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Inequality and the Value of Public Natural Capital

Abstract 

We study how income inequality affects the social value of a dynamic public good, such as 
natural capital. Our theory shows that both intra- and intertemporal inequality affect the social 
value of public natural capital. The direction and size of the effects are driven by the degree of 
substitutability between the public and private consumption goods. While the value of the public 
good increases (decreases) with intratemporal income inequality in the case of complements 
(substitutes), it increases (may decrease) with intertemporal income inequality for complements 
and Cobb-Douglas (substitutes). A problem of major relevance for the accounting of public 
natural capital as required by international treaties is to transfer values between study and policy 
contexts, or to up-scale values from study sites to the national scale. Our theory provides closed-
form adjustment factors that allow controlling for differences in study and policy contexts. 
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1 Introduction

The valuation and efficient provision of dynamically evolving public goods, such as open

access libraries, public infrastructure, UNESCO World Heritage sites, the Earth’s cli-

mate system or biodiversity, is a key challenge for economic theory and policy. This

is especially true for natural capital that is declining in many parts of the world, as

documented by the recent global assessment report of the Intergovernmental Science

Policy Platform for Biodiversity and Ecosystem Services (IPBES 2019). Under the

United Nations’ Convention on Biological Diversity (CBD 1992), countries have com-

mitted themselves to integrate natural capital values into national accounts. However,

there are so far no methods available to appropriately live up to this commitment in

a way that is consistent with economic theory. At the same time, the CBD requires a

fair and equitable sharing of benefits derived from the use of biodiversity, especially of

genetic resources. Also more generally, concerns about economic inequality have found

increasing attention in recent years (e.g. Stiglitz et al. 2010, Alvaredo et al. 2017). Thus,

there is a need to develop an economic theory of how to integrate effects pertaining to

economic inequality into methods of valuing public-good natural capital.

To advance the theory of public goods valuation, we address the question of how the

intra- and intertemporal distribution of income affects the accounting price of a dynamic

public good. We conceptualize the social value of a dynamic public good as the aggregate

inverse Lindahl-demand for this good. It is given as the sum of individual present-value

Lindahl prices that households would pay if they would purchase the dynamic public

good in their individual competitive market. We then study how initial inequality

across individuals and inequality over time affect the social value of the dynamic public

good. For this, we generalize a static model of how intratemporal inequality affects the

valuation of a public good (Ebert 2003, Baumgärtner et al. 2017) to a dynamic setting.

Our analysis of the social value of dynamic public goods has three major fields

of application: First, the efficient provision of dynamic public goods. Second, cost-

benefit analysis (CBA) that involves changes in the stock of public capital. Third, the

integration of the value of dynamic public goods into national accounts.
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All these applications draw on the practice of benefit transfer, to which we contribute

methodologically. Benefit transfer means the transfer of estimated values of public goods

from a primary ‘study context’ to a ‘policy context’, where these transferred values

are used for accounting or to inform decision-making. Since primary studies are costly,

benefit transfer has become a primary method of non-market valuation (Richardson et al.

2015) and a crucial part of economic analysis for governmental decision-making (OECD

2018). Yet, a simple transfer would only be valid if both contexts—as well as their

future developments—were identical. As this is usually not the case, no matter whether

transferring values across space or across time, the value of a public good derived in the

study context has to be adjusted to the policy context to minimize transfer errors. Most

benefit transfer approaches employ meta-regressions, but approaches based purely on

statistical fit may not guarantee basic principles for internal consistency (e.g. Newbold et

al. 2018). Accordingly, there have been several calls to base benefit transfer more firmly

on economic theory (Bateman et al. 2011, Phaneuf and Requate 2017). Here, we derive

closed-form analytic benefit transfer factors that allow for transferring the social value

of a dynamic public good across space and time while controlling for key differences

between study and policy contexts, such as differences in the income distribution or in

the (positive or negative) growth rates of income and natural capital.

While our theory can be applied more generally, we frame our exposition in terms of

environmental amenities derived from public natural capital. To allow for closed-form

solutions that can guide policy appraisal and accounting, we use a number of simplifying

assumptions. Our model considers a continuum of infinitely-lived households that have

identical preferences over private consumption and the environmental amenities (or: en-

vironmental goods) derived from public natural capital, but that differ in their incomes.

We assume that initial income is log-normally distributed (cf. Baumgärtner et al. 2017,

Emmerling et al. 2017), which implies that relative income inequality remains constant

over time. Regarding preferences, we assume that the elasticity of substitution between

the private consumption good and the environmental goods from public natural capital

is constant at any point in time, and that the intertemporal elasticity of substitution for

the consumption good is constant, too. The latter is warranted when the presence of
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public goods should not distort savings behavior for consumption goods. These condi-

tions are satisfied for utility functions that feature Cobb-Douglas substitutability across

goods and constant intertemporal substitution (e.g. Gerlagh and Keyzer 2001), and for

utility functions of the intertemporal-constant-elasticity-of-substitution type (Quaas et

al. 2020). Furthermore, we consider exogenously given time paths of income and natural

capital as resulting from a given ‘resource allocation mechanism’ (Arrow et al. 2003a).

We thus abstract from savings and optimal management, and value natural capital in

not-necessarily-optimal economies. In particular, we study the case of constant growth

rates, common in the related literature on social discounting that deals with changing

relative prices of non-market goods (e.g. Traeger 2011, Zhu et al. 2019). Finally, we

use a proportional mapping of natural capital into the environmental goods it provides

(cf. Gerlagh and Keyzer 2001). We thereby focus on non-use goods, such as regulating

ecosystem services, e.g. local or global climate control or the existence value of biodi-

versity. It is in particular for these non-use goods that information on their social value

is crucial for public policy.

We derive novel results regarding the effect of the intertemporal distribution of in-

come or public natural capital on the social value of natural capital, and generalize

effects of the intratemporal income distribution to a dynamic setting. We show that the

social value of public natural capital increases with initial mean income in society, and

decreases (increases) with initial relative income inequality if and only if the public en-

vironmental goods derived from natural capital and manufactured private consumption

goods are substitutes (complements). This extends the static analysis of Baumgärtner

et al. (2017) to the dynamic setting, which is relevant for many policy contexts in-

cluding, but not restricted to, natural capital accounting. Regarding the intertemporal

distribution of income and capital, we find that the social value of public natural capital

increases with the income growth rate for the case of complements or the Cobb-Douglas

case, but it is possible that the social value declines with the income growth rate in the

case of substitutes. Further, we show that the social value increases (decreases) with the

growth rate of natural capital if and only if public environmental goods and consumption

goods are substitutes (complements). On this basis, we derive benefit transfer factors
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that account for differences in the distribution of income, income growth, natural capital

growth, interest rates and other characteristics between a study and a policy site.

Drawing on a global case study on the valuation of non-use public ecosystem ser-

vices derived from biodiversity, we illustrate that ignoring the effects of the intra- and

intertemporal distribution can lead to serious errors. For example, using a mean esti-

mate of the degree of substitutability from the literature (cf. Drupp 2018), we show that

when the income growth rate is only half as high as the mean forecast for the global

level, the social value of biodiversity would be almost 200 percent higher. Likewise, a

reduction in the biodiversity loss rate by one half would increase the social value of bio-

diversity by 12 percent. The illustration also shows that the degree of substitutability

not only determines the direction of effects, but is also the key driver of effect sizes.

Our analysis on valuing dynamic public goods contributes to different strands of

the literature. First, we contribute to the literature on natural capital accounting.

A large part of this research is concerned with determining shadow prices for non-

market capital assets (e.g. Hartwick 1990, Dasgupta and Mäler 2000, Arrow et al. 2003a,

Dasgupta 2009, Arrow et al. 2012, Fenichel and Abbott 2014). These approaches are

based on an intertemporal welfare function and the shadow price of a capital asset is

derived through constrained optimization of the intertemporal welfare function, as the

increase of welfare from a marginal increase of the capital asset. Here, we develop an

alternative approach that is based on Lindahl demand and thus less demanding with

respect to normative assumptions, as it is based on (Pareto-)efficiency only. Moreover,

while most welfare economic analysis of natural capital values are set in a representative

agent framework, we study a population of heterogeneous households described by a

continuous distribution of income.

Second, our analysis relates to the literature on social discounting. A number of

studies examine intra- and intertemporal distribution in the context of discounting of

a single consumption good (e.g. Fleurbaey and Zuber 2015, Gollier 2015, Emmerling et

al. 2017, Emmerling 2018). As far as the intertemporal distribution of market-traded

and non-market-traded goods is concerned, our paper is related to the literature on

dual discounting of non-market goods (e.g. Weikard and Zhu 2005, Hoel and Sterner
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2007, Gollier 2010, Traeger 2011, Baumgärtner et al. 2015, Drupp 2018, Yamaguchi

2019, Drupp and Hänsel forthcoming). The difference in good-specific discount rates is

determined by the degree of substitutability and the differences in good-specific growth

rates. While we do not focus on social discounting per se, our analysis combines these

two strands by showing how intra- and intertemporal distribution as well as limited

substitutability affect the value of dynamic public goods.

Finally, we contribute to the literature on non-market valuation. With few exceptions

(see, e.g., Kriström and Riera 1996, Drupp et al. 2018b, Hsiang et al. 2019), this litera-

ture does not explicitly consider effects pertaining to the distribution of income. Within

this strand, we add primarily to the emerging literature on structural benefit transfer

(e.g. Smith et al. 2002, 2006, Baumgärtner et al. 2017, Newbold et al. 2018, Meya et al.

2019, Kling and Phaneuf 2018, Moeltner 2019, Meya 2020). So far, this literature does

not specifically deal with the dynamic nature of natural capital. Our contribution is to

derive a closed-form benefit transfer function with adjustment (or: transfer) factors that

allow controlling for differences in dynamic aspects across contexts, such as the income

growth rate and environmental loss rate, or interest rates.

The paper is organised as follows. We present the model in Section 2, our valuation

concepts in Section 3, and results in Section 4. We apply our findings empirically for

global biodiversity conservation in Section 5, and we report several extensions of the

analysis in Section 6. We discuss limitations in Section 7, and conclude in Section 8.

All proofs are contained in the Appendix.
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2 Model

We consider a society of n households, labelled i = 1, . . . , n, who derive utility from the

consumption of two goods—a market-traded private consumption good and an environ-

mental public good, which is non-rival and non-excludable in consumption.1 The flow

of the environmental good is proportional to the stock of natural capital. Examples

include the existence value of biodiversity or an agreeable climate.

Time is discrete and the horizon is infinite, t = 0, 1, .... As common in the literature

on natural capital valuation, we assume a given ‘resource allocation mechanism’ (Arrow

et al. 2003a) or ‘economic program’ (Fenichel and Abbott 2014), such that the time

paths of both goods are exogenously given.2 Et ≥ 0 denotes the stock of natural capital

which equals, with suitable normalization, the flow of the environmental public good,

and Ci
t ≥ 0 denotes private consumption of household i at time t. The market price

of the consumption good is Pt ≥ 0. Household income Y i
t ≥ 0 is exogenous and fully

expended for consumption at each time, so that Ci
t = Y i

t /Pt. For simplicity, we take

consumption as numéraire and set Pt = 1. We therefore substitute income Y i
t for private

consumption Ci
t in the following. We refer to the distribution of income over time as

‘intertemporal distribution’, and to its distribution over households at a given point in

time as ‘intratemporal distribution’.

Like Zhu et al. (2019), we focus on a balanced growth path where both income and

natural capital grow at constant rates, i.e. we study

Y i
t = Y i

0 (1 + gY )t and (1a)

Et = E0 (1 + gE)t , (1b)

where Y i
0 is household i’s income and thus private consumption at t = 0, E0 is the

stock of public natural capital and amount of the environmental public good at t = 0,

1We study a time-constant population size and thus abstract from how population growth or decline
affect natural capital values (see, e.g., Dasgupta 2001, Arrow et al. 2003b and Yamaguchi 2018).

2These time paths can be formulated in form of differential equations, which include the resource
allocation mechanism as feedback rule, or explicitly as functions of time. We follow the latter approach.
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gE ∈ (−1, 0) is the growth rate of natural capital, and gY > −1 is the growth rate of

income.3

As in Baumgärtner et al. (2017) and Emmerling et al. (2017), income in t = 0 is

log-normally distributed over households with mean µY0 and standard deviation σY0 .
4

We assume that the number of households is large enough so that the initial income

distribution is adequately described by a continuous density function fln(Y0;µY0 , σY0)

over non-negative incomes. To measure intratemporal income inequality, we employ the

coefficient of variation CVY0 := σY0/µY0 as a measure of relative inequality. It captures

the width of the distribution of income relative to mean income. While there are a

number of different notions of income inequality in use, concepts of relative income

inequality—often in the form of income shares—feature prominently in academic and

policy circles (e.g. Alvaredo et al. 2018). Our model assumes that the income growth

rate is the same for all households. This implies that absolute income inequality—

as measured by, e.g., the standard deviation—will increase over time, while relative

income inequality, as measured by the coefficient of variation, will stay constant, that

is CVYt = CVY0 for all t. Moreover, income will remain log-normally distributed over

households at each future time t > 0.

Households are infinitely-lived and have identical preferences over consumption and

the environmental good which are described by a standard time-separable, stationary

intertemporal utility function U with

U({Y i
t }, {Et}) =

∞∑
t=0

ρtu(Y i
t , Et) , (2)

where u is an instantaneous utility function and ρ ∈ (0, 1) is the utility discount factor.

Moreover, we assume that households have (i) constant-elasticity-of-substitution (CES)

preferences between Y i
t and Et for all t, and (ii) constant-intertemporal-elasticity-of-

3Here, we consider exogenous growth rates of natural capital and income. One example of a model
that endogenizes these growth rates is Riekhof et al. (2019). To focus on the social value of natural
capital we avoid the complications that come with setting up such an endogeneous growth model.

4There is empirical evidence that the global household income distribution can be approximated by
a log-normal distribution (Pinkovskiy and Sala-i-Martin 2009).
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substitution (CIES) preferences between Y i
t and Y i

t′ for any t, t′. Except for the case of

instantaneous Cobb-Douglas preferences, which we study in Section 6.4, both assump-

tions (i) and (ii) are fulfilled simultaneously for time-separable, stationary intertempo-

ral utility (Eq. 2) if and only if intertemporal utility is of the intertemporal-constant-

elasticity-of-substitution (ICES) form (this is shown in Quaas et al. 2020):

U(
{
Y i
t

}
, {Et}) =

∞∑
t=0

ρt
θ

θ − 1

(
αY i

t

θ−1
θ + (1− α)Et

θ−1
θ

)
, (3)

where the parameter α ∈ (0, 1) measures the preference for private consumption relative

to the environmental good. The parameter θ > 0 is the constant elasticity of substitution

between Y i
t and Et for all t and also the constant intertemporal elasticity of substitution

between Y i
t and Y i

t′ for any t, t′. Assumptions (i) and (ii) imply that the intertemporal

elasticity of substitution for the environmental good is also constant and identical to θ.

The ICES utility function, Eq. (3), comprises the special cases where the consumption

good and the environmental good are substitutes (θ > 1), Cobb-Douglas (θ = 1) and

complements (θ < 1) at each point in time.5

For an infinite time horizon and using the time paths of Y i
t and Et given by Eqs. (1a)

and (1b), respectively, the sum in Eq. (3) converges if (see Appendix A.1)

ρ(1 + gY )
θ−1
θ < 1 and (4a)

ρ(1 + gE)
θ−1
θ < 1 , (4b)

which we assume to hold in the following. We can then rewrite intertemporal utility U

5Assumptions (i) and (ii) imply a single elasticity of substitution for the substitutability between
the two goods within any time period as well as for the substitutability of the consumption bundle
across time. To relax these assumptions we run numerical simulations in Section 6.3.

9



(Eq. 3) in reduced form (see Appendix A.1):6

U(Y i
0 , gY , E0, gE) =

θ

θ − 1

 αY i
θ−1
θ

0

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E

θ−1
θ

0

1− ρ (1 + gE)
θ−1
θ

 . (5)

3 Valuation concepts

We derive the social value of a change in the time path of public natural capital from

{Et} to {E ′t}, through aggregation from individual benefits of such a change to all

households. To start with, we focus on a change in the initial stock of natural capital by

dE, so that the dynamics of {Et} and {E ′t} according to Eq. (1b) differ in the initial level,

E ′0 = E0+dE, but not in the growth rate, gE′ = gE. An example of such a change in the

stock of public natural capital might be an increase in forest cover through reforestation,

or a local re-establishment of an endangered species. We extend our analysis to changes

in the growth rate of natural capital in Section 6.1.

3.1 Individual valuation

As the measure of benefit for household i of a change in natural capital, we consider

the compensating surplus for a change in the time path of natural capital from {Et} to

{E ′t}.7 Specifically, we measure compensating surplus as a constant payment fraction,

ωi > 0, at which the household is willing to reduce income in each period on the time

path {E ′t}. It is defined through

U({(1− ωi)Y i
t }, {E ′t}) ≡ U({Y i

t }, {Et}) . (6)

From here on, we speak of the willingness to pay (WTP) for a change in {Et}, rather

than of the compensating surplus, as the term WTP features more prominently in the

6To save notation, we employ the same symbol U for both functions Eq. (3) and (5). As we always
explicitly specify the arguments of the function, it should be clear what function we mean.

