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Abstract 
 
We investigate the sources, scope, and implications of landowner market power. We show how 
zoning regulations generate spillovers through increased markups and derive conditions under 
which restricting landownership concentration reduces rents. Using new building-level data from 
New York City, we find that a 10% increase in ownership concentration in a Census tract is 
correlated with a 1% increase in rent. Market power is substantial: on average, markups account 
for nearly a third of rents in Manhattan. Furthermore, pecuniary spillovers between zoning 
constraints and markups at other buildings are appreciable. Up-zoning that results in 417 
additional housing units at zoning-constrained buildings reduces markups on policy-
unconstrained units and generates between 5 and 19 additional units through increased 
competition. 
JEL-Codes: R310, R380, L130. 
Keywords: monopolistic competition, market power, concentration, rent, housing demand, 
zoning. 
 
 

 

C. Luke Watson 
Department of Economics 
Michigan State University 
110 Marshall-Adams Hall 

USA – East Lansing, Michigan 48824 
chwatson@fdic.gov 

Oren Ziv* 
Department of Economics 
Michigan State University 
110 Marshall-Adams Hall 

USA – East Lansing, Michigan 48824 
orenziv@msu.edu 

  
 

*corresponding author 
 
 
We thank Ingrid Gould Ellen and the NYU Furman Center and Nate Baum-Snow as well as Leslie 
Papke, John Wilson, Ronit Levine-Schnur, and seminar participants at the Gazit-Globe Real 
Estate Institute at the IDC Herzliya. All mistakes are our own. 

https://clukewatson.github.io/files/papers/monopoly_watsonziv.pdf
mailto:orenziv@msu.edu


1 Introduction 

Property rights grant landowners exclusive use over parcels of land. Since Chamberlin 
(1933), and as far back as Adam Smith, economists have considered whether this ar-
rangement endows landowners with monopoly pricing powers.1 A priori, property rights 
need not generate monopoly power, and it is standard for models of real estate markets 
to assume competition is perfect.2 Moreover, the empirical relevance of any potential 
landowner market power and, as a result, its policy implications are poorly understood. 

This paper investigates the economic impact of market power due to land rights. We 
answer two questions: is this power economically meaningful, and how should this alter 
our understanding of urban land use policies? Using data on multi-unit residential rental 
buildings in New York City (NYC), we fnd that monopoly markups are on average about a 
third of rental prices. We show how monopoly markups interact with zoning regulations, 
and examine the possibility that restrictions on land ownership concentration can reduce 
rents. 

Using a model that nests two monopoly power generating mechanisms—vertical 
and horizontal di˙erentiation—we frst explore the theoretical implications of monopoly 
markups for urban policy. Previous work has focused almost exclusively on a justifcation 
of rent control based on landowner monopoly power (Arnott, 1989; Arnott and Igarashi, 
2000; Basu and Emerson, 2003). Our framework allows us to explore how monopoly 
pricing and a larger set of urban policies interact in general equilibrium.3 

For instance, on the one hand, monopoly power attenuates the impact of up-zoning at 
up-zoned parcels themselves, as rent and quantity changes revert to monopolistic rather 
than eÿcient levels. On the other hand, zoning regulations have an additional impact on 
rents at other locations through markups, and we show that when the cost function for 
developing and renting units is nondecreasing, heavier zoning constraints in one parcel 
always raise rents at other, unzoned parcels by raising markups. 

1For Smith, that the landowners could rent unimproved land lead him to believe that rent was a 
“monopoly price” (Smith, 1776). Ricardo (1817) considered land a di˙erentiated factor of production, so 
that rents refected di˙erentials in marginal product. Marx argued that monopoly land rents came from 
three sources: quality di˙erences, markups designed to limit access to land, and extraction of rents from 
producers selling at markups (Evans, 1991). 

2See Brueckner (1987) for a unifed, formal Alnso-Muth-Mills (AMM) model and Glaeser (2007) for 
standard modelling of competitive developers. 

3Diamond, McQuade, and Qian (2019) consider the equilibrium e˙ects of rent controls on landowner 
entry and exit. Urban policies could also interact with monopoly profts through equilibrium entry and 
exit. We do not know of any paper that explores this interaction. 
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We also explore the potential for municipalities to reduce rents by limiting the con-
centration of land ownership. Restrictions on concentration have been recently proposed 
by Berlin housing activists (Stone, 2019). We apply the results of Nocke and Schutz 
(2018a), part of a growing literature on multi-product oligopoly (A˙eldt, Filistrucchi, and 
Klein, 2013; Ja˙e and Weyl, 2013; Nocke and Schutz, 2018a), to the impact of zoning on 
monopoly markups, and show that with non-decreasing marginal cost, landowners with 
higher concentration always raise markups. Intuitively, landowners with multiple lots 
can potentially internalize the impact of one parcel’s pricing decision on that of their other 
parcels. When cost-related substitution e˙ects between parcels are suÿciently small, this 
can lead to higher rents and markups. Furthermore, we extend the results of Nocke and 
Schutz (2018b), fnding conditions under which increased concentration also generates 
increases in prices for all other products, or, in our case, parcels. 

While these theoretical channels may exist, a separate question, over which the litera-
ture is silent, is whether they are empirically relevant. The extent to which landowners’ 
market power a˙ect rents will depend on the strength of complementarities between renter 
and building types, as well as the degree to which consumers see housing at similar build-
ings as substitutes. To answer this question, we construct a new building-level dataset for 
multi-unit residential buildings in NYC. We obtain building rental income from a com-
bination of scraped public owner communications and deconstructing formulas used by 
the NYC Department of Finance (DOF) for calculating tax assessment. Our main results 
focus on Manhattan buildings, although we probe robustness and derive additional power 
where necessary from buildings in the Bronx, Brooklyn, and Queens. 

First, we fnd that patterns in the data are consistent with the predictions of our 
model. In particular, we fnd that over a seven year period, a 10% increase in Census 
tract concentration is correlated with a 1-1.6% increase in average building rents. The 
relationship holds even when fully accounting for time-invariant building characteristics. 
These correlations are not causal, but they are consistent with the existence of meaningful 
monopoly power. 

Next, we estimate our model in order to ascertain the quantitative scope of markups.4 
The frst step in our markup estimation is the estimation of building-level own-price 
elasticity of demand, accounting for sorting and unobserved building quality. Previous 

4Our estimation method is based on di˙erentiated product demand estimation developed by Berry, 
Levinsohn, and Pakes (1995) and Grigolon and Verboven (2014). Within urban housing demand literature, 
our work is most closely related to Bayer, McMillan, and Rueben (2004), who estimate housing demand and 
resident sorting within San Francisco. See Kumino˙, Smith, and Timmins (2013) for a literature overview. 
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housing demand elasticity estimates focus on the housing-consumption trade-o˙ and, as 
a result, tend to fnd inelastic results (Albouy and Ehrlich, 2018), which, if taken literally, 
would be inconsistent with monopoly pricing.5 However, the relevant elasticity for a 
landowner’s pricing decision is the own-price elasticity that accounts for substitution 
between rival buildings. We estimate this elasticity and fnd median building own-price 
demand elasticity of −3.3 in our preferred specifcation.6 

An important aspect of our empirical environment is the ubiquity of constraints on 
prices and quantities in the form of rent restrictions and zoning regulations.7 , 8 In order 
to use our estimated parameters to further estimate markups, we use detailed building 
characteristics to isolate the set of buildings in our sample which are neither rent stabilized 
nor constrained by zoning.9 We call this sample policy-unconstrained. We fnd that in the 
policy-unconstrained sample, rents include an average markup over marginal costs of $705 
per month, with the mean and median markup being 30% of the rent in our preferred 
specifcation. These markups are over “shaddow” marginal costs including amortized 
purchase and maintenance costs and outside options. 

In addition, our model assumes quantity can be set optimally for current-period de-
mand, a condition unlikely to be met in our setting where fxed costs of construction and 
durable housing stocks make quantity adjustments lumpy. While we show that our model 
is isomorphic to one with separated developers and landowners with rational expecta-
tions, much of the housing stock in our sample was likely constructed (and quantity set) at 
a time when 21st century demand was unforeseeable. Accordingly, we isolate the subset 
of the policy-unconstrained sample which were constructed in the last decade of our data, 
and separately calculate markups for these. We fnd markups are similarly on average 31-
32% of rent for these buildings. In an additional specifcation, we estimate elasticities and 

5Using hedonic approaches with building-level data, Gyourko and Voith (2000) and Chen, Clapp, and 
Tirtiroglu (2011) fnd elasticities compatible with monopoly pricing, but only the latter notes the connection 
with monopolistic landowners. 

6When we estimate the change in aggregate rental demand if all building rents increased by 1%, which 
is closer in spirit to previous estimates, we then fnd an inelastic result of −0.14. 

7NYC has two forms or rent regulation, rent control and rent stabilization; we use the term rent 
stabilization for all rent regulation. Control is now rare as it applies only to buildings built before 1947 for 
tenants in place before 1971. Stabilization by far more common based on a building having 6+ units and 
built before 1974 and and may pass between di˙erent tenants; stabilized units’ rent annual growth set by 
NYC Rent Guidelines Board. 

8For zoning constraints, we ask whether a building could add one additional minimum sized residential 
unit based on foor-area-ratios and density limits. 

9We calculate that 92% of Manhattan rental buildings with four or more units are either zoning con-
strained or rent stabilized. 

3 



markups using data from the Bronx, Brooklyn, and Queens in addition to Manhattan. We 
fnd average markups range by borough between 21-30% for new, policy-unconstrained 
buildings. 

Finally, we use our results to assess the quantitative impact of up-zoning on markups, 
using the cross-price elasticities generated by our estimates in order to quantify the impact 
of a marginal relaxation of zoning constraints on rents at policy-unconstrained parcels. 
As noted by our model’s predicted interaction between zoning and markups, the large 
markups we fnd may in part refect the pecuniary spillovers of the (many) zoning-
constrained lots on the policy-unconstrained sample. Indeed, we fnd the ubiquity of 
zoning constraints appears to have an appreciable impact on rents at policy-unconstrained 
lots. On average, a policy change resulting in the construction of roughly 417 additional 
units at zoning-constrained parcels reduces markups by between $6.72 and $7.41 per 
unit at policy-unconstrained buildings, which implies an additional 5-19 units through 
increased price competition. For context, the magnitude of this spillover on rents at the 
signifcantly smaller unconstrained sample is over 10% of what the magnitude of the 
(frst-order) average rent e˙ect on the up-zoned lots themselves would be. 

2 Model 

We frst set up the optimization routines for each agent in our model: landowners endowed 
with locations and choosing rental rates, and renters endowed with income and choosing 
residences. We then defne and solve the equilibrium in two cases: frst, without vertical 
di˙erentiation in location quality, and, second, without horizontal di˙erentiation. We 
review how, in each case, the model delivers landowner pricing power. 

2.1 Setup 

Parcels and Landowners The space, a city, is comprised of a set A = {a0, a1, a2, . . . , aJ }

discrete parcels, which di˙er according to their underlying quality a, drawn without 
replacement from a distribution G1(a). Higher values of a have higher amenity value to 
renters. We refer to a as “location quality" and di˙erences in a as vertical di˙erentiation in 
parcels. A location’s realized quality a will also be used henceforth to index each location 
in the set A. We make the simplifying assumption that a is exogenous, while noting 
that in the data building and parcel characteristics are a mix of endogenously chosen and 
exogenously given. Additionally, we set a0 as living out of the city; i.e, an outside-option. 
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Each parcel has a unique landowner f > F who maximizes profts by choosing the 
rent level at her location. Here, we also assume landowners each own a unique parcel, 
although we relax this later on. 

Landowners provide a mass of renters housing at a positive, di˙erentiable marginal 
cost ca(q), where q is the mass of renters the landowner accommodates in equilibrium. 
Total revenue is rent r collected times q. A given landowner f ’s profts from parcel a 

are πa = r � q − ca(q). Landowners determine the constructed quantity and rental price of 
units, and subtracting markups from rent backs out a “shadow” marginal costs combining 
both of these activities. Our estimation will not rely on observing these costs. Appendix 
B shows that equilibrium prices and quantities are unchanged when we separate the 
development and rental price problems and the markup is capitalized into the price of 
the building. In Section 6.3, we discuss how we navigate this assumption in our empirical 
setting, where landowners are constrained by policy and supply is set in advance. 

Renters A mass M of heterogeneous renters, indexed by i > N , draw income-types y from 
distribution G2(y). Renter utility is derived from consumption and location amenities. 
Renters also draw idiosyncratic tastes for each location, �i,a, from a type-one extreme value 
distribution G3(�) with scale parameter σ�. Utility may vary independently by type as 
well: 

Ui(a; yi) = F (a, yi − r(a), yi) + �i,a, (1) 

where consumption is equivalent to income minus rent. Renters choose among all loca-
tions a to maximize utility taking amenities, rents, and personal income as given. 

2.2 Equilibrium 

An equilibrium will be defned by a schedule of rents and quantities {(ra, qa)}a>A that 
maximize landowner profts, assign renters to locations a such that no renter can increase 
utility by choosing to pay rents at any other parcel, and clear the real estate market. Thus, 
for each type y, the original density of types y is accounted for across all their chosen 
locations a and the outside option, g(y) = PA qa(y) + q0(y).10 

We make additional assumptions on the renter’s payo˙ function F and the distributions 
of types to briefy review each source of landowner monopoly in equilibrium. 

10We do not consider combinations of G2(y), cost functions, and G1(a) which result in the full mass of 
renters choosing the outside option. 
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2.2.1 Equilibrium Under Horizontal Di˙erentiation 

For the horizontal di˙erentiation case, we set the quality and income distributions as 
degenerate; i.e., aj = a and yi = y. This construction delivers standard multinomial logit 
choice probabilities for market demand: 

F (a,y−r(a),y)~σ�e
= œ � M (2)

{eF (a ,y−r(aœ),y)~σ� }
Da 

P 
aœ>A 

We solve the symmetric pricing equilibrium assuming landowners compete in rents and 
noting that all amenities are equivalent, which yields an inverse elasticity markup rule:11 

rƒ(a) = mc(Da) − 
Da 

Ô� 
rƒ(a) − mc(Da)

=
−1 
, (3)

∂Da ~∂r rƒ(a) εa 

where εa is the own-price elasticity. 
The equilibrium rent at each building equals marginal cost plus a markup related to 

the curvature of demand, which is a function of the marginal utility of consumption, 
the scale of the idiosyncratic tastes, and substitution behavior of renters.12 The solution 
implies strictly positive markups in rents.13 To close the model, we apply a market clearing 
condition that the total number of renters housed in and out of the city equals the total 
number of renters. 

2.2.2 Equilibrium Under Vertical Di˙erentiation 

For the vertical di˙erentiation case, we assume that the renters’ utility function displays 
increasing complements between renter income y and location quality a and that idiosyn-
cratic draws, �i,a, are all zero. We now suppress individual subscripts i as all di˙erences 
are based on a and y. The model yields vertical oligopoly as in Shaked and Sutton (1983). 

