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Abstract 
 
The Convention on International Trade in Endangered Species of Wild Fauna and Flora 
(CITES) is the international agreement that regulates international trade in wildlife to prevent its 
decline. Little is known about the effectiveness of its trade restrictions and bans. Combining the 
largest available panel database on wildlife population sizes of vertebrates with the history of 
species’ inclusion into CITES, we find that populations increase by 20% after their species’ 
inclusion into CITES. This effect is driven by populations in countries with thorough 
enforcement. Outright trade bans increase wildlife, but restrictions that incentivize sustainable 
use have more immediate positive effects. 
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1 Introduction

Wildlife is in decline. This decline in natural resources has direct economic

consequences, e.g., for �sheries and agricultural production and, more gen-

erally, for ecosystem services. International wildlife trade is often seen as a

major driver of wildlife decline (Sche�ers et al., 2019). Although gauging

the extent of international trade in wildlife products is di�cult, estimates

suggest that its volume is sizeable: Global wildlife trade was estimated at

249 billion e per year (Engler and Parry-Jones, 2007).

There is an ongoing debate whether and under which circumstances

restrictions on wildlife trade are e�ective in protecting wildlife. On the

one hand, restricting trade seems an intuitive policy measure to prevent

unsustainable resource use and subsequent wildlife decline. Outright trade

bans can stigmatize consumption of wildlife products, reducing their de-

mand. Economists, on the other hand, tend to be sceptical about trade

bans, as banning wildlife trade renders the legal economic value of wildlife

to zero, reducing the incentive for local communities to protect or harvest

resources at sustainable levels. Without costly monitoring and enforce-

ment, poaching and illegal trade may replace legal trade, rendering trade

bans ine�ective. Summarizing the literature on wildlife trade restrictions,

Fischer (2010) calls for an empirical evaluation of their e�ectiveness in pre-

venting wildlife decline.1 Similarly, `t Sas-Rolfes et al. (2019) highlight the

need for evaluating the e�ectiveness of speci�c trade policy interventions

in a recent survey on illegal wildlife trade.

Our paper provides such an evaluation using the Convention on Inter-

national Trade in Endangered Species of Wild Fauna and Flora (CITES).

CITES is the international agreement that regulates and restricts interna-

tional wildlife trade to prevent wildlife decline. It uses a system of export

and import permits that applies to species listed in its appendices. The

history of species' listings in CITES provides an ideal setting to identify

the e�ects of international trade restrictions on wildlife.

It is unclear whether the current international wildlife trade policy

regime represented by CITES e�ectively prevents the decline of wildlife.2

1So do Bulte and Barbier (2005) in an earlier survey of the e�ects of trade liberal-
ization on welfare and wildlife stocks.

2For di�erent viewpoints concerning the e�ectiveness of CITES, see, e.g., Hutton and
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A naive test of CITES' e�ectiveness would compare the size of wildlife pop-

ulations of species listed in CITES with non-listed species. A challenge in

interpreting this means comparison causally is the endogeneous selection of

individual wildlife species into CITES. For example, CITES listed species

may be more likely to become extinct. Then, comparing population sizes

of CITES listed and non-listed species would deliver biased results. Other

confounding factors may correlate with both wildlife decline and CITES'

listing decisions: Commercially valuable species may be less likely to see

their international trade restricted or banned (Stokstad, 2010). Moreover,

CITES' listings may be more likely for well-known, charismatic species,

re�ecting a more general �taxonomic bias� in wildlife conservation e�orts

(Clark and May, 2002).

Our paper overcomes these challenges by using a geo-referenced un-

balanced panel of 7379 populations in 158 countries from 1950 to 2015,

the largest publicly available database on vertebrate population sizes over

time. We combine these wildlife population data with the detailed history

of species' inclusion into CITES and with data from the IUCN Red List of

Threatened Species, the world's most comprehensive inventory of species'

extinction risk. Our panel data allow us to control for unobserved species'

characteristics that drive the non-random selection of species into CITES.

This enables us to identify the causal e�ect of CITES' trade restrictions on

wildlife population sizes once a species gets listed in CITES, and determine

whether CITES e�ectively prevents the decline of wildlife.

We �nd that wildlife populations increase after their corresponding

species is listed in CITES, but only with considerable lag. This result

is driven by populations located in CITES' member countries with strong

enforcement of its rules. Populations increase by about 20% 11 to 15 years

after the species is listed in CITES, and by about 50% for species that ben-

e�t from CITES' protection for more than 20 years. Frank and Wilcove

(2019) �nd that, on average, species are listed in CITES more than 10

years after they have been identi�ed as threatened by international trade.

Our results, combined with this �nding, highlight the importance of reduc-

ing the time lag between new scienti�c evidence and species' inclusion into

Dickson (2000); Ginsberg (2002); Bulte et al. (2004); Fischer (2010); Challender et al.
(2015).
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CITES to e�ectively prevent wildlife decline.

We explore whether populations of di�erent types of species are a�ected

di�erently after their CITES' listing. Species with high economic value,

which are intentionally harvested, vulnerable species with high extinction

risk, highly-studied species, well-known species, and species with a large

body mass do not seem to bene�t di�erently from CITES protection in

countries with strong enforcement. For large species such as elephants,

rhinos, and whales, CITES protects e�ectively populations of listed species

even in member countries with weak enforcement.

Our results are robust to controlling for time-varying country-speci�c

confounding factors that may a�ect both CITES' listing decisions and

wildlife decline such as habitat loss, corruption, or armed con�icts.

We explore the two main mechanisms through which species bene�t

from CITES' protection: 1.) outright trade bans or 2.) more nuanced

trade restrictions that are meant to ensure the sustainable use of species.

This allows us to quantify the relative e�ectiveness of these mechanisms,

which are represented by CITES' two main appendices: Species listed in

Appendix I are not allowed to be traded internationally for commercial

purposes. Species listed in Appendix II may be traded internationally but

their trade is restricted to ensure that trade is sustainable and does not

threaten a species' survival. Our results show that wildlife populations in-

crease by a similar magnitude for species in both Appendix I and Appendix

II. Contrary to views that question the e�ectiveness of international wildlife

trade bans (see, e.g., Smith et al., 2003b), we �nd that trade bans prevent

wildlife decline. However, restrictions that incentivize sustainable use have

more immediate positive e�ects.

As a consistency check, we use an alternative identi�cation strategy by

exploiting quasi-natural variation in trade bans for wild birds due to bird

�u outbreaks across countries over time. We �nd that bird populations

increase after trade bans. In a placebo test, we do not �nd an e�ect of

bird trade bans on other species. We interpret these results as corroborat-

ing evidence that strict enforcement of trade bans help to prevent wildlife

decline, particularly if bans are applied for a wide range of species so that

they are more easily enforceable by customs o�cials.

Our paper relates to various strands of the literature. A broad theoreti-
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cal literature discusses the circumstances under which trade restrictions can

alleviate or exacerbate the overharvesting of renewable resources. Whether

trade bans are e�ective in protecting wildlife populations depends on the

assumptions chosen such as whether wildlife trade is imperfectly compet-

itive, whether models allow species to be illegally traded or stockpiled,

whether they consider the possibility of legal trade allowing the laundering

of poached specimens, and how the behavior of the regulator is modelled,

e.g., if it can sell or destroy seized specimens of poached species. Much of

this theoretical literature focuses on the ivory trade ban, see, e.g., Khanna

and Harford (1996), Bulte and van Kooten (1999), Burton (1999), Fischer

(2004), Heltberg (2001), and Kremer and Morcom (2000). These stud-

ies highlight the importance of country-speci�c institutional factors such

as a government's ability to enforce wildlife trade regulations for proper

management of common property resources, see, e.g., Copeland and Tay-

lor (2009). Our results document the importance of countries' enforcement

capability for CITES' e�ectiveness.

Several studies quantify the e�ectiveness of other international envi-

ronmental agreements. Aichele and Felbermayr (2012) study whether the

Kyoto Protocol, which attempts to reduce carbon dioxide emissions of its

member countries, has led to a reduction in countries' carbon footprint, i.e.,

the emissions embodied in domestic consumption and investment. They

�nd that the Kyoto Protocol has been ine�ective, as it has not reduced

global emissions. Kellenberg and Levinson (2014) analyze the e�ective-

ness of the Basel Convention, which intends to reduce the generation of

hazardous waste by restricting its shipment to countries with inadequate

environmental regulation. They �nd no evidence of a reduction in the over-

all level of international trade in waste. Contrary to the evidence in this

literature, we �nd that CITES is e�ective in its goal of preventing wildlife

decline. More generally, our paper highlights that international cooperation

helps to prevent local environmental degradation caused by global threats

such as international wildlife trade.