7Alternatively, one could take the equivalent surplus. For a marginal change in {Et}, as considered
in the following, the compensating and the equivalent surplus coincide.

10



non-market valuation literature. Conceptualizing individual WTP as a payment that

is made as a constant fraction of income in each period, as in Eq. (6), is in line with

the applied valuation literature which also considers a stream of payments as fraction

of income, often in the form of a tax.8 In Section 6.2 we show that our main results also

hold when considering the WTP in form of a one-time payment.

For ICES utility (Eq. 5) household i’s individual WTP for an increase in the initial

level of natural capital by one marginal unit, expressed as a constant payment fraction

as defined by Eq. (6), is given by (see Appendix A.2)

ωi = ω(Y i
0 , E0) =

1− α
α

1− ρ (1 + gY )
θ−1
θ

1− ρ (1 + gE)
θ−1
θ

Y i
0

1−θ
θ E

− 1
θ

0 . (7)

With ω(Y i
0 , E0) as the constant fraction of income that household i is willing to pay in

each time period, the corresponding absolute amount of income in period t is ω(Y i
0 , E0)Y

i
t

or, taking into account income dynamics over time (Eq. 1a), ω(Y i
0 , E0)Y

i
0 (1 + gY )t. The

present value, discounted at the constant market interest factor δ > 0,9 of this stream

of what household i is willing to pay over the entire time horizon is

WTP(Y i
0 , E0) =

∞∑
t=0

δt ω(Y i
0 , E0)Y

i
0 (1 + gY )t . (8)

This intertemporal marginal WTP is the present value of what household i is willing

to pay over the entire time horizon for one marginal unit of the initial stock of public

natural capital, expressed in units of income. It measures her marginal intertemporal

benefit of natural capital. From Eqs. (7) and (8) it is obvious that the household’s

WTP for one marginal unit of initial natural capital, WTP(Y i
0 , E0), decreases with the

amount of initially existing natural capital, E0, and increases with the household’s initial

income, Y i
0 .

8For instance, 91 of the 98 reported WTP values elicited with stated preference methods in the
TEEB-Database (Van der Ploeg and de Groot 2010) have been elicited as annual payments.

9A constant market interest factor is consistent with the assumption of constant rates of growth or
decline for income and natural capital, i.e. a balanced growth path of the overall economy.
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3.2 Societal valuation

In a static setting, Pareto-efficiency requires that a public good is supplied to the extent

that the sum of households’ marginal benefits equals the marginal (opportunity) cost

of supplying the public good (Lindahl 1928, Samuelson 1954). For the dynamic setting

considered here, we generalise this efficiency condition as follows:

Lemma 1. Intertemporal Pareto-efficiency implies that at t = 0 public natural capital

is supplied at the level, denoted by E?
0 , where the marginal costs of initially supplying

natural capital equal the sum of households’ individual marginal intertemporal benefits

of the initial level of public natural capital,

c′(E?
0) =

n∑
i=1

WTP(Y i
0 , E

?
0) , (9)

where c(E0) are the total cost, including opportunity costs, of initially supplying natural

capital at level E0, and WTP(Y i
0 , E0) is given by Eq. (8).

Proof. See Appendix A.3.

Lemma 1 proposes an intertemporal extension of the Lindahl-Samuelson-condition.

Formally, Condition (9) is in full analogy with the static Lindahl-Samuelson-condition.

The intertemporal extension is in the intertemporally detailed specification of the terms:

intertemporal Pareto-efficency requires that the marginal cost of supplying the public

natural capital in t = 0 equals the aggregate intertemporal marginal WTPs of all house-

holds, that is, the sum over all households of the present value, discounted at the market

interest factor, of a household’s WTP over the entire time horizon for one marginal unit

of the initial stock of public natural capital.

Figure 1 illustrates Condition (9) for n = 2 households with different initial incomes,

Y 1
0 < Y 2

0 . The blue thin curves show the two individual intertemporal marginal WTPs

(on the vertical axis) as functions of the initial stock E0 of public natural capital (on

the horizontal axis), that is, WTP(Y i
0 , E0) according to Eq. (8) for i = 1, 2. The blue

thick curve is the (vertical) sum of the two individual intertemporal marginal WTPs,

12



Figure 1: Illustration of the intertemporal Lindahl-Samuelson condition, Condition (9),
for n = 2 households with different incomes Y 1

0 < Y 2
0 .

WTP
∑

(Y 1
0 , Y

2
0 , E0) =

∑2
i=1 WTP(Y i

0 , E0). The efficient initial stock E?
0 of public natu-

ral capital is determined by the intersection of the blue thick curve (aggregate intertem-

poral marginal WTPs of all households for public natural capital) with the black curve

which depicts the marginal costs of providing the initial stock of public natural capital.

Motivated by Lemma 1, we define the social (marginal) value of public natural capital

as the term on the right-hand side of Eq. (9), which is the aggregate intertemporal

marginal benefit (WTP) of all households for the initial stock of natural capital:

WTP
∑

(Y 1
0 , . . . , Y

n
0 , E0) :=

n∑
i=1

WTP(Y i
0 , E0) . (10)

The underlying reason for this sum to make the right-hand side of the intertemporal

efficiency Condition (9) is that, first, each summand measures a household’s individual

marginal benefit of public natural capital according to Eq. (8) and, second, it is the

simple sum of all those that determines (in conjunction with the marginal costs) the

Pareto-efficient level of public natural capital. It therefore makes sense to think of this

expression as the (marginal) value of public natural capital to society.

A complementary interpretation of expression (10) as the social (marginal) value of
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public natural capital is based on Lindahl prices and Lindahl equilibrium in a hypo-

thetical setting where households make individual decisions and each household faces

an individual Lindahl price for the public good. In such a setting, the right-hand side

of Eq. (10) can be interpreted as the inverse aggregate Lindahl-demand function for the

public good, which is the sum of inverse individual Lindahl-demand functions. The lat-

ter are given as individual demand for a rationed public good when the household faces

an individual virtual price for that public good (Flores and Carson 1997, Ebert 2003,

Baumgärtner et al. 2017). As the inverse individual demand for the given amount of the

public good equals the household’s individual virtual price for the public good, the sum

in Eq. (10) is simply the sum of all individual Lindahl prices with a given amount E0

of the public good for all households. It is plausible to think of this sum of individual

Lindahl prices as the social value of public natural capital in a Lindahl setting.

In Figure 1, the blue thick curve depicts this inverse aggregate Lindahl demand for

public natural capital. While inverse aggregate Lindahl demand yields a social value

for all potential levels E0 of public natural capital, the level E?
0 has a special meaning:

it is the Lindahl equilibrium amount of public natural capital where aggregate Lindahl

demand (blue thick curve) equals supply given by the inverse marginal costs of providing

natural capital (black curve). Comparison with the efficiency Condition (9) shows that

the Lindahl equilibrium is Pareto-efficient. Hence, while the inverse aggregate Lindahl

demand for public natural capital, Eq. (10), may be evaluated at the efficient level E?
0 ,

it also yields a social value at any other, inefficient, level of public natural capital.

Summing up, we define the social (marginal) value of public natural capital as the

inverse aggregate Lindahl demand for public natural capital. This definition of the so-

cial value of natural capital is consistent with the approach of accounting for marginal

damages of environmental pollution proposed by Muller et al. (2011) in a static setting.

It is conceptually more general than the shadow price as obtained from constrained op-

timization of a given social welfare function, which measures by how much social welfare

would increase if one additional marginal unit of natural capital was available initially.

We do not presuppose a social welfare function for the aggregation from individuals to

society, but we build on the weaker concept of intertemporal Pareto efficiency and on
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the even weaker concept of a Lindahl economy that may or may not be in equilibrium.

One advantage of our more general approach is that the defining Eq. (10) leaves open

the level of natural capital, E0, at which WTP is evaluated. One could do this at the

Pareto-efficient level E?
0 and thus arrive at the efficiency value of natural capital. Or

one could do this at the actually existing, and presumably inefficient, level of natural

capital and thus arrive at an accounting price which is consistent with the current (dis-

torted) general market allocation and prices (Muller et al. 2011). While the former aims

at justifying policy recommendations for efficiency, the latter is in line with the aim

of establishing natural capital accounting to systematically include hitherto neglected

environmental goods and assets in the current system of national accounting based on

(potentially distorted) market prices. Our general valuation concept allows pursuing

either one of these two applications.

Having clarified the concept of social (marginal) value of public natural capital, we

can now calculate it in our model framework. To this end, we switch to the mean (or:

per-capita) marginal value,

WTP :=
1

n
WTP

∑
(Y 1

0 , . . . , Y
n
0 , E0) , (11)

which is—for given number of households—fully equivalent to the social marginal value

defined by Eq. (10) and more in line with applied studies who typically report the mean

WTP found in a study population. Taking into account that income in t = 0 is log-

normally distributed over households and therefore employing the continuous income

density function fln(Y0;µY0 , σY0) for aggregation over households with different incomes,

the mean marginal value of public natural capital (Eq. 11) can be expressed as a function

of the moments of the initial income distribution, the initial stock of natural capital,
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and the growth rates of income and natural capital (see Appendix A.4):

WTP(µY0 ,CVY0 , gY , E0, gE) =

∞∫
0

fln(Y0;µY0 , σY0) WTP(Y0, E0) dY0 (12)

= κµ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2 (13)

with κ =
1− α
α

1− ρ (1 + gY )
θ−1
θ

1− ρ (1 + gE)
θ−1
θ

E
−1/θ
0

∞∑
t=0

δt(1 + gY )t .

Eq. (13) shows how the mean social value WTP, and hence the total social value WTP
∑

,

of public natural capital depends on intra- and intertemporal inequalities, mediated by

the degree of substitutability between the consumption good and natural capital, and

substitutability over time.10 In the following, we study in detail the effects of intra- and

intertemporal distribution on this value.

4 Results

In this section, we address five questions. The first two questions address how social

WTP is affected by a change in the intratemporal distribution, and in particular we

ask about the effects of changes in (i) mean income, µY0 and (ii) income inequality,

CVY0 . The second two questions address how social WTP is affected by a change in

the intertemporal distribution, and in particular we ask about the effects of changes in

(iii) the growth rate of income, gY , and (iv) the environmental loss rate, gE. Finally, we

ask (v) by which factors the social WTP has to be adjusted for benefit transfer from a

study to a policy site.

Our first result answers the question, how does society’s current mean income affect

the social WTP? The answer is that the social WTP for public natural capital increases

with mean income:

Proposition 1. Social WTP for the public natural capital, WTP (Eq. 13), increases

with current mean income, µY0:

10This details earlier findings that the shadow price of natural capital is determined by, i.a., the
substitutability of assets across each other as well as across time (Arrow et al. 2012, Dasgupta 2009).
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∂WTP(µY0 ,CVY0 , gY , E0, gE)

∂ µY0
> 0. (14)

Proof. See Appendix A.5.

Our second result answers the question, how does the relative income inequality

affect social WTP? Here, the effect is ambiguous and the following proposition derives

conditions under which the social WTP for public natural capital increases or decreases

with relative inequality of the intratemporal income distribution:

Proposition 2. Social WTP for public natural capital, WTP (Eq. 13), decreases (in-

creases) with intratemporal income inequality, CVY0, if and only if the public natural

capital and the private consumption good are substitutes (complements):

∂WTP(µY0 ,CVY0 , gY , E0, gE)

∂ CVY0

Q 0 if and only if θ R 1. (15)

Proof. See Appendix A.6.

Prop. 2 states that the sign of the effect of the intratemporal income inequality

on the social WTP depends on whether the environmental public goods derived from

natural capital are a substitute or a complement to private consumption. For the case

of substitutes, social WTP for natural capital decreases with income inequality, whereas

it increases in the case of complements. Prop. 2 generalizes the finding in Baumgärtner

et al. (2017) to an intertemporal setting: The degree of substitutability mediates how

intratemporal income inequality affects social WTP. In our setting where relative income

inequality is constant over time, this finding holds for relative income inequality at each

point in time. It is also in line with intuition. In the case of complements, a rich

household’s individual WTP for natural capital is more than proportionally higher, and

a poor household’s individual WTP is less than proportionally smaller, than the average

household’s individual WTP. Thus, increasing inequality increases mean WTP. In the

case of substitutes, this is just the other way around.

Our third result addresses the question, how does income growth affect social WTP?
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Proposition 3. Social WTP for public natural capital, WTP (Eq. 13), for a time-

constant market interest factor, δ < 1
1+gY

, increases with the growth rate of income,

gY , if the public natural capital and the private consumption good are complements or

Cobb-Douglas:

∂WTP(µY0 ,CVY0 , gY , E0, gE)

∂ gY
> 0 if θ ≤ 1. (16)

Proof. See Appendix A.7.

How the intertemporal distribution of income affects social WTP depends on the

level of the growth rate of income, the relative sizes of the utility discount and market

interest factor as well as on the degree of substitutability. The condition that the

market interest rate exceeds the growth rate, δ < 1
1+gY

, holds typically for industrialized

economies (Piketty 2014). For the case of complements, an increase in intertemporal

inequality in terms of consumption goods increases social WTP. As a larger income

growth rate leads to more private goods consumption relative to the complementary

environmental goods from natural capital, the household is willing to sacrifice more of

the private good to have a more balanced consumption of both goods. We find the same

effect for the special case of Cobb-Douglas substitutability.

However, if natural capital is a substitute to manufactured consumption goods there

are cases where an increase in intertemporal inequality in terms of consumption goods

leads to a decrease of social WTP. This depends on the relative magnitudes of the

elasticity of substitution, the growth rate of income as well as utility discount factor and

the market interest factor.11 The intuition is as follows: For sufficiently substitutable

goods, the household cares more about the absolute amount of goods consumed and

less about their composition. A higher income growth rate makes a constant payment

fraction more ‘expensive’ in absolute terms regarding the trade-off between the private

consumption and the environmental goods from natural capital. Thus, for the sign of

the effect, the discount and market interest factors play a role as the trade-off is sensitive

11We illustrate the range of conditions for which social WTP in case of substitutes may fall with the
growth rate of income in Fig. 8 and Fig. 9 in Appendix A.8.
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to how strongly those periods in the long-term future with more consumption due to

higher growth matter. Our analysis of the boundary conditions in Appendix A.8 shows

that lower individual (market) discounting shifts the switch from a negative growth

impact on social WTP to a positive growth impact towards a lower (higher) degree of

substitutability.

Our fourth result answers the question, how does the growth rate of natural capital

affect the social WTP for natural capital? Again, we derive a condition that determines

the sign of the effect:

Proposition 4. Social WTP for public natural capital, WTP (Eq. 13), increases (de-

creases) with the growth rate of natural capital, gE, if and only if the public natural

capital and the private consumption good are substitutes (complements):

∂WTP(µY0 ,CVY0 , gY , E0, gE)

∂ gE
R 0 if and only if θ R 1. (17)

Proof. See Appendix A.9.

The intertemporal distribution of natural capital, captured by the growth rate of

natural capital, has no effect on social WTP for the special case of Cobb-Douglas sub-

stitutability, and only for this case. For substitutes, an increase in intertemporal in-

equality in terms of natural capital increases social WTP, while it is the reverse case

when natural capital is a complement to manufactured consumption goods. Thus, if

there is a complementarity relationship, a ceteris paribus higher growth rate and thus

consumption of environmental goods from natural capital tends to make consumption

goods relatively scarcer and thus decreases WTP for an extra unit of natural capital.

Fifth, and finally, we address the question how should one adjust per-capita social

WTP when transferring estimates from a study to a policy site? Specifically, we derive

transfer factors to adjust for differences in the present income distribution in a dynamic

context and for differences in growth rates and market interest rates. These general-

izations and extensions make the benefit function approach more suitable for natural

capital valuation and accounting. Social WTP for a policy site, WTP
policy

, is the product

of a transfer function T and the mean WTP elicited at a study site, WTP
study

.
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Proposition 5. Assume that households’ preferences (θ, α, ρ) are identical at the study

and the policy sites. Per-capita social WTP for public natural capital at the policy site

is given by WTP
policy

= T (. . .) · WTP
study

with the following transfer function

T (. . .) =TE(Epolicy
0 , Estudy

0 ; θ) · TgE(gpolicyE , gstudyE ; θ, ρ) · Tµ(µpolicy
Y0

, µstudy
Y0

; θ)

· TCV(CVpolicy
Y0

,CVstudy
Y0

; θ) · TgY ,δ(g
policy
Y , δpolicy, gstudyY , δstudy; θ, ρ), (18)

where the corresponding disentangled transfer factors are:

TE(Epolicy
0 , Estudy

0 ; θ) =

(
Epolicy

0

Estudy
0

)−1/θ
, (19)

TgE (gpolicyE , gstudyE ; θ, ρ) =
1− ρ(1 + gstudyE )

θ−1
θ

1− ρ(1 + gpolicyE )
θ−1
θ

, (20)

Tµ(µpolicyY0
, µstudyY0

; θ) =

(
µpolicyY0

µstudyY0

)1/θ

, (21)

TCV(CVpolicy
Y0

,CVstudy
Y0

; θ) =

(
1 + CVpolicy 2

Y0

1 + CVstudy 2
Y0

) 1−θ
2θ2

, (22)

TgY ,δ(g
policy
Y , δpolicy, gstudyY ,δstudy; θ, ρ)

=
1− ρ (1 + gpolicyY )

θ−1
θ

1− ρ (1 + gstudyY )
θ−1
θ

·
∑∞

t=0

(
δpolicy

)t
(1 + gpolicyY )t∑∞

t=0 (δstudy)
t
(1 + gstudyY )t

. (23)

Proof. See Appendix A.10.