11Given the degenerate distribution of amenities, a symmetric solution to the landowner’s problem can 
be reasoned verbally. Suppose all landowners with amenity value a set rent at some equilibrium rƒ(a). Any 
individual deviation to a higher rent leads to less demand since amenities are equivalent, but any deviation 
to a lower rent would lead to greater demand. 

12Caplin and Nalebu˙ (1991) and Perlo˙ and Salop (1985) show that such an always equilibrium exists. 
13An economic consequence of the markup is that some renters do not enter though they would if parcels 

were priced at marginal cost; i.e., Da(r
M 

) < Da(mc(Da)). Thus, there exist renters with a willingness to 
pay for space greater than their impact on marginal cost, but are nevertheless priced out of the market. See 
Bajari and Benkard (2003) for more implications from the horizontal discrete choice model. 
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We assume utility is log-supermodular in renter and parcel type: 

F (a, y − r, y) = F1(a, y) � F2(y − r), (4) 

where function F1 is log-supermodular in a and y, and F2 is an increasing function 
of consumption (equivalent to income minus rent). Landowners set rents according to 
individual willingness to pay (WTP). Because (dF1 ~da) > 0, it’s clear that all else equal, all 
types prefer higher a locations, and therefore that (dra ~da) > 0. Moreover, conditional on 
rents at other locations, di˙erent types y will have di˙erent WTP for a given parcel of type 
a. WTP of type y for location a is 

WTP (y, a) = min F1(a, y) � F2(y − ra) − F1(b, y) � F2(y − rb). (5)
¦b>A�a 

The equilibrium is given by a set of rents ra and cuto˙s y1, ..., yN−1. Between any cuto˙ 
ya−1 and ya, the willingness to pay of individuals assigned to location a is heterogeneous 
and single-peaked in type y at some ya,peak > [ya−1, ya]. In other words, increasing comple-
mentarity acts within assignments of continuous types to the discrete number of parcels 
to create variation in WTP. 

The landowner pricing rule chooses q, and e˙ectively ya−1 and ya such that 

ra − mca(q) = − 
g2(y

G 

a 

2 

)

(
dy 

ya 

a

)

−

− 

g

G 

2( 

2 

y

(

a 

y 

− 

a 

1 

− 

) 

1 
dy

) 

a−1 
. (6) 

dra dra 

dya−1Note that dya < 0, > 0, and therefore markups are positive. As landowners adjust rent dra dra 

ra upwards, they lose renters on two margins, the lowest-type assigned to their parcel, ya, 
who fee to the cheaper next-best option a − 1, and those near the top of the distribution at 
their location that spend more for the option a + 1. 

To close the model, the housing market must clear. Note that cuto˙s are continuous, 
and for any y1, if y1 chooses a parcel in the city all y > y1 do as well. If WTP is negative 
for the lowest type y at the lowest location a, some mass of types will choose the outside 
option. A parcel is unoccupied if ya = ya−1. 

3 Policy Implications: Theory 

In this section, we assess the e˙ects of several policies in the context of monopoly markups. 
First, we discuss the impact of zoning. We show that in the horizontal case, zoning raises 
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rents of parcels that are not constrained by zoning, even when marginal costs are constant. 
Second, we discuss how, under non-decreasing marginal costs, concentration of land 
ownership raises markups and rents at all parcels. We conclude by discussing the scope 
for analysis of monopoly power in several other urban policies. Appendix A presents 
proofs of our propositions. 

3.1 Old Policies, New Implications 

An immediate implication of the above model is that, even in the absence of spillovers, a 
policy of no zoning is not frst-best. Because a monopolist landowner restricts quantity, 
the quantity di˙erence between zoning-restricted and an identical, unrestricted parcel 
with a monopolist landowner is less than the di˙erence between zoning-restricted parcels 
and a competitively priced parcel. Height minimums could reduce rents. 

What happens when zoning constraints are not binding everywhere? To the extent that 
zoning constrains bind at a particular parcel, the quantity must be restricted beyond the 
monopoly-optimal quantity, and rents as a result must be higher. However, in a city where 
only some parcels are constrained by zoning rules, those constraints also impact rents at 
unzoned parcels by a˙ecting equilibrium monopoly power at unconstrained parcels. In 
both the vertical and horizontal case, the rent at a given parcel is inversely proportional 
to rents at other parcels. When we restrict ourselves to the horizontal case, we can state 
the following: 

Proposition 1. With logit demand and non-decreasing marginal cost, all else equal, the imposition 
of binding zoning constraints on a given parcel increases the rent at all other parcels, including 
unzoned parcels and parcels where zoning constraints do not bind. When marginal cost is constant, 
markups at those parcels go up as well. 

Appendix A presents a proof. By raising rents at competing locations, binding zon-
ing constrains have spillover e˙ects on rents at policy-unconstrained locations through 
monopoly pricing. Likewise, relaxing zoning constraints at one parcel brings down rents 
everywhere. Of course, even when units are priced competitively, if marginal costs are 
increasing, by limiting supply at one location, zoning can impact rents and quantities at 
other locations. But Proposition 1 points out that monopoly power exacerbates the price 
e˙ects by changing optimal markups. In other words, even in a world of constant marginal 
costs, zoning constraints at one parcel would raise rents at all other parcels in the city by 
increasing monopoly markups. This e˙ect operates through the cross-price elasticities, 
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which, in the multinomial logit case can be signed and compared across any equilibria. 
In Section 8, we assess the empirical magnitude of this force by considering a marginal, 
across the board loosening of zoning constraints in Manhattan. 

3.2 New Policies, New Implications 

Under monopoly pricing, higher rents can generate a positive pecuniary externality on 
other landowners, and, by increasing demand and a˙ecting elasticity, monopoly markups 
at one parcel may positively impact markups, rents, and profts at other locations. When 
landowners own multiple parcels, they internalize these pecuniary externalities, which 
may result in higher markups and rents overall. Intuitively, monopolists with greater 
market share may reduce quantity to a greater extent in order to maximize total profts. 

In general, however, the impact of changes in land ownership concentration is anal-
ogous to mergers in the multi-product oligopoly setting. As in that setting, we cannot 
make statements on the e˙ects of concentration on the equilibrium without additional 
assumptions. We extend Nocke and Schutz (2018b) to generate the following proposition: 

Proposition 2. With logit demand and non-decreasing marginal cost, all else equal, landowners 
with higher market share have higher markups and rents; an increase in the ownership share of 
one landowner will generate increases in markups and rents at all the landowner’s parcels, and 
increases in rents at all other parcels. 

Because we cannot assume marginal cost is constant, we introduce an even more 
fexible cost function than those found in Nocke and Schutz (2018b,a). That, in turn, 
requires an extension to the result on the relationship between own share and others’ 
share on markup and rent. Appendix A provides a proof. 

Note that Proposition 2 is only guaranteed to hold when we can exclude the possibilities 
of scale economies and when there are no systematic variations in individual valuations 
by individual characteristics; i.e., no sorting. Intuitively, if landowners can raise profts 
by forcing more individuals into one parcel, generating scale, or if they can a˙ect the 
sorting equilibrium through manipulations to the rents of multiple parcels, they may fnd 
it optimal to reduce, rather than increase rents and markups. 

An important implication of this result is that manipulating the ownership structure of 
parcels a˙ects rents through monopoly pricing. In particular, under specifc conditions, 
reducing ownership concentration will reduce rents. In Section 5, we look for evidence of 
scope for such policies in our New York City dataset. 
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3.3 Additional Policies 

We close our policy discussion by briefy and informally discussing the potential interac-
tions of monopoly pricing with three other urban policies: rent regulation, inclusionary 
zoning, and use laws. 

Where previously introduced into the housing literature, the concept of monopoly 
power among landowners has been used to advocate for rent regulation. The intuition 
is that reducing rents in the presence of monopoly markups can achieve the eÿcient 
equilibrium. By contrast, Diamond, McQuade, and Qian (2019), who do not explore 
monopoly markups, show that rent controls generate an extensive margin impact. While 
it is beyond the scope of this paper to discuss exit and entry, Appendix B shows how 
monopoly markups are capitalized into land rents and could impact such decisions. 

In this context, inclusionary zoning policies, which mandate a˙ordable housing be 
included in new developments, can be considered as a policy which moves monopoly 
quantities to eÿcient levels similarly to rent controls, but without reducing monopoly 
proft and therefore without a˙ecting entry decisions. 

Finally, we point out that zoning use laws may also operate on monopoly margins. 
While we only consider markups in a residential market, if demand elasticities vary be-
tween residential and commercial markets, use laws may reduce markups by constraining 
landowners to build in less proftable markets with more elastic demand. 

4 Data 

Sources Our main data are derived from public administrative building-level records, as 
well as scraped data, from several New York City departments, including the Departments 
of City Planning, Finance, and Housing Preservation & Development. Our primary 
dataset combines the Primary Land Use Tax Lot Output (PLUTO) and the Final Assessment 
Roll (FAR) for all buildings in NYC, as well as current and historic Multiple Dwellings 
Registration and Contacts (MDRC) datasets (with prior years graciously provided to us 
by the NYU Furman Center).14 The PLUTO provides location, zoning, and building 
characteristics while the FAR provides market values, land values, and building ownership 
information. 

We merge these with data derived from communications between the DOF and 

14The MDRC links building owners to shareholders revealing common ownership across buildings. 
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landowners, scraped o˙ the Property Tax Public Access web portal, which we call the 
Notice of Property Value (NPV) dataset. It includes information mailed to building own-
ers including gross revenue and cost estimates and the number of rent stabilized units.15 

We use the 2010 Decennial Census to allocate rental households to buildings to estimate 
building vacancies.16 To determine the size of the rental market, we use the total number 
of NYC renter households that are in buildings with four or more units.17 

Sample Our data spans from 2008 to 2015. We use all years when analyzing ownership 
concentration but focus on 2010 for demand estimation. 

For demand estimation, we use all private buildings classifed as multi-family rental 
buildings in Manhattan with four or more units, where all units are residential units and 
there is no missing data. When we construct the instruments based on rival building char-
acteristics, detailed in Section 6.2, we expand the sample to include mixed-use, residential 
rental buildings. We exclude mixed-use buildings in the estimation because we cannot 
separate building income due to residential versus commercial tenant sources.18 

For analyzing rents and ownership concentration, we use a subset of our estimation 
sample that excludes buildings that are zoning constrained or rent stabilized, which we 
call the unconstrained sample.19 For the ownership concentration results, we additionally 
drop buildings where the listed building owner in the FAR data did not match the MDRC 
data and buildings with less than six units.20 For more details, see Appendix C. 

For computation and expositional purposes, our main analysis focuses on buildings 
in Manhattan. For additional power and robustness, we expand our sample to include 
buildings from Brooklyn, the Bronx, and Queens; we exclude Staten Island due to relatively 
small number of multi-unit rental buildings. 

15The NPV dataset was originally web-scraped by a third-party from the DOF’s Prop-
erty Tax Public Access web portal. Full details about this process are available at 
http://blog.johnkrauss.com/where-is-decontrol/. 

16To allocate rental households, we multiply building residential units by the block level rental occupancy 
rate. This method assumes that vacancy rates are uniform within Census blocks. 

17The 2010 Census reports the number of renter households but not stratifed by building units, so we 
scale the 2010 Census value by the ratio of renters in 4+ unit buildings to all renters from the 2010 ACS. 

18In the context of our demand model discussed later, we do not push mixed-use buildings to the ‘outside’ 
good; instead, we simply do not include them in the estimation. 

19Specifcally, a building is zoning constrained if the building would not be allowed to create an additional 
unit based on building foor-area-ratios and minimum unit area requirements, and is rent stabilized if more 
than 10% of units are rent stabilized. 

20We are able to match over 80% of all building owners across years. We drop buildings with {4, 5} units 
due to NYC assessment methodology changes for these buildings. 
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Geographic Units We use Census tracts as a unit of observation for ownership con-
centration as well as for nests in one specifcation of our elasticity estimation. The large 
number of tracts provides us greater variation in the data. In addition, as discussed in 
Appendix D, ownership concentration is more easily calculated at the tract level, a feature 
which will help us in Section 5. An obvious downside to this choice is that markets are 
likely geographically continuous. Individuals at the borders of tracts are more likely to 
search at adjacent tracts than in other neighborhoods. The nested logit structure we adopt 
will not fully capture this, nor will our concentration measures, which will likely attenuate 
results. We also use an NYC specifc geography, Neighborhood Tabulation Areas (NTAs), 
that is a sub-county collection of Census tracts. 

Building Rental Income For 80% of our multi-year sample, we use scraped data from 
communications between the city and landowners about building income. For the rest of 
our sample, we rely on public data on assessments records from the DOF, which include 
methodologies for generating assessments from building income, that allows us to back 
out income from the assessment data.21 

In NYC, rental buildings are assessed based on their income generation. The DOF 
collects annual revenue and cost information for all rental buildings and then applies a 
statistical formula to translate annual revenue into ‘market value’ (MV) of the building 
if it were sold, which is the basis of a building’s tax assessment. Importantly, MV is 
determined by a simple Gross Income Multiplier (GIM) formula: 

Market Valuej Annual Revenuej
= GIMj � , (7)

SQFTj SQFTj 

where the GIM is determined by the DOF based on actual sales in a given income decile 
range and location.22 The DOF reports MV and SQFT for all buildings in the FAR dataset, 
and so for 80% of the sample we observe both income and MV. We non-parametrically 
estimate the GIM term as a function of MV/SQFT, borough, and year based on DOF 
guidance documents.23 We assess our procedure by using the estimated GIM and reported 
MV to calculate a ftted income value for the matched sample, and fnd a correlation of 

21See – nyc.gov/site/finance/taxes/property-assessments.page. 
22E˙ectively, if a building’s MV/SQFT is in the qth quantile, then its AR/SQFT is also in that quantile, 

and all buildings in a given quantile and location will have the same GIM. 
23For each borogh-year, we estimate the empirical GIM within 50 quantile bins of MV/SQFT (which we 

observe for all buildings) and then apply this to the unmatched buildings. 
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0.99 and coeÿcient of determination of 0.98. For more details, see Appendix E. 
Once we have building income for all buildings, we must subset the data to single-use 

residential buildings due to our inability to distinguish between residential and commer-
cial income. We divide building income by the number of units for average annual unit 
rent in a building, and again by twelve for average monthly rent. A limitation of this 
approach is that we rely on building averages as we do not see individual unit income. 

Other Variables We link buildings based on their “borough-block-lot” (BBL) identifca-
tion that is uniquely assigned to real estate parcels, with additional verifcation based on 
lot characteristics.24 

The building-level characteristics that we include are building age, log miles to the 
central business district (CBD, which we defne as City Hall), log miles to nearest sub-
way station, years since the last major building renovation, average unit square-feet, and 
whether the building has an elevator. We also measure the number of residential build-
ings, oÿce buildings, retail buildings, and open parks in the Census block group. For 
location controls we include polynomials of building latitude and longitude coordinates 
and include location fxed e˙ects.25 We also use reported land value of parcels, which is 
constructed by the NYC DOF using a database of building and vacant parcel transactions. 

