
 

8758 
2020 
December 2020 

 

A Pandemic Business 
Interruption Insurance 
Alexis Louaas, Pierre Picard 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 8758 
 

 
 
 

A Pandemic Business Interruption Insurance 
 
 

Abstract 
 
We analyze how pandemic business interruption coverage can be put in place by building on 
capitalization mechanisms. The pandemic risk cannot be mutualized since it affects 
simultaneously a large number of businesses, and furthermore, it has a systemic nature because 
it goes along with a severe decline in the real economy. However, as shown by COVID-19, 
pandemics affect economic sectors in a differentiated way: some of them are very severely 
affected because their activity is strongly impacted by travel bans and constraints on work 
organisation, while others are more resistant. This opens the door to risk coverage mechanisms 
based on a portfolio of financial securities, including long-short positions and options in stock 
markets. We show that such financial investment allow insurers to offer business interruption 
coverage in pandemic states, while simultaneously hedging the risks associated with the 
alternation of bullish and bearish non-pandemic states. These conclusions are derived from a 
theoretical model of corporate risk management, and they are illustrated by numerical 
simulations, using data from the French stock exchange. 
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1 Introduction

Although the full extent of COVID-19 economic consequences is not yet per-
fectly known to date, there is no doubt that, in many countries, it has been
at the origin of dramatic losses due to business interruption. Because of the
pandemic, workers, customers and entrepreneurs were not in a position to pur-
sue their activity normally, and therefore firms were prevented from conducting
usual business operations.1 In this context, many firms turned to their insurance
policies, in the hope that business interruption claims could be filed to recover
losses resulting from the ongoing sanitary crisis. Business interruption cover-
age is typically included as part of a company’s commercial property insurance
policy, and is most commonly triggered when there is direct damage to insured
property, particularly in case of fire or during natural disasters, such as floods,
hurricanes or earthquakes. Contingent business interruption coverage can also
apply when a government limits access to a specific geographic area, thereby
impairing access to the policyholder’s premises. However, for claims related
with COVID-19, policy wording appears to be critical, and many insurers have
denied coverage, by contending that claims do not meet the “direct physical
loss” requirement contained within standard business interruption policies.2

Court decisions reflect the diversity of situations and policy wordings, and
we do not intend here to express a view on the validity of the arguments made
by different parties.3 There ought, however, to be agreement about the fact that
insurers were not prepared to face such a pandemic risk. In practice, business
interruption was merely viewed as an indirect loss induced by property damage,
with specific loss evaluation principles, that should be covered through similar
mutualization mechanisms. In the recent period, the emergence of cyber risk was
a first reason for considering that the mutualization of business interruption risk
could be undermined by common factors affecting the whole economy. COVID-
19 is another step in this direction, but with a much greater magnitude.

Put in simple terms, a worldwide pandemic is an insurance risk that cannot
be covered by usual mutualization mechanisms, because it is characterized by
a very large degree of correlation between policyholders. In other words, and at
the risk of stating the obvious, characterizing an optimal pandemic insurance
scheme requires that we start from the fact that a pandemic affects a large

1Estimates from the US Census Bureau (Buffington et al. (2020)) about the first phase
of the pandemic show that 89.9% of small businesses have experienced a negative effect on
operations due to the COVID-19, including 51.4% seeing a large negative effect and 38.5% a
moderate negative effect. The large negative effect was especially pronounced in the Accom-
modation and Food Services industry where 83.5% of businesses experienced a large negative
effect. In a survey of more than 5,800 small businesses conducted between March 28 and
April 4, 2020, Bartik et al. (2020) find that 43% of the small businesses in their sample had
temporarily closed and that businesses have – on average – reduced their employee counts by
40 percent relative to January. They document that mass layoffs and closures had already
occurred, just a few weeks into the crisis, and they also find that many small businesses are
financially fragile, with less than one month of cash on hand.

2See DBRS-Morningstar (2020).
3For a discussion of these issues, see French (2020).
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number of individuals or businesses simultaneously. In other words, it would
not make sense to look for a pandemic insurance scheme in which, as with most
other property lines, the misfortunes suffered by a few policyholders would be
compensated by the contributions of all the other ones. In this regard, while in-
surance pooling arrangements are part of the usual arsenal against catastrophic
risks,4 they are not of great help here, since when a pandemic occurs, it is feared
that it affects all the insurers in the pool. In other words, pandemic risks are
correlated not only within an insurer’s portfolio, but also between insurers.

A further question relates to the role of governments in guaranteeing the
sustainability of a pandemic corporate insurance. Many think that national
governments should ultimately backstop the insurance coverage, as is the case
in the Terrorism Risk Insurance Act created in the U.S. in the aftermath of 9/11,
but also in natural disaster insurance regimes existing in European countries,
especially France and Spain. However, even with such a backstop, pandemic risk
is considered by many insurers as too unwieldy and too potentially widespread
for underwriting to take place. In other words, the insurability of the pandemic
risk itself is in question.

In the limited framework of the present study, we will leave aside this im-
portant question of the role of governments, and we will focus attention on the
issue of how the pandemic risk could be covered through insurance mechanisms.
It is well-known that, in the usual activity of the insurance industry, the two
basic insurance mechanisms, namely mutualization and capitalization, are rele-
vant in areas that are clearly separated from one another: P&C lines and health
insurance are based on mutualization, while life insurance works through cap-
italization. This dichotomy has to be abandoned when it comes to corporate
pandemic insurance, since the coverage of business interruption is a key line of
business of P&C insurers, but it cannot be mutualized in the case of pandemics.
The objective of the present paper is to explore this avenue, by analyzing how
capitalization mechanisms may yield business interruption coverage in the case
of a pandemic.

At first sight, going through the capitalization channel conflicts with the
systemic nature of the pandemic risk.5 To put it in simple terms, the per-

4This includes terrorism risk (e.g., Pool Re in UK and GAREAT in France), flood risk
(e.g., Flood Re in UK) and nuclear liability risk in the US and for signatory countries of Paris
and Brussels international conventions.

5According to the definition of Cummins & Weiss (2013), a systemic risk is "the risk that
an event will trigger a loss of economic value or confidence in a substantial segment of the
financial system that is serious enough to have significant adverse effects on the real economy
with a high probability". In this definition, the transmission chain starts from an economic
event, whatever it may be, that destabilizes the financial sector, and thereby induces a severe
decline of the activity in the real sector. The collapse of the U.S. housing bubble that peaked
in 2006, and was at the origin of a global credit crunch in 2007-2008, causing huge losses in
stock markets, and that ultimately created a worldwide downturn in economic activity, is a
typical example of such a sequence that goes from financial markets to the real economy. In
the case of COVID-19, the causality chain is reversed, in the sense that the trigger affects
the real sphere first (i.e., the pandemic has prevented many firms from carrying on their
business in a normal manner), with effects that are widespread enough to affect the global
economy, and ultimately the financial markets. Whatever the direction of causality, in both
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spective of suffering from a major macroeconomic downturn in the case of a
pandemic does not make it easy to create risk sharing mechanisms to the ben-
efit of firms suffering from business interruption. However, this concomitance
between a well-defined event (mainly, the limited ability to move and to exert a
normal business activity) causing severe corporate losses, and a macroeconomic
crisis is too narrow a view that overlooks the uneven impacts of the pandemic
throughout the economy. Pandemics affect sectors of the economy more or less,
according to the effect of travel and work restrictions on their activity, while
some of them may even take advantage of the situation. Tourism and restau-
rants, transportation and distribution, manufacturing and craft, entertainment
industries, retail and luxury industries, and all industries based on international
supply chain have been most severely penalized by COVID-19, while pharma-
ceutical and biotech industries, online BtoB and BtoC platforms and high-tech
industries have benefited either from the increase in demand for health care,
or from changes in consumption patterns, or from the propensity of firms to
reorganize their activity through a more intense use of digital tools.

These uneven effects of the current pandemic across sectors is reflected in
stock market performances. A decomposition of the S&P500 index at the in-
dustry level allows us to see these differential effects clearly. Panels (a) and (b)
in Figure 1 display the evolution of several industry specific indices relative to
the global S&P500 index, during the first quarter of 2020. While the aerospace
and defense, airlines, automobiles, oil, gas and consumable fuels, banks and
insurance indices have experienced a drop more important than the global in-
dex, industries such as biotechnologies, life sciences and tools, pharmaceutical,
internet and direct marketing, software and food products have fared relatively
better. In France, the CAC40 index is a capitalization-weighted measure of the
40 most significant stocks on the Euronext Paris. In 2020, while the CAC40
has experienced a severe fall of 30 % between January 1st and April 1st, the
individual stock responses have presented a large degree of heterogeneity. Table
A lists twelve French stocks that have relatively well resisted to the COVID-19
shock. The luxury brand Hermes even won two percent on its quotation and
its associated calls increased by 10.40%. At the bottom of the table, LVMH,
another company from the luxury sector, lost "only" 15% while its associated
call options lost 14%. Table B in contrast, lists twelve stocks that have sig-
nificantly under-performed the CAC40. With a drop of 64.1% of its quotation,
the retail real estate trust UNIBAIL-RODAM-WESTFIELD suffered the largest
loss, while its associated put options skyrocketed to provide a 807.92% return
to their holders. The performance of all stocks listed in Table B is below that
of the media group PUBLICIS, that lost 35% of its value in four months.

cases the risk is said to be systemic because it affects the real and financial spheres of the
global economy, and not only a limited number of victims. Natural disasters (at least, those
we have experienced so far) are not systemic, although they may be at the origin of dramatic
losses for the population concerned.
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(a) Over-performing sub-indices

(b) Under-performing sub-indices

Figure 1: Historical values of the S&P500 sub-indices, at the industry level
relative to global S&P500 from January 1st, 2020 to April 1st, 2020. Source :
The Financial Times.
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STOCK SUB-INDUSTRY YTD CALL YTD
HERMES Clothing 2.0% 10.40%
SANOFI Pharmaceutical -0.1% 44.90%
STMICRO Semi-conductors -2.5% 2.80%
L’OREAL Cosmetics -4.0% -28%

DASSAULT SYSTEMES Software -4.2% 37.90%
AIR LIQUIDE Chemicals -5.0% -7.50%

ATOS Computer services -11.0% 44.20%
CARREFOUR Food retailer -11.1% -41.90%

SCHNEIDER ELECTRIC Electrical components -12.1% 0.30%
DANONE Food products -13.3% -46.40%

PERNOD RICARD Distiller and vintner -14.2% -27.50%
LVMH Clothing -15.0% -14.00%

Table A: Over-performing stocks with their activity sectors, their yields mea-
sured between January 1st, and April 1st 2020 and their associated call yields
measured over the same time period. The call yields reported are averages of
all warrant calls traded during the first quarter of 2020.