Prop. 5 shows how to adjust per-capita social WTP for dynamic public goods such as

natural capital for site specific differences in benefit transfers. Adjustment for differences

in the income distribution can be done by exploiting information on the currently pre-

vailing intratemporal income distribution using TCV and Tµ. In addition, Prop. 5 shows

how to adjust per-capita social WTP for differences in income growth and interest rates

by using TgY ,δ and for differences in the environmental loss rate by employing TgE .

5 Application: Global biodiversity conservation

To illustrate our results and to demonstrate the applicability of the theory, we now

present an empirical case study of how inequalities affect the value of global ecosystem
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services related to biodiversity. For this, we consider individuals instead of households,

as using per-capita values from national statics is typical for benefit transfer applications.

5.1 Data

Table 1 gives an overview of the data used. For the initial global income distribution

we draw on Pinkovskiy and Sala-i-Martin (2009) to use an estimate of global per-capita

income distribution for 2006, with a mean of µY0 = 9, 550 [2006-PPP-USD] and a stan-

dard deviation of σY0 = 15, 400 [2006-PPP-USD]. This corresponds to a coefficient of

variation of CVY0 = 1.61. For the forecasted growth rate of income, gY , we draw on

an expert survey by Drupp et al. (2018a). Almost two hundred experts on long-term

societal decision-making were asked to provide their best guess of the global average,

long-term annual growth rate of real per-capita consumption. They find a mean con-

sumption growth rate of gmean
Y = 1.7 percent. The lower bound (abbreviated as ‘lb’) is

-2 percent and the upper bound (‘ub’) is gubE = 5 percent. As only three experts stated

negative growth rates, we take glbY = 0.1 percent as lower bound value in our application.

We interpret E0 as an index of global biodiversity, with the reference level at t = 0

set to E0 = 100. An example for such a global biodiversity index is the global ‘Living

Planet Index’ (WWF 2020). Hence, the marginal value of biodiversity studied here is

the value of an increase of the initial index by one point, from 100 to 101. The scale

of E0 has no effect on the adjustments of social WTP for differences in the intra- and

intertemporal distribution, on which we focus in the following (see Prop. 5), but it scales

the absolute WTP estimates.

For the growth rate of natural capital, gE, we focus on non-use ecosystem services, as

this provides the best fit for our proportional mapping from natural capital to ecosystem

service provisioning. We take the global mean annual growth rate of cultural ecosystem

services estimated by Baumgärtner et al. (2015), based on the best available time-series

data for different ecosystem services and countries. These include as ecosystem service

measures landscape connectedness, forest area, living planet index, red-list-index and

national biodiversity indicators. Baumgärtner et al. (2015) estimate the global growth
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Table 1: Variable and parameter values used in the application

Parameter Value(s) Description Source

CVY0 1.61 Coefficient of variation of global

per-capita income

Pinkovskiy and

Sala-i-Martin (2009)

µY0 9,550 Mean global per-capita income in

2006-PPP-USD

Pinkovskiy and

Sala-i-Martin (2009)

gY 0.017 Annual real per-capita Drupp et al. (2018a)

[0.001; 0.050] (consumption) growth rate

E0 100 Global biodiversity index; set to

100 for t = 0

–

gE −0.0052 Growth rate of global non-use Baumgärtner

[−0.0128;−0.0008] environmental goods et al. (2015)

α 0.85 [0.7; 1] Utility share parameter for

consumption goods

Kopp et al. (2012)

θ 2.31 [0.86; 7.14] Elasticity of substitution Drupp (2018)

ρ 0.989 [0.926; 1] Pure time discounting factor Drupp et al. (2018a)

δ 0.977 [0.94; 1] Risk-free market interest factor Drupp et al. (2018a)

Note: Numbers in brackets correspond to lower and upper bound values. We approximate the up-

per bound discount and interest factors with 0.999 instead of 1.

rate as gmean
E = −0.52, with a lower (upper) bound of glbE = −1.28 (gubE = −0.08) percent.

We take preference parameters from the literature. For the utility share parameter

of consumptions goods relative to environmental goods, α, we draw on the parameter

range considered by Kopp et al. (2012), ranging from 0 to 0.3, with a mean of 0.15, for

the environmental good. Thus, the parameter value for the consumption good ranges

from 0.7 to 1, with a mean of 0.85.12 For the elasticity of substitution between the en-

vironmental and the market-traded consumption good, we use data from Drupp (2018),

who gathers indirect evidence from 18 non-market valuation studies. This yields a mean

elasticity of substitution of θmean = 2.31, implying that environmental goods are consid-

ered as substitutes to market-traded goods on average, with a lower and upper bound

of θlb = 0.86 and θub = 7.14 respectively.13 For the pure time discount factor, the elas-

12This encompasses parameter values chosen by Sterner and Persson (2008), who assume 1−α = 0.1,
and Gollier (2010), who assumes 1− α = 0.29.

13These values are similar to those found for environmental goods in a more recent meta-study by
Drupp and Hänsel (forthcoming), but values implying stronger complementarity have been used in the
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ticity of marginal utility of consumption and the market interest factor, we again draw

on survey data from Drupp et al. (2018a), who elicited expert recommendations and

long-run forecasts. They obtain a mean rate of pure time preference of 1.1 percent, with

a lower and upper bound of 0 and 8 percent. This translates into an initial mean pure

time discount factor of ρmean = 0.989, with a lower and upper bound of 0.926 and 1.14

The mean forecasted real risk-free market interest rate is 2.38 percent, with a lower and

upper bound of 0 and 6 percent. This translates into an initial mean market interest

factor δmean = 0.977, with a lower and upper bound of δlb = 0.943 and δub = 1.15 We

quantify our results for a time horizon of hundred years, T = 100.

We provide a detailed discussion of the growth path conditions (Eqs. 4a and 4b)

for the existence of the closed-form ICES utility function (Eq. 3) in Appendix A.11.

When we compare the infima and suprema of the growth rates, gE and gY , for which a

closed-form intertemporal utility function exists, with empirical data on growth rates,

we see that these conditions appear generally uncritical for the loss rate of ecosystem

services gE.16 This is not the case for the income growth rate gY . However, for the mean

pure time discount factor and the best guess estimate for the degree of substitutability,

θmean = 2.31, the income growth rate supremum is with gmax
θ=2.31 = 0.0197 higher than

the mean expected long-term growth rate of gmean
Y = 0.017, so that the growth path

condition is fulfilled. Thus, while there are cases for which our growth path conditions

are not satisfied,17 which we discuss further below, the growth path condition is fulfilled

for the main specification of our model.

applied modelling literature. For example, Sterner and Persson (2008) used a central value of 0.5.

14We use a value of 0.999 instead of 1 to ensure that our intertemporal welfare function is bounded.

15We use a value of 0.999 to ensure that the social WTP as a constant payment fraction is bounded.

16For the mean estimate on the pure time discount factor, ρmean = 0.989, and complements with the
strongest complementarity we consider here, θlb = 0.86, the growth rate infimum gmin

θ=0.86 = −0.0657
is well below the lower bound rate of global loss of ecosystem services glbE = −0.0128 estimated by
Baumgärtner et al. (2015), so that the growth path condition is satisfied.

17For instance, the upper bound of the expected annual global income growth rate of gubY = 0.05 does
not meet the growth path condition for the mean substitutability parameter gmax

θ=2.31. Moreover, for the
upper bound of the substitutability parameter, θ = 7.14, the mean growth rate, gmean

Y , is already higher
than the supremum gmax

θ=7.14 and thus the growth path condition is not fulfilled.

23



5.2 Quantification of main results

We now estimate how intra- and intertemporal distribution affects per-capita social

WTP, WTP, for public-good ecosystem services derived from the public natural capital

stock of biodiversity. Moreover, we compute transfer factors that allow controlling for

the intertemporal aspects of natural capital valuation.

Fig. 2 depicts how mean income (left) and income inequality (right) affect global

per-capita social WTP. Examining the left panels of Fig. 2, we see that social WTP

for public biodiversity is increasing with mean income (see Prop. 1). For substitutes

social WTP is a strictly increasing concave function of mean income (Fig. 2 top left

subplot), while it is a convex function for complements (bottom left subplot). We find

that for a hypothetical doubling of global mean income, social WTP would be 34.99

percent higher for the mean substitutability estimate. In this case, WTP-estimates

would need to be adjusted with a factor of Tµ(2µGLO
Y0

, µGLO
Y0

; θmean) = 1.35. For the lower

bound range of complements, θlb = 0.86, it would be even 123.89 percent higher as

initially, corresponding to a transfer factor of Tµ(2µGLO
Y0

, µGLO
Y0

; θlb) = 2.24. Foremost,

however, the two left subfigures show that the degree of substitutability, θ, is crucial

for determining social WTP: Social WTP is multiple factors higher for the lower bound

complementarity value (WTP=3.97×103 [2006-PPP-USD]) as compared to social WTP

for the mean substitutability estimate (WTP=8.61 [2006-PPP-USD]).

The subplots on the right of Fig. 2 illustrate how social WTP for public biodiver-

sity conservation changes for a change in relative intratemporal income inequality as

measured by the coefficient of variation of per-capita income, CVY0 . While social WTP

decreases with income inequality for the mean case of substitutes (top right subplot), it

increases for complements (bottom right subplot) (see Prop. 2). A hypothetical reduc-

tion of global income inequality, CVGLO
Y0

= 1.61, to zero would increase social WTP by

17.00 percent, corresponding to a transfer factor of TCV(0,CVGLO
Y0

; θmean) = 1.17 given

the mean empirical estimate for the elasticity of substitution, θmean = 2.31. In contrast,

the lower bound elasticities of substitution, θlb = 0.86, produces a decrease by 11.40

percent, corresponding to a transfer factor of TCV(0,CVGLO
Y0

; θlb) = 0.89.
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Figure 2: Effect of mean income, µY0 , (left side) and relative intratemporal income
inequality, CVY0 , (right side) on the per-capita social WTP, WTP, for a one percent
increase in public biodiversity for different degrees of substitutability, θ, between the
consumption good and ecosystem services derived from public biodiversity.

The left side of Fig. 3 illustrates how social WTP for global biodiversity conservation

depends on the intertemporal distribution of income, i.e. how it changes with the income

growth rate. Social WTP increases with income growth for complements and Cobb-

Douglas substitutability (Prop. 3). Yet, for the case of substitutes, social WTP can

also decreases with income growth.18 We find that if the expected global income growth

rate would be only half as large, social WTP would be 192.83 percent higher for a

substitutability of θmean = 2.31 and decrease by 36.54 percent for a substitutability of

θlb = 0.86. Concerning the effect of the growth rate of biodiversity and related ecosystem

services, the right side of Fig, 3 shows that social WTP increases with the growth rate

of biodiversity for substitutes, but decreases for complements (Prop. 4). If the loss rate

18In our central calibration and for an infinite time horizon, social WTP starts to decrease with
income growth at gmean

Y already for a degree of substitutability of θ∗ = 1.93 (see Fig. 9 and Eq. A.68).
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Figure 3: Effect of the global per-capita income growth rate, gY , (left side) and the
growth rate of biodiversity and related ecosystem services, gE, (right side) on the per-
capita social WTP, WTP, for a one percent increase in biodiversity for different degrees
of substitutability, θ, between the consumption good and ecosystem services derived from
biodiversity. Grey coloured lines indicate parameter combinations that do not meet the
growth path condition for the closed-form intertemporal utility function (Eq. 4a).

of of biodiversity would be reduced by half, social WTP would increase by 11.72 percent

for our mean substitutes case, θmean = 2.31, and decrease social WTP by 3.97 percent for

our lower bound complements, θlb = 0.86. In this case, the effect of income growth on

the social WTP is relatively stronger than the effect of the growth rate of biodiversity.

Next, we study whether the benefit transfer factors for differences in growth rates

and market interest rates (Prop. 5) lead to notable WTP adjustments. Specifically, we

perform hypothetical transfers of per-capita social WTP elicited at the mean of empirical

estimates to sites characterized by the lower or upper bound parameters within the

empirically plausible parameter a value ranges (cf. Table 2).

First, we turn to the transfer factor for differences in the growth rate of biodiversity

TgE (Eq. 20). Fig. 4 displays the required adjustment when transferring social WTP from

26



-12 -10 -8 -6 -4 -2

10-3

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

g
E
mean =-0.0052g

E
lb =-0.0128 g

E
ub =-0.0008

T
g

E

(g
E
lb, g

E
mean; mean) =0.7649

T
g

E

(g
E
ub, g

E
mean; mean) =1.216

lb = 0.86
mean = 2.31
ub = 7.14

Figure 4: Transfer factor to adjust per-capita social WTP, WTP, for a one percent
increase in biodiversity from a study site with a growth rate of gstudyE = −0.0052 to the
growth rate gpolicyE at a policy site. Colours depict different degrees of substitutability,
θ, between the consumption good and ecosystem services derived from biodiversity.

a study site with the global average growth rate of non-use ecosystem services, gmean
E =

−0.0052, to a policy site with a growth rate within the range of global growth rates for

different non-use ecosystem services estimated by Baumgärtner et al. (2015). Applying

environmental values elicited at a study site with gstudyE := gmean
E at a policy site with a

higher growth rate of the environmental good, that is where the loss of biodiversity is at a

lower rate, equal to gubE = −0.0008, would require an upward adjustment of social WTP

by 21.58 percent, corresponding to a transfer factor of TgE(gubE , g
mean
E ; θmean) = 1.22. To

the contrary, social WTP-estimates for a transfer to a policy context with a higher rate

of biodiversity loss of glbE = −0.0128 would need to be lowered by 23.51 percent, that is

they require adjustment by the factor TgE(glbE , g
mean
E ; θmean) = 0.77. Again, the transfer

factor crucially depends on the substitutability between the two goods. A higher degree

of substitutability would reinforce these required adjustments, TgE(gubE , g
mean
E ; θub) = 1.32

and TgE(glbE , g
mean
E ; θub) = 0.70, but complementarity would reverse the direction of the

required adjustments, with TgE(gubE , g
mean
E ; θlb) = 0.94 and TgE(glbE , g

mean
E ; θlb) = 1.14.
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Second, adjusting social WTP for differences in income growth rates, TgY ,δ (Eq. 23),

can be substantial (Fig. 5). To isolate the effect of the income growth rate, we assume

for now that the market interest factor is identical at the policy and the study site

and constant over time, δpolicy = δstudy, so that the market interest factors cancel out

in TgY ,δ (Eq. 23). Note that depending on the degree of substitutability we end up in

parameter constellations in which the growth path condition on gY is not fulfilled and

the closed-form transfer factor TgY ,δ cannot be applied any more. In Fig. 5 the estimates

of the transfer factor for income growth rates are coloured grey at growth rates where

the growth path condition does not hold (Eq. 4a). Applying WTP-estimates elicited

for an income growth rate at the expected global mean, gstudyY := gmean
Y = 0.017, in

a policy context where the income growth rate is glbY = 0.001 would imply a transfer

factor of TgY ,δ(glbY , gmean
Y ; θmean) = 3.75. That is, the social WTP-estimate would have

to be adjusted upwards by 274.65 percent. The direction of adjustment is reversed for

complements requiring a downward adjustment, with TgY ,δ(glbY , gmean
Y ; θlb) = 0.44. For

upper bound substitutability, θub = 7.14, the growth path condition is not meet at gmean
Y .

Hence, we cannot apply the transfer factor. The required adjustments TgY ,δ are even

more pronounced, when applying WTP-estimates in contexts with higher income growth

equal to the maximal expected rate, gubY = 0.05. Yet, the growth path condition is also

not met for this parameter constellation for the mean substitutability estimate, θmean,

at gubY = 0.05.19 For the case of complements, θlb = 0.86, applying WTP-estimates from

a site characterised by the mean expected income growth rate in a context characterised

by the maximal expected rate implies a transfer factor of TgY ,δ(gubY , gmean
Y ; θlb) = 8.76

and thus an upward adjustment of social WTP of 776.30 percent.