An important limitation of our data is the inability to control for unit-level characteris-
tics. We approach this issue as an omitted variables issue. In our analysis of concentration 
changes, building fxed e˙ects will be an important control that, together with informa-
tion on renovations, help us control for these unobservables. In our elasticity estimation, 
unobsevable unit characteristics will show up as building unobservables and will be an 
important motivation for our instrumental variable approach. 

Summary Statistics Table 1 presents summary statistics for 2010 Manhattan rental build-
ings. Each column represents a cut of the data that we use. As explained above, the frst 
is used for calculating our instruments, the second is used in our estimation, the third is 
the set of policy-unconstrained buildings—for which we can calculate markups, and the 
fourth is a subset of the policy-unconstrained buildings that are 10 years old or less in 
2010. Figure 1 plots the total number of households and mean unit rents by Census tract. 
In Appendix C we plot additional spatial distributions, such as zoning constraints and 

24Most parcels contain a single building, but large parcels can contain multiple buildings with open 
space between them. We refer to buildings and BBLs interchangeably throughout. 

25We use Census tract FEs for the RCL and Neighborhood Tabulation Area FEs for the RCNL. 
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rent stabilization. 

Table 1: Summary Stats: 
2010 Manhattan Rental Buildings 

IV Sample Estimation Sample Unconstrained Sample New, Unc. Sample 

Total Market Share 26.5% 11.7% 0.7% 0.1% 
Res.Units per Building 25.3 21.1 20.5 46.3 
Households per Building 24.9 20.0 19.4 43.4 
Vacancy Rate 5.4% 5.5% 5.7% 5.8% 
Percent Mixed-Use 47% 0% 0% 0% 
Percent Rent Stabilized 63% 60% 0% 0% 
Percent Zoning Constrained 77% 80% 0% 0% 

Median Monthly Rent* 
Median Rent by Median Income* 
Median Monthly Land Value per Unit 

– 
– 

$2,989 

$1,309 
30% 
$2,520 

$2,071 
48% 
$5,314 

$2,247 
52% 
$2,381 

Years Since Construction 94 95 87 4 
Years Since Renovation 48 48 35 4 
log(Distance CBD) 1.34 1.58 1.45 1.32 
log(Distance Subway) -1.94 -1.89 -1.96 -1.72 
Avg Unit Sqft 769 752 1,135.11 1,339 

Buildings 17,828 9,484 566 53 
Note: The table reports summary statistics for our main samples using Manhattan buildings with four or more residential units. The frst column, IV Sample, includes mixed-use 
buildings. The second column, Estimation Sample, includes buildings with only residential units. The third column, Unconstrained Sample, includes buildings with no rent-
stabilized units and which are able to add an additional unit according to zoning regulations. The New, Unconstrained Sample (last column) is hte subset of the Unconstrained 
Sample which were constructed between 2001-2010. Building data from PLUTO, NPV, and FAR fles. Market share is the sum of total households in all buildings by large building 
total renter population in NYC. Households are allocated to buildings based on building units and 2010 Decennial Census and American Community Survey. The vacancy rate 
is one minus the total households in building divided by total building units. A building is mixed-use if the building has positive commercial area. A building is considered 
rent stabilized if more than 10% of units are rent stabilized. A building is zoning constrained if the building would not be allowed to create an additional unit based on building 
foor-area-ratios and minimum unit area requirements. Monthly rental income is building income divided by total units divided by 12. Median income in 2010 for NYC is $ 
50,711. Monthly land value per unit is [Land Value / (12 x Residential Units)]. Years since construction and renovation equal 2010 minus the construction year and most recent 
major renovation year. Geodesic distances are in log miles based on building (lat,lon) coordinates. Avg Unit Sqft is total building area divided by total units. 
(*) – Rent data is only available for single use buildings 

5 Concentration and Rents in New York City 

We now examine the correlation in the data between ownership concentration and rents. 
We note that results in this section are not causally identifed. Nonetheless, we fnd, 
reassuringly and in line with predictions of Proposition 2, that increases in concentration 
are correlated with increases in rents. 

To examine whether the data are consistent with the predictions of Proposition 2, 
we frst construct ownership shares at the Census tract level from 2008 to 2015. Section 
4 summarizes the trade o˙s of tract-level analysis, as well as our construction of tract-
level ownership data, in tandem with Appendix D. As noted in Section 4, we calculate 
concentration, which will be a Herfndahl-Hirschman Index (HHI), o˙ of the full sample 
of buildings in each year but for rents, our outcome variable, we restrict our sample here 
to unconstrained buildings with matched ownership information. Note that our sample 
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Figure 1: Distribution of 2010 Manhattan Renters & Rents 

1000 2000 3000 4000 5000

Total
Households 1000 2000 3000 4000 5000

Avg Unit
Month Rent

Note: The fgure displays the geographic distribution of households and rent in the Manhattan data. The map on the left plots total 
renter households by Census tract in 2010. The map on the right displays the mean monthly unit rent by Census tract in 2010. Missing 
values are Census tracts where we have insuÿcient data, in part due to the exclusion of mixed-use buildings. Red tracts indicate higher 
households and rents respectively, using a log scale. Data from PLUTO, FAR, NPV, and 2010 Census. 

di˙ers from our estimation sample in Table 1 because we pool eight years of data and only 
use buildings with six or more units in each year.26 Summary statistics for this sample are 
available in Table A1 in Appendix C. We begin with our main geography, Manhattan, and 
then extend the sample to equivalent buildings in the whole of New York City to improve 
power. 

Using our constructions of ownership, we calculate tract-level concentration. Let Af,g,t 
be the set of buildings owned by landowner f in tract g in time period t, and let Fg,t be the 
set of landowners in that tract and time. We thus calculate landowner market shares as: 

f 
›Pj>Af,g,t 

Dj,t ” 
sg,t �= (8)

‘
.

Pf œ>Fg,t 
−Pj>Af œ,g,t 

Dj,t 

Figure 2, plots tract-level HHI measures for Manhattan, where HHI is the sum of squared 
f œ 

‘
2

owners’ shares, HHIg,t �= Pf œ>Fg,t 
−sg,t . 

To more closely match the predictions of Proposition 2, which links ownership con-

26In Section 7 our results use rental income for buildings with four or fve units. These are obtained 
using DOF assessment procedures linking reported market values to rental income. We cannot use these 
here because of assessment procedures changes over the course of this panel for this group. 
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Figure 2: Distribution of Ownership Concentration in Manhattan 

2008 2015

0.05 0.1 0.25 0.5 1
HHI

Note: The fgure plots the tract-level ownership concentration index HHIg,t in 2008 (left map) and 2015 (right map) on log scales. Reds 
indicate more concentration. FTC Horizontal Merger Guidelines consider values above 0.25 to be highly concentrated. Sample is all 
residential buildings with 4+ units in Manhattan. Data from PLUTO, MDRC. 
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centration elsewhere to rents, we construct a modifed “leave-out” HHI index. For each 
landowner f , we recalculate the market share of a rival landowner, h, as: 

h 
›Pj>Ah,g,t 

Dj ” 
s̃ �= (9)f,g,t 

‘
,

Pf œ>F ¬f −Pj>Af œ,g,t 
Dj 

g,t 

where F¬f is the set of rivals to landowner f , and then calculate the leave-out HHIg,t 

for landowner f as the sum of these rival landowners’ squared shares: HHIf(j),g,t �= 
Ph>F ¬f ›s̃f,g,t 

h ”
2 .27 

g,t

We then test the basic prediction that rent increases in concentration. Our main 
specifcation estimates 

ln[rj,g,t] = α0 + α1 � ln[HHIf(j),g,t] + α2 � Xj,g,t (10)+ �j,g,t, 

where rj,g,t is the average unit rent of building j in tract g at time t, HHIf (j),g,t is described 
f (j)above, and α2 is a vector of coeÿcients on controls Xj,g,t. We also include ln[s ] ing,t 

some specifcations to separately test for the impact of owners’ shares on rents at their 
own buildings. Note that while we use general subscripts {j, g, t} for Xj,g,t, in specifc 
specifcations some controls will be time variant, e.g., when using building fxed e˙ects. 

Column (1) of Table 2 Panel (A) estimates the specifcation in Equation (9) for Man-
hattan buildings using year fxed e˙ects, building age, square of building age, the log of 
distance to nearest subway and the log of distance to the CBD, average square feet of living 
space per unit, and years since last renovation. The inclusion of year fxed e˙ects treats 
the data as a repeated cross section, and su˙ers from clear unobserved variable bias. We 
refrain from interpreting the small and insignifcant resulting coeÿcient on HHIf,g,t. 

In Column (2) of Panel (A), we add tract fxed e˙ects. Here, identifying variation is 
changes over the course of the panel at the tract level, removing unobserved time-invariant 
tract-level variation. A 10% increase in tract concentration index is associated with a 1.6% 
increase in rents. The signifcant coeÿcient is consistent with Proposition 2: buildings in 
tracts where ownership elsewhere in the tract is concentrating experience larger increases 
in rents. 

Column (3) of Panel (A), our most stringent specifcation, further imposes building 
fxed e˙ects. Here, building time-consistent controls drop, though years since renovation 

27In Appendix D, we probe robustness using the more standard construction of HHI and shares in 
Equation (8). 
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Table 2: The Relationship Between Ownership Concentration and Rent 

(1) (2) (3) (4) (5) (6) 
ln[Average rj,g,t ] 

Panel (A): Manhattan 
ln[HHIf (j),g,t] -0.012 0.161 0.075 0.009 0.162 0.075 

(0.032) (0.080) (0.076) (0.038) (0.076) (0.076) 

ln[s f(j)] -0.028 0.002 -0.013g,t 

(0.026) (0.025) (0.027) 

Year FEs Y Y Y Y Y Y 
Tract FEs N Y N N Y N 
Building FEs N N Y N N Y 
Observations 2,519 2,504 2,393 2,519 2,504 2,393 
R2 0.29 0.63 0.75 0.29 0.63 0.75 

Panel (B): Bronx, Brooklyn, Manhattan, Queens 
ln[HHIf (j),g,t] 0.047 0.122 0.102 0.043 0.128 0.095 

(0.016) (0.056) (0.037) (0.018) (0.053) (0.037) 

ln[s f(j)] 0.006 0.006 -0.027g,t 

(0.013) (0.012) (0.014) 

Borough-Year FEs Y N N Y N N 
Tract and Year FEs N Y N N Y N 
Building and Year FEs N N Y N N Y 
Observations 13,651 13,576 12,743 13,651 13,576 12,743 
R2 0.40 0.64 0.77 0.40 0.64 0.77 

Note: The table reports the results from regressions of log of building average unit monthly rent on the log of the ‘leave-out’ HHI index, 
calculated at the building level by leaving out the building owner’s units. Regressions are at the building-year level and are weighted 
by building units. Columns (4)-(6) add log of building owner’s market share as a control. The sample in Panel (A) are all matched, 
unconstrained buildings in Manhattan; Panel (B) expands the sample to all matched, unconstrained buildings in NYC. Columns (1) 
and (3) in Panel (A) use year / Panel (B) borough-year fxed e˙ects, running a repeated cross-section. Columns (2) and (4) include 
tract and year fxed e˙ects, running a panel at the tract level. Columns (3) and (6), our most stringent specifcations, include building 
and year fxed e˙ects, exploring variation in tract-level concentration while controlling for building-level, time-invariant di˙erences. 
Building controls for all columns include building age, age squared, years since renovation, indicator if building has an elevator; for 
columns (1,2,4,5) log distance to CBD and log distance to closest subway (omitted in columns (3,6) due to building FEs. Standard errors 
in parentheses are clustered two ways by tract and year. 

is an important control that remains. Because of the diÿculty in observing key building 
characteristics, this specifcation ensures that of Column (2) is not identifed o˙ of un-
observed di˙erences in building quality. The coeÿcient is positive but insignifcant – a 
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motivation for our inclusion of more data in Panel (B) below. 
Finally, Columns (4)-(6) introduce controls for building owners’ own share of the tract 

as a control. According to Proposition 2, we expect owners with growing shares and thus 
market power to increase rents. An important condition in the Proposition is that costs 
be non-decreasing, which would be violated if there were scale economies in ownership. 
Across specifcations, the coeÿcient is small but noisy and inconclusive. 

Because our most stringent specifcations appear to lack power in Columns (3) and 
(6), we expand our sample to include three more boroughs: the Bronx, Brooklyn, and 
Queens (with too few observations per tract in Staten Island, we do not include it in 
our sample). Here, coeÿcients are generally in the same direction, and in particular, 
the coeÿcients on tract HHI in Columns (3) and (6) are now positive, signifcant, and 
economically meaningful, with a 10% increase in concentration again associated with a 
roughly 1% increase in rents. 

An important caveat in this analysis is the inability to observe changing tract conditions 
that are correlated with both rents and ownership concentration. Tracts with improving 
overall neighborhood qualities may experience rising rents and rising ownership concen-
tration in tandem. We therefore caution against interpreting these coeÿcients causally, 
but instead take reassurance from the stylized fact that increases in concentration are cor-
related with increases in rents. We use this stylized fact as motivation for our identifed 
estimation results. 

6 Estimating Elasticities and Markups 

To empirically assess the monopoly forces described above, we estimate the building-
level demand elasticity for Manhattan rental buildings in 2010. We follow the literature 
empirically estimating di˙erentiated product models with consumer heterogeneity based 
Berry, Levinsohn, and Pakes (1995) (BLP) and the citing literature.28 Below, we describe 
our empirical model and identifcation strategy. 

28In particular, we follow the methodological advice in Dubé, Fox, and Su (2012); Knittel and Metaxoglou 
(2014); Gandhi and Houde (2018); Conlon and Gortmaker (2020). 
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6.1 Renter Demand Econometric Model 

As in our theoretical model, the urban rental market is made up of all individuals who will 
choose to live in a rental property.29 In our main specifcation, we di˙erentiate the choice 
set geographically, such that we consider all rental properties in Manhattan as ‘inside’ 
goods and all rental properties in the other boroughs as part of an ‘outside’ good.30 We 
then probe robustness using NYC data from four boroughs as separate markets, where 
the outside goods are smaller buildings in the same borough. 

We estimate two versions of our model. Closest to our exposition in Section 2, we esti-
mate a random coeÿcients logit (RCL) model. Second, we estimate a random coeÿcient 
nested logit (RCNL) model where nests are Census tracts, which by necessity remove our 
most stringent location controls—tract-level fxed e˙ects—due to collinearity with our 
defnition of building nests. The RCL model is simpler to estimate and allows greater 
location controls; however, the RCNL model allows for within-nest preference correlation 
with nearby buildings at the expense of less robust location controls. 

