Moll (2018). In summary, the numerical solution of the
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model just amounts to solving a heterogeneous-agent model with one extra forward looking

variable, the costate µt. The optimality condition (19) then pins down optimal inflation.

It is worthwhile to highlight here that the assumption of continuous time improves the

efficiency of the numerical solution in several dimensions. First, the HJB equation (5) can

be solved using fast sparse-matrix methods. Second, the solution of the HJB equation makes

straightforward the computation of the dynamics of the distribution (equation 10) as the oper-

ators in both equations are adjoint. This efficiency is crucial as the computation of the optimal

policies requires several iterations along the complete time-path of the distribution. In a home

PC, the Ramsey problem presented here can be solved in a few minutes. In any case, optimal

monetary policy can be analyzed in discrete time following a similar approach, as discussed in

an earlier version of this paper (Nuño and Thomas, 2016).

4.2 Calibration

The calibration is intended to be mainly illustrative, given the model’s simplicity and par-

simoniousness. We calibrate the model to replicate some relevant features of a prototypical

European small open economy. We will focus for illustration on the UK, Sweden, and the

Baltic countries (Estonia, Latvia, Lithuania). We choose these countries because they (sepa-

rately) feature desirable properties for the purpose at hand.10 Let the time unit be one year.

For the calibration, we consider that the initial distribution coincides with the steady state im-

plied by a zero inflation policy. This squares reasonably well with the experience of our target

economies, which have displayed low and stable inflation for most of the recent past. When

integrating across households, we therefore use the stationary wealth distribution associated to

such steady state.11

We assume the following functional forms for preferences: u(c) = log(c), x (π) = ψ
2
π2.

As mentioned before, the quadratic specification for the inflation utility cost, ψ
2
π2
t , can be

micro-founded by modeling firms explicitly and allowing them to set prices subject to standard

quadratic price adjustment costs à la Rotemberg (1982); see Appendix A for further details. We

set the scale parameter ψ such that the slope of the inflation equation in a Rotemberg pricing

setup replicates that in a Calvo pricing setup for reasonable calibrations of price adjustment

frequencies and demand curve elasticities. The slope of the continuous-time New Keynesian

Phillips curve in the Calvo model is given by χ (χ+ ρ), where χ is the price adjustment rate.

In the Rotemberg model the slope is given by ε−1
ψ

, where ε is the elasticity of firms’ demand

curves and ψ is the scale parameter in the quadratic price adjustment cost function in that

10On the one hand, UK and Sweden are two prominent examples of relatively small open economies that
retain an independent monetary policy, like the economy in our framework. This is unlike the Baltic states,
who recently joined the euro. However, historically the latter states have been relatively large debtors against
the rest of the World, which makes them appealing for our analysis (UK and Sweden have also remained net
debtors in basically each quarter for the last 20 years, but on average their net balance has been much closer
to zero).

11The wealth dimension is discretized by using 1000 equally-spaced grid points from a = φ to a = 10. The
upper bound is needed only for operational purposes but is fully innocuous, because the stationary distribution
places essentially zero mass for wealth levels above a = 8.
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model. It follows that, for the slope to be the same in both models, we need ψ = ε−1
χ(χ+ρ)

.Setting

ε to 11 (such that the gross markup ε/ (ε− 1) equals 1.10) and χ to 4/3 (such that price last

on average for 3 quarters), and given our calibration for ρ, we obtain ψ = 5.5.

We jointly set households’ discount rate ρ and borrowing limit φ such that the steady-

state net international investment position (NIIP) over GDP (ā/ȳ) and gross household debt

to GDP (b̄/ȳ) replicate those in our target economies. According to Eurostat, the NIIP/GDP

ratio averaged minus 48.6% across the Baltic states in 2016:Q1, and only minus 3.8% across

UK-Sweden. We thus target a NIIP/GDP ratio of minus 25%, which is about the midpoint of

both values. Regarding gross household debt, we use BIS data on ’total credit to households’,

which averaged 85.9% of GDP across Sweden-UK in 2015:Q4 (data for the Baltic countries are

not available). We thus target a 90% household debt to GDP ratio.

We target an average bond duration of 4.5 years, as in Auclert (2019). In our model, the

Macaulay bond duration equals 1/ (δ + r̄). We set the world real interest rate r̄ to 3 percent.

Our duration target then implies an amortization rate of δ = 0.19.

The idiosyncratic income process parameters are calibrated as follows. We follow Huggett

(1993) in interpreting states 1 and 2 as ’unemployment’ and ’employment’, respectively. The

transition rates between unemployment and employment (λ1, λ2) are chosen such that (i) the

unemployment rate λ2/ (λ1 + λ2) is 10 percent and (ii) the job finding rate is 0.1 at monthly

frequency or λ1 = 0.72 at annual frequency.12 These numbers describe the ‘European’ labor

market calibration in Blanchard and Gaĺı (2010). We normalize average income ȳ = λ2

λ1+λ2
y1 +

λ1

λ1+λ2
y2 to 1. We also set y1 equal to 71 percent of y2, as in Hall and Milgrom (2008). Both

targets allow us to solve for y1 and y2. Table 1 summarizes our baseline calibration.

Table 1. Baseline calibration

Parameter Value Description Source/Target

r̄ 0.03 world real interest rate standard

ψ 5.5 scale inflation disutility slope NKPC in Calvo model

δ 0.19 bond amortization rate Macaulay duration = 4.5 yrs

λ1 0.72 transition rate unemp-to-employment monthly job finding rate 0.1

λ2 0.08 transition rate emplo-to-unemployment unemployment rate 10%

y1 0.73 income in unemployment state Hall&Milgrom(2008)

y2 1.03 income in employment state E (y) = 1

ρ

φ

0.0302

-3.6

subjective discount rate

borrowing limit

{
NIIP -25% of GDP

HH debt/GDP 90%

4.3 Optimal transitional dynamics

We are ready to analyze optimal transitional dynamics. As explained in Section 3, the optimal

policy paths depend on the initial (time-0) distribution of net wealth and income across house-

12Analogously to Blanchard and Gaĺı (2010; see their footnote 20), we compute the equivalent annual rate λ1

as λ1 =
∑12
i=1 (1− λm1 )

i−1
λm1 ,where λm1 is the monthly job finding rate.
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Figure 1: Transitional dynamics.

holds, f0 (a, y), which is an (infinite-dimensional) primitive in our model. For the purpose of

illustration, we consider the stationary distribution under zero inflation as the initial distribu-

tion. We thus assume f0 (a, yi) = f
a|y
π=0 (a | yi) f y (yi) , i = 1, 2, where f y (yi) = λj 6=i/ (λ1 + λ2) ,

i, j = 1, 2, and f
a|y
π=0 is the stationary conditional density of net wealth under zero inflation.

Notice that aggregate income is constant at ȳt = λ2

λ1+λ2
y1 + λ1

λ1+λ2
y2 = 1, given our calibration

of {yi}i=1,2. Later we will analyze the robustness of our results to a wide range of alternative

initial distributions.

The optimal paths are shown by the green solid lines in Figure 1 whereas the red dashed

lines display the (invariant) paths under the zero-inflation policy, πt = 0 for all t ≥ 0. We

simulate 800 years of data at monthly frequency and display the first 30 years. It follows from

equation (23) and the fact that µ0 = 0 (no pre-commitments at time zero) that initial optimal

inflation is

π0 =
1

ψ

{
covf0(·) [−NNP0 (·) ,MUC0 (·)] + Ef0(·) [−NNP0 (·)]Ef0(·) [MUC0 (·)]

}
. (27)

Therefore, the time-0 inflation rate, of about 4.6 percent, reflects exclusively the redistributive

inflationary bias discussed in Proposition 2. As explained in Section 3, the redistributive motive

has both a cross-border and a domestic dimension, where the latter arises from the fact that
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Figure 2: Time-0 equilibrium objects.

households with different nominal net positions have different marginal utilities of consumption.

To illustrate this last dimension, panels (a), (d) and (c) in Figure 2 display respectively the

NNP and MUC as functions of net wealth and (in the second case) income, as well as the net

wealth-income distribution at time zero. As shown there, agents with lower net wealth and

hence lower NNP have a higher MUC, implying a positive covariance between both. This gives

the central bank an incentive to inflate so as to redistribute domestically. This inflationary bias

is reinforced by the fact that the economy as a whole is initially a net debtor vis-à-vis the rest

of the World (Ef0(·) [−NNP0] > 0) under our calibration.

From time zero onwards, Ramsey optimal inflation follows (23). As shown in the figure,

inflation gradually declines towards its long-run level; the latter equals -0.05 per cent, i.e. very

close to zero. This is consistent with Proposition 3 and the fact ρ and r̄ are very close to each

other in our calibration (r̄ = 0.03 and ρ = 0.0302). Panels (b) and (c) show why inflation

declines over time: while the net nominal position redistributive motive to inflate (the first two

right-hand-side terms in equation 23) remains roughly stable, the costate µt becomes more and

more negative over time. As explained in Section 3, this captures the increasing weight of the

interest rate exposure redistributive motive over time. Panels (b) and (d) in Figure 2 show that

those households that issue new bonds (i.e. those with negative UREt) have lower net wealth

and hence higher marginal utility than bond-purchasing households (UREt > 0). This implies
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a negative covariance between URE and MUC, giving the central bank an incentive to gradually

disinflate over time. This disinflationary motive is reinforced by the fact that the country is a

net issuer of new bonds at all times (Eft(·) [−UREt] > 0) and therefore a commitment to lower

future inflation benefits domestic households as a whole vis-à-vis international investors.

In summary, the central bank front-loads inflation in order to redistribute net wealth towards

indebted households, but commits to gradually reducing inflation as the initially outstanding

bonds mature. In the long-run inflation is slightly negative, reflecting the desire of the central

bank to provide a certain degree of extra liquidity to households even at the expense of incurring

in some disutility costs.

Finally, panels (e) and (g) in Figure 1 show that the optimal policy succeeds at reducing

the country’s net liabilities with the rest of the World and at temporarily increasing aggregate

consumption, despite an initial spell of consumption below the zero-inflation counterfactual.

This aggregate behavior however masks important redistributive effects across households, to

which we turn next.

4.4 Redistributive effects of optimal inflation

Having analyzed the aggregate dynamics, one may now ask to what extent the central bank

succeeds at redistributing consumption and welfare across households.

Consumption redistribution. Figure 3 shows how the time-0 distribution of consumption

across households, f c0 (c, y) ≡ f0 (c−1(c, y), y) / (∂c/∂a), is affected in the optimal inflationary

regime vis-à-vis the zero inflation regime.13 Clearly, the Fisher channel of optimal inflation

policy succeeds in raising consumption for consumption-poor households (which are also the

wealth-poor households, given the monotonically increasing relationship between net wealth and

consumption) and vice versa for consumption-rich households, thus narrowing the consumption

distribution relative to the zero inflation regime.

Panels (h) and (i) in Figure 1 offer a dynamic perspective on consumption redistribution

after time 0. The gradual recovery in bond prices (panel d), together with the decreasing path

of inflation, progressively reverses the time-0 consumption redistribution, as creditors increase

their consumption whereas debtors reduce it. Notwithstanding, the speed of this adjustment is

heterogeneous across households, with creditors increasing consumption at a faster rate. The

result is an initial increase in aggregate consumption (panel g), which peaks after around 10

years, followed by a steady decline towards its long-run value.

Welfare. We now turn to the welfare analysis. Aggregate welfare is defined as

Ef0(a,y) [v0 (a, y)] =

� ∞
0

e−ρtEft(a,y) [u (ct (a, y))− x (πt)] dt ≡ W [c] ,

Table 2 displays the welfare losses of the suboptimal zero-inflation policy vis-à-vis the Ramsey

optimal allocation. We express welfare losses as a permanent consumption equivalent, i.e. the

13Asterisks in the figure account for the mass of the Dirac delta at the borrowing limit of the unemployed
households, as explained in Achdou et al. (2017).
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Figure 3: Consumption density at time 0.

number Θ (in %) that satisfies in each case WR
[
cR
]

= W π=0 [(1 + Θ) c], where R denotes the

Ramsey allocation. Under our assumed separable preferences with log consumption utility, it is

possible to show that Θ = exp
{
ρ
(
WR

[
cR
]
−W [c]

)}
− 1. The table also displays the welfare

losses incurred respectively by lending and indebted households.14 The aggregate welfare loss

from the suboptimal policy equals 0.05 percent of permanent consumption. This aggregate

effect masks a substantial welfare redistribution between groups: the absence of inflation pro-

duces welfare losses of 0.22 percent for indebted households and welfare gains of 0.17 percent

for lending households.

