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Abstract 

In this article, we combine machine learning techniques with statistical moments of the gasoline 
price distribution. By doing so, we aim to detect and predict cartels in the Brazilian retail market. 
In addition to the traditional variance screen, we evaluate how the standard deviation, coefficient 
of variation, skewness, and kurtosis can be useful features in identifying anti-competitive market 
behavior. We complement our discussion with the so-called confusion matrix and discuss the 
trade-offs related to false-positive and false-negative predictions. Our results show that in some 
cases, false-negative outcomes critically increase when the main objective is to minimize false-
positive predictions. We offer a discussion regarding the pros and cons of our approach for 
antitrust authorities aiming at detecting and avoiding gasoline cartels. 
JEL-Codes: C210, C450, C520, K400, L400, L410. 
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1. Introduction

The discussion about cartel formation is relevant in several markets insofar as it

guides the antitrust authorities to enforce competition laws. Given the persistence

of collusive market behavior in the gasoline industry, the knowledge about the best

screening methods for deterring and inhibiting cartels can guide the regulator in con-

ducting and optimizing competition policies. On the one hand, there is an increasing

number of gasoline cartels over the last decades. On the other hand, the competition

authorities’ financial resources to monitor and intervene in the market are scarce.

Thus, statistical screening methods are a useful pro-active auxiliary tool to support

and guide an investigation ex officio, once they allow us to identify those candidates

most likely to have a collusive agreement (Friederiszick & Maier-Rigaud, 2008).

There is a wide variety of cartel screens that offers the regulator practical and

efficient detection methods. (Eckert & West, 2004; Bolotova et al., 2008; Blancken-

burg et al., 2012; Harrington, 2008; Perdiguero, 2010; Doane et al., 2015). Several

studies consider retail price as the strategic variable to set up a collusive agreement.

Besides being easy to measure, it disclosures accurate information about how the

market works. The main framework assesses anti-competitive behavior via econo-

metric screening methods (Connor, 2005; Abrantes-Metz et al., 2006; Chouinard &

Perloff, 2007; Noel, 2007; Abrantes-Metz, 2012; Jiménez & Perdiguero, 2012; Eckert,

2013; Perdiguero & Jiménez, 2020). However, there is no universal consensus on this

issue.

In order to contribute to the discussion on cartel detection and prediction, this pa-

per uses machine learning techniques with statistical screens. Huber & Imhof (2019)

and Imhof (2017) use a similar approach to detect bid-rigging cartels in Switzer-

land’s civil construction sector. However, to the best of our knowledge, our work is
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the first to assess the performance of statistical moments of the gasoline retail price

distribution combined with machine learning algorithms as screens.

Taking the Brazilian market as a case study, we evaluate the out of the sample

performance of the proposed methods in a total of 1.920 observations constructed

from a weekly database of gasoline selling price in the following cities where collusion

was detected: Belo Horizonte1, Brasília, Caxias do Sul and São Luís. The study of

different regional retail markets for fuels in Brazil is especially appealing as one

has often observed recurring suspicions of coordinated practices among firms. The

Brazilian competition authority (CADE)2 has often examined different cases (CADE,

2014). There is also some evidence of non-negligible damages in many Brazilian

regions (Cuiabano, 2019; Da Silva et al., 2014; Motta & Resende, 2019).

We intend to use the history of cases already judged and condemned by CADE

for cartel practice (Pinha et al., 2019). The data comprises detected cases and

another of no apparent collusion, i.e., the cartel may be in full swing since not

discovered. To distinguish between them, we define a binary cartel classification as

a dependent variable. The classification criterion for the cartel period is based on

the judgments made by CADE, in which the case records contain the exact period

in which the explicit evidence that characterized the collusive agreement in each city

was collected. Similarly, the non-cartel classification period is based on the time

instant the regulator made public the administrative proceeding against gas stations

1We also consider the municipalities of Betim and Contagem, which make up the metropolitan

region of Belo Horizonte, and was also involved in the cartel agreement.
2Administrative Council for Economic Defense. CADE based its decisions on shreds of evidence

such as wiretaps, hot documents, text messages, e-mails. Access the following links for details:

(i) https://tinyurl.com/yxz8tgnr (available in English); (ii) https://tinyurl.com/y6eoamkp

(available only in Portuguese).
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and the operations to disrupt the gasoline cartels.

With this in mind, we extend the approach proposed by Huber & Imhof (2019)

and Huber & Imhof (2018) to analyze cartel behavior in the gasoline market. Our

framework evaluates four supervised machine learning models: Random Forest, Lasso

(least absolute shrinkage and selection operator) Logistic, Ridge Logistic, and Neural

Network. The inputs of these models are based on the four statistical moments of

the gasoline selling price distribution. The output is given by a binary variable that

indicates the presence or absence of cartel behavior. Each statistical screen derived

from the gasoline retail price distribution in each city captures a different aspect of

price dynamics. The combination of several different screens opens an avenue for

a better understanding of the differences regarding price agreements in the gasoline

market.

By evaluating the so-called Confusion Matrix, we distinguish the classifiers’ per-

formance between false-positive and false-negative predictions (Akouemo & Povinelli,

2016). More specifically, a false-positive classification means that the model tags

price dynamics as a cartel even though no cartel happens. On the other hand, the

false-negative outcome is undesirable as well - once it shows that the algorithm was

unable to tag price dynamics as a cartel, even if the cartel happens. Thus, a model

that produces many false-negatives can be harmful to the competitive environment.

Aware of this, a desirable classification method for the antitrust authority would

be capable of balancing the trade-off between false-positive and false-negative out-

comes. Our results suggest that machine learning techniques are powerful tools for

cartel detection in the gasoline market. Furthermore, it demonstrates that in specific

cases, the skewness and kurtosis − which are variables little exploited in the empiri-

cal analysis concerning cartel detection in retail markets − are relevant variables to

minimize the classification error.
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To develop this discussion, the remainder of this paper is organized as follows.

Section 2 reviews the literature on implementing screens to detect cartels in the

gasoline retail market. Section 3 describes our data that includes four gasoline cartel

cases in the Brazilian fuel retail market and discusses the screens used as predictors

for detecting collusive market behavior. Section 4 presents the machine learning

techniques. Section 5 discusses the empirical results. Section 6 discusses several pol-

icy implications regarding the machine learning algorithms combined with statistical

moments screen. Section 7 concludes.

2. Literature Review

This paper contributes to the empirical literature on behavioral screening meth-

ods that discusses ex-post cartel agreements via price dynamics. Considering the

framework linked to our research, collusive patterns based on retail price variations

stand out. The economic intuition is that the reduced retail price variance across

time or within geographical clusters is an indicator of collusion (Abrantes-Metz,

2012; Crede, 2019; Harrington, 2008). The literature on behavioral cartel screens

has grown significantly in the last decade. Most notable are the contributions of

Abrantes-Metz et al. (2006) and Bolotova et al. (2008), who propose cartel screens

based on the analysis of price variance in an industry.

Most of the behavioral screens so far have been specifically tailored to detect

bid-rigging conspiracies, and they are regularly used in auctions (Porter, 2005). The

development of behavioral screens for assessing the retail market began only recently.

Blair & Sokol (2015) provide many real-world examples of cartel screening methods

for detecting collusion in retail markets. As reported in Harrington (2005) and Zitze-

witz (2012), economists widely apply this dynamic pricing methodology to generate
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collusive patterns. Then, the goal is to distinguish a competitive pricing pattern

from that observed in cartel agreements (Maskin & Tirole, 1988).