We assume that renter i’s utility from choosing unit j is composed of a common vertical 
di˙erentiation component, µ, and idiosyncratic horizontal components, {ψ, �}: 

+ 
α 

Uij = µj + ψij + �ij �= δj + Xj β rj + Q {γhvihxjh}+�ij . (11) 
yi´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ h>H2 

µj ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ψij 

Equation (11) parameterizes utility as a function of renter income, y, observed covariates 
and rent, {X, r}, a scalar unobservable amenity, δ, and covariate-specifc taste shifters, 
vh. For ease of notation, we express the joint distribution of renter incomes and tastes, 
θ = (y, {vh}), conditional on observed variables,(X, r), as F (θ), which we will defne 
empirically when we describe our estimation routine. 

For our empirical specifcations, building covariates in X include a constant, age, years 
since last renovation, log distance to CBD, log distance to nearest subway, avgerage unit 
square feet, and the location controls mentioned in Section 4, including Census tract FEs 
for the RCL and NTA FEs for the RCNL models.31 

29Our market defnition may be better stated as large rental properties as we only consider rental properties 
with four or more units. 

30This is analogous of comparing utility from a Manhattan property to the average non-Manhattan 
property for each individual renter. 

31For the H2 subset of covariates with random coeÿcients, we use a constant, age, years since renovation, 
log distance to CBD, log distance to nearest subway, and avg. unit square feet. 
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We calculate a building’s market demand, Dj , as the aggregation of individual renter 
demands, dij . Under the assumption that �ij is distributed Type 1 Extreme Value, the RCL 
model implies an individual renter’s building demand is calculated as: 

(µj +ψij )e 
dij = ) . (12)

P e(µk+ψik 

k>A 

Similarly, under the assumption that �ij = ›�̃i,h(j) + (1 − ρ)�̃ijh ”, where �̃ijh is distributed 
Type 1 Extreme Value, the RCNL model implies: 

(µk +ψik)P e
((µj +ψij )~(1−ρ))e k>h(j)

� � (13)dij = dijSh(j) di,h(j) = ((µk+ψik)~(1−ρ)) ) ,P e P P e(µk+ψik 

k>h(j) h>H k>h 

where dijSh is the within-nest building demand and di,h is the nest demand. The random 
variable �̃i,h introduces taste variation across nests and ρ governs preference correlations 
within nests.32 

6.2 Identifcation and Instruments 

There are two endogenous variables for every observation: market share and rent.33 Our 
estimation strategy allows us to identify demand parameters while being agnostic to the 
supply side of the market. While we observe some building amenities directly, rents are 
likely correlated with unobserved amenities, δj . Broadly, these unobervables may either 
be about buildings’ amenities or area amenities not in our data. To identify α, we require 
an instrument Z(r) that shifts rent but is unrelated to these amenities. To identify the γ 

coeÿcients, we require instruments that shift the substitution patterns between products, 
Z(x). With instruments, Z = (X, Z(x), Z(r)), the identifying moment condition is 

E[δ(X, r, s; θ) S Z] = 0, (14) 

which leads to our use of E[Z œδ] as the empirical moment we wish to minimize. 

32The parameter is defned over the interval ρ > [0, 1), where ρ = 0 collapses to the RCL model and ρ = 1 is 
inconsistent with utility maximization. The r.v. �̃i,h is integrated out, but could be included at the expense 
of increasing the number of non-linear parameters. 

33We assume that the building-level characteristics are exogenous and can additionally serve as instru-
ments. For a rigorous discussion of identifcation, see Berry and Haile (2014, 2016). 
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We construct Z(x) using functions of rival building characteristics. When creating the 
rival set K(j), we exclude rivals within a 1km radius of a given building, based on Bayer, 
McMillan, and Rueben (2004) and Bayer, Ferreira, and McMillan (2007)34 For the RCNL 
model, we also create ‘local rivals’ who are in the same tract (i.e., nest) but not in the 
same block group. We use “Quadratic Di˙erentiation Instruments” based on Gandhi 
and Houde (2018). These are a fnite order basis function approximation of the optimal 
instruments in the sense of Amemiya (1977) and Chamberlain (1987). For a given covariate 
h for building j with rivals K(j), each instrument is defned as: 

Zhj 
DQ 

= Q (xhk − xhj )2 . (15) 
k>{K(j)} 

For Z(r), we use the land value of the building parcel; i.e., the market value of vacant 
land where the building is located, which captures the opportunity cost of the landowner 
for renting the space out. The exclusion restriction is violated if constructed land value 
from sales around the city are correlated with unobservable amenities at the building-
level, conditional on building observables and location controls. While actual land value in 
general may be correlated with nearby building characteristics, our measure is constructed 
by NYC DOF using sales of similar parcels which are not necessarily close. Furthermore, 
we control directly for location observables (which include tract fxed e˙ects in our RC 
Logit specifcation), and as such the residual measure should not be systematically corre-
lated with local building-level unobservable residential amenities. Appendix G describes 
further details on instrument construction and other aspects of estimation. 

Armstrong (2016) discusses the asymptotics of di˙erentiated product estimation when 
there are few markets and many products and provides suÿcient conditions such that 
markup converges to a constant. If markups converge to a constant ‘faster’ than the instru-
mental variables estimator, then the latter is inconsistent because there is not variation in 
markups to use. 

We address with this issue in three ways. First, our RCNL specifcation follows Arm-
strong (2016) by splitting products into nests. Armstrong (2016) shows in this setting 
that nests e˙ectively bound the number of rival products within in a nest, so neither 
within-nest shares, DjSh(j), nor markups converge to a constant even if the total number 
of products in the full market goes to infnity.35 Second, we use a marginal cost shifter in 

34The authors use rings of fve and three miles, respectively for their instrument construction using 
homes in the San Francisco bay area. 

35The median number of buildings per nest is 32, the average is 43, and the maximum is 195. 
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Z(r) that is valid even if the conditions of Armstrong (2016) hold, as that variation is not 
due to markups. Third, we perform statistical tests for under-identifcation of the “BLP 
instruments” on the model implied markups (Armstrong, 2014), and we also calculate 
a robust frst stage F statistic from a linear regression of the endogenous rents on the 
instrument vector (Z(x), Z(r)), advocated in Armstrong (2016). 

6.3 Estimating Markups in the Presence of Supply-Side Restrictions 

While our elasticity estimation is agnostic to the supply side of the market, to derive 
markups from estimated demand elasticities, we must account for how landowners set 
rents and quantities in our setting. In particular, our model assumed landowners are 
(policy-)unconstrained in their ability to set rents by adjusting supply. Two features of 
our setting are particularly problematic for this assumption: rent and quantity constraints 
(through rent stabilization and zoning), and constraints on quantity adjustments due to 
fxed redevelopment costs and the durability of the housing stock. 

In particular, constraints on rent in the form of rent control and rent stabilization, and 
constraints on supply in the form of zoning restrictions mean that the observed pricing 
and quantity behavior of a constrained landowner will not be refective of optimally 
chosen prices and quantities. In addition, the markups in our model do not account for 
lumpy redevelopment or the durability of the housing stock. Appendix B shows how 
our model can be extended to a model with separated developer and landowner quantity 
and price decisions, but clarifes that monopolist quantities, and thus the ability to derive 
markups from the price elasticity, are only achieved when developers correctly anticipate 
the demand faced by landowners. In reality, fxed costs may delay redevelopment and 
the durability of the housing stock means that current quantities may not refect current 
demand. 

We approach these limitations by subsetting our data twice. First, our main results 
derive markups only for policy-unconstrained parcels, which could raise rents and adjust 
quantities unencumbered by zoning constraints or rent regulation. Second, we separately 
examine the 53 policy-unconstrained buildings that were built in the last 10 years of our 
2010 data, where developers will have been more likely to have correctly anticipated 
contemporary demand and set monopolist-optimal quantities, according to Appendix B. 

With those restrictions in mind, we turn to our markup calculation. 
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6.4 Elasticities and Markup Calculations 

Using estimated parameters, θ, we can calculate building-level elasticities and markups 
that will inform our understanding of monopoly power in the Manhattan market. We 
calculate the building-level demand elasticities using the analytical derivatives of the 
demand functions, and we calculate the percent markup assuming landowners solve a 
Bertrand price competition game: 

¢ 

= 
∂Dj rj 

= ¦
¨
¨̈BRi − 

α ‘ dij (1 − dij )dF (θ)� D
rj

j 
if RCL 

(16)yiεj 
∂rj Dj ¨ −

α~yi ¨̈BRi ‘ dij ›1 − ρdijSh(j) − (1 − ρ)dij ” dF (θ)� rj if RCNL
¤ 1−ρ Dj

− mcj −1
= 
rj

Lernerj = „ ‚ (17) 
rj εj 

Again, we use Bertrand pricing only for interpretation but not estimation. 
Most housing demand literature estimates inelastic demand seemingly incompatible 

with monopoly pricing (Chen, Clapp, and Tirtiroglu, 2011; Albouy, Ehrlich, and Liu, 2016). 
We reconcile this by the fact that the relevant elasticity for landowners is the own-price 
elasticity, εj , rather than the “aggregate elasticity,” the change in total housing consumed 
with a change in (aggregate) rents. To connect our setting to previous housing demand 
estimates, we calculate the aggregate elasticity which provides the responsiveness of 
renters to a 1% increase in rent for all ‘inside’ buildings (Berry and Jia, 2010; Conlon and 
Gortmaker, 2019): 

εAgg = Q 
Dj ({rk + Δrk}k>J ) − Dj 

. (18)
Δk>A RΔ=1% 

Foreshadowing results, we will fnd both monopoly-consistent elasticities εj as well as 
literature-consistent inealistic aggregate elasticity εAgg. 

6.5 Estimation Routine 

Here we briefy describe our estimation algorithm. We are guided by methodological 
reviews (Nevo, 2000; Knittel and Metaxoglou, 2014; Conlon and Gortmaker, 2020) and 
point interested readers to Appendices F, G, and H for additional details. 

We estimate the econometric model using market-level variables on building choice 
shares, rents, and characteristics, {Dj , rj ,Xj}. We simulate R renters by drawing (yi, vÑi)
to calculate the individual demands, and then use pseudo Monte Carlo integration to 
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calculate market demand.36 
Estimation has four steps, which are iterated until parameters converge.37 First, 

a non-linear inversion step fnds mean product utility, µ , given an initial set of non-
linear parameters, ϕ = (α, γ, ρ).38 Second, we use linear GMM to estimate mean utility 
parameters, β , which identify the unobserved mean utility characteristic, δ. Third, we 
use a non-linear minimization routine to estimate the non-linear parameters using the 
moment condition E[Z œ �δ]. Fourth, we update the weight matrix using the residuals from 
Step 3, and repeat until the parameter vector converges, Yϕs+1 − ϕsY � 0. 

7 Estimation Results 

In this section, we report our main results for Manhattan and as a robustness check 
a similar model using Manhattan, the Bronx, Brooklyn, and Queens as four separate 
markets. 

7.1 Results using Manhattan 

Table 3 presents our main empirical results for Manhattan. We estimate utility param-
eters based on our empirical model, then calculate building-level elasticities. For the 
unconstrained subset of our sample as well as the “new” subsample, we then calculate 
the markup share of rent. We present both the Logit and Nested Logit models, both 
estimated via IGMM and using “Quadratic Di˙erentiation Instruments,” as described in 
Section 6.2. Of our estimated parameters, we only present our estimates of {α, ρ} and 
their heteroskedasticy robust standard errors. Using Equation (16) we calculate the own-
price elasticity, Equation (17) the markup share or “Lerner index,” and Equation (18) the 
aggregate elasticity. 

The frst four rows of Table 3 report our estimates of model parameters α and ρ, 
with standard errors in parentheses. Our estimates of the rent coeÿcient, α̂, are similar in 
magnitude between the models with roughly equal standard errors. Our estimate ρ̂ is close 
but statistically di˙erent from zero implying only slightly greater within-nest correlation 
relative to the RCL model. For the full sample, we estimate median own-price elasticities 

36We use Halton sequences to approximate uniform random draws. Income is simulated by using a log 
normal distribution with mean and variance based on the ACS 2010 fle. 

37In fnite samples the 2-Step parameters depend on the initial weight matrix and can be subject to greater 
misspecifcation errors, leading us to use an Iterated GMM approach (Hansen and Lee, 2019). 

r+1 r
Yª < 10

−12
38For the inversion, we use a tolerance of Yµj − µj . See Appendix F for more details. 
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of −2.99 and −3.16 for Logit and Nested Logit specifcations, respectively. We calculate 
but do not interpret the Lerner index for this sample. The model implied building-level 
own-price elasticities are all elastic, which is consistent with monopoly pricing. 

For the unconstrained buildings, the frst subset for which we will fnd meaningful 
markup results, we fnd elasticities of −3.40 and −3.30, respectively. We expect these 
unconstrained landowners have the most control over their rents compared to landowners 
with rent-stabilized units or pressed against zoning constraints. For the second subset, 
“new” unconstrained buildings built between 2000-2010, we fnd elasticities of −3.48 and 
−3.31. 

We fnd that the median markup share of total rent, the Lerner index, is between 
32-33% of total rent for the full sample, with a slightly greater mean (33-35%). For the 
unconstrained samples the median and mean markup shares are between 29% and 31%. 
Among the new constructions subset of unconstrained, means and medians range from 
29-32%. Overall, were units priced at the marginal cost refective of the production 
and maintenance of buildings, we would expect rents to be about 70% of their current 
levels. Figure 3 plots the full distribution of the own-price elasticities and Lerner Index by 
building for all three samples and both the RC and RCNL models. All three samples of 
the nested logit model, drawn in thinner lines, are less dispersed. Figure 4 plots the mean 
own-price elasticity and the dollar value of markups in monthly rent by Census tract for 
the full sample only. 

Again, we note that our results di˙er from the literature on the elasticity of housing 
demand. Our elasticity of interest is conceptually di˙erent than that targeted by that 
literature, which seeks to measure the substitution between quantity of housing and 
consumption. In that literature, housing demand is typically found to be inelastic. When 
we estimate the aggregate elasticity in our data, which is more akin to the parameter 
estimated in the prior housing demand literature, we fnd similarly inelastic demand with 
an elasticity is between (−0.14, −0.16). This estimate is slightly lower than the consensus 
range in the prior literature: (−0.64, −0.3) (Albouy, Ehrlich, and Liu, 2016). This may 
be due to a di˙erences in setting (Manhattan rental markets) or in methodology as our 
outside good includes other housing choices in NYC rather than pure consumption. 