Third, Fig. 6 depicts again the transfer factor TgY ,δ, but this time for differences

in the market interest factor between a study and a policy site. For illustration, the

income growth rate at policy and study site are identical and equal to the global average,

gstudyY = gpolicyY = gmean
Y . For identical growth rates, the first factor in TgY ,δ reduces to one

and hence the entire transfer factor does not depend on the elasticity of substitution, θ,

19The maximum value for applying TgY ,δ is for θmean = 2.31 at gmax
θ=2.31 = 0.0197, where the transfer

factor approaches zero, while it is generally uncritical for complements.
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Figure 5: Transfer factor to adjust per-capita social WTP, WTP, for a one percent
increase in public biodiversity from a study site with an income growth rate of gstudyY :=
gmean
Y = 0.017 to an income growth rate gpolicyY at a policy site, such as the lower bound

growth rate glbY = 0.001. Coloured lines depict different degrees of substitutability,
θ, between the consumption good and ecosystem services derived from biodiversity.
Grey coloured lines indicate parameter combinations that do not meet the growth path
condition for the closed-form intertemporal utility function (Eq. 4a).

any more. It shows that differences in market interest rates within the range expected by

international experts lead to substantial WTP adjustments: For a hypothetical transfer

of per-capita social WTP elicited at δmean = 0.977 to a policy site with δub = 0.999

the required adjustment would be TgY ,δ(gmean
Y , δub, gmean

Y , δmean) = 3.35 and thus increase

social WTP by 235.39 percent. In contrast, a hypothetical transfer to the lower bound

forecasted market interest factor, δlb = 0.94, i.e. a situation with a high market interest

rate, would imply a transfer factor of TgY ,δ(gmean
Y , δlb, gmean

Y , δmean) = 0.29. Moreover, we

see that the required adjustment of social WTP in absolute terms, that is |TgY ,δ − 1|, is

larger for higher levels of the common income growth rate at study and policy site.
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Figure 6: Transfer factor to adjust mean WTP, WTP, for a one percent increase in
biodiversity from a study site with a market interest rate of δstudy = 0.977 to the market
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common to the study and policy site.

6 Extensions

This section provides a number of extensions to our main modelling framework. We

show how our results generalise to a different policy (Section 6.1) or payment vehicle

(Section 6.2) as well as to other utility functions (Section 6.3, 6.4) or more general

preference structures and time paths (Section 6.5).

6.1 Change in the growth rate of natural capital

First, an environmental policy could also increase the growth rate of natural capital.

That is, the dynamics of {Et} and {E ′t} according to Eq. (1b) would differ in the growth

rate, gE′ = gE + dgE, but not in the initial stock, E ′0 = E0. For instance, an increase

in the growth rate of biodiversity (which is, at the currently negative growth rates, a

slowing down of the loss of biodiversity) might result from improving habitat conditions

for insects and birds, thus increasing their net reproduction rates.

Following the same steps as for the derivation of Eq. (13), yields the social WTP for
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a marginal increase of the growth rate by one unit (see Appendix A.12.1)

WTPdgE(µY0 ,CVY0 , gY , E0, gE) = κ′µ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2 , (24)

with κ′ =
1− α
α

ρ(1 + gE)−1/θ
(

1− ρ(1 + gY )
θ−1
θ

)
(

1− ρ(1 + gE)
θ−1
θ

)2 E
θ−1
θ

0

∞∑
t=0

δt (1 + gY )t.

Props. 1, 2 and 3 carry over to the growth rate as a different object of valuation

(see Appendices A.12.2, A.12.3, A.12.4): the social WTP for a marginal increase of the

grothe rate of public natural capital, WTPdgE , always increases with mean income, µY0 ,

and decreases (increases) with income inequality, CVY0 , if and only if the public natural

capital and the private consumption good are substitutes (complements). WTPdgE

increases with gY for complementarity or Cobb-Douglas, but it may decrease with gY

in the case of substitutes. When valuing a change in the growth rate of natural capital,

the transfer function is slightly different and given by (see Appendix A.12.5):

TdgE(. . .) =T ′E(Epolicy
0 , Estudy

0 ; θ) · T ′gE(gpolicyE , gstudyE ; θ, ρ) · Tµ(µpolicy
Y0

, µstudy
Y0

; θ)

· TCV(CVpolicy
Y0

,CVstudy
Y0

; θ) · TgY ,δ(g
policy
Y , δpolicy, gstudyY , δstudy; θ, ρ), (25)

with TCV, Tµ and TgY ,δ as in Prop. 5. Thus, adjusting for differences in the intra- and

intertemporal income distribution works exactly the same for both objects of valua-

tion, i.e. is independent of whether the valuation is done for a marginal change in

the initial stock or in the growth rate of natural capital. In contrast, one has to ap-

ply T ′E and T ′gE , instead of TE and TgE given in Prop. 5, when valuing a change in

the growth rate of natural capital. These transfer factors read T ′E =
(
Epolicy

0

Estudy
0

) θ−1
θ

and

T ′gE =
ρ(1+gpolicyE )−1/θ

(
1−ρ(1+gstudyE )

θ−1
θ

)2

ρ(1+gstudyE )−1/θ

(
1−ρ(1+gpolicyE )

θ−1
θ

)2 .

6.2 Single payment

For measuring WTP, we have considered so far a payment made as a constant fraction

of income in each time period. While this is the most-often used payment vehicle in
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non-market valuation studies using stated preference techniques, sometimes WTP is

considered as a single payment (hereafter: SP) – usually made in the initial period.

For standard time preferences (Eq. 2) and if the single payment is made in t = 0, the

compensating surplus ωiSP > 0 is

u(Y i
0 − ωiSP, E ′0) +

∞∑
t=1

ρt u(Y i
t , E

′
t) =

∞∑
t=0

ρt u(Y i
t , Et). (26)

Using ICES utility in Eq. (26), considering a marginal improvement in the initial

stock of public natural capital, E ′0 = E0 +dE, and conducting a Taylor series expansion

at ωiSP = 0 and dE = 0 gives (see Appendix A.13.1)

ωSP

(
Y i
0 , E0

)
=

1− α
α

Y i
0
1/θ
E
−1/θ
0

1− ρ (1 + gE)
θ−1
θ

, (27)

where ωSP (Y i
0 , E0) is household i’s individual WTP for a marginal increase in the initial

stock of natural capital by one unit. Compared to a constant payment, the intertem-

poral Lindahl-Samuelson condition reads slightly simpler as c′(E?
0) =

n∑
i=1

ωSP(Y i
0 , E

?
0)

(see Appendix A.13.2). Taking the expected value of Eq. (27), the corresponding mean

WTP in terms of a single payment at t = 0 is

WTPSP(µY0 ,CVY0 , E0, gE) = κ′′ µ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2 (28)

with κ′′ =
1− α
α

E
−1/θ
0 dE

1− ρ (1 + gE)
θ−1
θ

,

which does not depend on, and is thus not affected by, the growth rate of income gY (in

contrast to a constant payment fraction, see Prop. 3). Props. 1, 2 and 4 carry over to a

single payment (see Appendices A.13.4, A.13.5, A.13.6). Moreover, the benefit transfer

function is identical to Prop. 5, except that one does not need to control for differences

in income growth and market interest rates. It reads (see Appendix A.13.7)

TSP(. . .) =TE(Epolicy
0 , Estudy

0 ; θ) · TgE(gpolicyE , gstudyE ; θ, ρ) · Tµ(µpolicy
Y0

, µstudy
Y0

; θ)

· TCV(CVpolicy
Y0

,CVstudy
Y0

; θ), (29)
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where the transfer factors are those stated in Prop. 5.

6.3 CES-CIES preferences

To study how sensitive the effect sizes of our main analysis are to the assumed ICES util-

ity function (Eq. 3), we consider the case of constant-elasticity-of-substitution (CES) and

constant-intertemporal-elasticity-of-substitution (CIES) utility function that is promi-

nently applied in the dual-discounting literature (e.g. Sterner and Persson 2008, Gollier

2010, Traeger 2011, Zhu et al. 2019). In contrast to ICES utility, the CES-CIES specifi-

cation implies non-constant intratemporal elasticities of substitution for each good when

a bundle of goods is considered. Household i’s instantaneous CES utility reads

u(Y i
t , Et) =

(
αY i

t

θ−1
θ + (1− α)Et

θ−1
θ

) θ
θ−1

, (30)

where θ, with 0 < θ < +∞, is the CES between the two goods (Y i
t , Et), and 0 < α < 1

determines the initial weight of the consumption good in utility. Intertemporal utility

is the aggregated discounted instantaneous utility represented by the CIES form

U({Y i
t }, {Et}) =

∞∑
t=0

ρt
1

1− η
u(Y i

t , Et)
1−η , (31)

where 0 < ρ < 1 is the pure time discount factor and 0 ≤ η < ∞ is the inverse of

the constant intertemporal elasticity of substitution with respect to the within-period

aggregate consumption bundle, composed of Y i
t and Et. For instantaneous CES (Eq. 30)

and intertemporal CIES utility (Eq. 31) a household’s intertemporal utility reads

U(
{
Y i
t

}
, {Et}) =

∞∑
t=0

ρt
1

1− η

(
αY i

t

θ−1
θ + (1− α)Et

θ−1
θ

) (1−η)θ
θ−1

. (32)

Note, that in a CES-CIES framework, a constant single elasticity can be recovered by

assuming that the inverse of the CIES with respect to the aggregate consumption bundle,

η, equals the inverse of the elasticity of substitution between market consumption goods

and environmental goods, 1/θ. For η = 1/θ, CES-CIES utility, Eq. (32), reduces to
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ICES utility, Eq. (3), which we studied in our main analysis.20

For general CES-CIES utility the social WTP—discounted at market interest fac-

tor δ—expressed as a constant fraction of income is (see Appendix A.14):

WTP(µY0 , σY0 , gY , E0, gE)

= κ′′′
∞∫
0

fln(.)

∑∞
t=0 u(Y i

0 (1 + gY )t, E0 (1 + gE)t)
1−ηθ
θ

(
ρ (1 + gE)

θ−1
θ

)t
∑∞

t=0 u(Y i
0 (1 + gY )t, E0 (1 + gE)t)

1−ηθ
θ

(
ρ (1 + gY )

θ−1
θ

)t Y i
0
1/θ

dY0 (33)

with κ′′′ =
1− α
α

E0
−1/θ

∞∑
t=0

δt(1 + gY )t,

where u(Y i
t , Et) is instantaneous CES utility (Eq. 30).

We estimate Eq. (33) for the parameter values of our central calibration (see Table 1),

θmean = 2.31 and a range of values for η.21 To specify η, we draw on expert responses

surveyed by Drupp et al. (2018a). These range from ηlb = 0 to ηub = 5, with a mean of

ηmean = 1.35.22 We compare these with the case of ηICES = 1/θ.

Fig. 7 depicts the effects of the intra- and intergenerational distribution on WTP for

a broad range of estimates on the intertemporal elasticity of substitution. We observe

that the assumption of ηICES = 1/θ produces a too conservative estimate compared to

WTP for the mean expert value of ηmean in all cases. Furthermore, the choice of η within

the lower and upper bound estimates matters increasingly as initial mean income, µY0 ,

or the income growth rate, gY , become larger. In contrast, the variation induced by

the range of η’s considered remains relatively constant for variation in initial income

20There is considerable scope for η = 1/θ to hold, as typical values for η range from 0 to 5 (e.g.
Drupp et al. 2018a, Groom and Maddison 2018), and those for 1/θ range from 0.14 to 2 (e.g. Sterner
and Persson 2008, Drupp 2018).

21To numerically estimate Eq. (33) we take 10.000 draws from a log-normal distribution of Y0. We
slightly recalibrate κ′′′ by a linear factor to resemble the best-guess social WTP estimate in the central
calibration (Section 5).

22This range encompasses estimates of the elasticity of marginal utility in the literature. A meta-
analysis by Havranek et al. (2015) suggest that the mean estimate for the elasticity of intertemporal
substitution is 0.5, implying an η of 2, and that estimates for η below 1.3 are not in line with empirical
evidence. Groom and Maddison (2018) use a number of methods to estimate the elasticity of marginal
utility in the UK, including the equal-sacrifice approach using income tax schedules, the Euler-equation
approach, the Frisch Formula, risk aversion measures from insurance data and estimates derived from
subjective well-being. They find that η ranges from around 1.3 to 3.6, with a mean value of around 1.5.
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Figure 7: How different intertemporal elasticities of substitution change the effect of
mean income, µY0 (top left), income inequality, CVY0 (top right), income growth, gY
(bottom left) and environmental loss rate, gE (bottom right) on WTP. We study the
mean, ηmean, lower ηlb and upper bound ηub estimates as surveyed among leading inter-
national experts and contrast it with ICES utility implying ηICES = 1/θmean = 0.43.

inequality, CVY0 or the environmental loss rate, gE. While the choice of η changes mean

WTP estimates quantitatively, the qualitative predictions remain unaffected.

6.4 Cobb-Douglas preferences

The only other case beyond ICES utility for which the intertemporal utility function

satisfies both a constant elasticity of substitution between goods at each point in time

and a constant intertemporal elasticity of substitution for the consumption good is if

instantaneous utility is of the Cobb-Douglas form (Quaas et al. 2020). In this case, and

in contrast to ICES utility (Eq. 3), the elasticity of substitution between goods might

differ from each good’s intertemporal elasticity of substitution. We thus study Cobb-

Douglas-CIES utility (as used by Gerlagh and Keyzer 2001) as an another extension.

For θ → 1 the instantaneous CES utility function (Eq. 30) converges to u(Y i
t , Et) =

Y i
t
α
Et

1−α. Using this in the CIES utility function (Eq. 31), and assuming ρ(1 +
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gY )α(1−η) (1 + gE)(1−α)(1−η) < 1 to ensure that intertemporal utility converges, gives

the intertemporal utility function for Cobb-Douglas preferences (see Appendix A.15.1)

U(Y i
0 , gY , E0, gE) =

1

1− η

(
Y i
0
α
E1−α

0

)1−η
1− ρ [(1 + gY )α (1 + gE)(1−α)]

(1−η) . (34)

Following the same steps as for Eq. (13), the social WTP reads (see Appendix A.15.2)

WTP(µY0 , gY , E0) =
(1− α)

α
E0
−1

[
∞∑
t=0

δt (1 + gY )t

]
µY0 , (35)

which is strictly increasing with mean income (as in Prop. 1) and does not depend on

income inequality (as expected from Prop. 2; compare to case θ = 1). As expected from

Props. 3 and 4 (compare each to the case θ = 1), WTP increases in gY , but does not

depend on gE. As for ICES utility (Eq. 5) WTP is not determined by η.

6.5 General intertemporal utility and time paths

Finally, we derive social WTP for general utility specification to facilitate a broader un-

derstanding on what composes WTP. Consider ordinal, continuous intertemporal utility,

U : R2T
+ → R. Households have identical preferences over two goods, Y and E, and are

purely self-regarding. U({Y i
t }, {Et}) is once differentiable in both arguments. Income in

period t is a differentiable function of its initial level, growth rate and time, Y i
t (Y i

0 , gY , t),

and so is the natural capital, Et(E0, gE, t).

At the Pareto-efficient level E?
0 of public natural capital and for compensated income,

social WTP is (see Appendix A.16)

WTP :=
1

n

n∑
i=1

WTP
(
{Y i

t }, {Et}
)
, (36)

where WTP
(
{Y i

t }, {Et}
)

=

∑∞
t=0

∂U
∂Et

({Y i
t }, Et) ∂Et

∂E0∑∞
t=0

∂U
∂Y it

(Y i
t , {Et})

∂Y it
∂Y i0

∞∑
t=0

δt
∂Y i

t

∂Y i
0

, (37)

is the household’s WTP for a marginal increase in the initial level of natural capital.

36



Eq. (37) can be rewritten as

WTP
(
{Y i

t }, {Et}
)

= MRSiY i0 ,E0

∑∞
t=0 MRSiEt,E0

∂Et
∂E0∑∞

t=0 MRSiY it ,Y i0
∂Y it
∂Y i0

∞∑
t=0

δt
∂Y i

t

∂Y i
0

, (38)

where MRSiY i0 ,E0
:= −dE0

dY i0
= ∂U

∂Y i0
/ ∂U
∂E0

is the marginal rate of substitution (MRS) between

income at time t = 0 and the natural capital at time t = 0, MRSiEt,E0
is the MRS between

the natural capital at t and at t = 0, and MRSiY it ,Y i0
is the MRS between income at t

and at t = 0. Eq. (38) shows that individual WTP depends on the initial MRS between

both goods and on both good-specific MRSs over time.

7 Discussion

A number of assumptions limit the generality of our analysis. These include (i) the

proportional mapping between natural capital and environmental services, (ii) the con-

stant (de)growth rates of income and of environmental services, (iii) the purely self-

regarding character of infinitely long-lived households, (iv) identical preferences, (v) the

pure public-good character of natural capital, and (vi) the deterministic development.

First, we considered a simple proportional mapping between natural capital and

environmental goods. Yet, the mapping of different forms of natural capital into the

services it provides are multifaceted. Our analysis thus applies only to those cases of

that may be reasonably described by this simplification. In particular, our work focusses

on non-use services derived from public natural capital for which WTP information is

key for public policy. Beyond existence values, our analyses is relevant for regulating

services and provisioning services of sustainably managed stocks of natural capital. For

an analysis of provisioning services derived from natural capital, such as the fishery,

featuring more complex dynamics see, e.g. Fenichel et al. (2016).

