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Abstract 
 
We reassess the well-known “narrow-but-deep” versus “broad-but-shallow” trade-off in 
international environmental agreements (IEAs), taking into account the principal-agent 
relationship induced by the hierarchical structure of international policy. To this end, we expand 
the modest coalition formation game, in which countries first decide on whether to join an 
agreement and then decide on emissions by a strategic delegation stage. In the weak delegation 
game, principals first decide whether to join an IEA, then delegate the domestic emission choices 
to an agent. Finally, agents in all countries decide on emissions. In countries not joining the IEA, 
agents choose emissions to maximize their own payoff, while agents of countries joining the IEA 
set emissions to internalize some exogenously given fraction  of the externalities that own 
emissions cause on all members of the IEA. In the strong delegation game principals first delegate 
to agents, which then decide on membership and emissions. We find that strategic delegation 
crowds out all efforts to increase coalition sizes by less ambitious agreements in the weak 
delegation game, while in the strong delegation game the first-best from the principals’ point of 
view can be achieved. 
JEL-Codes: Q540, Q580, C720, D620, H410, P160. 
Keywords: international climate policy, coalition formation game, political economy, strategic 
delegation, strategic voting. 
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1 Introduction

Despite the COVID-19 pandemic, the mitigation of anthropogenic climate change remains
one of the most important challenges humanity currently faces. On the positive side, there
is a widespread consensus on the long-term policy goal that the increase of the average
surface temperature should be contained well below 2◦C compared to the pre-industrial
level. This has been formalized in the Paris Agreement in December 2015, which was widely
acclaimed by many observers and politicians as a diplomatic breakthrough in international
climate policy. On the negative side, we observe little progress in climate change mitigation:
In almost all countries, current greenhouse gas emissions are above the agreed upon pledges
and even complying with these pledges would not achieve the 2◦C target.

Thus, the Paris Agreement seems to suffer from the well-known “narrow-but-deep” versus
“broad-but-shallow” trade-off that is omnipresent in the provision of global public goods,
due to the absence of a supranational authority that can enforce cooperation.1 According to
this trade-off, agreements are either ambitious in their effective public good provision but
only consist of a small number of participating parties (“narrow-but-deep”), or supported
by many or even all involved parties, which comes at a sharp reduction in the effective
provision of the public good of each signatory (“broad-but-shallow”). While the “broad-but-
shallow”-agreements often beat the “narrow-but-deep”-agreements in the effective aggregate
provision of the global public good, as the reduction in the provision of each signatory is
overcompensated by more signatories, they usually fall considerably short of the globally
efficient outcome.

In this paper, we reassess the “narrow-but-deep” versus “broad-but-shallow” trade-off in
the context of strategic delegation. That is, we depart from the usual assumption that
individual countries are represented by a single benevolent decision maker, for example
a government, acting in the best interest of the country as a whole. Instead, we account
for the “hierarchical structure” of international (environmental) policy. By hierarchical we
mean that political decisions in modern societies are not made by a single – let alone
benevolent – decision maker. For example, representative democracies typically feature a
chain of delegation from voters to those who govern (Strøm 2000): (i) from voters to elected
representatives, (ii) from legislators to the executive branch (head of government), (iii) from
the head of government to the heads of different executive departments, and (iv) from these
heads to civil servants. In all these situations, one party (an agent) acts on behalf of another
(the principal), because the principal either lacks the information or skills of the agent, or
simply the time. An additional reason for delegation is that the choice of an agent with

1 See, for example, Schmalensee (1998), Barrett (2002), Aldy et al. (2003), Finus and Maus (2008) and
Harstad (2020).
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certain preferences enables the principal to credibly commit to a particular policy (e.g.,
Perino 2010). In this case, the principal delegates strategically, i.e., chooses an agent who
exhibits preferences that differ from her own.

In our analysis, we start with the analytical framework presented in Finus and Maus (2008),
which we amend in two dimensions: First, Finus and Maus (2008) introduce a “modesty”
parameter γ into a standard coalition formation game, which represents the fraction of
externalities within the coalition that coalition members internalized. While being a parsi-
monious and analytically tractable deviation from the standard coalition formation game
that successfully produces the “narrow-but-deep” versus “broad-but-shallow” trade-off, it
raises serious concerns with respect to compliance, as it is not in the best interest of mem-
ber countries to behave as postulated. To circumvent any issues of compliance, we present
an institutional microfoundation based on the international permit market with refunding
mechanism introduced by Gersbach and Winkler (2011). In this set-up all agents make de-
cisions such as to maximize their own welfare, i.e., the mechanism is self-enforcing, yet, the
outcome in the subgame perfect equilibrium exactly matches the outcome as postulated by
Finus and Maus (2008).

Second, we add an additional strategic delegation stage to the model set-up in Finus and
Maus (2008). In doing so, we distinguish two institutional settings, depending on how much
decision power the principal surrenders to the agent: In the weak delegation game the prin-
cipals in all countries decide in the first stage on whether to join an international environ-
mental agreement (IEA). In the second stage, the principals in all countries select agents,
who are in charge of the domestic emission level choices in the third stage. In the strong
delegation game, the first two stages are interchanged: In the first stage the principals in
all countries select agents, who then decide on membership status of the IEA in the second
stage and also on emission levels in the third stage.

We find several important and new results. First, with respect to strategic delegation, we
show that there are two different motives to strategically delegate: Principals in all coun-
tries have an incentive to delegate to agents who exhibit a lower evaluation of environmental
damages than themselves. This motive stems from the strategic substitutability of emission
choices and is well understood in the literature. By delegating to a “browner” agent, the
principal can commit her country to high emission levels, to which the best response of all
other countries is to reduce their own emission levels. The second motive is only present
for principals of member countries. They have an incentive to delegate to agents that have
higher evaluations of the environmental damages than they have themselves. By delegating
to a “greener” agent, the principals can increase the “effective” environmental damage (i.e.,
the environmental damage as measured from their own perspective) of their own country
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that is internalized by the other member countries. This motive is only present if member
countries do not fully internalize the externalities within the coalition, i.e., if the agreement
is “shallow”. In fact, principals try to crowd out any deviation from an ambitious agreement
as much as possible. In the weak delegation framework, where principals know their member-
ship status, they succeed to fully crowd out any attempt of a modest agreement. Thus, the
resulting outcome is as if the agreement was “deep”. In the strong delegation game, where
principals do not know whether they end up as coalition members, they only achieve to
partially crowd out modest agreements. To the best of our knowledge this second delegation
motive is unique to the modest coalition formation model with strategic delegation.

Second, our main result addresses the “narrow-but-deep” versus “broad-but-shallow” trade-
off. In fact, we show that this trade-off does not exist in our strategic delegation coalition
formation model. In the weak delegation game, any deviation from “narrow-but-deep” is
perfectly crowded out by the delegation choices of principals in member countries. Thus,
there is no alternative to “narrow-but-deep” agreements. In the strong delegation game,
we find, similar to the existing literature on this trade-off, there always exists a sufficiently
small γ such that all countries become members of the agreement. However, in this case, the
principals can fully crowd out any attempt of a shallow agreement (by correctly anticipating
that the grand coalition forms, they know with certainty that they will become member
countries). As a result, we end up in a “broad-and-deep” agreement, in which all countries
participate in the agreement and, from the principals’ point of view, the globally efficient
level of the public good is provided. Intuitively, due to the sufficiently small γ, the agreement
is “shallow” enough from the agents’ point of view such that full participation is in the best
interest of all agents in the second stage. However, the principals in the first stage delegate
to agents who have so high an evaluation of the environmental damages that the agreement,
which looks “shallow” to the agents, actually implements the first-best from the principals’
point of view.

We believe that particularly our main result has important consequences for the future
design of IEAs. Our analysis shows that strategic delegation is not necessarily an impedi-
ment to successful international environmental cooperation. In the right institutional set-
ting, strategic delegation can act as the necessary commitment device for the principals to
overcome the free-incentives of global public good provision.

Our paper combines two different strands of literature. The first strand is the literature on
strategic delegation which emerged in the Industrial Organization (IO) literature analyzing
the delegation of managerial decisions from shareholders to chief executive officers (for
an excellent survey see Kopel and Pezzino 2018). Subsequently, the concept of strategic
delegation found its way into the literature on negotiation and cooperation (Crawford and
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Varian 1979; Sobel 1981; Jones 1989; Burtraw 1992, 1993; Segendorff 1998) where it has
been utilized in various contexts with inter-agent spillovers, such as environmental policy
or the provision of public goods more generally.2

Siqueira (2003), Buchholz et al. (2005), Roelfsema (2007) and Hattori (2010) analyze strate-
gic voting in the context of environmental policy. Siqueira (2003) and Buchholz et al. (2005)
both find that voters’ selection of agents is biased toward politicians who are less “green”
than the median voter. By electing a “browner” politician, the home country commits it-
self to a lower tax on pollution, shifting the burden of a cleaner environment to the foreign
country. By contrast, Roelfsema (2007) accounts for emissions leakage through shifts in pro-
duction and finds that median voters may delegate to politicians who place greater weight on
environmental damage than they do themselves, whenever their preferences for the environ-
ment relative to their valuation of firms’ profits are sufficiently strong. However, this result
breaks down in the case of perfect pollution spillovers, such as the emission and diffusion
of greenhouse gases as in our paper. Hattori (2010) allows for different degrees of product
differentiation and alternative modes of competition, i.e., competition on quantities but also
on prices. His general finding is that, when the policy choices are strategic substitutes (com-
plements), a less (more) “green” policy maker is elected in the non-cooperative equilibrium.
As in Siqueira (2003) and Roelfsema (2007), the agents selected by the principals in our
model do not engage in bargaining but rather set environmental policies non-cooperatively.

Strategic delegation in the provision of public goods with cross-border externalities more
generally has been examined by Kempf and Rossignol (2013) and Loeper (2017). The authors
of the former paper show that any international agreement that is negotiated by national
delegates involves higher public good provisions than in the case of non-cooperative policies,
taking feasibility, efficiency and equity constraints into account. In their model, the choice of
delegates is highly dependent on the distributive characteristics of the proposed agreement.
Loeper (2017) proves that whether cooperation between national delegates is beneficial only
depends on the type of public good considered and, more specifically, on the curvature of
the demand for the public good but not on voters’ preferences, the magnitude of the cross-
border externalities, nor the size, bargaining power or efficiency of each country in providing
the public good. Another strand of this literature deals with the provision of public goods
in federations that are characterized by fiscal arrangements or different majoritarian rules;
see, e.g., Besley and Coate (2003), Redoano and Scharf (2004), Dur and Roelfsema (2005),
Harstad (2010) and Christiansen (2013).

The second strand is the literature on two-stage coalition formation games. For an overview,

2 It is also worth mentioning that strategic delegation is labeled as strategic voting whenever the principal is
the electorate or, more precisely, the median voter and the elected government is the agent (Persson and
Tabellini 1992).
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see the excellent surveys by Barrett (2003), Finus (2001), Wagner (2001) and de Zeeuw
(2015). In general, these models draw a pessimistic picture for successful international co-
operation: whenever the gains from cooperation would be large, stable coalition sizes are
small and, thus, coalitions achieve little (e.g., Carraro and Siniscalco 1993 and Hoel 1992).3

The main idea of the two-stage coalition formation game by Finus and Maus (2008), which
we take as basis for our model, is that the coalition does not necessarily internalize all ex-
ternalities from emissions within the coalition but may opt for a more modest goal, i.e., to
internalize only some fraction γ of the environmental damages within the coalition. They
show that more modest agreements have higher membership sizes. Although each member of
the coalition in a modest agreement emits more than members in an ambitious agreement
with equal membership size, this increase in emissions is often outweighed by the larger
number of members, who – even in a modest agreement – emit less than non-members of
the coalition. Harstad (2020) finds a similar result in a dynamic model that can account for
a variety of different empirical observations of international environmental agreements. In
contrast to Finus and Maus (2008), he provides a microfoundation for the “narrow-but-deep”
versus “broad-but-shallow” trade-off that is inspired by the pledge-and-review mechanism
of the Paris Agreement. The decisive difference between these two papers and our paper is
that we, in addition, account for the hierarchical structure of international environmental
policy by introducing a strategic delegation stage.

From a political economy perspective, the papers most closely related to ours are Marchiori
et al. (2017), Hagen et al. (2016), Köke and Lange (2017) and Battaglini and Harstad (2020).
All these papers (and ours, too) have in common that they analyze the formation of an IEA
in an political economy model, i.e., they explicitly discuss the influence of the interplay
of domestic and international climate policy on the prospects of international environmen-
tal cooperation. Marchiori et al. (2017) and Hagen et al. (2016) investigate the influence
of legislative lobbying, as modeled by a common agency framework, on the formation of
IEAs. In a strategic voting model with uncertain median voter preferences Köke and Lange
(2017) analyze the impact of ratification constraints on the outcome of IEAs. Battaglini and
Harstad (2020) show that the political competition for reelection of an incumbent govern-
ment with a rival party may have an important impact on the design and the effectiveness
of IEAs. In contrast to these papers, we consider a coalition formation game in a strategic
delegation framework similar to Habla and Winkler (2018).