7.2 Results for Manhattan, the Bronx, Brooklyn, and Queens 

In this subsection, we report results using all four NYC boroughs for which we have 
adequate data, using each as a separate market. Our estimation broadly follows that for 
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Table 3: Main Estimation Results: Manhattan 

RC Logit RC Nested Logit 

α -43.79 -34.80 
(11.66) (11.96) 

ρ 0.065 
(0.037) 

Full Sample 
Mean εj -2.95 -3.09 
Median εj -2.99 -3.16 
Mean Lernerj 35% 33% 
Median Lernerj 33% 32% 
Percent εj < −1 100% 100% 
εAgg -0.16 -0.14 
N 9,484 9,484 

Policy-Unconstrained Sample 
Mean εj -3.36 -3.31 
Median εj -3.40 -3.30 
Mean Lernerj 31% 30% 
Median Lernerj 29% 30% 
N 566 566 

New, Policy-Unconstrained Sample 
Mean εj -3.35 -3.29 
Median εj -3.48 -3.31 
Mean Lernerj 32% 31% 
Median Lernerj 29% 30% 
N 53 53 

BLP F Stat 42.7 24.9 
Linear F Stat 94.2 49.9 
GMM Obj 10.3 36.3 

Note: The table displays results from the Random Coeÿcient Logit (RCL) and Random Coeÿcient Nested 
Logit (RCNL) models using data on Manhattan multi-unit (four or more) residential buildings. Nests for 
RCNL are Census tracts. The coeÿcient α corresponds to the marginal utility of consumption and ρ governs 
within-nest preference correlations. Both models include random coeÿcients are on a constant, age, log 
distance to CBD, log distance to nearest subway, avg unit sqft. RCL uses Census tract fxed e˙ects (FEs), and 
RCNL uses NYC NTA FEs plus additional location controls: measures residential buildings, commercial 
buildings, and parks in Census block-group and polynomials of latitude and longitude coordinates. Both 
models estimated using GMM and use “Quadratic Di˙erentiation Instruments” based on Gandhi and 
Houde (2018), as described in Section 6.2. The own-price elasticity is εj , the Lerner index is −1~εj , and 
the aggregate price elasticity, εAgg, is based on Berry and Jia (2010). Buildings are ‘unconstrained’ if not 
rent stabilized and not zoning-constrained; new buildings were built after 2000. The Robust F statistics are 
from on regressions of building rent on building characteristics, location controls, and instruments. The 
BLP-F statistic tests identifcation of di˙erentiation IVs for the RC model and is based on Armstrong (2014). 
Standard errors in parentheses are robust to heteroskedasticity. 
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Figure 3: Distribution of Results 

(a) Own-Price Elasticity (b) Markup as a Percent of Rent 
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Note: The fgure plots the kernel density plot of own-price elasticities (Panel (a)) and markups (Panel (b), Lerner Index), for main 
results using Manhattan buildings. Thin lines plot results from Random Coeÿcient Nested Logit model. Thicker lines plot results 
from Random Coeÿcient model. Orange dashed and red long-dashed lines plot elasticities and markups for the full sample. Purple 
short-dashed and navy dot-dashed lines plot results for the unconstrained sample. Green and black solid lines plot results for the new 
and unconstrained sample. Results based on Table 3. The full sample is comprised of all Manhattan single-use residential buildings 
with four or more units. The unconstrained sample is comprised of all buildings in the full sample that are not zoning constrained 
and where units are not rent stabilized. The new and unconstrained sample is the subset of the unconstrained sample for which 
buildings are 10 years old or less. The vertical line in Panel (a) indicates elasticities greater than -1, which would be incompatible with 
monopolistic pricing. RCL and RCNL models and estimation are described in the text. 

Manhattan with some necessary changes. First, for computational reasons, we run 2-step 
rather than iterated GMM. Second, with four markets, we defne the outside option as 
smaller 1-3 unit NYC buildings. As with Manhattan, we run both RC and RCNL models. 
Appendix I provides more details on this robustness check and reports summary statistics 
by borough. 

Table 4 reports the models’ parameter estimates and Table 5 reports borough-level 
elasticities and markups. Again nearly all building elasticities are estimated as being 
consistent with monopoly pricing. Average elasticities and markups for Manhattan are in 
line with those reported in Section 7.1. Markups in other boroughs vary between 20-30%. 

8 Up-Zoning’s Spillover E˙ects Through Monopoly Power 

In this section, we use our data and the results of our model to quantify the potential e˙ects 
loosening zoning restriction. In our setting, additional competition from up-zoning puts 
downward pressure on the rents of policy-unconstrained buildings. By contrast, were 
policy-unconstrained buildings to be priced at marginal cost (e.g., if there was no markup 

28 



Figure 4: Results for Manhattan 

(a) Own-Price Elasticity (b) Monthly Markup in Rent 
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Note: The fgure plots Census tract level average own-price elasticities in Panel (a) and monthly markups (Lerner Index) in Panel (b) 
for the RCL model (left) and the RCNL model (right). Reds indicate higher own-price elasticities and markups on a log scale. Results 
based are based on the Full Sample estimation presented in Table 3, which use all 2010 Manhattan single-use residential buildings 
with four or more units. Missing values are Census tracts where we have insuÿcient data, in part due to the exclusion of mixed-use 
buildings. RCL and RCNL models and estimation are described in the text. 

in rent), then we would not expect a loosening of zoning constraints in other buildings to 
a˙ect rents of already unconstrained buildings, excepting changes in marginal cost. 

To illustrate and quantify the rent e˙ect of up-zoning constrained buildings on policy-
unconstrained buildings, we use the model-estimated elasticities to examine the e˙ect of 
a marginal change in zoning in the form of a 1% across-the-board reduction in zoning 
quantity constraints. The price e˙ect that we estimate is the change in monopoly markups 
for the 566 unconstrained buildings given a marginal reduction in zoning constraints for 
the set of 3,226 zoning-constrained, non-rent regulated residential buildings.39 

We consider a marginal change in constraints rather than a full counterfactual with 

39We exclude rent stabilized buildings where estimated own-price elasticities may not refect rents of 
additional units on the margin. 
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Table 4: Model Parameter Estimates for Four NYC Boroughs 

RC Logit RC Nested Logit 

α -27.80 -23.74 
(13.97) (4.23) 

ρ 0.069 
(0.043) 

BLP F Stat 88.0 32.4 
Linear F Stat 111.6 121.9 

Note: The table presents results for the Random Coeÿcient Logit (RC Logit, RCL) and Random Coeÿcient 
Nested Logit (RC Nested Logit, RCNL) estimations using Manhattan, the Bronx, Queens, and Brooklyn as four 
separate markets. The coeÿcient α corresponds to the marginal utility of consumption and ρ governs within-
nest preference correlations. Both models include random coeÿcients are on a constant, age, log distance to 
CBD, log distance to nearest subway, average unit square feet, and building controls described in the text. The 
RCL model uses Census Tract fxed e˙ects (FEs) and the RCNL uses NYC NTA FEs and additional location 
controls described in the text. Both models use “Quadratic Di˙erentiation Instruments” based on Gandhi 
and Houde (2018), as described in Section 6.2. Both models are estimated using Two-Step Eÿcient GMM 
due to computation constraints. The Robust F statistics are from on regressions of building rent on building 
characteristics, location controls, and instruments. The BLP-F statistic tests identifcation of di˙erentiation 
IVs for the RC model and is based on Armstrong (2014). Standard errors robust to heteroskedasticity are in 
parentheses. 

changes in actual numbers of whole units for specifc buildings. For example, a one-
unit change for fve-unit buildings is a 20% change in demand, and such non-marginal 
changes would require re-solving the monopolist problem. We also assume marginal 
cost is constant at unconstrained buildings. Increases in marginal costs would dampen 
the positive quantity and negative price e˙ects we fnd. In light of these constraints on 
our exercise, we view this exercise as an illustration of the interactions between zoning 
constraints and monopoly rents rather than a policy evaluation. 

We implement the exercise as follows. First, we use the estimated own-price elas-
ticities to calculate the percent change in rents required to increase the market share 

cfof all zoning-constrained buildings by 1%, {%Δr }k>Z . Second, we totally di˙erentiate k 

the monopoly pricing rule with respect to all rents and solve for a given unconstrained 
cf }j>U . Third, we manipulate the solution for an elasticity building’s rent change, {%Δrj 

representation that yields: 
£¢

ϑjk � %Δr
cf
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where ε is the own-price elasticity and ϑjk . See Appendix J for a complete derivation. 
We also calculate the change in demand for unconstrained buildings from the price 

cfand quantity change at constrained buildings: %ΔDj 
cf = εj %Δrj . This tells us the frst 
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Table 5: Estimation Results: Four NYC Boroughs 

Manhattan The Bronx Brooklyn Queens 
(1) (2) (3) (4) (5) (6) (7) (8) 
RCL RCNL RCL RCNL RCL RCNL RCL RCNL 

Full Sample 
Mean εj -3.67 -3.41 -5.10 -4.67 -4.40 -4.08 -3.49 -3.28 
Median εj -3.76 -3.54 -5.17 -4.75 -4.50 -4.17 -3.54 -3.33 
Mean Lernerj 28% 30% 20% 21% 23% 25% 29% 31% 
Median Lernerj 27% 28% 19% 21% 22% 24% 29% 30% 
Percent εj < −1 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 
N 9,484 9,484 7,128 7,128 26,136 26,136 10,573 10,573 

Policy-Unconstrained Sample 
Mean εj -3.75 -3.32 -4.94 -4.60 -4.27 -3.98 -3.51 -3.32 
Median εj -3.77 -3.36 -4.99 -4.67 -4.39 -4.07 -3.55 -3.36 
Mean Lernerj 27% 30% 20% 22% 24% 25% 29% 26% 
Median Lernerj 27% 30% 20% 21% 23% 25% 28% 25% 
N 566 566 408 408 3,457 3,457 784 784 

New, Policy-Unconstrained Sample 
Mean εj -3.54 -3.35 -4.80 -4.44 -4.01 -3.78 -3.54 -3.35 
Median εj -3.58 -3.38 -4.92 -4.59 -4.05 -3.78 -3.58 -3.38 
Mean Lernerj 28% 30% 21% 23% 26% 27% 28% 30% 
Median Lernerj 28% 30% 20% 22% 25% 26% 28% 30% 
N 53 53 32 32 261 261 159 159 

Note: The table presents results for the Random Coeÿcient Logit (RC Logit, RCL) and Random Coeÿcient Nested Logit (RC Nested 
Logit, RCNL) estimations using Manhattan, the Bronx, Queens, and Brooklyn as four separate markets. Both models include random 
coeÿcients are on a constant, age, log distance to CBD, log distance to nearest subway, avgerage unit square feet, and building controls 
described in the text. The RCL model uses Census Tract fxed e˙ects (FEs) and the RCNL uses NYC NTA FEs and additional location 
controls described in the text. Both models use “Quadratic Di˙erentiation Instruments” based on Gandhi and Houde (2018), as 
described in Section 6.2. Both models are estimated using Two-Step Eÿcient GMM due to computation constraints. εj is the own-price 
elasticity and the Lerner index is −1~εj . Sample defnitions follow, by borough, those in Table 3; buildings are ‘unconstrained’ if not 
rent stabilized and not zoning-constrained; new buildings were built after 2000. 
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order e˙ects of the increased competition for residences on the overall quantity of space 
provided. Note that we exclude cross-price elasticities between policy-unconstrained 
buildings, as well as higher-order e˙ects on all constrained plots. To the extent that these 
are negative, our estimates are a lower bound on the result. 

Table 6 presents our results. We fnd that the RC Logit and RC Nested Logit yield 
roughly similar results in aggregate. A 1% loosening of zoning constraints for rival 
buildings leads to a mean markup decrease of $7.41 and $6.72 per unit for the RCL and 
RCNL models, respectively, on unconstrained buildings. These are over 10% of the frst-
order price e˙ects on the directly-impacted units. We fnd small mean elasticities of −0.017 
and −0.012, respectively. Loosening the zoning constraints by 1% would yield a direct 
increase of about 417 households and the spillover e˙ects from increased competition 
would add 19 and 5 additional households through lower rents for the the RCL and RCNL 
models, respectively—a 0.16% and 0.04% increase at the unconstrained plots. 

Table 6: Spillover E˙ects from Up-Zoning Manhattan Buildings 

RCL RCNL 
cfDirect Price E˙ect of Looser Zoning: E �drk � -$59.64 -$58.55 

cfSpillover Markup E˙ect of Looser Zoning: E �drj Sdmcj =0� -$7.41 -$6.72 
cf 

~
dDcf 

j kImplied Spillover Zoning Elasticity: E �
dr 

� -0.017 -0.012 rj Dk 

Net Increase in Households 
Direct and Spillover 436 421 
Spillover Only 19 5 

Note: The table reports the e˙ects of up-zoning zoning constrained buildings that are not rent stabilized by a marginal amount; 
i.e., a 1% increase in allowable quantity, which corresponds to a total addition of 417 whole units. Results are presented 
separately for the Random Coeÿcient Logit (RCL) and Random Coeÿcient Nested Logit (RCNL) models described in the 

cftext. E �dr � is the frst-order average annual price e˙ect on buildings k in the set Z of 3,226 directly impacted buildings. k 
cfE Bdrj Sdmcj =0� is the average e˙ect on annual rents on the zoning unconstrained buildings j in the set U of 566 non-zoning 

constrained, non-rent regulated buildings, assuming constant marginal costs. This number does not include cross-price e˙ects 
between buildings j > U or other higher order e˙ects. The implied spillover elasticity is the average percent change in annual 
rents at buildings j > U given a 1% increase in maximum quantity allowed at buildings k > Z . For more details, see Appendix J. 

Altogether, we interpret these results as additional rationales for easing residential 
zoning restrictions. Without monopoly power, only changes in marginal cost would a˙ect 
rent. The price e˙ect we calculate represents additional downward pressure on rents that 
arises purely through the monopoly forces in the model. In addition, these results imply 
that at least part of the large equilibrium markups on unconstrained parcels we fnd in our 
estimation may be a result of spillovers from (the numerous) zoning-constrained parcels. 

32 



9 Conclusion 

While previous housing and urban literatures have considered the scope for monopoly 
power, we believe we are the frst to quantify its importance in urban rental markets, 
fnding that its scope appears economically signifcant and policy relevant. We fnd that 
a 10% increase in Census tract level ownership concentration correlates to roughly a 1% 
increase in building rents, and that in Manhattan markups account for 30% of rents. 

Second, we explore the link between monopoly pricing and urban policies, specif-
cally zoning constraints. We show the theoretical link between zoning constraints and 
monopoly markups and quantify the relationship in our estimation, fnding modest but 
appreciable spillover e˙ects. 

Lastly, we caution that an important aspect of the residential real estate market beyond 
the scope of this paper is the decision of landowners to enter and exit the market. We 
have highlighted the existence of monopoly pricing power and the complex interaction 
between that and urban policies. However, monopoly profts from renting, and thus 
urban policies a˙ecting those profts, impact entry and exit decisions. Policies which 
impact those markups will likely impact the size of the rental market. 
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A Propositions 1 and 2 
F (a,y−r(a),y)~σ�eRecall that Da = {eF (aœ,y−r(aœ),y)~σ� } � M from the main text using logit demand. Here,P 

aœ>A 

we switch to indexing buildings using j rather than a. To make notation easier, let 
α = ∂F (a,y−r,y) 

∂r < 0 be the (negative) marginal utility of consumption, and set σ� = 1. 

