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Optimal Carbon Pricing in General Equilibrium: 
Temperature Caps and Stranded Assets in an Extended Annual DSGE Model 

 
 

Abstract 
 
The general equilibrium model developed by Golosov et al. (2014), GHKT for short, is modified 
to allow for additional negative impacts of global warming on utility and productivity growth, 
mean reversion in the ratio of climate damages to production, labour-augmenting technical 
progress, and population growth. We also replace the GHKT assumption of full depreciation of 
capital each decade by annual logarithmic depreciation. Furthermore, we allow the government 
to use a lower discount rate than the private sector. We derive a tractable rule for the optimal 
carbon price for each of these extensions. We then simplify the GHKT model by modelling 
temperature as cumulative emissions and calibrating it to Burke et al. (2015) damages. Finally, 
we consider how the rule for the optimal carbon price must be modified to allow for a 
temperature cap, and what this implies for stranded oil and gas reserves. We illustrate our 
analytical results with a range of optimal policy simulations. 

JEL-Codes: H210, Q510, Q540. 

Keywords: carbon price, tractable rule, general equilibrium, utility and growth damages, 
technical progress, population growth, logarithmic depreciation, differential discount rates, 
temperature cap, stranded oil and gas reserves. 
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1. Introduction  

Carbon emissions are at the root of the most important global externality (Stern, 2007). 

The first-best response is to price carbon, either via a carbon tax or an emissions market, 

at a uniform price throughout the globe and rebate the revenue as lump-sum rebates. The 

tractable and influential general equilibrium model of growth and climate change 

developed by Golosov et al. (2014), denoted GHKT from hereon, presents a simple and 

intuitive rule for the optimal pricing of carbon in general equilibrium: the price of 

emissions should be proportional to aggregate output and thus grow in line with trend 

growth. The proportionality factor depends on the discount rate, the severity of damages, 

and the dynamics of atmospheric carbon. The GHKT model has become very popular due 

to its analytical versatility. Its rule for the optimal carbon price is intuitive and easy to 

calculate but can be criticized for the strong assumptions necessary to derive it. Our aim 

is therefore to offer various extensions of the GHKT model, some more important than 

others, which still yield an analytically tractable rule for the optimal carbon price. We 

also offer a simplification of the model where temperature is driven by cumulative 

emissions and damages are calibrated to Burke et al. (2015) rather than to Nordhaus 

(2016). We thus take stock of the merits, uses, and limitations of the GHKT model, and 

believe that the extended GHKT model is more realistic and can be used in teaching.  

We first extend the GHKT model to allow for logarithmic depreciation. Using theoretical 

and empirical arguments, Anderson and Brock (2021) demonstrate that logarithmic 

depreciation is better able to fit the aggregate data than geometric depreciation and they 

suggests its tractability lends itself for tractable expressions for optimal policy. Full 

depreciation each decade, as is in GHKT, is a special case of logarithmic depreciation. 

We adopt their depreciation model and find a tractable expression for the optimal carbon 

price. This allows us to use finer time resolutions (yearly instead of decadal), opening the 

model to the inclusion of business-cycle interactions.1 

Global warming damages in the GHKT model are proportional to aggregate production. 

We also allow for disutility from global warming and climate damages to the growth of 

total factor productivity. These extensions also lead to a tractable expression for the 

 
1 Cai et al. (2012) already used an annual time step for their version of the DICE model but they were not 

concerned with tractable expressions for the optimal social cost of carbon. 
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optimal carbon price, allowing any combination of damages to consumption and utility. 

Using recent calibration studies, we show that the optimal carbon price in 2019 rises from 

$64 to $456 per ton of carbon if damages affect productivity growth permanently. 

Exogenous growth in population (cf. Kelly and Kolstad, 2001) and productivity largely 

determine the severity of climate change. We, therefore, include positive rates of 

population growth and labour-augmenting technical progress in the GHKT model. This 

has important implications for the rates of growth and interest, while still allowing us to 

obtain a generalized tractable expression for the optimal carbon price. A one percent 

growth rate in population increases the optimal carbon price per ton of carbon from $64 

to $164 per ton of carbon (and to $2,039 per ton of carbon if damages affect productivity 

growth). We also allow for mean reversion in the process of total factor productivity 

growth and show how this affects the rule for the optimal carbon price. 

Following Belfiori (2016) and Barrage (2018) we allow the government to have a lower 

discount rate than the private sector. This implies that the carbon pricing policy must be 

complemented with a subsidy for natural and man-made capital to offset the relative 

myopia of the private sector. In this case, the social cost of carbon increases as the 

government places greater weight on future generations. Given that a handout to the 

owners of capital and, more importantly, oil reserves is politically unlikely, we show by 

how much the carbon price would be increased to offset the missing subsidy. This 

increase is a second-best way to compensate future generations for the lower material 

wealth left to them in the form of capital stocks and fossil fuel reserves. We derive the 

tractable rules for each of these policy instruments in general equilibrium and illustrate 

why such an equilibrium is time consistent. In our numerical simulations the second-best 

carbon price is up to 10% above its first-best level. 

We also apply two simplifications of the GHKT model based on recent developments in 

atmospheric science and economics, which lead to a general-equilibrium extension of the 

framework set out in van der Ploeg (2020). First, recent atmospheric science insights 

suggest that temperature is driven by cumulative emissions (Allen et al., 2009; Matthews 

et al., 2009; Anderson et al., 2014; van der Ploeg, 2018; Dietz and Venmans, 2018; Dietz 

et al., 2021). While the carbon cycle of GHKT is fairly accurate on a decadal scale, this 

is not the case for shorter time periods (Dietz et al., 2021). Second, the GHKT model 
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models the ratio of damages to output as a negative exponential function of the 

atmospheric carbon stock and calibrates the function to the DICE-13 model of 

Nordhaus (2008). We have calibrated our damages to the GHKT model. Since these 

damages are very modest compared to those found econometrically in Burke et al. (2015), 

we also calibrated damages to these much higher estimates. Both simplifications increase 

the realism of the GHKT further and bring it up to date with the most recent atmospheric 

insights and empirical evidence on global warming damages. They yield a simpler 

expression for the optimal carbon price and a much higher optimal carbon price of $1,507 

instead of $64 per ton of carbon. 

Finally, we add realism to our welfare analysis by adding a ceiling on temperature or 

equivalent a cap on cumulative emissions. This captures the 2015 Paris Climate Accord 

where countries agreed to limit global warming to 2°C while aiming to keep warming at 

or below 1.5 degrees Celsius from pre-industrial levels. We show that, if the temperature 

cap bites, this requires adding a Hotelling term that rises at a rate equal to the market rate 

of interest to the welfare-maximizing carbon price. The size of this term increases for 

tighter temperature caps with the initial carbon prices $281 and $1,152 for the 2°C and 

1.5°C targets. We also the effects on stranded oil and gas reserves and the fossil fuel mix.  

Section 2 presents the original GHKT model and our extensions. Section 3 derives the 

social optimum and decentralized equilibrium. Sections 4 discusses the case when the 

government discounts the future at a lower rate than private agents. Section 5 simplifies 

the GHKT model by letting temperature be driven by cumulative emissions and damages 

be calibrated on Burke et al. (2015). Section 6 explores how our results are modified by 

a temperature cap. Section 7 calibrates our annual version of the GHKT model and 

discusses the baseline optimal policy and business as usual results. Section 8 

demonstrates the numerical sensitivity of the optimal policy simulation with respect to 

each of our extensions of the GHKT model. Section 9 takes stock and discusses the merits 

and versatility, uses, and limitations of the GHKT model. Section 10 concludes. 

 

2. Five Extensions of the GHKT Model 

We build on the familiar Brock-Mirman (1972) and Golosov et al. (2014) assumptions: 

logarithmic utility, Cobb-Douglas production function, full depreciation of capital within 
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a decade, exponential climate damages in production, fossil fuel extraction and 

production of renewable energy requiring no capital, and a two-box carbon cycle with a 

part of carbon staying up permanently in the atmosphere and another part that gradually 

decays and is returned to the surface of the earth and oceans. Energy is derived from coal, 

oil/gas, and renewable sources.  

Replacing the assumption of manmade capital depreciating fully in every decade, we 

allow for logarithmic depreciation as in Anderson and Brock (2021). Here, the case of 

full depreciation corresponds to a special case but importantly we can vary temporal 

resolution to yearly or even quarterly. We extend the GHKT model in four other 

directions by allowing for a direct negative effect of climate change on household utility 

and on productivity growth including allowing for mean reversion in total factor 

productivity, population growth, and growth in labour-augmenting technical progress. 

We assume that the public and private discount rates are the same but in section 4 we will 

investigate differential discount rates.  

The social planner maximizes utilitarian social welfare, which consists of utility derived 

from per capita consumption, ln( / ).t tC N  Climate change lowers output via production 

damage and, in a first extension of the GHKT model, via instantaneous per capita welfare 

loss due to climate change, tE  where  ≥ 0, 

 (1)  
0

ln( / )t

t t t t

t

N C N E 


=

− . 

Subscripts denote periods of time t = 0, 1, 2, ….  The time impatience factor is constant 

and denoted by 0 <  < 1. Population at time t is Nt and, in a second minor but 

quantitatively important extension to the GHKT model, its constant gross growth factor 

equals Nt+1/Nt = .2 The stock of atmospheric carbon is Et.  

Production in the GHKT framework occurs in energy and final goods sectors and is given 

by a nested production function. Final goods output, Yt, is produced by combining labour, 

Lt, capital, Kt, and energy from a Cobb-Douglas production function with a unit elasticity 

of substitution, while energy output is described by a CES production function and 

produced from (i) a finite stock of fossil fuel St which can be extracted without cost, but 

 
2 We assume that the discount rate corrected for population growth is positive, i.e., 1.   
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subject to a Hotelling rent, (ii) an infinite stock of fossil fuel (i.e. coal), and (iii) renewable 

energy sources, with the latter two requiring only labour input, L2t and L3t, but no capital. 