3 However, Karp and Simon (2013) show that this may not necessarily be true.
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2 The Model

We consider a set I = {1, . . . , n} of n ≥ 2 a priori identical countries. In each country i ∈ I,
emissions ei imply country-specific benefits from productive activities, characterized by a
concave quadratic benefit function B(ei), while global emissions E =

∑
i∈I ei cause convex

quadratic damages, D(E). Whenever possible, we formulate our results in terms of generic
benefit and damage functions, taking the assumed properties into account. When specific
benefit and damage functions are necessary to derive unambiguous conclusions, we employ
the following:

B(ei) = βei

(
ε− 1

2ei
)
, D(E) = δ

2E
2 , (1)

where ε denotes the business-as-usual emissions of a country that accrued if no emission
reductions because of environmental damages were beneficial. The parameter β measures
emissions efficiency, i.e., how much GDP a country can produce per unit of emissions, while
the parameter δ is a measure of the environmental damage (in monetary terms) that is
caused by global emissions.

2.1 Agency Structure

In each country i ∈ I there is a principal whose utility is given by:

Ui = B(ei)− θi,PD(E) . (2)

Without loss of generality, we normalize the principal’s preference parameter to unity, i.e.,
θi,P ≡ 1. In addition, there is a continuum of agents of mass one in each country i, whose
utilities are given by:

Vi = B(ei)− θiD(E) , (3)

where θi is a preference parameter that is continuously distributed on the bounded interval
[0, θmax]. We assume that the boundary θmax is such that (i) the principals’ preferences are
represented in the continuum of agents, i.e., θmax ≥ 1, and (ii) the principal can always find
her preferred agent within the continuum of agents.

Our preference specification implies that in each country, all agents and the principal have
equal stakes in the benefits from productive activities but differ with respect to environ-
mental damages. This may be either because damages are heterogeneously distributed or
because the monetary valuation of homogenous physical environmental damages differs. We
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assume that all individuals (principals and agents) are selfish in the sense that they maxi-
mize their respective utilities, i.e., the principal in country i chooses her actions to maximize
Ui, while each agent in country i makes decisions to maximize his utility Vi. In addition,
we assume that preference parameters of all individuals are common knowledge. Thus, we
abstract from all issues related to asymmetric information.

2.2 Modest International Environmental Agreements

We model the hierarchical structure of climate policy as a coalition formation game similar
to the model presented by Finus and Maus (2008), which we amend by a strategic dele-
gation stage. In the standard coalition formation game, all countries simultaneously and
non-cooperatively decide in the first stage whether to join an agreement. Throughout the
paper we shall call countries that join the agreement “members” and the remaining coun-
tries “non-members” or “free-riders”. In the second stage, all countries simultaneously set
emission levels. Non-members choose emission levels non-cooperatively, while members are
supposed to choose emissions such as to maximize the joint welfare of all member countries.
Finus and Maus (2008) allow for modest IEAs by specifying that member countries only
internalize a fraction of the externalities within the coalition. Given the preference param-
eter θj of the agent who is charge of the emission choice in country j, agents in member
countries set emissions such as to maximize the sum of benefits among all member countries
minus a fraction γ of the sum of the agents’ damages among all member countries Wi:

Wi =
∑
j∈S

[B(ej)− γθjD(E)] , (4)

where S ⊆ I denotes the set and k = |S| the number of member countries. The parameter
γ ≤ 1 can be interpreted as the level of modesty of a treaty. The case of full internalization,
as in the standard coalition formation case, is represented by γ = 1.

A general criticism against the assumption of member countries maximizing (some fraction
of) joint welfare Wi is that it is not in the self-interest of countries to do so. In the case
of the standard coalition formation game, i.e., when γ = 1, this can be rationalized by
assuming that member countries set emissions and distribute benefits according to a Nash
bargaining solution. Even in this case, one might question why countries behave perfectly
non-cooperatively when they decide about participation, and perfectly cooperatively once
they decided to join the coalition, as member countries individually have an incentive not
to comply with maximizing the joint welfare of member countries and to free-ride on the
abatement efforts of all other members. In case of modest treaties, i.e., γ < 1, the explanation
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of cooperative behavior breaks down, and it is even more unclear why countries should
behave as stated in (4).

To circumvent these issues of compliance (or non-compliance, respectively), we present a
mechanism in which all countries (i.e., member and non-member countries) make decisions
such as to maximize their own welfare given the decisions of all other countries. We show
that the outcome of this mechanism is as if member countries behaved according to (4).
While the details are relegated to Appendix A.1, the general idea of the mechanism, which
is inspired by Gersbach and Winkler (2011), is as follows.

Members in the coalition set up an international emissions permit market, according to the
following rules:

1. Participating countries simultaneously and non-cooperatively choose the number of
permits they want to issue. Permits can be traded non-discriminatorily across all
participating countries (see also Helm 2003).

2. A fraction µ of issued permits in all participating countries is collected by an interna-
tional agency (IA) and auctioned directly to firms in member countries.

3. The IA refunds the revenues for auctioned permits lump-sum to member countries in
equal shares.

Thus, member countries’ emission choices are determined in a two stage subgame, in which
countries first choose permit issuance, a fraction of which is auctioned by the IA and the
revenues are returned lump-sum to member countries. Second, the permit market equilib-
rium determines the permit price and the emissions in all member countries. We show in the
Appendix that there exists a one-to-one correspondence between the fraction µ of permits
auctioned by the IA and the degree of modesty γ, where an increasing µ corresponds to an
increasing γ. In fact, full auctioning by the IA,µ = 1, corresponds to the standard coalition
formation set-up with γ = 1, while no auctioning via the IA, µ = 0, results in γ = 1/k,
which implies that member countries choose emission levels as non-member countries.4

2.3 Weak versus Strong Delegation

We analyze two different delegation mechanisms, henceforth termed weak delegation and
strong delegation, as coined by Segendorff (1998). The two mechanisms differ in the amount
of decision power given to the agent by the principal: While in the weak delegation case

4 Note that γ < 1/k would imply that member countries would choose even higher emissions than non-
member countries, which would hardly make any economic sense. Thus, this natural lower bound for γ is
endogenously derived from our microfoundation.
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the agent’s authority is limited to the emission choice, in the strong delegation game the
whole decision making process, i.e., both membership and emission choice, is delegated to
the agent.

The timing of the weak delegation case is as follows:

1. Membership Stage:
Principals in all countries simultaneously decide whether to join the IEA.

2. Strategic Delegation Stage:
Principals in all countries simultaneously select an agent.

3. Emission Policy Stage:
Selected agents in all countries simultaneously choose domestic emissions. Agents in
non-member countries choose emissions such as to maximize Vi, while agents in mem-
ber countries choose emissions such as to maximize Wi.

In the strong delegation game, the first two stages are interchanged:

1. Strategic Delegation Stage:
Principals in all countries simultaneously select an agent.

2. Membership Stage:
Selected agents in all countries simultaneously decide whether to join the IEA.

3. Emission Policy Stage:
Selected agents in all countries simultaneously choose domestic emissions. Agents in
non-member countries choose emissions such as to maximize Vi, while agents in mem-
ber countries choose emissions such as to maximize Wi.

Despite being highly stylized, this model captures essential characteristics of the hierarchi-
cal structure of domestic and international environmental policy. As we discuss in greater
detail in Section 7, the structure of the model is compatible with various delegation mecha-
nisms present in modern societies. For example, if we interpret the principal as the median
voter and the agent as the elected government, then the weak delegation case would rather
resemble a direct democracy, in which binary decisions like joining an international treaty
are directly decided by the electorate via referendum, while implementation issues such as
emission choices are delegated to the elected government. The strong delegation case would
rather resemble representative democracies, where the electorate surrenders more decision
power to the elected government and, thus, the government decides on both whether to join
a treaty and the actual emissions.
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We solve both games by backward induction. The last stage, the emission policy stage is
structurally identical in both set-ups, as emissions are always chosen by the delegated agents
and the membership structure is known at the time of emission choice. In the weak dele-
gation case, we determine in a second step the preferences of the agents who the principals
in member and non-member countries select. Then, we characterize the membership struc-
ture for which the international environmental agreement is stable. In the strong delegation
case, we first determine the membership structure in equilibrium as a function of the se-
lected agents’ preference parameters, before we characterize the principals’ optimal choice
of agents, which in this case is independent of a country’s membership status.

3 Emission Policy Stage

In the last stage of both the weak and the strong delegation set-up, member and non-
member countries are already determined and principals in all countries have delegated the
emission policy choice to an agent. Thus, there exists a set S ⊆ I characterizing the k = |S|
member countries and a vector Θ = (θ1, . . . , θn) detailing the preference parameters of the
selected agents in all countries. Agents in non-member countries i /∈ S maximize Vi:

max
ei

B(ei)− θiD(E) , (5)

subject to E =
∑
i∈I ei and given the sum of emissions of all other countries e−i = E − ei.

The first-order condition yields the well-known insight that in the Nash equilibrium marginal
benefits have to equal marginal environmental damages (from the agent’s perspective):

B′(ei) = θiD
′(E) . (6)

Given the sum of emissions of all other countries e−i, the first-order condition (6) implic-
itly characterizes the best response function of the agent in country i with respect to the
emissions choice ei.

Analogously, agents in member countries i ∈ S maximize Wi:

max
ei

∑
j∈S

[B(ej)− γθjD(E)] , (7)

subject to E =
∑
i∈I ei and given the sum of emissions of all other countries e−i = E−ei. The

first-order condition implies that in the Nash equilibrium marginal benefits equal the fraction
γ times the sum of damages among all member countries (again, from the perspective of
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the selected agents):

B′(ei) = γ
∑
j∈S

θjD
′(E) . (8)

Again, the first-order condition implicitly characterizes the agents’ best response functions.

The set of first-order conditions for all non-member and member countries determines the
Nash equilibrium with respect to the emission choices in the third stage of the game, which
exists and is unique, as the following proposition states:

Proposition 1 (Unique NE in Emission Policy Stage)
For any given set S of member countries and any given vector Θ = (θ1, . . . , θn) of preferences
of the selected agents, there exists a unique Nash equilibrium of the subgame beginning in
stage three, in which the agents of all countries i ∈ I simultaneously set domestic emission
levels ei such as to maximize either Vi (non-members) or Wi (members), taking the emission
choices of all other agents as given.

The proofs of all propositions are relegated to the Appendix.

We denote the Nash equilibrium of the subgame beginning in stage three by ê(S,Θ) =(
ê1(S,Θ), . . . , ên(S,Θ)

)
and the global emission level in this equilibrium by E(S,Θ). For

later use, we analyze how the equilibrium emission levels change with a marginal change in
the preferences of the selected agent in country i.

Proposition 2 (Comparative Statics in Emission Policy Stage)
The following conditions hold for the equilibrium levels of domestic emissions of country
i ∈ I, êi(S,Θ), for the sum of domestic emissions of all other countries ê−i(S,Θ) and total
emissions Ê(S,Θ):

• For countries i /∈ S:

dêi(S,Θ)
dθi

< 0 , dê−i(S,Θ)
dθi

> 0 , dÊ(S,Θ)
dθi

< 0 . (9)

• For countries i ∈ S:

dêi(S,Θ)
dθi

< 0 , dê−i(S,Θ)
dθi

T 0 , dÊ(S,Θ)
dθi

< 0 . (10)

Proposition 2 states that domestic emission levels of country i, êi(S,Θ), and global emissions
Ê(S,Θ) are lower in equilibrium when the preference parameter θi is higher, i.e., when
country i’s selected agent cares more about the environment. At the same time the sum of

11



emission levels of all other countries ê−i(S,Θ) is higher if country i /∈ S and indeterminate
if country i ∈ S.

4 Weak Delegation

We first analyze the weak delegation set-up, in which principals in the first stage decide
whether to join the agreement and in the second stage delegate the emission choice of the
third stage to agents.