A.1 Proposition 1 

Binding zoning restrictions, by reducing quantities at a plot k, increase rents at that plot. 
The rest of Proposition 1 will follow as long as plots, as competing products, are strategic 
complements in pricing decisions. 

Defnition A.1. Strategic Complements: If the cross derivative of a given player’s own 
payo˙ function with respect to her action and that a rival’s action is positive, then the 
actions are strategic complements. 

In our Bertrand oligopoly setting, rents are strategic complements if 

∂2πj 
= 
∂ [∂Dj ~∂rj ] 

� (rj − Cj (Dj )) + 
∂Dj 

� „− 
∂Cj ∂Dj 

‚ + 
∂Dj 

C 0. (20)
∂rj ∂rk ∂rk ∂rj ∂Dj ∂rk ∂rk 

∂CjDenote the derivative of marginal cost as ∂Dj 
�= cj . When we apply Logit demand 

functions, this becomes: 

∂2πj 
= −α2Dj Dk(1 − 2Dj )(rj − Cj ) − cj αDj (1 − Dj ) − αDj Dk (21)

∂rj ∂rk 

< = 

Dj
= −αDj Dk +(−cj αDj (1 − Dj )) . (22)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ (1 − Dj) ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0 @
>
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ >0 if cj >0 A

?>0 

Note, we use the equilibrium relationship that (rj − Cj ) = −rj ~εj . 
Thus, generally the strategic nature of pricing decisions is ambiguous. A suÿcient con-

dition for strategic complements in the logit case is that cj C 0¦j. This is true with constant 
marginal costs or diseconomies of scale for the building. With decreasing marginal costs, 
the strategic complementary of pricing decisions is ambiguous and may vary between 
pairs of buildings. 
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If marginal cost is constant, then the rent increase could only be due to an increase in 
monopoly markups. With variable marginal cost, this the degree that the markup changes 
is ambiguous. Decreasing marginal costs would push the landowner to expand quantity 
supplied and travel further down the demand curve, which may lead to a smaller markup 
per unit but greater proft (and lower rent). On the other hand, increasing marginal costs 
attenuate the landowner’s desire to expand keeping the landowner in a steeper part of the 
demand curve but with greater marginal costs eating into the markup. 

If long as marginal cost is ‘locally constant’ in equilibrium (i.e., its change is ‘small 
enough’), then we can say buildings are strategic complements in the logit case. Given 
strategic complements of price strategies, an increase in zoning constrained building k’s 
rent will increase demand for unzoned building j, and increases the price at j accordingly. 

If there is sorting; e.g., preference heterogeneity for building attributes, then the rela-
tionship is again theoretically ambiguous even with constant marginal cost. Within our 
Manhattan data, we explore this empirically in Section 8. 

A.2 Proposition 2 

A more detailed proof of Proposition 2 follows. First, we prove that when an landlord’s 
parcel ownership concentration increases, the landlord increases the prices at all proper-
ties. We apply the framework of Nocke and Schutz (2018b) and Nocke and Schutz (2018a) 
to calculate the price e˙ect by utilizing the ι-markup of the landlord. The authors use a 
nested-logit model, but we simplify the result removing the nesting structure.40 

We wish to show that in the logit case with non-decreasing marginal cost, ∂rj > 0, ¦ j >∂sf 

f , which proves the proposition. Below, we show this in the two product for intuition and 
then in the general case with arbitrary number of products. 

A.3 Oligopolist Pricing Equation 

First, we show that landowner f chooses a common markup (Nocke and Schutz, 2018a,b). 
Let each landlord solves the following joint-proft equation: 

max Q rj Dj − Cj (Dj ). (23)
{rj }j>f j>f 

40These results also remove individual heterogeneity in renter preferences in order to take advantage of 
the IIA property. 
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Following the insight from Nocke and Schutz (2018b), the frst order for each property 
satisfes: 

− 
∂Cj −1 −1 

„rj 
∂Dj 

‚ = 
α 
+ πf = 

α(1 − sf )
. (24) 

We can rearrange 24 to solve for rent: 

∂Cj 1 
rj = 

∂Dj 
− 
α(1 − sf )

> 0, (25) 

where marginal cost is positive to yield an upward sloping supply curve. Denote marginal 
∂c`cost as ∂Cj = cj . We will assume that its derivative is positive: c̃j �= C 0, ¦` > J .41∂Dj ∂D` 

A.4 Two Product Case 

Recall again that under logit demand: 

∂Dj 
= αDj (1 − Dj ) < 0 (26)

∂rj 
∂Dk 

∂rj 
= −αDj Dk > 0 (27) 

Price E˙ects: 

41A micro-foundation is that the residential space production function is concave in inputs which implies 
that the cost function in convex in quantity; hence, marginal cost is non-decreasing in quantity. 
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( ) ]

[

[

[

−1 
rj = 

α(1 − sf )
+ cj (Dj ) (28) 

∂rj −1 
+ 
∂cj ∂Dj ∂rj 

+ 
∂Dj ∂rk

Ô� 
∂sf 

= 
α(1 − sf )

2 ∂Dj 
„ 
∂rj ∂sf ∂rj ∂sf 

‚ (29) 

by symmetry 
< −1 + 

∂ck ∂Dk ∂rj = 
−1 + ∂cj ∂Dj α(1−sf )2 ∂Dk ∂rj ∂sf 

α(1−sf )2 ∂Dj ∂rk ‰1− 
∂ck ∂Dk ’ ∂rj @

> ∂Dk ∂rk 
A
?= (30)

∂sf −1 − ∂cj ∂Dj ‘ ∂Dj ∂rj

< 
1 − ∂ck ∂Dk + ∂cj ∂Dj = 

−1 ∂Dk ∂rk ∂Dj ∂rk
= (31)
α(1 − sf )

2 
›1 − ∂ck ∂Dk ” −1 − ∂cj ∂Dj ‘ − − 

∂cj ∂Dj ∂Dk ‘ − 
∂ck ‘@

> ∂Dk ∂rk ∂Dj ∂rj ∂Dj ∂rk ∂Dk ∂rj 
A
? 

imposing Logit 
< 1 − ∂ck ∂Dk + ∂cj ∂Dj =

−1 ∂Dk ∂rk ∂Dj ∂rk
= > 0 (32)
α(1 − sf )

2 1 − ∂ck ∂Dk − ∂cj ∂Dj − ∂cj ∂ck ∂Dk α(1 − sf )@
> ∂Dk ∂rk ∂Dj ∂rj ∂Dj ∂Dk ∂rj 

A
? 

A.5 General Product Case 

Note that we have the following: 

[ri] = Γ(sf ) � 1f ] + [ci(Di)] (33) 

Dsf r = Γ
œ sf � 1f + DDc � DrD � Dsf r (34) 

Ô� Dsf r � [I − DDc � DrD] = Γœ(sf ) � 1f ] (35) 

Ô� Dsf r = [I − DDc � DrD]
¬1 
� [Γœ(sf ) � 1f ] (36) 

A.5.1 Defnitions and Lemmas 

Defnition A.2. Strictly (Row) Diagonally Dominant : for every row, i, the element along 
the diagonal, aii, is greater in magnitude than the sum of the magnitudes of each non-
diagonal element in the row ai,j , j x i. That is, Sai,iS > P Sai,j S. 

jxi 

Defnition A.3. Z-matrix : a matrix whose o˙-diagonal entries are less than or equal to 
zero. 

Defnition A.4. M-matrix : a Z-matrix where every real eigenvalue of A is positive. 
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Lemma 1. If A is a Z-matrix that is strictly diagonally dominant, then A is an M-matrix by 
Gershgorin Circle Theorem. 

Lemma 2. If A is an M-matrix with positive diagonals and negative o˙ diagonals, then B = A ¬1 is 
monotone positive; i.e., bij > 0, ¦ i, j; proof in Fan 1958. 

A.5.2 General Case Proof 

We need to show that the lemma holds and that the vector B � Γœ(s) is a monotone positive 
vector. Let [I − DDc � DrD] = A. 
First, see that A is (a) a Z-matrix that is (b) Strictly (Row) Diagonally Dominant : 

(a) for each row, using logit demand, we have 

ai,i = 1 − c̃iαDi(1 − Di) > 0 (37) 

ai,j = c̃iαDiDj < 0 (38) 

(b) plug into defnition of (row) diagonally dominant 

Ô� 1 + c̃iSαSDi(1 − Di) > Q c̃iSαSDiDj = c̃iSαSDi Q Dj (39) 
j>f �i j>f�i 

Ô� 1 + c̃iSαSDi > c̃iSαSDi � sf . (40) 

Thus A satisfes lemma 2, so B is a monotone positive matrix. 
d −1 −1Second, Γœ(sf ) = = > 0.dsf α(1−sf ) α(1−sf )2 

Thus as B � Γœ(sf ) is a series of multiplication and addition of positive numbers, so Dsf r 

must be a monotone positive vector. 

B Separate Developer and Landlord Decisions 

The standard assumption in the urban literature is that a competitive construction sector 
purchases land to produce urban space that is then put on the rental market (or sold to 
initial owners). We have modeled the choice environment as landowners producing the 
urban space they provide to the rental market. In this section, we show that under the 
assumption of competitive construction and the existence of owners of di˙erentiated land 
that our model leads to the same allocation. This implies that the standard assumptions 
imply that urban space is constrained. We show this in the horizontal sorting case. 

Consider a developer who as already purchased land from a land-owner and must now 
decide how much urban space to provide to the rental market. The construction frms are 

43 






price takers in factors and space, but can make a quantity choice. We consider the dual 
builder’s problem of maximizing location conditional proft or minimizing costs subject 
to a level of demand by choosing labor and capital: 

max{r � qj(k, h) − ik − wh} � min{ik + wh s.t. qj (k, h) = dj (r)}
k,h k,h 

Given that these are dual problems, they each yield the same solution. Let’s consider 
the cost minimization problem’s solution of a building cost Bj (r, dj (r)). With free entry, 
πj = r � dj (r) − Bj(r, dj (r)) C 0. This provides the builder’s solution if the builder buys the 
right to develop location j > J . The builder will develop a plan for each j > J and seeks to 
purchase land from land-owners. 

Now, we must consider how land-owners set the price of land, rj . Clearly, rj = πj , 
else another developer would bid up the price. This creates an open bid auction for each 
location, so the land price must also be bid up to the highest potential location proft, 
which is the monopoly location proft. Suppose a builder decides to set rent at cost and 
provide enough space to clear the market, then this builder must bid πce = 0. Another 
builder decides to reduce space and increase rent to clear the market, and so bids πm > 0. 
The land-owner will choose the second bidder. 

Here, free entry into the construction sector creates the incentives to engage in mo-
nopolistic behavior in the rental market when there is downward sloping demand. If 
urban space was viewed as homogeneous by renters, then developers would not be able 
to adjust market rents and space and make profts since all renters would have the same 
willingness to pay. 

C Detailed Construction of Samples 

Here, we discuss the exact steps in sample construction. Recall, the samples we use in the 
paper are as following: 

• 2008-2015 NYC: Ownership matched, unconstrained; 
• 2010 Manhattan: IV, Estimation, Unconstrained, New Unconstrained. 

C.1 2008-2015 NYC 

We begin with all buildings in NYC, and then drop buildings based on: 
1. missing location information, plots that are under construction, vacant, or are parks; 
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2. residential area is zero, there are zero residential units, or market values equal zero; 
3. plots where the building is not classifed as a private rental building (i.e., we drop 

owner occupied single family residences, condominium and cooperative buildings, 
100% publicly owned buildings, any remaining commercially classifed buildings, 
buildings designated as land-marks); 

4. missing building characteristic information; 
5. building has less than four units. 

Next, we link this sample to the MDRC fles that link reported building owners to share-
holders using the BBL building identifers. We then test if the reported building owner 
name matched the MDRC owner name (the owning entity, not shareholders) using a fuzzy 
string matching algorithm. This results in a match rate of roughly 80% for each year. We 
drop buildings that do not match.42 Using this matched group, we then calculate HHI 
and leave-out HHI measures. 
Finally, we arrive at our HHI Estimation sample by dropping buildings that 

1. have over 10% of units rent stabilized; 
2. are zoning constrained; 
3. are mixed-use. 

This yields the same that is in Table 2. 
In Table A1 we present summary statistics for the HHI data. 

C.2 2010 Manhattan 

We begin with all buildings in Manhattan, and then drop buildings based on: 
1. missing location information, plots that are under construction, vacant, or are parks; 
2. residential area is zero, there are zero residential units, or market values equal zero; 
3. plots where the building is not classifed as a private rental building (i.e., we drop 

owner occupied single family residences, condominium and cooperative buildings, 
100% publicly owned buildings, any remaining commercially classifed buildings, 
buildings designated as land-marks); 

4. missing building characteristic information; 
5. building has less than four units. 

To arrive at the estimation sample, we drop buildings where 

42We believe matching failures happen primarily for two reasons. First, there does not seem to be 
oversight of the ownership registrations so misspellings are common. Second, the MDRC is a snap-shot 
that does not save information across years or transactions, so it is possible that a building owner changes 
and it is not recorded when we have access to the fles. 
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Table A1: Summary Stats: 
2008-2015 NYC Unconstrained Rental Buildings 

Bronx Brooklyn Manhattan Queens 

Tract Level 

HHIg,t 0.24 0.21 0.22 

Building Level 

0.33 

Owner Share in Tract 
Leave-Out HHI in Tract 

11% 
0.13 

5% 
0.07 

8% 
0.11 

3% 
0.06 

Median Monthly Rent $1,046 $961 $1,813 $925 
Median Rent by Median Income 25% 23% 43% 22% 

Median Monthly Land Value per Unit $205 $250 $2,270 $222 

Res.Units per Building 33.5 15.5 25.9 11.4 
Years Since Construction 81 83 88 72 
Years Since Renovation 46 65 36 69 
log(Distance CBD) 2.36 1.41 1.53 1.75 

log(Distance Subway) -1.53 -1.69 -1.95 -1.60 
Avg Unit Sqft 1004 954 1,031 901 

Buildings 1,792 7,621 2,531 1,773 
Note: Building data from PLUTO, NPV, FAR, MDRC fles. Census tract HHI defned using shares in equation 8. Owner share in tract is building level average. 
Leave-out building HHI defned using adjusted shares in equation 9. All dollar values nominal, 2008-2015. Median income in 2010 for NYC is $ 50,711, used for all 
years. Building data from PLUTO, NPV, and FAR fles. Monthly rental income is building income divided by total units divided by 12. Median income in 2010 for 
NYC is $ 50,711. Monthly land value per unit is [Land Value / (12 x Residential Units)]. Years since construction and renovation equal 2010 minus the construction 
year and most recent major renovation year. Geodesic distances are in log miles based on building (lat,lon) coordinates. Avg Unit Sqft is total building area divided 
by total units. 
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1. there is positive commercial building area; 
2. the census tracts has fewer than 3 remaining buildings; 

This set of buildings constitutes the estimation sample on which we estimate the model. 
We drop buildings with commercial area – mixed use buildings – because we cannot be 
sure that we area measuring average residential rents as we cannot separate commercial 
and tenant income sources. As noted earlier, this is not the same as treating these buildings 
as outside goods for the model. Utility parameters are identifed under the assumption 
that the parameters do not depend on whether the building has commercial space.43 
We arrive at the 2010 Unconstrained Manhattan samples by dropping buildings that 

1. have over 10% of units rent stabilized; 
2. are zoning constrained; 
3. are mixed-use. 