Our paper also relates to the literature that analyzes the e�ects of do-

mestic regulations concerning endangered species. A large part of this

literature focuses on the U.S. Endangered Species Act (ESA). Similar to

CITES, ESA's protection relies on listing endangered species. ESA im-
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plements CITES' regulations in domestic law, but has more far-reaching

powers. Whereas CITES only regulates international wildlife trade, ESA

protects species by e�ectively preventing any economic development of ar-

eas with populations of listed species, see the survey by Brown and Shogren

(1998). Metrick and Weitzman (1996) document that species' characteris-

tics determine the probability of receiving protection by ESA: Charismatic

species, particularly large mammals, the so-called �charismatic megafauna�,

are more likely to be protected, highlighting the importance of the non-

random selection of species. Ferraro et al. (2007) evaluate the e�ectiveness

of ESA's listings by studying their impact on the change in an index of a

species' endangerment status between 1993 and 2004 using 430 species from

the US. Similar to our results for CITES, they �nd that implementation is

crucial for ESA's e�ectiveness. Ando and Langpap (2018) provide a recent

survey on empirical studies of ESA's e�ectiveness, as well as on similar reg-

ulations in Australia and Canada. The literature surveyed �nds only little

evidence for the e�ectiveness of domestic regulations that intend to protect

endangered species. Our study identi�es a positive e�ect of international

wildlife trade regulation on populations using data from 158 countries over

66 years.

We also relate to a literature that empirically analyzes the consequences

of international trade bans using case studies of individual species. Hsiang

and Sekar (2016) study the e�ect of a temporary removal of the trade

ban for ivory for a one-o� international legal sale. Using an unbalanced

panel of illegal elephant killings across 38 countries, they �nd that the

temporary removal of the trade ban led to an increase in elephant poaching.

Chimeli and Soares (2017) study the e�ects of the introduction of a ban

on mahogany exports in Brazil in 2001. They �nd that illegal exports of

mahogany increase after the introduction of the trade ban and decrease

with improved monitoring and enforcement of trade bans. Taylor (2011)

documents that international trade and the absence of trade restrictions

in wildlife products explain the virtual extinction of the North American

bison. Complementing these studies of individual species, we study the

impact of CITES' e�ectiveness for more than 2000 vertebrate species.

More broadly, our paper relates to the literature on environmental ef-

fects of international trade, see the review by Cherniwchan et al. (2017).
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This literature focuses mostly on local pollution and global emission e�ects

of changes in trade policies for manufacturing goods, whereas we focus on

the e�ects of wildlife trade policy on wildlife.

The rest of the paper is organized as follows. Section 2 provides in-

stitutional background and describes the data. Section 3 describes our

identi�cation strategy. Section 4 presents results. Section 5 concludes.

2 Institutional background and data

2.1 Wildlife protection under CITES

CITES is the multilateral trade agreement that regulates wildlife trade in

endangered species. It aims at ensuring species' survival by prohibiting or

regulating international wildlife trade and the commercial use of wildlife

and its products. Species covered by CITES are listed in two appendices,

according to their degree of protection. International commercial trade in

species listed in Appendix I is prohibited, but may be allowed for species

listed in Appendix II if it does not endanger the survival of the species.3

With its entry into force in 1975, CITES protected a large number of

species. In subsequent years, species were included into CITES at one of the

Conferences of the Parties (CoPs), the bi-annual meeting of representatives

of CITES' member countries. We present the distribution of entry years of

the species in our data in Figure 1. The majority of species were �rst listed

into CITES until the mid eighties, and since then the inclusion of species

has slowed down.

Once a species is listed, CITES monitors its international trade via a

system of import permits (for Appendix I and II) and export permits (for

Appendix I). CITES member countries are expected to control all inter-

national trade in species listed in CITES, even imports of species from

non-member countries. We show the evolution of the number of member

countries over time in Figure 2. Today, CITES' membership is almost

universal, with 183 country members, more than the World Trade Organi-

zation's 164 members.
3For an overview of CITES, see, e.g., Hutton and Dickson (2000); Ginsberg (2002);

Reeve (2006); Challender et al. (2015).
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Figure 1: Distribution of year of �rst entry into CITES (species)
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Figure depicts the distribution of the �rst year a species entered into one of CITES'
appendices in our data.

CITES classi�es member countries into three categories, according to

the quality of their enforcement and compliance procedures. The classi�ca-

tion takes into account four criteria: First, that the country has designated,

at least, one Management Authority and one Scienti�c Authority. Second,

that the country prohibits trade in specimens in violation of CITES. Third,

that the country penalizes such trade; and, �nally, that the country con�s-

cates specimens illegally traded or possessed. Countries are then classi�ed

as Category 1 (those that have legislation that meet all four requirements

for e�ective implementation of CITES), Category 2 (those countries that

have legislation that is believed generally to meet one to three of the four re-

quirements for e�ective implementation of CITES), and Category 3 (those

that have legislation that is believed generally not to meet any of the four

requirements for e�ective implementation of CITES). In our analysis, we

will make use of the variation across species, time, member countries, as

well as their classi�cations to identify the e�ect of CITES on wildlife.

2.2 Data

Our focus is measuring CITES' e�ectiveness in terms of its ultimate goal,

the prevention of wildlife decline. We therefore use wildlife population size
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Figure 2: Year of entry into CITES (countries)
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Figure depicts number of countries in which CITES entered into force per year.

as our dependent variable.

Wildlife population size data.�We focus on the evolution of the pop-

ulation size of a (sub-)species s at a geographic location l at time t, i.e.,

population refers to the tuple (s, l). We use the raw data underlying the

Living Planet Index (LPI) by World Wildlife Fund (2016).4 These data are

the largest publicly-available database providing information on wildlife

population sizes over time and are routinely used to monitor the progress

of biodiversity conservation targets (see, e.g., Butchart et al., 2010 and

Tittensor et al., 2014).5

4For a description of the data, see Loh et al. (2005); Collen et al. (2009). The data
can be downloaded from http://www.livingplanetindex.org/projects?main\_pag

e\_project=LivingPlanetReport\&home\_flag=1 (downloaded 10 January 2017).
5Note that wildlife trade data for species included in the LPI raw data are not

available. Available databases such as the CITES Trade Database only contain trade
in species listed in CITES, preventing before-and-after comparisons of species becoming
listed in CITES. Furthermore, the CITES Trade Database is derived from the number
of import and export permits CITES' members submit through annual reports. These
data are measured with considerable error, and no clear rules exist on how to calculate
trade volumes from the underlying records on permits, see, e.g., Berec et al. (2018). As
pointed out by Chan et al. (2015), standard merchandise trade classi�cations such as
the Harmonized System do not distinguish trade in individual species. Even if trade
data were available, many species, including those that are regulated under CITES, are
traded illegally and hence their trade is not documented, see, e.g., `t Sas-Rolfes et al.
(2019).
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Population size data are ideal for our purpose as they react more quickly

to changes in wildlife protection than data on species' endangerment sta-

tus and whether species are (close to becoming) extinct. Extinction is a

long-run process and it can be di�cult to determine whether a species is

actually extinct.6 Declines in population sizes are directly linked to reduced

ecosystem services and ultimately, e.g., �sheries and agricultural produc-

tion. Particularly, wildlife populations can become so small that they are

functionally extinct, i.e., they cease to provide economic bene�ts, even

when complete extinction can be avoided, see Sekercioglu et al. (2004).7

Population size data in the LPI are unbalanced and not necessarily

available for consecutive years. For example, the population of Cape vul-

tures (Gyps coprotheres) in Namibia is only observed for the years 1975,

1980, 1990, and 2000. Hence we cannot calculate annual (log) growth rates

for all populations. In our empirical analysis, we therefore use a within esti-

mator instead of a �rst di�erence transformation to control for unobserved

population �xed e�ects. This allows us to incorporate the information from

those populations whose size is not observed every year.

The LPI data report population size in a variety of units, depending on

the study from which the raw data are collected: Population sizes may be

simple counts of individuals in a given geographic location, or the number

of breeding pairs; sometimes, population size is measured as the amount of

biomass in a population, i.e., in kilograms, or as the number of individuals

per a given area. In our empirical analysis, we use a log-linear regression

with species-location (i.e., population) �xed e�ects that control for these

di�erences in units of measurements across the di�erent populations.8

6For a discussion of these issues, see, e.g., Ceballos and Ehrlich (2002); Butchart
et al. (2006).

7In our �nal dataset, 3682 observations report a population size of zero, about 3%
of our �nal dataset. Note that population sizes of 0 do not necessarily imply that a
population has gone extinct, as population size data are measured with considerable
measurement error, see, e.g., Meir and Fagan (2000), and the recent upward revisions
of population size data for Gorilla gorilla gorilla by Strindberg et al. (2018). In our
dataset, of the 951 populations which record a zero population size in one year, 83
percent report a non-zero population size afterwards. We therefore assume that zeros
are due to random measurement error. If measurement errors are speci�c to certain
populations, the �xed e�ects we include in our regressions will control for this.

8By way of illustration, imagine that there are just two di�erent measurement units
used, individuals and pairs. In this case, the di�erence in measurement units is a fac-
tor of 2. By multiplying our dependent variable by this factor for all observations
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CITES data.�We combine the wildlife population size data with infor-

mation about which species are listed in CITES' Appendices I and II from

the Checklist of CITES Species by UNEP-WCMC (2017). We get the year

in which countries became CITES members from the CITES Secretariat

website.9 Data on the classi�cation of member countries according to the

quality of their enforcement and compliance procedures is from the CITES

o�cial document �Status of Legislative Progress for Implementing CITES�,

CoP17 Doc. 22 Annex 3 (Rev. 1).