A1t and A2t are the corresponding exogenous labour productivities. Production is thus 

given by ( ) ( )
/

1

1 2 2 2 3 3 3 ,t t t t t t t t t t t tY A K F A L A L L
        − − = + +

 
 where tF  denotes 

fossil fuel use in period t. The elasticity of substitution between different energy types is 

constant and given by 1/ (1 ).−  The share parameters in the energy sub-production 

function are positive and satisfy 1 2 3 1.t t t  + + =  

In a third minor extension of the GHKT model, we allow for Harrod-neutral technical 

progress and assume a positive constant gross growth in labour productivity, denoted by 

 ≥ 1, and define the number of (exogenous) efficiency units in the economy as 

Mt ≡ t Nt. Labour (in efficiency units) is allocated either to final goods production Lt or 

to fossil or renewable energy production, 2tL and 3 ,tL  respectively, so that 

2 3 .t t t tL L L M+ + =   

Our fourth extension is logarithmic depreciation of capital. This can be formulated as 

1

1 ,t t tK I K  −

+ =  where 0 and 0 1.     While the case of geometric depreciation is 

commonly used in growth theory due to its linearity, nonlinear specifications have often 

been applied, e.g. Uzawa (1969), Lucas and Prescott (1971), Hayashi (1982), and Abel 

and Blanchard (1983). Anderson and Brock (2021) compare logarithmic depreciation to 

the more conventional assumption of geometric depreciation of capital. Using theoretical 

and empirical arguments, they show that logarithmic depreciation is superior in 

explaining aggregate data and recommend it, therefore, in the formulation of economic 

policy. Using material balance, ,t t tC I Y+ =  we can write the dynamics of capital as 

(2)   ( ) ( ) ( )
/

1 1

1 1 2 2 2 3 3 3 2 3 .t t t t t t t t t t t t t t t tK A K F A L A L M L L C K

         
− − −

+

  = + + − − −   
 

The formulation in (2) captures GHKT model as a special case, since with 1 = =  it 

boils down to full depreciation, 1 .t t tK Y C+ = −  The dynamics of fossil fuel depletion are 

(3) 
1 0 0

0

, ,  given.t t t t

t

S S F F S S


+

=

= −   
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The carbon dynamics of the GHKT model are as follows. Burning fossil fuel leads to 

carbon emissions of which a fraction stays permanently in the atmosphere, 0 1.L   

Of the transitory emissions, a fraction 00 1   is still there at the end of the period (i.e. 

a decade in the GHKT model), and a fraction 01 −  is absorbed by carbon sinks within 

each period. The decay factor of the stock of atmospheric carbon is 0 1.   With p

tE

and t

tE  denoting the permanent and transient stocks of atmospheric carbon (the sum of 

which is Et), the dynamics of the stock of carbon in the atmosphere are 

(4)      1 2 2 1 0 2 2( ), (1 )( ),p p t t p t

t t L t t t t t L t t t t t tE E F A L E E F A L E E E   − −= + + = + − + = + .3 

In our numerical simulations, we annualize the decadal calibration of (4) in GHKT or 

replace it by a climate model solely based on cumulative emissions. 

Total factor productivity in final goods production, At, falls as the stock of atmospheric 

carbon increases. The instantaneous damage of the stock of atmospheric carbon to total 

factor productivity is denoted by  > 0. In our fifth extension of the GHKT model we 

allow for mean reversion around an exogenous trend growth path for total factor 

productivity, .tA With mean reversion in the log of total factor productivity denoted by 

0 1 1, −   the development of total factor productivity is given by 

(5) 1ln( ) ln( ) (1 ) ln( ) ( ).t t t tA A A E E  −= + − − −  

The GHKT model corresponds to δ = 0 in which case climate change (i.e. atmospheric 

carbon concentrations in excess of pre-industrial level )E lowers the level of total factor 

productivity in that period. However, if δ = 1, climate change affects growth of total factor 

productivity permanently. Intermediate values of  allow for transitory effects, i.e. mean 

reversion in the effects of climate change on total factor productivity. Since Harrod-

neutral and Hicks-neutral technical progress are equivalent for Cobb-Douglas production 

 
3 The carbon cycle can be extended to include arbitrary many boxes. The model of Gerlagh and Liski 

(2017a) has 3 boxes. Joos et al. (2013) and Aengenheyster et al. (2018) have, respectively, a deterministic 

and a stochastic carbon dynamics model with 4 boxes. Temperature is modelled indirectly, assuming an 

equilibrium relationship between carbon stocks and global mean temperature 

( )ln / 596.4 / ln(2),t tT ECS E=  with the equilibrium climate sensitivity ECS equal to 3. This gives 

temperature in 2010 as 1.3°C, with the GHKT calibration of 2010 802.E = Rezai and van der Ploeg (2016) 

introduce a lagged response of temperature to emissions and derive a tractable expression for the optimal 

SCC which is akin to the one given in (8) of Proposition 1. In the GHKT notation ε = 1 − φ. 
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functions, we capture the former by  > 0 and abstract from the latter and thus assume 

tA  is constant. In addition, we allow for labour-augmenting (Harrod-neutral) technical 

progress in the energy sector.  

 

3. The Social Optimum 

The social optimum maximizes utilitarian social welfare, eqn. (1), subject to equations 

(2)-(5) and the non-negativity constraints 0,tF   2 3, , 0,t t tL L L   and 0tS  for all 0,t 

and satisfies the properties stated in the following three propositions. 

Proposition 1: The socially optimal saving and consumption functions are 

(6) 

1

1 and ( )
1 (1 )

with ( ) 1 .
1 (1 )

t t t t tK Y K C c Y

c



 
 

 




 

−

+

 
= = 

− − 

 
 − 

− − 

 

Proof: see Appendix A. 

The saving and consumption functions (6) follow from the Euler equation and the capital 

accumulation equation (2)  These are modified versions of those presented in Brock and 

Mirman (1972) and Anderson and Brock (2021) to allow for population growth and 

logarithmic depreciation. They indicate that a higher capital share, more patience, higher 

population growth, and lower depreciation boost incentives for aggregate investment and, 

hence, curb the propensity to consume. If capital depreciates fully and population growth 

is absent (i.e. 1 = =  and  = 0), the consumption share equals (1 )−  and the 

equations in (6) reduce to that in the GHKT model. As in the GHKT model, the propensity 

to consume, c, and the marginal propensity to save are constant and independent of 

assumptions on the climate and its interactions with the economy. 

Proposition 2: Demand for the three energy types follow from the efficiency conditions 

(7) 
2 2 2 3 3 3

2 3

c.s., c.s., c.s.,

0 0 0

t t t t t
t t t

t t t

t t t

Y Y w Y w
h

F A L A A L A

F L L

 
    

 +  +   
    

      
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where , , (1 ) / ,t t t t th w Y L   − −  and tb  are the scarcity rent of fossil fuel, the social cost 

of carbon (SCC) and the social wage (i.e. the marginal product of labour), respectively, 

all in units of final goods. The scarcity rents on fossil fuel follow from 

(8) 1,t t th j h −=  

where 
1

1
.t

t

t

Y
j

Y −

=  In case of full depreciation, 1, = =  this gross growth rate of the 

carbon price equals the marginal product of capital, .t t tj Y K=  

Proof: see Appendix A. 

Equations (7) indicate that an energy good is not used in the production of final goods if 

its marginal product is less than its social marginal cost. For the scarce fossil fuel type 

(oil and gas), this cost consists of the scarcity rent plus the SCC. If fossil fuel use is used 

in production, its marginal product exactly equals its social marginal cost. As fossil fuel 

reserves are fully depleted (asymptotically), the marginal product of fossil fuel must rise 

indefinitely. Similarly, the abundant fossil fuel type (coal) is only used if its marginal 

product equals unit labour cost (i.e., the wage divided by sector-specific labour 

productivity) plus the SCC. The marginal social cost of renewable energy consists of the 

wage divided by (potentially) endogenous labour productivity. If the marginal product of 

renewable energy is less than its marginal social cost, it is not used in production. 

Equation (8) is the Hotelling rule. It states that the growth rate of the scarcity rent must 

equal the social rate of interest as only then will society be indifferent between depleting 

an extra unit of oil or gas and getting a return equal to the social rate of interest and leaving 

this unit in the ground and getting the social capital gains. To see this, define growth of 

output and consumption as 1 1( ) / ,t t t tg Y Y Y− − −  the rate of time impatience as 

(1 ) / ,   −  the population growth rate as 1,n  −  and the social interest rate as 

1.t tr j −  We then have 
(1 )(1 )

1  or ,
(1 )

t
t t t t

g
j r r n g

n




+ +
= + =  − +

+
 where the 

approximation becomes exact for infinitely short time units. The social rate of interest 

thus equals the rate of growth of the scarcity rent and equals the rate of time impatience 

minus the rate of population growth plus the rate of consumption growth. This follows 

from the Keynes-Ramsey rule with a unit elasticity of intertemporal substitution, which 
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states that the optimal growth rate in per-capita consumption equals the difference 

between the social rate of interest and the rate of time impatience, .t tg n r − = −  

Proposition 3: The first-best optimal SCC is 

(9)  0 (1 )
( )   with  ( ) 1 0.

1 1 1 (1 ) 1

LL
t tY

   
     

    

   − 
=  + − +    

− − − − −    
 

Proof: see Appendix A. 

Equation (9) implies that the optimal SCC is a constant proportion of aggregate output 

and this proportion is bigger if the damage parameters  and  are large and carbon 

resides in the atmosphere for longer (i.e. if the fraction staying permanently in the 

atmosphere, ,L is large or the fraction absorbed by carbon sinks within each period, 

01 ,− and the decay factor, ,  are low). The component of the SCC due to production 

damages increases if society has more patience (i.e., has a large discount factor ), 

population growth  is high, and the mean reversion in the process of total factor 

productivity is slow ( is high). Deviations from full depreciation of capital, i.e. κ < 1, 

depress the effect of utility damages on the SCC. As in the original GHKT model, 

technical assumptions about substitutability of fossil energy sources influences the SCC 

only indirectly via their effect on the level of output.  

Corollary 1: If the utility damage parameter,, is calibrated to a given amount of utility 

lost in today’s dollar terms, i.e. $

0 ,C   the proportionality factor in the rule for the 

optimal carbon price is 
$

0

0

(1 )
( ) .

1 1 1

LL

Y

   
 

  

  − 
= + +  

− − −   
 

A negative effect of global warming on utility ( > 0) pushes up the optimal SCC. This 

effect can increase or decrease since shifts in parameters discussed above induce a 

simultaneous revaluation of marginal utility, potentially leading to offsetting effects. 

However, if we calibrate these damages in dollars, this component of the SCC increases 

if the utility discount factor is small (i.e. society has more patience and population grows 

more rapidly, higher ) and if carbon resides in the atmosphere for a longer period 

(higher L , lower ). 
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Corollary 2: The GHKT model has a constant population, a negative effect of global 

warming on the level of total factor productivity but not on utility (γ = 1,  =  = 0). Its 

optimal SCC is
0 (1 )

1 1

LL
t tY

 
 

 

 − 
= + 

− − 
. If global warming affects growth of total 

factor productivity (γ =  = 1,  = 0), 
0 (1 )

.
1 1 1

LL
t tY

 


  

 − 
= + 

− − − 
  

If the GHKT model is only extended to allow for population growth and mean reversion 

in effects of global warming on total factor production, the optimal SCC is 

(9) ( )t tY  =  with 0 (1 )
( ) .