STOCK SUB-INDUSTRY YTD PUT YTD
UNIB-RODAM-WES Real Estate -64.1% 807.92%

RENAULT Automobiles -58.4% 252.25%
SOCIETE GENERALE Bank -57.2% 152.61%

AIRBUS Aerospace -57.0% 164.47%
BNP PARIBAS Bank -45.5% 116.70%

ACCOR Hotels -45.0% 220.33%
CREDIT AGRICOLE Bank -43.8% 118.29%

SAFRAN Aerospace -41.1% 170.40%
SODEXO Restaurants -38.0% 538.70%
PEUGEOT Automobiles -37.0% 122.60%

AXA Insurance -35.4% 157.20%
PUBLICIS GROUPE Media Agency -35.0% 192.40%

Table B: Under-performing stocks with their activity sectors, their yields mea-
sured between January 1st, and April 1st 2020 and their associated put yields
measured over the same time period. The put yields reported are averages of
all warrant puts traded during the first quarter of 2020.

The remainder of the paper exploits this heterogeneity to build a corporate
insurance scheme against pandemic risks. It is organized as follows. Section 2
develops a conceptual framework that shows how corporate pandemic insurance
can be based on a self-funding mechanism, by building on the heterogeneity
of sectoral reactions to a pandemic event. We start with a one-period model
of an economy, where two stocks are traded, differing according to how their
returns react to the occurrence of a pandemic. Type 1 stocks perform relatively
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well, and may even benefit from the pandemic event. In contrast, type 2 stocks
are struck with full force, with a strong decline in their return, should a pan-
demic occur. A risk-averse firm seeks protection against the consequences of a
pandemic on its cashflows. This is done by contributing to an insurance fund,
managed either directly by the firm itself, or, more realistically, by a mutual or
stock insurer acting on behalf of the firm. This insurance fund portfolio, for-
mally analogous to a unit-linked fund, includes a riskless asset (or the issuance
of riskless debt), and long or short positions in stocks 1 and 2. An optimal
portfolio maximizes the expected utility of the firm’s cashflow. Since the firm
is risk-averse, this means covering the pandemic risk faced by the firm, while
hedging the non-pandemic risks that affect the stock returns. As we will see, the
optimal financial investment strategy consists in going long on stock 1 and short
on stock 2, so as to obtain benefits from their opposite reaction to pandemic
events, while hedging the bearish and bullish non-pandemic episodes affecting
the stock market. This results in total or partial coverage of the pandemic and
non-pandemic risks, according to whether or not stock returns include a risk pre-
mium. In other words, the risk premium required by representative investors
in the stock market play a role similar to loading in usual insurance models:
they make the cost of transferring risks greater, which affects the optimal level
of coverage. Furthermore, in a classical way, the holding of riskless asset (akin
to liquid reserves) or the issuance of riskless debt, should equalize the marginal
productivity of the firm’s capital and the risk-free rate of interest.

Long-short is a widespread strategy among hedge funds: by going long in
stocks which have the potential to appreciate, and simultaneously going short
in stocks expected to decline in value, hedge fund managers aim at making a
profit, while being immunized against the market risk, and without incurring
stock delivery costs. This strategy should be adapted, but its underlying logic
remains valid, when it is a question of designing an insurance coverage against
pandemics, and no more of taking advantage of market mispricing: going short
or long in stocks, according to whether or not they are expected to suffer strongly
from a pandemic event provides the required coverage, while hedging the non-
pandemic risks. Although the long-short strategy is very usual in the hedge fund
industry, it is not without disadvantages in terms of transaction costs induced
by margin calls, and risk exposure when long and short position do not exactly
match. This may justify using put options rather than short positions, and call
options rather than long positions. We show that the state-contingent payoff
of the insurance fund can be replicated through a portfolio of call options on
stock 1 and put options on stock 2, without incurring the disadvantages of the
long-short strategy.

We extend our analysis in several directions. First, a multi-period model
is analysed, in which the firm can transfer funds from period to period, with
qualitatively unchanged conclusions. Second, we consider the case where the
future pandemic’s characteristics are imperfectly known, in which case several
forms of market incompleteness may arise. In this setting, we show that when
the pandemic creates uncertain losses for the insured firm, prudent firms use
the long-short strategy to obtain a higher level of coverage than in the absence

7



of uncertainty. We draw a parallel with the precautionary motive for insurance
highlighted by Schlesinger (2013). Finally, the case where future stock prices
are imperfectly known and markets are incomplete is discussed. It is shown
that the firm may be lead to choose a portfolio that delivers higher expected
cashflows in the pandemic state than in the non-pandemic states.

Section 3 is devoted to numerical simulations of a capitalization-based pan-
demic insurance, using data from the French stock exchange. We first conduct
a backtest, in which we assess the insurance strategy described above, over a
period of twelve years. Starting from January 2009, an insured firm is assumed
to contribute e20,000 each year to purchase put and call options on the stocks
listed in Tables A and B, respectively. At the beginning of each year, the firm
purchases put and call options with a maturity of two year. At the end of each
year, these options are sold and new ones are purchased. This strategy allows
the firm to build a fund that can be liquidated if a pandemic disrupts its activ-
ities. We find that the liquidation of the two-fund portfolio on April 1st, in the
midst of the COVID-19 crisis, would have delivered a e868,690 pay-out, hence
alleviating the cost of business disruptions. In a forward-looking perspective,
we then simulate future price paths for the stocks listed in Tables A and B,
and we analyze the performance of the option-based two-fund portfolio. This
prospective exercise results in a distribution of potential payoffs should a crisis,
similar to the one of 2020, occur in the future. We find that a firm contribut-
ing during twelve years, starting from April 1st, 2020 would benefit from an
expected payoff of e1.0690 million, should such a crisis occur in 2031. We also
characterize the probability distribution of the two-fund portfolio liquidation
value.

We then appraise the robustness of the insurance strategy to uncertainty
concerning the effect of a pandemic on stock markets. We show that an increase
in the underlying returns’ variances makes the strategy more profitable due
to the positive response of option values to an increase in underlying return
volatility. In contrast, selecting the wrong underlying assets may undermine
the strategy’s performance when a small number of assets is selected.

Finally, Section 4 concludes and Section 5 is an Appendix containing the
proofs of the theoretical sections.

2 The model
2.1 One-period setting6

We analyze the financial choices of a firm facing a pandemic risk, in a one-period
model, starting at time t = 0 and ending at t = 1. The firm owns initial assets,
including productive assets and financial reserves, with total value A. A part I
of the financial reserves available at t = 0 is kept as financial assets from t = 0
to t = 1, and the remainder is invested as additional productive assets. Hence,

6Section 5.5 in the Appendix presents an extended version of this model, with arbitrary
numbers of assets and states
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the firm has productive assets K = A − I during the current period. In the
absence of a pandemic, these productive assets provide cashflows f(K), with
f ′ > 0, f ′′ ≤ 0, available at t = 1.

The firm’s environment is characterized by two types of uncertainty. Firstly,
a pandemic occurs with probability π ∈ (0, 1). Secondly, in the absence of
pandemic, stock markets are bullish or bearish, with probability αu and αd,
respectively, with αu + αd = 1. Thus, there are three states s ∈ {u, d, p},
where u (up) and d (down) are the two non-pandemic states (with bullish and
bearish market, respectively) and p is the pandemic state, with probability
αu(1− π), αd(1− π) and π, respectively.

Three securities, indexed by i ∈ {0, 1, 2}, are traded in the financial market,
and may be held as reserves by the firm: security i = 0 is a risk-free asset, with
interest rate rf , and i = 1 and 2 are two types of stocks. These two stocks
are similarly affected by the ups and downs of the business cycle in the non-
pandemic states. In the absence of pandemic, the expected return of stock i is
denoted Ri, with returns Ri +h and Ri−h′ in states u and d, respectively, with
αuh = αdh

′. Stocks i = 1 and i = 2 differ in their reaction to the occurence of a
pandemic: stock 1 is a defensive asset, while stock 2 is severely affected should
a pandemic occur: their returns in state p are R1 +H and R2−H ′, respectively.
We assume H ′ > h′ and H + H ′ > 0. Condition H ′ > h′ reflects the fact
that stock 2 is severely affected by the pandemic. As regards stock 1, H may be
positive or negative: the assumption H > −H ′ simply means that stock 1 reacts
better than stock 2 to the occurence of a pandemic. We have R2 > R1 because
the higher expected return of stock 2 in the no-pandemic states compensates
its stronger downward reaction should a pandemic occur. Overall, the returns
of the three assets are summarized in Table C.

s\i 0 1 2
u rf R1 + h R2 + h
d rf R1 − h′ R2 − h′
p rf R1 +H R2 −H ′

Table C: Return of securities

One easily checks that the matrix of security returns is of rank 3, and thus
financial markets are complete. In particular, for each state s, an Arrow-Debreu
security (i.e., a security that pays one unit of numeraire in state s, and zero
otherwise) can be obtained through a portfolio of available assets.