Noel (2007) uses a Markovian regression model to assess the gasoline retail dy-

namic pricing in Canada. The outcome shows that price cycles prevail when there

are many small firms. Wang (2009) evaluated firms’ dynamic pricing strategies in

the Australian gasoline market before and after implementing a law that constrains

firms to set prices simultaneously and only once per day. The Edgeworth price cycle

approach captured the oligopoly equilibrium dynamics. In summary, all these re-

sults highlight the importance of price commitment in collusive agreements. Clark

& Houde (2013) uses official records from a gasoline cartel in Canada to chart firms’

colluding price strategies. The cartel leaders compensate low-efficient firms by sys-

tematically allowing high-efficient firms to make the last move during coordinated

price-increase episodes. Clark & Houde (2014) uses weekly gas station-level data

from before and after the cartel’s breakdown to compare retail pricing patterns in

gas stations affected and unaffected by the ex officio investigation. Among other

factors, the results indicate that collusion is associated with asymmetric price ad-

justments.

Other behavioral issues of economic agents may affect the price variance in the

market under analysis, significantly impacting gas stations’ profits. Accordingly,

developing a better understanding of the stochastic prices driving oil and gasoline

prices has value for private interests and policy-makers (Wilmot & Mason, 2013).

Firms in collusion can practice parallel prices. From a theoretical perspective, this

strategy would lead to identical price patterns, reducing the price variance (Athey

et al., 2004) and (Harrington & Chen, 2006). On this subject, many contributions

come from the analysis of the Spanish gasoline retail market. Jiménez & Perdiguero

(2012) emphasizes the coefficient of price variation as a useful screen to capture the
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relationship between market structure and price rigidity, a remarkable feature of

collusive markets. García (2010) uses a dynamic model based on tacit collusion price

strategy to find symmetric behavior on the way companies absorb price changes

in the final gasoline price in the Spanish market. For a different period, Contín-

Pilart et al. (2009) also reveal that retail prices in Spain respond symmetrically to

variations in the wholesale price via the multivariate error correction model. More

recently, Perdiguero & Jiménez (2020) shed light on the price coordination capacity

of dominant oil operators in the Spanish gasoline market and point out ways for

antitrust authorities to increase competition in the gasoline sector.

However, the vast majority of studies cited above use econometric techniques

rather than supervised machine learning algorithms. Besides, to the best of our

knowledge, there are very few papers systematically investigating the screening per-

formance based on patterns derived from all four statistical moments via compu-

tational methods, especially in the gasoline market. In this sense, our research di-

alogues with the incipient literature on implementing screens to detect bid-rigging

cartels (Huber & Imhof, 2019).

3. Database and Gasoline Industry in Brazil

The fuel supply in Brazil is made by oil companies, refineries, distributors, and

retailers. Petrobras, a state-owned mixed economy company, is the largest player

in this market, supplying around 97% of type A gasoline and Diesel volumes. In

any case, except for fuel retailing, the entire remaining production chain is also very

concentrated and regulated by ANP3 and SBDC − Brazilian Competition Defense

System. The role of ANP is to regulate products and firms and provide the SBDC

3National Agency of Petroleum, Natural Gas and Bio-fuels: http://www.anp.gov.br.
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with all the necessary information for any antitrust proceedings initiated (ANP,

2020).

The distribution of gasoline, in turn, is controlled by a small number of distrib-

utors4, where the four largest companies hold 75% of the market share. But even

with controlled input prices, they are free to set the offer price on the market. In this

context, the distribution segment is frequently investigated by the SBDC, associating

both with cartel formation and increased concentration in the sector. (CADE, 2014).

On the policy of gasoline and diesel prices, there is a need for periodic adjustments.

The adherence of domestic prices to the international market in the short term trig-

gered a considerable rise between 2017 and 2018, provoking a strike by large truckers

in the country, leading the government to subsidize diesel oil prices. Simultaneously,

the ANP increased price monitoring to check the amount charged by both producers

and distributors of fuels (ANP, 2020).

By its turn, fuel retailing in Brazil is quite atomized and is expanding. The

number of gas stations authorized by the ANP in 2014 was 39,763 to 40,970 in 2019

(up 3% in five years) (ANP, 2020). In addition to the structural characteristics of the

gasoline industry5, it is worth remembering that the gas stations’ market behavior

4In addition to distributors having the price as the key decision variable, the larger ones also

have practices of products differentiation (additive and premium fuels, for example), investment in

the brand (advertising), creation of loyalty programs (rewards), and investment in the expansion of

scale (construction/attraction of new gas stations; supply to the so-called white flag gas stations;

and processes of merger/acquisition of competing distributors). Many of these actions also work

as structural barriers to the entry of new distributors and even induce the exit of old distributors

(ANP, 2020).
5Such as homogeneous products, similar cost structures, government pricing control, local unions,

exclusive vertical contracts, barriers to entry, absence of perfect substitutes goods, and the low price

elasticity of demand.
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places the fuel sector as one of the most investigated by the Brazilian competition

authority. Collusive agreements and cartel formation may be the most relevant

element in the definition of gasoline selling prices. Paradoxically, although atomized,

the geographic market confers considerable local market power to the fuel retailers.

This contributes even more to anti-competitive actions in the sector (CADE, 2014).

With this in mind, we describe our database in the next section.

3.1. Sample description

ANP is responsible for planning and collecting the retail fuel price database.

In this paper, to preserve transparency in our analysis, we use the same database

that underlies CADE’s decisions on cartel conviction. ANP outsources the prices

collection service, as stated in Pedra et al. (2010) and Freitas & Balbinotto Neto

(2011). It is divided into the following steps: (a) a weekly collection of the retail

prices; (b) quality control of the information; (c) data entry into the system; (d)

creation of a database containing the information specified through contracts; (f)

forwarding the results to ANP.

The field planning within each municipality is based on a geographical identifica-

tion of the resale points. The weekly collection routes are carried out based on the

registration data of resellers in the sample design. The main objective is to optimize

the geographical representation of each of them. Finally, a random sample selection

is made and collected weekly. In the selection procedures, it must observe the geo-

graphic coverage of the municipality to guarantee randomness. Given this sampling

plan, we have sufficient information to estimate the city-level statistical moment of

the gasoline price distribution, such as the average price, the variance, the skewness,

and the kurtosis.
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3.2. The cartel cases

Table 1 summarizes the number of the cartel and non-cartel observations. The

first case we evaluate happened in the metropolitan region of Belo Horizonte, in-

cluding the neighboring municipalities of Betim and Contagem.6 As described in

the administrative procedure7 started in 2014, anonymous complaints date back to

the early 2000s. The hard evidence was collected by the antitrust authority between

March 2007 and April 2008. Therefore, we consider the period from January 2004 to

April 2008 as the cartel phase. To evaluate the regulatory agency performance, we

assume the period between January 2014 and April 2019 as the non-cartel period.

Since November 2009, the Brazilian competition authority collects information

related to the fuel market in Brasilia. During that time, a considerable amount

of economic evidence of cartel formation was gathered, involving distributors and

resellers.8 In November 2015, CADE decided to enforce a preventive measure in

the administrative investigation regarding the gasoline cartel in Brasília. Thus, we

consider November 2009 until November 2015 as a cartel period. The non-cartel

period runs from December 2015 to April 2019.

In Caxias do Sul9, the antitrust agency confirmed the evidence that fuel distrib-

utors had organized a cartel to fix and standardize prices practiced in fuel resale.