4.1 Strategic Delegation Stage

By the logic of backward induction, we first turn to the selection of agents by the principals
in the second stage of the game, in which the set S and the number k of member countries
is already determined. Formally, the strategic delegation choice of principals is independent
of whether the respective country is a member or non-member country. Thus, the principal
of country i ∈ I maximizes:

max
θi

B
(
êi(S,Θ)

)
−D

(
Ê(S,Θ)

)
, (11)

subject to the equilibrium emissions êi(S,Θ) and Ê(S,Θ) of the third stage and given the
preference parameter choices θj of all other countries j 6= i. Then, the first-order condition
reads:

B′
(
êi(S,Θ)

)dêi(S,Θ)
dθi

= D′
(
Ê(S,Θ)

)dÊ(S,Θ)
dθi

. (12)

This equation says that in equilibrium the marginal costs of strategic delegation have to
equal its marginal benefits. The costs of choosing an agent with marginally higher environ-
mental preferences (left-hand side) are given by the reduction in domestic benefits, as an
agent with higher preference parameter θi chooses lower domestic emissions êi, while the
benefits (right-hand-side) accrue from a reduction in environmental damages due to lower
aggregate equilibrium emissions Ê.

Inserting the first-order conditions of the third stage, (6) and (8), and the explicit formulae
for dêi/dθi and dÊ/dθi for non-member and member countries into equation (12), we obtain
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the following reaction functions for non-member and member countries:

θi(Θ−i) = 1
1 + φ

[∑
j /∈S,j 6=i θj + γk

∑
j∈S θj

] , ∀ i /∈ S , (13a)

θi(Θ−i) = k

γ
[
1 + φ

∑
j /∈S θj

] − ∑
j∈S,j 6=i

θj , ∀ i ∈ S , (13b)

where Θ−i denotes the vector of preference parameters of all agents but agent i and φ =
−D′′/B′′ > 0.5

In the proof of Proposition 3, we show that the reaction functions (13a) imply that in equi-
librium the principals of all non-member countries choose identical preference parameters
for agents, which we denote by θNSi . In addition, we define θS =

∑
j∈S θj . Then, the choice

of preference parameters of the subgame perfect Nash equilibrium starting in the second
stage of the weak delegation game is determined by the following system of equations:

θNSi = 1
1 + φ

[
(n− k − 1)θNSi + γkθS

] , (14a)

γθS = k

1 + φ(n− k)θNSi
. (14b)

In fact, there exists a unique Nash equilibrium for the game starting in the second stage, as
the following proposition states:

Proposition 3 (Unique NE in Strategic Delegation Stage (WD))
For any given set S of member countries, there exists a subgame perfect Nash equilibrium of
the subgame beginning in stage two, in which principals of all countries i ∈ I simultaneously
select agents such as to maximize Ui taking the choices of all other principals as given. The
subgame perfect Nash equilibrium is unique with respect to the preference parameters θNSi
and θS.

Note that the uniqueness of the Nash equilibrium of the second stage refers to the choice
variables θNSi and θS . In fact, there is a continuum of Nash equilibria in the individual
parameter choices θi of the principals in member countries i ∈ S, as any combination of θi
(i ∈ S) satisfying

∑
i∈S θi = θS is a Nash equilibrium. However, all these Nash equilibria

result in identical emission choices in the third stage and also lead to identical coalition sizes
k in the first stage.

In the following, we analyze the properties of the second stage Nash equilibrium. The first

5 Note that both the benefit function B and the environmental damage function D are supposed to be
quadratic functions. As a consequence, φ is a scalar and does not depend on domestic or global emission
levels.

13



important insight is that strategic delegation renders the parameter γ irrelevant, as the
following proposition states.

Proposition 4 (Modest IEAs are not an Option)
In the Nash equilibrium of the second stage γθS and θNSi do not depend on the parameter
γ. As a consequence, neither the emission choices in the emission policy stage nor the
participation in the first stage is influenced by the fraction γ.

Proposition 4 has important consequences for the design of IEAs. As Finus and Maus (2008)
show in a setting without strategic delegation, modest IEAs, i.e., γ < 1, may achieve more
than agreements that fully internalize all damages among member countries, as the increase
in emissions of every member country due to a decrease in γ may be outweighed by the
increase in the stable coalition size. That is, agreements in which more members each emit
more may in sum still emit less than agreements in which fewer members emit less each. Our
analysis shows that increasing the number of members by more modest agreements is not
an option in our strategic delegation setting, as principals in member countries completely
crowd out any effect of a decreasing γ by delegating to principals with proportionally higher
environmental preferences θi.

Proposition 4 allows us to drop γ in the weak delegation set-up without loss of generality.
Thus, for the remainder of our analysis of the weak delegation framework we set γ = 1.
In addition, we define θSi = θS/k as the average preference parameter that principals of
member countries choose in equilibrium. Then, the following properties hold for the Nash
equilibrium of the game starting in the second stage.

Proposition 5 (Properties of NE in Strategic Delegation Stage (WD))
For the equilibrium preference choices θNSi and θS of the principals in all countries i ∈ I
the following statements hold:

(i) The equilibrium choices θNSi and θS do not depend on the set S but only on the number
k of member countries. As a consequence, also emission levels in the Nash equilibrium
of the third stage only depend on the number k of member countries.

(ii) Equilibrium preference choices θNSi of principals in non-member countries decrease
with the number of member countries k.

(iii) Average equilibrium preference choices θSi of principals in member countries increase
with the number of member countries k.

(iv) For k = 1 principals in member and non-member countries delegate to agents with
identical preference parameters, i.e., θNSi = θSi = θS. For k = n principals in member
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Figure 1: Illustration of θNSi (black dots) and θSi (gray dots) as a function of the stable
coalition size k for n = 20 and φ = 0.025 (left) and φ = 0.01 (right). For k = 1,
θNSi and θSi coincide. For increasing k, θSi increases while θNSi decreases. For the
grand coalition k = n, θNSi = 1 while θNSi does not exist.

countries choose on average agents with the same preferences as they exhibit them-
selves, i.e., θSi = 1.

(v) For any 1 < k < n it holds that 0 < θNSi < θSi < 1.

Proposition 5 states that principals in both member and non-member countries delegate to
agents who evaluate the environmental damages lower than they do themselves (in case of
member countries at least on average, as only the sum of preference parameters is uniquely
determined), yet principals in non-member countries to a larger extent. With increasing
number of member countries k, principals in member countries choose agents with higher
preference parameters, and vice versa in non-member countries. Thus, the gap in the prefer-
ence parameter between agents in member and non-member countries is increasing in k, as
shown in Figure 1. The reason for this result lies in the strategic substitutability of emission
choices between different non-member countries and between non-member countries and
the coalition of member countries. By delegating to an agent with low environmental pref-
erences, the principal in a non-member country commits to high emissions, which results
in decreasing emissions of all other countries. This roll-over of abatement burden to other
countries is more attractive, the more the other countries abate and, thus, increases in the
coalition size k. Member countries, on the other side, have to fear less free-riding (at least in
absolute terms) the larger is the coalition and, thus, the lower is the number of free-riders.
As a consequence, the incentive to delegate to agents with low environmental preferences
decreases with coalition size k.

As equilibrium preference parameters only depend on the number of member countries, we
denote the Nash equilibrium of the second stage of the game by θ̂NSi (k) and θ̂S(k). It directly
follows that also the emission levels chosen by the agents in the third stage of the game
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only depend on the number and not the set of member countries. In addition, the third
stage Nash equilibrium is symmetric in the sense that principals of non-member countries
select identical agents and principals in member countries only care about the sum of the
preference parameters among all the agents in member countries. As a consequence, the
emission choices of the agents in the third stage is identical for all agents in non-member
countries and identical for all agents in member countries. Thus, by inserting the second
stage Nash equilibrium back into the third stage equilibrium emission levels, we obtain:

êNSi (k) = êi
(
S, (θ̂NSi (k), θ̂S(k))

)
, ∀ i /∈ S , (15a)

êSi (k) = êi
(
S, (θ̂NSi (k), θ̂S(k))

)
, ∀ i ∈ S , (15b)

Ê(k) = (n− k)êNSi (k) + kêSi (k) . (15c)

The following proposition states how the equilibrium emission levels change with the number
of member countries k.

Proposition 6 (Equilibrium Emission Levels)
The following conditions hold for the equilibrium emission levels:

dêNSi (k)
dk

> 0 , dêSi (k)
dk

T 0 , dÊ(k)
dk

T 0 . (16)

Thus, with an increasing number k of member countries equilibrium domestic emission levels
of non-member countries increase, while domestic emissions levels of member countries may
increase or decrease. The reason why domestic emissions may increase is, again, due to the
strategic substitutability of emission choices. While each non-member country emits more
if k increases, total emissions of non-member countries may decrease, since there are less
non-member countries as the number k of member countries increases. If this is the case, the
emissions of member countries are determined by two opposing effects. On the one hand,
member countries delegate to agents with higher environmental preferences, which – ceteris
paribus – reduces the emissions of member countries. On the other hand, if the sum of
emissions in non-member countries is decreasing, this leads – ceteris paribus – to increasing
emissions of member countries, due to the strategic substitutability of emission choices.
Depending on which effect outweighs the other, domestic emissions in member countries
increase or decrease (or may stay the same). As a consequence, also global emissions may
increase or decrease in equilibrium with the number k of member countries.
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4.2 Membership Stage

We now turn to the first stage of the game, in which principals in all countries decide on
whether to join the agreement. As usual in the coalition formation literature, the equilibrium
number of member countries follows from the conditions of internal and external stability.
Therefore, principals evaluate their utility depending on whether or not they are joining
the coalition. To this end, we define the utility of principals in member and non-member
countries depending on the number of member countries k as:

ÛNSi (k) = ÛNSi

(
k, θ̂NSi (k), θ̂S(k)

)
= B

(
êNSi (k)

)
−D

(
Ê(k)

)
, (17a)

ÛSi (k) = ÛSi
(
k, θ̂NSi (k), θ̂S(k)

)
= B

(
êSi (k)

)
−D

(
Ê(k)

)
. (17b)

Then, a coalition is internally stable if no principal in a member country would rather leave
the coalition, i.e., ÛSi (k) ≥ ÛNSi (k − 1), and externally stable if no principal of a non-
member country would rather become a member, i.e., ÛNSi (k) > ÛSi (k+ 1). Following Hoel
and Schneider (1997), we define the stability function as:

Z(k) = ÛSi (k)− ÛNSi (k − 1) . (18)

Then, the equilibrium number k̂ of member countries is given by the largest integer for
which Z(k) ≥ 0.6

It is well known that even without strategic delegation, no closed form analytical solution
for the stable coalition size k can be derived for general bi-quadratic utility functions. As
a consequence, we employ the functional forms as specified in (1). Thus, the parameter
φ = −D′′/B′′, as introduced in Section 4.1, equals φ = δ/β. As in equilibrium both the
delegation choice in the second and the emission choice in the third stage only depend on
φ we can w.l.o.g. set β = 1 in which case φ = δ. In addition, and again w.l.o.g., we can
normalize ε = 1, which implies that we measure emissions in fractions of business-as-usual
emissions ε. Thus, apart from the number of countries n, the model comprises of only one
free parameter φ.

For this (standard) model specification, the following proposition holds:

Proposition 7 (Stable Coalition Size in Membership Stage (WD))
For the quadratic benefit and damage functions specified in (1), the weak delegation game
exhibits a stable coalition size of at most k̂ = 2.

6 Note that we employ the usual assumption that countries join the coalition if they are indifferent. This is
inconsequential for our results.
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Thus, the weak delegation game results in similarly bleak prospects for international envi-
ronmental cooperation as the standard coalition formation game. This is mainly due to the
fact that any attempts for modest IEAs that increase the number of participating countries
is counteracted by the principals in the strategic delegation stage, who delegate to agents
such that any level of modesty γ < 1 is perfectly crowded out.

5 Strong Delegation

We now turn to the case of strong delegation, in which the principals delegate both the
membership decision and the emission choice to the agents. Thus, in the first stage, the
principals decide on the agents to which they delegate. In the second stage, the agents
decide whether to join the agreement.

Again, the Nash equilibrium of the membership stage can only be characterized using the
functional forms (1) for the benefit and environmental damage function. We employ the
same normalization (which, again is w.l.o.g.) as in Section 4.2, i.e., ε = β = 1 and δ = φ.
In the strong delegation set-up, delegation cannot be be conditioned on membership status,
as principals choose agents before membership status is decided by these chosen agents. As
a consequence, principals in all countries will choose to delegate to agents with the same
preference parameter θ.7

As a consequence, emission choices in the third stage are a function of the preference pa-
rameter θ, to which principals delegate in the first stage, and the membership structure
and, in particular, the number of member countries k, on which agents decide in the second
stage. Thus, equilibrium emissions in third stage are given by:

êNSi (θ, k) = 1− φnθ

1 + φ [(n− k)θ + γk2θ)] , ∀ i /∈ S , (19a)

êSi (θ, k) = 1− γφknθ

1 + φ [(n− k)θ + γk2θ] , ∀ i ∈ S , (19b)

Ê(θ, k) = n

1 + φ [(n− k)θ + γk2θ] . (19c)

5.1 Membership Stage

In the second stage of the game, agents of all countries simultaneously decide on whether to
join the IEA. Again, we employ the concept of internal and external stability to determine

7 We shall confirm this in Section 5.2.
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the stable coalition size and define the stability function:

Z(k, θ) = B
(
êSi (θ, k)

)
−D

(
Ê(θ, k)

)
−B

(
êNSi (θ, k − 1)

)
+D

(
Ê(θ, k − 1)

)
. (20)

As in Section 4.2, the stable coalition size k̂ is determined by the largest integer for which
Z(k̂, θ) ≥ 0 holds. In the Appendix, we prove the following proposition:

Proposition 8 (Stable Coalition Size in Membership Stage (SD))
For the quadratic benefit and damage functions specified in (1), the strong delegation game
exhibits a unique stable coalition size k̂, for which the following properties hold:

(i) The stable coalition size k̂ ∈ {kmin, . . . , kmax}. While the lower bound kmin(n, γ) is a
function of n and γ, the upper bound kmax(γ) only depends on γ.