1 1 1

LL

GHKT GHKT GHKT

  
 

    

 −  
 +  

− − −  
 

where 
GHKT  .4 This expression boils down to the GHKT expression if global 

warming affects only current total factor productivity,  = 0. If global warming also 

affects future total factor productivity, 0 <  < 1, the optimal SCC is higher. Note that, if 

utility damages are absent, the optimal SCC does not depend on the depreciation scheme. 

With growth rather than level damages the effect on the optimal SCC is 
1(1 ) −−  times 

bigger. The elasticity of the SCC with respect to the productivity damage parameter  is 

1(1 ) 1 0t t 


 

−
= − − 


 which increases in β, γ, and . If the growth in population 

is higher (larger γ), equation (8) indicates that the SCC increases for production damages 

but falls for utility damages. The former is intuitive, the latter is the result of two opposing 

effects: higher population growth increases the attractiveness of capital accumulation due 

to higher consumption possibilities in the future but also increases damage created by 

carbon. The utility cost of damages to utility is constant in our formulation. This leaves 

the effect on the attractiveness of capital accumulation and, hence, the SCC decreases as 

population growth increases. All other parameters affect the SCC as in the GHKT model. 

As discussed above, the SCC is higher under a lower discount rate and a longer residence 

time of carbon emission in the atmosphere, either because of a larger fraction staying 

permanently or a lower dissipation rate of the transient fraction (higher β, 0, ,L   ). 

 
4 Population growth is absent from the expression for the optimal SCC in the GHKT model but can be 

accommodated for by simply replacing  by the discount factor adjusted for population growth . 
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Note that the coefficients of the production functions for final goods and for energy 

outputs and the coefficients driving the process of logarithmic depreciation (2) do not 

affect the expression for the optimal SCC (9) directly. They do affect energy use and 

world GDP, and thus only affect the expression for the optimal SCC indirectly. 

Under the assumption of the model, all components of the efficiency conditions in 

equation (7) scale to output and, thus, the energy system decouples from the rest of the 

economy.5 To see this, note that Cobb-Douglas technology in the final goods sector 

implies proportionality of the marginal products of energy and labour to GDP. Further, 

the combination of logarithmic utility and logarithmic depreciation ensures that the 

inverse of marginal utility equals GDP times the constant consumption share. Given the 

equilibrium outcomes of the energy sector, the evolution of climate change is fully 

determined. Aggregate sector variables, such as total factor productivity, output, and 

capital stock, follow from those. This sequence of equilibria depends on the fact that the 

energy system is solely using labour as an input. We summarize this general finding of 

the model in the following corollary. 

Corollary 3: The evolution of the energy sector only depends on the stock of fossil fuel 

reserves and determines the evolution of temperature and of the permanent and 

atmospheric stocks of carbon. The evolution of capital and total factor productivity 

follows from fossil fuel reserves and the stocks of atmospheric carbon.  

Proof: see Appendix A. 

Proposition 1-3 and Corollary 3 characterize the command optimum. Proposition B.1 in 

Appendix B shows that this command optimum can be sustained in the decentralized 

market economy if carbon is priced at a level equal to the SCC, via levying a carbon tax 

or setting up a competitive market for carbon permits, and the revenue is rebated as lump 

sums to the private sector. These correspond to the first-best climate policies. 

Decentralization of the command optimum is only feasible if all other externalities and 

market failures are appropriate dealt with. If not, it is necessary to consider second-best 

climate policies (e.g. Bovenberg and van der Ploeg, 1994; Bovenberg and Goulder, 2002; 

Kalkuhl et al., 2013; van der Ploeg, 2016; Rezai and van der Ploeg, 2017; Barrage, 2019).  

 
5 The labour allocation across production of final goods, coal and renewable energy requires that the 

marginal products of labour net of the carbon tax must all equal the market wage.  
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4. Different Discount Rates for the Private and Public Sector 

There has been a debate on what the appropriate choice of discount rate for designing 

climate change policies is. On the one hand, Nordhaus (2008) adopts a utility discount 

rate of 1.5% per annum ( = 0.985). With trend growth of 2% per annum and an elasticity 

of intertemporal substitution (EIS) of 1/1.45, this gives a consumption discount rate of 

4.4% per annum. This approach calibrates the consumption discount rate to match market 

returns on assets. Stern (2007) takes the stance that it is unethical to discount the welfare 

of future generations and therefore chooses EIS = 1 and very small utility discount rate 

of 0.1% per annum (corresponding to the risk of a meteorite ending the earth as we know 

it). This reflects ethical preferences, which lead to a much higher SCC. Rather than trying 

to reconcile the “descriptive” and the “normative” approaches, it seems more realistic to 

use a high discount rate for the private sector and a low one for the government. Lower 

public discount rates are equivalent to greater Pareto weights on future generations (Farhi 

and Werning, 2007; Belfiori, 2018). 

Under differential discounting, the first-best solution for the optimal carbon prices 

requires a capital income subsidy alongside as an additional instrument (von Below, 

2012; Belfiori, 2017; Barrage, 2018).6 The reason is that lower social discount rates lead 

to socially insufficient saving by private agents with relatively high private discount rates, 

even in the absence of climate change, and can warrant action to overcome the excessive 

consumption bias as an additional policy goal. We thus assume that the government is 

more patient than the private sector who has discount factor 0,P   hence we assume 

.P   In Proposition 4 we extend the findings of von Below (2012) and Belfiori (2018) 

and state the optimal capital income subsidy, denoted by , and carbon tax for our model.  

Proposition 4: The social optimum is replicated in the decentralized market economy 

with a government that is more patient than private agents, ,P   if the capital subsidy 

is ( ) / 0FB P P   = −   and the carbon tax ( )FB
t tY  =  is given by equation (9), where 

the superscript FB denotes first-best policies. The first-best optimal capital income 

 
6 Von Below (2012) and Belfiori (2017, 2018) allow for scarce fossil fuel reserves and Hotelling price 

dynamics, while Barrage (2018) does not. 
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subsidy depends on the gap between the public and private discount factors. The first-

best optimal social cost of carbon increases in the public patience. 

Proof: see Appendix B. 

The interpretation of Proposition 4 is as follows. A constant capital income subsidy curbs 

the interest rate to its socially optimal level. The optimal capital income subsidy is 

independent of the carbon tax, and of the capital income tax when measured in utility 

units. Since households own all assets in the economy, i.e. capital and fossil fuel reserves, 

this amounts to an identical subsidy on capital and fossil fuel reserves.7 

Proposition 5: If the capital subsidy cannot be positive, 0, =   the second-best 

optimal carbon tax is SB SB FB
t t tY  =   with ( ) ( , ) ( ) ( ),SB SB Pc c          where 

revenue of the taxes on carbon and capital income is rebated as lump-sum transfers. This 

policy is time consistent.  

Proof: see Appendix B.  

The constrained-optimal or second-best carbon tax is relevant when the capital subsidy is 

fixed at a too low level. It decreases as the capital subsidy is raised to the socially optimal 

level. Society wants to compensate future generations, who are relatively worse off due 

to the suboptimal capital subsidy, by improving the climate and lowering damages from 

global warming. If the capital subsidy is set too high, the planner would set the carbon 

tax below the Pigouvian rate to take some of the pressure off current generations. Hence, 

we can determine second-best policies if governments are constrained in the choice of 

their instruments.  

Our rule for the second-best optimal carbon tax is unaffected by re-optimization and is 

therefore time consistent. If each period capital fully depreciates as in the GHKT model 

( 1 = = ), the equilibrium consumption share simplifies to ( , ) 1 (1 )SB P Pc     = − +  

and the second-best consumption share as fraction of the first-best consumption share is 

( , ) ( ) 1 (1 ) / (1 ) 1.SB P Pc c       = − + −    We thus see that, if the subsidy for 

capital and fossil fuel reserves cannot be given, the second-best carbon tax has to be set 

 
7 The first-best policy in von Below (2012) and Belfiori (2017, 2018) includes separate subsidies for capital 

and fossil fuel assets. In assuming that households own both assets, we simplify the policy mix. 
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higher than the first-best carbon tax to compensate. This holds also for the case of partial 

depreciation. If the government were to re-optimize, it does not have an incentive to 

deviate from its second-best optimal carbon tax path. The second-best policy is thus time 

consistent. This is quite a special result, which is due to the assumptions of the GHKT 

model muting all strategic intertemporal considerations. 

There are various other ways of implementing policies with different discount rates for 

the government and private sector. One is to subsidize the fossil fuel owners and the final 

goods producers instead of subsidizing the households. Another one is if to have a carbon 

tax that rises faster than the rate of growth of GDP as this would also force the economy 

to deplete less quickly (von Below, 2012; Belfiori, 2018). 

 

5. Two Simplifications of the GHKT Model: Global Warming and Damages 

Here we give two science-based simplifications of the GHKT model. First, we use recent 

atmospheric science insights that suggest that temperature is driven by cumulative 

emissions (Allen et al., 2009; Matthews et al., 2009). This has been already applied in 

various economic applications (e.g. Anderson et al., 2019; van der Ploeg, 2018; Dietz and 

Venmans, 2018) and captures the climate dynamics better than most economic models, 

especially at grids that are finer than a decadal time grid (Dietz et al., 2021). Hence, we 

replace the two difference equations for the temporary and permanent component of 

temperature (4) by an equation linking temperature to cumulative emission and one 

difference equation for the stock of cumulative emissions: 

(4) 0 1 1, ,t t t t tT T E E E F += + = +  

where tE denotes the stock of cumulative emissions, not the stock of atmospheric carbon, 

0T  denotes initial temperature, and 1  the transient climate response to cumulative 

emissions (TCRE). We set the former to 1.3C and the TCRE to 2C/TtC. 

Second, we calibrate our damages to Burke et al. (2015) instead of taking them from the 

GHKT model. The GHKT model models the ratio of damages to output as a negative 

exponential function of the atmospheric carbon stock. Note that the GHKT model like the 

DICE-2013 and the most recent DICE-2016 models have very small damages compared 

to those found econometrically in Burke et al. (2015), which are almost linear in 
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temperature. We replace equation (5) by 1 2ln( ) ln( ) (1 ) ln( ) .t t t tA A A T  −= + − −  and 

substitute for temperature from (4) to obtain 

(5) 1 2 0ln( ) ln( ) (1 ) ln( ) ,t t t tA A A E T   −= + − − −  

where 1 2 0.     Both extensions simplify the GHKT model and make it more 

realistic and up to date with the most recent atmospheric insights and empirical evidence 

on global warming damages.  