6Resende (2012) had studied the case of Belo Horizonte in terms of the assessment of price

synchronization patterns across different fuel stations both for gasoline and ethanol.
7All information collected is available at http://en.cade.gov.br/, in the session Procedure

Search. The record of the administrative process related to the gasoline cartel in Belo Horizonte is

given by 08012.007515 / 2000-31.
8Administrative Process No. 0800.024581/1994-77 and No. 08012.008859 / 2009-86, available

at http://en.cade.gov.br/ and at https://tinyurl.com/us8yffd.
9Administrative Process No. 08012.010215 / 2007-96, available at http://en.cade.gov.br/.
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The cartel aimed to increase resale margins and eliminate competition, as well as

charging excessively high prices. As a result, the municipality’s resale margins were

much higher than those in other neighboring cities in the state. CADE concluded

that there was a violation of the economic order and that the gas stations and their

managers adopted a uniform and concerted commercial conduct. The cartel was

endowed with a high degree of organization, which is why it lasted, at least, between

2004 and 2007, causing immense losses to final consumers. The conviction was con-

cluded in 2012. Thus, we consider the period between January 2004 and July 2007 as

the cartel phase and the period between March 2013 and April 2019 as the non-cartel

period.

Cartel Obs Perc. (%) Non-Cartel Obs Perc. (%) Total

Belo Horizonte 221 45 276 55 497

Date 01/2004 - 04/2008 01/2014 - 04/2019

Brasília 309 63 179 37 488

Date 11/2009 - 11/2015 12/2015 - 04/2019

Caxias do Sul 178 37 306 63 484

Date 01/2004 - 07/2007 03/2013 - 04/2019

São Luís 215 48 236 52 451

Date 01/2010 - 10/2014 11/2014 - 04/2019

Total 702 48,25 721 51,75 1920

Table 1: Number of Cartel and Non-Cartel observations.
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Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max

Belo Horizonte Caxias do Sul

Cartel Periods Cartel Periods

Standard deviation 221 0.0748018 0.0161794 0.041401 0.11666 Standard deviation 178 0.0284347 0.0091526 0.0125238 0.0866679

Variance 221 0.0058559 0.0025664 0.001714 0.01360 Variance 178 0.0008918 0.0007337 0.0001568 0.0075113

Skewness 221 0.7554747 0.7215891 -1.9099710 3.35897 Skewness 178 -0.7019769 1.125306 -4.499262 3.311451

Kurtosis 221 4.7893610 4.6096630 1.0000000 24.96786 Kurtosis 178 5.136701 3.351867 1.387655 25.00011

Coefficient of Variation 221 0.0340085 0.0070236 0.020943 0.05835 Coefficient of Variation 178 0.0109407 0.0081338 0.0038722 0.0687003

Non-Cartel Periods Non-Cartel Periods

Standard deviation 276 0.1111709 0.0215818 0.0591717 0.179358 Standard deviation 306 0.0679517 0.0335223 0.018549 0.2813645

Variance 276 0.0128231 0.0051184 0.0035013 0.0321694 Variance 306 0.0057375 0.0078758 0.0003441 0.079166

Skewness 276 0.7070966 0.5847417 -1.978601 2.5789970 Skewness 306 -0.6077758 1.111237 -3.228627 0.079166

Kurtosis 276 3.8759010 1.6697230 2.0357790 14.300410 Kurtosis 306 4.208592 2.292335 1.307984 12.00068

Coefficient of Variation 276 0.0307957 0.0061329 0.016822 0.0491287 Coefficient of Variation 306 0.0181618 0.0081338 0.0038722 0.0687003

Brasília São Luís

Cartel Periods Cartel Periods

Standard deviation 309 0.0156584 0.0159 0.0000000 0.0805304 Standard deviation 215 0.0486387 0.0311685 0.0037796 0.1431614

Variance 309 0.0004972 0.0012938 0.0000000 0.0064851 Variance 215 0.0033327 0.0041652 0.0000143 0.0204952

Skewness 309 -0.7774293 2.370778 -7.862468 6.802973 Skewness 215 1.112635 1.505716 -3.749028 4.110874

Kurtosis 309 10.5154700 12.19631 1.053223 64.64728 Kurtosis 215 7.13466 4.259128 1.000000 24.14746

Coefficient of Variation 309 0.0054248 0.005926 0.0000000 0.0294542 Coefficient of Variation 215 0.0189299 0.012681 0.0013737 0.0599945

Non-Cartel Periods Non-Cartel Periods

Standard deviation 179 0.1063629 0.0489471 0.0105688 0.2383494 Standard deviation 236 0.072602 0.0255238 0.0107529 0.138873

Variance 179 0.0136954 0.0107811 0.0001117 0.0568104 Variance 236 0.0059197 0.0040704 0.0001156 0.0192857

Skewness 179 -0.089362 1.466399 -4.033528 3.740933 Skewness 236 0.2761049 1.108964 -3.285877 4.698436

Kurtosis 179 5.0314610 4.233466 1.416789 20.87988 Kurtosis 236 4.503887 3.429616 1.092339 26.91653

Coefficient of Variation 179 0.0267536 0.01313 0.0000000 0.0731427 Coefficient of Variation 236 0.0205283 0.0075034 0.0026962 0.0393634

Table 2: Descriptive Statistics of the four evaluated cities. As already reported, the Belo Horizonte

cartel involved the neighboring municipalities of Betim and Contagem, which were duly incorporated

into our analysis.

In São Luís10, intercepted conversations revealed that the owners of gas stations

10Administrative Process 08700.002821 / 2014-09 started in October 2014, after receipt of tran-

scripts of telephone interceptions duly authorized by the Judiciary of Maranhão, and other evidence

forwarded by the local Public Ministry to the competition authority, conducted a criminal investi-

gation concerning the same offense. The document is available at http://en.cade.gov.br/.
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combined prices and induced other stations that sold the cheaper product to increase

their values to strengthen the cartel. Such irregularities would have occurred between

January 2010 and October 2014. The investigation also has economic evidence re-

sulting from analyses carried out by the ANP on the São Luís fuel resale market.

Frequently, these analyses pointed to the existence of elements that would indicate

the possibility of concerted conduct between the gas station owners in the munic-

ipality. Besides, the investigation conducted by the Maranhão Public Prosecutor’s

Office pointed to a market division among the cartel’s participants, to facilitate the

operationalization of the illegal agreement, under the coordination of the union. It

was also found at the union headquarters a map dividing the city into “corridors”,

where the same price was established.

3.3. Statistical screens

To check whether a market is more likely to practice cartel, the statistical screens

are calculated from gas station-level data on a weekly basis via a non-overlapping

rolling window procedure. Taking the number of weeks for each city in Table 1, we

consider the following inputs: standard deviation, coefficient of variation, variance,

asymmetry, and kurtosis. Note that all these screens derive from the standardized

moments of the weekly retail price distribution. Scale-invariant variables enable us to

seek different price patterns and distinguish the collusive behavior from non-collusive

behavior. From the weekly price dynamics, we calculate each of the predictors (in-

puts) detailed described in equations (1) - (4). The normalized moments calculated

in Table 2 allow us to compare the shape of different probability distributions across

the cartel and the non-cartel periods. Then, for each city, we report the Kolmogorov

Smirnov and Mann Whitney tests for the predictors derived from the price distribu-

tion for the cartel and the non-cartel periods in Table 3.

13



3.3.1. Standard Deviation & Coefficient of Variation

Price coordination might affect gasoline price dispersion within a city. We thus

consider the standard deviation of the gasoline selling price as a screen. Besides, we

also evaluate the coefficient of variation defined as follows as a statistical screen:

CVc,w =
sc,w
m̄c,w

, (1)

in which the terms sc,w and m̄c,w represents the standard deviation and the mean of

the gasoline selling price (Pc,w), respectively, in a given city c during the week w.