Corruption at the border data.�CITES being an international trade

agreement, its rules have to be implemented by national governments and

enforced by customs o�cials. In countries with high levels of customs cor-

ruption, CITES may therefore be less e�ective. As a proxy for corruption at

the border, we use the share of a country's population that answered �yes�

to the question �in the last 12 months anyone living in a household paid

a bribe in any form to customs� (variable �Paid Bribe: Customs�) in the

Global Corruption Barometer by Transparency International as reported

in the Quality of Government Basic Dataset (version Jan17) by Dahlberg

et al. (2017).

CITES' sanctions data.�CITES allows to impose sanctions on coun-

tries that are not compliant with CITES regulations. If a country is sanc-

tioned, all commercial trade in CITES-listed species is suspended. Sanc-

tions are indicative of a lack of enforcement of CITES. It is likely that

CITES is not e�ective in sanctioned countries. In a subsample analysis,

we therefore exclude all populations in sanctioned countries for those years

where the sanctions are applied. To do so, we rely on the historical data on

suspensions of all commercial trade in CITES-listed species that is avail-

measured in pairs, we can transform all observations measured in pairs to individuals.
This factor is constant over time, as the measurement unit for a population does not
change over time in our dataset, and is not a�ected by CITES. It is hence perfectly
captured by a population �xed e�ect µsl. More generally, all observations can be con-
verted to the same unit of measurement by multiplying by bsl, a population-speci�c,
time-invariant scale factor (Nsame unit

slt = bslNslt). Taking the natural logarithm, this
becomes (lnNsame unit

slt = ln bsl + lnNslt). Hence, including a population-speci�c �xed
e�ect in combination with using the dependent variable in logs controls for the di�erent
units of measurement problem and we can then interpret regression coe�cients in the
usual way, as a semi-elasticity that is independent of the unit of measurement.

9The �List of Contracting Parties� is available at https://www.cites.org/eng/di
sc/parties/chronolo.php.
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able from Sand (2013). Sand lists sanctions for the period 1985-2013. We

update sanctions data until 2016 by using the information provided on the

CITES webpage regarding �Countries currently subject to a recommenda-

tion to suspend trade�.10

IUCN Red List data.�We estimate separate species-type speci�c treat-

ment e�ects because CITES may be more or less e�ective for di�erent types

of species. For example, the protection o�ered by CITES may be more ef-

fective for species with commercial value (or species with �intentional use�),

as it may prevent overharvesting. We use data on intentional use from the

IUCN-CMP Uni�ed Classi�cation of Direct Threats (version 3.2), which is

a re�ned version of the classi�cation introduced by Salafsky et al. (2008).11

We also estimate a separate e�ect for species that are vulnerable. We use

the IUCN Red List of Threatened Species classi�cation on extinction risk

and consider as vulnerable all species that are classi�ed as �critically en-

dangered�, �endangered�, and �vulnerable�, i.e., species facing extremely or

very high risk of extinction in the wild.12

Citizen science data (iNaturalist).�We estimate a separate treatment

e�ect for well-known species. To identify these species, we use citizen

science data on users' identi�cations for species from iNaturalist.13 This

database contains information about exemplars of species identi�ed by the

community, mostly by photos, going back to 1970. Today, users can upload

their photos via a smartphone app.

Species traits data.�We estimate a separate treatment e�ect for large

species, i.e., species with larger than average body mass. We use data from

the EltonTraits 1.0 dataset, a species-level compilation from various sources

of species' attributes of birds and mammals by Wilman et al. (2014).14

10This information is available at https://www.cites.org/eng/resources/ref/su
spend.php, but is updated with frequency, hence countries that are no longer subject to
a recommendation to suspend trade, are removed from the list. We update the sanctions
data with the help of the Wayback Machine - Internet Archive.

11We downloaded these data from the IUCN Red List API-v3 (http://apiv3.iucn
redlist.org/api/v3/docs) on 20 February 2019.

12We downloaded these data from the IUCN Red List API-v3 on 8 November 2017.
13Data downloaded from the iNaturalist webpage https://www.inaturalist.org/ho

me. Data downloaded are for taxa on amphibians, birds, �shes, mammals, and reptiles.
Data downloaded on 12 and 13 November 2019.

14The main sources for the body mass data are Smith et al. (2003a) for mammals and
Dunning (2007) for birds.
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Data on spread and scope of avian in�uenza (�bird �u�).�To con-

�rm the mechanisms underlying our results, we consider whether country-

speci�c trade bans unrelated to CITES have an impact on wildlife. Trade

bans on birds were imposed following the outbreak of the bird �u in South-

East Asia in late 2003 and its subsequent spread to other continents. We

use noti�cations and follow-up reports noti�ed by World Organisation for

Animal Health (OIE) member countries of local bird �u outbreaks to iden-

tify countries a�ected by trade bans.15

3 Research design and identi�cation

We estimate the causal e�ect of CITES' listings on the size of species' pop-

ulations. Figure 3 shows the evolution of the average population size for

species that are listed in CITES at some point of time within our sample

period and those which are not, respectively, i.e., the graph does not take

into account that di�erent species enter in di�erent years. The �gure shows

predicted log population size per year for these two groups. To calculate

predicted population sizes, we run a regression of log population sizes on a

population �xed e�ect to control for the di�erence in measurement units,

and di�erent year e�ects for CITES listed and non-listed (never listed)

species. Figure 3 shows the average of the predicted values from this re-

gression excluding the population �xed e�ect to ensure that we use the same

measurement unit for all observations. Species protected by CITES have

smaller populations before CITES entered into force in 1975, i.e., there are

pre-existing di�erences in listed and non-listed species which we will con-

trol by the inclusion of population �xed e�ects. The �gure also shows a

dashed line with the evolution of the di�erence in population size between

listed and non-listed species. This line allows a coarse comparison of the

relative pre-existing trends for the period before any species are treated,

i.e, before 1975. We see that population size seems to move on parallel
15We use countries' noti�cations and follow-up reports of highly pathogenic avian

in�uenza due to H5 and H7 serotypes available at https://www.oie.int/en/animal-
health-in-the-world/update-on-avian-influenza/. These noti�cations are used
to impose trade bans on wild birds originating in countries with a noti�ed outbreak,
see, e.g., the corresponding legislation of the European Union (European Commission
2005).
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Figure 3: Average population size: Listed and never listed species by year
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Figure depicts the (predicted) population size per year for species that have ever been
listed in CITES versus species that have never been listed in CITES.

trends before CITES entered into force.16 After 1975, species start to get

listed in CITES' appendices and trends start to diverge.

The intuition derived from eyeballing Figure 3 is also borne out when

using a formal statistical test for equality of trends following the approach

by Antwi et al. (2013). As species start to be included into CITES with its

entry into force in 1975, we only use data of populations observed before

1975 for this test (N = 14418). We then regress population size on pop-

ulation (species-location) and year �xed e�ects, and an interaction term

of the linear time trend with EV ERCITESs, EV ERCITESst, where

EV ERCITESs indicates whether species s is part of the treatment group,

i.e., a species included into CITES' appendices at some point in time in

our dataset. There is no signi�cant di�erence in the trends of treatment

and control groups prior to the entry into force of CITES.17

16Note that the number of observations included in the �treated� group is considerably
lower than the number of observations included in the �control� group, which explains
the larger variance in the average population size for listed species.

17The estimated coe�cient for EV ERCITESst is 0.016 (s.e. = 0.010, p-value =
0.108).
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One of the reasons for pre-existing di�erences between listed and non-

listed species is that the probability of being listed in CITES is di�erent

across species. Metrick and Weitzman (1996) document that di�erent types

of species have di�erent probabilities of getting listed in the U.S. Endan-

gered Species Act. We con�rm their result for CITES. In Appendix A, we

show that large mammals (the so-called �charismatic megafauna�), vulnera-

ble species, and species used intentionally have a higher probability of being

listed in CITES. Similarly, we �nd higher probabilities of getting listed for

mammals, birds, and reptiles than for �shes. This provides evidence of a

selection bias driven by species' time-invariant characteristics.

The probability of a species getting listed may change over time because

new scienti�c evidence on the status of a species becomes known. For every

population in our data, the LPI data reference the source of the population

size data in the scienti�c literature. This allows us to construct a balanced

panel dataset for all species for the years 1950 to 2015 where we count

the accumulated number of studies available in a given year for a speci�c

species, ACCUMULATEDSTUDIESst. We run the following regression:

CITESst = αs + βACCUMULATEDSTUDIESst + δt+ εst, (1)

where CITESst is an indicator variable which is one if species s is listed

in CITES in year t and zero otherwise, δt is a time trend, and αs is a

species �xed e�ect that controls for all time-invariant species characteristics

in�uencing the selection into CITES as documented in Appendix A. We

cluster standard errors at the species level. We present results in Table 1.