Second, as exemplary time paths for income and natural capital we have considered

exponential growth or decline. We show in Appendix A.17 how, for the case of income,

such a time-constant growth rate, gY , can be derived as the balanced growth path of

a general equilibrium endogenous growth model. While these time paths are promi-
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nent case in the long-term analysis of environmental-economic problems (e.g. Hoel and

Sterner 2007, Baumgärtner et al. 2015), there may be different relevant time paths. As

non-market valuation studies often do not specify the exact time path of the evolution

of natural capital or environmental goods and services, we leave an analysis of other

types of growth dynamics for future research.

Third, our analysis assumes purely self-regarding and infinitely long-lived households.

Yet, there may also be behavioral responses to income inequality within and across

generations. These may include relative consumption concerns (e.g. Johansson-Stenman

and Sterner 2015) or variants of inequality aversion (e.g. Cairns et al. 2020).

Fourth, we have assumed that all households are identical except that they differ in

initial income. Yet, households may also face different income or consumption growth

rates. For example, recent empirical evidence from the World Inequality Report (Al-

varedo et al. 2018) shows that the growth rate of income differs over income groups.

Different growth rates of income give rise to convergence or divergence of income and

hence changing relative income inequality over time. Future work should try to relax

the assumption of equal growth rates for all households. Furthermore, households may

have heterogenous preferences. An emerging body of research on heterogeneous time

preferences (Gollier and Zeckhauser 2005, Millner 2020) tends to suggest that the social

pure time discount rate falls over time in the presence of heterogeneities. In our setting,

this may imply that over time the WTPs of the more patient households will dominate.

Again, we leave an extension to heterogenous preferences to future work.

Fifth, we have restricted our analysis to the case of pure public goods. While this

is a reasonable representation for several important goods and services humans derive

from natural capital, such as the existence value of biodiversity studied in our applica-

tion, there are certainly several environmental goods that vary spatially. The provision

of these heterogeneously distributed public goods will frequently be correlated with

income. For instance, Lee and Lin (2018) show for US metropolitan areas that neigh-

bourhoods close to environmental amenities, such as hills or coastlines, have persisted a

high level of income since 1880, and that a heterogeneous endowment with environmen-

tal amenities shapes the spatial distribution of incomes. Meya (2020) shows that the
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effect of income inequality on social WTP for heterogenously distributed public goods

generally also depends on how their provision is correlated with income as well as on

environmental inequality, but that the main result of Baumgärtner et al. (2017) on how

income inequality affects social WTP generalizes to heterogeneously distributed public

goods if these are distributed independently of income. We leave an extension of our

analysis to a heterogeneous endowment with environmental goods from natural capital

and how this distribution evolves over time for future research.

Finally, we have considered a deterministic setting throughout. However, when it

comes to issues of intertemporal distribution the world is, of course, full of uncertainties.

Besides parameter uncertainty, this applies in particular to uncertainty about the growth

rates of income and of natural capital. There is a large body of literature on discounting

in the presence of uncertainty about baseline consumption growth (e.g. Gollier 2002,

2008). Gollier (2010) considers uncertainty about the growth rate of environmental

goods. More recently, Gollier (2019) also analyses how uncertainty about the elasticity

of substitution interacts with other forms of uncertainty about growth rates.

8 Conclusion

We have studied how intra- and intergenerational inequalities affect the value of a dy-

namic public good. This is particularly relevant for the valuation and management of

non-use environmental goods derived from natural capital, but holds also for all other

dynamic public goods, such as culture, knowledge, open access journals or national

security. To focus our analysis on valuation, we have developed an analytic dynamic

model in which income is distributed unevenly among otherwise identical households,

who have constant-elasticity-of-substitution preferences across private and public goods

both at one point in time as well as over time.

Intertemporal Pareto-efficiency requires a stock of public natural capital such that

the marginal (opportunity) cost of supplying the stock equals the aggregate inverse

Lindahl-demand for the environmental goods from this natural capital, which is given

as sum of individual intertemporal marginal willingness to pay (WTP). We find that this
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social value of natural capital (i) increases with society’s mean income; (ii) decreases

(increases) with society’s intra-temporal income inequality if and only if natural capital

is a substitute (complement) to private consumption goods; (iii) increases with income

growth for the case of Cobb-Douglas and complements, but it might decrease for case

of substitutes; (iv) increases (decreases) with the growth rate of natural capital if and

only if natural capital is a substitute (complement). Our empirical application for a

global case study on biodiversity conservation shows that the intra- and intertemporal

distribution, mediated by the substitutability of natural capital, is a quantitatively

strong determinant of natural capital values.

One important contribution of our theory is to provide structural, dynamic benefit

transfer formulas to adjust the values from a primary study context for applications in

diverse policy contexts. Approaches to account for natural capital in monetary units

usually draw on a set of non-market values and scale these up by means of benefit trans-

fer. Consequently, governmental bodies emphasise that “[g]enerally, it will be necessary

to apply benefit transfer methods” (United Nations 2017, p.102) and call for improv-

ing such benefit transfer methods (United Nations et al. 2014). The structural transfer

factors that follow from our analysis allow adjusting for differences in the initial income

distribution in a dynamic context and for differences in growth rates and market interest

rates, among others. These benefit transfer formulas are relevant for two key purposes of

natural capital valuation: First, for monitoring the performance of the economy, such as

in natural capital accounts; Second, for evaluating the efficiency of policies or projects,

such as by CBA. Both purposes have a high political mandate as the vast majority of

countries declared to integrate biodiversity in national accounts and to mainstream the

value of biodiversity in decision making (CBD, Aichi Target 2).23

In closing, we briefly highlight how the developed dynamic natural capital valuation

methods are relevant for both purposes. First, to consistently integrate natural capital

in standard national accounts, the UN System of Environmental-Economic Accounting

23These targets are reinforced in several national and international political documents. For instance,
EU member states agreed to “promote the integration of these [economic values of ecosystems and
their services] into accounting and reporting systems at EU and national level by 2020” (European
Commission 2011, p.15).
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– Experimental Ecosystem Accounting (SEEA-EEA) proposes that accounting prices for

goods and services from natural capital are hypothetical exchanges values. Accordingly,

the “concept [..] of exchange values entails obtaining valuations of ecosystem services

and assets that are consistent with values that would have been obtained if a market for

the ecosystem services or assets had existed” (United Nations et al. 2014, p. 106). While

shadow prices obtained in the wealth accounting literature are inconsistent with this

principle (Obst et al. 2016), the Lindahl demand concept that we employ here precisely

matches the SEEA-EEA understanding of accounting prices as hypothetical exchange

values: The (inverse) Lindahl demand is the price households would have been willing

to pay if the prevailing level of services consumed from the stock of natural capital

was chosen voluntarily on a market. A key question of natural capital accounting—

“how the concept of exchange value can be applied when non-monetary transactions

are involved”(Obst et al. 2016, p. 7)—thus seems naturally answered by Lindahl prices,

which do not require that the economy is on an optimised path.24 This also provides a

theoretical framework to draw on stated preference studies for accounting, which stands

in contrast to concerns that these were in general unsuitable (e.g. by Obst et al. 2016).

Second, our dynamic transfer factors can be used to estimate WTPs from secondary

data when evaluating the economic efficiency of projects, such as by the means of CBA.

This is in particular relevant for evaluating the environmental effects of long-term public

investments, for instance in the transportation sector where CBA is routinely carried

out in many countries (OECD 2018). Finally, and relatedly, aking to using ex-post

equity weights for cost-benefit analysis (e.g. Dasgupta et al. 1972, Johansson-Stenman

2000, 2005, Nyborg 2014), our transfer factors for intra- and intergenerational inequality

can be used to adjust WTP-estimates (Drupp et al. 2018b). In the context of natural

capital management, equity might require redistributing resources within and across

generations. The proposed transfer factors can be used to derive the corresponding

equity-adjusted social WTP-estimates for cost-benefit analysis, analogue to distribu-

tional weights when the underlying social welfare function is utilitarian.

24Dasgupta (2009) argues that the economy being in optimum is one of the key assumptions that
renders a large share of the wealth accounting literature unsuitable for practical applications.
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Appendix

A.1 Derivation of the intertemporal utility function (Eq. 5)

Rearranging Eq. (3) gives

U(
{
Y i
t

}
, {Et}) =

∞∑
t=0

ρt
θ

θ − 1

(
αY i

t

θ−1
θ + (1− α)Et

θ−1
θ

)
(1a), (1b)

=
∞∑
t=0

ρt
θ

θ − 1

(
α
(
Y i
0 (1 + gY )t

) θ−1
θ + (1− α)

(
E0 (1 + gE)t

) θ−1
θ

)
=

θ

θ − 1

(
∞∑
t=0

ρtα
(
Y i
0 (1 + gY )t

) θ−1
θ +

∞∑
t=0

ρt (1− α)
(
E0 (1 + gE)t

) θ−1
θ

)

=
θ

θ − 1

(
α
∞∑
t=0

(
ρ(1 + gY )

θ−1
θ

)t
Y i
0

θ−1
θ + (1− α)

∞∑
t=0

(
ρ(1 + gE)

θ−1
θ

)t
E

θ−1
θ

0

)
.

As |ρ(1 + gY )
θ−1
θ | gY >−1= ρ(1 + gY )

θ−1
θ < 1 and |ρ(1 + gE)

θ−1
θ | gE>−1= ρ(1 + gE)

θ−1
θ < 1

hold by assumption (Eqs. 4a and 4b), the geometric series can be simplified so that one

obtains the following intertemporal utility function

U(Y i
0 , gY , E0, gE) =

θ

θ − 1

(
α

Y i
0

θ−1
θ

1− ρ(1 + gY )
θ−1
θ

+ (1− α)
E

θ−1
θ

0

1− ρ(1 + gE)
θ−1
θ

)
. (A.39)

A.2 Derivation of ω (Eq. 7)

ωi as defined by Eq. (6), for the ICES intertemporal utility function (Eq. 5), is given by

U
(
(1− ωi)Y i

0 , gY , E
′
0, g
′
E

)
= U

(
Y i
0 , gY , E0, gE

)
(A.40)

α (1− ωi) θ−1
θ Y i

0

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E ′0

θ−1
θ

1− ρ (1 + g′E)
θ−1
θ

=
αY i

0

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

.

(A.41)

We derive ωi as the individual WTP for a change dE in the initial stock of natural
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capital, by setting gE = g′E and E ′0 = E0 + dE in Eq. (A.41):

α (1− ωi) θ−1
θ Y i

0

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α) (E0 + dE)

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

=
αY i

0

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

⇐⇒ 0 =
α(1− ωi) θ−1

θ Y i
0

θ−1
θ − αY i

0

θ−1
θ

1− ρ(1 + gY )
θ−1
θ

+
(1− α)(E0 + dE)

θ−1
θ − (1− α)E

θ−1
θ

0

1− ρ(1 + gE)
θ−1
θ

.

(A.42)

Applying Taylor series expansion of degree one at ωi = 0 and dE = 0, respectively,

yields the following approximations:

(1− ωi)
θ−1
θ ≈ 1 +

1− θ
θ

ωi and (A.43)

(E0 + dE)
θ−1
θ ≈ E

θ−1
θ

0 +
θ − 1

θ
E
−1/θ
0 dE , (A.44)

where the approximation error is the smaller, the smaller dE. Therefore, for marginal

dE the approximations hold almost exactly. Using these approximations in Eq. (A.42)

yields

0 =
α 1−θ

θ
Y i
0

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

ωi +
(1− α) θ−1

θ
E0
−1/θ

1− ρ (1 + gE)
θ−1
θ

dE (A.45)

⇐⇒ ωi =
1− α
α

1− ρ (1 + gY )
θ−1
θ

1− ρ (1 + gE)
θ−1
θ

Y i
0

1−θ
θ E

−1/θ
0︸ ︷︷ ︸

=:ω(Y i0 ,E0)

dE. (A.46)

Considering a change in the initial stock of natural capital by one marginal unit,

that is, setting dE = 1 in Eq. (A.46), reveals that ω(Y i
0 , E0) is household i’s WTP –

expressed as a constant fraction of income – for one marginal unit of the initial stock

E0 of public natural capital.

A.3 Proof of Lemma 1

Consider a hypothetical situation in which the initial stock of natural capital can be

freely, but uniformly across households, chosen at any level E0 > 0. The total costs,
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including opportunity costs, of supplying the natural capital at this level are c(E0) with

c′(·) > 0 and c′′(·) ≥ 0 for all E0, the full amount of which accrues at once at t = 0.

These costs are financed, at a constant market interest factor δ, by the households who

contribute to the financing of public natural capital through an individual constant

fraction ωi ≥ 0 of income in each period. Hence, household i’s actual consumption in

period t is a fraction (1− ωi) ≤ 1 of her income in this period.

This hypothetical setting is similar to the setting studied in the main text where ωi

measures consumer surplus, but differs in two aspects: (i) the amount of natural capital

E0 is not given but can be chosen; (ii) households do not simply state a willingness to

pay for a marginal increase dE of the initial stock E0 of natural capital, but make actual

payments for the full initial amount E0.

In regards of (ii), in order to make allocations in the two settings comparable one

needs to make exogenously given income in the two settings comparable. Because house-

holds in the main model do not actually pay for natural capital, the exogenously given

incomes Y i
t in the main model allow for private consumption at levels that cannot be

reached if a fraction of income is contributed to the financing of natural capital. For

households to reach these levels of private consumption and, consequently, intertempo-

ral utility also in the hypothetical setting in which they have to make actual payments

for the initial stock of natural capital, they would need to have higher incomes. Denote

by Ỹ i
0 the exogenously given initial level of income of household i in period t in the

hypothetical setting, which is such that it allows the same level of consumption and

intertemporal utility as in the main setting with exogenously given initial income Y i
0 :

Ỹ i
0 := Y i

0/(1− ωi) . (A.47)

In the hypothetical setting with exogenously given initial income distribution (Ỹ 1
0 , . . . , Ỹ

n
0 ),

an intertemporal allocation ({C1
t }, . . . , {Cn

t }, {Et}) with Ci
t = (1 − ωi) Ỹ i

t is called

Pareto-efficient if and only if no household i (i = 1, . . . , n) can be made better of, in

terms of her intertemporal utility U({Ci
t}, {Et}), without making any other household j

(j = 1, . . . , n and j 6= i) worse off, in terms of her intertemporal utility U({Cj
t }, {Et}).
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We denote the time path for income starting in period 1 by 1Ỹ
i = (Ỹ i

1 , Ỹ
i
2 , ...) and

that for natural capital by 1E = (E1, E2, ...). The Pareto-efficient initial amount E?
0 of

public natural capital is the solution to the following maximization problem:

max
E0,ωi

U
({

(1− ω1) Ỹ 1
t

}
, {E0, 1E}

)
(A.48)

s.t. U
({

(1− ωi) Ỹ i
t

}
, {E0, 1E}

)
= Ū i for all i > 1 , (A.49)

n∑
i=1

∞∑
t=0

δt ωi Ỹ i
t = c(E0) , (A.50)

Eqs. (1a), (1b) .

Here, without loss of generality household 1’s utility is maximised (Eq. A.48), while

no other household falls below its reference utility level Ū i (Eq. A.49). In addition, an

aggregate intertemporal budget constraint must hold, Eq. (A.50), according to which

the sum of all households’ net present value of contributions to finance (at the constant

market interest factor δ) the provision of public natural capital over the entire time

horizon equals the total costs of providing the initial stock of public natural capital.

Thus, the initial amount E0 of public good provision – which implies a certain subse-

quent time path 1E due to Eq. (1b) – is balanced against the reduction in private good

consumption due to the households’ contribution to finance this, in such a manner as to

maximize the utility of one household while not making any other household worse off.

For ICES utility, Eq (5), the Lagrangian for the maximization problem reads

L =
θ

θ − 1

(
α (1− ω1)

θ−1
θ (Ỹ 1

0 )
θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

)

+
n∑
i=2

ϕi

 θ

θ − 1

α (1− ωi) θ−1
θ (Ỹ i

0 )
θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

− Ū i


+ λ

(
−c(E0) +

n∑
i=1

∞∑
t=0

δt ωi (1 + gy)
t Ỹ i

0

)
, (A.51)

where ϕi (for i = 2, . . . , n) and λ are Lagrange multipliers.

Taking the first derivatives of L (Eq. A.51) with respect to ωi for all i = 1, . . . , n
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and to E0, and setting each to zero gives the first-order conditions for a Pareto-efficient

allocation, E?
0 and ωi

?
:

α(1− ω1?)−1/θ (Ỹ 1
0 )

θ−1
θ

1− ρ(1 + gY )
θ−1
θ

= λ

∞∑
t=0

δt(1 + gY )t Ỹ 1
0 , (A.52)

ϕi
α(1− ωi?)−1/θ (Ỹ i

0 )
θ−1
θ

1− ρ(1 + gY )
θ−1
θ

= λ

∞∑
t=0

δt(1 + gY )t Ỹ i
0 for all i = 2, . . . , n , (A.53)

λ c′(E?
0) =

(1− α)E?
0
−1/θ

1− ρ (1 + gE)
θ−1
θ

+
n∑
i=2

ϕi
(1− α)E?