3.3.2. Variance

We also consider the variance σc,w of the weekly gasoline selling price within a

given city as a screen for detecting cartels. There are theoretical justifications for a

variance screen for collusion if it is costly to coordinate price changes or if the cartel

must solve an agency problem. There is also some empirical evidence of a decrease

in the variance of price during collusion (Abrantes-Metz et al., 2006).

s2c,w =

∑n
i=1(Pc,w − m̄c,w)2

n− 1
. (2)

3.3.3. Skewness

Price manipulation may affect the symmetry of the distribution of the weekly

gasoline selling price. Thus, for a sample of size n, the methods of moments estimator

of the skewness yields:

skewc,w =
m3c,w

s3c,w
=

1
n

∑n
i=1(Pc,w − m̄c,w)3[

1
n−1

∑n
i=1(Pc,w − m̄c,w)2

]3/2 , (3)

where m3c,w is the sample third central moment of the weekly retail gasoline price

within a given city c.
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3.3.4. Kurtosis

Finally, we also investigate whether the cartel affects the "tailedness" of the

weekly retail gasoline price distribution through coordination. Thus, we have the

following expression for the kurtosis:

kurtc,w =
m4c,w

s2c,w
− 3 =

1
n

∑n
i=1(Pc,w − m̄c,w)4[

1
n

∑n
i=1(Pc,w − m̄c,w)2

]2 − 3, (4)

where m4c,w is the fourth sample moment of the sample variance.

3.4. Descriptive statistics

We now evaluate the descriptive statistics by separating them between cartel

periods and "non-cartel" periods in each evaluated city. Note from Table 2 that

most screens show fluctuation in the coefficient of variation and standard deviation

of prices. Although in different proportions, this same behavior can be seen for the

variance, skewness, and kurtosis. Furthermore, in some cities, the difference between

the statistical moments is quite noticeable. Typically, during cartel periods, it is

common to see less variance in price distribution. Besides, we assess the expected

pattern concerning the other statistical moments on a case-by-case basis, as follows.

In Belo Horizonte, the mean of the standard deviation screen is approximately

70% lower during the cartel. Thus, prices are more similar in collusive than in

competitive periods. This same intuition fits on the standard deviation screen. The

variance is 45% lower in cartel periods. On average, both skewness and kurtosis have

proven to be higher during the cartel period. This pattern leads to a more compressed

distribution of prices in cartel periods than in non-cartel periods, suggesting that

prices converge when there is a cartel in the retail gasoline market. In contrast,

we notice a considerable difference in terms of the means and standard deviation

across the periods in Brasília. The spread of the coefficient of variation is lower
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in cartel periods with a standard deviation of 0.005, compared to 0.013 for non-

cartel periods. The variance reveals to be almost double in non-cartel periods. This

behavior provides shreds of evidence that prices are more similar in cartels. The

price distribution is highly asymmetric in cartel periods. The kurtosis amounts to

5.0314 in non-cartel periods and more than doubles in cartel periods (10.515).

When compared with Brasília, we observed some similarities concerning the coef-

ficient of variation and variance patterns in Caxias do Sul. During the cartel period,

these screens show a much lower variation than that observed in the non-cartel period,

matching with the cartel practice. Besides, the price distribution is more asymmetric

in collusive periods. Although the behavior of the retail price of gasoline in Caxias

do Sul is not as diverse as that observed in Brasília, it is almost 22% greater during

the cartel period. In São Luís, the coefficient of variation and variance is slightly low

during the cartel periods. The spread of the skewness is higher in cartel periods, with

a standard deviation of 1.5057. During the non-cartel period, the standard deviation

is equal to 1.1089. The mean of the kurtosis amounts to 7.1346 in cartel periods. It

is almost 60% higher than the non-cartel periods (4.5038).

In Table 3, we report the Mann-Whitney and the Kolmogorov-Smirnov test for

the predictors in each city. The Mann-Whitney test allows us to investigate whether

two independent samples were selected from populations having the same distribu-

tion. In other words, it tests the hypothesis of a zero-median difference between two

independently sampled populations. The Kolmogorov–Smirnov test is a nonpara-

metric test of the equality of one-dimensional probability distributions and allows

us to compare two samples. Both tests quantify a distance between the empirical

distribution function of the sample and the cumulative distribution function of the

reference distribution, or between the empirical distribution functions of two samples.

The null hypothesis assumes samples derived from the same distribution.
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Screens z-statistic p-value MW Ksa p-value KS

Belo Horizonte

Standard deviation 15.996 < .0001 0.7022 < .0001

Variance 15.996 < .0001 0.7022 < .0001

Skewness 2.105 0.0353 0.2168 < .0001

Kurtosis 4.348 < .0001 0.3012 < .0001

Coefficient of variation -4.845 < .0001 0.2033 < .0001

Brasília

Standard deviation 16.994 < .0001 0.8115 < .0001

Variance 16.996 < .0001 0.8117 < .0001

Skewness 4.729 < .0001 0.2684 < .0001

Kurtosis -6.315 < .0001 0.2857 < .0001

Coefficient of variation 15.653 < .0001 0.797 < .0001

Caxias Do Sul

Standard deviation 16.656 < .0001 0.8024 < .0001

Variance 16.656 < .0001 0.8024 < .0001

Skewness 0.503 0.6151 0.1013 0.198

Kurtosis -3.164 0.0016 0.3012 < .0001

Coefficient of variation -4.845 < .0001 0.1375 0 .0280

São Luís

Standard deviation 9.224 < .0001 0.4354 < .0001

Variance 9.224 < .0001 0.4354 < .0001

Skewness -6.977 < .0001 0.4234 < .0001

Kurtosis -7.772 < .0001 0.3749 < .0001

Coefficient of variation 3.781 0 .0002 0.2845 < .0001

Table 3: Statistical tests for the screens. Screens, z-statistic, p-value MW denote the screens tested,

the z-statistic of the Mann-Whitney test and the p-value of the Mann-Whitney test, respectively.

KSa and p-value KS denote the asymptotic Kolmogorov–Smirnov statistic and the p-value of the

Kolmogorov–Smirnov test, respectively.
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Accordingly, in Belo Horizonte, the differences observed between the cartel and

non-cartel periods are statistically significant at the 1% level for the standard devi-

ation, the variance, the kurtosis, and the coefficient of variation. The skewness is

significant at 5%. In Brasília, these differences are statistically significant at 1% level

for all screens. In Caxias do Sul, the difference between the cartel and non-cartel

periods is significant at the 1% level for the standard deviation, the variance, and

the coefficient of variation. In turn, regarding the Kolmogorov-Smirnov test, the

coefficient of variation is only statistically significant at the 5% level. The kurtosis

is statistically significant at 5% level for the Mann-Whitney test and 1% level for

the Kolmogorov-Smirnov test. However, the skewness is not statistically significant

at the 5% level. In São Luís, only the coefficient of variation is not statistically

significant at the 1% level for the Mann-Whitney test.

4. The Supervised Machine Learning Algorithms

We evaluate the predictions based on several machine learning methods and assess

the out of sample performance. In order to avoid overfitting, we use both the Lasso

and Ridge regularized versions of the logit model (Tibshirani, 1996). Random Forest

consists of a large number of individual decision trees that operate as an ensemble.

Its foundation is based on the so-called wisdom of crowds. In other words, the

Random Forest algorithm uses a large number of relatively uncorrelated models

(trees) operating as a committee capable of outperforming any of the individual

constituent models (Ho, 1995; Breiman, 2001). Neural Networks are models inspired

by the human brain that process information in a parallel fashion and are useful

tools for clustering and classifying data (Hjort, 1996; Ripley, 2007). We use both the

cross-validation and random splitting approaches to split the database between the
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training and testing data.11 We define accuracy as the gap between actual cartels

and correctly predicted cartels. Then, the dependent variable is equal to 1 if the

algorithm classifies the cartel probability in a threshold greater than or equal to 0.5

and becomes 0 otherwise. Figure 1 illustrates our classification modeling.

Figure 1: Schematic representation of the statistical screens integrated with supervised machine

learning algorithms to classify the gasoline selling price data for each city as cartel and non-cartel

behavior.

To assess the performance of out of sample prediction, we consider the follow-

ing measures: first, the so-called null accuracy, which measures the accuracy that

could be achieved by always predicting the most frequent outcome in the database.