2.2 Covering pandemic losses
We view the firm as a small or medium-sized enterprise, whose business is not
significantly correlated with the ups and downs of the stock market, except
when a pandemic is at the origin of a business interruption, causing losses in an
amount equal to L. Thus, the final cashflow derived from productive assets is
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f(K) in states u and d, and f(K)−L in state p. The firm is supposed to be risk-
averse with respect to its final net cashflow including the payoff of its financial
holdings (in short, its cashflow), either because of the investment crowding-out
mechanism analyzed by Froot-Scharfstein and Stein (1993), or because its owner
has a non-diversified wealth, or because a decrease in cashflow exacerbates the
risk of bankruptcy in the future.

The firm makes its financial choices so as to maximize the expected utility
of its cashflows ∑

s∈{u,d,p}

πsu(ws),

where ws is the firm’s cashflow in state s (more precisely defined below), πs is
the probability of state s (i.e. πu = αu(1−π), πd = αd(1−π) and πp = π), and
u(.) is a von Neumann-Morgenstern utility function that represents the firm’s
risk aversion, with u′ > 0 and u′′ < 0.

The firm allocates a part xi of its reserves to security i with∑
i∈{0,1,2}

xi = I.

The firm’s cashflow is the sum of the cashflow f(K) = f(A − I) derived from
its productive assets, cut by the loss L in the case of a pandemic, and of the
payoff of its financial holdings, which gives

ws = f

A− ∑
i∈{0,1,2]

xi

+
∑

i∈{0,1,2]

(1 + rsi)xi if s ∈ {u, d}, (1)

wp = f

A− ∑
i∈{0,1,2]

xi

+
∑

i∈{0,1,2]

(1 + rpi)xi − L, (2)

where rsi is the return of security i in state s, as described in Table 1. The
firm’s optimal financial policy is obtained by maximizing the expected utility of
cashflows with respect to x0,x1 and x2. Furthermore, and more realistically, the
financial positions of the firm may be intermediated by a financial institution,
such as an insurance company, offering self-funded hedging mechanisms.

Since financial markets are complete, the price of Arrow-Debreu securities
(or state prices) qu, qd and qp can be recovered from the matrix of asset returns.
When there are risk-neutral investors in the financial markets, the expected
return of stocks are equal to the risk-free interest rate, i.e.

rf = R1 + πH = R2 − πH ′, (3)

and in that case, the vector of state prices is proportional to the state probability
vector. More realistically, we may assume that the return on stocks include a
risk premium because of investors’ risk aversion, a case in which we have

rf < R1 + πH and rf < R2 − πH ′. (4)
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States u, d and p correspond to various degrees of macroeconomic prosperity,
state p corresponding to a most severe economic downturn. Lemma 1 provides
a sufficient condition on the security returns for this to be reflected in a simple
hierarchy of probability-weighted state prices.

Lemma 1 When (3) holds, i.e. there are risk-neutral investors, the Arrow-
Debreu security prices are such that

1
1 + rf

= qu

αu(1− π) = qd

αd(1− π) = qp

π
. (5)

When (4) holds, i.e. all investors are risk-averse, then we have

qu

αu(1− π) <
1

1 + rf
<

qd

αd(1− π) . (6)

If in addition we have

R2 − πH ′ − rf

R1 + πH − rf
>
h+ πH ′

h− πH
, (7)

then
qd

αd(1− π) <
qp

π
. (8)

Condition (7) means that the risk premium is substantially larger for stock
2 than for stock 1. This reflects the catastrophic nature of state p in which
stock 2 has a very low return R2 − H ′ by comparison with its no-pandemic
expected return R2, while the relative performance is better for stock 1. In
what follows, we refer to (5), and (6)-(8) as the investors’ risk neutrality and
risk aversion cases, respectively, in relationship with the attitude toward risk of
a representative investor who may require risk premiums to hold the securities
in its portfolio. As assumed, the firm under consideration is risk averse.

The firm chooses its portfolio (x0, x1, x2) of assets 0, 1 and 2 (or, equiva-
lently, it chooses a portfolio of Arrow-Debreu Securities) in order to maximize
its expected utility. Let ys denote the quantity of type s Arrow-Debreu security
purchased by the firm, with s ∈ {u, d, p}, with

ws = f(A− quyu − qdyd − qpyp) + ys if s ∈ {u, d}, (9)
wp = f(A− quyu − qdyd − qpyp) + yp − L. (10)

The firm chooses yu, yd and yp in order to maximize its expected utility
∑

s∈{u,d,p} πsu(ws),
and its portfolio (x0, x1, x2) can then be deduced from the data on asset returns.

Proposition 1 If investors are risk neutral, then

wu = wd = wp, (11)
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and the firm’s portfolio is such that

x0 = A−K, (12)

x1 = −x2 = L

H +H ′
, (13)

If investors are risk averse, then

wu > wd > wp, (14)

and the firm’s portfolio is such that

x0 < A−K, (15)

x1 + x2 = wu − wd

h+ h′
> 0, (16)

−x2 <
L

H +H ′
. (17)

In both cases, we have K = K∗ given by

f ′(K∗) = 1 + rf . (18)

Hence, when investors are risk-neutral, an optimal financial strategy of the
firm consists of going long on stock 1 and short on stock 2, for exactly the
same amount, i.e. x1 + x2 = 0. In more concrete terms, at t = 0 the firm
sells stock 2 after borrowing it on the spot market and uses the proceeds of
this sale to purchase stock 1. Hence, no net disbursement is required for these
stock market operations. At t = 1, the firm purchases stock 2 and cancels its
short position, Because of the zero aggregate net position of the firm’s stock
portfolio from t = 0 to t = 1, in state u the high return from the long position
on stock 1 exactly compensates the low return from the short position on stock
2, and vice versa in state d. Hence, these opposite positions allow the firm to
perfectly hedge its market exposure in the non-pandemic states u and d, with
an aggregate return equal to the risk-less interest rate rf . The size of these long
and short positions is chosen in order to perfectly cover the firm’s loss L in the
case of a pandemic, which will be the case when (13) holds. The firm holds
reserves or borrows money at the risk-less interest rate rf , according to whether
A is larger or lower than K∗, respectively. To put it simply, when there are
risk-neutral investors, the firm can use stock market operations to fully cover
the losses caused by a pandemic, while perfectly hedging its exposures to non-
pandemic market fluctuations, and ultimately its cash-flows are independent
from the state that may occur.

When investors are risk-averse, the return on stocks includes risk premiums
and the higher these returns, the higher the probability-weighted state prices.
More explicitly, from (6) and (8), substituting wealth from state u to state d can
be done at rate qd/qu which is larger than the odds ratio αd/αu, and similarly
qp/qd is larger than π/αd(1 − π). These distortions between state-price ratios
and odds ratios make the hedging of pandemic and non-pandemic risks more
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costly, hence the partial coverage of cashflows reflected in inequalities (14): the
firm is better off in state u than in state d, the pandemic state p being the worse.
In the case of risk-neutral investors, it was optimal to hedge the non-pandemic
risk (i.e., to substitute wealth in state d to wealth in state u) by going long on
stock 1 and short on stock 2, with equal positions in absolute value. When the
aggregate firm’s position in the stock market is long, i.e., when x1 + x2 > 0,
the firm’s financial performances are higher in state u than in state d, which
corresponds to the partial hedging of non-pandemic financial risk. As expressed
by (16), the aggregate position x1+x2 is proportional to wu−wd, which depends
on the firm’s degree of risk aversion. Conditions (13) and (17) show that partial
coverage of the pandemic risk goes through a short position on stock 2 which is
smaller than in the risk neutral case.

Finally, in both cases, for an optimal level of productive capital K∗, the
discounted marginal productivity of capital f ′(K∗)/(1 + rf ) should equal 1,
which corresponds to a standard corporate value maximization rule.

Remark 1 Sofar we have assumed that financial assets are held by the firm
itself. It is more realistic, particularly for a small or medium-sized firm, to
restrict its financial operations to the holding of a remunerated bank account if
x0 > 0 and to the issuance of debt if x0 < 0, the riskless interest rate rf applying
in both cases, and to relate the return from stocks to contractual links with a
financial institution. In this interpretation, the return on stocks 1 and 2 corre-
spond to the payout of a self-funded pandemic insurance scheme managed by an
insurance company or a bank. At t = 0, the firm (or its owner, in the case of a
single owner) contributes an amount x1 + x2 to the insurance scheme, and has
the right to decide how this financial investment gets allocated between stocks 1
and 2. The firm receives the proceeds of the insurance scheme at t = 1. The
objective of this scheme is to provide coverage against the risks that affect the
firm’s cashflow, in a setting where no risk mutualization is feasible. This insur-
ance dimension is particularly obvious in the case of risk-neutral investors: the
scheme allows the firm’s owner to perfectly hedge its non-pandemic risks (i.e.,
the ups and downs of financial markets), and also to fully cover the firm’s loss,
should a pandemic occur. This insurance feature remains true when investors
are risk-averse, but the scheme only provides partial hedging of non-pandemic
risks and partial coverage of the losses that may result from a pandemic.