Table 2. Welfare losses of a zero-inflation policy relative to the optimal commitment

Economy-wide Creditor HHs Debtor HHs

0.05 -0.17 0.22

Note: welfare losses are expressed as a % of permanent consumption

4.5 Robustness

Bond maturity. We now assess how sensitive the baseline results are to alternative calibra-

tions. Arguably a key parameter is the average maturity of nominal liabilities. In our baseline

14That is, we report Θa>0 and Θa<0, where Θa>0 = exp
[
ρ
(
WR,a>0 −Wπ=0,a>0

)]
− 1, with Θa<0 defined

analogously, and where for each policy regime we have defined W a>0 ≡
�∞

0

∑2
i=1 vi0 (a) fit(a)da, W a<0 ≡� 0

φ

∑2
i=1 vi0 (a) fit(a)da. Notice that Θa>0 and Θa>0 do not exactly add up to Θ, as the exponential function

is not a linear operator. However, Θ is sufficiently small that Θ ≈ Θa>0 + Θa>0.
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Figure 4: Optimal inflation under different debt durations.

calibration we are assuming an average duration of 4.5 years. By contrast, and with the ex-

ception of Auclert (2019), existing analyses of monetary policy with heterogeneous agents and

nominal debt consider one-period (quarterly or annual) debt (e.g., Luetticke, 2020; or Bhandari

et al., 2020). In order to analyze how debt maturity affects optimal policy, in Figure 4 we show

the optimal path of inflation when δ is recalibrated to match an average duration of 1 year (red

dashed-dotted line) or 1 quarter (0.25 years, blue dashed lines) and compare them with the

baseline (green solid line).

As debt duration is reduced, the front-loading of inflation discussed above is amplified. For

instance, with an average bond duration of one quarter, initial inflation jumps over 13 percent

but reverts back to (near) zero in less than a year. The intuition is as follows. As explained

above, the strength of the time-0 Fisher redistributive motive depends crucially on the decrease

in the initial bond price, Q0. As debt duration is reduced, bond prices become less responsive

to future inflation. This forces the central bank to front-load inflation more aggressively. In

the limit as duration goes to zero (δ goes to infinity) debt becomes instantaneous and optimal

inflation is zero at all times, as discussed in section 3.3.

Discount rates and initial wealth dispersion. Appendix G contains two additional

robustness exercises analyzing (i) the sensitivity of optimal steady-state inflation to the gap

between domestic households’ and foreign investors’ discount rates (ρ−r̄), and (ii) the sensitivity

of initial inflation π0 to the initial net wealth distribution. The results can be summarized as

follows. First, optimal steady-state inflation decreases approximately linearly with the gap

ρ − r̄, because the central bank’s incentive to protect households with negative URE –by

committing to lower future inflation– becomes more and more dominant relative to its incentive
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to redistribute resources towards currently indebted households –by raising current inflation.

Second, initial inflation increases with the dispersion of the initial net wealth distribution

(while holding constant the initial net foreign asset position), reflecting a stronger net nominal

position redistributive motive. This exercise also reveals that both the domestic and cross-

border redistributive motives are quantitatively important for explaining initial inflation, with

contributions of about one third and two thirds, respectively. In particular, even if the country

is assumed to have a zero NNP vis-à-vis the rest of the World at time 0, the purely domestic

net nominal position motive is enough to justify an optimal initial inflation of π0 about 1.5

percent.

4.6 Optimal response to shocks from a timeless perspective

So far we have restricted our analysis to the transitional dynamics, given the initial state of

the economy, while abstracting from aggregate shocks. We now extend our analysis to allow

for aggregate disturbances. For the purpose of illustration we consider a so-called “MIT shock”

to aggregate income. In particular, let individual income now be given by {y1Yt, y2Yt}, such

that aggregate income equals Yt (given our assumption that ȳ = 1).15 Assume a one-time,

unanticipated decrease of 1 percentage point in Yt, after which it returns gradually to its

steady-state value Yss = 1 according to

dYt = ηY (1− Yt) dt,

with ηY = 0.5. As discussed by Boppart, Krusell and Mittman (2018) and Auclert, Bardóczy

and Rognlie (2019), this is equivalent to solving a model with an aggregate stochastic process

dYt = ηY (1− Yt) dt+σdZt, with σ = 0.01 and Zt a Brownian motion, around the deterministic

steady state using a first order approximation as in the method of Ahn et al. (2017). The

methodology in Boppart, Krusell and Mittman (2018) would also allow us to compute aggregate

moments, a feature that we do not exploit in this paper.

An issue that arises here is how long after ’time 0’ (the implementation date of the Ramsey

optimal commitment) the aggregate shock is assumed to take place. Since we do not want to

take a stand on this dimension, we consider the limiting case in which the Ramsey optimal com-

mitment has been going on for a sufficiently long time that the economy rests at its stationary

equilibrium by the time the shock arrives. This can be viewed as an example of optimal policy

’from a timeless perspective’, in the sense of Woodford (2003). In practical terms, it requires

solving the optimal commitment problem analyzed in Section 3 with two modifications (apart

of course from the time variation in Yt): (i) the initial wealth distribution is the stationary

distribution implied by the optimal commitment itself, and (ii) the initial condition µ0 = 0

(absence of precommitments) is replaced by µ0 = µ∞, where the latter object is the stationary

value of the costate in the commitment case. Both modifications guarantee that the central

bank behaves as if it had been following the time-0 optimal commitment for an arbitrarily long

15This is isomorphic to a TFP shock in a model with linear technology and fixed-labor supply.
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Figure 5: Generalized impulse response function of an aggregate income shock.

time.

The dashed red lines in Figure 5 display the responses to the shock under a zero inflation

policy. The shock leads households to reduce their consumption on impact and to progressively

accumulate more debt (negative wealth) vis-à-vis the rest of the World. The solid green lines

display the economy’s response under the optimal commitment policy. Inflation rises slightly

on impact, as the central bank tries to partially counteract the negative effect of the shock

on household consumption. However, the inflation reaction is an order of magnitude smaller

than that of the shock itself. Intuitively, the value of sticking to past commitments to keep

inflation near zero weighs more in the central bank’s decision than the value of using inflation

transitorily so as to stabilize consumption in response to an unforeseen event.

The main conclusion of this exercise is that, despite the strong incentives to redistribute in

the absence of precommitments, once the central bank has committed to an optimal (near) zero

inflation path it does not exploit in a significant way the redistributive channels of monetary

policy to accommodate aggregate shocks. Naturally this conclusion depends on the specific

nature of the shock, but it is robust to other standard shocks such as an increase in the World

interest rate (analyzed in Nuño and Thomas, 2016).
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5 A limit on the market value of debt

Our baseline model assumes an exogenous limit on the real face value of net liabilities, (−)at.

It is also interesting to study instead the case if a borrowing limit affecting the real market

value of net debt, (−)Qtat. Consider thus the alternative of placing an exogenous limit on the

real market value of net liabilities: Qtat ≥ φm, or equivalently

amt ≥ φm. (28)

with φm ≤ 0.16 This is the case assumed e.g. by Auclert (2019).17 This differs from the

market-value representation of our baseline borrowing limit (eq. 14) in that the central bank

can no longer tighten or relax it by affecting bond prices. In other words, this alternative

borrowing constraint effectively shuts down the liquidity channel of monetary policy operating

in our baseline analysis. The Fisher channel still operates in this case: monetary policy can

only affect the net wealth distribution (in market value terms) through its impact on time-0

bond prices.

In order to assess the impact of abstracting from the liquidity channel, we solve the optimal

monetary policy problem in this alternative model. Appendix E explains in detail the deriva-

tions. This case is quite tractable because the domain of the net wealth distribution in market

value terms, [φm,∞), is policy invariant. The optimal inflation is now determined by

ψπt =
Qt

Q0

e[−
� t
0 (r̄+δ+πs−ρ)ds]︸ ︷︷ ︸

Dynamic evolution

(−Q0)
2∑
i=1

� ∞
φm

time-0 value function︷ ︸︸ ︷
vi0

(
am

Q0

)
d

dQ0

initial distribution in market value︷ ︸︸ ︷
1

Q0

fi0

(
am

Q0

) dam

︸ ︷︷ ︸
Time-0 optimal inflation(ψπ0)

.

(29)

According to equation (29), the marginal disutility of inflation x′ (πt) = ψπt must equal its

marginal benefit. The latter is represented as the product of optimal time-0 inflation (times ψ)

and a term capturing the dynamic evolution of optimal inflation after time 0. Optimal time-0

inflation follows a formula similar to the one in the baseline case (equation 25) but where both

the domain [φm,∞) and the value function vi0 (·) do not depend on bond prices, consistently

with the fact that the liquidity channel does not operate in this case. Inflation dynamics

follow the expression Qt/Q0 exp
[
−
� t

0
(r̄ + δ + πs − ρ) ds

]
as in the representative agent case,

reflecting the diminishing role of future inflation in terms of time-0 redistribution.

Notice that only the initial net wealth distribution fm0 (am) matters for the optimal inflation

path. However, solving for that path is still complicated by the fact that such initial distribution

is endogenous to the policy-maker’s actions. In fact, the inflation rate at any time t ≥ 0 affects

16In our numerical analysis of this specification, we maintain the same calibration described in section 4, with
φm = Qπ=0φ, where Qπ=0 = δ/ (r̄ + δ) is the nominal bond price in the case of zero inflation. This allows both
specifications to produce the same results in the particular case of zero inflation.

17Our environment is very stylized, so it is hard to disentangle which borrowing limit is more realistic. A
detailed discussion of borrowing limits in a model featuring housing can be found in Greenwald (2018), for
instance.
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Figure 6: Transitional dynamics with alternative exogenous debt limits.

the time-0 distribution of the market value of net wealth through its effect on Q0 (eq. 26). In

Appendix C.3, we sketch the algorithm that we use to solve the problem.

Figure 6 displays the transitional dynamics of the model in the case of a limit on the market

value of debt, compared with the baseline (already shown in Figure 1). Notice first that the

optimal inflation path is barely affected by the specification of the borrowing limit. We will

return to this issue below. However, the responses of consumption are markedly different across

both specifications. As in the baseline case, time-0 consumption is lower for creditors and higher

for debtors, compared to the zero inflation case.18 However, in the case of a market-value debt

limit, debtor’s initial consumption gain is much larger than under the face-value debt limit,

and hence time-0 aggregate consumption is higher too.

To understand this difference, Figure 7 displays the time-0 consumption policies and the

wealth distribution, both as functions of market-value net wealth, am. Panels (c) and (d)

show how, given the same initial decline in bond prices −a consequence of almost identical

inflation paths−, the wealth distribution in market value terms practically coincides in both

cases. The difference lies in the behavior of the consumption policy function: whereas it

remains unaltered (relative to zero inflation) in the case of a debt limit in market value, it

18Notice that under zero inflation it does not matter whether the debt limit is on the face or market value of
debt, since bond prices are constant.
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Figure 7: Time-0 redistribution with alternative exogenous debt limits.

varies in the baseline model, because the initial fall in bond prices tightens the borrowing limit

through equation (14). This explains why debtors’ initial consumption increases (relative to

zero inflation) by a smaller amount in the baseline model, thus producing the initial decline in

aggregate consumption discussed in Section 4.3.