11The training sample estimates the model parameters for a given city and contains 75% of the

total of observations. The testing sample calculates the out-of-sample predictions and consists of

25% of the total observations. After splitting, the cartel price pattern is estimated in the training

sample as a function of a range of predictors, namely the original statistical screens. Typically, this

is the standard strategy for determining the optimal penalty level both for the Lasso and the Ridge

Logistic regressors. To parsimoniously assess the trade-off between bias and variance, we repeat

these steps 100 times to estimate classifiers’ accuracy.
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Second, the so-called score, which measures the proportion of correct classification.

Third, miss-classification errors. Fourth, the precision, which measures how often the

prediction of cartels is accurate. The fifth is the area under the curve (AUC). The

AUC measures the relationship between the share of true-positive predictions against

the fraction of false-positive predictions at various threshold settings. An area of 1

represents a perfect prediction; an area of 0.5 represents a low-quality classifier.12

4.1. Random forest

A random forest is an ensemble learning method used in classification tasks. It

operates by constructing a multitude of decision trees at training time and outputting

the value that appears most often, i.e., the mode, in the individual trees’ classes.

Decision trees are a popular method for various machine learning tasks that divide

the sample in hyper rectangles and approximates the dependent variable in this region

by a constant. Random forests works by averaging multiple decision trees, trained

on different parts of the same training set, intending to reduce the variance. It comes

at the expense of a small increase in the bias and some loss of interpretability but

generally boosts the final model performance (Breiman, 2017).

In our study, we define a vector of features (inputs), X, which is composed by

the statistical screens − as summarized in Figure 1 − that will help us to predict

the behavior of our target variable y, that reveals whether the retail gasoline market

in a specific evaluated city is under collusion or not (outputs). By doing so, the

12To compute the measures, we create a variable that takes the value 1 for predicted cartel

probabilities greater than or equal to 0.5 and takes the value 0 otherwise. Then, we compare it

to the actual incidence of collusion in the testing sample. We repeat random sample splitting into

75% training, and 25% test data and all subsequent steps previously mentioned 100 times. Then,

we take the averages of our performance measures over the 100 repetitions.
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training algorithm for random forests applies the general technique of bootstrap

aggregating13, or bagging, to tree learners. Given a training set X = x1, ..., xn with

responses Y = y1, ..., yn, bagging repeatedly (B times) selects a random sample with

replacement of the training set and fits trees to the following samples:

For b = 1, ..., B:

1. Sample, with replacement, n training examples from X, Y , call these Xb, Yb;

2. Train a classification tree fb on Xb, Yb.

After training, predictions for unseen samples x′ can be made by averaging the

predictions from all the individual regression trees on x′:

f̂ =
1

B

B∑
b=1

fb(x
′), (5)

or by taking the majority vote in the case of classification trees. This bootstrapping

procedure leads to better model performance because it decreases the variance of the

model, without increasing the bias. Additionally, an estimate of the uncertainty of

the prediction can be made as to the standard deviation of the predictions from all

the individual regression trees on x′:

σ =

√∑B
b=1(fb(x

′)− f̂)2

B − 1
(6)

An optimal number of trees B is found using cross-validation. Another way is

to observe the out-of-bag error: the mean prediction error on each training sample

xi, using only the trees that did not have xi in their bootstrap sample. The training

and test error tends to level off after some number of trees have been fit. The above

13Bootstrap aggregating (also called bagging) is a machine learning ensemble meta-algorithm

designed to improve the stability and accuracy of machine learning algorithms used in statistical

classification. See Breiman (1996) for details.
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procedure describes the original bagging algorithm for trees. Random forests differ

in only one way from this general scheme. It uses a modified tree learning algorithm

that selects, at each candidate split in the learning process, a random subset of the

features.

Thus, if one or a few features are very strong predictors for the cartel, they will

be selected in many of the B trees, causing them to become correlated. An analysis

of how bagging and random subspace projection contribute to accuracy gains under

different conditions is given by Ho (1995). Typically, for a classification problem with

w features,
√
w features are used in each split.14. From the input vector of features,

the random forest algorithm selects the standard deviation, variance, and coefficient

of variation as predictors of cartel behavior in Belo Horizonte, Brasília, and Caxias

do Sul. Only in São Luís, the selected features are the standard deviation and the

coefficient of variation.

4.2. Lasso and ridge logistic regression

Lasso and Ridge imposes a penalty term to the logistic regression model. Typi-

cally, the logistic regression with binary classifier is given by:

P (yi = 1) =
exiβ

1 + exiβ
,

where P (yi = 1) is the probability of detecting collusive behavior periods in the

data. For a matrix with n observations and a column of ones to accommodate the

intercept, β corresponds to the slope coefficients, x is the vector of predictors p, and

i indexes an observation in our database. By maximizing the log-likelihood function,

14In practice, the best values for these parameters will depend on the problem, and they should

be treated as tuning parameters (Hastie et al., 2009)
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we obtain the parameters estimates as follows:

L(β) =
n∑
i=1

[
yi xi β − log(1 + exi β)

]
, (7)

Comparing equations (7) and (8), we note that the Ridge Logistic Regression adds

a fine-tuning parameter λ ≥ 0 to the ordinary logistic regression log-likelihood func-

tion. Then, to estimate the coefficients, we follow a slightly modified version of the

maximum likelihood function as presented in (7), with the addition of a L2 ridge

regularization penalty term (Pereira et al., 2016):

Lridgeλ (β) =
n∑
i=1

[
yi xi β − log(1 + exi β)

]
− λ

p∑
j=1

β2
j . (8)

In summary, Ridge Logistic Regression includes all the predictors in the final

model, adding a squared magnitude on the coefficient β as a penalty term. Hence, if

λ→∞, it will lead to underfitting. In summary, increasing λ decreases the variance

and increases the bias, and the model becomes less accurate. We use cross-validation

to select the value of λ within each evaluated city that minimizes the validation error.

The Lasso Logistic Regression model provides an alternative regularization pro-

cedure, which allows us to reduce the number of predictors in the final model. By

doing so, it bypasses some of the limitations of the Ridge Logistic Regression model.

Hastie et al. (2009) introduces the penalized version of the log-likelihood function to

be maximized as follows:

Llassoλ (β) =
n∑
i=1

[
yi xi β − log(1 + exi β)

]
− λ

p∑
j=1

|βj|. (9)

The Lasso Logistic regression uses a L1 penalty term. It differs from the tradi-

tional logit model since it penalizes the original likelihood function by the absolute

sum of the parameters of the model. Depending on the penalty term, the estimator
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sets the coefficients of less predictive variables to zero. By doing so, we can select

the most relevant features among a possibly large set of predictors.

One drawback of the Lasso regularization is that, when there are strong correla-

tions among terms, it arbitrarily selects which covariates to include in the model. The

Ridge regularization solves this problem by encouraging highly correlated features

to be averaged.15

4.3. Neural network

A neural network is composed of an nl series of layers known as neurons. The

layer l of the neural network has Ml neurons in parallel. Each neuron in layer l

applies a nonlinear transformation on its Ml−1 inputs. We can formalize the model

as follows:

y
(l)
k = h(l)

(
Ml−1∑
i=1

ω
(l)
ik y

(l−1)
i + ω

(l)
0k

)
, k = 1, ..., nl, (10)

where a(l)k =
∑Ml−1

i=1 ω
(l)
ik y

(l−1)
i is the activation of the neuron k and the term ω

(l)
0k

measures the bias associated to an entry y(l−1)0 = 1. The term h(l) is the activation

function of the neurons in layer l. By definition, we have that y0i = xi where i =

1, ...M0 represents the inputs of the neural network. Regarding the target variable,

we have that ynli = y0i , in which i = 1, ...Mnl represents the output of the neural

network. Thus, the neural network has Mnl = M0 outputs. In our study, the inputs

15By cross-validation and randomly splitting the training sample into subsamples, we choose the

λ that minimizes the average over the miss-classification error estimates. Most of the subsamples are

used to estimate the lasso coefficients under different possible values for λ. One of the subsamples

represents the validation database, which we use for predicting cartels based on the different sets

of coefficients related to the various penalties and for computing the miss-classification error. After

that, we estimate the coefficients of the Lasso Logistic Regression by using the training sample.

