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Abstract 

Assessing the robustness of the results of econometric analysis is a long standing subject of lively 
research. The majority of the literature focuses on sensitivity to model specification, while the 
quantification of sensitivity to sets of influential observations has received relatively little 
attention. A major obstacle in this context is masking, a phenomenon where influential 
observations obscure each other, which makes their identification particularly challenging. We 
show how inferential measures are affected by influential sets of observations and present two 
adaptive algorithms aimed at identifying such sets. We demonstrate the merits of these algorithms 
via simulation studies and empirical applications. These exercises show that masking problems 
and a pronounced sensitivity to influential sets are present in a wide range of scenarios. Overall, 
our findings suggest that increased attention to influential sets is warranted and comprehensive 
robustness measures for regression analysis are required. 
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1 Introduction

Econometric methods are an important instrument of scientific discovery in the social

sciences. They provide evidence-based insights into the nature of socioeconomic processes,

allow us to test theories, and provide predictions. Econometric specifications act as

imperfect approximations to the relationships between economic variables. Estimates of

these relationships are crucial for the design of evidence-based policy measures. As a

result, the assessment of the sensitivity of inference to changes in modelling assumptions

is a particularly important topic within the field of applied econometrics. The issue of

robustness in the context of regression models is a long-standing and active subject of

research (Angrist and Pischke, 2010; Athey and Imbens, 2017; Leamer, 1983; Levine and

Renelt, 1992; Sala-i Martin, 1997; Sala-i Martin et al., 2004; Sims, 1980; Steel, 2020).

The literature dealing with robustness in regression models tends to focus on uncer-

tainty related to inclusion or exclusion of control variables, the functional form linking

covariates with the outcome variable, as well as on the development of methods to esti-

mate quantities of interest in the presence of such specification uncertainty. Well-known

approaches such as extreme bounds analysis (Leamer, 1983), model averaging (Steel,

2020), and, more generally, regularised estimation are useful tools for covariate selection

and inference in the presence of model uncertainty. These approaches are concerned with

the horizontal dimension of the data. Robustness with respect to inclusion or exclusion of

particular observations in the sample – the vertical dimension of the data – has received

relatively little attention in the literature, beyond the identification of outliers. The fo-

cus on asymptotic analysis has been claimed responsible for this lack of interest (Leamer,

2010). In this paper, we analyse the robustness across the vertical data dimension and

investigate the sensitivity of parameter estimation in linear regression models to sets of

influential observations.

It is well known that small sets of influential observations may hold considerable sway

over regression results (Cook, 1979). These observations deserve particular attention.

Sensitivity analysis based on their exclusion provides important insights into the stabil-

ity of inferential quantities and thus about the validity of conclusions drawn. In a recent

contribution, Broderick, Giordano, and Meager (2020), henceforth BGM, investigate the

sensitivity of regression-based inference to the exclusion of such observations. They pro-

pose a metric to approximate the largest change in quantities of interest that can be

induced by dropping a given number of observations. This metric allows the compu-

tation of summary statistics, such as the share of observations that would need to be

excluded to induce particular changes. For example, a switch in the sign of the estimated

coefficients or a change in statistical significance.
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Influential sets in linear models

Such statistics are valuable additions to the toolkit of applied econometrics and an

important step in creating measures of robustness along the vertical dimension of the

data. However, several obstacles need to be overcome in order to obtain a useful robust-

ness measure. The approximation used by BGM builds upon initial estimates of influence

and induced perturbations. As a result, its performance is sub-optimal, for instance, in

the presence of masking, a phenomenon where influential observations obscure other in-

fluential observations (Chatterjee and Hadi, 1986). This means that sets of influential

observations are identified reliably and the size of the perturbations induced is underesti-

mated. While BGM acknowledge that their approximation provides only a lower bound

of sensitivity, their metric is thus prone to convey a false sense of robustness in settings

where influential sets of observations are indeed present.

We investigate two alternative approaches for assessing sensitivity to sets of obser-

vations in the context of linear regression models. Instead of relying on first order ap-

proximations of influence, these approaches are adaptive in nature. This substantially

increases the reliability of the assessment at small additional computational cost. The

first algorithmic approach uses the same initial approximation as BGM, but computes

exact measures of perturbation. The second approach makes use of a greedy algorithm

that recursively identifies influential observation, thus addressing potential masking phe-

nomena effectively. The merits of these methods are illustrated by means of a simulation

exercise and two applications to real-world examples. We re-analyse seven randomised

controlled trials (RCTs) on the effectiveness of microcredit in developing countries and

revisit a macroeconomic study on the existence of poverty convergence. Our findings sug-

gest that masking phenomena pose a consistent challenge at ascertaining sensitivity. We

put the proposed approach and implied measures of sensitivity into context by reconciling

the recent developments in the field with a large body of statistics literature on influ-

ential observations, outliers, and robust regression. As guidance for applied researchers

we reflect upon the implications and relevance of the resulting sensitivity measure as an

indicator for robustness.