Remark 2 We have assumed that the returns of stocks 1 and 2 have the same
standard deviation (αuh

2 +αdh
′2)1/2 in the non-pandemic states u and d. This

assumption was made to simplify calculations, but our qualitative conclusions
would remain unchanged in a more general setting, were the variability of returns
may differ between between stocks 1 and 2. Table D corresponds to such a more
general setting, in which stocks 1 and 2 may react more or less to the bullish or
bearish state of the market.
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s\i 0 1 2
u rf R1 + h1 R2 + h2
d rf R1 − h′1 R2 − h′2
p rf R1 +H R2 −H ′

Table D: Case where the non-pandemic volatility of stock returns differ between
stocks

We assume αuhi = αdh
′
i for i = 1, 2, so that Ri still denotes the expected

return of stock i in the non-pandemic states, and stock 1 is more volatile than
stock 2 if h1 > h2, and vice versa. When investors are risk neutral, it is still
possible to hedge the market risk in the non-pandemic states while covering the
loss L in the case of a pandemic, by choosing x1 and x2 such that

x1

h1
= x2

h2
= L

h1H + h2H ′
,

which is an extension of condition (13) to this broader setting. Our conclusions
when investors are risk-averse could be adapted in a similar way.

The coverage mechanism at work is to have a portfolio of long and short
positions in the stock market in order to hedge the non-pandemic risk and si-
multaneously to compensate the firm for the loss incurred in the case of a pan-
demic. To do so, the firm (or the insurance company managing the self-funded
insurance scheme) goes long on stock 1 and short on stock 2. Alternatively, an
adequate portfolio of call and put options purchased at t = 0 with maturity date
t = 1 may allow the firm to hedge its risks, in the same way as if it were going
long and short on the stocks themselves. For illustration purposes, consider call
options on stocks 1 and put options on stock 2, with strike price 1 + R1 and
1 + R2, respectively, the value of each stock being equal to 1 at t = 0. Hence,
for each option the strike price is equal to the expected payoff of the stock in
the non-pandemic states. We consider the case where H > 0 so that the call
option on stock 1 is in the money in states u and p (with payoffs h and H,
respectively), while the put option on stock 2 is in the money in states d and p
(with payoffs h′ and H ′, respectively). Let qc1 and qp2 be the price of the call
and put options, on stocks 1 and 2, respectively. For simplicity, consider the
case where investors are risk-neutral, and thus the price of securities is equal to
the discounted value of their expected payoff, which gives

qc1 = αuh(1− π) + πH

1 + rf
,

qp2 = αdh
′(1− π) + πH ′

1 + rf
.

Let zc1 and zp2 be the value of calls and puts (on stocks 1 and 2, respectively)
purchased at t = 0, and zc1/qc1 and zp2/qp2 the corresponding numbers of op-
tions.7 When investors are risk-neutral, the optimal insurance scheme provides

7zc1 and zp2 are positive or negative, according to whether the firm goes long or short in
each option market.
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perfect hedging of non-pandemic risks and full coverage of the loss in the case
of a pandemic, which gives

y = yu = yd = yp − L. (19)

These state-dependent financial cashflows are associated with a portfolio (x0, zc1, zc2)
if the following conditions are satisfied:

x0(1 + rf ) + zc1
h

qc1
= y, (20)

x0(1 + rf ) + zp2
h′

qp2
= y, (21)

x0(1 + rf ) + zc1
H

qc1
+ zp2

H ′

qp2
= y + L. (22)

Solving (20)-(22) for x0, zc1 and zp2 yields

x0 = 1
1 + rf

[
y − hh′L

Hh′ + h(H ′ − h′)
]
,

zc1

qc1
= h′L

Hh′ + h(H ′ − h′) > 0,

zp2

qp2
= hL

Hh′ + h(H ′ − h′) > 0.

Hence following a long-short portfolio management strategy and holding a
portfolio of call and put options are two ways to reach the same goal, i.e.,
covering simultaneously the non-pandemic market risks and the loss that may
result from a pandemic. Most interestingly, it turns out that these two financial
strategies, usually restricted to pure portfolio management with performance
benchmarking, are relevant when it comes to designing the coverage strategy of
a firm facing a risk with a systemic dimension, i.e., whose occurrence coincides
with a non-diversifiable shock on the stock market. Portfolio management and
corporate insurance are converging here, in the search for an optimal pandemic
insurance scheme.

Nevertheless, behind this methodological alignment, there are important
practical differences between the two strategies. Short stock positions are typ-
ically only given to accredited investors (which is in accordance with our in-
terpretation of intermediation through an insurance company or a bank), who
are usually required to place a margin deposit or collateral with the broker in
exchange for the loaned shares. In practice, this creates non-negligible transac-
tion costs and thereby reduces the attractiveness of such self-funded insurance
schemes for small or medium-sized firms, with limited financial resources. The
option-based financial strategy would exonerate these firms from such transac-
tion costs, by shifting the margin calls to a much larger set of financial investors
who act as counter-parts in option markets. Furthermore, short positions on
stock 2 expose investors to potentially unlimited risk of loss if, for any reason,
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this stock performs better than expected, while, with the put options, the max-
imum loss is restricted to the price paid for the puts. Finally, borrowing stock
2 to short it - or, equivalently, going through a Contract For Difference broker
- entails transaction costs that have been ignored, as well as interest payable
on the margin account, while put options only require an up-front cost to pur-
chase the puts, but no other ongoing expenses. For all these reasons, although
long-short and options are two ways to reach the same goal, options may be
considered as a cheaper and less risky strategy.

2.3 Multi-period setting
Let us extend our results to an infinite horizon model, where time periods are
indexed by t = 0, 1..., and the firm can transfer financial resources across time.
The notations are adapted from the one-period setting as follows. At each
period t, the total value of the firm’s initial assets is equal to At, allocated
between productive assets Kt (including investment made at the beginning of
period t) and financial reserves At − Kt. Productive assets provide cashflows
f(Kt), with f ′ > 0, f ′′ ≤ 0, available at the end of period t. We still assume
that three states s ∈ {u, d, p} may occur at each period t, with probability πs

equal to αu(1− π), αd(1− π) and π, respectively, and that the firm incurs loss
L in the pandemic state p. The probability distributions of states are assumed
to be independent between periods. Financial reserves are allocated between
securities i = 0, 1 and 2 with return rsi in state s as specified in Table 1. We
denote xti the value of security i held by the firm at period t. Since the firm’s
assets are allocated between productive and financial assets at the beginning of
each period, we have

At = Kt +
∑

i∈{0,1,2}

xti.

The total cashflows come from productive and financial assets, and they are al-
located either to the owner’s consumption (through the distribution of dividend)
or to corporate investment, i.e. to the increase in the value of the firm’s assets.
This allocation of cashflows depends on the state prevailing during the period.
Let cst denote the consumption level in state s at period t, and let At+1,s be the
value of the firm’s assets at the beginning of period t+ 1 when state s prevails
at period t, hence with total investment At+1,s−At. The cashflows coming from
productive and financial assets, possibly reduced by loss L, are equal to the sum
of consumption and investment, and thus we have

cts +At+1,s −At = f(Kt) +
∑

i∈{0,1,2}

(1 + rsi)xti if s ∈ {u, d}, (23)

ctp +At+1,p −At = f(Kt) +
∑

i∈{0,1,2}

(1 + rpi)xti − L . (24)

The firm chooses its portfolio of financial assets (xt0, xt1, xt2) and its state-
contingent investment level At+1,s − At, in order to maximize the discounted
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sum of consumption expected utility
∞∑

t=0
δt

∑
st∈{u,d,p}

πst
u(ctst

),

where δ is the discount factor, such that δ < 1, and st is the state at period t.
The intertemporal strategy of the firm is characterized by functions At(ht)

and xti(ht) for all t ≥ 0 and all i ∈ {0, 1, 2}, where ht = (s0, s1, ..., st−1) ∈
Ht ≡ {u, d, p}t denotes the sequence of states from period 0 to period t − 1 if
t ≥ 1 and h0 ∈ ∅. Let Πt(ht) be the probability of sequence ht when t ≥ 1,
with

∑
ht∈Ht

Πt(ht) = 1. For notational consistency, we denote Π0(h0) = 1.
In words, At(ht) is the value of the firm’s assets at the beginning of period t,
with the constraint A0(h0) ≡ A0 imposed by the value of initial assets, and thus
At+1(ht+1)−At(ht) is its investment at period t, while (xt0(ht), xt1(ht), xt2(ht))
is its portfolio of financial assets held during period t. The firm maximizes its
discounted expected utility

∞∑
t=0

δt

[ ∑
ht∈Ht

Πt(ht)
∑

st∈{u,d,p}

πstu

(
f
(
At(ht)−

∑
i∈{0,1,2}

xti(ht)
)

+
∑

i∈{0,1,2}

(1 + rsti)xti(ht) +At(ht)−At+1(ht, st)− 1(st = p)L
)]
,

with respect to At(.) : Ht → R+ for all t ≥ 1 and xti(.) : Ht → R for i ∈ {0, 1, 2}
and all t ≥ 0. Let v(A0) be the optimal discounted expected utility level as a
function of initial assets A0, with v′(A0) > 0 and v′′(A0) < 0.8 At period t = 0,
the firm chooses its portfolio (x00, x01, x02) and its state-dependent investment
level A1(s0)−A0 in order to maximize∑

s0∈{u,d,p}

πs0

[
u

(
f(A0 −

∑
i∈{0,1,2}

x0i) +
∑

i∈{0,1,2}

(1 + rs0i)x0i

+A0 −A1(s0)− 1(st = p)L
)

+ δv(A1(s0))
]
,

where the effect of current decisions on the discounted expected utility in next
periods goes through the last term δv(A1(s0)). Conditionally on state s0, the
future assets A1(s0) are chosen so as to maximize the discounted expected utility

u

(
f(A0 −

∑
i∈{0,1,2}

x0i) +
∑

i∈{0,1,2}

(1 + rs0i)x0i

+A0 −A1(s0)− 1(st = p)L
)

+ δv(A1(s0)).