We �nd a signi�cant time trend, with the probability of being listed in

CITES increasing by 0.3 percentage points per year. Importantly, we do not

�nd a signi�cant e�ect of the number of accumulated studies. Accordingly,

the explanatory power of the regressor is weak, which together with the

time trend contributes only 5% percentage points to the overall R2 of the

pooled regression. Comparing the two columns reveals that the majority

of the variation in CITESst is explained by the species �xed e�ect.

These results inform our identi�cation strategy to estimate the e�ect

of CITES' listings on wildlife populations. Including population-speci�c

�xed e�ects remedies the documented time-invariant selection bias by fo-
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Table 1: Determinants of CITES listings (panel)

(1) (2)

accumulated number of studies available 0.005 −0.001
(0.003) (0.002)

trend 0.003 0.003
(0.000) (0.000)

R2 0.05 0.59
N 156420 156420

Notes: Table 1 reports estimated coe�cients from a panel linear probability model. The dependent
variable is a dummy variable that equals one when the species is listed in CITES in year t and zero
otherwise. As regressors we use a variable that measures the accumulated number of published studies
in our dataset in t on a speci�c species and a time trend. Column (1) estimates Equation (1) using
pooled OLS. Column (2) adds a species �xed e�ect. Standard errors are in parentheses and are clustered
at the species level.

cusing on within-population variation for a given species. In addition, our

population �xed e�ect eliminates the time-invariant taxonomic bias. It

also controls for systematic time-invariant di�erences between species that

have been listed early on in CITES and those that have been listed later.

We control for the trend in the probability of species becoming listed by

including year �xed e�ects. Our baseline regression is given by:

lnNslt = µsl + ηt + β(in CITES)st + εslt, (2)

where Nslt is the size of the population of a species s in location l in year

t.18 (in CITES)st is a dummy variable that is one when a species is listed in

one of CITES' appendices in a given year, and zero otherwise. µsl is a time-

invariant species-location-speci�c (i.e., population-speci�c) �xed e�ect that

controls for factors such as, e.g., habitat suitability, which determine popu-

lation size of a species in a given location. Even in a world without any loss

of wildlife caused by human activity, species are unevenly distributed across

space according to their habitat. For example, red fox (Vulpes vulpes) pop-

ulations vary considerably across their geographical range, which is the

largest within the order Carnivora, see Ho�mann and Silero-Zubiri (2016).

This highlights the importance of allowing for di�erent base levels of a

species' abundance in di�erent populations. In addition, species di�er in

terms of both their abundance and their extinction risk due to factors such
18Note that population refers to a given species s in location l. Hence, for a given

year, there may be several species in the same location, and the same species may occur
in several locations.
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as body weight, size, attractiveness to humans, economic value and re-

productive rates, see Hutton and Dickson (2000); Cardillo et al. (2005);

McClenachan et al. (2016). ηt is a year-speci�c �xed e�ect that controls

for time-varying factors that in�uence treatment and control species in a

similar way. Finally, εslt is an error term that measures random �uctu-

ations in population size. This regression is equivalent to a generalized

di�erences-in-di�erences approach where species protected by CITES are

the treatment group and the control group comprises species that are not

included in the CITES appendices.19 We keep all populations with at least

four observations over time. Our �nal sample includes 7379 populations

of 2370 species in 158 countries over 66 years (from 1950 to 2015). We

follow the suggestion of Bertrand et al. (2004) and cluster standard errors

at the species level to allow for correlation within species which may be

introduced as our treatment variable is de�ned at the species level.

We later relax the assumption of constant treatment e�ects over time

by estimating the following event study speci�cation:

lnNslt =
∑

τ∈{−10,−5,0,5
10,15,20,>20}

βτ1(t = tCITESs + τ)st + µsl + ηt + εslt. (3)

We regress the log population size on a set of relative time dummies that

indicate the number of years before or after a species' listing in either

CITES Appendix I or II. Our interest lies in estimating the treatment

e�ect βτ on population size τ years after a species is included into CITES'

appendices.20 The set of time dummies allows the treatment e�ect to vary

with time τ since the year a species was listed into CITES' appendices,

tCITESs . We consider di�erent e�ects for the year of inclusion (τ = 0), the

�rst �ve years after listing, and then, in �ve year intervals up to 20 years.

We also consider a separate treatment e�ect for species listed for more than

20 years.

We estimate leading values of the treatment to test the reliability of
19For our estimation, we use the Stata package reghdfe by Correia (2016).
20We write τ = −10 for years 6 to 10 years before a species' CITES listing, τ = −5

for years 1 to 5 before a species' CITES listing, τ = 0 for the year of a species' CITES
listing, τ = 5 for years 1 to 5 after a species' listing into CITES, τ = 10 for years 6 to
10, τ = 15 for years 11 to 15, τ = 20 for years 16 to 20, and τ > 20 for more than 20
years after a species' CITES listing.
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our identi�cation strategy. A statistical signi�cant e�ect for τ = −10 or

τ = −5 indicates pre-existing di�erences in the trends between listed and

non-listed species, which may cast doubt on the common trend assumption

underlying our approach.

As an additional test of the parallel trend assumption, we follow the

recommendation by Bilinski and Hat�eld (2019) and estimate a model

that uses the same treatment variables as in Equation (3) but we include

EV ERCITESst instead of placebo treatments in the years before inclu-

sion into CITES. Note that in this speci�cation with a full set of treatment

dummies for all years after treatment starts, θEV ERCITESst directly

measures a violation of the parallel trend assumption prior to treatment,

i.e., inclusion into CITES. We estimate θ̂ = 0.009 (s.e. = 0.006, p-value =

0.118). Hence we can rule out a violation of the parallel trend assumption

of trend di�erences larger than the bounds of the 95% con�dence interval

of θ̂, [−0.002, 0.021], validating our identi�cation strategy.

4 Results

4.1 E�ect of CITES listings on wildlife population sizes

Species listed in CITES.�We present results of Equation (2) in column

(1) of Table 2. After a species is listed in CITES, the populations of this

species increase by 21%.21 Most of the species in our sample were included

into CITES in 1975 (see Figure 1). There may be a di�erence in CITES'

e�ectiveness between the species listed in 1975 and those that were listed

later. We therefore estimate separate treatment e�ects for these two groups

of species.22 In column (2), we de�ne treatment only for those species that

were included into CITES in 1975. We estimate a similarly sized e�ect as

in column (1) but with low precision. In column (3), we de�ne treatment

only for those species included after 1975. The e�ect is again of similar size,

and is now precisely estimated. In column (4), we include both dummies

21We calculate marginal e�ects of variable k as (eβk − 1)× 100.
22This also checks for the similarity of treatment e�ects for early and late treated

species, in the spirit of Goodman-Bacon (2019). Note that it is unclear how the decom-
position of di�erence-in-di�erences estimates in balanced panels proposed by Goodman-
Bacon (2019) applies in our case since we use an unbalanced panel.
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Table 2: E�ect of CITES on population size (species listed in CITES)

(1) (2) (3) (4)

in CITES 0.193
(0.073)

in CITES in 1975 0.214 0.224
(0.125) (0.125)

in CITES after 1975 0.173 0.179
(0.084) (0.085)

N 111292 111292 111292 111292

Notes: Table 2 reports estimated regression coe�cients from a panel regression of log of population size on a dummy
variable that equals one when the population is listed into CITES, along with a set of population and year �xed e�ects.
Standard errors are in parentheses and are clustered at the species level. Column (1) estimates a regression in which the
treatment dummy equals one for species listed in CITES. Column (2) includes a variation of the treatment dummy that
equals one for species listed in CITES in 1975. Column (3) includes a variation of the treatment dummy that equals one
for species listed in CITES after 1975. Column (4) includes both treatment dummies for species listed in CITES in 1975
and after 1975, separately.

simultaneously, with similar results. We cannot reject the null hypothesis

that the e�ect for species listed in 1975 and after 1975 is the same (p-value

= 0.754), but their e�ect is jointly signi�cant (p-value = 0.031).

We allow the treatment e�ect of CITES listings to vary over time in

our event study speci�cation given in Equation (3). We present estimates

in Figure 4. Results con�rm that CITES listings have a positive e�ect

on species' population sizes, however, the e�ect of CITES does not occur

immediately, as it takes about 16 to 20 years until populations of CITES-

listed species increase in size as a consequence of the species' listings in

CITES. In addition, the pre-trend variables are not signi�cant, validating

the common trend assumption.

As in Table 2, we allow for separate e�ects of species listed in 1975 and

after 1975. We present results in Appendix Figure 1. We �nd a similar

pattern of the estimated coe�cients for both species listed in 1975 and those

listed after 1975. It takes about 16 to 20 years until populations of CITES-

listed species increase. Again, precision of the estimates is considerably

lower when singling out 1975, probably because we observe the majority of

populations after 1975. The e�ect of CITES on population sizes increases

over time, as wildlife populations slowly recover. We therefore stick to the

event study speci�cation in the following.