Why is optimal inflation so similar in both models despite the different consumption dynam-

ics? The difference between the two models is due exclusively to the working of the liquidity

channel. As there is no mass in the wealth distribution below φQ0 in the case with a debt limit

in the market value of debt (as shown in Panel (c) of Figure 7), the effect of the time-0 bond

price on the lower limits plays no role. The difference between the time-0 value functions is

quantitatively small, as displayed in Figure 10 in Appendix F, which explains the similarity in

the optimal inflation paths.

To summarize, while the debt limit specification (face vs. market value) matters for the

transmission channels of monetary policy and the dynamics of aggregate consumption, this

appears to have a relatively limited quantitative impact on the optimal inflation policy in our

framework. An open question is whether the same would hold true in a richer, more complex,
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environment such as those considered in the recent HANK literature (e.g., Kaplan, Moll and

Violante, 2018; or Gornemann, Kuester and Nakajima, 2016) expanded with long-term debt.

6 Conclusion

We have analyzed optimal monetary policy in a continuous-time, small-open-economy version

of a standard incomplete-markets model extended to allow for nominal, long-term claims and

costly inflation. Our analysis sheds light on a recent policy and academic debate on the conse-

quences that wealth heterogeneity across households should have for the appropriate conduct

of monetary policy.

Our first contribution relates to our normative results. Our model features two prominent

transmission channels of monetary policy: the classic Fisher channel, and a liquidity channel.

Under incomplete markets and standard concave preferences, indebted households have a higher

marginal utility than lending ones, giving the central bank an incentive to use inflation in order

to redistribute wealth from the latter to the former. The result is an initial inflationary bias.

This bias is counteracted over time by a disinflationary motive as initial bonds mature. In the

long-run, the Fisher channel plays no role and optimal inflation is negative: the central bank

raises asset prices in order to provides some additional liquidity to households The optimal

commitment policy is found indeed to imply inflation ’front-loading’, with a gradual undoing

of the initial inflationary stance.

Our second contribution is methodological: we solve for a fully dynamic optimal policy

problem in an incomplete-markets model with uninsurable idiosyncratic risk. While models

of this kind have been established as a workhorse for policy analysis in macro models with

heterogeneous agents, the fact that in such models the infinite-dimensional, endogenously-

evolving wealth distribution is a state in the policy-maker’s problem has made it difficult to

make progress in the analysis of fully optimal policy problems. Our analysis proposes a novel

methodology, based on infinite dimensional calculus, for dealing with problems of this kind.

Finally, our methodology can be extended to the analysis of the standard closed-economy

New Keynesian model with heterogeneous agents and exogenous borrowing limits. As discussed

in Nuño and Moll (2018), in this case the value function of each household does not coincide

with the social value assigned to it by the central bank. This is a consequence of the pecuniary

externality present in the closed-economy version of the model. The difference between private

and social valuations gives rise to a new redistributive motive that will affect the optimal

conduct of monetary policy. Furthermore, the standard New Keynesian transmission channels

will also interact with the Fisher and liquidity ones analyzed in this paper. We leave the study

of this model for future research.
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[27] Constâncio, V. (2017). Inequality and macroeconomic policies, ECB Speech.

[28] Da Costa, C. and I. Werning (2008). "On the Optimality of the Friedman Rule with

Heterogeneous Agents and Nonlinear Income Taxation," Journal of Political Economy,

116(1), pp. 82-112.

34



[29] Dávila, J., J. H. Hong, P. Krusell and J. V. Ŕıos-Rull (2012). ”Constrained Efficiency in
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Online appendix (not for publication)

A. An economy with costly price adjustment

In this appendix, we lay out a model economy with the following characteristics: (i) firms are

explicitly modeled, (ii) a subset of them are price-setters but incur a convex cost for chang-

ing their nominal price, and (iii) the social welfare function and the equilibrium conditions

constraining the central bank’s problem are the same as in the model economy in the main

text.

A.1. Final good producer

In the model laid out in the main text, we assumed that output of the consumption good was

exogenous. Consider now an alternative setup in which the consumption good is produced

by a representative, perfectly competitive final good producer with the following Dixit-Stiglitz

technology,

yt =

(� 1

0

y
(ε−1)/ε
jt dj

)ε/(ε−1)

, (30)

where {yjt} is a continuum of intermediate goods and ε > 1. Let Pjt denote the nominal price

of intermediate good j ∈ [0, 1]. The firm chooses {yjt} to maximize profits, Ptyt −
� 1

0
Pjtyjtdj,

subject to (30). The first order conditions are

yjt =

(
Pjt
Pt

)−ε
yt, (31)

for each j ∈ [0, 1]. Assuming free entry, the zero profit condition and equations (31) imply

Pt = (
� 1

0
P 1−ε
jt dj)1/(1−ε).

A.2. Intermediate goods producers

Each intermediate good j is produced by a monopolistically competitive intermediate-good

producer, which we will refer to as ’firm j’ henceforth for brevity. Firm j operates a linear

production technology,

yjt = njt, (32)

where njt is labor input. At each point in time, firms can change the price of their product but

face quadratic price adjustment cost as in Rotemberg (1982). Letting Ṗjt ≡ dPjt/dt denote the

change in the firm’s price, price adjustment costs in units of the final good are given by

Ψt

(
Ṗjt
Pjt

)
≡ ψ

2

(
Ṗjt
Pjt

)2

C̃t, (33)
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where C̃t is aggregate consumption. Let πjt ≡ Ṗjt/Pjt denote the rate of increase in the firm’s

price. The instantaneous profit function in units of the final good is given by

Πjt =
Pjt
Pt
yjt − wtnjt −Ψt (πjt)

=

(
Pjt
Pt
− wt

)(
Pjt
Pt

)−ε
yt −Ψt (πjt) , (34)

where wt is the perfectly competitive real wage and in the second equality we have used (31)

and (32). Without loss of generality, firms are assumed to be risk neutral and have the same

discount factor as households, ρ. Then firm j’s objective function is

E0

� ∞
0

e−ρtΠjtdt,

with Πjt given by (34). The state variable specific to firm j, Pjt, evolves according to dPjt =

πjtPjtdt. The aggregate state relevant to the firm’s decisions is simply time: t. Then firm j’s

value function V (Pjt, t) must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation,

ρV (Pj, t) = max
πj

{(
Pj
Pt
− wt

)(
Pj
Pt

)−ε
yt −Ψt (πj) + πjPj

∂V

∂Pj
(Pj, t)

}
+
∂V

∂t
(Pj, t) .

The first order and envelope conditions of this problem are (we omit the arguments of V to

ease the notation),

ψπjtC̃t = Pj
∂V

∂Pj
, (35)

ρ
∂V

∂Pj
=

[
εwt − (ε− 1)

Pj
Pt

](
Pj
Pt

)−ε
yt
Pj

+ πj

(
∂V

∂Pj
+ Pj

∂2V

∂P 2
j

)
.

In what follows, we will consider a symmetric equilibrium in which all firms choose the same

price: Pj = P, πj = π for all j. After some algebra, it can be shown that the above conditions

imply the following pricing Euler equation,[
ρ− dC̃t

dt

1

C̃t

]
πt =

ε− 1

ψ

(
ε

ε− 1
wt − 1

)
1

C̃t
+
dπt
dt
. (36)

Equation (36) determines the market clearing wage wt.

A.3. Households

The preferences of household k ∈ [0, 1] are given by

E0

� ∞
0

e−ρt log (c̃kt) dt,
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where c̃kt is household consumption of the final good. We now define the following object,

ckt ≡ c̃kt +
c̃kt

C̃t

� 1

0

Ψt (πjt) dj,

i.e. household k′s consumption plus a fraction of total price adjustment costs (
�

Ψt (·) dj) equal

to that household’s share of total consumption (c̃kt/C̃t). Using the definition of Ψt (eq. 33)

and the symmetry across firms in equilibrium (Ṗjt/Pjt = πt,∀j), we can write

ckt = c̃kt + c̃kt
ψ

2
π2
t = c̃kt

(
1 +

ψ

2
π2
t

)
. (37)

Therefore, household k’s instantaneous utility can be expressed as

log(c̃kt) = log (ckt)− log

(
1 +

ψ

2
π2
t

)
= log (ckt)−

ψ

2
π2
t + o

(∥∥∥∥ψ2 π2
t

∥∥∥∥2
)
, (38)

where o(‖x‖2) denotes terms of order second and higher in x. Expression (38) is the same as the

utility function in the main text, up to a first order approximation of log(1 + x) around x = 0,

where x ≡ ψ
2
π2 represents the percentage of aggregate spending that is lost to price adjustment.

For our baseline calibration (ψ = 5.5), the latter object is relatively small even for relatively

high inflation rates, and therefore so is the approximation error in computing the utility losses

from price adjustment. Therefore, the utility function used in the main text provides a fairly

accurate approximation of the welfare losses caused by inflation in the economy with costly

price adjustment described here.

Households can be in one of two idiosyncratic states. Those in state i = 1 do not work.

Those in state i = 2 work and provide z units of labor inelastically. As in the main text,

the instantaneous transition rates between both states are given by λ1 and λ2, and the share

of households in each state is assumed to have reached its ergodic distribution; therefore, the

fraction of working and non-working households is λ1/ (λ1 + λ2) and λ2/ (λ1 + λ2), respectively.

Hours per worker z are such that total labor supply λ1

λ1+λ2
z is normalized to 1.

An exogenous government insurance scheme imposes a (total) lump-sum transfer τt from

working to non-working households. All households receive, in a lump-sum manner, an equal

share of aggregate firm profits gross of price adjustment costs, which we denote by Π̂t ≡
P−1
t

� 1

0
Pjtyjtdj−wt

� 1

0
njtdj. Therefore, disposable income (gross of price adjustment costs) for

non-working and working households are given respectively by

I1t ≡
τt

λ2/ (λ1 + λ2)
+ Π̂t,

I2t ≡ wtz −
τt

λ1/ (λ1 + λ2)
+ Π̂t.
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We assume that the transfer τt is such that gross disposable income for households in state i

equals a constant level yi, i = 1, 2, with y1 < y2. As in our baseline model, both income levels

satisfy the normalization
λ2

λ1 + λ2

y1 +
λ1

λ1 + λ2

y2 = 1.

Also, later we show that in equilibrium gross income equals one: Π̂t + wt
λ1

λ1+λ2
z = 1. It is

then easy to verify that implementing the gross disposable income allocation Iit = yi, i = 1, 2,

requires a transfer equal to τt = λ2

λ1+λ2
y1 − λ2

λ1+λ2
Π̂t. Finally, total price adjustment costs

are assumed to be distributed in proportion to each household’s share of total consumption,

i.e. household k incurs adjustment costs in the amount (c̃kt/C̃t)(
ψ
2
π2
t C̃t) = c̃kt

ψ
2
π2
t . Letting

Ikt ≡ ykt ∈ {y1, y2} denote household k’s gross disposable income, the law of motion of that

household’s real net wealth is thus given by

dakt =

[(
δ

Qt

− δ − πt
)
akt +

Ikt − c̃kt − c̃ktψπt/2
Qt

]
dt

=

[(
δ

Qt

− δ − πt
)
akt +

ykt − ckt
Qt

]
dt, (39)

where in the second equality we have used (37). Equation (39) is exactly the same as its

counterpart in the main text, equation (3). Since household’s welfare criterion is also the same,

it follows that so is the corresponding maximization problem.

A.4. Aggregation and market clearing

In the symmetric equilibrium, each firm’s labor demand is njt = yjt = ȳt. Since labor supply
λ1

λ1+λ2
z = 1 equals one, labor market clearing requires

� 1

0

njtdj = ȳt = 1.

Therefore, in equilibrium aggregate output is equal to one. Firms’ profits gross of price adjust-

ment costs equal

Π̂t =

� 1

0

Pjt
Pt
yjtdj − wt

� 1

0

njtdj = ȳt − wt,

such that gross income equals Π̂t + wt = ȳt = 1.

A.5. Central bank and monetary policy

We have shown that households’ welfare criterion and maximization problem are as in our

baseline model. Thus the dynamics of the net wealth distribution continue to be given by

equation (10). Foreign investors can be modeled exactly as in Section 2. Therefore, the central

bank’s optimal policy problems, both under commitment and discretion, are exactly as in our

baseline model.