8Note that the expected utility is a concave function of the parameter A0 and of the
unknowns At(ht) and xti(ht), which implies the concavity of the value function v(A0).
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Hence, the portfolio (x00, x01, x02) maximizes∑
s0∈{u,d,p}

πs0u

(
f(A0 −

∑
i∈{0,1,2}

x0i) +
∑

i∈{0,1,2}

(1 + rs0i)x0i − 1(st = p)L
)
,

where indirect utility function u(.) is defined by

u(w) ≡ max
A1
{u(w +A0 −A1) + δv(A1)},

with u′ > 0 and u′′ < 0.9 Hence, in this multi-period setting, the optimal
portfolio is the solution to an optimization problem deduced from the one-period
problem by replacing utility function u by the indirect utility function u. The
concavity of function u allows us to conclude that the results obtained in the
one-period setting are also valid in this multi-period setting, with unchanged
qualitative conclusions.

2.4 Various types of pandemic
So far we have restricted ourselves to a unique type of pandemic, with well-
defined effects on the firm’s cashflows and on stock returns. We may extend our
analysis to a more general setting, where pandemics take several forms. As we
will see, this may lead to two forms of market incompleteness. For the sake of
simplicity, we explore these issues in the one-period setting.

2.4.1 Uncertain losses of the insured firm

Let us first consider the case where pandemics are at the origin of random losses
L̃ for the firm, depending on their specific caracteristics, with expected value
L = EL̃. The matrix of security returns is unchanged and still defined by Table
C. In particular, the set of stocks available in the market (limited to stocks 1
and 2) does not reflect the diversity of pandemics, with more or less major losses
for the firm, which corresponds to a first form of market incompleteness. In this
setting, the firm’s cashflow in the pandemic state is random and written as

w̃p = f

A− ∑
i∈{0,1,2]

xi

+
∑

i∈{0,1,2]

(1 + rpi)xi − L̃, (25)

with wp = Ew̃p. The firm chooses x0, x1 and x2 in order to maximize its
expected utility

πuu(wu) + πdu(wd) + πpEu(w̃p), (26)
where Eu(w̃p) is the expected utility, conditionally on the occurrence of a pan-
demic event. Proposition 2 characterizes the firm’s portfolio choices in this
setting.

9The envelope theorem gives u′(w) = u′(w +A0 −A1) > 0. Differentiating the first-order
optimality conditions yields dA1/dw = u′′/(δv′′ + u′′), which implies u′′(w) = δu′′v′′/(δv′′ +
u′′) < 0.
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Proposition 2 Assume that the firm is downward risk-averse (i.e. u′′′ > 0).
When facing a risk of random loss L̃, the firm’s optimal portfolio choices are
the same as in the case of a deterministic loss L larger than expected loss L. In
particular, when investors are risk-neutral, we have x1 = −x2 > L/(H + H ′)
and wu = wd < wp.

Hence, when pandemics create losses of uncertain amount, the prudent (i.e.
downward risk averse) firm behaves as if its losses in case of pandemic were
known in advance, but larger than their expected value. In other words, the
uncertainty regarding losses incentivizes the firm to overinsure its exposure to
the pandemic risk, by comparison with the case where losses would be certain
and equal to their expected value. In the particular case where investors are
risk-neutral, the return of the firm’s portoflio should provide resources that
exceed expected losses L.

It is easy to see where this conclusion comes from. Writing L̃ = L + ε,
with Eε = 0, shows that assuming uncertain pandemic losses is equivalent to
adding a zero-mean background risk ε to a deterministic pandemic loss L = L,
which makes insurance even more attractive to prudent policyholders. In fact,
Proposition 3 is similar to the precautionary motive of the prudent agent high-
lighted by Schlesinger (2013), whose intuition can be found in Eeckhoudt &
Schlesinger (2006), and which states that uncertainty about losses exacerbates
insurance demand. As far as we are concerned, we can conclude that the un-
certainty about the pandemic cost is likely to incentivize firms to extend their
insurance coverage beyond the level that they would choose if pandemics affect
their cashflows in a perfectly predictable way.

2.4.2 Uncertain stock returns in the pandemic state

Let us now turn toward the case where stock returns react differently, according
to the type of pandemic that may occur. As shown in Appendix 5.5, our analysis
would be qualitatively unchanged if financial markets were complete, with a
large number of stocks reacting differently according to the type of pandemic.
More explicitly, if the set of state-contingent stock returns span the full space
of state-contingent claims (each type of pandemic corresponding to a specific
state), then asset portfolios would allow us to replicate Arrow-Debreu securities
for all pandemic and non-pandemic states. If there are risk-neutral investors,
Arrow-Debreu security prices are proportional to state probabilities, and it is
optimal for the risk-averse firm to fully cover all its pandemic and non-pandemic
risks, through a portfolio of long-short positions. If investors are risk-averse,
then partial coverage is optimal. In other words, in this complete market setting,
the diversity of pandemic types would not affect our conclusions.

Things are different when there are various types of pandemics, but the
set of available stocks is not large enough to allow investors to reach a target
payoff whatever the pandemic. To get a hint of how this second form of market
incompleteness affects the firm’s risk management strategy, let us extend our
base model to a case where the returns of stocks 1 and 2 in the pandemic state
s = p are affected by independently-distributed random variables ε1 and ε2,
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respectively, with Eε1 = Eε2 = 0. The diversity of possible pandemics under
incomplete market is reflected in the distribution of ε1 and ε2, while only two
stocks are traded. Table E describes the state-contingent asset returns.

s\i 0 1 2
u rf R1 + h R2 + h
d rf R1 − h′ R2 − h′
p rf R1 +H + ε1 R2 −H ′ + ε2

Table E: Return of securities under multiple pandemic states

Let rsi be the expected state-contingent return of asset i as defined in Table
1. The firm’s cashflow ws in state s is still defined by (1) for s = u and p, while
the state-p random payoff w̃p with deterministic loss L is written as

w̃p = f

A− ∑
i∈{0,1,2]

xi

+
∑

i∈{0,1,2]

(1 + rpi)xi + ε1x1 + ε2x2 − L, (27)

with wp = Ew̃p. Comparing (27) and (25) shows that portfolio choices now
affect the probability distribution of the firm’s cashflow in the pandemic state,
and not only its expected value. Thus, analyzing how multiple pandemic types
affect portfolio choices cannot be reduced simply to adding a background risk
to a deterministic loss level. Proposition 3 characterizes the optimal solution to
this problem when investors are risk neutral, under technical assumptions that
simplify our analysis.

Proposition 3 Assume h′ = h, αu = αd = 1/2, H = 0. When investors are
risk-neutral, the firm’s optimal portfolio choices are such that wu < wd, and
x1 + x2 < 0. Furthermore, if πH ′ < h and u(.) is quadratic, then we have
wp > wu.

We know from Proposition 1 that under complete financial markets and
risk-neutral security pricing, it is optimal for the firm to perfectly hedge its
non-pandemic risks and also to fully cover the loss that may result from a
pandemic event. Proposition 3 shows that this is no more the case under in-
complete markets. When h′ = h and αu = αd = 1/2, the bullish and bearish
non-pandemic states are treated symmetrically, which makes the analysis more
straightforward. Assumption H = 0 is a sufficient condition, but not a neces-
sary one, to derive the first part of the Proposition. It means that stock 1 plays
a neutral role in the case of a pandemic (its return being equal to its expected
value R1), while the effect of the pandemic shock is fully concentrated on stock
2, with a downward effect −H ′.10

In our setting, non-pandemic risks can be perfectly hedged by long-short
positions that balance out each other, with x1 + x2 = 0. Should a pandemic
occur, then a long position on stock 1 (when H was assumed to be positive)
and a short position on stock 2 provide expected financial resources to the

10Needless to say, this assumption is made to highlight the mechanism at work, much more
than for reasons of realism.
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firm that compensate its loss L. However, perturbations ε1 and ε2 make this
compensation random, which is detrimental to the risk-averse firm. When H =
0, the balance of these effects tips in favor of obtaining compensation more
through the short position on stock 2, than through the long position on stock
1, which gives −x2 > x1, i.e. x1+x2 < 0.11 Consequently, we have wu < wd, the
firm being better off when the stock market is bearish than when it is bullish.
Since the short position on stock 2 is larger than the long position on stock 1,
we may even have the paradoxical result wp > wu, meaning that the expected
cashflow is larger in the pandemic state than when the market is bullish without
pandemic. As stated in the second part of Proposition 3, this is the case when
πH ′ < h and u(.) is quadratic.

These results are obtained under the assumption of investors’ risk neutrality.
As shown in the second part of Proposition 1, the investors’ risk aversion pulls
in the opposite direction, the long position on stock 1 being larger than the
short position on stock 2 when there is only one type of pandemic. In practice,
the optimal structure of the firm’s portfolio results from the complex interaction
between these two effects: the pricing of securities under investors’ risk aversion
incentivizes the firm to have more long positions on stock 1 than short positions
on stock 2, while the uncertainty of stock returns in the pandemic state may
exert an opposite effect.12

3 Numerical simulations
In this section, we conduct simulations that illustrate the functioning of the
insurance scheme discussed in the previous sections. This exercise will allow
us to assess the coverage made possible by pandemic self-funded insurance,
by using data from the French stock exchange. Our perspective will be first
retrospective, and then prospective. From a retrospective standpoint, we will
ask the question of what amount of coverage would have been available at the
outbreak of the COVID-19 crisis, if the insured firm had invested during the
previous decade in two option-based funds, with underlyings similar to stocks
1 and 2 of our theoretical model. In a forward-looking perspective, we will
simulate the coverage from such a financial investment strategy when the returns
of the underlying stocks are random and the next pandemic occurs a decade after
the start of the financial investment phase.

11In the proof of Proposition 3, it is assumed that the support of ε1 and ε2 is not too large,
so that we still have x1 > 0 and x2 < 0 at an optimal solution of the firm’s maximization
problem. If ε1 and ε2 correspond to large perturbations, then covering the firm’s risk through
financial assets could be sub-optimal, meaning that the firm would choose x1 = 0 and/or
x2 = 0.