(ii) For given n and γ, which characterize the range {kmin(n, γ), . . . , kmax(n)} of attainable
stable coalition sizes, the stable coalition size k̂ is determined by the product ψ = φθ.

In the Appendix, we show that the stability function Z(k, θ) has a trivial root at k = 1,
as in this case the domestic welfares of the only member country and all other free-riding
countries are identical. In addition, the stability function is concave in k. As a consequence,
the stability function may either exhibit another root k0 ≤ n, the floor of which is the stable
coalition size k̂ = bk0c, or not exhibit another root k0 ≤ n, in which case the grand coalition
k̂ = n is the stable coalition size.

We further show that the stability function is a quadratic function in ψ = φθ. Interpreting
the stability function as function of ψ, we can solve for the unique positive value of ψ for
which the stable coalition size is k. This solution ψ(k̂) characterizes the maximum value of
ψ = φθ that renders a coalition of size k̂ stable. Then kmax(γ) is determined by the floor of
k̄ that renders ψ = 0, i.e., kmax = bk̄c with ψ(k̄) = 0. kmin(n, γ) is determined by the floor
of the value k for which ψ diverges to +∞, i.e., ψ(k)k→k,k>k = +∞. Figure 2 shows ψ(k)
for two different values of γ.

Note that the graphs in Figure 2 are independent of the exogenously given parameter φ
and also independent of the preference parameter θ of the agents, to which the principals
delegate to in the first stage. In fact, the range of attainable stable coalition sizes is only
determined by n and γ (and, in particular, the maximal attainable coalition size kmax only
depends on the modesty parameter γ). Which of the attainable coalition sizes is realized in
the subgame perfect equilibrium does, as shown in the graph, depend on ψ = φθ.
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Figure 2: Illustration of function ψ(k) for n = 20 and γ = 0.6 (left) and γ = 0.15 (right).
The dots indicate the values for ψ(k) obtained by inserting k ∈ {kmin, . . . , kmax}.
The lines indicate the stable coalition sizes k̂ for values of ψ between ψ(k−1) and
ψ(k). For γ = 0.6 the attainable values for the stable coalition size range from 1
to 5 (left), while for γ = 0.15 stable coalition sizes between 6 and 20 are realized
depending on ψ = φθ.

5.2 Strategic Delegation

To determine which of the attainable stable coalition sizes, characterized by the range
spanned from kmin to kmax prevails in the subgame perfect equilibrium of the strong del-
egation game, we now analyze the first stage. While principals can anticipate the stable
coalition size in the subgame perfect equilibrium, as determined by ψ(k) of the second stage
of the game, for any coalition size strictly between 1 and n they do not know whether they
end up as member or non-member of the coalition. We assume that membership is equally
likely for all ex ante identical n countries. Thus, the probability of membership for a given
coalition size k is k/n. In addition, we suppose that principals in all countries simultaneously
delegate to agents such as to maximize their expected welfare:

max
θi

k(Θ)
n

(
B
(
eSi (Θ, k(Θ))

)
−D

(
E(Θ, k(Θ))

))
+ n− k(Θ)

n

(
B
(
eNSi (Θ, k(Θ))

)
−D

(
E(Θ, k(Θ))

))
.

(21)

The difference to the weak delegation case is that principals cannot condition their choice
of agent on whether the own country is a member or non-member of the agreement. This
makes an important difference, as the incentives to strategically delegate are different for
signatories and non-signatories. As we have seen in Section 4.1, principals of all countries
have an incentive to delegate to agents with lower preference parameters than they exhibit
themselves, due to the strategic substitutability of emission choices. For principals of member
countries there exists the additional incentive to delegate to an agent with a higher preference
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parameter than they exhibit themselves to counteract the less than full internalization of
externalities within the coalition for γ < 1. We have seen in Proposition 4 that in case of
weak delegation any attempt of modesty is fully crowded out and the resulting equilibrium is
as if γ = 1. We shall see that in the strong delegation case, perfect crowding out of modesty
only occurs when the grand coalition is established in the subgame perfect equilibrium, as
only in this case principals know for sure that they end up as a coalition member.

The anticipated stable coalition size k(Θ), which is essentially the inverse of ψ(k), is not
a differentiable function, as the stable coalition size k is discrete and jumps from k to
k−1 whenever θ exceeds ψ(k)/φ. As a consequence, we cannot employ standard differential
calculus to derive the principals’ best-response functions from maximization problem (21).
Instead, we first determine the Nash equilibrium of the first stage of the game for a given
stable coalition size k, anticipating the resulting emissions in the third stage given this
coalition size k. For a fixed coalition size k, we obtain the following first-order condition for
the principal of country i ∈ I:

k

n
B′
(
eSi (Θ, k)

)deSi (Θ, k)
dθSi

+ n− k
n

B′
(
eNSi (Θ, k)

)deNSi (Θ, k)
dθNSi

= D′
(
E(Θ, k)

)(k
n

dE(Θ, k)
dθSi

+ n− k
n

dE(Θ, k)
dθNSi

)
.

(22)

Equation (22) is the straightforward generalization of the corresponding first-order condition
(12) of the weak delegation game. In equilibrium, the costs of choosing an agent with a
marginally higher environmental preference due to a reduction in domestic benefits (left-
hand side) have to equal the benefits, which arise through a reduction in environmental
damages due to lower aggregate emissions (right-hand side). The difference is that the
principal equates expected costs and benefits over the two possibilities of being a signatory
or non-signatory country. The following proposition holds:

Proposition 9 (Unique NE in Strategic Delegation Stage (SD))
For the quadratic benefit and damage functions specified in (1) and any given stable coali-
tion size k̂, there exists a unique subgame perfect equilibrium (in the sense that principals
anticipate emissions in the third stage) of the strong delegation game with the following
properties:

(i) The equilibrium is symmetric, i.e., θ̂i(k) = θ̂(k) for all i ∈ I.

(ii) The equilibrium parameter θ̂(k) ≤ 1/γ. The equality θ̂(n) = 1/γ only holds in the
grand coalition k = n.

The choice of preference parameter θ̂ in equilibrium is now perfectly symmetric, as principals
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Figure 3: Illustration of ∆θ(k) (black) and θ̂(k) (gray), which determine the subgame per-
fect equilibrium (SPE) of the strong delegation game, for n = 20 and γ = 0.1. An
“interior”-SPE occurs if ∆θ(k) and θ̂(k) “intersect” (left). If they do not intersect,
we obtain a “corner”-SPE (right). The SPE is indicated by the black circle.

cannot condition agent choice on membership status. Note that part (ii) of Proposition 9 is
at least on aggregate also true for the preference choice of principals of member countries
in the weak delegation case (γθS ≤ k), as can be seen directly from equation (14b). In
contrast to the weak delegation set-up, where principals perfectly crowded out any attempt
of modest agreements, now all principals imperfectly crowd out modesty save for the grand
coalition.

Note that the equilibrium characterized in Proposition 9 is subgame perfect only in the
sense that principals correctly anticipate the impact of their preference parameter choices
on third stage emissions, but we assume a given and constant stable coalition size k. In fact,
the proposition characterizes the set of candidate subgame perfect equilibria of the overall
strong delegation game. The remaining step is to match the candidate solutions θ̂(k) of the
first stage with the ranges of θ for which agents implement a particular stable coalition size
k̂ as determined in the second stage of the game. The range of θ for which agents in the
second stage choose a stable coalition size of k is given by:

∆θ(k) =


[0, ψ(kmax)/φ] , k = kmax

(ψ(k + 1)/φ, ψ(k)/φ] , kmin < k < kmax

(ψ(kmin),∞) , k = kmin
. (23)

The subgame perfect equilibria of the strong delegation game are then determined by the
“intersection” of ∆θ(k) and θ̂(k). As neither ∆θ(k) nor θ̂(k) is a continuous function, due to
the discrete coalition size k, there may not exist an “intersection”. In this case, the subgame
perfect equilibrium is a corner solution, in which all principals choose θ = ψ(k)/φ for the
smallest k for which θ̂(k) exceeds ψ(k)/φ. This is illustrated in Figure 3. The left panel
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shows an example of an “interior solution”. The set of θ̂(k) intersects with ∆θ(k) for k = 18.
Thus, if all principals choose θ̂(18) in the first stage, the stable coalition size determined
in the second stage of the game equals k̂ = 18. Thus, θ̂(18) is the unique subgame perfect
equilibrium of the strong delegation game (indicated by the circle). In the right panel, we
show an example of a “corner” solution. In this case, θ̂(k) and ∆θ(k) do not intersect. Thus,
if all principals were to choose θ̂(18), the agents in the second stage of the game would choose
a stable coalition size of k̂ = 17. For a stable coalition size of 17, the principals would prefer
a preference parameter of θ̂(17), for which the agents would choose a stable coalition size of
18. Thus, neither θ̂(18) nor θ̂(17) characterize a subgame perfect equilibrium. In this case
the subgame perfect equilibrium is given by θ̂ = ψ(18)/φ, which is the largest preference
parameter θ for which agents still choose a stable coalition size of k̂ = 18 in the second stage
(indicated by the circle).8

6 Modest IEAs and the Grand Coalition

The general idea of modest IEAs is to increase the size of participating countries at the ex-
pense of coalition members reducing their abatement efforts by internalizing only a fraction
γ of the externalities within the coalition. In Section 4.1, we have learned from Proposition
4 that in the weak delegation game any attempt of implementing a modest agreement is
perfectly crowded out by the delegation choice of the principals in member countries. As a
consequence, the maximum stable coalition size in the subgame perfect equilibrium of the
weak delegation game is k̂ = 2. This implies that the grand coalition can – if at all – be
stabilized as a subgame perfect equilibrium if the world only consists of two countries.

The situation is less obvious in the strong delegation game. We have learned from Propo-
sition 8 that there exists a range of attainable coalition sizes, which is determined by the
exogenously given parameters γ and n. In particular, kmax is given by:

kmax =
⌊

2 +
√

3− 2γ
γ

⌋
, (24)

and only depends on γ. We directly observe that for γ sufficiently small kmax = n can be
achieved and, thus, the grand coalition is at least attainable. Moreover, we can show that
for γ sufficiently small also kmin ≥ n, as the following proposition states.

8 Figure 3 suggests that ∆θ(k) is decreasing, while θ̂(k) is increasing in k. This being true would constitute
a sufficient condition for a unique subgame perfect equilibrium of the strong delegation game. Although
we were unable to find any combinations of parameter values for which this does not hold, we were also
unable to confirm this conjecture analytically.
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Proposition 10 (Grand Coalition in Strong Delegation Game)
For a degree of ambition of γ ≤ 1

n−1 , k
min ≥ n. As a consequence, the grand coalition k = n

is the unique subgame perfect equilibrium of the strong delegation game.

That is, if γ is sufficiently small, the grand coalition can be stabilized as the unique subgame
perfect equilibrium of the strong delegation game. Finus and Maus (2008) showed a similar
result for the setting without delegation. Yet, the stabilization of the grand coalition came
at the cost that all coalition members internalize only the fraction γ of externalities and,
thus, the resulting equilibrium falls short of the social global optimum (i.e., the outcome
that maximizes the sum of welfare over all countries). Intriguingly, this is not the case in
the delegation game, as the following Proposition states:

Proposition 11 (Grand Coalition achieves Global Social Optimum)
Both in the weak and the strong delegation game, whenever the subgame perfect equilibrium
stabilizes the grand coalition, the resulting emission levels are identical to the global social
optimum from the principals’ point of view.

The intuition for the result is straightforward. Both in the weak and the strong delegation
game, in the grand coalition principals perfectly crowd out γ by delegating to agents with θ =
1/γ. Thus, from the principals’ point of view, the coalition internalizes all the externalities
imposed by any coalition member onto all other coalition members (of course, from the
agents’ perspective only the fraction γ of externalities is internalized). Yet, in the weak
delegation game, the grand coalition can at best be stabilized for n = 2 countries, while in
the strong delegation game the grand coalition can always be implemented by a sufficiently
small choice of γ (see Proposition 10).