42



B. Proofs

B.1. Mathematical preliminaries

First we need to introduce some mathematical notation. Given the stochastic process at in (3),

we define the operator A,

Av ≡
(
s1(t, a)∂v1(t,a)

∂a
+ λ1 [v2(t, a)− v1(t, a)]

s2(t, a)∂v2(t,a)
∂a

+ λ2 [v1(t, a)− v2(t, a)]

)
, (40)

so that the HJB equation (5) can be expressed as

ρv =
∂v

∂t
+ max

c
{u (c)− x (π) +Av} ,

where v ≡
(
v1(t,a)
v2(t,a)

)
and u (c)− x (π) ≡

(
u(c1)−x(π)
u(c2)−x(π)

)
.19

Let Φ ≡ {1, 2} × R and Φ̂ = [0,∞)× Φ, we employ the notation

〈f, g〉Φ =
2∑
i=1

�
Φ

figida =

�
Φ

fTgda, ∀f, g ∈ L2 (Φ) , (41)

(f, g) =

� ∞
0

e−ρtfgdt, ∀f, g ∈ L2[0,∞) (42)

(f, g)Φ =

� ∞
0

e−ρt 〈f, g〉Φ dt =
〈
e−ρtf, g

〉
Φ̂
, ∀f, g ∈ L2

(
Φ̂
)

(·,·)Φ

, (43)

The spaces of Lebesgue-integrable functions L2 (Φ) and L2[0,∞) with the inner products (41)

and (42), respectively, are Hilbert spaces (see Luenberger, 1969; or Brezis, 2011). The space

L2
(

Φ̂
)

(·,·)Φ

with the inner product (43) is also a Hilbert space (See Nuño and Moll, 2018).20

Given an operator A, its adjoint is an operator A∗ such that 〈f,Av〉Φ = 〈A∗f, v〉Φ . In the

case of the operator defined by (40) its adjoint is the operator

A∗f ≡
(−∂(s1f1)

∂a
− λ1f1 + λ2f2

−∂(s2f2)
∂a
− λ2f2 + λ1f1

)
, (44)

such that the KF equation (10) results in

∂f

∂t
= A∗f, (45)

19The infinitesimal generator of the process is thus ∂v
∂t +Av.

20To be more precise, we should work in the Sobolev space H2
(

Φ̂
)

(·,·)Φ
, defined as the space of functions

such that �
Φ̂

e−ρt |f |2 + |f ′|2 + |f ′′|2 <∞.

However we stick to L2
(

Φ̂
)

(·,·)Φ
as all the results coincide and the proofs would be more cumbersome.
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for f ≡
(
f1(t,a)
f2(t,a)

)
. We can see that A and A∗ are adjoints as

〈Av, f〉Φ =

�
Φ

(Av)T fda =
2∑
i=1

�
Φ

[
si
∂vi
∂a

+ λi [vj − vi]
]
fida

=
2∑
i=1

visifi|∞−∞ +
2∑
i=1

�
Φ

vi

[
− ∂

∂a
(sifi)− λifi + λjfj

]
da

=

�
Φ

vTA∗fda = 〈v,A∗f〉Φ .

The Gâteaux and Frechet derivatives generalize the standard derivative to infinite-dimensional

spaces (See Luenberger, 1969, Gelfand and Fomin,1991, or Sagan, 1992). In particular, if W [f ]

is a functional in function space such as L2 (Φ) or L2
(

Φ̂
)

(·,·)Φ

and h is and arbitrary function

in that space, the Gâteaux derivative of W at f with increment h is defined as

δW [f ;h] = lim
α→0

W [f + αh]−W [f ]

α
=

d

dα
W [f + αh] |α=0, (46)

Nuño and Moll (2018) discuss the key theorems for the application of these concepts to the

solution of infinite dimensional dynamic programming problems. We summarize their findings

by stating that, if W [f ] is a functional in a function space such as L2 (Φ) and H is a mapping

from the same functional space into Rp −where p is a natural number−, then a necessary

condition for W to have a maximum (or minimum) at f under the constraint H [f ] = 0 is

that there exists another function η ∈ L2 (Φ) (the Lagrange multiplier) such that the Gâteaux

derivative of the Lagrangian L [f ] ≡ W [f ] + 〈η,H [f ]〉Φ is zero when evaluated at f for any

increment h in the same space:

δL [f ;h] = 0, for any h ∈ L2 (Φ) .

And equivalently for the spaces L2[0,∞) or L2
(

Φ̂
)

(·,·)Φ

.

B.2. Proof of Proposition 1. Solution to the Ramsey problem

The idea of the proof is to construct a Lagragian in a Hilbert function space and to obtain the

first-order conditions by taking the Gâteaux derivatives.

Statement of the problem. The problem of the central bank is given by

W [f0 (·)] = max
{πt,Qt,vt(·),ct(·),ft(·)}t≥0

� ∞
0

e−ρt
[∑2

i=1

�
Φ

(u (ct)− x (πt)) fit(a)da

]
dt,

subject to the law of motion of the distribution (10), the bond pricing equation (9) and the

individual HJB equation (5).

The Lagragian. From now on, for compactness we use the operator A, its adjoint operator

A∗, and the inner product 〈·, ·〉 defined in expressions (40), (44), and (41), respectively. The
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Lagrangian is defined in L2
(

Φ̂
)

(·,·)Φ

as

L [π,Q, f, v, c] ≡
� ∞

0

e−ρt 〈u (ct)− x (πt) , ft〉Φ dt+

� ∞
0

〈
e−ρtζt,A∗ft −

∂f

∂t

〉
Φ

dt

+

� ∞
0

e−ρtµt

(
Q (r̄ + πt + δ)− δ − Q̇t

)
dt

+

� ∞
0

〈
e−ρtθt, u (ct)− x (πt) +Avt +

∂v

∂t
− ρvt

〉
Φ

dt

+

� ∞
0

〈
e−ρtηt, u

′ (ct)−
1

Qt

∂v

∂a

〉
Φ

dt

where ζt,ηt, θt ∈ L2
(

Φ̂
)

(·,·)Φ

and µt ∈ L2[0,∞) are the Lagrange multipliers associated to

equations (10), (7), (5) and (9), respectively. The Lagragian can be expressed as

L =

� ∞
0

e−ρt
〈
u (ct)− x (πt) +

∂ζ

∂t
+Aζt − ρζt + µt

(
Qt (r̄ + πt + δ)− δ − Q̇t

)
, ft

〉
Φ

dt

+

� ∞
0

e−ρt
(
〈θt, u (ct)− x (πt)〉Φ +

〈
A∗θt −

∂θ

∂t
, vt

〉
Φ

+

〈
ηt, u

′ (ct)−
1

Qt

∂v

∂a

〉
Φ

)
dt

+ 〈ζ0 (·) , f0〉Φ − lim
T→∞

〈
e−ρT ζT , fT

〉
Φ

+ lim
T→∞

〈
e−ρT θT , vT

〉
Φ
− 〈θ0, v0〉Φ +

� ∞
0

e−ρt
2∑
i=1

vit (a) sit (a) θit (a)|∞−∞ dt,

where we have applied the definition of adjoint operator

〈ζt,A∗ft〉Φ = 〈Aζt, ft〉Φ ,

〈θt,Avt〉Φ = 〈A∗θt, vt〉Φ +
2∑
i=1

vit (a) sit (a) θit (a)|∞−∞
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and integrated by parts

� ∞
0

〈
e−ρtζt,−

∂f

∂t

〉
Φ

dt = −
2∑
i=1

� ∞
0

�
Φ

e−ρtζit (a)
∂fi
∂t
dadt

= −
2∑
i=1

�
Φ

fit (a) e−ρtζit (a)
∣∣∞
0
da

+
2∑
i=1

� ∞
0

�
Φ

fit (a)
∂

∂t

(
e−ρtζit (a)

)
dadt

=
2∑
i=1

�
Φ

fi0 (a) ζi0 (a) da− lim
T→∞

2∑
i=1

�
Φ

e−ρTfiT (a) ζiT (a) da

+
2∑
i=1

� ∞
0

�
Φ

e−ρtfit

(
∂ζi
∂t
− ρζit

)
dadt

= 〈ζ0, f0〉Φ − lim
T→∞

〈
e−ρT ζT , fT

〉
Φ

+

� ∞
0

e−ρt
〈
∂ζ

∂t
− ρζt, ft

〉
Φ

dt,

and

� ∞
0

〈
e−ρtθt,

∂v

∂t
− ρvt

〉
dt =

2∑
i=1

� ∞
0

�
Φ

e−ρtθit (a)

(
∂vi
∂t
− ρvit (a)

)
dadt

=
2∑
i=1

�
Φ

θit (a) e−ρtit vit (a)
∣∣∞
0
da

−
2∑
i=1

� ∞
0

�
Φ

vi

[
∂

∂t

(
e−ρtθit (a)

)
+ ρθit (a)

]
dadt

= lim
T→∞

2∑
i=1

�
Φ

e−ρTviT (a) θiT (a) da−
2∑
i=1

�
Φ

vi0 (a) θi0 (a) da

−
2∑
i=1

� ∞
0

�
Φ

e−ρtvit} (a)
∂θi
∂t
dadt

= lim
T→∞

〈
e−ρT θT , vT

〉
Φ
− 〈θ0, v0〉Φ

+

� ∞
0

e−ρt
〈
−∂θ
∂t
, vt

〉
Φ

dt,

Step 3: Necessary conditions. In order to find the maximum, we need to take the

Gâteaux derivatives with respect to the controls f , π, Q, v and c.

The Gâteaux derivative with respect to f is

d

dα
L [π,Q, f + αh, v, c] |α=0 = 〈ζ0, h0〉Φ − lim

T→∞

〈
e−ρT ζT , hT

〉
Φ

−
� ∞

0

e−ρt
〈
u (ct)− x (πt) +

∂ζ

∂t
+Aζt − ρζt, ht

〉
Φ

dt,
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which should equal zero for any perturbation h ∈ L2
(

Φ̂
)

(·,·)Φ

such that h0 (·) = 0, as the initial

value of f0 (·) . We obtain

ρζt = u (ct)− x (πt) +
∂ζ

∂t
+Aζt, for t ≥ 0 (47)

Given that ζ ∈ L2
(

Φ̂
)

(·,·)Φ

, we obtain the transversality condition limT→∞ e
−ρT ζT (a) = 0.

Equation (47) is the same as the individual HJB equation (5). The boundary conditions are

also the same (state constraints on the domain Φ) and therefore their solutions should coincide:

ζt(·) = vt(·).
In the case of c, the Gâteaux derivative is

d

dα
L [π,Q, f, v, c+ αh] |α=0 =

� ∞
0

e−ρt
〈(

u′ (ct)−
1

Qt

∂ζ

∂a

)
ht, ft

〉
Φ

dt

+

� ∞
0

e−ρt
(〈

θt,

(
u′ (ct)−

1

Qt

∂v

∂a

)
ht

〉
Φ

+ 〈ηt, u′′ (ct)ht〉Φ
)
dt,

where ∂
∂a

(Aζt) = − 1
Qt

∂ζ
∂a
. The Gâteaux derivative should be zero for any function ht ∈ L2

(
Φ̂
)

(·,·)Φ

.

Due to the first order conditions (7) and to the fact that ζ (·) = v (·) this expression reduces to

� ∞
0

e−ρt 〈ηt, u′′ (ct)ht〉Φ dt = 0.

As u (·) is strictly concave, u′′ (·) < 0 and hence η = 0 for all t, that is, the first order condition

(7) is not binding as its associated Lagrange multiplier is zero.