Finally, the 2010 New Unconstrained Manhattan / NYC sample subsets this by dropping 
buildings built before 2000. Summary statistics for the 2010 Manhattan samples are in 
Table 1. 

C.3 Spatial Distribution of Single Use, Zoning Constrained, & Rent 
Control 

In Figures A.1 and A.2, we plot the spatial distribution of building use status, zoning 
constrained status, and rent control status. We defne a building as being mixed use if 
we observe positive commercial space in the building; else, single use. Commercial space 
includes retail space, oÿce space, or (for a minority of buildings) industrial space. For 
mixed use buildings, we cannot di˙erentiate commercial versus residential sources of 
building income. 

For fgure A.2, a building is considered zoning constrained if the landlord could not 
legally add another unit at the minimum legally allowed area without a˙ecting existing 
building units. Within our data we able to observe that whether a building’s Floor Area 
Ration (FARj ) is below its maximum allowable FAR (MaxFARj ). A building can be below 
its MaxFAR but still zoning constrained if (MaxFARj) − FARj ) is less than the minimum 
allowable unit FAR, meaning a landlord cannot legally add an additional unit. Thus, a 
building is zoning constrained if (1) (MaxFARj ) − FARj ) B 0 or (2) (MaxFARj ) − FARj ) B 
(Legal Min Unit FAR). We fnd that while 80% of rental buildings are zoning constrained 

43Unreported monte carlo tests show that under the assumptions of the model, parameters remain 
unbiased. At worst, we believe the model is less eÿciently estimated due to smaller samples. 
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Figure A.1: Distribution of Building Use in Manhattan 

0.00 0.25 0.50 0.75 1.00
% Single Use

Source: NYC Planning, Watson & Ziv (2019)

Note: Census tract percent of building that are mixed-use, defned as whether there is positive commercial building space. 2010 
Manhattan residential buildings with 4+ units. Data from PLUTO, FAR for Manhattan 2010. 

only 30% are constrained due to (1).44 This potentially implies that developers incorporate 
zoning constraints, which if binding would limit revenues, by building larger units that 
may attract higher income renters. 

Finally, in fgure A.2, we plot the spatial distribution of rent controlled buildings. We 
defne rent controlled status by whether a building is on the 2012 NYC Department of 
Homes and Community Building Registration File. A building is on this list if the building 
has at least one unit that is rent controlled or rent stabilized. Being rent controlled implies 
that a landlord is not in complete control of unit pricing, so to some extent the landlord is 
constrained. 

D HHI and Ownership Matching 

D.1 Ownership Matching 

Here we describe how we match buildings to owner groups. This procedure is necessary 
because a large portion of reported rental building owners are a corporate entity that is 

44For single-use buildings this is 81.7% and 34.2% and for mixed-use buildings this is 79.2% and 25.8%, 
respectively. 
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Figure A.2: Distribution of Zoning Constraints and Rent Stabilization in Manhattan 

(a) Zoning Constraints (b) Rent Stabilization 

0.00 0.25 0.50 0.75 1.00
% Zoning Constrained

Source: NYC Planning, Watson & Ziv (2019)

0.00 0.25 0.50 0.75 1.00
% Rent Controlled

Source: NYC Planning, Watson & Ziv (2019)

Note: Panel (a) plots by Census tract the percent of buildings that are zoning constrained. Panel (b) plots, by Census tract, the percent 
of buildings that are rent stabilized. The data is 2010 Manhattan residential buildings with 4+ units. Zoning constrained is defned as 
building being legally not allowed to add one minimum size residential unit based on foor-area-ratios. A building is rent stabilized if 
more than 10% of building units are rent stabilized. 

itself owned a holding company.45 Thus the reported ownership structure underestimates 
the degree of common ownership. The NYC Department of Housing Preservation and 
Development (HPD) requires that building owners register each building with multiple 
dwellings (or inhabited by non-family members) and compiles this registration list to 
create the Multiple Dwelling Registry and Contacts (MDRC). Importantly, the MDRC 
assigns a unique ID to each building-owner pair and for each owner lists the names of 
the main shareholders of the corporate owner or partnership. Building owners must re-
register annually so the list updates annually. Thus we have a list of buildings with their 
corporate owner names and shareholder names.46 

However, we face two data challenges in matching buildings to owners using the 
MDRC. First, we only have MDRC lists for three years: 2012, 2015, and 2020. Second, the 
MDRC does not link buildings by common owners. We deal with each in turn. 

To create a building owner panel, we append the three MDRC annual fles together 

45We speak loosely with the terms ’corporate entity’ and ’holding company’; some building owners are 
literally a corporation while others are limited liability companies, sole proprietorship, partnerships, or 
cooperatives. 

46We arrange the shareholder names based on frequency. For example, if name A is associated with 5 
buildings and name B with 4 buildings, then for any set of buildings with both names {A, B} we designate 
name A as the primary name. 
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and ‘back-fll’ the ownership from MDRC information for missing years. That is, if we 
observe a building-owner pair for year 2020, then we assume the owner is the same from 
2020, 2019, 2018, and so on.47 We then merge this with our DOF/PLUTO building year 
panel of rental buildings. Finally, we use a text matching procedure to ensure that the 
reported building corporate owner matches the MDRC corporate owner name.48 Table 
A2 reports the match rate for the main four boroughs by year used in the rent sample. 

Table A2: Match Rate Across Boroughs 

BK BX MN QN 

2008 
2009 
2010 
2011 
2012 
2013 
2014 
2015 

0.79 
0.80 
0.83 
0.83 
0.84 
0.85 
0.84 
0.84 

0.82 
0.83 
0.86 
0.87 
0.89 
0.88 
0.89 
0.88 

0.81 
0.83 
0.86 
0.87 
0.87 
0.87 
0.87 
0.87 

0.80 
0.81 
0.84 
0.84 
0.85 
0.85 
0.84 
0.84 

Note: 2008-2015 NYC residential buildings with 
4+ units. Data from DOF, PLUTO, MDRC 
fles. Match rate between reported owner from 
PLUTO & FAR and MDRC owner name. 

To fnd all buildings that have common shareholders, we again perform a text matching 
procedure. We perform this procedure for each tract-year pair in the four main boroughs 
of NYC for three sets of shareholder names. The frst is matching the primary shareholder, 
the second is matching the primary and secondary shareholders, and the third is matching 
across all shareholders. Using only the frst shareholder name is the most conservative 
measure of common ownership and is the one with the least expected errors.49 For any 
building that does not match to the MDRC, we use the reported ownername (usually a 
corporate entity) and require an exact string match within the tract-year.50 

To get a sense of the scale of the issue. For Manhattan rental buildings, we fnd that the 
average number of distinct owner groups (‘landlords’) in a tract-year are 48.6 using the 

47We fnd that the 2015 fle matches better to years 2016 and 2017 than back-flling the 2020 fle, so we 
extend the 2015 fle two years as well as back fll 2014 and 2013. 

48We use the Stata command matchit with a threshold of 0.5. 
49We again use the Stata command matchit but increase the match threshold to 0.55 for primary name 

matching and to 0.6 for the multi-name matching. As the length of a string increases, the fuzzy text matching 
procedure is more likely to fnd false-positive matches. 

50We use an exact matching because our fuzzy string matching procedure cannot tell the di˙erence 
between corporate names of the form 555 Street LLC and 554 Street LLC. 
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reported ownership structure and 34.8 using the MDRC matched ownership structure. 
For the same set of buildings, we fnd that within a census tract the average landlord owns 
3 buildings when we use the reported ownership structure and 4.3 buildings when we 
use the MDRC matched ownership structure Table A3 reports these values by year for 
Manhattan and the other three major boroughs. 

Table A3: Di˙erence Between Reported and MDRCC Common Ownership 

Manhattan Brooklyn, Bronx, Queens 

Distinct Owners Avg Bld per Owner Distinct Owners Avg Bld per Owner 
MDRC Reported MDRC Reported MDRC Reported MDRC Reported 

2008 
2009 
2010 
2011 
2012 
2013 
2014 
2015 

34.2 46.9 
34.6 47.8 
34.8 48.1 
35.0 48.5 
35.3 49.2 
35.3 49.4 
34.7 49.4 
34.8 49.4 

4.3 
4.3 
4.2 
4.3 
4.3 
4.4 
4.3 
4.2 

3.0 
3.1 
3.1 
3.0 
3.0 
3.0 
3.0 
3 

20.9 
21.1 
21.3 
21.5 
21.6 
21.8 
21.6 
21.6 

24.4 
24.7 
25 
25.2 
25.4 
25.6 
25.7 
25.7 

2.5 2.1 
2.5 2.1 
2.5 2.1 
2.5 2.1 
2.5 2.1 
2.5 2.1 
2.5 2.1 
2.5 2.1 

Note: 2008-2015 NYC residential buildings with 4+ units. Data from DOF, PLUTO, MDRC fles. Comparison between reported owners in 
PLUTO & FAR versus MDRC fles. Owners matched within tract-years. 

D.2 Additional HHI Results 

In this section, we probe robustness to our results in Section 5 using two alternative 
specifcations. First, we replace the leave-one-out HHI variable HHIf (j),g,t, which calcu-
lates for each building, the concentration index at the tract level excluding the building’s 
landowner’s own buildings, with the tract-level variable HHIg,t, which more simply calcu-
lates the total tract-level concentration. Results are largely similar to our main specifcation, 
although the point estimates are slightly attenuated. 

Second, we explore an alternative specifcation where price-per-square-foot rather than 
total rent is the building-level outcome variable. Accordingly, in this specifcation, total 
square feet is no longer a control. Results are broadly slimiar to our main specifcation. 
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Table A4: The Relationship Between Aggregate Ownership Concentration and Prices 

(1) (2) (3) (4) (5) (6) 
ln[Average rj,g,t ] 

Panel (A): Manhattan 
ln[HHIg,t] -0.012 0.161 0.075 0.009 0.162 0.075 

(0.032) (0.080) (0.076) (0.038) (0.076) (0.076) 

ln[s f(j)] -0.028 0.002 -0.013g,t 

(0.026) (0.025) (0.027) 

Year FEs Y Y Y Y Y Y 
Tract FEs N Y N N Y N 
Building FEs N N Y N N Y 
Observations 2,519 2,504 2,393 2,519 2,504 2,393 
R2 0.29 0.63 0.75 0.29 0.63 0.75 

Panel (B): Bronx, Brooklyn, Manhattan, Queens 
ln[HHIg,t] 0.053 0.092 0.076 0.047 0.094 0.079 

(0.016) (0.076) (0.039) (0.019) (0.076) (0.039) 

ln[s f(j)] 0.007 -0.005 -0.038 g,t 

(0.014) (0.013) (0.014) 

Borough-year FEs Y N N Y N N 
Tract and year FEs N Y N N Y N 
Building and year FEs N N Y N N Y 
Observations 13,669 13,592 12,758 13,669 13,592 12,758 
R2 0.4 0.64 0.77 0.40 0.64 0.77 

Note: The table replicates the results of Table 2 using tract-level HHI measures HHIg,t, instead of the leave-one-out HHI, HHIf (j),g,t. 
Otherwise, controls and specifcations match Table 2. Standard errors clustered two ways by Census tract and year. 

E Detailed Construction of Average Building Rent 

Recovering building average unit rents is a key feature of this analysis that relies on three 
facts. First, by law, the DOF assesses rental buildings based on their income generation. For 
single-use, residential rental buildings, this corresponds to the rent paid to landlords. For 
mixed-use rental buildings, we cannot separate the source of income between commercial 
and residental tenants. This leads to our sample restriction of single-use buildings in our 
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Table A5: The Relationship Between Ownership Concentration and Price per Square Foot 

(1) (2) (3) (4) (5) (6) 
ln[(Building )~(Building Square Feet) ]rj,g,t 

Panel (A): Manhattan 
ln[HHIf(j),g,t] -0.049 0.210 0.130 -0.012 0.206 0.158 

(0.038) (0.097) (0.094) (0.050) (0.094) (0.098) 

ln[s f(j)] -0.046 -0.006 -0.015g,t 

(0.033) (0.025) (0.037) 

Year FEs Y Y Y Y Y Y 
Tract FEs N Y N N Y N 
Building FEs N N Y N N Y 
Observations 2,517 2,502 2,392 2,517 2,502 2,392 
R2 0.27 0.65 0.74 0.28 0.65 0.75 

Panel (B): Bronx, Brooklyn, Manhattan, Queens 
ln[HHIf(j),g,t] 0.035 0.163 0.139 0.036 0.164 0.133 

(0.023) (0.072) (0.050) (0.023) (0.069) (0.050) 

ln[s f(j)] -0.002 0.001 -0.035g,t 

(0.017) (0.014) (0.018) 

Borough-year FEs Y N N Y N N 
Tract and year FEs N Y N N Y N 
Building and year FEs N N Y N N Y 
Observations 13,646 13,572 12,738 13,646 13,572 12,738 
R2 0.28 0.59 0.72 0.28 0.59 0.73 

Note: The table replicates the results of Table 2 using rent per square foot as the dependent variable and omitting the total square foot 
variable as a control. Otherwise, controls and specifcations match Table 2. Standard errors clustered two ways by Census tract and 
year. 

estimations. 
Second, we use the web-scraped NPV data. We believe the NPV data is high quality 

because it is based on communications with owners who have a fnancial stake in ensuring 
the information is correct. However, because we rely on a third party’s e˙orts in web-
scraping, we must deal with the fact that the third party did not collect information on 
all buildings. Primarily, the web-scraped data does not include any building with 4 or 5 
units and is randomly missing others. 
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To remedy this, we rely on the third fact. The DOF uses building income data in 
its assessment process to derive “market value” which is then used for property taxes. 
Specifcally, the DOF calculates market value using the following formula: 

MarketValuej = GIMj � Avg (Annual Rent) � unitsj , (41)j 

where the Gross Income Multiplier (GIM) is determined by the DOF based on the build-
ing’s market value per square foot and its location. 

Since we observe market value for all buildings in the FAR dataset, we can use the 
MVjbuildings that overlap the NPV data to backout the the function GIMj = G( , Units CSQF Tj 

10, borough, year). We estimate the GIM function via the following: 
1. For the matched set, divide market value by income to recover GIMj ; 
2. Calculate market value by square feet (mvsqft); 
3. By borough and year, calculate the 50-point quantiles of mvsqft; 
4. By borough, year, and large building status (units C 10), fnd the average GIMj – 

Avg(GIM S B,Y,U>10); 
5. For the set of buildings that are not in the matched set, calculate MVj = Ŷ 

j .Avg(GIMSB,Y,U>10) 
We use the reported value Yj for the matched buildings and Ŷ 

j for the unmatched build-
ings. 