This raises the question, who determines the modesty parameter γ? In our analysis, we
assumed it to be exogenously given. However, it is straightforward to introduce a zeroth
stage, in which principals in all countries decide on γ, for example, by an unanimity vote.9

Can the principals agree on a value for γ and, if so, on which?

In the weak delegation game, principals are perfectly indifferent between all possible values
of γ, as γ is irrelevant for emission levels in the subgame perfect equilibrium and for do-
mestic welfare. Thus, no principal would veto any proposal. In the strong delegation game,
principals have an incentive to establish a grand coalition, as this grants them the highest
possible welfare, the welfare of the global social optimum from their perspective. Thus, no
principal should have an incentive to veto any γ ≤ 1/(n−1) that establishes the grand coali-
tion as the unique subgame perfect equilibrium of the strong delegation game. We see that

9 The procedure could be governed as follows: a randomly chosen principal suggests a value for γ. If no
other principal vetos the proposal it is adopted. Otherwise, another randomly chosen principle may make
a suggestion and so on, unless a proposal is adopted.
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the strong delegation game together with a preceding agreement on the modesty parameter
γ can fully overcome the principals’ free-riding incentives and allows them to establish the
(from their perspective) first-best outcome.

7 Discussion and Conclusions

Both in the weak and the strong delegation game there are two different motives to strate-
gically delegate, i.e., to delegate to agents who have different preferences than the principals
themselves. First, principals of all countries have an incentive to delegate to agents exhibit-
ing a lower preference parameter than their own, θ < 1, due to the strategic substitutability
of emission choices. By choosing an agent with lower evaluation for the environmental dam-
age, the principal can commit her country to high emission levels, to which the best response
of all other countries is to – ceteris paribus – reduce their emission levels. This strategic
delegation motive is well understood in the literature on environmental policy and strategic
delegation (e.g., Siqueira 2003; Buchholz et al. 2005; Roelfsema 2007; Hattori 2010).

Second, for γ < 1 principals of member countries have an incentive to delegate to agents
that exhibit a higher preference parameter than their own, θ > 1, in order to increase – from
the principals point of view – the “effective” fraction of externalities imposed by the other
member countries that they internalize.10 This incentive is unique to the particular set-up
of the coalition formation game and, to the best of our knowledge, has no counterpart in
the existing literature on environmental policy and strategic delegation.

As principals of member countries are subject to both strategic delegation motives, their
chosen agent may exhibit a preference parameter θ T 1, depending on the relative strength
of the two. To provide a better intuition for this second strategic delegation incentive and
to discuss how it changes between the weak and the strong delegation game, let us suppose
that environmental damages are linear in aggregate emission levels, i.e., D′′(E) = 0. In this
case, emission choices in the third stage of the game are governed by dominant strategies
and, thus, the first strategic delegation motive vanishes and only the second remains. In the
weak delegation game, principals then choose agents with the following preferences:

θ̂NSi = 1 , θ̂Si = 1
γ
, (25)

10 Note that in our microfoundation this higher degree of internalization is decentralized by the emission
permit choice of the selected agent on the international permit market. In particular, it does not depend
on whether the other member countries observe or “recognize” the perceived environmental damages of
the agent.
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independently of the other exogenous parameters n and φ. Thus, principals in non-member
countries choose “self-representation”, i.e., they delegate to agents exhibiting the same pref-
erences as themselves, while principals in member countries perfectly crowd out γ.

In the strong delegation game the stable coalition size, as determined in the second stage
of the game, is given by:

k̂ = min
[
n,

⌊
2 +
√

3− 2γ
γ

⌋]
, (26)

which is, in particular, independent of the choice of θ in the first stage. The principals in
the first stage now choose a θ between θ̂NSi and θ̂Si , as they do not know ex ante whether
their country will be a member country or not. In fact, in equilibrium they choose:

θ̂i = γk̂2 + n− k̂
γ2k̂2 + n− k̂

, (27)

which is also equal to 1/γ in case of the grand coalition k = n, equal to 1 for k = 1,11

and somewhere in between otherwise. The more likely it is that they end up as a coalition
member, i.e., the higher is k/n, the closer is their choice of θ to 1/γ, and the higher the
chances are to become a non-member, i.e., the higher is (n− k)/n, the closer is θ to 1.

Note that the intriguing characteristic of the strong delegation game, i.e., the implemen-
tation of the grand coalition for sufficiently small θ and at the same time achieving the
first-best from the principals’ point of view, survives the simplifying assumption of linear
environmental damages. Also the difference in timing between the strong and the weak del-
egation game is not crucial for this result, as in both cases the principals fully crowd out
modesty in the grand coalition. The decisive feature for the result is that in the weak delega-
tion game the principal decides on membership status, while this is the agent’s prerogative
in the strong delegation game. Intuitively speaking, the principals choose agents who have
such a high evaluation for the environmental damage that the agreement from the agents’
perspective is so modest that the grand coalition is stable. From the principals’ perspective,
however, the agreement is strong enough to implement their first-best outcome. While our
model analysis is restricted to functional forms that are standard in this literature, there
is no reason to believe that our main result crucially hinges on them. In fact, even biasing
our model against strategic delegation as much as possible by assuming linear damages did
no harm. As we just argued, it is the particular difference on who decides on membership
in the institutional setting that renders weak delegation even worse than no delegation and
allows strong delegation to fully overcome the free-riding incentives of global public good

11 Note that 1 ≥ γ ≥ 1/k has to hold and, thus, γ = 1 for k = 1.
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provision.

Another important question is whether and to what extent our highly stylized principal-
agent relationship is able to model interactions between domestic and international climate
policy. We argue that the timing and the delegation procedure of both the weak and the
strong delegation game are compatible with different principal-agent relationships that arise
in the hierarchical policy procedures of modern democracies. For example, the principal may
be the median voter and the agent an elected government.12 Then, our weak delegation game
translates to a set-up, in which the median voter first decides on the membership status and
then elects a government that is in charge of the emission choice. Such a setting could reflect
direct democracies, such as Switzerland, where binary and one-shot decisions are often made
by the electorate via referendum. In the strong delegation game, the median voter first elects
a government, which then decides on membership status and emission levels. Obviously, this
might mirror representative democracies, in which the electorate surrenders more decision
power to the elected government. Our set-up could also be interpreted as delegation between
different levels of government, for example between the legislature and the executive branch.
Depending on the political system in a particular country this may rather resemble our weak
or strong delegation set-up.

Although our stylized model captures important delegation relationships that are present in
the hierarchical structure of international (environmental) policy, our model is too stylized
to allow for simple policy conclusions such as: Representative democracies should have
less problems in overcoming the free-riding incentives of public good provision than direct
democracies. In particular, our model employs two important simplifying assumptions that
may not survive a reality check: First, we assume that all countries are identical. While
this is clearly an assumption that is not met in reality, we consider it justified, as it allows
us to distinguish between inefficiencies stemming from the public good nature of emission
abatement and inefficiencies that arise due to countries’ heterogeneity. In addition, the
introduction of a strategic delegation stage into the two stage coalition formation game
stretches the possibility of finding general analytical results to a limit – even for identical
countries. Second, we assumed that principals always find an agent with their preferred
preference parameter to which they can delegate. We have seen that in the strong delegation
game γ must not exceed 1/(n − 1) to achieve the grand coalition and the principals’ first-
best emission levels. In this case, principals delegate to agents with θ = 1/γ = n − 1,
i.e., they choose agents whose perception of the environmental damage is n − 1 times as
high as their own! Given there are approximately 200 sovereign countries in the world, this
12 For this interpretation, we require that θi,P = 1 is indeed the median in the preference distribution

with respect to environmental damages. This can always be achieved by an appropriate normalization. In
addition, it is straightforward to show that the voters can be ordered according to the preference parameter
θj

i , with ∂êi/∂θ
j
i < 0. As a consequence, the median voter theorem applies.
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would essentially boil down to a climate change denier delegating to an Extinction Rebellion
activist.

Notwithstanding, we believe our results have important implications for the future design of
IEAs. Unlike most of the existing literature on strategic delegation and environmental policy
(e.g., Siqueira 2003; Buchholz et al. 2005; Habla and Winkler 2018), we find that strategic
delegation is not necessarily an impediment to successful international cooperation. It is less
strategic delegation per se but the particular institutional environment in which strategic
delegation takes place that determines whether strategic delegation is conducive to over-
coming the free-riding incentives of global public good provision. In fact, in both the weak
and the strong delegation game, strategic delegation acts as a credible commitment device
of the principal to bind herself to a future policy. Whether this commitment ultimately
results in better or worse outcomes depends on the incentives imposed by the particular
hierarchical governance structure: While in the strong delegation game principals are able
to implement their first-best outcome due to strategical delegation, they are even worse off
than without delegation in the weak delegation game.

Thus, instead of just analyzing the incentives of existing delegation governance structures,
one could also use delegation strategically in the design of international climate policies to
overcome the free-riding incentives of public good provision. Obviously, such a governance
structure has to be beneficial to all countries, otherwise they would not consent to it. Yet,
there is no reason why this cannot be the case. In our model, all principals would willingly
adopt the strong delegation framework, as it is in their own best interest. In our opinion,
this would constitute a promising avenue for future research.
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Appendix

A.1 A Microfoundation for Modest IEAs

In the following, we present a microfoundation for modest IEAs, which rests on the idea of an
international permit market with refunding, as developed in Gersbach and Winkler (2011).
We refine the emission policy stage of the standard coalition formation set-up by assuming
that joining the agreement implies participation in a particular institutional framework.
We show that this institutional framework constitutes an incentive compatible mechanism,
such that emission abatement, as envisioned by the agreement, is in the best interest of the
deciding actors within each country.

All member countries joining the agreement set up an international permit market with
refunding, according to the following rules:

1. Participating countries freely choose the number of permits they want to issue. Permits
can be traded non-discriminatorily across all participating countries.

2. An (exogenously given) fraction µ of issued permits in all participating countries is
collected by an international agency (IA) and auctioned directly to firms in member
countries.

3. The IA refunds the revenues for auctioned permits to member countries lump-sum in
equal shares.

Thus, the emission policy stage of member countries in both the weak and the strong
delegation set-up splits up into two sub-stages:

1. Permit Choice Stage:
Selected agents in participating countries simultaneously decide on the permit issuance
of their country.

2. Permit Market Equilibrium:
Equilibrium on the international permit market determines the permit price and do-
mestic emissions of all member countries.

In the emission policy stage, member and non-member countries are already determined and
principals in all countries have selected an agent. Thus, there exists a set S characterizing
the k member countries and a vector Θ = (θ1, . . . , θn) detailing the preference parameters of
the selected agents in all countries. We solve the emission policy stage of member countries
by backward induction, starting with the permit market equilibrium.
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Permit market equilibrium

In the permit market equilibrium, all member countries have already decided on permit
issuance. Thus, there exists a vector Ω = (ω1, . . . , ωk) detailing the amounts of emission
permits issued for all participating countries. We define the total amount of permits by
ES =

∑
j∈S ωj , which also constitutes the supply of permits in the permit market.

The demand for permits (and domestic emissions, respectively) of each member country is
derived by maximizing the benefits of domestic emissions minus the costs of permits:

max
ei

B(ei)− pei , (A.1)

which results in the well-known first-order conditions that marginal benefits from emissions
have to equal the permit prize p:

B′(ei) = p . (A.2)

As the marginal benefit function B′ is strictly monotonic, the inverse function exists and
permit, respectively emission, demand is given by:

ei = B′−1
[
p(ES)

]
. (A.3)

As in the permit market equilibrium demand has to equal supply, we obtain:

∑
i∈S

ei =
∑
i∈S

B′−1 [p] = ES , (A.4)

which constitutes an implicit equation for the equilibrium permit price p(ES). Inserting
back into permit demand yields:

ei(ES) = B′−1
i

[
p(ES)

]
. (A.5)

Permit choice stage

In the permit choice stage, agents of member countries decide on permit issuance ωi such
as to maximize their domestic welfare, anticipating emission choices of member countries
determined by the permit market equilibrium and taking emission choices on non-member
countries as given. Defining the sum of emissions of non-member countries by ENS =
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∑
j /∈S ei, the maximization problem of agent i ∈ S reads:

max
ωi

B
(
ei(ES)

)
− θiD(ES +ENS) + p(ES)

[
(1− µ)ωi − ei(ES)

]
+ µ

k
p(ES)ES . (A.6)

Anticipating that B′(ei) = p in the permit market equilibrium of the last stage, we obtain
the following first-order condition:

p(ES)
[
(1− µ) + µ

k

]
+p′(ES)

[
(1− µ)ωi + µ

k
ES − ei(ES)

]
−θiD′(ES+ENS) = 0 . (A.7)

Summing up over all member countries i ∈ S yields:

p(ES) [k(1− µ) + µ]−
∑
i∈S

θiD
′(E) = 0 , (A.8)

which leads to the equilibrium permit price:

p(ES) =
∑
i∈S θiD

′(E)
k(1− µ) + µ

. (A.9)

Inserting p(ES) back into ei(ES), we obtain:

ei = B′−1
i

[∑
j∈S θjD

′(E)
k(1− µ) + µ

]
. (A.10)

Relationship between µ and ρ

Comparing the emissions of member countries (A.10) with the corresponding emission choice
(A.13b), when assuming that member countries maximize some fraction of joint welfare Wi,
as given by (4), we find that both are identical if:

γ = 1
k(1− µ) + µ

. (A.11)

Thus, there exists a one-to-one correspondence that maps the fraction of permits µ, which is
directly auctioned by the international agency and revenues of which are lump-sum refunded
to member countries, into the level of modesty γ of an IEA. Whenever µ and k are such
that equation (A.11) holds, then the permit market refunding mechanism results in emission
choices of member countries as if these countries internalized some fraction γ of the emission
externalities to all other member countries.