Finally, we predict the cartel probability in the testing sample.
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of the neural network are the statistical moments of the retail gasoline price. The

output is our so-called target variable, i.e., the cartel predictions that take values

between 0 and 1.

5. Empirical Results

We start our empirical analysis by presenting the results through the confusion

matrix for all machine learning techniques evaluated in each city. In predictive

analytics, a confusion matrix is a table with two rows and two columns that reports

the number of false-positives, false-negatives, true positives, and true negatives. In

statistical hypothesis testing, a false-positive (negative) corresponds to the Type I

(II) error.

Thus, each row of the matrix represents the instances in a predicted class (cartel

and non-cartel periods) while each column represents the instances in an actual class.

This allows a more detailed analysis than mere proportion of correct classifications

(score). A score is not a sufficient metric for the real performance of a classifier.

As it does not tell us the underlying distribution of response values, it will yield

misleading results if the data set is unbalanced (Fawcett, 2006; Sammut & Webb,

2011; Powers, 2011).

In other words, it does not inform about the types of errors the classifier is making.

For example, if there were 95 cartel observations and only 5 non-cartel observations

in the data, a particular classifier might classify all the observations as cartels. The

overall score would be 95%, but in more detail, the classifier would have a 100%

sensitivity, i.e., the recognition rate for the cartel class but a 0% recognition rate for

the non-cartel class.
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5.1. Belo Horizonte

We first remember that the Belo Horizonte database contains a total of 497 weeks

(observations), of which 221 labeled as the cartel period. The testing sample for the

machine learning algorithms performances includes 25% of the total sample. As the

confusion matrix in Belo Horizonte reveals, by adding all the entries for each machine

learning algorithms as shown in Table 4, we evaluate the average of the predictions

based on 125 observations.

Confusion Matrix - Random Forest Confusion Matrix - Lasso Logistic

Predicted Predicted

Non-cartel (0) cartel (1) Non-cartel (0) cartel (1)

Actual Non-cartel (0) 66 1 Actual Non-cartel (0) 63 4

cartel (1) 0 58 cartel (1) 12 46

Confusion Matrix - Neural Networks Confusion Matrix - Ridge Logistic

Predicted Predicted

Non-cartel (0) cartel (1) Non-cartel (0) cartel (1)

Actual Non-cartel (0) 65 2 Actual Non-cartel (0) 59 08

cartel (1) 5 53 cartel (1) 48 10

Table 4: Confusion Matrix for the machine learning classifiers considering a classification threshold

equal to 0.5 - Belo Horizonte. We repeat the classification procedure 100 times and the values are

based on the average of each of the metrics computed from the confusion matrix.

Before going deep into this analysis, it is important to highlight the following

point: by convention, we describe the class encoded as 1 as the positive class (cartel)

and the class encoded as 0 as the negative class (non-cartel). In that sense, the true

positive (negative) represents the case in which the model correctly predicted a 1 (0)
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value. As well, we considered a classification threshold, i.e., the probability for the

decision rule equal to 0.5.

By looking at the Random Forest predictions, we see on the bottom right the

number of true positives, which indicates that in 58 cases the classifier correctly

predicted the cartel period. On the upper left, we observe the number of true nega-

tives, which indicates that in 66 cases the classifier correctly predicted the non-cartel

periods. On the upper right, we have the number of false-positives. Note that it

indicates that only in 1 case the classifier incurred a Type I error. However, on the

bottom left we see that the random forest does not incur a Type II error.

To compute the classification accuracy score, we first must add true-positives

and true-negatives. In sequence, we divide that amount by the total number of

observations, i.e., the score is equal to (66 + 58)/125 = 99.2%. When comparing

the random forest score with the results derived from the confusion matrices of the

other algorithms, we see that the closest score is that of the neural network. The

model with the lowest classification score was the Ridge Logistic Regression, where

(59+10)/125 = 55.2%. As well, we can assess the classification error metric by adding

the false-positives and false-negatives and dividing that amount by the total number

of observations. In that sense, we can infer that the random forest misclassification

error is given by (0+1)/125 = 0.8%. This is the smallest classification error observed

for Belo Horizonte. In contrast, for the Ridge Logistic Regression we have an error

given by (48 + 8)/125 = 44.8%.

Figure 2 reports two metrics used for evaluating the trade-offs in classification

accuracy. The sensitivity assesses the true positive rate and aims to measure the

proportion of actual positives correctly identified. The specificity is also known as

the true negative rate and measures the proportion of actual negatives correctly

identified. For both sensitivity and specificity, the best possible value is 1.
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(a)

(b)

Figure 2: Sensitivity and Specificity results by restricting the cartel classification rule.
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In the confusion matrix, sensitivity is calculated by dividing the true positives

by the total of the bottom row. For the random forest classifier, we have that the

sensitivity is equal to 58/(0 + 58) = 100%. In contrast, note that the Ridge Logistic

Regression classifier has the lowest true positive rate. Specificity is calculated by

dividing the true negatives by the total amount in the top row. Hence, for the

random forest classifier, the Specificity measure is given by 66/(66 + 1) = 98.5%.

The Ridge Logistic Regression has the lowest true negative values 59/(59 + 8) =

88%. Finally, from the confusion matrix, we can calculate the precision metrics by

dividing true positives by the total of the right column. By doing so, the Random

Forest classifier has a precision equals to 58/(58 + 1) = 98.3%. The performance

of the Neural Network is 53/(53 + 2) = 96.3%. Lasso and Ridge show reasonable

precision rates, but relatively smaller than the others.

As expected, through Figures 2a and 2b, the correct classification rate in non-

cartel periods increases in the probability threshold for the decision rule (false-

positive results decrease). In contrast, the correct classification rate in cartel periods

deteriorates much faster in the threshold (false-negative results increase). In other

words, the antitrust agency would be able to minimize the false-positive rates (1−

specificity) by increasing the decision rule threshold to a value closer to 0.7.

In this scenario, the performance of the Random Forest and Ridge Logistic Re-

gression predictors allows for minimal risk of false-positives outcomes. As well, for

the Ridge algorithm, we must observe that the 0.7 classification rule, leads to a

false-negative rate (1− sensitivity) closer to 1. In contrast, the Neural Network and

the Random Forest classifiers show approximately 15% of false-negative outcomes.

In summary, the gain of reducing the risk of false-positives, therefore, induces a

disproportionate increase in false-negatives.

Moreover, any further tightening of the decision rule would lead to an even more
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severe increase of false-negatives. At a probability threshold of 0.8, Random Forest

shows the best performance. It, therefore, seems that for the gasoline cartel in

Belo Horizonte, the best-suited probability threshold lies between values of 0.5 and

0.7. One advantage of combining screening methods and machine learning consists

of quantifying the trade-off regarding false-positives and false-negatives so that the

regulators are capable to determine the decision rule that optimally matches their

needs.

We conclude the performance of our binary classifiers by assessing the area under

the curve (AUC) metrics. It provides useful information regarding how well the

classifiers are separating the cartel periods from the non-cartel periods. In general,

the AUC represents the probability that a classifier will rank a randomly chosen

positive observation higher than a randomly chosen negative observation. Thus, the

closer the AUC is to 1, the better the classifier. As Table 8 reveals, the Random

Forest predictor has the greater AUC.