Proposition 6: With temperature given by (4) and total factor productivity by (5), the 

expression for the optimal carbon price is  

(9) 
1

( ) with ( ) 1 0.
1 1 (1 ) 1

t tY
 

     
   

  
=  − +   

− − − −  
 

Proof: analogous to proof of Proposition 3. See also Appendix C. 

The optimal SCC thus still grows in line with the level of aggregate output. Without utility 

damages from global warming and no mean reversion in total factor productivity (i.e. 

 = 0 and  = 0), this simplifies to / (1 ).t tY  = −   

 

6. Implications of a cap on temperature or cumulative emissions 

Using the finding that temperature is driven by cumulative emissions and given that 

climate policy is often articulated in terms of temperature targets, we now suppose that 

there is a cap on cumulative emissions, ,E  so that ( ) , 0,E t E t    in addition to the 

marginal damages of climate change on production and utility. Such caps can be 

formulated on a global level or may result from the nationally determined contributions 

to emissions reductions as allocated in the Paris Accord. Alternatively, it corresponds to 

a temperature cap which from (4) implies a cap on cumulative emissions. E.g. a cap of 2 

degrees Celsius implies a global cap on cumulative emissions of  0 1(2 ) / .E T = −  With 

T0 = 1.3C and 1 = 2C/TtC, the carbon budget would be E  = 350 GtC. Proposition 5 

states how the carbon price needs to be modified to ensure that the temperature cap or cap 

on cumulative emissions is satisfied. An extra term is needed emissions are too high if 



16 

 

 

the carbon tax if set according to equation (8). In that case, the cap of cumulative 

emissions bites and the carbon tax must be adjusted upwards. 

Proposition 7: With temperature given by (4) and total factor productivity by (5), the 

expression for the optimal carbon price under a cap on cumulative emissions is given by 

(10)  
( 1)( ) ( ) , 0,t

t t tY Y t    − −= +     

where ( )  is defined in (9) and 1 .
1 (1 )




 

 
 = − 

− − 
 The constant  is zero if the 

optimal trajectory does not fully exhaust the carbon budget, lim .t
t

E E
→

  And  > 0 if the 

optimal trajectory fully exhausts the carbon budget, lim .t
t

E E
→

=  The constant then has 

to be chosen so that the carbon budget is exactly exhausted.  

Proof: see Appendix C. 

Equation (10) shows that the optimal carbon price consists of two terms. The first term is 

the usual term corresponding to the optimum without a (biting) temperature cap as in 

equation (9) of Proposition 4. This term rises at a rate equal to the rate of growth of 

aggregate output. The second term is only present if the cumulative emissions constraint 

or the temperature cap bites. It corresponds to a Hotelling path along which this term rises 

at a rate equal to the rate of interest (i.e. the rate of time impatience plus the per-capita 

growth rate of the economy according to the Keynes-Ramsey rule with a unit elasticity 

of intertemporal substitution or 1t tj r= +  as in Proposition 2), since the stock of carbon 

that can be emitted is now finite. If there are no damages of global warming to utility or 

total factor productivity, then equation (10) for the optimal carbon price reduces to the 

Hotelling rule 
( 1)( ) , 0,t

t tY t  − −=     and its growth rate to the rate of interest, 

1 1/ .t t tj + +=   If the temperature cap bites, then tightening the temperature or cumulative 

emissions cap requires the Hotelling path for the second term to be lifted (i.e.  increases 

as E  is cut). 

The first two conditions of (7) give efficient use for coal and gas, 

1

1

1

2 2 2 2 2 2

/ ,
/

t t t t t t

t t t t t t t

Y Y F h

F A L A L w A



 

 

 

−

−

  +
= =

  +
 so that carbon emissions from coal relative to those 
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of fossil fuel are  2 2 2 2

1 2

.
/

t t t t t t

t t t t

A L A h

F w A



 

 

 +
=  

+ 
 The price of the oil-gas aggregate is 

currently less than that of coal, so that a higher carbon tax curbs at least initially emissions 

from coal relative to that of oil and gas. As time increases, the scarcity rent on oil and gas 

increases exponentially and thus eventually a carbon tax boosts emissions from coal 

relative to that of oil and gas. 

As time goes to infinity, the carbon tax and wage rise in line with aggregate output which 

is at a smaller rate than the growth rate of the scarcity rent on oil and gas which equals 

the interest rate. It follows that as time goes to infinity and with asymptotic depletion of 

oil and gas, the ratio of emissions of coal to that of fossil fuel goes to infinity. However, 

as time goes to infinity, coal use and oil/gas use tend to zero, for else the cap on 

cumulative emissions will be violated, while renewable energy grows to a positive 

asymptote and grows forever if the economy grows. It is not immediately clear yet how 

the cap on cumulative emissions, 2 2

1

lim ( ) 0,
t

t t
t

t

F A L E
→

=

 
+ =  

 
  is met by depleting 

oil/gas so that 00 as  with ,tS S t S S E→  → −   or by curbing the amount of coal 

use, cumulative emissions approach E only asymptotically (but see section 8.5). 

 

7. Matching the GHKT Model: Logarithmic Depreciation on an Annual Time Scale 

Our model is an extension of the original version presented in GHKT. We mean by this 

that if capital depreciates fully, population and TFP growth are absent, damages only 

impact production rather than utility or productivity growth, private and public discount 

rates are the same, and time is on a decadal scale, our extension reproduces the findings 

of GHKT exactly. However, since our analytical solution allows for logarithmic 

depreciation, we can abandon the restrictive assumption of a decadal time scale. In this 

section, we show that our model reproduces the numerical findings of GHKT even on an 

annual scale with partial logarithmic depreciation. We then illustrate how the equilibrium 

trajectories under business-as-usual and optimal policy change if we allow for the various 

extensions of our model and estimates for depreciation in Anderson and Brock (2021). In 
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our baseline numerical simulations, we adopt the following parameter values from the 

calibration of GHKT given in Table 1. 

This implies a capital share of 30% and an energy share of 4% of value added and a rate 

of time impatience of 1.5% per annum. The carbon cycle is calibrated to the following 

points: 20% of carbon emissions stay up forever in the atmosphere, of the remainder 60% 

is absorbed by oceans and the surface of the earth within a year and the rest has a mean 

life of 300 years. Half of a carbon emissions impulse is removed from the atmosphere 

after thirty years. Production damages from global warming are 2.35% of global GDP for 

each trillion ton of excess carbon in the atmosphere. Initial output is calibrated to match 

$700 trillion per decade.8 Using these parameters and a decadal time scale, setting 

population and TFP constant, depreciation of capital to 100% (ι = κ = 1), and with only 

production damages (γ = 1, ψ = δ = 0), the optimal carbon price directly follows from 

expression (9) and equals $56.5 per ton of carbon (tC) or $15.4 per ton of CO2 in 2010. 

Table 1: Benchmark - GHKT calibration of the model 

Decadal GHKT model 

Final goods production function 

 

Energy production function 

Process of logarithmic depreciation 

Population growth and technical progress  

Gross growth labour productivity 

Dynamics of atmospheric carbon 

 

Global warming damages and TFP 

Time impatience and utility damages 

Gross population growth 

 

Share of capital = α = 0.3, share of energy = υ = 0.04,  

Initial world GDP per decade = Y0 = 700 T$ 

κ1 = 0.5008, κ2 = 0.08916, κ3 = 0.41004, ρ = −0.058  

ι = κ = 1 

Nt = 1, A2,0 = 7683, A3,0 = 1311, A2,t+1/A2,t = A3,t+1/A3,t = 1.0210 

 = 1 

φL = 0.2, φ0 = 0.393,  = 0.0228, S0 = 253.8 GtC,  

0

pE = 684 GtC, 0

tE = 118 GtC, 

 χ = 2.379 10-5, δ = 0 

 β = 0.98510, ψ = 0 

γ = 1 

Annual model with log depreciation  

Recalibration to annual time scale and 

matching of above decadal model 

Y0 = 70 T$, ι = 1.26, κ = 0.1 

Nt = 1, A2,0 = 768.3, A3,0 = 131.1, A2,t+1/A2,t = A3,t+1/A3,t = 1.02 

 = 1, φL = 0.2, φ0 = 0.401,  = 0.0023078, S0 = 253.8 GtC 

χ = 2.379 10-5, δ = 0, β = 0.985, ψ = 0, γ = 1 

 

Population is constant and normalized to unity, Nt = 1. GHKT set the elasticity of 

substitution between energy types to 0.945 < 1 (i.e. ρ = −0.058). This implies that all 

 
8 In gauging the effect of parameter changes on the initial carbon price, we follow GHKT in assuming that 

Y0 is given. This is, however, only a first-order approximation as Y0 will be affected by climate policy. Since 

energy is only a small share in value added, this is not a bad approximation. 
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energy factors are essential to production and can never be phased out completely. 

Climate policy, therefore, solely aims at depressing fossil energy use rather than a 

transition to a carbon-free economy where emissions are zero. Relative prices and demand 

of different energy types (in GtC) and extraction costs of coal are used to calibrate the 

energy share parameter κ1 = 0.5008, κ2 = 0.08916 and κ3 = 0.41004, and the initial labour-

efficiency parameters for coal, A2,0 = 7683 and renewables, A3,0 = 1311. The efficiency of 

labour in coal and renewables is assumed to grow at 2% per annum (i.e. A2,t+1/A2,t = 

A3,t+1/A3,t = 1.0210). The finite stock of oil is set to 300 Gt of oil which converts to 

253 GtC. It is assumed that there is no productivity increase in the aggregate goods sector, 

 = 1. Together with the initial conditions for the atmospheric stocks of carbon, 

0 684,pE = 0

tE = 118, the equilibrium trajectories of energy use and climate change can be 

computed.9 Using energy inputs, total factor productivity is calibrated to reproduce initial 

output Y0 with K0 = $128,922 billion from Barrage (2014). This gives A0 = 18,298.  

The equations of Propositions 1-3 can readily be solved numerically using standard 

routines.10 Figure 1 reproduces the findings of GHKT for the optimal policy (orange) and 

business-as-usual (blue) cases. The decadal time scale is visible by the stepwise 

increments. We compare these with annual version of our model (smooth solid lines). 

Adjustment of all time-dependent parameters to the annual scale is reported in Table 1 

(see also Appendix D). We change depreciation from 100% in each decade to annual 

partial (logarithmic) depreciation with ι = 1.26 and κ = 0.1 to match the output and capital 

dynamics of the decadal GHKT model with 100% depreciation. 