Finally, note that γ is increasing in µ. In fact, we obtain γ = 1/k for µ = 0, i.e., without
the IA directly auctioning permits, all countries behave as in the non-cooperative emission
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permit market a la Helm (2003) which is identical to the non-cooperative Nash equilibrium
in which all countries simultaneously choose domestic emissions when all countries are iden-
tical. For µ = 1, we obtain γ = 1, i.e., auctioning all permits via the IA, results in emission
choices as if all countries took the externalities their emissions impose on all other member
countries into account.

A.2 Proof of Proposition 1

(i) Existence:
The maximization problem of country i’s selected agent is strictly concave:

SOCNSi ≡ B′′i (ei)− θiD′′i (E) < 0 , ∀ i /∈ S , (A.12a)

SOCSi ≡ B′′i (ei)− γ
∑
j∈S

θjD
′′
j (E) < 0 , ∀ i ∈ S . (A.12b)

Thus, for each country i ∈ I, the reaction function yields a unique best response for any given
choices ej of all other countries j 6= i. This guarantees the existence of a Nash equilibrium.

(ii) Uniqueness:
Solving the first-order conditions (6) and (8) for ei, we obtain:

ei = B′−1 (θiD′(E)
)
, ∀ i /∈ S , (A.13a)

ei = B′−1

γ∑
j∈S

θjD
′(E)

 , ∀ i ∈ S . (A.13b)

Note that due to assumed curvature properties the marginal benefit function B′ is strictly
and monotonically decreasing, the inverse functions B′−1

i exist and is also strictly and mono-
tonically decreasing. Summing up emission choices over all countries i ∈ I yields:

E =
∑
i/∈S

B′−1 (θiD′(E)
)

+
∑
i∈S

B′−1

γ∑
j∈S

θjD
′(E)

 (A.14)

As the left-hand side is strictly increasing and the right-hand side is decreasing in E, there
exists a unique level of total emissions Ê(S,Θ) in the Nash equilibrium. Substituting back
into equations (A.13) yields the unique Nash equilibrium ê(S,Θ). �
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A.3 Proof of Proposition 2

(i) For country i /∈ S:
We can write equilibrium emissions êi(S,Θ) and ê−i(S,Θ) as:

êi(S,Θ) = B′−1 (θiD′(êi(S,Θ) + ê−i(S,Θ)
))

, (A.15a)

ê−i(S,Θ) =
∑

j /∈S,j 6=i
B′−1 (θjD′(êi(S,Θ) + ê−i(S,Θ)

))

+
∑
j∈S

B′−1

γ∑
l∈S

θlD
′(êi(S,Θ) + ê−i(S,Θ)

) .

(A.15b)

Then, we obtain from the implicit function theorem:

dêi(S,Θ)
dθi

=
D′
(
1− D′′

B′′

[∑
j /∈S,j 6=i θj + γk

∑
j∈S θj

])
B′′ −D′′

[∑
j /∈S θj + γk

∑
j∈S θj

] , (A.16a)

dê−i(S,Θ)
dθi

=
D′D

′′

B′′

[∑
j /∈S,j 6=i θj + γk

∑
j∈S θj

]
B′′ −D′′

[∑
j /∈S θj + γk

∑
j∈S θj

] , (A.16b)

dÊ(S,Θ)
dθi

= dêi(S,Θ)
dθi

+ dê−i(S,Θ)
dθi

= D′

B′′ −D′′
[∑

j /∈S θj + γk
∑
j∈S θj

] . (A.16c)

(ii) For country i ∈ S:
We can write equilibrium emissions êi(S,Θ) and ê−i(S,Θ) as:

êi(S,Θ) = B′−1

γ∑
j∈S

θjD
′(êi(S,Θ) + ê−i(S,Θ)

) , (A.17a)

ê−i(S,Θ) =
∑
j /∈S

B′−1 (θjD′(êi(S,Θ) + ê−i(S,Θ)
))

+
∑

j∈S,j 6=i
B′−1

γ∑
l∈S

θlD
′(êi(S,Θ) + ê−i(S,Θ)

) .

(A.17b)
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Then, we obtain from the implicit function theorem:

dêi(S,Θ)
dθi

=
γD′

(
1− D′′

B′′
∑
j /∈S θj

)
B′′ −D′′

[∑
j /∈S θj + γk

∑
j∈S θj

] , (A.18a)

dê−i(S,Θ)
dθi

=
γD′

[
(k − 1) + D′′

B′′
∑
j /∈S θj

]
B′′ −D′′

[∑
j /∈S θj + γk

∑
j∈S θj

] , (A.18b)

dÊ(S,Θ)
dθi

= dêi(S,Θ)
dθi

+ dê−i(S,Θ)
dθi

= γkD′

B′′ −D′′
[∑

j /∈S θj + γk
∑
j∈S θj

] . (A.18c)

�

A.4 Proof of Proposition 3

(i) We prove by contradiction that the preference parameters of all principals in non-member
countries are identical. Therefore, suppose there exists a Nash equilibrium in which θl 6= θm

with l,m /∈ S. Introducing the abbreviation:

z =
∑

j /∈S,j 6=l,m
θj + γk

∑
j∈S

θj , (A.19)

we can write the reaction functions for principle l and m as:

θl = 1
1 + φ(z + θm) , θm = 1

1 + φ(z + θl)
. (A.20)

This implies that the following equation has to hold:

θl(1 + φz) = θm(1 + φz) . (A.21)

Obviously, this can only be true if θl = θm, which contradicts the assumption of a non-
symmetric Nash equilibrium. As a consequence, the Nash equilibrium is given by the system
of two equations (14). We also directly observe from (14a) that θNSi ∈ (0, 1), i.e., principals
in non-member countries delegate to agents who evaluate the environmental damage lower
than they do themselves.

(ii) We prove the existence of a unique equilibrium by showing that the reaction functions
intersect exactly once, which determines the preference parameters in the Nash equilibrium.
Therefore, we re-write the reaction functions (14) in terms of θNSi and the average preference
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parameter of the coalition θSi = θS/k:

γ
θS

k
= 1− θNSi [1 + φ(n− k − 1)θNSi ]

φk2θNSi
≡ R1(θNSi ) , (A.22a)

γ
θS

k
= 1

1 + φ(n− k)θNSi
≡ R2(θNSi ) . (A.22b)

As θNSi ∈ (0, 1), we only have to account for intersections of the two reaction functions in
this interval. The following holds:

lim
θNS

i →0
R1(θNSi ) = +∞ , R2(0) = 1 , (A.23a)

R1(1) = −n− k − 1
k

< 0 , R2(1) = 1
1 + φ(n− k) > 0 . (A.23b)

In addition, both reaction functions are strictly monotonically decreasing and strictly con-
vex:

R′1(θNSi ) = −
1 + φ(n− k − 1)

(
θNSi

)2
φk2(θNSi )2 < 0 , (A.24a)

R′′1(θNSi ) = 2
φk2(θNSi )3 > 0 , (A.24b)

R′2(θNSi ) = − φ(n− k)
[1 + φ(n− k)θNSi ]2

< 0 , (A.24c)

R′′2(θNSi ) = 2φ2(n− k)2

[1 + φ(n− k)θNSi ]3
> 0 . (A.24d)

As a consequence, there a exists a unique intersection of R1 and R2 on the interval θNSi ∈
(0, 1), which determines the unique Nash equilibrium, for which γθS ∈ (k/[1 + φ(n− k)], k)
holds. This is illustrated in the left panel of Figure 4. �

A.5 Proof of Proposition 4

We have seen in the proof of Proposition 3 that in the Nash equilibrium of the delegation
stage only the product γ · θS is uniquely determined. Thus, a ceteris paribus change in γ

would in equilibrium result in a corresponding change of θS such that the product γ · θS

remains unchanged. As also the equilibrium emission levels in the third stage only depend
on the product γ · θS , a change in γ would not affect equilibrium emission levels.

For the participation choice in the first stage of the game principals evaluate whether their
utility Ui is higher if they become a member of the coalition. As utilities only depend on
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Figure 4: Illustration of the proofs of Proposition 3 (left) and Proposition 5 (right). The
left plot shows the intersection of the reaction functions (R1 in black and R2
in gray), which exists and is unique. The horizontal lines show bounds for the
feasible range for γθ̂Si in equilibrium, while the vertical lines are bounds for the
feasible range of θ̂NSi in equilibrium, which are derived by R1(θNSi ) = 1 (left
bound) and R1(θNSi ) = 1/(1 +φ(n− k)) (right bound). The right plot shows how
the reaction functions and the resulting equilibrium values change for a increase
of k to k + 1 (solid for k and dashed for k + 1). While R2 increases, R1 tilts
anticlockwise around θ̄ (black dot), which implies that R1 decreases in the range
of intersection. As a consequence θNSi decreases and θ̂Si increases in equilibrium
for an increase in k.

individual and total emission levels, and these are independent of γ also the participation
decision does not depend on γ. �

A.6 Proof of Proposition 5

(i) That the preference parameters in the Nash equilibrium only depend on the number k
of member countries and not on their explicit distribution among all n countries follows
directly form equations (14) and (A.22).

(ii) and (iii) To show that θNSi decreases and θSi increases with k, we first calculate the
derivatives of the reaction functions (A.22) with respect to k:

∂R1(θNSi )
∂k

=
φ(2n− k − 2)

(
θNSi

)2 − 2(1− θNSi )
φk3θNSi

, (A.25a)

∂R2(θNSi )
∂k

= φθNSi[
1 + φ(n− k)θNSi

]2 > 0 . (A.25b)
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While R2 is increasing in k for all θNSi , R1 is decreasing if θNSi < θ̄ with:

θ̄ = 2
1 +

√
1 + 2φ(2n− k − 2)

. (A.26)

Defining ∆R = R2(θ̄)−R1(θ̄), we obtain:

∆R =
(2k − 1)

(
1 +

√
1 + 2φ(2n− k − 2)

)
+ 2φ[n(2k − 1)− k(k + 1)]

k
√

1 + 2φ(2n− k − 2)
(
1 + 2φ(n− k) +

√
1 + 2φ(2n− k − 2)

) > 0 . (A.27)

As ∆R > 0, θ̄ is larger than any feasible equilibrium value θ̂NSi . As a consequence, θ̂NSi
decreases and θ̂Si increases when the number of member countries k increases. This is also
illustrated in the right panel of Figure 4.

(iv) For k = 1 the coalition is essentially a free-rider to itself, as it consists of only one
country, i.e., Vi = Wi. Thus, all principals face the same decision problem which results
in an identical choice of preference parameter θi. For k = n, θSi = 1 follows directly from
equation (A.22b) when setting γ = 1.

(v) This part follows directly from 0 < θNSi < 1, as shown in the proof of Proposition 5 and
parts (ii), (iii) and (iv) of Proposition 5: For k = 1 it holds that θNSi = θSi . For increasing
k, θNSi is decreasing, while θSi is increasing, ergo θNSi < θSi and, finally, θSi = 1 for k = n. �

A.7 Proof of Proposition 6

From the first-order conditions of the third stage of the game, we obtain:

êNSi (k) = B′−1
(
θ̂NSi D′[(n− k)êNSi (k) + kêSi (k)]

)
, (A.28a)

êSi (k) = B′−1
(
θ̂SD′[(n− k)êNSi (k) + kêSi (k)]

)
. (A.28b)

Then, the implicit function theorem yields:

dêNSi
dk

=
φθ̂NSi (êNSi − êSi )− φ D′

D′′

{
[1 + φkθ̂S ]dθ̂

NS
i
dk − φkθ̂

NS
i

dθ̂S

dk

}
1 + φ[(n− k)θ̂NSi + kθ̂S ]

> 0 , (A.29a)

dêSi
dk

=
φθ̂S(êNSi − êSi ) + φ D′

D′′

{
[φ(n− k)θ̂S ]dθ̂

NS
i
dk − [1 + φ(n− k)θ̂NSi ]dθ̂S

dk

}
1 + φ[(n− k)θ̂NSi + kθ̂S ]

T 0 .