5.2. Brasília

Out of a total of 488 weeks, the observations labeled as a cartel period in Brasilia

represent 63% of the total sample. The testing sample for evaluating the classifiers

contains 122 observations. Differently from the previous case, Table 5 reveals that

the Lasso Regression shows the best score index (44 + 73)/122 = 95.9%. Besides, it

presents a classification error equals to (3 + 2)/122 = 4.1%. The Random Forest al-

gorithm also shows a reasonable performance. In terms of sensitivity and specificity,

when considering a classification threshold equals to 0.5, the Lasso Regression clas-

sifier shows the best prediction outcomes. The true positive and true negative rates

are given by 73/(2 + 73) = 97.3% and 44/(44 + 3) = 93.6%. The precision index of

the Lasso Regression is slightly higher 73/(73+6) = 96.1% than the Random Forest.
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Confusion Matrix - Random Forest Confusion Matrix - Lasso Logistic

Predicted Predicted

Non-cartel (0) cartel (1) Non-cartel (0) cartel (1)

Actual Non-cartel (0) 44 3 Actual Non-cartel (0) 44 3

cartel (1) 3 72 cartel (1) 2 73

Confusion Matrix - Neural Networks Confusion Matrix - Ridge Logistic

Predicted Predicted

Non-cartel (0) cartel (1) Non-cartel (0) cartel (1)

Actual Non-cartel (0) 40 7 Actual Non-cartel (0) 33 16

cartel (1) 4 71 cartel (1) 0 73

Table 5: Confusion Matrix for the machine learning classifiers considering a classification threshold

equal to 0.5 - Brasília. We repeat the classification procedure 100 times and the values are based

on the average of each of the metrics computed from the confusion matrix.

Figure 3 summarizes the trade-offs in classification accuracy for the gasoline cartel

in Brasília. As expected, through Figures 3a and 3b, the observe that false-positive

results decreases in the probability threshold. However, the false-negative rate in

cartel periods increases much faster in the threshold. To minimize the false-positive

rates (1− specificity), the optimum decision rule threshold should be greater than

0.6. In this case, the performance of the Random Forest minimizes the false-positive

rate. Ridge Logistic Regression predictors allow for minimal risk of false-positives

outcomes. This same condition is true for Lasso Regression when the threshold is

greater than 0.8. Yet, we must observe that a classification rule greater than 0.75,

leads to a false-negative rate (1− sensitivity) closer to 10% for the Random Forest.

The Lasso predictors show approximately 15% of false-negative outcomes.
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(a)

(b)

Figure 3: Sensitivity and Specificity results by restricting the cartel classification rule.
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As before, the benefits of reducing the risk of false-positives is unreasonable for

the increase in false-negatives. Therefore, at a probability threshold of 0.5, Lasso

Regression shows the best performance. When we increase the decision rule by

considering a threshold greater than 0.75, Random Forest proves to be the best

algorithm for classifying the gasoline cartel in Brasília. Judging by the AUC criterion,

both predictors have a satisfactory classification rate, but the Ridge predictor shows

the best performance in this regard (AUC = 88.3%). On the other hand, taking

into account all the evaluation metrics, from Table 8, we can conclude that LASSO

regression, on average, performs subtly better than Random Forest.

5.3. Caxias do Sul

Caxias do Sul has 178 weeks labeled as cartel and 306 weeks labeled as non-

cartel. Then, we have 484 observations, from which 25% (121 observations) are used

for testing the classifiers. The confusion matrix in Table 6 shows that the Random

Forest provides the best score index (75 + 40)/121 = 95%. The classification error

is given by equals to (2 + 4)/121 = 5%. Considering a classification threshold equal

or greater than 0.5, the Random Forest shows the best prediction outcomes. For

a probability decision rule equals 0.5, the true positive and true negative rates are

given by 40/(4 + 40) = 90.9% and 75/(75 + 2) = 97.4%. The precision index of the

Ridge Logistic Regression model is the largest 4/(0 + 4) = 100%.

Figure 4 illustrates how sensitivity and specificity react to an increase in the

probability threshold. By comparing the outcomes represented in Figures 4a and

4b, we see that the false-negative rate (1− sensitivity) is closer to 100% for the

Ridge algorithm. The Random Forrest predictors show approximately 15% of false-

negative outcomes for a threshold probability equal or lower than 0.65. When we

narrow the decision rule, especially assuming values greater than 0.75 we affect both
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the sensitivity and the specificity of the classification algorithms. Note that for the

antitrust authority, it is not interesting to adopt the Ridge model to identify the

cartel in Caxias do Sul.

Confusion Matrix - Random Forest Confusion Matrix - Lasso Logistic

Predicted Predicted

Non-cartel (0) cartel (1) Non-cartel (0) cartel (1)

Actual Non-cartel (0) 75 2 Actual Non-cartel (0) 73 4

cartel (1) 4 40 cartel (1) 7 37

Confusion Matrix - Neural Networks Confusion Matrix - Ridge Logistic

Predicted Predicted

Non-cartel (0) cartel (1) Non-cartel (0) cartel (1)

Actual Non-cartel (0) 73 4 Actual Non-cartel (0) 77 0

cartel (1) 3 41 cartel (1) 40 4

Table 6: Confusion Matrix for the machine learning classifiers considering a classification threshold

equal to 0.5 - Caxias do Sul. We repeat the classification procedure 100 times and the values are

based on the average of each of the metrics computed from the confusion matrix.

Note that for the antitrust authority, it is not interesting to adopt the Ridge model

to identify the cartel in Caxias do Sul. In other words, a high specificity rate is not

a sufficient condition to minimize classification errors. To prove this, we assess the

(poor) performance of the Ridge model incorrectly classifying observations as a cartel

period (sensitivity). Thus, the classifier that best responds to the data - indicating

how many observations were correctly identified as a cartel period (sensitivity) and

how many observations were correctly identified as a non-cartel period (specificity)

- is the Random Forest.
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(a)

(b)

Figure 4: Sensitivity and Specificity results by restricting the cartel classification rule.
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In a complementary way, we see that by the AUC criterion as in Table 8, we also

conclude that, on average, the Random Forest estimators show the best performance

in predicting the gasoline cartel in Caxias do Sul. It is also worth noting that, on

average, the neural network performed better than the LASSO and Ridge Logistic

Regressions.

5.4. São Luís

São Luís has a total sample of 451 weeks. The period labeled as cartel behavior

contemplates 48% of this amount. We use 113 observations in order to compare the

machine learning classifiers. The models that best classify the cartel in São Luís are

Random Forest and Neural Networks, respectively.

Confusion Matrix - Random Forest Confusion Matrix - Lasso Logistic

Predicted Predicted

Non-cartel (0) cartel (1) Non-cartel (0) cartel (1)

Actual Non-cartel (0) 61 3 Actual Non-cartel (0) 57 7

cartel (1) 3 46 cartel (1) 14 35

Confusion Matrix - Neural Networks Confusion Matrix - Ridge Logistic

Predicted Predicted

Non-cartel (0) cartel (1) Non-cartel (0) cartel (1)

Actual Non-cartel (0) 61 3 Actual Non-cartel (0) 58 6

cartel (1) 7 42 cartel (1) 11 38

Table 7: Confusion Matrix for the machine learning classifiers considering a classification threshold

equal to 0.5 - São Luís. We repeat the classification procedure 100 times and the values are based

on the average of each of the metrics computed from the confusion matrix.
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(a)

(b)

Figure 5: Sensitivity and Specificity results by restricting the cartel classification rule.
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Using the confusion matrix available in Table 7, we see that the power of Lasso

regression, whose classification error (14 + 7)/113 is approximately 18.6%, is almost

three times greater than the error calculated for Random Forest (3+3)/113 = 5.03%.