0
−1/θ

1− ρ (1 + gE)
θ−1
θ

. (A.54)

Defining ϕ1 = 0 and rearranging, these can be re-written as follows:

ϕi = λ
1− ρ(1 + gY )

θ−1
θ

α(1− ωi?)−1/θ(Ỹ i
0 )−1/θ

∞∑
t=0

δt(1 + gY )t for all i = 1, . . . , n , (A.55)

λ c′(E?
0) =

n∑
i=1

ϕi
(1− α)E?

0
−1/θ

1− ρ (1 + gE)
θ−1
θ

. (A.56)

Inserting Eqs. (A.55) into Eq. (A.56) yields the first-order condition for the Pareto-

efficient initial level E?
0 of public natural capital:

c′(E?
0) =

n∑
i=1

1− α
α

1− ρ(1 + gY )
θ−1
θ

1− ρ (1 + gE)
θ−1
θ

(
(1− ωi?) Ỹ i

0

)1/θ
E?

0
−1/θ

∞∑
t=0

δt(1 + gY )t

(A.47)
=

n∑
i=1

1− α
α

1− ρ(1 + gY )
θ−1
θ

1− ρ (1 + gE)
θ−1
θ

Y i
0

1/θ
E?

0
−1/θ

∞∑
t=0

δt(1 + gY )t

(7)
=

n∑
i=1

∞∑
t=0

δt ω(Y i
0 , E
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0)Y i

0 (1 + gY )t

(8)
=

n∑
i=1

WTP(Y i
0 , E

?
0) . (A.57)
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A.4 Derivation of WTP (Eq. 13)

The density function of the log-normal distribution of initial income Y0 with mean µY0

and standard deviation σY0 is given by

fln(Y0;µY0 , σY0) =
1

Y0
√

2πs2
exp

(
−(lnY0 −m)2

2s2

)
(A.58)

with m = lnµY0 −
1

2
ln
(
1 + σ2

Y0
/µ2

Y0

)
, (A.59)

s2 = ln
(
1 + σ2

Y0
/µ2

Y0

)
. (A.60)

WTP, as defined by Eq. (12), can be rewritten as

WTP(µY0 ,CVY0 , gY , E0, gE) =

∞∫
0

fln(Y0;µY0 , σY0) WTP(Y0, E0) dY0

(8)
=

∞∫
0

∞∑
t=0

δt fln(Y0;µY0 , σY0)ω(Y0, E0)Y0 (1 + gY )t dY0

=
∞∑
t=0

δt WTPt(µY0 ,CVY0 , gY , E0, gE) , (A.61)
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where WTPt(µY0 ,CVY0 , gY , E0, gE) is the current social WTP at time t:

WTPt(µY0 ,CVY0 , gY , E0, gE)

=

∞∫
0

fln(Y0;µY0 , σY0)ω(Y0, E0)Y0(1 + gY )t dY0

(A.58),(7)
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= κ̃ exp
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, (A.62)

and, for relative inequality in initial income, CVY0 = σY0/µY0 ,

WTPt(µY0 ,CVY0 , gY , E0, gE) = κ̃ µ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2 . (A.63)
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The corresponding present value – discounted at constant market interest factor δ – is

WTP(µY0 ,CVY0 , gY , E0, gE)

=
∞∑
t=0

δt WTPt(µY0 ,CVY0 , gY , E0, gE)

(A.63)
=
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A.5 Proof of Prop. 1

Differentiating WTP (Eq. 13) with respect to initial mean income, µY0 , yields

∂WTP(µY0 ,CVY0 , gY , E0, gE)

∂ µY0
= κ

1

θ
µ

1−θ
θ

Y0

(
1 + CV2

Y0

) 1−θ
2θ2 (A.65)

with κ =
1− α
α

1− ρ (1 + gY )
θ−1
θ

1− ρ (1 + gE)
θ−1
θ

E
−1/θ
0

[
∞∑
t=0

δt(1 + gY )t

]
,

which is strictly greater zero as E0, µY0 ,CVY0 , θ > 0, α ∈ (0, 1) and by assumption

ρ(1 + gE)
θ−1
θ < 1 (Eq. 4b), ρ(1 + gY )

θ−1
θ < 1 (Eq. 4a).

A.6 Proof of Prop. 2

Differentiating WTP (Eq. 13) with respect to relative income inequality, CVY0 , yields

∂WTP(µY0 ,CVY0 , gY , E0, gE)

∂ CVY0

= κ
1− θ
θ2

µ
1/θ
Y0

CVY0

(
1 + CV2

Y0

) 1−θ−2θ2

2θ2 . (A.66)

The sign of the derivative is determined by the sign of the factor (1−θ), as µY0 ,CVY0 , κ > 0.

It holds that 1− θ Q 0 if and only if θ R 1.
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A.7 Proof of Prop. 3

Differentiating WTP (Eq. 13) with respect to the growth rate of income, gY , yields

∂WTP(µY0 ,CVY0 , gY , E0, gE)
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] ∞∑
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δ(1 + gY ) < 1, (A.67)

the geometric series converge as t→∞ and this becomes

∂WTP
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1− ρ(1 + gY )

θ−1
θ − δ (1− δ (1 + gY )) ρ θ−1

θ
(1 + gY )−

1
θ

δ(1− δ(1 + gY ))2

=
K

δ(1− δ(1 + gY ))2

[
1− ρ(1 + gY )−

1
θ

(
(1 + gY ) +

θ − 1

θ
δ (1− δ (1 + gY ))

)]
=

K

δ(1− δ(1 + gY ))2

[
1 + ρ(1 + gY )−

1
θ

(
−(1 + gY ) +

1− θ
θ

δ (1− δ (1 + gY ))

)]
=

K (1 + gY )−
1
θ

δ(1− δ(1 + gY ))2

[
(1 + gY )

1
θ + ρ

(
−(1 + gY ) +

1− θ
θ

δ (1− δ (1 + gY ))

)]
=

K (1 + gY )−
1
θ

δ(1− δ(1 + gY ))2

[
(1 + gY )

1
θ − ρ(1 + gY ) +

1− θ
θ

ρ δ (1− δ (1 + gY ))

]

=
K (1 + gY )−

1
θ

δ(1− δ(1 + gY ))2

(1 + gY )
(

(1 + gY )
1−θ
θ − ρ

)
︸ ︷︷ ︸

>0, cf. Eq. 4a

+
1− θ
θ

ρ δ (1− δ (1 + gY ))︸ ︷︷ ︸
>0, cf. Eq. A.67

 .
(A.68)

Recall the growth path condition ρ(1 + gY )
θ−1
θ < 1 (Eq. 4a) which is equivalent to (1 +
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gY )
1−θ
θ > ρ, and thus (1 + gY )

(
(1 + gY )

1−θ
θ − ρ

)
> 0. As E0, µY0 ,CVY0 , θ, ρ, gY , δ > 0,

α ∈ (0, 1), ρ(1+gE)
θ−1
θ < 1 (Eq. 4b) the only term that can turn negative is 1−θ

θ
ρ (1− δ (1 + gY )).

The sign of this term is fully determined by the factor 1−θ, as by assumption δ(1+gY ) <

1 (Eq. A.67). It thus holds that

∂WTP

∂gY
> 0 if θ ≤ 1.

The reader might stumble when comparing the term in square brackets of Eq. (A.68),

with Fig. 3 or Fig. 8. The difference in parameter values zeroing the derivative ∂WTP
∂gY

results from different time horizons. While we here consider t→∞, we assume t ∈ (0, T )

with T = 100 for the application (Sec. 5) as this is a common time horizon in cost-benefit

analysis. For longer time horizons the parameter values setting the derivative to zeros

in the Fig. 3 and Fig. 8 converge to the ones implicit given by Eq. (A.68).
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A.8 Prop. 3: Parameter combinations for which WTP declines

with income growth

Figure 8: The derivative of mean WTP with respect to the growth rate of income and
how its sign and magnitude depend on the elasticity of substitution, θ, and the pure time
discount factor, ρ. The remaining parameter values are those of the central calibration in
the global biodiversity conservation case study (Table 2), in particular the time horizon
goes to T = 100.
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Figure 9: The derivative of mean WTP with respect to the growth rate of income
and how its sign depends on the elasticity of substitution, θ, for different pure time
discount factors, ρ, (left subplot) or market interest rates, δ (right subplot). In the left
subplot the sign of the derivative is only depicted where the growth path conditions
are fulfilled (Eqs. 4a and 4b). In the right subplot the convergence condition given
by Eq. A.67 is not fulfilled for the upper bound interest factor, δub, and therefore the
supremum δsup = (1 + gmean

Y )−1 is depicted. Results are given for t→∞ by populating
Eq. A.68 with the parameter values of the central calibration in the global biodiversity
conservation case study (Table 2).

A.9 Proof of Prop. 4

Differentiating WTP (Eq. 13) with respect to the growth rate of natural capital, gE,

yields

∂WTP(µY0 ,CVY0 , gY , E0, gE)

∂gE
= K ′

θ − 1

θ
ρ

(1 + gE)−1/θ

(1− ρ(1 + gE)
θ−1
θ )2

(A.69)

withK ′ :=
1− α
α

(1− ρ(1 + gY )
θ−1
θ )E

−1/θ
0

[
∞∑
t=0

δt (1 + gY )t

]
µ
1/θ
Y0

(1 + CV2
Y0

)
1−θ
2θ2 .

As E0, µY0 ,CVY0 , θ, ρ, gY , δ > 0, α ∈ (0, 1), ρ(1 + gY )
θ−1
θ < 1 (Eq. 4a), ρ(1 + gE)

θ−1
θ < 1

(Eq. 4b) the sign of ∂WTP
∂gE

is determined by the sign of θ − 1.
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A.10 Proof of Prop. 5

The transfer function is defined by the quotient of the mean WTPs at the policy site

and study site. For WTP (Eq. 13) it reads:

T (. . .) =
WTP

policy

WTP
study

(13)
=

1−α
α

1−ρ (1+gpolicyY )
θ−1
θ

1−ρ (1+gpolicyE )
θ−1
θ

Epolicy
0

−1/θ
µpolicy
Y0

1/θ
(

1 + CVpolicy
Y0

2
) 1−θ

2θ2

1−α
α

1−ρ (1+gstudyY )θ

1−ρ (1+gstudyE )
θ−1
θ

Estudy
0

−1/θ
µstudy
Y0

1/θ
(

1 + CVstudy
Y0

2
) 1−θ

2θ2

·
∑∞

t=0

(
δpolicy

)t
(1 + gpolicyY )t∑∞

t=0 (δstudy)t (1 + gstudyY )t

=

(
Epolicy

0

Estudy
0

)−1/θ
· 1− ρ(1 + gstudyE )

θ−1
θ

1− ρ(1 + gpolicyE )
θ−1
θ

·

(
µpolicy
Y0

µstudy
Y0

)1/θ

·

(
1 + CVY0

policy2

1 + CVstudy
Y0

2

) 1−θ
2θ2

· 1− ρ (1 + gpolicyY )
θ−1
θ

1− ρ (1 + gstudyY )
θ−1
θ

·
∑∞

t=0

(
δpolicy

)t
(1 + gpolicyY )t∑∞

t=0 (δstudy)t (1 + gstudyY )t
. (A.70)

A.11 Growth path conditions for existence of the closed-form

utility function

The set of growth rates that meet the existence condition (Eqs. 4a and 4b) for the

closed-form intertemporal utility function for a given elasticity of substitution, θ, and

discount factor, ρ, is given as25

ρ(1 + g)
θ−1
θ < 1 ⇐⇒

g < ρ
−θ
θ−1 − 1 =: gmax for θ > 1

g > ρ
−θ
θ−1 − 1 =: gmin for θ < 1

. (A.71)

Thus, the growth path condition for substitutes implies a supremum defined by gmax,

which is always positive and thus bites only for the income growth rate gY , but not for

the growth rate of natural capital which is by definition always negative, gE < 0. In

contrast, the growth rate condition for complements implies an infimum for the growth

25As the condition is identical for gE and gY we suppress the subscript on the growth rate in the
following formula and only write g.
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Figure 10: Minimal value for gE in case of complements, θ < 1, (left side) and maximal
value for gY in case of substitutes, θ > 1, (right side) to ensure the existence of a closed-
form intertemporal utility function (Eq. 31) for different values of the discount factor,
ρ, and the elasticity of substitution, θ. The shaded area depicts the set of growth rates
gE (left side) or gY (right side) that meets the growth path condition (Eq. 4b or 4a) for
the transfer factor for the mean pure time discount factor, ρ = 0.989.

rates gmin, below which the closed-form intertemporal utility function does not exist. As

gmin is always negative, this condition is generally fulfilled for the income growth rate,

gY > 0, but applies for the growth rate of natural capital, gE < 0.

Fig. 10 displays this frontier for the growth rates of income and natural capital

for a range of empirical elasticities of substitution, θ, and pure time discount fac-

tors, ρ, depicted in Table 2. The supremum for the income growth rate in the mean

case of substitutes, with θmean = 2.31, depends on ρ = 0.989 [0.926; 0.999] and is

given by gmax
θ=2.31 = 0.0197 [0.1452, 0.0018]. For the upper bound substitutability, with

θub = 7.14, it is given by gmax
θ=7.14 = 0.0129 [0.0935; 0.0012]. For the lower bound com-

plementarity case, with θlb = 0.86, the infimum for the growth rate of natural capital

is gmin
θ=0.86 = −0.0657 [−0.3764;−0.0061]. We observe that the closer the discount factor

ρ is to unity, the smaller is the set of gE in case of complements and of gY in case

of substitutes that fulfils the growth path condition. Moreover, the higher the degree
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of substitutability, the smaller is the set of gY that still meets the condition, and the

stronger the complementarity, the larger is the set of gE that meets the condition.

A.12 Proofs for Section 6.1

Here, we proof that Prop. 1 to Prop. 3 also hold for an environmental policy that is

concerned with a change in the growth rate of natural capital and derive a transfer

function for this cases (analogue to Prop. 5).

A.12.1 Derivation of WTPdgE (Eq. 24)

We derive ωidgE as the individual WTP for a change dgE in the growth rate of natural

capital, by setting E0 = E ′0 and g′E = gE + dgE in Eq. (A.41):

α (1− ωidgE )
θ−1
θ Y i

0

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E

θ−1
θ

0

1− ρ (1 + gE + dgE)
θ−1
θ

=
αY i

0

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

⇐⇒ 0 =
αY i

0

θ−1
θ − α(1− ωidgE )

θ−1
θ Y i

0

θ−1
θ

1− ρ(1 + gY )
θ−1
θ

+ (1− α)E
θ−1
θ

0

(
1

1− ρ(1 + gE)
θ−1
θ

− 1

1− ρ(1 + gE + dgE)
θ−1
θ

)
. (A.72)

Applying Taylor series expansion of degree one at ωidgE = 0 and dgE = 0, respectively,

yields the approximations:

(1− ωidgE)
θ−1
θ ≈ 1− θ − 1

θ
ωidgE and

1

1− ρ (1 + gE + dgE)
θ−1
θ

≈ 1

1− ρ(1 + gE)
θ−1
θ

+
θ−1
θ
ρ(1 + gE)−1/θ(

1− ρ(1 + gE)
θ−1
θ

)2 dgE,
where the approximation error is the smaller, the smaller dgE. Using these approxima-
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tions in Eq. (A.72) yields

0 =
αY i

0

θ−1
θ − α(1− θ−1

θ
ωidgE)Y i

0

θ−1
θ

1− ρ(1 + gY )
θ−1
θ

− (1− α)E
θ−1
θ

0

ρ θ−1
θ

(1 + gE)−1/θ(
1− ρ(1 + gE)

θ−1
θ

)2dgE
⇐⇒ ωidgE =

1− α
α

ρ(1 + gE)−1/θ
(

1− ρ(1 + gY )
θ−1
θ

)
(

1− ρ(1 + gE)
θ−1
θ

)2 Y i
0

1−θ
θ E

θ−1
θ

0

︸ ︷︷ ︸
=:ωdgE (Y i0 ,E0)

dgE. (A.73)

Considering a change in the growth rate of natural capital by one marginal unit,

that is, setting dgE = 1 in Eq. (A.73), reveals that ωdgE(Y i
0 , E0) is household i’s WTP

– expressed as a constant fraction of income – for one marginal unit of the growth rate

gE of public natural capital.