(A.29b)
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In addition, we know that Ê(k) = (n− k)êNSi + kêSi . Thus:

dÊ

dk
= (n− k)dê

NS
i

dk
+ k

dêSi
dk
− êNSi + êSi

= −
(êNSi − êSi ) + φ D′

D′′

[
(n− k)dθ̂

NS
i
dk + k dθ̂

S

dk

]
1 + φ[(n− k)θ̂NSi + kθ̂S ]

T 0 .

(A.29c)

�

A.8 Proof of Proposition 7

We first calculate equilibrium emission levels and domestic welfare for the particular func-
tional forms (1). Setting β = ε = 1, which is w.l.o.g., as discussed in Section 4.2, we obtain
the equilibrium emissions in the third stage as functions of the preference parameters:

êNSi (k, θNSi , θS) = 1− φnθNSi
1 + φ

[
(n− k)θNSi + kθS

] , (A.30a)

êSi (k, θNSi , θS) = 1− φnkθSi
1 + φ

[
(n− k)θNSi + kθS

] . (A.30b)

Ê(k, θNSi , θS) = n

1 + φ
[
(n− k)θNSi + kθS

] . (A.30c)

Inserting these emission levels yields the following domestic welfares for non-member and
member countries:

ÛNSi (k, θNSi , θSi ) = 1
2

1−
φn2

[
1 + φ

(
θNSi

)2]{
1 + φ

[
(n− k)θNSi + k2θSi h

]}2

 , (A.31a)

ÛSi (k, θNSi , θSi ) = 1
2

1−
φn2

[
1 + φk2(θSi )2]{

1 + φ
[
(n− k)θNSi + k2θSi

]}2

 . (A.31b)

Then, the stability function Z is given by:

Z(k) = ÛSi
(
k, θ̂NSi (k), θ̂Si (k)

)
− ÛNSi

(
k − 1, θ̂NSi (k − 1), θ̂Si (k − 1)

)
. (A.32)

The stability function (A.32) is difficult to analyze analytically, as it comprises of four dif-
ferent values of the preference parameter θ, for which we cannot derive closed-form solutions
to simply plug into the domestic utility functions. As a consequence, we shall analyze the
function:

Z̃(k) = ÛSi
(
k, θ̂Si (k − 1), θ̂Si (k − 1)

)
− ÛNSi

(
k − 1, θ̂Si (k − 1), θ̂Si (k − 1)

)
, (A.33)

38



which only includes the preference parameter θ̂Si (k−1). The strategy for proving the propo-
sition is that we first show that Z̃(k) > Z(k) for all feasible values of k ∈ [1, n]. In a second
step, we show that Z̃(3) < 0 holds for all φ > 0 and n ≥ 2. As Z̃(k) > Z(k), it holds in
particular that Z̃(3) > Z(3) and, thus, a coalition size of k = 3 can never be stable.

(i) Z̃(k) > Z(k). First, note that the following ordering of the preference parameters holds
by virtue of Proposition 5:

θSi (k) > θSi (k − 1) > θNSi (k − 1) > θNSi (k) . (A.34)

Second, we take the derivatives of ÛSi with respect to θNSi and θSi :13

∂ÛSi (k, θNSi , θSi )
∂θNSi

=
φ2n2(n− k)

[
1 + φk2(θSi )2]{

1 + φ
[
(n− k)θNSi + k2θSi h

]}3 > 0 , (A.35a)

∂ÛSi (k, θNSi , θSi )
∂θNSi

= −
φn2k2

[
θSi + φ(n− k)θNSi − 1

]
{
1 + φ

[
(n− k)θNSi + k2θSi

]}3 < 0 . (A.35b)

Thus, ÛSi
(
k, θSi (k−1), θSi (k−1)

)
> ÛSi

(
k, θNSi (k), θSi (k)

)
as θSi (k−1) > θNSi and ∂ÛSi /∂θNSi >

0, and θSi (k − 1) < θSi (k) and ∂ÛSi /∂θSi < 0.

In addition, we calculate

ÛNSi

(
k, θSi (k), θSi (k)

)
− ÛNSi

(
k, θNSi (k), θSi (k)

)
= n2φ

2

[
1 + φ

(
θNSi

)2{
1 + φ[(n− k)θNSi + k2θSi ]

}2 −
1 + φ

(
θSi
)2{

1 + φ[(n− k)θSi + k2θSi ]
}2

]

= −n
2φ

2

 φ
[
1 + 2φk2θNSi + φ2k2(θNSi )2] [(

θSi
)2 − (θNSi )2]{

1 + φ[(n− k)θNSi + k2θSi ]
}2 {1 + φ[(n− k)θSi + k2θSi ]

}2

+
2φ2θNSi θSi (n− k)

[
1 + φk2θSi

] (
θSi − θNSi

)
{
1 + φ[(n− k)θNSi + k2θSi ]

}2 {1 + φ[(n− k)θSi + k2θSi ]
}2

 < 0 .

(A.36)

Thus, Z̃(k) > Z(k) for all feasible k, as ÛSi
(
k, θSi (k − 1), θSi (k − 1)

)
> ÛSi

(
k, θNSi (k), θSi (k)

)
and ÛNSi

(
k − 1, θSi (k − 1), θSi (k − 1)

)
< ÛNSi

(
k − 1, θNSi (k − 1), θSi (k − 1)

)
.

13 Note that ∂ÛS
i /∂θ

NS
i < 0 holds, because the term in brackets in the numerator can be shown to be positive

by substituting θS
i = 1/[1 + φ(n− k)θNS

i ].
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(ii) Z̃(3) < 0. Slightly abusing notation by writing θ instead of θSi (k − 1), we obtain:

Z̃(k) = ÛSi (k, θ, θ)− ÛSi (k, θ, θ)

= n2φ

2

[
1 + φθ2

{1 + φ[(n− k + 1)θ + (k − 1)2θ]}2 −
1 + φk2θ2

{1 + φ[(n− k)θ + k2θ]}2

]
.
(A.37)

The sign of Z̃(k) is determined by the term in brackets, thus Z̃(k) T 0 if and only if
F (k, θ, φ) T 0 with:

F (k, θ, φ) = 4(k − 1) + θ(1− k2) + φθ[(−4)(n+ 1) + k(4n+ 12)− 12k2 + 4k3]

+ 2φθ2[n− k − k2(n+ 1) + 3k3 − k4]

+ φ2θ3[n2 − 2nk − k2(n2 + 2n+ 3) + k3(6n+ 10)− k4(12 + 2n) + 6k5 − k6] .

(A.38)

In addition, we can express φ in terms of θSi (k − 1) using equations (A.22):

φ
(
θSi (k − 1)

)
= φ(θ) = (1− θ)[n− k − (1− θ)]

(n− k)θ2[(n− k)− k2(1− θ)] (A.39)

Note that ∂φ(θ)/∂θ < 0, i.e., θ is the smaller, the larger is φ. In fact, φ(1) = 0 and φ

approaches +∞ for θ → 0.

Inserting k = 3 and φ(θ) into F , we obtain:

F (3, θ) = 8(1− θ)
(n− 2)2(n− 6 + 4θ)2

[
−144 + 81n+ n2 − 4n3 + θ(396− 259n+ 32n2 + 3n3)

+ θ2(−332 + 223n− 36n2) + θ3(88− 57n+ 9n2)
]
.

(A.40)

Obviously, F (3, θ) = 0 for θ = 1. Note that θ = 1 corresponds to φ = 0. In this case,
equilibrium emissions of member and non-member countries are equal to one, i.e., êSi =
êNSi = 1, and, thus any coalition size would be stable. For θ < 1, which corresponds to
φ > 0, the sign of F (3, θ) is determined by the terms in brackets, which we denote by G(θ).

Trying to determine the local extrema of the term in brackets by taking the derivative and
setting it equal to zero, we find that for n ≥ 4, G(θ) does not exhibit any local extrema
and, thus the maximum must be attained at a corner, i.e., at θ = 0 or θ = 1. Evaluation of
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G at the corners yields:

G(0) = −144 + 81n+ n2 − 4n3 , (A.41a)

G(1) = −(n− 2)3 < 0 , (A.41b)

∆G = G(1)−G(0) = 152− 93n+ 5n2 + 3n3 . (A.41c)

As ∆G ≥ 0 for all n ≥ 4 and G(1) < 0 this implies that G(θ) has its maximum at θ = 1
but is negative at the maximum. As a consequence, G(θ) < 0 for all θ ∈ (0, 1) and n ≥ 4.

For n = 3, we find that G(θ) is convex and, thus, again exhibits its maximum at the corner.
We obtain:

G(0)
∣∣
n=3 = 0 , G(1)

∣∣
n=3 = −1 . (A.42)

Thus, also for n = 3 we obtain G(θ) < 0 for all θ ∈ (0, 1). As a consequence, Z(3) <
(̃Z)(3) < 0 always holds and, thus, even a coalition of k = 3 can never be stable. �

A.9 Proof of Proposition 8

We first show that there exists a unique stable coalition size. To this end we insert equilib-
rium emission levels (19) of the third stage into the stability function (20):

Z(k, θ) = φθn2

2

[
1 + φθ

(1 + φθ(n− k + 1 + γ(k − 1)2)2 −
1 + φγ2θk2

(1 + φθ(n− k + γk2)2

]
. (A.43)

Z(k, θ) Q 0 if and only if F (n, k, ψ) Q 0, with

F (n, k, γ, ψ) = a(n, k, γ) + b(n, k, γ)ψ + c1(n, k, γ)c2(n, k, γ)ψ2 , (A.44)

where ψ = φθ and

a(n, k, γ) = −{1 + γ [2 + k(γk − 4)]} , (A.45a)

b(n, k, γ) = −
{

1 + γ
[
2 + γ + 2n− 2

(
2n+ 3 + 2γ

− k{2 + γ[n+ 4− 3k + γ(k − 1)2]}
)]}

,
(A.45b)

c1(n, k, γ) = n− k
{

1− γ
[
n+ 1 + γ(k − 1)2

]}
> 0 , (A.45c)

c2(n, k, γ) = n− k
{

1 + γ
[
n+ 1− 2k + γ(k − 1)2

]}
. (A.45d)
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Z has a root at k = 1, as F (n, 1, 1, ψ) = 0, which is not surprising, as for k = 1 the
coalition consists of only one member country, which behaves as the non-member countries.
In addition, we show that F is concave in k for n ≥ 3. The case k = 2 is trivial, as either
F (n, 2, γ, ψ) ≥ 0, implying the stable coalition size is k̂ = 2, or F (n, 2, γ, ψ) < 0 and then
the stable coalition size is k̂ = 1. In either case, there exists a unique stable coalition size.

Taking the second derivative of F with respect to k, we obtain:

∂2F

∂k2 = ∂2a

∂k2 + ∂2b

∂k2︸︷︷︸
B

ψ +

∂2c1
∂k2 c2 + ∂2c2

∂k2 c1︸ ︷︷ ︸
C

+2∂c1
∂k

∂c2
∂k

ψ2 , (A.46)

with

∂2a

∂k2 = −2γ2 < 0 , (A.47a)

∂2b

∂k2 = −4γ {2 + γ [6γk(k − 1) + n− 9k + 4 + γ]} , (A.47b)

∂c1
∂k

= γ [γ(3k − 1)(k − 1) + n+ 1]− 1 > 0 , (A.47c)

∂2c1
∂k2 = 2γ2(3k − 2) > 0 , (A.47d)

∂c2
∂k

= −
{

1 + γ
[
n+ 1 + γ + 3γk2 − 4k(1 + γ)

]}
< 0 , (A.47e)

∂2c2
∂k2 = −2γ [γ(3k − 2)− 2] < 0 . (A.47f)

Thus, the only terms in (A.46) that are not obviously negative are the terms B and C. We
start with C:

C = −4γ3k(3k − 2)
[
n− k − 1 + γ(k − 1)2

]
− 4γc1 < 0 . (A.48)

While we cannot show that B < 0, we can show that B takes its highest value for γ = 1/k,
as B is decreasing in γ:

∂B

∂γ
= −8 {1 + γ [6γk(k − 1) + n− 9k + 4− γ]}−4γ2 [6k(k − 1) + n− 9k + 4− 1] . (A.49)

As ∂2B/∂γ2 < 0, ∂B/∂γ is largest for γ = 1/k. Inserting γ = 1/k yields:

∂B

∂γ

∣∣∣
γ= 1

k

= −8 + 48− 8n
k

− 4(n+ 1)
k2 ≤ 0 ∀ n ≥ 3 ∧ n ≥ k > 1 . (A.50)

Thus, if F is concave for γ = 1/k then it is concave for all γ ∈ [1/k, 1]. Inserting γ = 1/k

42



into ∂2F/∂k2, we obtain:

∂2F

∂k2

∣∣∣
γ= 1

k

= − 1
k4

{
2k2 + 4k[k(n− k − 2) + 1]ψ

+ 2 (1 + k {2(n− 5) + k[19 + n(n− 10) + 2k(2n− 5)]})ψ2
}
.