We base our calibration of income-per-capita damages on the detailed empirical estimates 

in Burke et al. (2015). The blue line in figure 5(d) of this study is the “differentiated 

response, lung-run effect”, i.e. a middle-range estimate, and suggests that for every 

increase in temperature by 1 C, the global warming damage in terms of lost GDP per 

capita increases by 12.5% of global economic activity.11 This is much higher than the 

damages in the DICE models (e.g. 2.35% of global GDP for each trillion ton of excess 

 
9 Note that in the supplementary material to GHKT Barrage (2014) reports initial values of 699GtC for 

permanent and 103 GtC for transitory atmospheric carbon and κ1 = 0.5429 and κ2 = 0.1015. 
10 The source code containing our solution routines is available upon request. 
11 The empirical results of Burke et al. (2015) also suggest that the change in GDP per capita is smallest at 

an annual temperature of about 13 degrees Celsius; it drops off rapidly if temperature is either lower or 

higher than that (see their figure 2). 
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carbon in the atmosphere; see section 6). We thus calibrate 2 (1 0.125) 0.1333ln = − − =  

and 4

1 2 0.002 0.133 2.66 10 .   −= =  =   

The top two panels of Figure 1 show the effects of pricing carbon on global equilibrium 

temperature and coal use. As described in detail in GHKT, pricing carbon effectively 

avoids the worst effects of climate change, virtually exclusively through a reduction in 

coal use as this is the most carbon-intensive fossil fuel. Temperature increases beyond 

2°C at the end of this century and 3°C at the end of next century even under carbon 

pricing. Since oil can be used without cost, its stock of reserves will always be fully 

depleted (asymptotically) in this model. Policy intervention hardly affects the time 

profiles of oil use and renewable energy output, but coal use falls significantly albeit it 

takes a century or so for this to occur. 

Capital stock and output (net of damages) are reported in the bottom panels of Figure 1. 

Both increase rapidly within the first decades but due to the absence of any growth 

engines, both converge to their steady state level around 2050. This steady-state level is 

falling over time due to the continued emissions of carbon and increases in damages. 

Given that carbon-based energy inputs are essential in production, this is an unavoidable 

feature of the GHKT model. Our calibrated annual version of the model can match the 

dynamics of the decadal version very well. The initial carbon price in 2010 is slightly 

lower at $52.5/tC but taking account of output growth over the whole decade, the carbon 

price averages at $56.3/tC which matches the decadal number of $56.5/tC closely. 

Thus far, our annualized model was calibrated to reproduce the dynamics of the baseline 

of GHKT which features a decadal time scale and full depreciation. Anderson and 

Brock (2021) compare empirically the cases of geometric and logarithmic depreciation 

and present econometric estimates from a world panel with ι = 1.17 and κ = 0.05. 

Adopting these two parameters affects the consumption and investment decisions, as 

lower depreciation (relative to the complete case) increases the return to capital. The 

trajectories of capital and output change, while all other variables, most notably those of 

the energy sector, are unaffected. 
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Figure 1: Comparing business-as-usual and optimal outcomes in the decadal 

GHKT model and our annual model 

(a) Temperature (b) Oil use 

  
(c) Coal use (d) Renewable use 

  

(e) Output (f) Capital stock 

  
Key: Optimal policy (orange) and business-as-usual (blue) simulations in the decadal GHKT 

model with full depreciation (step-bars) every decade and in our annual model with partial 

logarithmic depreciation (smooth lines), where the latter model is matched to the GHKT model. 

Figure 2 shows that reducing κ from 0.1 to 0.05 increases the consumption share given in 

equation (6) in addition to lowering depreciation. With the latter effect dominating, this 

leads to a substantially higher accumulation of capital and a prolonged period of output 

growth. With no exogenous growth drivers, output growth starts at 1.6% per annum and 
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falls below 1% by 2025. In the optimal policy scenario, positive economic growth is 

maintained until the mid of next century while growth turns negative by 2115 in the 

business-as-usual scenario. Capital accumulation is the only growth engine in the GHKT 

model (together with exogenous progress in the coal and renewable sectors which affects 

output growth by less than a twentieth of a percentage point at most). 

Figure 2: Logarithmic depreciation (using Anderson and Brock (2021) estimates) 

(a) Output (b) Capital stock 

  

Key: Calibrated annual model (lines) versus decadal GHKT (bars) with optimal policy 

(orange) and business-as-usual (blue) simulations. None of the other variables are 

affected by this process of logarithmic depreciation (see Corollary 1). Bars are same as in 

Figure 1. Lines correspond to the outcomes with the Anderson and Brock (2021) 

estimates of logarithmic depreciation. 

8. Pricing Carbon in our Extended GHKT Model  

We use our annualized version of GHKT model as a baseline to compare how extensions 

regarding long-run growth in population and productivity and damages to productivity 

and utility change the model’s predictions. Table 2 presents key environmental variables 

for these scenarios. The reported social cost of carbon are updated to 2019’s GDP level 

of $85 trillion in constant 2010 US$ (World Bank, 2020). This increases the baseline 

carbon tax from $56 to $64 and increases to grow at the rate of (real) GDP. The sensitivity 

of the optimal carbon tax to differences in public and private discounting, to different 

climate and damage formulations, and caps of temperature is presented in Table 3. 

8.1. Population growth and technological progress 

The introduction of population growth lowers the population-adjusted discount rate and 

increases the saving rate and the social cost of carbon as the current generations are more 
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willing to provide for a larger population in the future and to make sacrifices to curb 

future global warming. With annual population growth of 1% (γ = 1.01), the optimal 

carbon price more than doubles to $164/tC in 2019 in Table 2 and temperature at the end 

of the century falls by half a degree to 1.9°C. Peak warming falls from 3.7 to 2.7°C. In 

contrast, TFP growth of 1% per annum does not affect the initial carbon price. However, 

over time the economy grows at a faster pace and thus the optimal price of carbon grows 

at a faster pace too. As a result, energy output increases slightly and temperature by 0.1°C. 

Bohn and Stuart (2015) consider endogenous population size, calculate the externality 

from an extra birth on climate change and find it to be large. This requires policy to be 

less pronatalist and may require a sizeable Pigouvian tax on having children. We abstract 

from these issues here. 

Table 2: Sensitivity of optimal policy simulations 

 

 

SCC 

in 2019 

($2010/tC) 

Temperature  

in 2100 (°C) 

Temperature 

max (°C) 

Baseline annualized GHKT model $64 2.4 3.7 

(1) Population grows 1% p.a. (γ = 1.01) $164 1.9 2.7 

(2) TFP growth of 1% p.a. $64 2.5 3.8 

(3) Damages to utility  $63 2.4 3.8 

(4) Damage effects on TFP growth $100 2.2 3.1 

(1) & (4): population growth and TFP 

growth damages 
$259 1.8 

2.4 

(2) & (4): TFP growth and TFP growth 

damages 
$100 2.2 

3.2 

(3) & (1): Utility damages and population 

growth 
$162 1.9 

2.8 

(3) & (2): Utility damages and TFP growth $63 2.4 3.8 

(3) & (4): Utility damages and TFP growth 

damages 
$90 2.2 

3.2 

(1), (2), (3), and (4) $232 1.8 2.5 

 

8.2. Utility damages and damages to productivity growth 

To allow for utility damages we follow the calibration of Barrage (2018) and assign 74% 

of damages at 2.5°C to production and 26% of damages to utility (χ = 1.806  10-5 and 
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  = 7.376  10-6 but δ = 0).12 The optimal carbon price falls only slightly to $63/tC, 

which causes peak temperature to edge up by 0.1°C in Table 2.  

In the GHKT formulation damages only affect the current level of TFP but not its growth 

rate. Dell et al. (2012) find that a temperature increase of 1°C lowers per capita income 

growth of an economy on a balanced growth path by 1.171%-points in poor and 0.152%-

points in rich countries (although the latter result is not statistically significant) which 

requires setting δ = 0.367 in our model. The resulting optimal carbon price increases 

significantly from $64 to $100/tC. Pricing emissions at this level is still insufficient to be 

consistent with the ambitions of the Paris Agreement to keep the temperature increase by 

the end of the century well below 2°C, because temperature increases at the end of the 

century to 2.2°C and peak temperature is 3.1°C.  

Table 2 also reports combinations of the effects discussed so far. Most notably the effects 

of population growth (1) and damages to productivity growth (4) compound to an initial 

carbon price of $259/tC and temperature of 1.8°C in 2100 and a peak temperature of 

2.4°C. Adding the effects of TFP growth (2) to the effects of damages to productivity 

growth (4) does not change the optimal carbon price: it stays at $100/tC. 

Allowing for damages to utility (3) does not alter scenarios (1) or (2) much, except when 

combined with damages affecting economic growth (4). Here it lessens the lasting effect 

of productivity damages as these only affect the damage component affecting production. 

When utility damages (3) are added to damages to the growth rate (4), the optimal SCC 

falls from $100/tC to $90/tC. Finally, adding effects (1), (2), (3) and (4) leads to an 

optimal SCC of $232/tC and a temperature increase of 1.8°C at the end of the century.  

8.3. Different discount rates for the private and public sector 

If the public sector applies a lower discount rate, the policymakers can reproduce the 

social optimum if they price carbon and simultaneously subsidize saving. If the 

government discounts the future at 0.1% per year while the private sector maintains the 

baseline rate of 1.5% per year, the SCC increases to $601/tC in Table 3 and, following 

proposition 2, the required capital income subsidy is 1.4%. If the government cannot 

subsidize capital income, the second-best policy defined in proposition 3 is to increase 

 
12 The scientific uncertainty about damage forms and functional forms is large, partly due to the weak signal 

at low historical temperature variations. More empirical work is needed on these issues. 
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the carbon tax by 9% to $650/tC to compensate the future for the inefficiently low savings 

rate. Note that the missing capital subsidy also makes saving in the form of fossil fuel less 

attractive. Oil use is brought forward. Temperature at the end of the century increases by 

0.2°C as a result, while peak temperature remains unchanged. If the government uses a 

discount rate of 1%, the optimal carbon tax is $93/tC, the capital subsidy 0.5%, and the 

second-best carbon tax $96/tC. 