The current social WTP at time t is

WTPdgE ;t(µY0 , σY0 , gY , E0, gE)

=

∞∫
0

fln(Y0;µY0 , σY0)ωdgE(Y0, gY , E0, gE) (1 + gY )tY0 dY0

(A.58), (A.73)
=

∞∫
0

1

Y0
√

2πs2
exp

(
−(lnY0 −m)2

2s2

)
1− α
α

ρ(1 + gE)−1/θ
(

1− ρ(1 + gY )
θ−1
θ

)
(

1− ρ(1 + gE)
θ−1
θ

)2
Y

1−θ
θ

0 E
θ−1
θ

0 (1 + gY )tY0 dY0

=
1− α
α

ρ(1 + gE)−1/θ
(

1− ρ(1 + gY )
θ−1
θ

)
(

1− ρ(1 + gE)
θ−1
θ

)2 (1 + gY )tE
θ−1
θ

0

︸ ︷︷ ︸
=:κ′′′′′

∞∫
0

Y
1−θ
θ

0√
2πs2

exp

(
−(lnY0 −m)2

2s2

)
dY0

Sec. A.4
= κ

′′′′′
µ
1/θ
Y0

(
1 +

σ2
Y0

µ2
Y0

) 1−θ
2θ2

, (A.74)

and, for relative inequality in initial income, CVY0 = σY0/µY0 ,

WTPdgE ;t(µY0 ,CVY0 , gY , E0, gE) = κ
′′′′′
µ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2 . (A.75)
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The corresponding present value - discounted at market interest factor δ - is

WTPdgE(µY0 ,CVY0 , gY , E0, gE)

=
∞∑
t=0

δt WTPdgE ;t(µY0 ,CVY0 , gY , E0, gE)

A.75
=

∞∑
t=0

δt
1− α
α

ρ(1 + gE)−1/θ
(

1− ρ(1 + gY )
θ−1
θ

)
(

1− ρ(1 + gE)
θ−1
θ

)2 (1 + gY )tE
θ−1
θ

0 µ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2

=
1− α
α

ρ(1 + gE)−1/θ
(

1− ρ(1 + gY )
θ−1
θ

)
(

1− ρ(1 + gE)
θ−1
θ

)2 E
θ−1
θ

0

∞∑
t=0

δt(1 + gY )t

︸ ︷︷ ︸
=:κ′

µ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2

= κ
′
µ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2 . (A.76)

A.12.2 Proof of Prop. 1 for growth rate as object of valuation

Differentiating WTPdgE (Eq. 24) with respect to initial mean income, µY0 , yields

∂WTPdgE(µY0 ,CVY0 , gY , E0, gE)

∂ µY0
= κ

′ 1

θ
µ

1−θ
θ

Y0

(
1 + CV2

Y0

) 1−θ
2θ2 (A.77)

with κ
′
=

1− α
α

ρ(1 + gE)−1/θ
(

1− ρ(1 + gY )
θ−1
θ

)
(

1− ρ(1 + gE)
θ−1
θ

)2 E
θ−1
θ

0

∞∑
t=0

δt (1 + gY )t,

which is strictly greater zero, as α ∈ (0, 1), gE > −1, ρ(1+gY )
θ−1
θ < 1 and gY , E0,CVY0 , µY0 , θ, ρ > 0.

A.12.3 Proof of Prop. 2 for growth rate as object of valuation

Differentiating WTPdgE (Eq. 24) with respect to relative income inequality, CVY0 , yields

∂WTPdgE(µY0 ,CVY0 , gY , E0, gE)

∂ CVY0

= κ
′ 1− θ
θ2

µ
1/θ
Y0

CVY0

(
1 + CV2

Y0

) 1−θ−2θ2

2θ2 . (A.78)

The sign of which is determined by the factor (1 − θ), as µY0 ,CVY0 , k
′
> 0. It again

holds that 1− θ Q 0 if and only if θ R 1.
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A.12.4 Proofs of Prop. 3 for growth rate as objective of valuation

As the components relating to the growth rate of income in Eq. (24) are the same as

those in Eq. (13), the proof for
∂WTPdgE

∂gY
> 0 if θ ≤ 1 proceeds analogously (see

Appendix A.7). Likewise, the conditions for which the sign of the effect changes from

positive to negative are the same. Figures 8 and 9 in Appendix A.8 also applies to

WTPdgE .

A.12.5 Derivation of the transfer function for growth rate as object of val-

uation, Eq. (25).

For WTPdgE (Eq. 24) the transfer function is

TdgE(. . .) =
WTP

policy

dgE
()

WTP
study

dgE
()

(24)
=

1−α
α
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·
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0
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·
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µstudy
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1 + CVstudy
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·
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(A.79)
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A.13 Proofs for Section 6.2

A.13.1 Derivation of ωSP (Eq. 27)

ωiSP, as defined by Eq. (26), for the ICES intertemporal utility function (Eq. 3), is:

α (Y i
0 − ωiSP)

θ−1
θ + (1− α)E′0

θ−1
θ +

∞∑
t=1

ρt
(
αY i

t

θ−1
θ + (1− α)E′t

θ−1
θ

)
=

∞∑
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ρt
(
αY i

t

θ−1
θ + (1− α)Et

θ−1
θ

)

⇔ α (Y i
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θ−1
θ +

∞∑
t=1

ρt αY i
t

θ−1
θ +

∞∑
t=0

ρt(1− α)E′t
θ−1
θ =

∞∑
t=0
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(
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t

θ−1
θ + (1− α)Et

θ−1
θ

)
AppendixA.1⇔ α (Y i

0 − ωiSP)
θ−1
θ +

∞∑
t=1

ρt αY i
t

θ−1
θ +

(1− α)E′0
θ−1
θ

1− ρ (1 + g′E)
θ−1
θ

=
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0

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

.

(A.80)

Where

∞∑
t=1

ρt αY i
t

θ−1
θ =

∞∑
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θ−1
θ )t αY i
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.
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Using this in Eq. (A.80) gives

α (Y i
0 − ωiSP)

θ−1
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αY i
0

θ−1
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θ−1
θ
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(A.81)

⇐⇒ α (Y i
0 − ωiSP)

θ−1
θ +

(1− α)E′0
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1− ρ (1 + g′E)
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1− ρ (1 + gY )

θ−1
θ

)
1− ρ (1 + gY )

θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

⇐⇒ (Y i
0 − ωiSP)

θ−1
θ = Y i

0

θ−1
θ +

1−α
α E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

−
1−α
α E′0

θ−1
θ

1− ρ (1 + g′E)
θ−1
θ

.

(A.82)

We derive ωiSP as the individual WTP at t = 0 for a change dE in the initial stock

of natural capital, by setting gE = g′E and E ′0 = E0 + dE in Eq. (A.82):

(Y i
0 − ωiSP)

θ−1
θ = Y i

0

θ−1
θ +

1−α
α
E0

θ−1
θ

1− ρ (1 + gE)
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= Y i
0

θ−1
θ +

1− α
α

E
θ−1
θ

0 − (E0 + dE)
θ−1
θ

1− ρ (1 + gE)
θ−1
θ

. (A.83)

Applying Taylor series expansion of degree on at ωidE = 0 we approximate (Y i
0 −

ωiSP)
θ−1
θ ≈ Y i

0

θ−1
θ − θ−1

θ
Y i
0
−1/θ

ωiSP and applying Taylor expansion of degree one at dE = 0

we approximate (E0 + dE)
θ−1
θ ≈ E

θ−1
θ

0 + θ−1
θ
E
−1/θ
0 dE. Using these approximations in

Eq. (A.83) gives

Y i
0

θ−1
θ − θ − 1

θ
Y i
0

−1/θ
ωiSP = Y i

0

θ−1
θ +

1− α
α

E
θ−1
θ

0 − E
θ−1
θ

0 − θ−1
θ
E
−1/θ
0 dE

1− ρ (1 + gE)
θ−1
θ

⇐⇒ ωiSP =
1− α
α

Y i
0
1/θ
E
−1/θ
0

1− ρ (1 + gE)
θ−1
θ︸ ︷︷ ︸

=:ωSP(Y
i
0 ,E0)

dE. (A.84)

Considering a change in the initial stock of natural capital by one marginal unit,

that is, setting dE = 1 in Eq. (A.84), reveals that ω(Y i
0 , E0) is household i’s WTP –

expressed as a single payment made at t = 0 – for one marginal unit of the initial stock
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E0 of public natural capital.

A.13.2 Proof of Lemma 1 for a single payment

Consider a hypothetical setting in which the initial stock of natural capital can be chosen

freely, but uniformly across households, at any level E0 > 0. The costs of supplying

natural capital E0 are financed by the households who contribute by a single payment

in the first period t = 0.

In contrast to the setting in the main text, in this setting households do not simply

state a willingness to pay for a marginal increase dE of the initial stock E0 of natural

capital, but make actual payments to finance it. To make both settings comparable,

one needs to make the exogenously given income comparable. We therefore consider

compensated income Ỹ i
0 , which is such that it allows the same level of consumption as

in the main setting

Ỹ i
0 := Y i

0 + ωiSP
∗
. (A.85)

For a single payment, the Pareto-efficient initial amount E∗0 of public natural capital

is the solution to the following maximization problem:

max
E0,ωiSP

U
({
Ỹ 1
0 − ω1

SP, 1Y
1
}
, {E0, 1E}

)
, (A.86)

s.t. U
({
Ỹ i
0 − ωiSP, 1Yi

}
, {E0, 1E}

)
= Ū i for all i > 1, (A.87)

n∑
i=1

ωiSP = c(E0), (A.88)

Eqs. (1a), (1b) .

Here, without loss of generality, household 1’s utility is maximised, while all other

households obtain at least the reference utility level Ū i. Note, the households decides

upon the total amount of the natural public good it will consume and balances it against

the reduction in consumption from its individual contribution to finance this ω1
SP. For a

single payment this reduces consumption in the first period to Ỹ 1
0 − ω1

SP, while income
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path 1Y
1 remains unchanged.

For ICES utility, Eq. (5), the Langrangian reads (compare LHS of Eq. A.81)

L =
θ

θ − 1

(
α (Ỹ 1

0 − ω1
SP)

θ−1
θ +

α (Ỹ 1
0 )

θ−1
θ ρ (1 + gY )

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

)
+

n∑
i=2

ϕi
θ

θ − 1(
α (Ỹ i

0 − ωiSP)
θ−1
θ +

α (Ỹ i
0 )

θ−1
θ ρ (1 + gY )

θ−1
θ

1− ρ (1 + gY )
θ−1
θ

+
(1− α)E0

θ−1
θ

1− ρ (1 + gE)
θ−1
θ

)
+ λ

(
n∑
i=1

ωiSP − c(E0)

)
.

Defining ϕ1 = 0 the first-order conditions for the Pareto-efficient initial level E?
0 can be

written as

λ = ϕi α (Ỹ i
0 − ωiSP

∗
)
−1/θ

for all i = 1, ..., n, (A.89)

λ c′(E?
0) =

n∑
i=1

ϕi
(1− α)E?

0
−1/θ

1− ρ (1 + gE)
θ−1
θ

. (A.90)

Rearranging Eq. (A.89) for ϕi, inserting this in Eq. (A.90), dividing by λ and slightly

rearranging yields the first-order condition for the Pareto-efficient initial level E∗0 of

natural capital:

c′(E?
0) =

n∑
i=1

(1− α)

α

(Ỹ i
0 − ωiSP

∗
)
1/θ
E?

0
−1/θ

1− ρ (1 + gE)
θ−1
θ

(A.85)
=

n∑
i=1

1− α
α

Y i
0
1/θ
E?

0
−1/θ

1− ρ (1 + gE)
θ−1
θ

(27)
=

n∑
i=1

ωSP(Y i
0 , E

?
0). (A.91)
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A.13.3 Derivation of WTPSP (Eq. 28)

Mean WTP expressed as single payment at t = 0 is

WTPSP(µY0 , σY0 , E0, gE) =

∞∫
0

fln(Y0;µY0 , σY0)ωSP(Y0, E0) dY0

(27), (A.58)
=

∞∫
0

1

Y0
√

2πs2
exp

(
−(lnY0 −m)2

2s2

)
1− α
α

Y
1/θ
0 E

−1/θ
0

1− ρ (1 + gE)
θ−1
θ

dY0

=
1− α
α

E
−1/θ
0

1− ρ (1 + gE)
θ−1
θ︸ ︷︷ ︸

=:κ′′

∞∫
0

Y
1/θ
0

Y0
√

2πs2
exp

(
−(lnY0 −m)2

2s2

)
dY0

= κ
′′

∞∫
0

Y
1−θ
θ

0√
2πs2

exp

(
−(lnY0 −m)2

2s2

)
dY0

Sec A.4
= κ

′′
µ
1/θ
Y0

(
1 +

σ2
Y0

µ2
Y0

) 1−θ
2θ2

, (A.92)

and, relative inequality in initial income, CVY0 =
σY0
µY0

,

WTPSP(µY0 ,CVY0 , E0, gE) = κ
′′
µ
1/θ
Y0

(
1 + CV2

Y0

) 1−θ
2θ2 . (A.93)

A.13.4 Proof of Prop. 1 for a single payment

Differentiating WTPSP (Eq. 28) with respect to initial mean income, µY0 , yields

∂WTPSP(µY0 ,CVY0 , E0, gE)

∂ µY0
= κ

′′ 1

θ
µ

1−θ
θ

Y0

(
1 + CV2

Y0

) 1−θ
2θ2 (A.94)

with κ
′′

=
1− α
α

E
−1/θ
0

1− ρ (1 + gE)
θ−1
θ

,

which is strictly greater zero, as E0, µY0 ,CVY0 , θ > 0, α ∈ (0, 1) and by assumption

ρ(1 + gE)
θ−1
θ < 1.

A.13.5 Proof of Prop. 2 for a single payment

Differentiating WTPSP (Eq. 28) with respect to relative income inequality, CVY0 , yields
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∂WTPSP(µY0 ,CVY0 , E0, gE)

∂ CVY0

= κ
′′ 1− θ
θ2

µ
1/θ
Y0

CVY0

(
1 + CV2

Y0

) 1−θ−2θ2

2θ2 . (A.95)

The sign of the derivative is determined by the sign of the factor (1−θ), as µY0 ,CVY0 , κ
′′
> 0.

It holds that 1− θ Q 0 if and only if θ R 1.

A.13.6 Proof of Prop. 4 for a single payment

Differentiating WTPSP (Eq. 28) with respect to the growth rate of natural capital, gE,

yields

∂WTPSP(µY0 ,CVY0 , gY , E0, gE)

∂gE
= K ′′

θ − 1

θ
ρ

(1 + gE)−1/θ

(1− ρ(1 + gE)
θ−1
θ )2

(A.96)

withK ′′ :=
1− α
α

E
−1/θ
0 µ

1/θ
Y0

(1 + CV2
Y0

)
1−θ
2θ2 .

As E0, µY0 ,CVY0 , θ, ρ, α ∈ (0, 1), gE > −1, ρ(1 + gE)
θ−1
θ < 1 (Eq. 4b) the sign of ∂WTPSP

∂gE

is determined by the sign of θ − 1 and it follows directly that

∂WTPSP(µY0 ,CVY0 , gY , E0, gE)

∂ gE
R 0 if and only if θ R 1.
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A.13.7 Derivation of the transfer function for a single payment, Eq. (29)

For WTP elicited at study site and policy site as a single payment for a change in the

initial stock of natural capital, WTPSP (Eq. 28), the transfer function is given as

TSP(. . .) =
WTP

policy

SP ()

WTP
study

SP ()

(28)
=

1−α
α

Epolicy
0

−1/θ

1−ρ (1+gpolicyE )
θ−1
θ

µpolicy
Y0

1/θ
(1 + CVY0

policy2)
1−θ
2θ2

1−α
α

Estudy
0

−1/θ

1−ρ (1+gstudyE )
θ−1
θ

µstudy
Y0

1/θ
(1 + CVY0

study2)
1−θ
2θ2

=

(
Epolicy

0

Estudy
0

)−1/θ
· 1− ρ(1 + gstudyE )

θ−1
θ

1− ρ(1 + gpolicyE )
θ−1
θ

·

(
µpolicy
Y0

µstudy
Y0

)1/θ

·

(
1 + CVpolicy 2

Y0

1 + CVstudy 2
Y0

) 1−θ
2θ2

.

(A.97)

A.14 Mean WTP for CES-CIES preferences, Eq. (33)

Here, we first derive WTP for CIES preferences (Eq. 31) and a general instantaneous

utility function and than study CIES-CES preferences.

ωi, as defined by Eq. (6), for general instantaneous preferences and intertemporal

CIES utility (Eq. (31)), is given by using Eq. (31) in (Eq. A.40):

∞∑
t=0

ρt
1

1− η
u
(
(1− ωi)Y i

0 (1 + gY )t, E′0(1 + g′E)t
)1−η

=
∞∑
t=0

ρt
1

1− η
u
(
Y i
0 (1 + gY )t, E0(1 + gE)t

)1−η
⇐⇒

∞∑
t=0

ρt u
(
(1− ωi)Y i

0 (1 + gY )t, E′0(1 + g′E)t
)1−η

=

∞∑
t=0

ρt u
(
Y i
0 (1 + gY )t, E0(1 + gE)t

)1−η
.

(A.98)

We derive ωi as the individual WTP for a change dE in the initial stock of natural

capital, by setting gE = g′E and E ′0 = E0 + dE in Eq. (A.98):

∞∑
t=0

ρt u
(
(1− ωi)Y i

0 (1 + gY )t, (E0 + dE)(1 + gE)t
)1−η

=
∞∑
t=0

ρt u
(
Y i
0 (1 + gY )t, E0(1 + gE)t

)1−η
.