In the case of v, the Gâteaux derivative is

d

dα
L [π,Q, f, v + αh, c] |α=0 =

� ∞
0

e−ρt
(〈
A∗θt −

∂θ

∂t
, ht

〉
Φ

)
dt

+ lim
T→∞

〈
e−ρT θT , hT

〉
Φ
− 〈θ0, h0〉Φ

+

� ∞
0

e−ρt
2∑
i=1

hit (a) sit (a) θit (a)|∞−∞ dt,

where we have already taken into account the fact that η = 0. Given that θ ∈ L2
(

Φ̂
)

(·,·)Φ

, we

obtain the transversality condition limT→∞ e
−ρT θT = 0. As the Gâteaux derivative should be

zero at the maximum for any suitable h, we obtain a Kolmogorov forward equation in θ

∂θ

∂t
= A∗θt, for a > φ, t > 0, (48)

with boundary conditions

lim
a→−∞

sit (a) θit (a) = lim
a→∞

sit (a) θit (a) = 0, i = 1, 2,

θi0 (·) = 0, i = 1, 2.
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This is a KF equation with an initial density of θ0 (·) = 0.21 Therefore, the distribution at

any point in time should be zero θ = 0. Both the Lagrange multiplier of the households’ HJB

equation θ and that of the first-order condition η are zero, reflecting the fact that the HJB

equation is slack, that is, that the monetary authority would choose the same consumption as

the households. This would not be the case in a closed economy, in which some externalities

may arise, as discussed, for instance, in Nuño and Moll (2018).

The Gâteaux derivative in the case of π is

d

dα
L [π + αh,Q, f, v, c] |α=0 =

� ∞
0

e−ρt
〈
−x′ (πt)− a

(
∂v

∂a

)
+ µtQt, ft

〉
Φ

htdt,

where we have already taken into account the fact that θ (·) = η (·) = 0. and ζ (·) = v (·) .
As the Gâteaux derivative should be zero for any ht ∈ L2[0,∞), the optimality condition then

results in

µtQt =
2∑
i=1

�
Φ

(
a
∂vit
∂a

+ x′ (πt)

)
fit (a) da, (49)

where we have applied the normalization condition: 〈1, f〉Φ = 1.

In the case of Q the Gâteaux derivative is

d

dα
L [π,Q+ αh, ·] |α=0 =

� ∞
0

e−ρt
〈
−δht
Q2
t

a
∂v

∂a
− (y − ct)h

Q2
t

∂v

∂a
+ µt

[
h (r̄ + πt + δ)− ḣt

]
, ft

〉
Φ

dt,

where we have also taken into account the fact that ζ = v and θ = η = 0. Integrating by parts

� ∞
0

e−ρt
〈
−µtḣt, ft

〉
Φ
dt = −

� ∞
0

e−ρtµtḣt 〈1, ft〉Φ dt = −
� ∞

0

e−ρtµtḣtdt

= − e−ρtµtht
∣∣∞
0

+

� ∞
0

e−ρt (µ̇t − ρµt)htdt

= µ0h0 +

� ∞
0

e−ρt 〈(µ̇t− ρµt)ht, ft〉Φ dt.

Therefore, the optimality condition in this case is

� ∞
0

e−ρt
〈
− δ

Q2
t

a
∂v

∂a
− (y − ct)

Q2
t

∂v

∂a
+ µt (r̄ + πt + δ − ρ) + µ̇t, ft

〉
Φ

htdt+ µ0h0 = 0.

The Gâteaux derivative should be zero for any ht ∈ L2[0,∞). Thus we obtain〈
− δ

Q2
t

a
∂v

∂a
− (y − ct)

Q2
t

∂v

∂a
, ft

〉
Φ

+ µt (r̄ + πt + δ − ρ) + µ̇t = 0, t > 0,

µ0 = 0.

21Notice that if we denote gt ≡
〈
A∗θt − ∂θ

∂t , 1
〉

Φ
and Gt ≡

�∞
t
e−ρsgsds then the fact that A∗θt − ∂θ

∂t = 0, for
a ≥ φ, t > 0, implies that Gt = 0, for t > 0. As Gt is differentiable, then it is continuous and hence G0 = 0 so
that the condition G0 + 〈θ0, h0〉Φ = 0 for any h0 ∈ L2 (Φ) requires θ0 = 0. A similar argument can be employed
to analyzed the boundary conditions in Φ.
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or equivalently,

dµ

dt
= (ρ− r̄ − πt − δ)µt +

2∑
i=1

�
Φ

∂vit}
∂a

δa+ (y − ct)
Q2
t

fit} (t, a) da, t > 0, (50)

µ0 = 0.

Finally, using the household’s first order condition ∂vit
∂a

= Qtu
′(cit) to substitute for ∂vit

∂a
in

equations (49) and (50) yields the expressions in the main text.

B.3. Proof of Proposition 2: Inflationary bias

As the value function is strictly concave in a by Lemma 2, it satisfies

∂vit (ã)

∂a
<
∂vit (0)

∂a
<
∂vit (â)

∂a
, for all ã ∈ (0,∞), â ∈ (φ, 0), t ≥ 0, i = 1, 2. (51)

In addition, Assumption 1 (the country is a always a net debtor: āt ≤ 0) implies

2∑
i=1

� ∞
0

(a) fit(a)da ≤
2∑
i=1

� 0

−∞
(−a) fit(a)da, ∀t ≥ 0. (52)

Therefore,

2∑
i=1

� ∞
0

afit (a)
∂vit(a)

∂a
da <

∂vit (0)

∂a

2∑
i=1

� ∞
0

afit (a) da ≤ ∂vit (0)

∂a

2∑
i=1

� 0

−∞
(−a) fit(a)da

<
2∑
i=1

� 0

−∞
(−a) fit(a)

∂vit(a)

∂a
da, (53)

where we have applied (51) in the first and last inequalities and (52) in the intermediate one.22

The optimal inflation (23) at time-0 (µ0 = 0) satisfies

2∑
i=1

� ∞
φ

afi0
∂vi0
∂a

da+ x′ (π0) = 0.

Combining this expression with (53) we obtain

x′ (π0) =
2∑
i=1

� ∞
φ

(−a)Q0u
′ (c0) fi0da =

2∑
i=1

� ∞
φ

(−a)
∂vi0
∂a

fi0da > 0.

Finally, taking into account the fact that x′ (π0) = π0/ψ > 0 only for π0 > 0, we have that

π0 > 0.

22We have also used the fact that af (a) > 0 for all a > 0 and (−a) f (a) > 0 for all a < 0, as well as
∂vit (0) /∂a > 0 (which follows from the household first order condition and the assumption that u′ > 0).
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B.4. Proof of Proposition 3: Optimal long-run inflation in the limit as r̄ → ρ

In the steady state, equations (24) and (23) in the main text become

(ρ− r̄ − π − δ)µ+
1

Q2

2∑
i=1

�
∂vi
∂a

[δa+ (yi − ci)] fi (a) da = 0,

µQ = x′ (π) +
2∑
i=1

�
a
∂vi
∂a

fi (a) da,

respectively. Notice that we have replaced Qu′(ci) by ∂vi
∂a

. Consider now the limiting case ρ→ r̄

, and guess that π → 0. The above two equations then become

µQ =
1

δQ

2∑
i=1

�
∂vi
∂a

[δa+ (yi − ci)] fi (a) da,

µQ =
2∑
i=1

�
a
∂vi
∂a

fi (a) da,

as x′ (0) = 0. Combining both equations, and using the fact that in the zero-inflation steady

state the bond price equals Q = δ
δ+r̄

, we obtain

2∑
i=1

�
∂vi
∂a

(
r̄a+

yi − ci
Q

)
fi (a) da = 0. (54)

In the zero inflation steady state, the value function v satisfies the HJB equation

ρvi(a) = u(ci (a)) +

(
r̄a+

yi − ci (a)

Q

)
∂vi
∂a

+ λi [vj(a)− vi(a)] , i = 1, 2, j 6= i, (55)

where we have used x (0) = 0. We also have the first-order condition

u′ (ci (a)) = Q
∂vi
∂a
⇒ ci (a) = u′−1

(
Q
∂vi
∂a

)
.

We guess and verify a solution of the form vi(a) = κia + ϑi, so that u′ (ci) = Qκi. Using our

guess in (55), and grouping terms that depend on a and those that do not, we have that

ρκi = r̄κi + λi (κj − κi) , (56)

ρϑi = u
(
u′−1 (Qκi)

)
+
yi − u′−1 (Qκi)

Q
κi + λi (ϑj − ϑi) , (57)

for i, j = 1, 2 and j 6= i. In the limit as r̄ → ρ, equation (56) results in κj = κi ≡ κ, so that

consumption is the same in both states. The value of the slope κ can be computed from the
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boundary conditions.23 We can solve for {ϑi}i=1,2 from equations (57),

ϑi =
1

ρ
u
(
u′−1 (Qκ)

)
+
yi − u′−1 (Qκ)

ρQ
κ+

λi (yj − yi)
ρ (λi + λj + ρ)Q

κ,

for i, j = 1, 2 and j 6= i. Substituting ∂vi
∂a

= κ in (54), we obtain

2∑
i=1

� ∞
φ

(
r̄a+

yi − ci
Q

)
fi (a) da = 0. (58)

Equation (58) is exactly the zero-inflation steady-state limit of equation (11) in the main text

(once we use the definitions of ā, ȳ and c̄), and is therefore satisfied in equilibrium. We have

thus verified our guess that π → 0.

B.5. Proof of Proposition 4. Solution to the Ramsey problem with a borrowing

limit in the market value of wealth

The problem of the central bank is to find inflation and bond prices paths {πt, Qt}t≥0 that

maximize the Lagragian in L2[0,∞):

L [π,Q] =
2∑
i=1

� ∞
φm

{
vci (am)−

� ∞
0

e−ρtx (πt) dt

}[
1

Q0

fi0

(
am

Q0

)]
dam

+

� ∞
0

e−ρtµt

[
Qt (r̄ + πt + δ)− δ − Q̇t

]
dt,

where µt ∈ L2[0,∞) is the Lagrange multipliers associated to equation (9).

The first order condition with respect to inflation is obtained by computing the Gâteaux

derivative with respect to a perturbation ht :

d

dα
L [π + αh,Q] |α=0 =

d

dα

2∑
i=1

� ∞
φm

{
vci (am)−

� ∞
0

e−ρtx (πt + αht) dt

}[
1

Q0

fi0

(
am

Q0

)]
dam

∣∣∣∣∣
α=0

+
d

dα

� ∞
0

e−ρtµt

[
Qt (r̄ + πt + αht + δ)− δ − Q̇t

]
dt

∣∣∣∣
α=0

=
2∑
i=1

� ∞
φm

{
vci (am)−

� ∞
0

e−ρtx′ (πt)htdt

}[
1

Q0

fi0

(
am

Q0

)]
dam

+

� ∞
0

e−ρtµtQthtdt

23The condition that the drift should be positive at the borrowing constraint, si (φ) ≥ 0, i = 1, 2, implies that

s1 (φ) = r̄φ+
y1 − u′−1 (Qκ)

Q
= 0,

and

κ =
u′ (r̄φQ+ y1)

Q
.

In the case of state i = 2, this guarantees s2 (φ) > 0.
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As the Gâteaux derivative should be zero for any ht, the optimality condition then results in

x′ (πt) = µtQt.

where we have applied the normalization condition:
∑2

i=1

�∞
φm

1
Q0
fi0

(
am

Q0

)
dam = 1.

Similarly, the first order condition with respect to bond prices is given by

d

dα
L [π,Q+ αh] |α=0 =

d

dα

2∑
i=1

� ∞
φm

{
vci (am)−

� ∞
0

e−ρtx (πt) dt

}fi0
(

am

Q0+αh0

)
Q0 + αh0

 dam
∣∣∣∣∣∣
α=0

+

+
d

dα

� ∞
0

e−ρtµt

[
(Qt + αht) (r̄ + πt + δ)− δ −

(
Q̇t + αḣt

)]
dt

∣∣∣∣
α=0

=
2∑
i=1

� ∞
φm

{
vci (am)−

� ∞
0

e−ρtx′ (πt)htdt

}
d

dQ0

[
1

Q0

fi0

(
am

Q0

)]
h0da

m

+

� ∞
0

e−ρtµt

[
(r̄ + πt + δ)ht − ḣt

]
dt.