8.4. Temperature driven by cumulative emissions and damages of Burke et al. (2015) 

We can simplify the climate model of GHKT by assuming that cumulative emissions 

drive temperature, as in section 5. This is equivalent to assuming that 1.L =  If carbon 

remains in the atmosphere permanently, the social cost of emitting increases to $135/tC 

in Table 3 (see also the discussion of equation (9)). Temperature based on this model 

increases significantly compared to 2.9°C at the end of the century and 4.6°C at the end 

of the simulation period or, if temperature is derived from the cumulative emissions 

approach, by 2.0°C and 3.1°C. Adopting the estimates of Burke et al. (2015) increases 

the damage parameter to 
42.66 10 −=   and the SCC tenfold to $1,507/tC. Temperature 

in increases by 2.0°C by 2100 and at most 2.8°C using the radiative-forcing-based 

temperature formula in footnote 2 or 1.6°C in 2100 and at most 2.0°C if formula (4’) 

based on cumulative emissions is used. This huge difference with the optimal carbon price 

under GHKT or Nordhaus damages suggests that much more econometric work is needed 

on the effects of climate change on economic damages. 

Table 3: Sensitivity of optimal policy simulations 

 

 

SCC 

in 2019 

($2010/tC) 

Temperature  

in 2100 (°C) 

Temperature 

max (°C) 

Baseline annualized GHKT model $64 2.4 3.7 

(1) social discounting 0.1%: first-best $601 1.6 2.0 

(2) public 0.1% private 1.5%: no subsidy $650 1.8 2.0 

(3) social discounting 1%: first-best $93 2.2 3.3 

(4) public 1% private 1.5%: no subsidy $95 2.2 3.2 

(5) Cumulative emissions  $135 2.9 (2.0) 4.6 (3.1) 

(5) & Damages from Burke et al. (2015)  $1,507 2.0 (1.6) 2.8 (2.0) 

(6) Cap on temperature, 2°C $281 1.8 1.9 

(7) Cap on temperature, 1.5°C $1,152 1.5 1.5 
Note: Temperature follows from radiative forcing (see in fn. 2); values in (.) follow from equation (4). 
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8.5. Cap on temperature or on cumulative emissions and stranded oil and gas reserves 

The finding that temperature is driven by cumulative emissions has given rise to 

temperature targets being expressed in carbon budgets. Using budgets presented in Table 

2.2 of the IPCC’s Fifth Assessment Report, we can add temperature targets as discussed 

in section 6 and quantify the 1.5°C and 2°C as a cap on cumulative emissions of 150 GtC 

and 355 GtC, respectively. This is consistent with our calibration on cumulative emissions 

for the 2°C target. These constraints on cumulative emissions are based on the baseline 

GHKT rather than the model of cumulative emissions to make the figures reported below 

consistent with those displayed in Figures 1 and 2.  

The introduction of emission caps increases the optimal carbon tax to $281 and $1,152 

for the more stringent target but also augments the carbon tax in that a fraction grows at 

the interest rate, and therefore each year 1.5% (using ( )
1

1.015
−
= ) faster than GDP. 

This permits a low temperature peak around 2100 after which temperature falls. Panel (a) 

in Figure 3 plots the time profiles of the carbon taxes for temperature caps and compares 

them to the baseline case of no cap. Since in the baseline calibration, all exogenous growth 

engines are turned off, the optimal carbon tax is fairly flat in the case of no cap. Following 

equation (9), however, the carbon taxes increase exponentially if the cap is binding (note 

the log-scale in the plot). Under the budgets used, 50% of the models used by the IPCC 

remain within the respective temperature target. The IPCC also reports carbon budgets 

for the 33% and 66% mark, which are captured by the shaded areas in Figure 3. 

Coal use is most affected by carbon taxation. As shown in Figure 1, the use of renewable 

sources and oil and gas only decrease by 0.3% and 6%, while coal use nearly halves from 

4 GtC to 2 GtC per annum initially. Given that oil and gas are available without cost (save 

the intertemporal scarcity rent), all reserves are generally used up eventually, slashing 

coal use is the primary function of the carbon tax. Similar results hold for carbon taxation 

under a 2°C cap. The lower panel in Figure 3(a) shows that renewable use and oil and gas 

extraction barely change, while initial coal use drops to 1 GtC. The more forceful pricing 

of carbon under the 1.5°C target has a similar effect, again reducing coal to 10% of its 

business-as-usual level and less than half its use under the 2°C target. While renewable 

use falls only marginally, pricing emissions at $1,152 per tC also hits oil and gas, cutting 

emissions from its use in half.  
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Figure 3: Caps on cumulative emissions and temperature 

(a) Time paths for 1.5° and 2°C targets (b) Initial values in 2010 across cumulative emissions 

  

  
 

The qualitative difference in oil and gas use between the 1.5°C and 2°C caps is illustrated 

in Figure 2.b, which plots initial carbon taxes and scarcity rents and long-run stranded oil 

and gas assets as a function of the carbon budget. In the baseline case of no cap, where 

carbon is only taxed to avoid marginal damages, cumulative emissions amount to roughly 

2,000 GtC. As the budget becomes more smaller, climate policy must become more 

stringent and the carbon tax gradually deviates from the baseline tax of $56/tC (gray 

dashed). As the budget approaches the level of 300 GtC the initial carbon tax rises rapidly 

to above $400/tC, after which it continues to increase at a lower rate. The behaviour of 

the carbon tax is mirrored by the scarcity rent on oil and gas reserves. Since a lower 

carbon budget implies less carbon-intensive use, the Hotelling rent declines as the carbon 

budget increases. Below 500 GtC of cumulative emissions, the decline accelerates before 

reaching zero at 300 GtC. This is the budget of cumulative emissions, which directly 
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equates supply and use of oil and gas reserves. Lower levels of cumulative emissions 

keep total use below supply and some oil and gas assets will be abandoned underground 

(see green slope in Figure 2(b)). The (natural resource) wealth effects of temperature caps 

can be measured in terms of write-off due to depressed prices or in the amount of 

unburnable fossil fuel. At the introduction of a 2°C cap the value of oil and gas reserves 

drops from $105bn to $62bn. This is $43bn reduction is 128 times the $334mn drop when 

carbon prices based on baseline damages are introduced. The cap for 1.5°C makes 

reserves worthless as half (or 128 GtC) will never be used and the scarcity rent is, 

therefore, zero.  

The lower panel of Figure 2(b) plots energy use across the carbon budget. Oil and gas use 

is flat as long as the scarcity rent is positive. From equation (7) this implies that the carbon 

tax is set to offset the decrease in the scarcity rent and only coal use is affected at carbon 

budgets above 300 GtC, which is consistent with the Herfindahl rule. At lower levels, 

coal and oil and gas use also drop linearly, although reduction in cumulative use are 

proportionally larger for oil and gas (due the greater slope) which contradicts the 

Herfindahl rule and stems from the fact that coal and oil and gas use are regulated by a 

uniform tax. Carbon taxation also lowers renewable energy use, since the GHKT 

calibration assumes that all energy types are cooperative factors of production. These 

reductions are small, reaching at most 10% at very high levels of carbon taxation. 

 

9. Discussion: merits, uses and limitations of the GHKT model 

9.1. Merits and versatility of the GHKT model 

The GHKT model has very bold assumptions but nevertheless has become a reliable 

workhorse for many applications in climate economics. This literature has shown a 

multitude of interesting applications of the GHKT model that permit a tractable and 

convenient analysis. Li et al. (2016), Anderson et al. (2017) and Gerlagh and Liski 

(2017a) have used the model to allow for climate model uncertainty, Engström and Gars 

(2016) for abrupt climate change and tipping points, Gerlagh and Liski (2017b) and 

Iverson and Karp (2020) for hyperbolic discounting, and Hassler and Krusell (2011) for 

multi-country analysis.  
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We have extended the model to set of relevant policy questions by allowing for population 

growth and labour-augmenting technical progress in the final goods and energy sectors 

and for an annual instead of a decadal time scale by having logarithmic depreciation, 

while still obtaining an exact tractable expression for the optimal SCC. This is also the 

case if global warning negatively impacts utility or the growth rate of total factor 

productivity, changes in global warming only affect total factor productivity gradually, 

and the government uses a lower discount rate than the private sector. Tractable 

expressions of the optimal SCC can only be obtained if a more realistic model of 

temperature depending on cumulative emissions is used and damages are a linear function 

of cumulative emissions. Finally, we have shown that these rules for the optimal SCC can 

be easily modified to allow for temperature caps. 

9.2. Extensions of the GHKT model with approximate rules for the optimal SCC 

There are some important modifications of the GHKT model that break the exact simple 

rule for the optimal SCC but nevertheless yield approximate expressions for the optimal 

SCC that lead to outcomes that are close to the  numerical optimum and yield negligible 

welfare losses (e.g. van den Bijgaart et al., 2016; Rezai and van der Ploeg, 2016).  

First, logarithmic utility implies a unit coefficient of relative risk aversion, a unit 

coefficient of intertemporal substitution and a unit coefficient of intergenerational 

inequality aversion which is too restrictive from an ethical and preferences point of view. 

If we have a power utility function with a constant non-unitary elasticity of intertemporal 

substitution (EIS), we replace the growth-corrected discount factor 1/ (1 )n  + −  in 

expressions (9) or (9) for the optimal carbon price by ( )11/ 1 ( 1)( )tn EIS g n −+ − + − −  

to allow for a non-unitary EIS in the Keynes-Ramsey rule (cf. equation (2) of Rezai and 

van der Ploeg (2016)), where  gt, n and  denote the long-run growth rate of the economy, 

the population growth rate, and the rate of time impatience , respectively. This leads to a 

good approximate rule for the optimal SCC. Provided EIS < 1, higher growth and higher 

intergenerational inequality aversion (i.e. lower EIS) increase the discount factor that 

must be applied to calculate the optimal SCC, since current generations are then less 

willing to make sacrifices to lower temperature for future generations. Consequently, the 

optimal SCC is lower than in the GHKT model with a unit EIS. 
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Second, if parameters or functional forms are changed that only affect the optimal carbon 

price via GDP, our optimal policy rules still give good outcomes that are not too far from 

the true optimum. This is so if, for example, the Cobb-Douglas production function for 

final goods is changed to a CES function or depreciation is not quite 100% per period. 

This is also so if the exhaustible energy type (oil) is replaced by an abundant energy type 

or if this energy type has strictly positive extraction costs.13 All these changes will affect 

GDP but will have only a (minor) effect on the rule for the optimal SCC.   

Third, if damages to total factor productivity are not proportional to aggregate output but 

additive, replacing current GDP ( tY ) by initial GDP ( 0Y ) and replacing 

1/ (1 )n  + −  in expressions (9) or (9) for the optimal carbon price by 

( )11/ 1 ( )tEIS g n −+ + −  to allow for a non-unitary EIS by gives a good approximation 

for the optimal SCC (cf. Result 1 in Rezai and van der Ploeg (2016)). The path of the 

optimal SCC is now flat rather than rising at the rate of economic growth and the initial 

level is lower than with multiplicative damages as the growth-corrected discount factor 

is bigger (Rezai et al., 2020). 