CITES' member countries.�Until now, the set of treatment dummies

takes the same values for all populations of a given species. Some popula-

tions of protected species in our data are located in a country which was
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Figure 4: E�ect of CITES on population size (species listed in CITES)
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This �gure shows coe�cient estimates from Equation (3), i.e., a panel regression of log
of population size on a set of dummy variables indicating the years since a species'
entry into CITES, along with a set of population and year �xed e�ects. 95% con�dence
intervals are displayed around each point estimate. Standard errors are clustered at the
species level. Number of observations: 111292.

not a CITES member country at the time of observation. CITES members

are expected to apply CITES regulations also to wildlife trade originating

from non-member countries (see Article X of CITES). Therefore, CITES

in principle should also protect species in non-member countries. If the

protection of a species is only partly enforced, our baseline estimates can

be interpreted as the intention-to-treat e�ect of the inclusion in CITES.

Still, CITES' listings may be more e�ective to protect wildlife populations

in member countries. We therefore map each population to the country in

which it is located. This allows us to interact our species-speci�c treatment

variable with a dummy variable indicating whether the country in which

the population is located is a member of CITES that year.

Results are presented in Figure 5. Pre-trends are not signi�cant. Judg-

ing by the con�dence intervals, results are similar to the event study results

presented in Figure 4, i.e., membership of the country where a population

is located does not seem to matter much. Point estimates are slightly

smaller and more precisely estimated. This is not surprising. Article X

of CITES stipulates that trade with non-member countries is only allowed
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Figure 5: E�ect of CITES on population size (species listed in CITES, in
CITES' member countries)
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This �gure shows coe�cient estimates from a panel regression of log of population size
on a set of dummy variables indicating the years since a species' entry into CITES
interacted with a variable indicating whether the country is a CITES member in year
t, along with a set of population and year �xed e�ects. 95% con�dence intervals are
displayed around each point estimate. Standard errors are clustered at the species level.
Number of observations: 111292.

when essentially equivalent documentation, particularly export permits,

are provided by any potential trader, and countries explicitly are allowed

to even apply stricter standards to non-member country trade. Therefore,

the slightly lower coe�cients could be interpreted as evidence that CITES

membership of countries may actually facilitate trade with subsequent neg-

ative e�ects on population sizes, as it allows for an easier provision of export

permits compared to non-member countries.23 Results con�rm the lagged

and persistent positive e�ect of CITES listing on population sizes. Because

these results are more conservative and more precisely estimated, we pro-

ceed in the rest of this section and in Section 4.2 with this variable, i.e.,

considering species listed in CITES and CITES' member countries.

Corruption at the border.�Countries with high levels of corruption may

limit the success of conservation projects by reducing e�ective funding levels
23Given the size of the con�dence intervals, one should not overinterpret these results.

We explore the e�ects of country-speci�c enforcement of CITES further below. For a
detailed discussion of the provisions of Article X and their implementation, see Sand
(2013) and Wijnstekers (2011), particularly pages 339-342.

20



Figure 6: E�ect of CITES on population size, considering corruption in
countries (species listed in CITES, in CITES' member countries)
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This �gure shows coe�cient estimates from a panel regression of log of population size
on a set of dummy variables indicating the years since a species' entry into CITES
interacted with a variable indicating whether the country is a CITES member in year t,
and the interaction of one minus a variable indicating the share of population in country
c answering �yes� to the question �in the last 12 months anyone living in a household paid
a bribe in any form to customs�, along with a set of population and year �xed e�ects.
95% con�dence intervals are displayed around each point estimate. Standard errors are
clustered at the species level. Number of observations: 100728. The di�erence in the
number of observations compared to Figure 5 arises from missing data in the corruption
variable for some countries with wildlife populations.

and distorting priorities (see Smith et al., 2003b). The relationship between

(bad) governance and wildlife (decline) has been discussed in, e.g., Barrett

et al. (2006). We interact the set of dummy variables indicating the years

since entry into CITES with a variable indicating whether the country is a

CITES member in year t, and the interaction of one minus a variable indi-

cating the share of population in country c answering �yes� to the question

�in the last 12 months anyone living in a household paid a bribe in any form

to customs� (variable �Paid Bribe: Customs�, see Dahlberg et al., 2017).

Hence, we allow corruption at the border to vary the �dosage� of the e�ec-

tiveness of CITES. Results obtained in Figure 6 con�rm the lagged positive

e�ects of CITES on species' population size for less corrupt countries.

Sanctions.�Under Article XIV.1(a) of CITES, member countries can

sanction other countries if they do not comply with CITES regulations,
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Figure 7: E�ect of CITES on population size, for non-sanctioned countries
(species listed in CITES, in CITES' member countries)
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This �gure shows coe�cient estimates from a panel regression of log of population size
on a set of dummy variables indicating the years since a species' entry into CITES
interacted with a variable indicating whether the country is a CITES member in year t,
along with a set of population and year �xed e�ects. The sample drops populations in
sanctioned countries for those years in which the sanctions were applied. 95% con�dence
intervals are displayed around each point estimate. Standard errors are clustered at the
species level. Number of observations: 110852.

e.g., by not passing local legislation to implement CITES.24 We identify

the populations located in countries and observed during years when the

sanctions were in place and drop them from the sample. In the remaining

sample of populations located in countries without sanctions, the lagged

positive e�ect of CITES is con�rmed, see Figure 7.

Member countries' implementation and enforcement.�Some countries

may implement and enforce CITES more stringently than others. Fol-

lowing the previous results that CITES' listings are e�ectively protecting

species in countries that are less corrupt and that are non-sanctioned, we

analyze whether the e�ectiveness of CITES might di�er by a country's im-

plementation and enforcement level. If a country is not implementing or

enforcing CITES regulations properly, we should not expect CITES to have

an impact on the populations located in these countries. To check this, we

create two dummy variables, one that identi�es populations in Category
24For an overview of CITES' sanction regime, see Sand (2013).

22



Figure 8: E�ect of CITES on population size for species listed in CITES
and populations in CITES' member countries
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This �gure shows results from a panel regression of log of population size on a set of
treatment dummies, along with a set of population and year �xed e�ects. The left
panel shows the coe�cient estimates of dummy variables indicating the years since a
species' entry into CITES interacted with a variable indicating whether the country is
a CITES member in year t for non-�Category 1� countries. The right panel shows the
coe�cient estimates of dummy variables indicating the years since entry into CITES
interacted with a variable indicating whether the country is a CITES member in year
t for �Category 1� countries. 95% con�dence intervals are displayed around each point
estimate. Standard errors are clustered at the species level. Number of observations:
111292.

1 CITES' member countries, i.e., countries whose national legislation fully

complies with the requirements of CITES, and the other for no Category

1 countries. We interact these dummies with the interaction of each of the

treatment dummies with the dummy variable for CITES' members. Our

results in Figure 8 show that CITES has a signi�cant lagged e�ect on popu-

lation sizes in Category 1 countries only, stressing the importance of proper

implementation of CITES. These results show evidence of heterogeneous

treatment e�ects at the country level, as CITES is e�ective in countries

with strong enforcement. In what follows, we analyze whether species with

di�erent characteristics bene�t di�erently from CITES protection.
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4.2 Species-type speci�c treatment e�ects

We have seen in the previous section that CITES is e�ective in countries

that properly implement and enforce CITES, but its e�ect occurs mostly

with a 16 to 20 year lag. To shed more light on the e�ectiveness of CITES,

we explore whether treatment e�ects di�er across di�erent types of species.

For ease of exposition, we only include the last treatment dummy (τ > 20)

in these regressions instead of the full set of lags. We estimate separate

e�ects for non-�Category 1� member countries (i.e., where CITES is poorly

implemented or enforced) and for �Category 1� countries (i.e., where CITES

is e�ectively implemented or enforced). We present results in Appendix

Table 2. We consider the following di�erent groups of species:

Intentionally-used species.�Some species have a direct economic value

as they are used for di�erent purposes, and as a consequence they are

intentionally harvested with potential negative e�ects on their population

sizes. We create an indicator variable for species with intentional use,

i.e., where the species is the target of economic activity. Population size

increases for species listed in CITES for �Category 1� countries only. We

estimate a negative coe�cient for the interaction term, but due to the lack

of precision, it is not statistically signi�cant, see column (1).

Vulnerable species.�The IUCN Red List provides an evaluation of the

extinction risk of species using di�erent categories. We identify species that

are classi�ed as either �critically endangered�, �endangered�, or �vulnerable�

by the IUCN Red List as vulnerable species and create the according inter-

action term, see column (2). We �nd that CITES only increases population

size in �Category 1� member countries. The interaction term for vulnerable

species is not precisely estimated.

Highly-studied species.�Some species receive more funding for their

conservation and hence are more studied by researchers (see, e.g., Bram-

billa et al., 2013; Colléony et al., 2017). This may be because some species

are more well-known and have particularly desirable features in the view of

the general public, e.g., the �cuteness� of koalas (Phascolarctos cinereus).25

CITES' e�ectiveness may be di�erent for these highly-studied species. Our
25More generally, the less similar a particular taxonomic order is to humans (i.e., the

larger its phylogenetic distance), the lower the number of scienti�c studies on this species
(Martín-López et al., 2009).
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population data contain information about the scienti�c study from where

the population data are obtained. We therefore count the number of stud-

ies per species and year and create a dummy variable for those species for

which the number of studies is larger than the sample average. We present

results in column (3). We do not �nd evidence that CITES e�ectiveness

changes for highly-studied species.