Integrating by parts

� ∞
0

e−ρtµt

(
−ḣt

)
dt. = − e−ρtµtht

∣∣∞
0

+

� ∞
0

e−ρt (µ̇t − ρµt)htdt

= µ0h0 − lim
t→∞

e−ρtµtht +

� ∞
0

e−ρt (µ̇t − ρµt)htdt.

Therefore, the optimality condition in this case is

µ̇t = µt (ρ− r̄ − πt − δ) ,

µ0 = −
2∑
i=1

� ∞
φm

{
vci (am)−

� ∞
0

e−ρtx′ (πt)htdt

}
d

dQ0

[
1

Q0

fi0

(
am

Q0

)]
h0da

m.

B.6. Lemma 1

Ef0(a,y) [v0 (a, y)] =

� ∞
0

e−ρtEft(a,y) [u (ct (a, y))− x (πt)] dt.

Proof. We consider the case in which borrowing limit is defined in the face value of debt,
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as in equation (4).Given the welfare criterion defined in equation (16), we have

W0 =

� ∞
φ

2∑
i=1

v0(a, yi)f0(a, yi)da

=

� ∞
φ

2∑
i=1

E0

[� ∞
0

e−ρt [u (ct)− x (πt)] dt|a0 = a, y0 = yi

]
fi0(a)da

=

� ∞
φ

2∑
i=1

[
2∑
j=1

� ∞
φ

� ∞
0

e−ρt [u(cjt (ã))− x (πt)] ft(ã, ỹj; a, yi)dtdã

]
fi0(a)da

=

� ∞
0

2∑
j=1

e−ρt
� ∞
φ

[u(cjt (ã))− x (πt)]

[
2∑
i=1

� ∞
φ

ft(ã, ỹj; a, yi)fi0(a)da

]
dãdt

=

� ∞
0

e−ρt
2∑
j=1

� ∞
φ

[u(cjt (ã))− x (πt)] ft(ã, ỹj)dãdt,

where ft(ã, ỹj; a, yi) is the transition probability from a0 = a, y0 = yi to at = ã, yt = ỹj and in

the last equality we have used the Chapman–Kolmogorov equation,

ft(ã, ỹj) =
2∑
i=1

� ∞
φ

ft(ã, ỹj; a, yi)f0(a, yi)da.

B.7. Lemma 2

∂u′/∂a < 0

Proof. In order to prove the concavity of the value function we express the model in discrete

time for an arbitrarily small ∆t. The Bellman equation of a household is

v∆t
t (a, y) = max

a′∈Γ(a,y)

[
u

(
Qt

∆t

[(
1 +

(
δ

Qt

− δ − πt
)

∆t

)
a+

y∆t

Qt

− a′
])
− x (πt)

]
∆t

+e−ρ∆t

2∑
i=1

v∆t
t+∆t (a′, yi)P (y′ = yi|y) ,

where Γ (a, y) =
[
φ,
(

1 +
(

δ
Qt
− δ − πt

)
∆t
)
a+ y∆t

Qt

]
, and P (y′ = yi|y) are the transition prob-

abilities of a two-state Markov chain. The Markov transition probabilities are given by λ1∆t

and λ2∆t.

We verify that this problem satisfies the conditions of Theorem 9.8 of Stokey and Lu-

cas (1989): (i) Φ is a convex subset of R, (ii) the Markov chain has a finite number of val-

ues; (iii) the correspondence Γ (a, y) is nonempty, compact-valued and continuous; (iv) the

function u is bounded, concave and continuous and e−ρ∆t ∈ (0, 1); and (v) the set Ay =

{(a, a′) such that a′ ∈ Γ (a, y)} is convex. We conclude that v∆t
t (a, y) is strictly concave for
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any ∆t > 0. Finally, for any a1, a2 ∈ Φ

v∆t
t (ωa1 + (1− ω) a2, y) > ωv∆t

t (a1, y) + (1− ω) v∆t
t (a2, y) ,

lim
∆t→0

v∆t
t (ωa1 + (1− ω) a2, y) > lim

∆t→0

[
ωv∆t

t (a1, y) + (1− ω) v∆t
t (a2, y)

]
,

vt (ωa1 + (1− ω) a2, y) > ωvt (a1, y) + (1− ω) vt (a2, y) ,

so that v (t, a, y) is strictly concave.

B.8. Lemma 3

π0 = −Q0

ψ

2∑
i=1

� ∞
φQ0

vi0

(
am

Q0

)
d

dQ0

[
1

Q0

fi0

(
am

Q0

)]
dam =

1

ψ

2∑
i=1

� ∞
φ

(−Q0a)u′ (cit (a)) fi0 (a) da

=
1

ψ

2∑
i=1

� ∞
φ

(−Q0a)u′ (cit (a)) fi0 (a) da

Proof. Here we show how equation (25),

π0 = −Q0

ψ

2∑
i=1

� ∞
φQ0

vi0

(
am

Q0

)
d

dQ0

[
1

Q0

fi0

(
am

Q0

)]
dam

coincides with equation (23) when t = 0. First, we compute the derivative d
dQ0

[
1
Q0
fi0

(
am

Q0

)]
:

π0 =
1

ψQ0

2∑
i=1

� ∞
φQ0

vi0

(
am

Q0

)[
fi0

(
am

Q0

)
+
am

Q0

f ′i0

(
am

Q0

)]
dam,

and we change variables to a = am/Q0 :

π0 = 1
ψ

2∑
i=1

� ∞
φ

vi0 (a) [fi0 (a) + af ′i0 (a)] da

=
1

ψ

2∑
i=1

� ∞
φ

vi0 (a)
d

da
[afi0 (a)] da.

Integrating by parts and taking into account the first order condition for consumption (7), we

get

π0 =
1

ψ

2∑
i=1

� ∞
φ

(−Q0a)u′ (cit (a)) fi0 (a) da,

which is exactly equation (23) in the main text evaluated at t = 0 (given that µ0 = 0). Finally,

if we make again a change of variable am = Q0a :

π0 =
1

ψ

2∑
i=1

� ∞
φQ0

(−am)u′ (cit (am)) fmi0 (am) dam.
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B.9. Lemma 4

lim
δ→∞

πt = 0, t > 0.

Proof. The price of bonds in the limit is

lim
δ→∞

Qt = lim
δ→∞

� ∞
t

δe−(r̄+δ)(s−t)−
� s
t πududs = lim

δ→∞

� ∞
t

δe−δ(s−t)ds = 1,

that is, the price of an instantaneous bond is always unity. The optimality conditions of the

central bank in the limit are

lim
δ→∞

πt = lim
δ→∞

1

ψ
Eft(a,y) [−Qtau

′ (ct (a, y))] + lim
δ→∞

1

ψ
µtQt,

and, for t > 0

lim
δ→∞

µt = lim
δ→∞

� t

0

e−
� t
s (r̄+πz+δ−ρ)dz 1

Qs

Efs(a,y) [(δa+ y − cs (a, y))u′ (cs (a, y))] ds

= lim
δ→∞

� t

0

e−
� t
s δdz

1

Qs

Efs(a,y) [δau′ (cs (a, y))] ds

= lim
δ→∞

� t

0

e−δ(t−s)δEfs(a,y) [au′ (cs (a, y))] ds

= Eft(a,y) [au′ (cs (a, y))] .

where in the last step we have applied the fact that the limit of e−δ(t−s)δ is a Dirac delta function

centered at t. Combining both expressions, we get

lim
δ→∞

πt =
1

ψ
Eft(a,y) [Qtau

′ (ct (a, y))]− 1

ψ
Eft(a,y) [Qtau

′ (ct (a, y))] = 0.

B.10. Lemma 5

Consumption in the case of a representative agent is ct = ρ(am0 + y/r̄)e−(ρ−r̄)t, and optimal

inflation

ψπt =
Qt

Q0

e[−
� t
0 (r̄+δ+πs−ρ)ds]︸ ︷︷ ︸

Dynamic evolution

(−Q0a0)u′ (c0)︸ ︷︷ ︸
Time-0 optimal inflation(ψπ0)

.

.

Proof. The problem of the representative household, expressed in market value of wealth,

is

max
{ct}t≥0

� ∞
0

e−ρt log(ct)dt

subject to

ȧmt = r̄amt + y − ct.
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The HJB equation is

ρV (am) = max
c

{
log(c)− ψ

2
π2
t + (r̄am + y − c)V ′ (am)

}
,

where we guess and verify V (am) = 1
ρ

log(am+y/r̄)+κt, where κt only depends on time. Hence

ct = ρ(amt + y/r̄). Taking derivatives at both sides, we get

ċt = ρȧmt = ρ (r̄amt + y − ct) = (r̄ − ρ) ct,

which can be solved as

ct = c0e
−(ρ−r̄)t = ρ(am0 + y/r̄)e−(ρ−r̄)t.

(Face-value) assets evolve according to

at =
1

Qt

[
1

ρ
ct − y/r̄

]
= (a0 +

y

r̄Qt

)e−(ρ−r̄)t − y

r̄Qt

.

The problem of the central bank is

max
{πt}t≥0

� ∞
0

e−ρt
{

log
[
ρ(Q0a0 + y/r̄)e−(ρ−r̄)t]− ψ

2
π2
t

}
dt

subject to

Q̇t = Qt (r̄ + πt + δ)− δ.

The first order condition with respect to π is

0 =
d

dα

� ∞
0

e−ρt
{

log
[
ρ(Q0a0 + y/r̄)e−(ρ−r̄)t]− ψ

2
(πt + αht)

2

}
dt|α=0

+
d

dα

� ∞
0

e−ρtµt

[
Qt (r̄ + πt + αht + δ)− δ − Q̇t

]
dt

∣∣∣∣
α=0

,

which yields

0 =

� ∞
0

e−ρt {−ψπt + µtQt}htdt

ψπt = µtQt.

The objective function can be simplified as
�∞

0
e−ρt

{
log
[
ρ(Q0 + αh0a0 + y/r̄)e−(ρ−r̄)t]− ψ

2
π2
t

}
dt,

which equals

� ∞
0

e−ρt
{

log [ρ(Q0 + αh0a0 + y/r̄)]− (ρ− r̄) t− ψ

2
π2
t

}
dt

=
1

ρ
log [ρ(Q0 + αh0a0 + y/r̄)]−

� ∞
0

e−ρt
{

(ρ− r̄) t+
ψ

2
π2
t

}
dt,
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and the first order condition with respect to Q is

0 =
d

dα

{
1

ρ
log [ρ(Q0 + αh0a0 + y/r̄)]

}
dt|α=0

+
d

dα

� ∞
0

e−ρtµt

[
(Qt + αht) (r̄ + πt + δ)− δ −

(
Q̇t + αḣt

)]
dt

∣∣∣∣
α=0

,

thus,

0 = u′ (c0)h0a0 +

� ∞
0

e−ρtµt

[
ht (r̄ + πt + δ)−

(
ḣt

)]
dt

Integrating by parts (as in Proposition 4):Integrating by parts

� ∞
0

e−ρtµt

(
−ḣt

)
dt. = − e−ρtµtht

∣∣∞
0

+

� ∞
0

e−ρt (µ̇t − ρµt)htdt

= µ0h0 − lim
t→∞

e−ρtµtht +

� ∞
0

e−ρt (µ̇t − ρµt)htdt.

Hence

−u′ (c0) a0 = µ0,

µ̇t = µt (ρ− r̄ − πt − δ) .

Optimal inflation is thus

ψπt =
Qt

Q0

e[−
� t
0 (r̄+δ+πs−ρ)ds] (−Q0a0)u′ (c0) .

C. Computational method

We describe here the numerical algorithm to compute the Ramsey allocation. First we describe

how to compute the optimal steady state (Proposition 1). Then, we illustrate how to compute

the optimal transition dynamics, given an initial income-wealth distribution f0(a, y). Finally

we discuss how to modify the algorithm for the case of of the borrowing limit in the market

value of wealth.