Fourth, perturbation methods yield tractable rules for good approximations to the optimal 

SCC in dynamic stochastic general equilibrium models with uncertain shocks to the 

economy, temperature response, and damages, allowing for correlated shocks and for the 

coefficient of relative risk aversion to differ from the inverse of the elasticity of 

intertemporal substitution (van den Bremer and van der Ploeg, 2021). The optimal SCC 

then depends on precautionary, insurance, and hedging motives. Note that with the 

logarithmic utility of the GHKT model all the effects of uncertainty about the rate of 

economic growth and all hedging effects cancel out, albeit uncertainty about the 

temperature response and damages does affect the optimal SCC. 

9.3. Limitations of the GHKT and the extended GHKT model 

The model runs, however, into limits and fails to generate tractable closed-form rules for 

the optimal SCC when reasonable features are considered. For example, the GHKT model 

does not allow the cost of fossil fuel extraction to increase as reserves are depleted. This 

would allow for partial exhaustion of reserves, so that policy can affect how fast to deplete 

 
13 One can get a correct tractable expression for the optimal SCC if oil uses only labour input and no capital. 
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fossil fuel reserves and how much of the reserves to abandon, introducing considerations 

of economic obsolescence to the discussion of stranded assets (Rezai and van der Ploeg, 

2015). Moreover, even under stringent climate policy, scarcity rents could remain positive 

as depleting reserves is costly. Furthermore, as Golosov et al. (2014) point out, their 

model can be extended for learning by doing in production of renewable energy. The 

carbon price must then be complemented with a renewable energy subsidy, which is set 

equal to the present discounted value of all present and future benefits of using one unit 

of renewable energy for short or the social benefit of learning for short (van der Zwaan et 

al., 2002; Popp, 2004; Rezai and van der Ploeg, 2017). This leads to a spike in renewable 

energy subsidies and a gradual ramp in carbon prices (cf. Acemoglu et al. (2012) who 

show this in a context with directed technical change).14 

Unfortunately, the GHKT model also cannot speak to relative price effects as the 

atmospheric carbon stock (or cumulative emissions) is separable from consumption of 

final goods in utility. It is infeasible to obtain tractable expressions for the optimal SCC 

if the utility of non-market environmental goods is non-separable from the utility of 

consumption of market goods. If that were the case and environmental goods grow more 

slowly than consumption goods, relative prices increase over time and damages becomes 

more costly over time (Hoel and Sterner, 2007; Sterner and Persson, 2008; Zhu et al., 

2019; Drupp and Hansel, 2021; Bastien-Olvera and Moore, 2021). This leads to higher 

mitigation rates and a declining term structure for the discount rate. 

Finally, a major limitation of the GHKT model is that it is effectively static, i.e. income 

and intertemporal substitution effects in the consumption-saving decisions cancel out. 

Hence, issues of time inconsistency only play a limited role and that the GHKT model is 

of limited interest for the analysis of second-best policy issues. Similarly, strategic 

interactions between countries are severed as the pre-commitment and subgame-perfect 

outcomes coincide (e.g. Hambel and Kraft, 2020). More realistic analysis of strategic 

issues thus requires a model which allows for more interesting dynamic interactions. 

 

 

 
14 These extensions are discussed for a model where energy types are perfect substitutes in van der Ploeg 

and Rezai (2016). 
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10. Conclusion 

We have shown that the GHKT model still offers a tractable rule for the optimal SCC and 

the price of carbon emissions when we relax the underlying restrictive assumptions. First, 

we use logarithmic depreciation (Anderson and Brock, 2021) to allow for a finer time 

resolution with an annual time scale. Second, we allow global warming to negatively 

affect utility and the rate of growth of total factor productivity (as estimated in Dell et al. 

(2012) and studied in Dietz and Stern (2015)), and also allow more generally for mean 

reversion in total factor productivity. Third, we follow Von Below (2012), Belfiori (2017, 

2018) and Barrage (2018, 2019) and allow policymakers to be more patient than the 

private sector. This requires the carbon tax to be complemented with a capital subsidy. 

We also consider the second-best optimal carbon tax in case a capital subsidy is infeasible 

and discuss its time consistency. We also show that the rule for the optimal SCC can 

easily be adapted to allow for positive long-run growth by introducing population growth 

and labour-augmenting technical progress.  

We have also adopted the GHKT model to make it more realistic by adopting recent 

atmospheric insights that temperature is a linear function of cumulative emissions. If 

damages are then a function of cumulative emissions instead of the stock of atmospheric 

carbon, we get a tractable modified rule for the optimal SCC. We calibrated this to both 

the detailed econometric damage estimates of Burke et al. (2015) and of the GHKT 

model. We then use this modified model to derive a tractable expression for the optimal 

carbon price under a temperature cap. If the cap bites, this requires adding a term to the 

unconstrained optimal carbon price that rises at a rate equal to the rate of interest. Such a 

policy leads to stranded oil and gas reserves. We illustrate all our results with numerical 

simulations which can be done with a simple programme (available upon request).  

If policymakers internalize global warming damages to total factor productivity, the 

optimal SCC will grow at the same rate as GDP. If damages are unrelated to aggregate 

output, the optimal SCC will be stationary. The initial SCC increases in the degree of 

patience of policymakers, the effect of global warming on utility, the effect of global 

warming on total factor productivity and the persistence of this effect, the sensitivity of 

temperature to emissions, and the rate of population growth. In case temperature is 

determined by the dynamics of atmospheric carbon as in the GHKT model, it decreases 
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in the degree to which atmospheric carbon decays. However, if policymakers implement 

a temperature cap, the optimal SCC will grow at a rate equal to the rate of interest which 

is typically higher. The initial carbon price then increases in the level at which 

temperature is capped, and the final cost of decarbonizing the economy and decreases in 

the rate of growth of the carbon price (i.e. the interest rate). 

Although we might have come to the limits of this popular and tractable general 

equilibrium model, we believe that the lasting contribution of the extended GHKT model 

is to offer analytical insights in key drivers of optimal carbon pricing that cannot be 

obtained through numerical optimal policy simulations, serve as a useful work horse for 

future applications, and be invaluable in teaching. We also think that these type of 

tractable rules for the optimal SCC might serve as good rules of thumb for the optimal 

trajectory of carbon pricing in more complicated, numerical large-scale integrated 

assessment models. Such rules have the added advantage that they are easier to 

communicate and to commit to by policymakers. 
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Appendix A: Proof of Propositions 1, 2 and 3  

The Lagrangian for this problem is 

 (A1)
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where t, t, and ϕt denote the shadow values of capital and fossil fuel reserves and the 

shadow value of the log of total factor productivity at time t, respectively, and the t

t   and 

p

t  denote the shadow disvalues of the transitory and permanent components of 

atmospheric carbon, respectively.  

The first-order conditions for tC  and tK  are 
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 In choosing consumption, the marginal 

benefit of using output for consumption today has to equal the benefit of transferring 

output into the future, the shadow price of capital. Under geometric depreciation this term 

is constant, but here depreciation depends on the level of investment and, therefore, 

consumption. Define ( )
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In case 1, =  we have .t
t

t

Y
j

K
=  The Euler equation (A2) and (2) form a difference 

equation in the consumption share which is saddle-point stable, since ( )( )1 1.  + −   

The stable manifold is given by ( )t tC c Y=  with ( ) 1
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, which gives 

equation (6) in Proposition 1. Using this and (6) after some algebraic manipulation, it 

follows that tj  boils down to 
1

1
.t

t

t

Y
j

Y −

=  This leads to equation (8) in Proposition 2. 

The first-order optimality condition for the log of total factor productivity gives 
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only non-explosive solution of this difference equation gives a constant: 
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The first-order optimality conditions for the transient and permanent components of the 

atmospheric carbon stock give 1 1 0t t
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Since 1,   this difference equation satisfies the saddle-point condition, so the only non-

explosive solution equation are the following positive constants: 
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Hence, using (6) and 
0 (1 )

,
p t

L t L t
t

tx

    


+ −
  we finally get equation (9) of Proposition 

3. The first-order optimality conditions for fossil fuel and renewables give rise to the 

Kuhn-Tucker conditions stated in (7) in Proposition 2, where (1 ) /t t tw Y L  − −  and 

/ .t t th x  The first-order optimality condition for reserves is 1 1t t t tN N  − − =  and 

recalling that / ,t t th x it follows (using equation (A2)) that scarcity rents must satisfy 

equation (8) in Proposition 2.  

 

Appendix B: Implementing the social optimum in decentralized market economy 

The discussion of the social optimum conceals the underlying market dynamics of our 

economy. In a competitive market economy households receive wage, capital, and 

resource income and government transfers, ,tT and choose consumption, investment, and 

natural resource use to maximize their utility,  
0

( ) ln( / ) ,P t

t t t t
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N C N E 


=

−  subject to 

their household budget constraint ( )( ) ( )1 11 1 ,t t t t t t t t t t tZ i Z w L p F C T + += + + + + − − +  and 

the depletion constraint 1t t tS S F+ = −  or 
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F S
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=

  where tZ  denotes household assets, 

tw  the wage rate, 
t  the carbon tax, 

1ti +  the interest rate on assets, and t  the capital 

income subsidy rate. Households take prices, tax and subsidy rates, and transfers as given. 

The Euler equation for the representative household (A2) becomes

1 1
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

 − −

= + +  Households provide natural resources according to 

,t t tp h− =  i.e. households need to be indifferent between selling the resource and 

keeping it under the ground with the Hoteling rent evolving according to the standard 

Hoteling rule corrected for the subsidy on capital income, 1(1 )(1 ) .t t t th i h −= + +  The 

capital gain on the resource wealth has to match the return a household can make on the 

capital market.  

Production occurs under perfect competition and firms choose production to maximize 

profits. In the final goods sector, firm hire labour and capital and use energy to maximize 

profits, 
1 1 2 2 2 3 3 3( ) ,t t t t t t t t t t t t tY w L i K p F p A L p A L+− − + − − − taking the wage rate wt, the 
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market interest rate it+1, the market prices for fossil and renewable energy pit for 

i = 1, 2, 3, and level of productivity as given. Asset market and final good market 

equilibrium require .t tZ K=  Capital accumulation follows from (2). The finite resource 

is provided by households. The firm using the abundant fossil fuel type maximizes its 

profits  2 2 2 2

0

( )t t t t t t t

t

p A L w L


=

 − −  with 1
10
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t ss
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+=

  + and renewable energy 

producers  3 3 3 3

0

,t t t t t t

t

p A L w L


=

 −  choosing energy output (i.e. labour employed in either 

sector) and taking the market prices of energy pit (with i = 2, 3), the  carbon tax τt, and the 

wage rate wt as given. Since Ricardian debt neutrality holds, there is no loss of generality 

in assuming that the government balances its books in each period, 

2 2( ) .t t t t tt t tF A LT r K + −=   

Given that all agents have perfect information and all markets are complete, the first 

fundamental theorem of welfare economics applies. The first-best optimum for the 

command economy can thus be sustained in a market economy. 