(A.51)

Again, we interpret ∂2F/∂k2 as a function of ψ. For ψ = 0, ∂2F/∂k2 = −2/k2 < 0. Seeking
the value ψ for which ∂2F/∂k2 = 0, we obtain:

ψ1/2 = −k2(n− k − 2)±
√
D

1− 10k + 19k2 − 10k3 + 2nk − 10nk2 + 4nk3 + n2k2 , (A.52)

with

D = −k5(n− k)− k4(5nk − 6n− 14k)− k3(17k − 6) . (A.53)

As D ≤ 0 for all n ≥ 3 and n ≥ k > 1, we obtain that ∂2F/∂k2 < 0. As a consequence,
F is concave and can have at most one root in 1 < k ≤ n. If there exists a root k0 with
1 < k0 ≤ n, then k̂ = bk0c is the unique stable coalition size. If this root does not exist,
then k̂ = n if F > 0 for 1 < k ≤ n and k̂ = 1 if F < 0 for 1 < k ≤ n.

Second, we derive the range of attainable stable coalition sizes. Recall that F is a quadratic
function in ψ. Thus, we seek ψ for which F = 0 holds. This yields a function ψ(k) which
gives the maximum ψ that just renders a coalition of size k stable. We obtain two candidate
solutions for ψ(k):

ψ(k)1/2 = −b±
√
b2 − 4ac1c2

2c1c2
. (A.54)

As the lowest possible value of ψ is ψ = 0, we derive the maximum coalition size by solving
ψ(k) = 0 for k:

ψ(k) = 0 ⇔ ±b =
√
b2 − 4ac ⇔ a = 0 ,

a = 0 ⇔ k = 2±
√

3− 2γ
γ

.
(A.55)

As the lower solution is infeasible, as it would yield k < 1/γ, the unique solution for the
maximum coalition size is given by:

kmax(γ) =
⌊

2 +
√

3− 2γ
γ

⌋
. (A.56)

To determine the minimal stable coalition size, recall that the denominator in equation
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(A.54) reads 2c1c2. While c1 > 0, c2 is a cubic equation in k, which exhibits one real and
two imaginary roots. For the real root k > 1/γ, c2 > 0 for k < k and c2 < 0 for k > k.
Thus, ψ(k) diverges for k → k. Then kmin(n, γ) = bkc.

Taking into account that k ∈
[
kmin, kmax

]
, a > 0 and c < 0 in equation (A.54). Thus, we

obtain:

ψ(k) = −b−
√
b2 − 4ac1c2

2c1c2
. (A.57)

�

A.10 Proof of Proposition 9

Using the third stage equilibrium emission levels, we obtain the following derivatives:

deNSi (Θ, k)
dθNSi

= −
nφ
{

1 + φ
[∑

j /∈S,j 6=i θj + γk
∑
j∈S θj

]}
[
1 + φ

(∑
j /∈S θj + γk

∑
j∈S θj

)]2 < 0 , (A.58a)

deSi (Θ, k)
dθSi

= −
nγφ

(
1 + φ

∑
j /∈S,j 6=i θj

)
[
1 + φ

(∑
j /∈S θj + γk

∑
j∈S θj

)]2 < 0 , (A.58b)

dE(Θ, k)
dθNSi

= − nφ[
1 + φ

(∑
j /∈S θj + γk

∑
j∈S θj

)]2 < 0 , (A.58c)

dE(Θ, k)
dθSi

= − nφγk[
1 + φ

(∑
j /∈S θj + γk

∑
j∈S θj

)]2 < 0 , (A.58d)

Inserting into the first-order condition (22) yields:

FOC = nφ2

NFOC

γk2 − γ2k

θi +
∑

j∈S,j 6=i
θj

1 + φ
∑
j /∈S

θj

+ (n− k)

−(n− k)θi

1 + φ

 ∑
j /∈S,j 6=i

θj + γk
∑
j∈S

θj


 ,

(A.59)

with

NFOC =

1 + φ

∑
j /∈S

θj + γk
∑
j∈S

θj

3

. (A.60)
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Setting FOC = 0 and solving for θi, we obtain the reaction function for the principal of
country i:

θi(Θ−i) =
(n− k) + γk2 − γ2k

∑
j∈S,j 6=i θj

(
1 + φ

∑
j /∈S θj

)
γ2k

(
1 + φ

∑
j /∈S θj

)
+ (n− k)

[
1 + φ

(∑
j /∈s,j 6=i θj + γk

∑
j∈S θj

)] (A.61)

First, we show that only symmetric equilibria exist by contradition. To this end, we define:

a = (n− k) + γk2 , b = γ2k

1 + φ
∑
j /∈S

θj

 ,

c = (n− k)

1 + φγk
∑
j∈S

θj

 , d = (n− k)φ ,

θS =
∑

j∈S,j 6=m,l
θj , θNS =

∑
i/∈S,j 6=l,m

θj ,

(A.62)

and assume that θl 6= θm for two countries l 6= m. Then the following two conditions have
to hold in quilibrium:

θl =
a− b

(
θm + θS

)
b+ c+ d (θm + θNS) , θm =

a− b
(
θl + θS

)
b+ c+ d (θl + θNS) . (A.63)

This is equivalent to:(
b+ c+ dθNS

) [
a− b

(
θS + θm + θl

)]
(θl − θm)− bdθmθl (θl − θm) = 0 . (A.64)

As θl 6= θm, we can divide by (θl − θm) and obtain:

θl = b+ c+ dθNS

b

a− b
(
θm + θS

)
b+ c+ d (θm + thetaNS) , (A.65)

which contradicts equations (A.63), as the first fraction is not equal to 1. Thus, equilibria
have to be symmetric, i.e., θl = θm for all l,m ∈ I.

For symmetric θ = θi for all i ∈ I, the first-order condition is zero if and only if the following
equation holds:

φ(n− k)
[
(n− k) + γk2 + γ2k2 − 1

]
︸ ︷︷ ︸

A≥0

θ2+
[
(n− k) + γ2k2

]
︸ ︷︷ ︸

B>0

θ−
[
(n− k) + γk2

]
︸ ︷︷ ︸

C>0

= 0 . (A.66)
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For k = n this reduces to

γ2k2θ − γk2 = 0 , (A.67)

the solution of which is θ̂(n) = 1/γ. As A > 0 for 1 < k < n, we directly obtain that
θ̂(k) < 1

γ for 1 < k < n. The unique solution for 1 < k < n is given by:

θ̂(k) = −B +
√
B2 + 4AC
2A . (A.68)

It remains to show that the first-order conditions (A.59) characterize the best response
functions of the principals, i.e., we have to show that the second-order conditions hold
for our candidate equilibria θ̂(k). Taking the derivative of the first-order condition (A.59)
with respect to θi and taking into account that the equilibrium is symmetric, yields for the
second-order condition:

SOC = nφ

NSOC

{
2γ3k3φθ [1 + φ(n− k)θ]− γ2k [1 + φ(n− k)θ]2 − γ2k3φ− 2γ2k3φ

+ 2(n− k)φθ
{

1 + φ
[
(n− k − 1)θ + γk2θ

]}
− 3(n− k)φ

− (n− k)
{

1 + φ
[
(n− k − 1)θ + γk2θ

]}2
}
,

(A.69)

with

NSOC =

1 + φ

∑
j /∈S

θj + γk
∑
j∈S

θj

4

. (A.70)

The second-order condition is satisfied if SOC < 0 which holds if and only if the term in
curly brackets is negative. Re-arranging this term yields:

−
{

2γ2k3φ (1− γθ) + φ2θ2γ2(n− k)
[
k4 + (n− k)k − 2γk3

]
+ 2(n− k)φθ

[
(n− k − 1) + γk2 − 1

]
+ γ2k [1 + 2φθ(n− k)] + 3φγ2k3

+(n− k)(1 + 3φ) + φ2θ2(n− k)
[
(n− k − 1) + γk2

]
(n− k − 3)

}
.

(A.71)

All terms in curly brackets but the last are always positive. The last term is non-negative
for (n − k) ≥ 3 and equal to zero for n = k. Thus, the remaining cases we have to check
are k = n − 2 and k = n − 1. To do so, we concentrate on the terms in the second-order
condition containing φ2θ2, since all other terms are negative anyway:

φ2θ2(n−k)
{

2γ3k3 + (n− k − 1)
[
2− (n− k − 1)− 2γk2

]
+ 2γk2 − γ2k2(n− k)− γ2k4

}
︸ ︷︷ ︸

∆
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(A.72)

We have to show that ∆ ≤ 0. For k = n− 2, we obtain:

∆ = γ2k3(2γ − k) + 1− 2γ2k2 . (A.73)

∆ is largest for k = 1, which also implies γ = 1 for which ∆ = 0. In addition, ∆ < 0 for all
k ≥ 2. For k = n− 1, ∆ reduces to:

∆ = γk2
[
2(γ2k + 1)− γ(k2 + 1)

]
(A.74)

It can easily be shown that ∆ < 0 for k ≥ 3. However, for k < 3 ∆ can be positive. To show
that the second-order conditions also hold in these cases, recall that θ is given by:

θ̂(k) = −B ±
√
B2 − 4AC
2A ≤ −B +

√
B2 +

√
4AC

2A =
√
AC

A
, (A.75)

where A and C yield for n− k = 1:

A = φγk2(1 + γ) , C = 1 + γk2 . (A.76)

Thus, we obtain as an upper bound for φ2θ2:

φ2θ2 ≤ φ(1 + γk2)
γk2(1 + γ) , (A.77)

For k = 1, also γ = 1 and thus φ2θ2 ≤ φ. For k = 2 it holds that 1/2 < γ < 1 and thus
also φ2θ2 ≤ φ holds. We now collect all terms with φ2θ2 and with φ in the second-order
condition and use n− k = 1 and φ2θ2 ≤ φ to obtain:

φ
{

2γk2(γ2k + 1)− γ2k2(k2 + 1)− 3γ2k3 − 3
}

(A.78)

Inserting k = 1 yields:

2γ3 + 2γ − 5γ2 − 3 = 2γ2(γ − 1)− 2(γ − 1)− 3γ2 − 1 < 0 . (A.79)

For k = 2, we obtain:

16γ3 + 8γ − 44γ2 − 3 = 16γ2(γ − 1) + γ(8− 28γ)− 3 < 0 , (A.80)

as 1/2 ≤ γ ≤ 1. Thus, the second-order conditions hold in all possible cases and the
symmetric equilibrium is given by θ̂(k). �
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A.11 Proof of Proposition 10

Recall from equations (A.45):

c2(n, k, γ) = n− k
{

1 + γ
[
n+ 1− 2k + γ(k − 1)2

]}
, (A.81)

the unique real root k which determines the minimal attainable stable coalition size k. If
k ≥ n, then the unique subgame perfect Nash equilibrium of the strong delegation game is
characterized by k̂ = n, θ̂(n) = 1/γ and the corresponding third stage emission levels. We
obtain:

c2(n, n, γ) = −nγ
[
n− 1 + γ(n− 1)2

]
, (A.82)

which is equal to zero if and only if:

−γ2n(n− 1)2 − γn(n− 1) = 0 . (A.83)

This equation holds for γ = 0 and γ = 1/(n − 1). As γ = 0 is not feasible, the unique
solution is given by γ = 1/(n − 1). Thus, when γ < 1/(n − 1), the grand coalition is the
unique subgame perfect Nash equilibrium of the strong delegation game. �

A.12 Proof of Proposition 11

In the grand coalition of both the strong and the weak delegation game, the principals
delegate to agents with the preference parameter θ = 1/γ. This can be seen from (14b) for
k = n for the weak delegation game and from part (ii) of Proposition 9 in case of the strong
delegation game. Then, the first-order condition for all agents in the third stage (8) reads:

B′(ei) = γ
∑
j∈S

θjD
′(E) = γk

1
γ
D′(E) = kD′(E) . (A.84)

Obviously, this is the Lindahl-Samuelson condition for efficient public good provision from
the principals’ perspective. �
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