Well-known species.�The number of scienti�c studies may not fully

re�ect how well-known a species is in the general public. We therefore use a

more direct proxy by using data from the citizen science project iNaturalist.

Contributors to iNaturalist can identify the species of the animal they have

seen using their smartphone and have the possibility to corroborate the data

by con�rming the species identi�ed by other users in the iNaturalist app.

Di�erent users should agree more often on a species the more well-known it

is. We calculate the average number of identi�cation agreements by species

and year. We interpret a higher than average number of agreements as an

indication that a species is well-known. Column (4) shows that CITES'

e�ectiveness does not depend on how well-known a species is.

Large species.�We consider species-type speci�c treatment e�ects for

�charismatic megafauna� as a species' charisma may be a function of its

physical size (see Metrick and Weitzman, 1996). We create a variable for

large species as a dummy that equals one for those species with a higher

than average body mass in our sample, and zero otherwise.26 Results in

column (5) show that CITES' e�ectiveness is not in�uenced by how large

a species is. According to our results, CITES increases population size in

�Category 1� member countries for both large and other species. In non-

�Category 1� member countries, CITES increases the population size only

of large species.

While our results show evidence of heterogeneous treatment e�ects

across countries as CITES is only e�ective in countries with strong en-

forcement,27 species with di�erent characteristics do not seem to bene�t

di�erently from CITES. We therefore explore the impact of unobserved

time-varying country-level confounding factors in the next section.
26In this group, our sample includes species that are well-known under their common

names bu�alo, elephant, gira�e, hippopotamus, manatee, rhino, walrus, and whale.
27Excluding the case of megafauna, as CITES is e�ective for large species in non-

�Category 1� member countries.
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4.3 Controlling for country-speci�c time-varying con-

founding factors

Our results have shown the importance of countries' implementation and

enforcement. More generally, countries' attitudes towards protecting

wildlife, the size of their wildlife populations, and voting in favor of list-

ing further species at one of the CoPs are likely correlated. Over time,

these attitudes may change due to changes in countries' governments as

well as changes in societal attitudes and awareness concerning environmen-

tal issues. These and other time-varying country-speci�c factors that a�ect

both the probability of a species' listing in CITES and its population size

may bias our results. For example, a country's level of corruption and the

occurrence of (civil) wars correlate with wildlife decline (see Smith et al.,

2003b and Daskin and Pringle, 2018). The extent of agricultural produc-

tion also varies across countries, and increases in agricultural production

are a key driver of habitat loss and subsequent wildlife decline (see Green

et al., 2005).

To control for these and other unobserved country-speci�c time-varying

factors, in a �rst step, we include country-speci�c trends by augmenting

Equation (3) with δct. To check robustness, we consider several speci�-

cations that account for di�erent functional forms of the country-speci�c

time trends. Following Neumark et al. (2014), we consider polynomials

of orders 2 to 5 for country-speci�c trends, and we compare results with

our main speci�cation (i.e., without country-speci�c trends). Results in

Appendix Table 3 show the robustness of our baseline results. Across all

speci�cations, pre-trends are not signi�cant. For all speci�cations, we ob-

tain a positive and signi�cant e�ect of CITES on population sizes 16 to 20

years after species' listing. We also obtain a positive and signi�cant e�ect

of CITES after 11 to 15 years of listing the species in CITES at a 10%

of signi�cance level for all speci�cations, except for our main speci�cation

(i.e., without country-speci�c trends).

In a second step, instead of country-speci�c time trends, we include

country-year �xed e�ects into our model to control for arbitrary shocks

across countries and time, e.g., time-varying enforcement and compliance

patterns over CITES signatory and non-signatory parties.
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Figure 9: E�ect of CITES on population size, including country-speci�c
trends, or country-year FEs (species listed in CITES)
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This �gure shows coe�cient estimates from an event study speci�cation, i.e., a panel
regression of log of population size on a set of dummy variables indicating the years
since a species' entry into CITES, along with a set of population �xed e�ects. The left
panel shows the coe�cient estimates of a speci�cation that includes country-speci�c time
trends. The right panel shows the coe�cient estimates of a speci�cation that includes
country-year �xed e�ects. 95% con�dence intervals are displayed around each point
estimate. Standard errors are clustered at the species level. Number of observations:
111292 (left panel) and 109961 (right panel).

Figure 9 displays results for our event study speci�cation augmented

with the country-speci�c linear trends (in the left panel) and country-year

�xed e�ects (in the right panel). Obtained results are consistent with our

main �ndings and con�rm that listing species in CITES has a positive e�ect

on species population size. This e�ect is, however, lagged and starts to be

signi�cant from 16 to 20 years after listing.

4.4 Is CITES e�ective because it bans wildlife trade

or because it enables sustainable wildlife trade?

We have established that inclusion into CITES leads to an increase in the

size of wildlife populations. Until now, our analysis has remained silent on a

key debate concerning CITES. The main way how CITES o�ers protection

for species is via inclusion into either its Appendix I or Appendix II. These

two appendices represent two di�erent approaches to wildlife conservation.
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Species listed in Appendix I cannot be traded internationally for commer-

cial purposes, i.e., it imposes an international trade ban. Species listed in

Appendix II can be traded internationally as long as this trade is sustain-

able and does not endanger the survival of the species (�sustainable use�).

Which of these two approaches is more e�ective in protecting wildlife is

debated among conservationists, policy makers, and the wider community.

Economic theory as well as case studies provide con�icting arguments.

On the one hand, prohibiting trade may have negative e�ects as it

reduces the (international) legal value of wildlife to zero, reducing economic

incentives to protect wildlife. Also, enforcing wildlife trade bans is di�cult.

Bans reduce the legal supply of goods from wildlife, but do not directly

a�ect demand. Hence, prohibiting trade creates incentives for poaching

and trade may be diverted to illegal channels, rendering bans ine�ective.

At the same time, bans may stigmatize the purchase and possession of

goods derived from endangered species, and hence may reduce demand as

well, see Fischer (2004).

On the other hand, sustainable use of species listed in Appendix II

allows local communities to generate income from their legal use in the long

run (Rivalan et al., 2007; Challender et al., 2015). However, it may increase

demand by legitimizing the consumption of wildlife goods. Consumers may

interpret certi�cates which assure goods are produced in accordance with

CITES as a go-ahead without any negative environmental consequences.

It may also allow poachers to launder illegally harvested specimens in the

legal market, see Fischer (2004).

To disentangle which mechanism, trade bans or sustainable use, dom-

inates the positive e�ect of CITES on wildlife population sizes, we distin-

guish species listed in Appendix I and species listed in Appendix II. In

Equation (3) we have de�ned tCITESs as the year when a species s is in-

cluded in either Appendix I or II for the �rst time, whichever year comes

�rst. We now distinguish whether a species has ever been listed in Ap-

pendix I or Appendix II. We show the distribution of years when a species

in our sample is �rst listed in one of the two appendices in Figure 10. There

has been a movement away from Appendix I in recent years and species

now enter CITES via its Appendix II.28

28Note that the number of species entering into any of CITES' appendices depicted in
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Figure 10: Distribution of year of �rst entry into CITES' Appendix I and
Appendix II
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Figure depicts the distribution of the year a species entered into Appendix I (left panel)
and Appendix II (right panel) in our data.

We show the results of two regressions in Figure 11. The left panel

shows coe�cients of an event study where we de�ne treatment as the year

when a species is listed in Appendix I. The right panel shows the results for

a regression where we de�ne treatment as the year when a species is listed

in Appendix II. We �nd that population sizes of species included into either

Appendix I or II increase by similar amounts. However, the positive e�ect

on wildlife population sizes is signi�cant after 6 to 10 years of inclusion into

Appendix II, whereas we �nd a positive and signi�cant e�ect for species

included into Appendix I after 16 to 20 years. Encouraging sustainable use

seems to be e�ective sooner than trade bans. This may be due to incomplete

enforcement of trade bans that need strict species-speci�c controls to be

e�ective, whereas sustainable use is to some extent self-enforcing, as it

creates incentives to protect wildlife to ensure revenues in the long-run.