C.1. Optimal steady state

We describe the numerical algorithm used to jointly solve for the equilibrium objects in steady

state. The algorithm proceeds in 3 steps. We describe each step in turn. We assume that

there is an upper bound arbitrarily large κ such that f(a, y) = 0 for all a > κ. In steady state

this can be proved in general following the same reasoning as in Proposition 2 of Achdou et

al. (2017). Alternatively, we may assume that there is a maximum constraint in asset holding

such that a ≤ κ, and that this constraint is so large that it does not affect to the results. In

any case, let [φ,κ] be the valid domain.
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Solution to the Hamilton-Jacobi-Bellman equation Given π, the bond pricing equation

(9) is trivially solved in this case:

Q =
δ

r̄ + π + δ
. (59)

The HJB equation is solved using an upwind finite difference scheme similar to Achdou et al.

(2017). It approximates the value function v(a) on a finite grid with step ∆a : a ∈ {a1, ..., aJ},
where aj = aj−1 + ∆a = a1 + (j − 1) ∆a for 2 ≤ j ≤ J . The bounds are a1 = φ and aI = κ,

such that ∆a = (κ − φ) / (J − 1). We use the notation vi,j ≡ vi(aj), i = 1, 2, and similarly for

the policy function ci,j.

Notice first that the HJB equation involves first derivatives of the value function, v′i(a) and

v′′i (a). At each point of the grid, the first derivative can be approximated with a forward (F )

or a backward (B) approximation,

v′i(aj) ≈ ∂Fvi,j ≡
vi,j+1 − vi,j

∆a
, (60)

v′i(aj) ≈ ∂Bvi,j ≡
vi,j − vi,j−1

∆a
. (61)

In an upwind scheme, the choice of forward or backward derivative depends on the sign of the

drift function for the state variable, given by

si (a) ≡
(
δ

Q
− δ − π

)
a+

(yi − ci (a))

Q
, (62)

for φ ≤ a ≤ 0, where

ci (a) =

[
v′i(a)

Q

]−1/γ

. (63)

Let superscript n denote the iteration counter. The HJB equation is approximated by the

following upwind scheme,

vn+1
i,j − vni,j

∆
+ρvn+1

i,j =
(cni,j)

1−γ − 1

1− γ
−ψ

2
π2+∂Fv

n+1
i,j sni,j,F1sni,j,F>0+∂Bv

n+1
i,j sni,j,B1sni,j,B<0+λi

(
vn+1
−i,j − vn+1

i,j

)
,

for i = 1, 2, j = 1, ..., J , where 1 (·) is the indicator function and

sni,,jF =

(
δ

Q
− δ − π

)
a+

yi −
[

Q
∂F v

n
i,j

]1/γ

Q
, (64)

sni,j,B =

(
δ

Q
− δ − π

)
a+

yi −
[

Q
∂Bv

n
i,j

]1/γ

Q
. (65)

We consider a CRRA utility function for generality, in the case of the main we restrict it to

logarithmic preferences. Therefore, when the drift is positive (sni,,jF > 0) we employ a forward

approximation of the derivative, ∂Fv
n+1
i,j ; when it is negative (sni,j,B < 0) we employ a backward

approximation, ∂Bv
n+1
i,j . The term

vn+1
i,j −v

n
i,j

∆
→ 0 as vn+1

i,j → vni,j. Moving all terms involving vn+1
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to the left hand side and the rest to the right hand side, we obtain

vn+1
i,j − vni,j

∆
+ ρvn+1

i,j =
(cni,j)

1−γ − 1

1− γ
− ψ

2
π2 + vn+1

i,j−1α
n
i,j + vn+1

i,j βni,j + vn+1
i,j+1ξ

n
i,j + λiv

n+1
−i,j , (66)

where

αni,j ≡ −
sni,j,B1sni,j,B<0

∆a
,

βni,j ≡ −
sni,j,F1sni,j,F>0

∆a
+
sni,j,B1sni,j,B<0

∆a
− λi,

ξni,j ≡
sni,j,F1sni,j,F>0

∆a
,

for i = 1, 2, j = 1, ..., J . Notice that the state constraints φ ≤ a ≤ κ mean that sni,1,B = sni,J,F =

0.

In equation (66), the optimal consumption is set to

cni,j =

(
∂vni,j
Q

)−1/γ

. (67)

where

∂vni,j = ∂Fv
n
i,j1sni,j,F>0 + ∂Bv

n
i,j1sni,j,B<0 + ∂v̄ni,j1sni,F≤01sni,B≥0.

In the above expression, ∂v̄ni,j = Q(c̄ni,j)
−γ where c̄ni,j is the consumption level such that s (ai) ≡

sni = 0 :

c̄ni,j =

(
δ

Q
− δ − π

)
ajQ+ yi.

Equation (66) is a system of 2×J linear equations which can be written in matrix notation

as:
1

∆

(
vn+1 − vn

)
+ ρvn+1 = un + Anvn+1

where the matrix An and the vectors vn+1 and un are defined by

An = −



βn1,1 ξn1,1 0 0 · · · 0 λ1 0 · · · 0

αn1,2 βn1,2 ξn1,2 0 · · · 0 0 λ1
. . . 0

0 αn1,3 βn1,3 ξn1,3 · · · 0 0 0
. . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 · · · αn1,J−1 βn1,J−1 ξn1,J−1 0 · · · λ1 0

0 0 · · · 0 αn1,J βn1,J 0 0 · · · λ1

λ2 0 · · · 0 0 0 βn2,1 ξn2,1 · · · 0
...

. . . . . . . . . . . . . . .
...

. . . . . .
...

0 0 · · · 0 0 λ2 0 · · · αn2,J βn2,J



, vn+1 =



vn+1
1,1

vn+1
1,2

vn+1
1,3
...

vn+1
1,J−1

vn+1
1,J

vn+1
2,1
...

vn+1
2,J


(68)
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un =



(cn1,1)1−γ−1

1−γ − ψ
2
π2

(cn1,2)1−γ−1

1−γ − ψ
2
π2

...
(cn1,J )1−γ−1

1−γ − ψ
2
π2

(cn2,1)1−γ−1

1−γ − ψ
2
π2

...
(cn2,J )1−γ−1

1−γ − ψ
2
π2


.

The system in turn can be written as

Bnvn+1 = dn (69)

where ,Bn =
(

1
∆

+ ρ
)
I−An and dn = un + 1

∆
vn.

The algorithm to solve the HJB equation runs as follows. Begin with an initial guess

{v0
i,j}Jj=1, i = 1, 2. Set n = 0. Then:

1. Compute {∂Fvni,j, ∂Bvni,j}Jj=1, i = 1, 2 using (60)-(61).

2. Compute {cni,j}Jj=1, i = 1, 2 using (63) as well as {sni,j,F , sni,j,B}Jj=1, i = 1, 2 using (64) and

(65).

3. Find {vn+1
i,j }Jj=1, i = 1, 2 solving the linear system of equations (69).

4. If {vn+1
i,j } is close enough to {vn+1

i,j }, stop. If not set n := n+ 1 and proceed to 1.

Most computer software packages, such as Matlab, include efficient routines to handle sparse

matrices such as An.

Solution to the Kolmogorov Forward equation The stationary distribution of debt-to-

GDP ratio, f(a, y), satisfies the Kolmogorov Forward equation:

0 = − d

da
[si (a) fi(a)]− λifi(a) + λ−if−i(a), i = 1, 2. (70)

1 =
2∑
i=1

� ∞
φ

fi(a)da. (71)

We also solve this equation using an finite difference scheme. We use the notation fi,j ≡ fi(aj).

The system can be now expressed as

0 = −
fi,jsi,j,F1sni,j,F>0 − fi,j−1si,j−1,F1sni,j−1,F>0

∆a
−
fi,j+1si,j+1,B1sni,j+1,B<0 − fi,jsi,,jB1sni,,jB<0

∆a
−λifi,j + λ−if−i,j,

or equivalently

fi,j−1ξi,j−1 + fi,j+1αi,j+1 + fi,jβi,j + λ−if−i,j = 0, (72)
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then (72) is also a system of 2×J linear equations which can be written in matrix notation as:

ATf = 0, (73)

where AT is the transpose of A = limn→∞An. Notice that An is the approximation to the

operator A and AT is the approximation of the adjoint operator A∗. In order to impose the

normalization constraint (71) we replace one of the entries of the zero vector in equation (73) by

a positive constant.24 We solve the system (73) and obtain a solution f̂ . Then we renormalize

as

fi,j =
f̂i,j∑J

j=1

(
f̂1,j + f̂2,j

)
∆a

.

Complete algorithm In order to find the value of the inflation and of the costate that satisfy

conditions (21) and (23) in steady-state, we consider an initial guess of inflation, π(1) = 0. Set

m := 1. Then:

Step 1: Solution to the Hamilton-Jacobi-Bellman equation. Given π(m), compute the bond

price Q(m) using (59) and solve the HJB equation to obtain an estimate of the value

function v(m) and of the matrix A(m).

Step 2: Solution to the Kolmogorov Forward equation. Given A(m) find the aggregate distri-

bution f (m).

Step 3: Finding the Lagrange multiplier. Given f (m), v(m),compute the Lagrange multiplier

µ(m) using condition (23) as

µ(m) =

[
2∑
i=1

J∑
j=1

ajf
(m)
i,j

(
c

(m)
i,j

)−γ
∆a+

1

Q(m)
ψπ(m)

]
.

Step 4: Optimal inflation. Given f (m), v(m) and µ(m), iterate steps 1-3 until π(m) satisfies

(
ρ− r̄ − π(m) − δ

)
µ(m) +

1

(Q(m))

[
2∑
i=1

J−1∑
j=2

(
δaj + yi − c(m)

i,j

)
f

(m)
i,j

(
c

(m)
i,j

)−γ
∆a

]
= 0.

C.2. Optimal transitional dynamics

We describe now the numerical algorithm to analyze the transitional dynamics, similar to the

one described in Achdou et al. (2017). We define T as the time interval considered, which

should be large enough to ensure a converge to the stationary distribution and discretize it in

N intervals of length

∆t =
T

N
.

24In particular, we have replaced the entry 2 of the zero vector in (73) by 0.1.
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The asymptotic steady-state The asymptotic steady-state distribution of the model can

be computed following the steps described in Section C.1. The result is a stationary distribution

fN , a matrix AN , a bond price QN and a inflation rate πN defined at the final time T = N∆t.

Solution to the bond pricing equation The dynamic bond pricing equation (9) can be

approximated backwards as

(r̄ + πn + δ)Qn = δ +
Qn+1 −Qn

∆t
,⇐⇒ Qn =

Qn+1 + δ∆t

1 + ∆t (r̄ + πn + δ)
, n = N − 1, .., 0, (74)

where QN is the asymptotic bond price from Step 0.

Solution to the Hamilton-Jacobi-Bellman equation The dynamic HJB equation (5)

can approximated using an upwind approximation as

ρvn = un+1 + An+1v
n +

(vn+1 − vn)

∆t
,

where An is constructing backwards in time using a procedure similar to the one described in

Step 1 of Section B. By defining Bn+1 =
(

1
∆t

+ ρ
)
I−An+1 and dn+1 = un+1 + Vn+1

∆t
, we have

vn =
(
Bn+1

)−1
dn+1. (75)

Solution to the Kolmogorov Forward equation Let An defined in (68) be the approxi-

mation to the operator A. Using a finite difference scheme similar to the one employed in the

Step 2 of Section A, we obtain:

fn+1 − fn
∆t

= AT
n fn+1,⇐⇒ fn+1 =

(
I−∆tAT

n

)−1
fn, n = 1, .., N (76)

where f0 is the discretized approximation to the initial distribution f0(a).

Complete algorithm The algorithm proceeds as follows:

Step 0: Steady-state. Compute the stationary distribution fN , matrix AN , bond price QN and

inflation rate πN . Set π(0) ≡ {π(0)
n }N−1

n=0 = πN and k := 1.

Step 1: Bond pricing. Given π(k−1), compute the bond price path Q(k) ≡ {Q(k)
n }N−1

n=0 using

(74).