E.1 Additional Information 

The income data is ultimately sourced from the Real Property Income and Expense (RPIE) 
statements that all income generating property owners are required to fle annually and 
face fnancial penalties for not fling. Nevertheless, not all property owners will fle this 
report. If an owner does not fle, the DOF has the right to assign a market value based on 
its best judgement. In addition, the DOF documentation says that they will adjust report 
amounts that seem extreme; e.g., a building reporting high costs and no income in an 
area where other buildings are report incomes above costs. Without access to the RPIE 
statements, it is not possible to determine which properties have been adjusted. 

The DOF Assessment Guidelines show how Income and Market Value relate to each 
other and how one can be directly inferred using the other. In the table below, we describe 
the DOF mapping that goes from observed income to market value: G� Y × SqF t � M . 
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Table A6: Example Mapping of Market Value to Income 

y GIMLow GIMHigh m 
m1 m2y1, y2 m1,m2y1 y2 

m3[y2, y3] - [m2,m3]
m4[y3, y4] -
y3 

[m3,m4]y4 

Yj 
y2= MVj � 
y3= MVj � 
m

m 

2

3 
y4= MVj � m4 

Note: This table provides a simplifed example of the Gross Income Multiplier 
(GIM) method used by the NY DOF that we utilize to infer building income 
from observed building market value. For 80% of our multi-year sample, we 
observe both market value and income, which we use to estimate the GIM for the 
remaining properties, as described in the main text. 

E.1.1 Robustness of Calculations 

We can check the robustness of our calculations by using an auxilary dataset by the DOF, 
the Condo/Coop Comparable Rental Income data. By law, condominium buildings must 
be valued for tax purposes as-if they were rental buildings. To accomplish this, the DOF 
matches condominiums with rental properties and calculates and expected, market value 
and income of the condominiums. They publish these comparisons and include the rental 
building income and market value used in the comparisons. Thus, we are able to check our 
results for the matched buildings. Our values are nearly identical except for inconsistent 
rounding behavior on the part of the NYC DOF, typically in the owner’s favor.51 

F BLP Inversion Step 

For intuition, if we omit the random coeÿcients, then the model becomes a standard logit 
specifcation using grouped data. Berry (1994) shows that the mean utility can be solved 
for in closed form as: 

ln[sj ] − ln[s0] = δj + Xj β + αrj . (42) 

One can use a linear 2SLS specifcation to estimate {α, β}. 
With random coeÿcients, the above does not work. However, BLP show that the 

51For Manhattan, we are able to check against 1,883 rental buildings, and we fnd 83 buildings where the 
absolute di˙erence between our assigned GIM and the empirical ratio of market value to income is greater 
than 0.1; this represents an error rate around 4% of buildings. Again, these errors are due to inconsistent 
behavior by the NYC DOF. 
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following is a contraction mapping algorithm guaranteed to converge: 

r+1 r r µj = µj + ›ln[sj ] − ln[Dj (µj ; θ)]” , ¦j. (43) 

r+1 rWhen Yµj − µj Yª � 0 the algorithm has converged.52 For the nested logit case, Grigolon 
and Verboven (2014) show that the following modifcation is also a contraction mapping 
and necessary: 

r+1 r r µ = µ + ›ln[sj ] − (1 − ρ) ln[Dj (µj ; θ)]” , ¦j. (44)j j 

Once µ is recovered, then we can use the model’s moment conditions to estimate 
{β, α, γ}. 

G Instrument Construction 

We use “Quadratic Di˙erentiation Instruments,” based on Gandhi and Houde (2018), 
with a spatial radius, as in Bayer, McMillan, and Rueben (2004); Bayer, Ferreira, and 
McMillan (2007). For the Nested Logit specifcations, we create within nest di˙erentiation 
instruments that exclude rivals in the same Census block-group. These instruments are 
meant to be an approximation to the optimal instruments in the sense of Amemiya (1977) 
and Chamberlain (1987).53 

The ‘true’ optimal instruments are based on the partial derivative of the structural 
error term: 

E B∂δj ∂δj ∂δjZopt = Var(δj )
−1 � UZ � . (45)

∂β ∂α ∂σ 

This has exactly as many moments as parameters, so is exactly identifed and no iterative 
weighting matrix is necessary. 

To calculate this object, one must take a stand on the conditional distribution of the 
structural error, solve the Bertrand pricing problem, back out model-implied structural 
errors, and then calculate the derivatives. In a major methodological advancement, Conlon 
and Gortmaker (2019) describe how, given an initial set of estimates, one can calculate this 
object relatively quickly for most problems. Their pyblp software automates most of these 
steps with various options; however, this is not possible in our problem. Because we 
do not accurately observe prices for mixed-use buildings, which is roughly half of the 

52We use a tolerance of 10−12, and we always start the algorithm with the linear specifcation mean value. 
53Somewhat more formally they are a fnite-order basis-function approximation to the optimal instru-

ments. 

56 



choice set, we cannot credibly solve the Bertrand pricing problem.54 Even conditional on 
obtaining the true parameter vector, our implied substitution between buildings will be 
biased up or down based on whether commercial rents are greater or less than residential 
rents in those buildings, which will bias the calculated ‘optimal instrument.’ 

Nevertheless, Gandhi and Houde (2018) show that the optimal instruments can be 
approximated, in any dataset, by symmetric functions of the di˙erences in building level 
covariates without needing to solve the Bertrand pricing problem. Their results formalize 
the intuition of the more traditional “BLP Instruments” that mark-ups are shifted by 
utilizing the ‘product-space-distance’ between products, where more isolated products 
as more immune to price shocks. However, there are still many choices of potential fnite 
basis functions that can be used. 

The authors suggest two ‘favors’ for practitioners. First, they propose “Quadratic 
Di˙erentiation Instruments” (DQ): 

Zhj 
DQ 

= Q (xhk − xhj )2 , (46) 
k>{K(j)} 

where K(j) is a set of rivals for plot j. This is the set that we use in the main text. 
Second, they propose “Local Di˙erentiation Instruments”: 

Zhj 
DL = Q 1 [ Sxhk − xhj S < sd(Xh) ] , (47) 

k>{K(j)} 

where sd(Xh) is the empirical standard deviation of variable Xh. In unreported results, we 
fnd that these instruments have less strength relative to the DQ instruments; although, 
they do still fnd elastic results. These results are available upon request. 

To deal with endogeneity of prices (or any covariate), the authors recommend using 
a predicted price using plausibly exogenous variation, such as the following additional 
example: 

ZDQ 
= Q (E[rk S X, W ] − E[rj S X, W ])2 

, (48)r,j 
k>{K(j)} 

where E[rk S X = xk,W = wk] is from a frst stage regression on all exogenous information, 
(X, W ), where W are any variables excluded from the utility function.55 

54In addition, with rent control and zoning constraints, we would need to solve a constrained Bertrand 
pricing problem, which is not coded in pyblp. 

55Note, Gandhi and Houde (2018) specify W as any already available instrument, which Conlon and 
DQ DQGortmaker (2019) interpret to include {Z }h>H for the building X œs. Currently, we do not use {Z }h>Hhj hj 
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G.1 BLP-F Statistic 

To assess the validity and ability of our instruments in identifying demand parameters, we 
report the ‘frst stage’ statistics of our instruments, as advised in Armstrong (2016). We 
report a robust frst stage F statistic of the linear regression of building rents on the model 
controls and instruments and the BLP-F statistic as devised in Armstrong (2014). 

The robust F statistic has the virtue that it is robust to heteroskedasticity but cannot 
discern between the cases when excluded instruments are correlated with rents but “the 
researcher imposes a model that leads to product characteristics having an asymptotically 
negligible e˙ect on markups (Armstrong, 2014).” The BLP-F statistic is based on the 
‘concentration parameter’ and is designed to have power in cases when the usual F statistic 
would falsely reject a null hypothesis of no identifcation.56 

The BLP-F statistic is a post-estimation procedure calculated in fve steps. First, regress 
price on all model controls and instruments and then save the residual, ṙj . Second, 
calculate the sample variance of the residual. Third, regress the model-implied markup, 
muj = −Dj ~[∂Dj ~∂rj], and instruments on the included model controls, and save the 

Ż 
j Zjresiduals: {mu˙ j , }. Fourth, regress mu˙ j on ˙ and save the predicted values, mû˙ j . 

Finally, calculate the BLP-F statistic as the following, where k is the number of instruments: 

Var(mû˙ j ) J − k
�= � . (49)FBLP 

Var(ṙj ) k 

Critical values of the BLP-F statistic do not exist. However, as this is based on an standard 
F statistic, one could rely on ‘rules of thumb’ in that a statistic should be greater than some 
number, such as 10 or 25. 

H Additional Estimation Details 

To aid our estimation, we follow most modern practices in estimating demand parameters. 
Many of these are based on advice found in Nevo (2000) (N), Knittel and Metaxoglou (2014) 
(KM), and Conlon and Gortmaker (2020) (CG). 
First, we scale all Z = (X, Z(x), Z(r)) variables by their empirical standard deviations 

to put their variances on the same order of magnitude. As in Brunner et al. (2017), we fnd 

as part of W , so that X are building characteristics in the utility function and W is land value from the NYC 
DOF. 

56If y = Xβ + u, then the concentration parameter is defned as Var(Xβ)~ Var(u). 
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I 

this alleviates most model convergence issues. 
Second, we use an ‘overfow safe’ method of calculating market shares which gives 

some protection when a solver inadvertently uses a parameter vector that is far from the 
true vector, as described in section 3.4 of CG. 
Third, for the inversion step we always use the Berry (1994) logit inversion as the 

starting value, we use an accelerated fxed point algorithm, called SQUAREM, as described 
in section 3.2 of CG, and we use a fxed tolerance of Yµs+1 − µsYª < 10−12. KM show a loose 
or variable tolerance can cause catastrophic error propagation from the inversion step to 
the GMM estimates to the gradient, which can veer the optimization algorithm far o˙ 
course. 
Fourth, we use supply the analytical gradients of the GMM objective function using a 

gradient based solver, as described in N and benchmarked by KM and CG. This not only 
speeds up computation relative to gradient-free or approximated gradients but is also 
more reliable. 
Finally, for technical and theoretical reasons we do not include a supply side for 

the model in estimation. Our main theoretical reasons are that we do not know enough 
about the marginal cost function for rental buildings nor do we wish to fully model the 
zoning and rent control constraints for a landlord. Brushing theoretical concerns aside, 
the analytical derivative of the supply moments e˙ectively requires storing a J × J × J 

three-dimensional matrix (where J = 9, 484) in computer memory, which is not feasible 
using even for many super computers. We believe the primary empirical beneft of a 
supply moment would be to increase precision and ensure elastic demand. However, as 
the majority of our results do not su˙er from either problem – see appendix I – we do not 
think the supply side is necessary for the model’s estimation. 

Additional Estimation Results 

Our 2010 Manhattan demand estimation is estimated on a single cross section of data. To 
probe the robustness of this, we expand the dataset to include the Bronx, Brooklyn, and 
Queens. 

We reinterpret the model as now having four separate markets–the boroughs–within 
NYC. To do this we also now assume the outside good is composed of small building 
(1-3 units) rental market. Otherwise, we use the same conceptual sample of single-use, 
residential buildings to estimate demand. One computational change is that given the size 
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of the new demand estimation problem, we only use a two-step GMM procedure rather 
than the iterated procedure in the main text. 

Below we provide summary statistics for this sample as well as results. We fnd that 
the results are almost identical for Manhattan as in the main text. However, we fnd that 
the outer-boroughs have lower markup shares of rent. 

Summary statistics for the 2010 NYC samples is in Table A7. 

Table A7: Summary Stats: 
2010 NYC Rental Buildings 

IV Estimation Unconstrained New Unc. 

Res.Units per Building 17.9 15.3 10.4 14.1 
Households per Building 17.0 14.6 9.9 13.2 

Vacancy Rate 5% 5% 5% 6% 
Percent Mixed-Use 13% 0% 0% 0% 

Percent Rent Stabilized 46% 45% 0% 0% 
Percent Zoning Constrained 76% 79% 0% 0% 

Median Monthly Rent* – $1,028 $1,328 $1,637 
Median Rent by Median Income* – 33% 43% 52% 

Median Monthly Land Value per Unit $4,783 $4,134 $7,659 $4,260 

Years Since Construction 84 82 79 3.8 
Years Since Renovation 65 67 62 3.8 
log(Distance CBD) 1.63 1.71 1.53 1.58 

log(Distance Subway) -1.67 -1.63 -1.61 -1.59 
Avg Unit Sqft 813 817 1,033 1,294 

Buildings 73,145 53,321 5,215 505 

ƒ
j

ƒ
j 

Note: Building data from PLUTO, NPV, FAR, MDRC fles. Households allocated based on building units and 2010 Decennial Census and American Community Survey. Median 
income in 2010 at borough level from 2010 ACS. Vacancy rate is one minus the total households in building divided by total building units. A building is mixed-use if the building 
has positive commercial area. A building is considered rent stabilized if more than 10% of units are rent stabilized. A building is zoning constrained if the building would not 
be allowed to create an additional unit based on building foor-area-ratios and minimum unit area requirements. A building is ‘new’ if it is was built in or after 2000. Geodesic 
distances are in log miles based on building (lat,lon) coordinates. Monthly land value per unit is [Land Value / (12 x Residential Units)]. 
(*) – Rent data is only available for single use buildings 

J Total Derivative of Monopoly Pricing Rule 

The monopoly pricing rule is 

; {r 

; {r 

ƒ
k

ƒ
k

}k) (50)
}k))

.ƒ
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cfTo arrive at equation 19, we set dmcj = 0, solve 52 for drj , and then manipulate the equation 
∂[∂Dj ~∂rj ] rkto arrive at an elasticity form. A useful equivalence is the following: = ∂rk ∂Dj ~∂rj 

∂εj + ∂Djrk rk 
∂rk εj ∂rk Dj 

. 
With preference heterogeneity – i.e., random coeÿcients – then the expression has 

no closed form solution, but is easily calculated with our estimated parameters and 
Monte Carlo integration. For intuition, if there were no individual agent heterogeneity in 
preferences, then 

Dj
= (1 − Dj )dmcj +

(1 − Dj ) 
Q {Dkdrk 
k>Z 

Dj
= (1 − Dj )dmcj 

) 
AvgD(drk). 

}

(1 − Dj 

Without a full model of building costs, we cannot calculate dmcj , so we cannot calculate 
the true partial equilibrium change in unconstrained prices. Under the assumption of 
(locally) constant marginal costs, then our measure equals the partial equilibrium change 
in rental prices. Under the assumption of strictly increasing marginal costs, then dmcj < 0, 
so our measure would be the lower bound of the magnitude of the rent change. Without 
additional assumptions, our measure calculates the partial equilibrium change in the 
monopoly mark-up of unconstrained buildings due to a zoning-shock. 

(53)drj 

+ (54) 
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