Some species may move from Appendix II to Appendix I (they get �up-

listed�) or from Appendix I to Appendix II (they get �downlisted�). The

Figure 1 is not the sum of species entering in Appendix I and Appendix II as species can
have been uplisted or downlisted over time. For example, the Mauritius kestrel (Falco
punctatus), a falcon from Mauritius, was included into Appendix II in 1975 and uplisted
to Appendix I in 1977, hence it appears in both the left and right panel of Figure 10,
but only once in Figure 1.
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Figure 11: E�ect of CITES on population size (App. I vs. App. II),
including country-year FEs (species listed in CITES)
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The left panel shows coe�cient estimates from an event study speci�cation, i.e., a panel
regression of log of population size on a set of dummy variables indicating the years
since a species' entry into CITES' Appendix I. The right panel shows coe�cients from a
separate estimation where dummy variables indicate the years since entry into CITES'
Appendix II. Both regressions include population and country-year �xed e�ects. 95%
percent con�dence intervals are displayed around each point estimate. Standard errors
are clustered at the species level. Number of observations: 109961.

previous regressions ignored these dynamics. We therefore take into ac-

count a species' history of being uplisted or downlisted as a robustness

check. For example, the bald eagle (Haliaeetus leucocephalus) was down-

listed from Appendix I to Appendix II in 2005, while the African elephant

(Loxodonta africana) was �rst listed in CITES' Appendix II in 1977, and

uplisted to Appendix I in 1990. Listings in CITES appendices can occur

at any taxonomic level, i.e., either individual (sub-)species are included in

an appendix or a whole taxonomic group (genus, family, order) is included,

i.e., groups of related species. The sturgeon, the source of sought-after

caviar, is a good example. The common name sturgeon refers to 27 species

which are part of the family Acipenseridae, which itself is part of the larger

order Acipenseriformes. In 1975, the species Acipenser oxyrinchus was in-

cluded in Appendix I. In 1979, this species was downlisted to Appendix

II. In 1998, the whole order Acipenseriformes was included in Appendix II.

The family Lemuridae, a group of primates found primarily in Madagascar,

was included in Appendix I in 1975, except the probably best known lemur
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species, the ring-tailed lemur (Lemur catta), which was included in Ap-

pendix II. Lemur catta was then uplisted into Appendix I in 1977. We take

into account changes like these in Figure 12, where we drop populations of

species that have ever been listed in both Appendix I and Appendix II dur-

ing the period available for those populations in the sample (�switchers�).29

Figure 12 con�rms that trade bans and sustainable use are both e�ective

in the long-run. We �nd signi�cant positive e�ects on wildlife populations

of incentivizing sustainable use six to ten years after inclusion into Ap-

pendix II. However, it seems that identi�cation of positive e�ects for trade

bans, i.e., Appendix I, in Figure 11 stems mostly from �switchers�. The low

precision of the e�ect of Appendix I listings implies that we cannot rule out

positive e�ects of trade bans in the early years after their imposition. One

of the reasons for this may be the relatively low number of a�ected species

who are not �switchers� in Appendix I. To shed light on the e�ectiveness of

trade bans in the short- to medium-run, we turn to exogenous variation in

country-speci�c trade bans due to �bird �u� outbreaks, i.e., bans that are

independent of CITES listings.

4.5 Quasi-natural evidence on the e�ectiveness of trade

bans due to �bird �u� outbreaks

Following the outbreak of the bird �u in South-East Asia in 2003, countries

imposed trade bans on birds from the a�ected countries to stop its spread.

These bans have signi�cantly reduced trade in birds, see Nicita (2008), in-

29Speci�cally, we drop from our regressions 4238 observations that correspond to pop-
ulations of 38 (sub-)species. Their common names are: Addax, African elephant, Amer-
ican alligator, American crocodile, Bald eagle, Black caiman, Black rhinoceros, Bonobo,
Chimpanzee, Common spider tortoise, Dalmatian pelican, Dugong, Fin whale, Flatback
turtle, Forest elephant, Green turtle, Grey wolf, Grizzly bear, Guadalupe fur seal, Gyr-
falcon, Indus blind dolphin, Insular �ying-fox, Irrawaddy dolphin, Leatherback turtle,
Loggerhead sea turtle, Markhor, Mauritius kestrel, Mongolian saiga, Olive ridley, Pere-
grine falcon, Ring-tailed lemur, Saltwater crocodile, Samoa �ying fox, Sei whale, South-
ern white rhinoceros, Tiger, and Vicuna. Of these, 6 were downlisted from Appendix
I to Appendix II of CITES: American alligator, Bald eagle, Black caiman, Mongolian
saiga, Southern white rhinoceros, and Vicuna; di�erent populations of 5 (sub-)species
were listed in di�erent CITES' appendices (I and II) the same year: Dugong, Fin whale,
Grizzly bear, Markhor, and Sei whale. For example, all populations of Dugong were
listed in Appendix I in 1975, except those of Australia that were listed in Appendix II.
The remaining (sub-)species correspond to species that were uplisted from Appendix II
to Appendix I of CITES.
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Figure 12: E�ect of CITES on population size (App. I vs. App. II),
including country-year FEs (species listed in CITES), excluding �switchers�
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The left panel shows coe�cient estimates from an event study speci�cation, i.e., a panel
regression of log of population size on a set of dummy variables indicating the years
since a species' entry into CITES' Appendix I. The right panel shows coe�cients from a
separate estimation where dummy variables indicate the years since entry into CITES'
Appendix II. Both regressions include population and country-year �xed e�ects. 95%
percent con�dence intervals are displayed around each point estimate. Standard errors
are clustered at the species level. Number of observations: 105872.

cluding domestic trade of birds caught in the wild, see Brooks-Moizer et al.

(2009). If trade bans are an e�ective tool to increase wildlife populations,

trade bans should have an impact on wildlife in the countries a�ected by

the outbreak. These bans are unrelated to a species' listing in Appendix I

of CITES, so concerns about potential time-varying selection bias of species

into CITES do not a�ect this alternative identi�cation strategy.

We construct a dummy variable BIRDFLUct that equals one when

country c reports any noti�cation or follow-up on a bird �u outbreak in

year t, and equals zero otherwise. We take these noti�cations as indicative

of the existence of a trade ban imposed on birds originating from country

c. We estimate the following equation:

lnNslt = αBIRDFLUct + µsl + ηt + εslt, (4)

where µsl is a species×location (i.e., population) �xed e�ect and ηt a

year �xed e�ect. We now cluster standard errors at the country-level as
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Figure 13: E�ect of bird �u trade bans
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This �gure shows coe�cient estimates from Equation (4), i.e., a panel regression of log
of population size on a variable indicating whether the country provided immediate no-
ti�cations and follow-up reports of highly pathogenic avian in�uenza (types H5 and H7)
in year t, along with a set of population and year �xed e�ects. Number of observations
for birds: 64474; for all other species: 55064. 95% con�dence intervals are displayed
around each point estimate. Standard errors are clustered at the country level.

BIRDFLUct varies at the country(-year) level. We estimate Equation (4)

for all bird species in our dataset. Other species should not be a�ected

by trade bans on birds. We therefore estimate Equation (4) for all other

species (i.e., for �shes, mammals, reptiles, and amphibians) as a placebo

test.30 We present results in Figure 13. We �nd that trade bans of birds

increase birds' population sizes, whereas they do not a�ect population sizes

of all other species. This result suggests that wildlife trade bans e�ectively

increase wildlife, even in the short-run.

5 Conclusion

Wildlife is in decline. One driver of this decline is international wildlife

trade. CITES' goal is to protect endangered species from extinction either
30For both regressions, the common trend assumption holds: When we include a pre-

trend term (one year lead) in Equation (4), it is insigni�cant, indicating that countries
do not anticipate a trade prohibition on birds. Speci�cally, in the regression for birds,
the coe�cient for this pre-trend term equals 0.23 (s.e. = 0.139, p-value = 0.102) and in
the regression for all other species equals -0.037 (s.e. = 0.046, p-value = 0.418).
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by restricting their international trade to sustainable levels or by banning

their international trade altogether. We provide the �rst global assessment

of CITES' e�ectiveness by combining geo-referenced panel data on wildlife

population sizes for 7379 populations across 158 countries with their his-

tory of inclusion into CITES. In our baseline results, we �nd that CITES

is e�ective: Wildlife populations increase by 20% after their inclusion into

CITES. This e�ect accrues slowly over time. We �nd signi�cant and posi-

tive e�ects 16 to 20 years after species are listed in CITES.

While our results show that CITES does prevent wildlife decline, our

approach remains silent on whether other approaches would be more e�-

cient to protect wildlife than regulating wildlife trade via CITES. Neither

does our approach determine whether the e�ect of CITES is strong enough

to prevent the eventual extinction of a population or of the whole species,

or whether CITES merely postpones its extinction. Wildlife decline is

not only caused by the harvesting and consumption of endangered species,

the focus of CITES. The production of merchandise goods for foreign con-

sumption in biodiversity hotspots has been shown to have large detrimental

e�ects on wildlife due to its impact on habitat loss, see Lenzen et al. (2012).

Identifying and monitoring the e�ects of international merchandise trade

on wildlife may well be needed to e�ectively prevent the extinction of en-

dangered species.

Our results reveal that CITES is e�ective at protecting wildlife popula-

tions in CITES member countries that properly implement and enforce its

rules, highlighting the important role of national governments for wildlife

protection. Focusing on mechanisms, we �nd that both wildlife trade bans

and restrictions that incentivize sustainable use of endangered species in-

crease wildlife. However, the e�ects of sustainable wildlife trade materi-

alize more quickly than those of trade bans: Whereas we �nd signi�cant

increases in wildlife 16 to 20 years after CITES banned their international

trade, wildlife trade restrictions that incentivize sustainable use signi�-

cantly increase wildlife already after 6 to 10 years. A reason for this may

be that enforcing trade bans for individual species protected by CITES by

customs agents is challenging as species may be di�cult to identify and

most merchandise trade is not inspected, allowing illegal wildlife smuggle

to circumvent trade bans. In line with this reasoning, we �nd that rela-

34



tively easy to enforce blanket trade bans for birds imposed as a response to

bird �u outbreaks do indeed increase populations of wild birds. Given that

blanket trade bans and stringent controls of all international goods trade

are unlikely, incentivizing sustainable use of endangered species seems to be

the most e�ective mechanism how wildlife trade policy can protect wildlife.
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A Determinants of CITES listings

In this Section, we provide evidence that di�erent types of species are

not selected randomly to be listed in CITES, creating a selection bias.