Proposition B.1: The social optimum is replicated in the decentralized market economy 

if 
P =  when 0,t =  and t tY =  following from (9). 

Proof: The optimality conditions of the agents and the equilibrium conditions in the 

decentralized economy reduce to the social optimality conditions if the capital income 

subsidy is set to zero, the carbon tax is set to the SCC and the government’s net revenue 

is distributed in lump-sum fashion.  

The government might want to choose to discount the future at a lower rate than private 

agents, so .P   The first best solution can only be implemented if a capital income 

subsidy, 0,t   is introduced. As in the social optimum, the saving/consumption rate is 

constant, if the capital income subsidy is constant (which is the case for the socially 

optimal outcome as we show below), and equals 
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(1 )

( , ) 1 .
1 (1 )(1 )

P
SB P

P
c

  
 

   

 +
= − 

− − + 
 



41 

 

 

The government maximizes aggregate utility  
0

ln( / )t

t t t t

t

N C N E 


=

−  subject to 

equations (2)-(5) and the decentralized equilibrium conditions above. With a capital 

income subsidy, the first-best optimum for the command economy can be sustained in a 

market economy. 

Proof of Proposition 4: The social optimum is replicated in the decentralized market 

economy even under differing discount rates if ( ) / 0FB P P   = −   and ( ) .FB
t tY  =  

Proof: The optimality conditions of the agents and the equilibrium conditions in the 

decentralized economy reduce to the social optimality conditions if the capital income 

subsidy is set to ( ) /P P  −  from equation (B1), the carbon tax is set to the SCC and 

the government’s net revenue is distributed in lump-sum fashion.  

Proof of Proposition 5: If the capital subsidy cannot be positive, 0, =   the second-

best optimal carbon tax is 
SB SB FB

t t tY  =   with ( ) ( , ) ( ) ( ),SB SB Pc c          

where revenue of the taxes on carbon and capital income is rebated as lump-sum 

transfers. This policy is time consistent.  

Proof: If capital income cannot be subsidies, e.g. due to political resistance, the second-

best policy is derived under fixed subsidy rate 0   by applying consumption share 

( , )SB Pc   when converting equilibrium variables from utils into final good units. We 

have ( , ) ( ),SB Pc c    since 0   and .P  As shown in equation (A4), the SCC in 

utils is independent of consumption and income. The change in the consumption rule due 

to differing discount rates matters only when converting the SCC into units of the 

consumption good, i.e. 
SB SB
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Appendix C: Proofs of Propositions 6 and 7 

The aim is to solve for the optimal SCC under a cap on cumulative emissions. Damages 

are based on Burke et al. (2015), total factor productivity follows (5), and temperature 

depends on cumulative emissions Et as in (4). The Lagrangian for this problem is 
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where t denotes the shadow disvalue of cumulative emissions and t the Kuhn-Tucker 

multiplier for the cap on cumulative emissions at time t. The first-order optimality 

conditions for ,t tC K  and ln( )tA  are the same as in Appendix A. They give the Euler 

equation (A2), consumption 1
1 (1 )

t tC Y


 

 
= − 

− − 
  as in (6), and equation (A3) for t. 

The optimality conditions for fossil fuel and renewables give rise to the Kuhn-Tucker 

conditions stated in (7). The optimality condition for reserves is again 1 1 ,t t t tN N  − − =  

so scarcity rents must satisfy equation (8). The first-order condition for Et is 

1 1 0.t t t t t t t t tN N N N N     + +− − − − =  Using (A3) this condition boils down to 
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The complementary slackness conditions are tE E  and 0.t   It is optimal to 

asymptotically deplete fossil fuel reserves from 0 0S   down to 0tS S→   as t →  

with 0S S E−   and the remainder of the carbon budget used up by coal. The cumulative 
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emissions constraint never bites, , 0,tE E t    but with 2 2
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 and write 
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easily be verified that the general solution to (C2) equals 

(C3) 
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where 0   is a constant that is to be determined and t =  is the saddle-point solution 

to (C2). Using (6) and 1 ,
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t t tY Y t    − −= +     

where 
1

( ) 1
1 1 (1 ) 1

 
  

   

  
 − +  

− − − −  
 and 1 .

1 (1 )




 

 
 = − 

− − 
 

The constant  is zero if the optimal trajectory does not fully exhaust the carbon budget, 

lim .t
t

E E
→

  This case also pertains if there is no temperature cap and thus corresponds 

to Proposition 6. However,  > 0 if the optimal trajectory fully exhausts the carbon 

budget, lim .t
t

E E
→

=  In that case, the constant  must be chosen so that the carbon 

budget is exactly exhausted. This completes the proof of Proposition 7. 

 

Appendix D: Details of Calibration 

Our model allows for damages to utility and productivity growth drawing on previous 

studies by Barrage (2017) and Dell et al. (2012). The adaptation to our model formulation 

is described below. 

Annual time scale: Adjustment of the time steps from a decadal to an annual scale 

requires changes in the time-sensitive parameters β, φ0, 1 , = −  and the levels and 

growth rates of A, A2 and A3. Converting β and the growth rates of A2, and A3 is easily 
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achieved by taking decadal value to the power 1/10. Productivity levels are adjusted by 

dividing by 10. (Adjusting A is equivalent to adjusting Y0). To recalibrate the parameters 

describing the carbon cycle, we use the two calibrations points used by GHKT, i.e. that 

the temporary component of atmospheric carbon has a mean lifetime of 300 years and 

that half of emissions is removed after 30 years, or 
301

2
(1 ) t= −  and 

3 11
02

(1 ) (1 ) t

L L    −= + − −  where 1t =  on a decadal and 10t = on an annual grid. With 

10,t = we have 0 0.401 = and 1 0.0023078. = − =   

Utility damages: We follow Barrage (2017) who carefully attributed the aggregate 

damage function of DICE (which was used for the calibration of damages in GHKT) to 

utility and production damages, finding that 26% of damages should be attributed to 

utility damages at 2.5°C. To (re-)calibrate our production and utility damage parameters 

χ and ψ we assume that damages affect the level of productivity only (i.e. δ = 0). With 

ϖ = 0.76, the share of GHKT damages attributable to production, we calibrate the new 

damage parameter for production damage   according to  

( ) ( )2.5 2.5( ) ( )
1 1

GHKT
C CE E E E

e e
  − − − −

− = − . 

Remaining damages ( )2.5(1 ) 1
GHKT

CE
e

 −
− −  are damages to utility. So we have for utility 

damages, converted into dollars (by dividing by the marginal utility of consumption and 

expressed as a fraction of Yt: 

( )2.5
2.5 0

2.5 0

( )
( ) 1 (1 ) 1

'( ) 1 (1 )

GHKT
C

C C E

C C

t

E E
E E e

u C Y


 

 
 


  −

 

−  
= − − = − − 

− − 
. 

Using the standard parameter values and the stock level for the pre-industrial and 2.5°C 

carbon stock (581 GtC and 1035 GtC, respectively), we solve both equations for 

χ = 1.806 10-5 and   = 7.376 10-6.  

Productivity damages: We calibrate the growth damage, the parameter , to the 

empirical findings of Dell et al. (2012) using their linear long-run relationship between 

income per capita growth and temperature changes (see equation A1.6 in their online 

appendix). If the economy is on a balanced growth path and temperature increases by 

1°C, they find that per capita income growth falls by 1.171 percentage points in poor and 
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0.152 pp. in rich countries (although the latter result is not statistically significant). To 

calibrate our parameter  we derive an analogue of this long-run relationship in our model. 

If we assume that damages are time-invariant and that initial state is without damages, we 

have  

( )
(1 ) (1 )

( ) ( )

1

t

E E E E

t tA e A A A e
 

   
− −

− − − − −

−= =  and ( )
1 (1 )

( )E EA A e



−

− −

 =  

Dell et al. (2012) use a linear relationship between income p.c. growth rate and 

temperature. To relate to this formulation, we need to convert a 1°C increase at current 

concentration (with implies an equilibrium temperature increase of 1.3°C) into an 

increase in concentration using the equilibrium relationship 3ln( / 581) / ln(2)eqT E= . A 

1°C increase corresponds to a concentration of atmospheric carbon of 1010 GtC. Figure 

D.1 plots the difference in percentage losses in aggregate productivity in the long run,

100(1 ),A− as a function of . 

Figure D.1: Losses in long-run productivity versus  

 

Dell et al. (2012) find that in rich country, allowing for up to 10 annual lags, an increase 

of 1°C leads to a long-run reduction in the annual income per capita growth rate of 0.152 

percentage points. This coefficient is statistically insignificant. For poor countries, an 

increase of 1°C leads to a statistically significant long-run reduction in the annual income 

per capita growth rate of 1.171 percentage points. We use this value under the assumption 

that most long-run growth in the future will result in today’s poor countries. To convert 

from p.c. income into a growth rate of TFP, we multiply by the labour share which equals 

1 – α – ν = 0.66. This gives a calibrated value of δ = 0.367.  
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Our framework assumes a mean-reverting process, implying that TFP growth is higher, 

the further TFP is from its trend (the case 0 <  < 1). This allows for catching-up processes 

and some forms of adaptation to climate change. The frameworks used in Dietz and Stern 

(2015) and Diaz and Moore (2015) trade the conventional assumption in the DICE model 

and in Golosov et al. (2014) of “level” effects (i.e. global warming negatively affects the 

level of TFP) which are one-off effects for “growth” effects (global warming negatively 

affect the growth rate of TFP) in which case losses can never be caught up. The mean-

reverting process used in our paper captures these cases with δ = 0 (level effects) and 

δ = 1 (growth effects). Given that our calibrated case uses the value δ = 0.367, the effects 

of climate change on TFP growth are lower (relative to GHKT’s level effect specification) 

than those in other frameworks. This can be seen from Table 2, which indicates that if 

global warming affects the growth rate rather than the level of TFP the optimal carbon 

tax increase from $64 to $100/tC while they rise from $44 to $118/tC in Dietz and Stern 

(2015). In general, the higher the value of , the more persistent the effect of global 

warming on TFP and thus the higher the optimal carbon tax. 
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