12The proof of Proposition 3 shows that we still have K = I −A = K∗, i.e. f ′(K) = 1 + rf

when stock returns in the pandemic state are random.
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3.1 Backtest
We first perform a backtest of the following strategy: each year, from January
1st 2009 to January 1st 2020, e20,000 are invested in the insurance scheme
composed of two funds. Fund 1 is composed of call options, whose underlyings
are the twelve stocks listed in Table A, that are expected to resist well to a
pandemic shock. Fund 2 is composed of put options on the twelve stocks of Table
B, that are expected to under-perform the CAC40 in the pandemic state. Each
year, the strategy re-balances the two funds values. The symmetry between the
funds aims at neutralizing the effect of a potential trend in stock prices since
a general price increase benefits the calls and harms the puts, while a general
price drop benefits the puts at the expense of the calls.

Between 2009 and 2019, the French stock market experienced a 85.8% in-
crease in the CAC40 index. This marked evolution favours capitalization in fund
1. In contrast, fund 2 incurs a loss each year. A negative trend over the period
would have had the opposite effect. Since it is hard to predict the direction of
stock markets, a symmetrical strategy of investment in the two funds may be
viewed as a prudent approach.13

The yields of the two funds where computed by reconstituting each year the
value of options with the following characteristics : options purchased at the
beginning of each year have a maturity of two years and are sold at the end of
the year, with a remaining maturity of one year. The strike price is equal to the
current price of the underlying asset at the moment of purchase. Option prices
were calculated retrospectively using the Black-Scholes formula on the basis of
the historical underlying prices and option characteristics.14

At the beginning of each year, the additional e20,000 contribution is added
to the total fund value which is split in two equal parts to finance the purchase
of new put and call options. This results in a year-by-year evolution of the
two funds’ values. Results are presented in Table E. The total contribution is
equal to e240,000 on January 1st 2020. With the notable exceptions of 2011
and 2018, the fund invested in put options, i.e., fund 2, yields a negative payoff
due to the positive trend of the stock market over the period. In contrast, the
fund invested in call options, i.e. fund 1, provides positive payoffs that more
than compensates the losses of fund 2 most years and helps to increase the
overall fund value. At the beginning of year 2020, the fund accumulated a total
of e395,005. At the beginning of each year, financial investments are evenly
spread between and within each fund.

13In portfolio management, a straddle consisting in simultaneous purchases of call and put
options with the same underlying stock, is a way to hedge the uncertainty about the return
of this stock. The same logic applies when it comes to hedge the market risk that affects the
underlyings of the two funds.

14Hence, the procedure we followed consisted in estimating the price of options whose char-
acteristics may be considered as representative of calls and puts traded in the Paris stock
exchange. Another approach would have consisted in deriving option prices from the list of
actual options listed in the warrant market. We have opted for the first approach for practical
reasons, related to data availability, but also because, for each stock listed in the CAC40,
there are many put and call options, with various maturities and strike prices, which would
have made our analysis intractable.
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(a) Strike prices equal to underlying
prices. Mean value: e1.0690 mil-
lion, median: e967,030, 5th percentile:
e497,660, 1st percentile: e385,260.

(b) Strike prices of the put lower
than underlying prices. Mean value:
e1.5478 million, median: e1.3793 mil-
lion, 5th percentile: e677,120, 1st per-
centile: e515,130.

Figure 2: Liquidation value of the two-fund portfolio, with change in option
strike prices.

The portfolio of puts, with underlying assets particularly vulnerable to the
pandemic shock, generates a yield that offsets the limited losses incurred by the
calls, whose underlying assets have been chosen to resist the crisis. This results
in a total of e868,690 available to the firm when the crisis hits, the options
being sold on April 1st, 2020. The back-test therefore results in a e628,690
excess payoff for the firm. If contributions to the fund were considered as tax-
deductible, then the net excess payoff would even be larger, and would reach
e664,690 and e700,690 when corporate tax rate is 15% and 30%, respectively.

3.2 Forward-looking analysis
We now turn to an exercise of forward-looking simulations. Instead of using the
historical values of the underlying asset prices, we analyse the performance of the
two-fund investment strategy, by simulating a large number of future stock price
trajectories. We use the log-normal assumption, on which the Black-Scholes
model is built. The means and variances of the return processes are calibrated
to their historical values, measured before the 2020 pandemics, between January
1st 2007 and February 1st 2020. The outcome of the insurance strategy (i.e.,
of financial investments made by the firm at the beginning of each year) is
evaluated on each simulated price path. This allows us to construct a histogram
of potential payoffs to the insured firm, should another pandemic occur in the
future.

The data-set is composed of daily price fluctuations of the twenty-four stocks
listed in Tables A and B between January 1st 2007 and April 1st 2020. In
our baseline scenario, the firm starts contributing to the funds on April 1st,
2020. The firm makes twelve yearly payments of e20,000 and a pandemic crisis,
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affecting assets in the same proportions as the 2020 crisis, occurs in 2031. More
specifically, we assume that the expected value of each daily stock return during
a future pandemic is equal to the average return observed during the 2020
pandemic. We consider the case of a pandemic crisis starting in August 1st,
2031, the funds being liquidated in October 1st 2031 to provide a compensation
to the firm. It is assumed that the risk-free interest rate remains constant and
equal to its last value in the data-set (April 1st 2020).15 This allows us to
calculate the price of call and put options with strike prices being equal to the
current underlying prices.

Figure 2a displays the histogram of this baseline scenario with 1 million
random draws. The average value of the insurance strategy across draws is equal
to e1.069 million while the median is e967,030. 95% of the simulated paths
deliver a final value above e497,660 and 99% of them provide a value higher
than e385,260. The cumulative investment cost of this strategy is e240,000,
reduced to e204,000 and e168,000 if the firm’s contributions are tax-deductible,
with corporate tax rate of 15% and 30%, respectively. In comparison, if the firm
adopts the conservative strategy of investing at the risk-free rate, it is only able
to constitute a e235,730 buffer to face the 2031 pandemic crisis, a level higher
than the long-short strategy with a probability of only 0.0077 in our baseline
scenario.

It is worth considering how put and call option parameters affect the liquida-
tion value of the two-fund portfolio. In particular, in the previous simulations,
the option strike prices were taken equal to the spot underlying prices, but other
assumptions are of course possible. For illustrative purposes, Figure 2b repre-
sents the distribution of the liquidation value, under the same assumptions as
in Figure 2a, except for put options, that have strike prices equal to 80% of
the underlying’s current prices. Since a lower strike price increases leverage,
the resulting distribution is more spread-out with a higher mean and median,
at e1.5478 million and e1.3793 million respectively. In the case considered
here, the first and fifth percentiles are also higher at e677,120 and e515,130,
respectively.

The simulations presented so far rely on the assumption that the future
pandemic is similar to the one experienced in 2020. In particular, the return
processes are assumed to have identical expected values and volatilities in the
future pandemic and in the current one. A future pandemic however, is likely
to have its own specificities and to differ from what we have experienced during
the 2020 COVID-19 crisis. We therefore allow the expected values of the 2031
pandemic stock returns to be imperfectly known, and thus modelled as random
variables.16 Figure 3a displays the case where the 2031 pandemic expected

15Time-varying interest rates and volatilities could be acknowledged easily through
Ornstein-Uhlenbeck and GARCH processes for example.

16In the baseline scenario, it is assumed that stock returns are distributed during the two
pandemic episodes (2020 and 2031) according to normal laws with expected values µi and
standard errors σi for each stock i = 1, ...24. Investors know the values of µi and σi and these
values correspond to what has been observed during the 2020 crisis. We now assume that
investors have imperfect information about the parameters µi for the 2031 crisis. Available
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(a) No correlation between future ex-
pected returns. Mean value: e1.3894
million, median: e1.2187 million, 5th
percentile: e571,530, 1st percentile:
e430,510.

(b) Positive correlation between fu-
ture expected returns. Mean value:
e1.3971 million, median: e1.1300 mil-
lion, 5th percentile: e442,990, 1st per-
centile: e298,400.

Figure 3: Liquidation value of the two-fund portfolio with random shocks on
stock return expected values during the pandemic event.

returns are independently distributed random variables. Compared with the
baseline distribution, represented by the light grey histogram, the new dark grey
distribution is more spread-out and displays higher mean, median, 5th and 1st
percentiles. The higher level of volatility is due to the added layer of uncertainty
associated with random expected returns during the future pandemic event. The
fact that the new distribution dominates the baseline scenario is a by-product of
the Black-Scholes model, that provides higher option valuations for more volatile
stocks. In contrast, Figure 3b presents the case where the expected values of
future returns are correlated random variables. The new dark grey distribution
also features more volatility, but with more density on both the high and low
outcomes, which means that correlation reduces the gain from the volatility of
expected returns. While mean values are almost identical (e1.3971 million for
the correlated case and e1.3894 million for the uncorrelated case), the fifth and
first percentiles are lower in the correlated case (e442,990 and e298,400 against
e571,530 and 430,510 for the uncorrelated case), due to lower diversification
across stock returns.

In one respect, a perfectly informed investor would be able to anticipate
how each stock reacts to a pandemic event. Thus, he would concentrate short
and long positions in a small number of stocks that benefit or suffer most from

information about µi’s is captured by distributions of the random variables µ̃i. For simplicity,
we assume that each µ̃i is normally distributed with expected value µi (which was observed
during the 2020 pandemic). The variance of µ̃i is arbitrarily set at 10% of 1/24

∑
i
σ2

i , the
average variance during the 2020 pandemic. Furthermore random variables µ̃i are pairwise
correlated with parameter ρ ∈ [0, 1]. In this setting, option prices are evaluated through
the Black-Scholes formula applied to each draw of the expected value. This crude way of
considering parametric uncertainty could be improved by a proper bayesian analysis. We
nevertheless expect the results of such an analysis to deliver conclusions qualitatively similar
to the ones reported here.
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(a) Random selection of 9 out of the
12 assets. Mean value: e1.0823 mil-
lion, median: e934,940, 5th percentile:
e425,980, 1st percentile: e316,350.