(A.99)
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Approximating the left hand side of Eq. (A.99) by a Taylor series expansion of degree

one at ωi = 0 and dE = 0 yields

∞∑
t=0

ρt u
(
(1− ωi)Y i

0 (1 + gY )t, (E0 + dE)(1 + gE)t
)1−η

≈
∞∑
t=0

ρt u
(
Y i
0 (1 + gY )t, E0(1 + gE)t

)1−η
− ωi Y i

0 (1− η)

∞∑
t=0

ρt u
(
Y i
0 (1 + gY )t, E0(1 + gE)t

)−η ∂u

∂Y i
t

(
Y i
0 (1 + gY )t, E0(1 + gE)t

)
(1 + gY )t

+ dE (1− η)
∞∑
t=0

ρt u
(
Y i
0 (1 + gY )t, E0(1 + gE)t

)−η ∂u

∂Et

(
Y i
0 (1 + gY )t, E0(1 + gE)t

)
(1 + gE)t.

(A.100)

Using Eq. (A.100) in Eq. (A.99) and rearranging gives the individual WTP for a

general instantaneous utility function:

ωi =

∑∞
t=0 ρ

tu
(
Y i
0 (1 + gY )t, E0(1 + gE)t

)−η ∂u
∂Et

((Y i
0 (1 + gY )t, E0(1 + gE)t) (1 + gE)t∑∞

t=0 ρ
tu
(
Y i
0 (1 + gY )t, E0(1 + gE)t

)−η ∂u
∂Y it

((Y i
0 (1 + gY )t, E0(1 + gE)t)(1 + gY )t

dE Y i
0
−1

(30)
=

∑∞
t=0 ρ

tu
(
Y i
t , Et

)−η ∂u
∂Et

(Y i
t , Et) (1 + gE)t∑∞

t=0 ρ
tu
(
Y i
t , Et

)−η ∂u
∂Y it

(Y i
t , Et) (1 + gY )t

dE Y i
0
−1
. (A.101)

For instantaneous CES utility (Eq. 30) and its partial derivatives

∂u(Y i
t , Et)

∂Y i
t

= α
(
αY i

t

θ−1
θ + (1− α)E

θ−1
θ

t

) 1
θ−1

Y i
t

−1/θ
,

∂u(Y i
t , Et)

∂Et
= (1− α)

(
αY i

t

θ−1
θ + (1− α)E

θ−1
θ

t

) 1
θ−1

Et
−1/θ,
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individual WTP, Eq. (A.101), is

ωi =
1− α
α

∑∞
t=0 ρ

t

(
αY i

t

θ−1
θ + (1− α)E

θ−1
θ

t

)−ηθ
θ−1

(
αY i

t

θ−1
θ + (1− α)E

θ−1
θ

t

) 1
θ−1

Et
−1/θ (1 + gE)t

∑∞
t=0 ρ

t

(
αY i

t

θ−1
θ + (1− α)E

θ−1
θ

t

)−ηθ
θ−1

(
αY i

t

θ−1
θ + (1− α)E

θ−1
θ

t

) 1
θ−1

Y i
t
−1/θ

(1 + gY )t

dE Y i
0
−1

=
1− α
α

∑∞
t=0 ρ

t

(
αY i

t

θ−1
θ + (1− α)E

θ−1
θ

t

) 1−ηθ
θ−1

Et
−1/θ (1 + gE)t

∑∞
t=0 ρ

t

(
αY i

t

θ−1
θ + (1− α)E

θ−1
θ

t

) 1−ηθ
θ−1

Y i
t
−1/θ

(1 + gY )t

dE Y i
0
−1

(1a),(1b)
=

1− α
α

dE

E0
1/θ

Y i
0

1−θ
θ

∑∞
t=0 ρ

t

(
α
(
Y i
0 (1 + gY )t

) θ−1
θ + (1− α)

(
E0 (1 + gE)t

) θ−1
θ

) 1−ηθ
θ−1 (

(1 + gE)
θ−1
θ

)t
∑∞

t=0 ρ
t

(
α
(
Y i
0 (1 + gY )t

) θ−1
θ + (1− α)(E0 (1 + gE)t)

θ−1
θ

) 1−ηθ
θ−1 (

(1 + gY )
θ−1
θ

)t
(30)
=

1− α
α

E0
−1/θ Y i

0

1−θ
θ

∑∞
t=0 u(Y i

0 (1 + gY )t, E0 (1 + gE)t)
1−ηθ
θ

(
ρ (1 + gE)

θ−1
θ

)t
∑∞

t=0 u(Y i
0 (1 + gY )t, E0 (1 + gE)t)

1−ηθ
θ

(
ρ (1 + gY )

θ−1
θ

)t
︸ ︷︷ ︸

=:ω(Y i0 ,gY ,E0,gE)

dE.

(A.102)

Considering a change in the initial stock of natural capital by one marginal unit,

that is, setting dE = 1 in Eq. (A.102), gives ω(Y i
0 , gY , E0, gE) as the household i’s WTP

– expressed as a constant fraction of income – for one marginal unit of E0 in case of

general instantaneous utility.

The corresponding current social WTP at time t reads

WTPt(µY0 , σY0 , gY , E0, gE) =

∞∫
0

fln(Y i
0 ;µY0 , σY0)ω(Y i

0 , gY , E0, gE)(1 + gY )tY i
0 dY0

A.102
=

∞∫
0

fln(.) (1 + gY )tY i
0

1− α
α

E0
−1/θ Y i

0

1−θ
θ

∑∞
t=0 u(Y i

0 (1 + gY )t, E0 (1 + gE)t)
1−ηθ
θ

(
ρ (1 + gE)

θ−1
θ

)t
∑∞

t=0 u(Y i
0 (1 + gY )t, E0 (1 + gE)t)

1−ηθ
θ

(
ρ (1 + gY )

θ−1
θ

)t dY0
=

1− α
α

(1 + gY )tE0
−1/θ

∞∫
0

fln(.)

∑∞
t=0 u(Y i

0 (1 + gY )t, E0 (1 + gE)t)
1−ηθ
θ

(
ρ (1 + gE)

θ−1
θ

)t
∑∞

t=0 u(Y i
0 (1 + gY )t, E0 (1 + gE)t)

1−ηθ
θ

(
ρ (1 + gY )

θ−1
θ

)t Y i
0
1/θ

dY0 ,

(A.103)
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and the associated present value - discounted at market interest factor δ - is

WTP(µY0 , σY0 , gY , E0, gE) =

∞∑
t=0

δt WTPt(µY0 , σY0 , gY , E0, gE)

A.103
=

1− α
α

E0
−1/θ

∞∑
t=0

δt(1 + gY )t︸ ︷︷ ︸
=:κ′′′

∞∫
0

fln(.)

∑∞
t=0 u(Y i0 (1 + gY )t, E0 (1 + gE)t)

1−ηθ
θ

(
ρ (1 + gE)

θ−1
θ

)t
∑∞
t=0 u(Y i0 (1 + gY )t, E0 (1 + gE)t)

1−ηθ
θ

(
ρ (1 + gY )

θ−1
θ

)t Y i0 1/θ
dY0

(A.104)

A.15 Proofs for Section 6.4 (Cobb-Douglas preferences)

A.15.1 Intertemporal utility for Cobb-Douglas-CIES preferences, Eq. (34)

Using household i’s instantaneous Cobb-Douglas utility function

u(Y i, E) = Y iαE1−α (A.105)

in the intertemporal CIES utilty function, Eq. (31), gives

U({Y i
t }, {Et}) =

∞∑
t=0

ρt
1

1− η
u(Y i

t , Et)
1−η

(A.105)
=

∞∑
t=0

ρt
1

1− η
(
Y i
t

α
E1−α
t

)1−η
(1a),(1b)

=
1

1− η

∞∑
t=0

ρt
([
Y i
0 (1 + gY )t

]α [
E0(1 + gE)t

]1−α)1−η
=

1

1− η

∞∑
t=0

ρt
(
Y i
0

α
[(1 + gY )α]tE1−α

0

[
(1 + gE)1−α

]t)1−η
=

1

1− η

∞∑
t=0

(
Y i
0

α
E1−α

0

)1−η [
ρ (1 + gY )α(1−η) (1 + gE)(1−α)(1−η)

]t
.

If

ρ(1 + gY )α(1−η) (1 + gE)(1−α)(1−η) < 1 (A.106)

than the geometric series converges for t→∞ and one obtains the following intertem-
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poral utility function, representing Cobb-Douglas-CIES preferences,

U(Y i
0 , gY , E0, gE) =

1

1− η

(
Y i
0
α
E1−α

0

)1−η
1− ρ [(1 + gY )α (1 + gE)(1−α)]

(1−η) . (A.107)

A.15.2 Derivation of WTP, Eq. (35)

ωi as defined by Eq. (6), for the Cobb-Douglas-CIES intertemporal utility function

(Eq. A.107), is given by

U((1− ωi)Y i
0 , gY , E

′
0, g
′
E) = U(Y i

0 , gY , E0, gE)(
[(1− ωi)Y i

0 ]
α
E ′1−α0

)1−η
1− ρ [(1 + gY )α (1 + g′E)(1−α)]

(1−η) =

(
Y i
0
α
E1−α

0

)1−η
1− ρ [(1 + gY )α (1 + gE)(1−α)]

(1−η) . (A.108)

We derive ωi as the individual WTP for a change dE in the initial stock of natural

capital, by setting g′E = gE and E ′0 = E0 + dE in Eq. (A.108):

(
[(1− ωi)Y i

0 ]
α

(E0 + dE)1−α
)1−η

1− ρ [(1 + gY )α (1 + gE)(1−α)]
(1−η) =

(
Y i
0
α
E1−α

0

)1−η
1− ρ [(1 + gY )α (1 + gE)(1−α)]

(1−η)

⇐⇒
([

(1− ωi)Y i
0

]α
(E0 + dE)1−α

)1−η
=
(
Y i
0

α
E1−α

0

)1−η
(A.109)

Applying Taylor series expansion of degree one at ωi = 0 and dE = 0, yields the

following approximation:

([
(1− ωi)Y i

0

]α
(E0 + dE)1−α

)1−η
≈
(
Y i
0

α
E1−α

0

)1−η
+
(
(1− α) dE E−10 − αωi

)
(1− η)

(
Y i
0

α
E1−α

0

)1−η
. (A.110)

Using Eq. (A.110) in Eq. (A.109) and slightly rearranging yields

ωi =
(1− α)

α
E0
−1︸ ︷︷ ︸

=:ω(E0)

dE, (A.111)

so that ω(E0) is the individual WTP for one marginal unit of the initial stock E0 of

natural capital. Since ω only depends on E0 (and the preference parameter α), which
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are identical for all households, this reveals that for Cobb-Douglas-CIES preferences all

households have the same WTP.

The current social WTP at time t is

WTPt(µY0 , gY , E0)

=

∞∫
0

fln(Y0;µY0 , σY0)ω(E0)Yt(Y0) dY0

(1a),(A.111)
=

∞∫
0

fln(Y0;µY0 , σY0)
(1− α)

α
E0
−1 (1 + gY )tY0 dY0

=
(1− α)

α
E0
−1 (1 + gY )t︸ ︷︷ ︸

=:κ′′′′′′

∞∫
0

fln(Y0;µY0 , σY0)Y0 dY0

(A.58)
= κ

′′′′′′

∞∫
0

1√
2πs2

exp

(
−(lnY0 −m)2

2s2

)
dY0

= κ
′′′′′′

exp

(
m+

s2

2

)
(A.59),(A.60)

= κ
′′′′′′

exp

(
lnµY0 −

1

2
ln
(
1 + σ2

Y0
/µ2

Y0

)
+

1

2
ln
(
1 + σ2

Y0
/µ2

Y0

))
= κ

′′′′′′
µY0 . (A.112)

The corresponding present value - discounted at market interest factor δ - is

WTP(µY0 , gY , E0) =
∞∑
t=0

δt WTPt(µY0 , gY , E0)

(A.112)
=

(1− α)

α
E0
−1

[
∞∑
t=0

δt (1 + gY )t

]
µY0 . (A.113)

A.16 Marginal WTP for a general intertemporal utility

Here, we derive for a general intertemporal utility function the individual WTP, ex-

pressed as constant fraction of income. The maximisation problem defining the Pareto-

efficient allocation is given by Eqs. (A.48), (A.49), (A.50). The corresponding La-
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grangian reads

L = U
(
{(1− ω1) Ỹ 1

t }, {E0, 1E}
)

+
n∑
i=2

ϕi
(
U
(
{(1− ωi) Ỹ i

t }, {E0, 1E}
)
− Ū i

)
+ λ

(
−c(E0) +

n∑
i=1

∞∑
t=0

δt ωi Ỹ i
t

)
,

with the first-order conditions for a Pareto-efficient allocation, E?
0 and ωi

∗
, (defining

ϕ1 := 0):

λ
∞∑
t=0

δtỸ i
t = ϕi

∞∑
t=0

Ỹ i
t

∂U

∂Y i
t

(
(1− xi∗) Ỹ i

t , {Et}
)
, for all i = 1, ..., n , (A.114)

λ c′(E?
0) =

n∑
i=1

ϕi
∞∑
t=0

∂U

∂Et

(
{(1− ωi∗) Ỹ i

t }, Et
) ∂Et
∂E0

. (A.115)

Rearranging Eqs. (A.114) for ϕi, inserting this in Eq. (A.115), dividing by λ and

slightly rearranging yields the first-order condition for the Pareto-efficient initial level

E?
0 of public natural capital

c′(E?
0) =

n∑
i=1

∑∞
t=0 δ

tY i
t

∑∞
t=0

∂U
∂Et

(
{(1− ωi∗) Ỹ i

t }, Et
)

∂Et
∂E0∑∞

t=0 Y
i
t
∂U
∂Y it

(
(1− ωi∗) Ỹ i

t , {Et}
)

(A.47)
=

n∑
i=1

∑∞
t=0 δ

tY i
t

∑∞
t=0

∂U
∂Et

({Y i
t }, Et) ∂Et

∂E0∑∞
t=0 Y

i
t
∂U
∂Y it

(Y i
t , {Et})

Yt=
∂Yt
∂Y0

Y0
=

n∑
i=1

∑∞
t=0

∂U
∂Et

({Y i
t }, Et) ∂Et

∂E0∑∞
t=0

∂U
∂Y it

(Y i
t , {Et})

∂Y it
∂Y i0

∞∑
t=0

δt
∂Y i

t

∂Y i
0︸ ︷︷ ︸

=:WTP({Y it },{Et})

. (A.116)

A.17 Endogenizing the growth and interest rates in a general

equilibrium endogenous growth model

The constant growth rate of income, gY , considered in this paper can be derived as the

balanced growth path outcome of an endogenous growth model. To demonstrate this,

consider a model with product innovation. Output Yt is produced by means of labor L
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and a mass Mt of different types i of machines with input quantities qt(i), according to

the constant-returns-to-scale production function

Yt =
1

ϕ
L1−ϕ

∫ Mt

0

qt(i)
ϕ di , (A.117)

where ϕ is the output elasticity of machinery input.

We normalize labor input to one, L = 1, based on the assumption that each of the

n households inelastically supplies 1/n units of labor. We choose the final output good

as the numéraire. Machines fully depreciate after one period of use.

Using pt(i) to denote the price of a machine of type i, input demand by competitive

firms in the final goods sector is given by the condition that the value of the marginal

product of this machine is equal to its price, i.e.

qt(i)
ϕ−1 = pt(i). (A.118)

Blueprints for new types of machines are generated by research and development, which

uses the output as the final good as input. Using Zt to denote the input into R&D at

time t, the expected mass of new varietis developed is

Mt+1 = Mt +
1

Φ
Zt, (A.119)

with a constant Φ > 0. A firm being successful in R&D becomes the monopolistic

supplier for this type of machine. Machines are produced using the final good, such

that one unit of the final good is required to build one unit of a machine. The profit-

maximizing price pt(i) of a machine of type i is obtained by maximizing pt(i) qt(i)−qt(i)

subject to A.118, which yields pt(i) = 1/ϕ. Using this in A.118, market equilibrium

input of machine type i is qt(i) = ϕ1/(1−ϕ), and total output is

Yt = Mt ϕ
1

1−ϕ . (A.120)

We consider a balanced growth path, such that the interest factor δt is constant, δt = δ.
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The present value of monopoly profits for a firm successful in R&D is (p − 1) q/δ =

(1 − ϕ)/(δ ϕ). Under free entry, the expected present value of profits from one dollar

spent on R&D must just be equal to this one dollar, i.e.

Φ
δ

1− δ
1− ϕ
ϕ

= 1, (A.121)

from which we obtain the interest factor

δ =

(
1 +

1− ϕ
Φϕ

)−1
. (A.122)

Market equilibrium for final goods implies

Yt = nCt + Zt +

∫ Mt

0

qt(i) di = nCt + Φ (Mt+1 −Mt) +Mt ϕ
ϕ

1−ϕ . (A.123)

In a balanced growth path, Yt, Ct,and Mt must thus all grow at the same rate gY .

Households choose the intertemporal distribution of consumption to maximize

∞∑
t=0

ρt
θ

θ − 1

(
αC

θ−1
θ

t + (1− α)Et
θ−1
θ

)
, (A.124)

where ρ is the pure time discount factor of the household. As households are facing

a constant interest factor δ, the optimal intertemporal distribution of consumption is

determined by the discrete-time Keynes-Ramsey rule

(1 + gY )
1
θ =

ρ

δ

⇔ gY = (ρ/δ)θ − 1 =

(
ρ

(
1 +

1− ϕ
Φϕ

))θ
− 1. (A.125)
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