We investigate a number of factors that may a�ect the probability of a

particular species being listed into CITES. For example, more charismatic

species that are well-known and studied more often, or species with a higher

extinction risk may have a higher probability of being listed.

We use the LPI data in combination with the CITES listing data, data

on the average body mass of a species from the EltonTraits 1.0 dataset, as

well as IUCN Red List extinction risk data, data on whether a species is

used intentionally, and whether the species is threatened by �shing, both

intentionally (the species is the target of the �shing activity) or uninten-

tionally (e.g., by-catch).

As regressors, in addition to including dummies for the taxonomic class

(mammal, bird, reptile, and amphibian; �shes are the baseline category),

we consider whether the species is vulnerable (vulnerable) and whether

there is intentional biological resource use of the species (the species is

the target), i.e., including hunting and collection of terrestrial animals,

�shing and harvesting aquatic resources (intentional use). We also include

separately any direct threat of �shing, which includes unintentional e�ects,

i.e., the species is not the target (�shing). The last regressor is the log of

the average of the body mass of the species (log of body mass).

We present results of an OLS regression in which the dependent variable

is a dummy variable that equals one when the species has ever been listed

in CITES and zero when the species has never been listed in CITES in

Appendix Table 1. As regressors, we use the variables described above.

Columns (1) to (4) show that mammals, birds, and reptiles are more likely

to be listed in CITES than �shes. This is consistent with Metrick and
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Appendix Table 1: Determinants of CITES listings (cross-section)

(1) (2) (3) (4) (5)

mammal 0.412 0.372 0.365 0.326 0.047
(0.025) (0.023) (0.022) (0.024) (0.023)

bird 0.129 0.134 0.184 0.152
(0.011) (0.011) (0.013) (0.013)

reptile 0.273 0.214 0.261 0.228
(0.039) (0.037) (0.037) (0.037)

amphibian −0.015 −0.025 0.032 −0.000
(0.008) (0.011) (0.012) (0.013)

vulnerable 0.244 0.196 0.192 0.194
(0.022) (0.022) (0.022) (0.033)

intentional use 0.158 0.181 0.129
(0.016) (0.019) (0.034)

�shing −0.099
(0.019)

log of body mass 0.038
(0.004)

R2 0.15 0.21 0.24 0.24 0.26
N 2838 2838 2838 2838 1647

Notes: Appendix Table 1 reports estimated regression coe�cients from an OLS regression of a dummy variable
that equals one when the (sub-)species has ever been listed in CITES (and zero when it has never been listed
in CITES) on a number of variables a�ecting the probability of being listed. Standard errors are in parentheses
and are clustered at the species level. Data are for a cross-section of the subsample of species from the LPI data
for which the IUCN Red List reports information on threats. Regressions in columns (1)-(4) include dummies
for the taxonomic class of the species: mammal, bird, reptile, and amphibian; �shes are the baseline category.
Columns (2)-(5) include variables that measure whether the species is vulnerable and whether the species is used
intentionally. Column (4) also includes a variable that measures whether there is any threat of �shing. Column
(5) includes a variable for body mass of the species. Data on body mass is only available for mammals and birds,
therefore column (5) includes a dummy for the taxonomic class mammals only; birds are the baseline category.

Weitzman (1996) who analyze listing decisions for the Endangered Species

Act in the United States. A species is more likely to be listed if it is more

vulnerable, i.e., it has a higher extinction risk, see columns (2) to (5); if

a species is used intentionally, see columns (3) to (5); and it is less likely

to be listed if there is any direct threat of �shing, see column (4). Finally,

column (5) shows that large species (i.e., with a higher body mass) are

more likely to be listed.31

31Because data on body mass is only available for mammals and birds, this regression
only includes a dummy for the taxonomic class mammals; birds are the baseline category.
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B Separate e�ects for species listed in 1975

and after

Appendix Figure 1: E�ect of CITES on population size (species listed in
CITES). Species listed in 1975 vs. species listed after 1975
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This �gure shows coe�cient estimates from Equation (3), i.e., a panel regression of log
of population size on a set of dummy variables indicating the years since a species' entry
into CITES, along with a set of population and year �xed e�ects. The left panel shows
the coe�cient estimates of dummy variables indicating the years since entry into CITES
interacted with a variable indicating whether the species was listed in CITES in 1975.
The right panel shows the coe�cient estimates of dummy variables indicating the years
since entry into CITES interacted with a variable indicating whether the species was
listed in CITES after 1975. 95% con�dence intervals are displayed around each point
estimate. Standard errors are clustered at the species level. Number of observations:
111292.
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C Species-type speci�c treatment e�ects

Appendix Table 2: E�ect of CITES on population size. Species-type
speci�c treatment e�ects for species listed in CITES in CITES' member
countries

(1) (2) (3) (4) (5)

for non-�Category 1� member countries

> 20 years later 0.076 −0.070 −0.092 −0.098 −0.164
(0.176) (0.230) (0.111) (0.090) (0.120)

...for species with intentional use −0.170
(0.209)

...for vulnerable species 0.009
(0.256)

...for highly-studied species 0.125
(0.129)

...for well-known species 0.133
(0.082)

...for large species 0.359
(0.154)

for �Category 1� member countries

> 20 years later 0.394 0.370 0.272 0.311 0.334
(0.106) (0.090) (0.061) (0.069) (0.077)

...for species with intentional use −0.162
(0.132)

...for vulnerable species −0.185
(0.123)

...for highly-studied species 0.144
(0.098)

...for well-known species 0.062
(0.047)

...for large species −0.025
(0.127)

N 96318 93799 111292 111292 111292

Notes: Appendix Table 2 reports coe�cient estimates of a regression which uses lnNslt as the dependent variable and includes separate treatment dummies
that indicate populations of species listed at least 21 years in CITES' appendices and located in member countries classi�ed as non-�Category 1� countries and
�Category 1� countries, as well as interaction terms of these dummies with species-level dummies which identify di�erent types of species. Column (1) estimates the
regression including an interaction term of the separate treatment dummies with a dummy variable that equals one for species with intentional use. Column (2)
includes an interaction for vulnerable species, i.e., when they are classi�ed as either �critically endangered�, �endangered�, or �vulnerable� by the IUCN Red List.
Column (3) includes an interaction with highly-studied species, i.e., with a higher than average number of studies per species and year. Column (4) includes an
interaction with well-known species, i.e., with a higher than average number of identi�cation agreements by the users of iNaturalist per species and year. Column
(5) includes an interaction with large species, i.e., with a higher than average body size. All regressions contain population and year �xed e�ects. Standard errors
are in parentheses and are clustered at the species level.
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D Alternative speci�cations for country-speci�c

trends

Appendix Table 3: E�ect of CITES on population size

(1) (2) (3) (4) (5) (6)

6-10 years before 0.025 0.043 0.043 0.064 0.068 0.060
(0.103) (0.091) (0.091) (0.090) (0.092) (0.093)

1-5 years before −0.059 −0.020 −0.019 0.012 0.016 0.008
(0.126) (0.104) (0.104) (0.102) (0.103) (0.104)

year of listing in CITES −0.064 −0.041 −0.041 −0.016 −0.012 −0.021
(0.126) (0.116) (0.116) (0.112) (0.114) (0.114)

2-5 years later −0.008 0.025 0.026 0.039 0.043 0.032
(0.125) (0.111) (0.111) (0.109) (0.110) (0.111)

6-10 years later 0.104 0.154 0.155 0.157 0.156 0.144
(0.132) (0.113) (0.113) (0.111) (0.113) (0.114)

11-15 years later 0.171 0.217 0.217 0.229 0.232 0.221
(0.145) (0.120) (0.120) (0.118) (0.120) (0.120)

16-20 years later 0.290 0.334 0.334 0.359 0.365 0.356
(0.155) (0.124) (0.124) (0.123) (0.124) (0.124)

≥ 21 years later 0.487 0.512 0.512 0.538 0.547 0.539
(0.171) (0.128) (0.129) (0.128) (0.128) (0.128)

order of polynomial of time 0 1 2 3 4 5
N 111292 111292 111292 111292 111292 111292

Notes: Appendix Table 3 reports estimated regression coe�cients and standard errors in parentheses. Standard errors are clustered at the species level. Dependent variable
lnNslt. All regressions contain population and year �xed e�ects. For comparison, column (1) presents results of Equation (2). Columns (2)-(6) include country-speci�c
(non-)linear trends modelled as polynomials of order 1 to 5 of time, respectively.
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