(b) Random selection of 3 out of the
12 assets. Mean value: e1.1718 mil-
lion, median: e720,660, 5th percentile:
e201,990, 1st percentile: e133,530.

Figure 4: Liquidation value of the two-fund portfolio with random choice of
underlying stocks

the pandemic. In this regard, our approach so far was that of an imperfectly-
informed investor, only able to select two groups of underlyings, with one group
including pandemic-resistant stocks, and with stocks affected adversely by the
pandemic in the other. Option purchases were evenly spread between the twelve
underlyings of each fund, which may be viewed as the choice of a conservative-
minded investor who would minimise the risk of choosing the wrong stocks.

The robustness of our results may be appraised by considering the case of a
less conservative investor who randomly selects a sub-sample of underlyings.17

Figures 4a and 4b show the cases where nine and three stocks are randomly
drawn out of the twelve stocks of our baseline scenario. These random draws
are repeated to produce a sample of 1 million outcomes for the liquidation
value. Choosing a lower number of stocks produces more volatility and more
skewness since shocks across stocks are less likely to compensate each other. In
particular, the effect on skewness is similar to the effect produced by an increase
in the correlation between expected returns, presented in Figure 3. Indeed, a
large number of stocks allows a reduction in the probability of extreme low
and high performances thanks to compensation across individual stocks. Figure
4b shows that with only three stocks, the liquidation value may fall below the
risk-free strategy payoff with a non-negligible probability, since the fifth and
first percentiles are below the e235,730 threshold at e201,990 and e133,530,
respectively. This is not the case when nine stocks are selected.

Last but not least, it is worth considering the uncertainty about the timing of
a future pandemic. Our baseline scenario assumes a new pandemic crisis in 2031.
Figure 5 represents the evolution of the two-fund portfolio’s liquidation value,

17This is conceptually equivalent to assuming uncertain future returns. However, choosing
underlying stocks randomly allows for an additional robustness check and yields different
quantitative responses.
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as a function of the year of the pandemic event, under the assumptions of our
baseline scenario. The full line represents the expected payoff while the dotted
lines represent the ninety-fifth and fifth percentiles of the simulated distribu-
tions. The crossed circles mark the risk-free strategy payoff. The liquidation
value increases non-linearly with time. Indeed, the larger the size of the fund
accumulated before the pandemic, the higher the strategy payoff. Delivering a
significant payoff therefore requires some time for the fund to build potential
value, but it is comforting to observe that the fifth percentile of the distribution
is above the risk-free strategy payoff at all horizons.
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Figure 5: Liquidation value of the two-fund portfolio at different pandemic
horizons

4 Conclusion
In many countries, including the U.S. and in Europe, the COVID-19 crisis has
highlighted inadequate preparation for pandemics, and the current state of busi-
ness interruption insurance is illustrative of this deficiency. Pandemic risk dis-
plays features that are deeply different from those of other insurance risks: it
affects simultaneously a large fraction of businesses, which makes risk mutual-
ization unfeasible, and in addition, it is systemic in nature, since it goes along
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with a worldwide severe economic downturn. As result, in responding to the
demand for corporate pandemic insurance, innovation is required. We cannot
merely pour new wine into old bottles!

Having recognized that pandemics do not affect all sectors of the real econ-
omy in the same way, we have analyzed how corporate insurance could be built
through a capitalization strategy. This consists either in following a long-short
strategy in the stock market, or in investing in stock options, or of course in
a mixture of the two. The logic of this strategy is to take advantage of the
downturn of the stocks that are most exposed to pandemics, and, if possible, of
the stimulus given to specific sectors, in order to generate substantial gains in
the case of a pandemic, while hedging the risks associated with the bearish or
bullish nature of the stock market in non-pandemic states. Simulations using
data from the French stock market, both retrospectively or prospectively, have
illustrated the potential and robustness of this approach for putting a corporate
pandemic insurance in place.

We did not get beyond the basic principles of such a self-funded insurance
scheme, and a deeper exploration of this approach would require further studies
in various directions. One of them is about the drivers of the insured firm’s risk
aversion and the design of the insurance mechanism. We have limited ourselves
to the case where the insurance coverage level corresponds to the post-pandemic
value of the financial assets held by the insurer on behalf of the insured firm.
If the firm’s risk aversion results from an investment crowding-out mechanism
under increasing marginal cost of external capital, as in the Froot et al. (1993)
approach, or if it reflects bankruptcy costs, then a committed capital facility,
under the form of contingent debt or equity, could meet the firm’s needs more
effectively, than merely covering the cash-flow losses by selling its financial as-
sets. This would consist in adding another stage in the insurance mechanism,
where the value of the assets would be traded against such an option on paid-
in capital. It would be worth exploring such mechanisms where a committed
capital facility is bundled with asset management. Another issue is related to
complementary guarantees that the insurer could provide to the insured firm,
in order to reduce the uncertainty on the post-pandemic value of assets. This
may go through the securitization of the residual risk, that corresponds to the
difference between a guaranteed rate of return and the post-pandemic return of
assets. Pandemic catbonds, issued by insurers, may be the right instrument to
make such a guarantee feasible, by transferring the residual risk to dedicated
investors. This suggests that the self-funded insurance mechanism that we have
examined and the more traditional risk transfer through catbonds or other in-
struments, may have complementary roles in the coverage of the pandemic risk.
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5 Appendix
5.1 Proof of Lemma 1
A portfolio {x0u,x1u, x2u} pays one unit of numeraire in state u and zero oth-
erwise if

x0u(1 + rf ) + x1u(1 +R1 + h) + x2u(1 +R2 + h) = 1,
x0u(1 + rf ) + x1u(1 +R1 − h′) + x2u(1 +R2 − h′) = 0,
x0u(1 + rf ) + x1u(1 +R1 +H) + x2u(1 +R2 −H ′) = 0.

Solving this system of three equations with three unknowns yields

x0u = (h′ − 1)(H +H ′) + (h′ −H ′)R1 − (H + h′)R2

(1 + rf )(h+ h′)(H +H ′) , (28)

x1u = H ′ − h′

(h+ h′)(H +H ′) , (29)

x2u = H + h′

(h+ h′)(H +H ′) , (30)

which gives

qu = x0u + x1u + x2u

= (H +H ′)(rf + h′)− (H ′ − h′)R1 − (H + h′)R2

(1 + rf )(h+ h′)(H +H ′) . (31)

When there are risk-neutral investors, using αu = h′/(h+ h′) yields

qu = αu(1− π)
1 + rf

. (32)

Straightforward calculations with similar notations for states d and p yield

x0d = (1 + h)(H +H ′) + (H ′ + h)R1 + (H − h)R2

(1 + rf )(h+ h′)(H +H ′) , (33)

x1d = −(H ′ + h)
(h+ h′)(H +H ′) , (34)

x2d = h−H
(h+ h′)(H +H ′) , (35)

and

x0p = R2 −R1

(1 + rf )(H +H ′) , (36)

x1p = −x2p = 1
H +H ′

, (37)
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which gives

qd = x0d + x1d + x2d

= (H +H ′)(h− rf ) + (H ′ + h)R1 + (H − h)R2

(1 + rf )(h+ h′)(H +H ′) , (38)

qp = x0p + x1p + x2p

= R2 −R1

(1 + rf )(H +H ′) . (39)

In particular, when there are risk-neutral investors, we have

qd = αd(1− π)
1 + rf

, (40)

qp = π

1 + rf
, (41)

when there are risk-neutral investors.
If (3) holds, then (32),(40) and (41) give (5). If (4) holds, then (31) and (38)

give (6). Furthermore, using (7),(38), (39) and αd = h/(h+ h′) yield (8).

5.2 Proof of Proposition 1
The first-order optimality conditions for the maximization of

Eu ≡ (1− π)αuu(f(A− quyu − qdyd − qpyp) + yu)
+ (1− π)αdu(f(A− quyu − qdyd − qpyp) + yd)
+ πu(f(A− quyu − qdyd − qpyp) + yp − L),

with respect to yu, yd and yp are written as

(1− π)αuu
′(wu) = quEu′, (42)

(1− π)αdu
′(wd) = qdEu′, (43)

πu′(wp) = qpEu′, (44)

where we denote

Eu′ = (1− π)[αuu
′(wu) + αdu

′(wd)] + πu′(wp).

Assume first that there are risk-neutral investors, i.e. (3) holds. In that case,
(5) and (42)-(44) give (11), and (9),(10) show that there exists y such that

y = yu = yd = yp − L. (45)

We have
xi = (xiu + xid)y + xip(y + L) for i = 0, 1, 2,

which gives (12),(13) and

x0 = y(H +H ′) + (R2 −R1)L
(1 + rf )(H +H ′) = y + πL

1 + rf
. (46)
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We have K = A − I = A − x0 − x1 − x2. Maximizing the (state-independent)
final cashflow of the firm

f(A− x0 − x1 − x2) + y = f

(
A− y + πL

1 + rf

)
+ y,

w.r.t. y gives (18).
Assume now that investors are risk-averse, i.e., (6) and (8) hold. In that

case, (42)-(44) give (14) and

yp − L < yd < yu. (47)

Thus, we may write

yd = yu −∆d,

yp = yu + L−∆p,

with 0 < ∆d < ∆p. Using yu − yd = ∆d > 0 gives (16), and thus (15). Using
yp − L < yd and (16) yields

x1H − x2H
′ − L < −h′(x1 + x2) < 0,

and thus
L > x1H − x2H

′ > −x2(H +H ′),

which gives (17). Furthermore, maximizing the firm’s expected utility

Eu ≡ (1− π)αuu(f(A− yu

1 + rf
+ qd∆d + qp(∆p − L)) + yu)

+ (1− π)αdu(f(A− yu

1 + rf
+ qd∆d + qp(∆p − L)) + yu −∆d)

+ πu(f(A− yu

1 + rf
+ qd∆d + qp(∆p − L)) + yu + L−∆p),

w.r.t. yu, for ∆d and ∆p given, yields (18), with

K = A− yu

1 + rf
+ qd∆d + qp(∆p − L) = K∗.