The remainder of the paper is structured as follows. In Section 2, the theoretical

framework is established and connected to the relevant literature. The computational

details are presented in Section 3. In Section 4, we illustrate the theoretical concepts,

potential shortcomings, and the merits of our approach using simulation studies and real

world data. Section 5 contains some discussion and concluding remarks.
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2 Influential sets in linear regression models

2.1 Theoretical framework

Consider the linear regression model

y = Xβ + ε, (1)

where y is an N × 1 vector containing observations of the dependent variable, X is an

N ×P matrix of observations of explanatory variables, β is a P × 1 vector of coefficients

to be estimated, and ε is an N × 1 vector of independent error terms with zero mean and

unknown variance σ2. Observation i, (y : X)i, corresponds to the i’th row of y and X,

with the notation yi used for the i’th observation in y and xi for the vector containing

the covariates in X for the ith observation. We indicate the deletion of the rows indexed

by I using the subscript (I), such that y(I) denotes the vector corresponding to the

observations of the dependent variable without the elements identified by I. A hat is

used to indicate estimated quantities – that is, β̂ is an estimate of β.

Our main focus lies on the sensitivity of some measure of interest λ to removing sets

of influential observations from the sample. Following Belsley, Kuh, and Welsch (1980),

we define influential observations as those whose omission has a large impact on λ when

compared to the omission of most other observations, either individually or as a set.

A set of observations is defined as a subset S of the set of all observations S̃ = {s|s ∈
Z∩ [1, N ]}, where each element s ∈ S̃ is associated with an observation of the full sample.

We define Sα for α ∈ [0, 1] as set of observations of cardinality Nα = dNαe. The empty

set is denoted by ∅. The measure of interest, λ, is a function of the data and a set of

excluded observations. Assuming that we are interested in the sensitivity of the least

squares (LS) estimate of β after dropping a set of observations, this function is given by

λ(S,y,X) =
(
X′(S)X(S)

)−1
X′(S)y(S). (2)

In order to simplify notation, we drop the dependence of λ(S,y,X) on the data and

denote it as λ(S). We concentrate on the identification of the minimal perturbing set,

i.e. the smallest set that achieves a given change in λ, which we will call the target

perturbation. In order to formalise this set, we first define the maximally perturbing set,

S∗α, which achieves the maximal perturbation for a given number of omitted observations,

as

S∗α = arg max
S∈[S]α

∆ (λ(S), λ(∅)) (3)
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where ∆ (λ(S), λ(∅)) is a function measuring the perturbation of interest. A standard

choice for ∆ (λ(S), λ(∅)) is a norm of the difference between the values of interest for

the full sample and after omitting S, i.e. ∆ (λ(S), λ(∅)) = ‖λ(S)− λ(∅)‖. Other forms

may be important in particular applications.1 We use ∆∗α to indicate the perturbation

associated with the set S∗α.

The minimal perturbing set, S∗∗, is given by

S∗∗ = min
α
S∗α s.t. ∆ (λ(S∗α), λ(∅)) ≥ ∆∗∗, (4)

where ∆∗∗ denotes the target perturbation. The cardinality of the solution, Nα∗ is referred

to as the minimal perturbing size. This framework is closely related to the one put forward

by BGM, with parallels between the maximally perturbing set and the ‘most influential

set’, as well as the minimal perturbing size and the ‘perturbation inducing proportion’

as summary statistic.

2.2 Influence measures and influential observations

The literature is rich in methods for the identification of single influential observations,

i.e. sets with cardinality Nα = 1, and regression methods that are robust to the existence

of these influential observations (see e.g. Chatterjee and Hadi, 1986; Hampel et al., 2005;

Maronna et al., 2019). Measures of influence are central to this pursuit and come in

a wide variety. Chatterjee and Hadi (1986) review groups of such measures and point

out strong interrelationships among them. A notable group considers residuals y −Xβ̂,

which can readily be extended with leverage, i.e. diagonal elements of the hat matrix

H = X (X′X)−1 X′. In the linear regression setting, an observation is generally considered

influential when it exhibits both a large residual and high leverage.