Step 2: Hamilton-Jacobi-Bellman equation. Given π(k−1) and Q(k) solve the HJB equation

(75) backwards to obtain an estimate of the value function v(k) ≡ {v(k)
n }N−1

n=0 and of the

matrix A(k) ≡ {A(k)
n }N−1

n=0 .

Step 3: Kolmogorov Forward equation. Given A(k) find the aggregate distribution forward

f (k) using (76).
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Step 4: Lagrange multiplier. Given f (k) and v(k), compute the Lagrange multiplier µ(k) ≡
{µ(k)

n }N−1
n=0 using (21):

µ
(k)
n+1 = µ(k)

n

[
1 + ∆t

(
ρ− r̄ − π(k)

n − δ
)]

+
∆t

Q
(k)
n

[
2∑
i=1

J∑
j=1

(
δaj + yi − c(k)

n,i,j

)
f

(k+1)
n,i,j

(
c

(k)
n,i,j

)−γ
∆a

]
,

with µ
(k)
0 = 0.

Step 5: Optimal inflation. Given f (k), v(k) and µ(k) iterate steps 1-4 until π(k) satisfies

Θ(k)
n ≡

2∑
i=1

J∑
j=1

ajf
(k)
n,i,jQ

(k)
n

(
c

(k)
n,i,j

)−γ
∆a+ ψπ(k)

n −Q(k)
n µ(k)

n = 0.

This is done by iterating π
(k)
n = π

(k−1)
n − ξΘ(k)

n , with constant ξ = 0.05.

C.3. Optimal transitional dynamics with a borrowing limit in the market value of

wealth

In this case, a number of changes should be made to the previous algorithm to adapt it to the

results in Proposition 4. First, the optimal steady state inflation is zero, and hence there is

no need to iterate when computing the steady state. Second, we employ as a state the debt

expressed in market value am, and hence the drift simplifies to

si,,jF = r̄am + yi −
[

1

∂Fvi,j

]1/γ

, (77)

si,j,B = r̄am + yi −
[

1

∂Bvi,j

]1/γ

. (78)

Third, as the initial distribution f0 (a, y) is given in terms of the face value of wealth and we

need to recompute it market value fm0 (am, y) = 1
Q0
f0 (am/Q0, y) we need to interpolate over a

grid defined in the market value of wealth. Fourth, the Lagrange multiplier µ(k) ≡ {µ(k)
n }N−1

n=0

using (85) and (86):

µ
(k)
n+1 = µ(k)

n

[
1 + ∆t

(
ρ− r̄ − π(k)

n − δ
)]
,

with µ
(k)
0 = −

∑2
i=1

∑J
j=1 v

(k)
0,i,j

∆f0,i,j

∆Q0
∆a where ∆f0,i,j is the difference between the initial density

in market prices given a bond price Q0 + ∆Q0 and the density given a bond price Q0. We set

∆Q0 = 0.01. Fifth, the optimal inflation is given by (84):

Θ(k)
n ≡ ψπ(k)

n −Q(k)
n µ(k)

n = 0.
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D. Robustness

Steady state Ramsey inflation. In Proposition 3, we established that the Ramsey optimal

long-run inflation rate converges to zero as the central bank’s discount rate ρ converges to that

of foreign investors, r̄. In our baseline calibration, both discount rates are indeed very close

to each other, implying that Ramsey optimal long-run inflation is essentially zero. We now

evaluate the sensitivity of Ramsey optimal steady state inflation to the difference between both

discount rates. From equation (23), optimal steady state inflation is

π∞ =
1

ψ
Ef∞(a,y) [NNP∞ (a, y)MUC∞ (a, y)] +

1

ψ
µ∞Q∞, (79)

where from equation (24)

µ∞ =
Ef∞(a,y) [NNP∞ (a, y)MUC∞ (a, y)]

Q∞ [π∞ + δ − (ρ− r̄)]
. (80)

Figure 8 displays π (left axis), as well as its two determinants (right axis) on the right-hand side

of equation (79). Optimal inflation decreases approximately linearly with the gap ρ− r̄. As the

latter increases, two counteracting effects take place. On the one hand, it can be shown that as

the households become more impatient relative to foreign investors, the net asset distribution

shifts towards the left, i.e. more and more households become net borrowers and come close

to the borrowing limit, where the marginal utility of wealth is highest. As shown in the figure,

this increases the central bank’s incentive to inflate for the purpose of redistributing wealth

towards debtors. On the other hand, higher indebtedness implies also more issuance of new

debt. Moreover, a higher gap ρ− r̄ increases the extent to which the central bank internalizes

the effect of trend inflation on the price of bond issuances. The latter two effects imply that in

equation (80), ceteris paribus, the numerator increases and the denominator falls, respectively,

such that µ∞ becomes more negative. This gives the central bank an incentive to committing to

lower long-run inflation. As shown by Figure 8, this second effect dominates the redistributive

inflationary effect, such that in net terms optimal long-run inflation becomes more negative as

the discount rate gap widens.

Initial inflation. As explained before, time-0 optimal inflation and its subsequent path

depend on the initial net wealth distribution across households, which is an infinite-dimensional

object. In our baseline numerical analysis, we set it equal to the stationary distribution in

the case of zero inflation. We now investigate how initial inflation depends on such initial

distribution. To make the analysis operational, we restrict our attention to the class of Normal

distributions truncated at the borrowing limit φ. That is,

f0 (a) =

{
φ (a;µ, σ) / [1− Φ (φ;µ, σ)] , a ≥ φ

0, a < φ
, (81)

where φ (·;µ, σ) and Φ (·;µ, σ) are the Normal pdf and cdf, respectively.25 The parameters µ

25In these simulations, we assume that the initial net asset distribution conditional on income is the same
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Figure 8: Sensitivity analysis to changes in ρ− r̄.

and σ, the former not to be confused with the costate in equation (24), allow us to control both

(i) the initial net foreign asset position and (ii) the domestic dispersion in household wealth,

and hence to isolate the effect of each factor on the optimal inflation path. Notice also that

optimal long-run inflation rates do not depend on f0 (a) and are therefore exactly the same

as in our baseline numerical analysis regardless of µ and σ. This allows us to focus here on

inflation at time 0, while noting that the transition paths towards the respective long-run levels

are isomorphic to those displayed in Figure 1.

Figure 9 displays optimal initial inflation rates for alternative initial net wealth distributions.

In panels (a) and (b), we show the effect of increasing wealth dispersion while restricting the

country to have a zero net position vis-à-vis the rest of the World, i.e. we increase σ and

simultaneously adjust µ to ensure that ā0 = 0. In the extreme case of a (quasi) degenerate

initial distribution at zero net assets (solid black line in panel a), the central bank has no

incentive to create inflation, and thus optimal initial inflation is zero. As the degree of initial

wealth dispersion increases, so does optimal initial inflation.

Panels (c) and (d) in Figure 9 isolate instead the effect of increasing the liabilities with the

rest of the World, while assuming at the same time σ ' 0, i.e. eliminating any wealth dispersion.

That is, we approximate ’Dirac delta’ distributions centered at different values of µ. Since such

for high- and low-income households: f
a|y
0 (a | y2) = f

a|y
0 (a | y1) ≡ f̃0 (a). This implies that the marginal asset

density coincides with its conditional density: fa0 (a) =
∑
i=1,2 f

a|y
0 (a | yi) fy (yi) = f̃0 (a).
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Figure 9: Optimal initial inflation for different initial net asset distributions.

distributions are not affected by the truncation at a = φ, we have ā (0) = µ, i.e. the net foreign

asset position coincides with µ. As shown by the lower right panel, optimal inflation increases

fairly quickly with the external indebtedness; for instance, an external debt-to-GDP ratio of 50

percent justifies an initial inflation of over 6 percent.

We can finally use Figure 9 to shed some light on the contribution of each redistributive

motive (cross-border and domestic) to the initial optimal inflation rate, π0 = 4.6%, found in

our baseline analysis. We may do so in two different ways. First, we note that the initial wealth

distribution used in our baseline analysis implies a consolidated net foreign asset position of

ā0 = −25% of GDP (ȳ = 1). Using as initial condition a degenerate distribution at exactly

that level (i.e. µ = −0.205 and σ ' 0) delivers π0 = 3.1% (see panel d). Therefore, the pure

cross-border redistributive motive explains a significant part (about two thirds) but not all of

the optimal time-0 inflation under the Ramsey policy. Alternatively, we may note that our

baseline initial distribution has a standard deviation of 1.95. We then find the (σ, µ) pair such

that the (truncated) normal distribution has the same standard deviation while ensuring that

ā0 = 0 (thus switching off the cross-border redistributive motive); this requires σ = 2.1, which

delivers π0 = 1.5% (panel b). We thus find again that the pure domestic redistributive motive

explains about a third of the baseline optimal initial inflation. We conclude that both the cross-

border and the domestic redistributive motives are quantitatively important for explaining the

optimal inflation chosen by the monetary authority.
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E. The case with the borrowing limit in the market value of debt

In this Appendix we consider the case of a exogenous borrowing limit in terms of the market

value of wealth

Qtat ≥ φm, (82)

where φm ≤ 0.

In this case, the Ramsey problem (17) is then greatly simplified. If we separate the utility

in consumption and inflation and express the value functional W0 in terms of the market value

of wealth, we get:

W0 =
2∑
i=1

� ∞
φm


value of consumption︷ ︸︸ ︷

vci (am) −

value of inflation︷ ︸︸ ︷� ∞
0

e−ρtx (πt) dt


initial distribution in market value︷ ︸︸ ︷

1

Q0

fi0

(
am

Q0

) dam,

where vci (am) = E0

�∞
0
e−ρtu(ct)dt is the value function of consumption as a function of initial

market-value wealth. This value function does not depend on time as neither the drift in the

law of motion of wealth (equation 12) nor the borrowing limit (82) depend on any aggregate

variable. Therefore, we do not need to condition on the individual HJB equation. Similarly,

the law of motion of the distribution is not a constraint in this case, as the central bank only

cares about its impact on the initial distribution.

The Lagragian of the problem in this case simplifies to

L0 ≡
2∑
i=1

� ∞
φm

{
vci (am)−

� ∞
0

e−ρtx (πt) dt

}[
1

Q0

fi0

(
am

Q0

)]
dam (83)

+

� ∞
0

e−ρtµt

[
Qt (r̄ + πt + δ)− δ − Q̇t

]
dt.

and we obtain the first-order conditions with respect to the functions π,Q by variational argu-

ments. The following proposition characterizes the solution to this problem.

Proposition 5 (Optimal inflation - borrowing limit in market-value) In addition to equa-

tions (10), (9), (5) and (7), if a solution to the Ramsey problem (17) exists, the inflation path

πt must satisfy

x′ (πt) = µtQt, (84)

where µt is the Lagrange multiplier associated to the bond pricing condition (9) with law of

motion
dµt
dt

= (ρ− r̄ − πt − δ)µt, (85)

and initial value

µ0 = −dW0

dQ0

= −
2∑
i=1

� ∞
φm

{
vci (am)−

� ∞
0

e−ρtx (πt) dt

}
d

dQ0

[
1

Q0

fi0

(
am

Q0

)]
dam. (86)
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Figure 10: Time-0 value functions.

Notice how time-0 optimal inflation is only driven by the trade-off between the controlling

time-0 bond prices to redistribute wealth and the disutility cost of inflation. As the market-

valued borrowing limit φm is constant, the individual value function only depends on the future

path of inflation

vi0 (am) = vci (am)−
� ∞

0

e−ρtx (πt) dt.

Optimal inflation is zero in the steady state. To check this, it is enough to verify that the

steady-state value of the Lagrange multiplier µ is zero in equation (85) and hence inflation is

zero in equation (84). Inflation in the distant future cannot affect current bond prices and

hence the only relevant channel in the long run is the disutility cost of inflation, which calls for

zero inflation.

Finally, if we solve equation (85) and combine it with equations (86) and (84) we obtain

equation (29).

F. Additional figures
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