For Neural Network this measure is equal to (7 + 3)/113 = 8.9%. Ridge Logistic

Regression presents a classification error given by (11 + 6)/113 = 15.1%.

Regarding the precision measure, the Random Forest shows the best performance

in relation to the true positives cartel observations 46/(46+3) = 93.87%. The model

that comes closest to this rate is the Neural Network (42/42 + 3) = 93.3. The

proximity between the quality of the predictions of both models remains for all the

other statistics. Thus, considering the probability threshold equals to 0.5 and judging

by the set of measures, on average, we observe from Figure 5 that Random Forest is

more accurate.

For a decision rule less than or equal to 0.95, as reported in Figure 5a, the Random

Forest algorithm shows the lowest rate for false-negative outcomes. Withal, there is

a scenario in which the sensitivity of Neural Network is equivalent to that of Random

Forest. Regarding specificity, for a threshold between 0.6 and 0.8, the Ridge Logistic

Regression presents better performance, being surpassed by Lasso Regression for

intervals between 0.8 and 0.95. At this point, by Figure 5b, we see that the Ridge,

Lasso, and Random Forest models are equivalent regarding the proportion of actual

negatives that are correctly identified. Only the Neural Network has a slightly lower

performance.

6. Antitrust Authorities and Competition Policy

There are several questions to be addressed in order to increase the attractive-

ness of our method. The first one is whether our machine learning models are robust

enough to be used in other industries or even in other retail markets. The statistical
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screen approach is expected to have a good performance, even in other sectors or

countries, where price dynamics may vary from those considered in this proposal.

Besides, our approach reveals some adjustability once we can create many different

inputs as cartel screening predictors. Then, we believe it can better capture some

of the sensitivities conditioned to the different characteristics of markets and po-

tentially cover different collusive price patterns. In contrast with other detection

methods, especially those that require data on cost variables to detect bid-rigging

cartels (Bajari & Ye, 2003), our approach does require firm-level cost information.

Also, daily price databases are not necessary conditions for the antitrust agency to

detect collusion via behavioral screening methods.

The legal and economic consistency of the cartel prosecution is a challenging ob-

jective for the competition authority. Price distribution screen-based may overcome

some drawbacks of the traditional econometric approach (Huber & Imhof, 2019).

Simple screens are not as time-consuming as the structural econometric methods

that demand non-observable variables such as costs and produce many false-negative

results when applied in real cases (Bajari & Ye, 2003). Besides, classification errors

generate a very high opportunity cost for the regulator and substantially damaging

their reputation (Abrantes-Metz, 2012). We reinforce our method’s attractiveness

to raise the quality of the policymakers’ decisions. Machine learning algorithms can

easily adapt to many different situations. Then, it opens an avenue to consider little

exploited variables in retail market analysis, such as the third and fourth statisti-

cal moments of the gasoline price distribution. By evaluating price dynamics, the

regulator can map market behaviors that are harmful to competition and consumer

welfare. In this way, the combined usage of machine learning techniques with sta-

tistical screening is promising. Mainly in the prescription of competition policies in

the most varied economic sectors, not being restricted only to bid-rigging cartels.
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Null Accuracy (%) Score (%) Error (%) Precision (%) AUC (%)

Belo Horizonte

Random Forest 46.40 99.20 0.80 98.30 99.90

Lasso Logistic 46.40 87.20 12.80 92.00 94.30

Neural Networks 46.40 94.40 5.60 96.30 89.90

Ridge Logistic 46.40 55.20 44.80 55.50 70.80

Brasília

Random Forest 61.50 95.10 4.90 96.00 86.80

Lasso Logistic 61.50 95.90 4.10 96.00 86.90

Neural Networks 61.50 90.90 8.20 91.00 85.90

Ridge Logistic 61.50 86.90 13.10 82.00 88.30

Caxias do Sul

Random Forest 36.30 95.00 5.00 95.20 98.40

Lasso Logistic 36.30 90.90 9.10 90.20 94.50

Neural Networks 36.30 94.20 5.80 91.10 96.20

Ridge Logistic 36.30 66.90 33.10 100.00 73.80

São Luís

Random Forest 43.30 94.60 5.40 93.80 98.60

Lasso Logistic 43.30 81.40 18.60 83.30 90.10

Neural Networks 43.30 91.10 8.90 93.30 96.60

Ridge Logistic 43.30 84.90 15.10 86.40 91.00

Table 8: Performance of the machine learning algorithms. Null Accuracy captures the accuracy

by always predicting the most frequent outcome in the database. The score measures how often

the classifier is correct. Error denotes the miss-classification errors regarding the predicted cartel

probabilities in the total sample. The precision measures how often the prediction of cartels is

correct. AUC captures the relationship between the share of true positive predictions against the

share of false-positive predictions at various threshold settings.
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Concerning our case study, we recommend our screens by adopting some practices,

as follows. First, the coefficient of variation and the standard deviation reveals to be

the most powerful predictors. In this way, they help us to infer the negative relation-

ship between the variance of the retail price of gasoline and the cartel probability.

Therefore, low price variance suggests a higher likelihood of a cartel(Abrantes-Metz

et al., 2006). On the other hand, in some contexts, both skewness (asymmetry) and

kurtosis reveal to be relevant in the correct prediction of cartel probability. Thus,

we can see the relevance of all statistical moments. Ultimately, we have a range of

predictors that can act both in a complementary and substituting manner, increasing

the contribution derived from the economic piece of evidence on the cartel forma-

tion. Finally, regarding the trade-offs in reducing false-positive vs. false-negative

outcomes, an appropriate strategy would be to increase the probability threshold

between 0.6 and 0.75. This practice might reduce incorrect predictions among truly

non-cartel periods (false-positives) at the expense of increasing the number of actual

cartel periods (false-negatives).

7. Conclusion and Policy Implications

In this paper, we combined many different supervised machine learning techniques

with statistical screens based on the gasoline retail price distribution to predict collu-

sion. Considering an average of the overall accuracy, the models correctly predicted

around 87% of the cartel periods. Comparing all the four models, we highlight their

predictive efficiency according to the following ranking: Random Forest, Lasso Lo-

gistic, Neural Network, and Ridge Logistic Regression. Considering all cities, the

Random Forrest algorithm, on average, showed a score of 95% correct classifications

− for both cartel and non-cartel periods. Even increasing the probability thresh-

old, the Random Forest algorithm remains the most stable classifier model regarding
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sensitivity and specificity.

We also found evidence that both asymmetry and kurtosis are features that in-

creases the algorithms’ performance. These inputs work in a complementary way

- or can even replace variance and coefficient of variation in the cartel prediction.

Thus, we empirically reinforce the intuition by relying upon strong assumptions of

the traditional econometric screening methods. In other words, the supervised ma-

chine learning classifiers evaluated in this paper show us that a structural relationship

between a given screen and the probability of collusion does not assure high predic-

tive power. Therefore, as discussed in Section 6, the regulator can take valuable

information about the cartel mechanisms by assessing some descriptive statistics on

pricing patterns and combining them with classifier algorithms. Typically, machine

learning techniques are not as time-consuming as traditional econometric screening

approaches. The competition authority needs effective monitoring and often antici-

pating cartel movements. On that matter, our work showed that supervised machine

learning classifiers have many positive attributes and can provide valuable contri-

butions in detecting and fighting cartels. In contrast, we emphasize the costs and

damage to the antitrust authority’s reputation, inherent in the trade-off between

reducing false-positives vs. false-negatives.

An extension of this paper would be to establish an approximation between

the Edgeworth price cycle approach, passthrough of upstream cost shocks, response

asymmetry, and variance screens as discussed in Eckert (2013), with machine learning

algorithms. Finally, a fruitful avenue for future research would involve assessing the

role of the dual-fuel system in Brazil, which includes ethanol in addition to gasoline,

in terms of the construction of cartel screens.
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