5.3 Proof of Proposition 2

The first-order optimality conditions for the maximization of

Eu ≡ (1− π)αuu(f(A− quyu − qdyd − qpyp) + yu)
+ (1− π)αdu(f(A− quyu − qdyd − qpyp) + yd)
+ πE[u(f(A− quyu − qdyd − qpyp) + yp − L̃),
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with respect to yu, yd and yp are written as

(1− π)αuu
′(wu) = quEu′, (48)

(1− π)αdu
′(wd) = qdEu′, (49)

πEu′(w̃p) = qpEu′, (50)

where we denote

Eu′ = (1− π)[αuu
′(wu) + αdu

′(wd)] + πEu′(w̃p).

Using u′′′ > 0 gives
Eu′(w̃p) > u′(wp),

and thus, using u′′ < 0, we deduce that there exists γ > 0 such that

Eu′(w̃p) = u′(wp − γ).

Comparing with the optimality conditions of Proposition 1 shows that the op-
timal portfolio choices correspond to the case of deterministic losses L = L+ γ.
In particular, in the case of risk-neutral investors, the long-short positions allow
the firm to cover losses L larger than expected losses L.

5.4 Proof of Proposition 3
We still denote yu and yd the firm’s portfolio payoff in states u and d, re-
spectively. Let yp denote the expected portfolio payoff in state p. The state-
contingent expected payoffs yu, yd and yp can be obtained through portfolio
choices

xi = xiuyu + xidyd + xipyp, (51)

with i ∈ {0, 1, 2}, where xis is defined as in the proof of Proposition 1 for all i, s.
Choosing x0, x1 and x2 is equivalent to choosing yu, yd and yp, with financial
investment cost

I = quyu + qdyd + qpyp, (52)

where qu, qd and qp correspond to the Arrow-Debreu security prices of the
complete-market model (i.e. when ε1 ≡ ε2 ≡ 0), and are given by (31), (38) and
(39) . The firm chooses yu, yd and yp in order to maximize its expected utility

Eu =
∑

s=u,p
πsu(ws) + πpEu(w̃p),

where

ws = f(A− I) + ys for s = u and d,
w̃p = f(A− I) + x1ε1 + x2ε2 + yp − L,

33



with (x1, x2) and I given by (51) and (52), respectively. First-order optimality
conditions are written as

∂Eu
∂ys

= πsu
′(ws)− qsf

′Eu′ + πpE{(x1sε1 + x2sε2)u′(w̃p)} = 0

for s = u, d, (53)
∂Eu
∂yp

= πpEu′(w̃p)− qpf
′Eu′ + πpE{(x1pε1 + x2pε2)u′(w̃p)} = 0, (54)

where
Eu′ =

∑
s=u,d

πsu
′(ws) + πpEu′(w̃p).

Summing (53) and (54), and using

x1u + x1d + x1p = x2u + x2d + x2p = 0,

and
qu + qd + qp = 1

1 + rf
,

yields
f ′(A− I) = 1 + rf , (55)

i.e.,
K = A− I = K∗.

When investors are risk-neutral, equations (53) and (54) give

u′(wu) = Eu′ − π

αu(1− π)E
{[

(H ′ − h′)ε1 + (H + h′)ε2

(H +H ′)(h+ h′)

]
u′(w̃p)

}
,(56)

u′(wd) = Eu′ − π

αd(1− π)E
{[
−(H ′ + h)ε1 + (h−H)ε2

(H +H ′)(h+ h′)

]
u′(w̃p)

}
,(57)

Eu′(w̃p) = Eu′ − E
{[

ε1 − ε2

H +H ′

]
u′(w̃p)

}
. (58)

When the supports of ε1 and ε2 are not too large, we have x1 > 0 and x2 < 0
at an optimal solution, because x1 = −x2 = L/(H +H ′) > 0 when ε1 ≡ ε2 ≡ 0.
Hence w̃p is increasing w.r.t. ε1 and decreasing w.r.t. ε2. Using u′′ < 0 then
gives

E[ε1u
′(w̃p)] = cov[ε1, u

′(w̃p)] < 0, (59)
E[ε2u

′(w̃p)] = cov[ε2, u
′(w̃p)] > 0. (60)

Assume αu = αd = 1/2, h′ = h and H = 0. In that case, (56) and (57) are
written as

u′(wu) = Eu′ − π

1− πE
{[

(H ′ − h)ε1 + hε2

hH ′

]
u′(w̃p)

}
, (61)

u′(wd) = Eu′ − π

1− πE
{[
−(H ′ + h)ε1 + hε2

hH ′

]
u′(w̃p)

}
. (62)
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Using (59),(61) and (62) gives

u′(wu)− u′(wd) = − 2π
h(1− π)E[ε1u

′(w̃p)] > 0,

which implies wu < wd, and thus x1 + x2 < 0.
Let us further assume that u(.) is quadratic, and written as u(w) = −aw2/2+

bw, with a, b > 0 and w < b/a for all relevant values. Since ε1 and ε2 are
independently distributed, (61) and (58) give

wu = w + π

hH ′(1− π) [(H ′ − h)x1σ
2
1 + hx2σ

2
2 ],

wp = w + 1
H ′

[x1σ
2
1 − x2σ

2
2 ],

where wp = Ew̃p and w = (1− π)(wu + wp)/2 + πwp. This yields

wp − wu = x1σ
2
1(h− πH ′)σ2

1 − x2hσ
2
2

hH ′(1− π) .

Hence, πH ′ < h is a sufficient condition for wp > wu.

5.5 One-period model with an arbitrary number of pan-
demic states

This appendix presents an extended version of the model presented in Section
2. It is based on similar assumptions about risk aversion and technology, but
with S states and n + 1 securities. There are m pandemic states and S − m
non-pandemic states, with m < S, and we assume n+ 1 ≥ S. States and assets
correspond to index s and i, respectively, with s = 1, ..., S−m the non-pandemic
states and s = S −m + 1, ..., S the pandemic states. Index i = 0 corresponds
to the risk-free assets and i = 1, ..., n are the other assets. The return of asset
i in state s is denoted rsi, with rs0 = rf for all s, and f(K) still denotes the
cashflow from productive assets. The model of Section 2 corresponds to the
case with one pandemic state, two non-pandemic states and three assets, i.e.,
m = 1, S = 3 and n = 2. . We denote Ls the firm’s loss in state s, with Ls = 0
if s = 1, ..., S−m, and Ls > 0 if s = S−m+ 1, ..., S. Hence, the firm’s cashflow
in state s is

ws = f
(
A−

∑n

i=0
xi

)
+
∑n

i=0
(1 + rsi)xi − Ls.

Let πs be the probability of state s, with
∑S

s=1 πs = 1.The firm maximizes
its expected utility

Eu =
∑S

s=1
πsu(ws),
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w.r.t. x0, ..., xn. Let e = (1, ..., 1) be the (n+ 1)−dimension row vector with all
components being 1, and rs = (rs0, ..., rsn). Let

E =


e+ r1
...

e+ rs

...
e+ rS

 ,

be the S×(n+1) matrix, with 1+rsi the term of row s and column i. We assume
that E has full rank, and thus for all y = (y1,..., yS)′ there exists x = (x0,..., xn)′
such that Ex = y. Let

C(y) = min{e · x | Ex = y},

be the lowest financial investment
∑n

i=0 xi that provides payoff vector y =
(y1,..., yS)′. Function C(y) is linear, and may be written as

C(y) =
∑S

s=1
qsys,

where qs is the price of the type−s Arrow-Debreu security, with qs = πs/(1+rf )
for all s when the representative investor is risk-neutral. The firm’s expected
utility is rewritten as

Eu =
∑S

s=1
πsu(f(A− C(y)) + ys − Ls).

It is maximized w.r.t. y = (y1, ..., yS)′, and an optimal portfolio of assets x′ =
(x0, ..., xn) is such that e · x = C(y).

The first-order optimality conditions for this problem are written as

∂Eu
∂ys

= πsu
′(f(A− C(y)) + ys − Ls)− qsEu′ = 0,

for all s = 1, ..., S, where

Eu′ =
∑S

s=1
πsu
′(f(A− C(y)) + ys − Ls).

When the representative investor is risk-neutral, we have

qs

πs
= 1

1 + rf
for all s = 1, ..., S,

which gives

u′(f(A− C(y)) + ys − Ls) = Eu′

1 + rf
for all s = 1, ..., S,

and using u′′ < 0 yields

y1 − L1 = y2 − L2 = ... = yS − LS .
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In other words, the financial choices of the firm provides full coverage of the
pandemic loss and perfect hedging of financial risks.

When the representative investor is risk-averse, we have

ys − Ls < ys′ − Ls′ ⇔ qs

qs′
>
πs

πs
if s 6= s′,

and final cashflows are affected by residual uncertainty. In other words, there is
partial coverage of pandemic losses and imperfect hedging of financial risks. In
particular, comparing states s ∈ {1, ..., s−m} and s′ ∈ {s−m+ 1, ..., S}) gives

y′s − ys < Ls′ ⇔ qs′

qs
>
πs′

πs
.

Thus, when the firm moves from the non-pandemic state s to the pandemic
state s′, the additional payoff of its portfolio is lower than the loss caused by
the type−s′ pandemic, when the cost of transferring wealth from s to s′ is larger
than the corresponding ratio of state probabilities.
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