Another group of measures builds on the influence function of Hampel (1974). These

include Cook’s distance (Cook, 1979), the Welsch-Kuh distance (Belsley et al., 1980), and

modifications thereof. The notion of the confidence ellipsoid is used in other approaches

for quantifying influence, including the likelihood distance (Cook and Weisberg, 1982),

and robust estimation methods (Rousseeuw and Yohai, 1984; Yohai, 1987). In addition,

a number of Bayesian approaches have been proposed (Box and Tiao, 1968; Pettit and

Young, 1990; Verdinelli and Wasserman, 1991).

Most of these approaches consider a holistic notion of influence. However, in applied

econometrics we often care about the partial influence of observations on specific inferen-

tial quantities. Specifically, the sign and significance of coefficient estimates tend to be of

1If we are interested in robustness to perturbations that may flip the sign of the quantity of interest,

for instance, ∆ = 1(sign(λS) 6= sign(λ∅)) ‖λ(S)− λ(∅)‖ could be used.
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interest. Assessing the influence of particular observations on these two measures appears

as a natural post-estimation step. This notion is shared by a large body of literature,

which has produced a number of relevant results on sensitivity to influential observations.

Considering the case of a single influential observation, with λ as the OLS estimator of

β as in Equation (2) and ∆ (λ(S), λ(∅)) = λ(∅)− λ(S), the perturbation of coefficients

from dropping a single observation i has a closed form solution and is given by

δi = ∆
(
λ(S 1

N
), λ(∅)

)
= β̂ − β̂(i) =

(X′X)−1 x′iei
1− hi

, (5)

where hi = Hii is the i’th element on the diagonal of the hat matrix. This statistic is

a popular and widely available measure of influence for single observations on coefficient

estimates in the context of OLS estimation.2 As will be discussed below, quantities such

as δi play a central role in the approach proposed by BGM. Belsley et al. (1980) suggest

a scaled version of δi, where standard errors of the coefficients are used for normalisation.

This scaling step is carried out using an estimate of the error term variance, σ̂2, that

disregards observation i and is thus given by σ̂2(i) =
∑N

n 6=i

(
yn − xnβ̂(i)

)2
/(N − P − 1).

2.3 Identifying influential sets

For sets of influential observations with Nα > 1, identification is considerably more

challenging. Despite the availability of closed-form results for many essential quantities

with respect to single observations, exact solutions to the optimisation problems posed

above are often intractable. For all but the simplest problems, enumeration is infeasible,

requiring a total of
(
N
Nα∗

)
calculations of the influence measure. These computational re-

quirements can be circumvented via approximate methods, but these suffer from the fact

that it is possible that S∗α 6⊃ S∗θ , as well as ∆∗α ≯ ∆∗θ for α > θ. This problem hampers

the performance of approximations and implies a trade-off between computational cost

and accuracy in the identification of maximally perturbing sets.3 These difficulties are

connected to the phenomenon of masking, a situation where some influential observa-

tions conceal the influence of other observations. A related concept is swamping, where

observations only appear influential due to other influential observations that affect the

estimate of interest. To address these problems, influential sets need to be treated as a

whole, as opposed to treating them as an accumulation of single influential observations.

2The statistic is termed DFBETAi by Belsley et al. (1980). Its calculation is implemented in standard

statistical software; see for instance R’s influence() and related functions or Stata’s dfbeta() function.
3One extreme is the (infeasible) exact solution via enumeration of all conceivable sets. Approximations

based on influential sets of unit size arguably represent the other extreme.
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Measures of influence may be flawed and sensitivity analyses run the risk of being severely

misleading if they build upon cumulative indicators based on single observations.

To avoid these conceptual and computational issues, the task of sensitivity analysis

is often approached via robustifying estimates, which is elaborated upon in a large body

of literature (Hampel et al., 2005; Huber, 1964; Maronna et al., 2019; Rousseeuw and

Yohai, 1984; Shotwell et al., 2011). Assessing sensitivity to influential sets has also been

addressed using resampling methods, such as the the jackknife or the bootstrap (Efron

and Tibshirani, 1994). However, while closely related, sensitivity measures based on

resampling methods and sensitivity measures based on excluding maximally perturbing

sets are not equivalent. The former yields relatively aggregated measures of sensitivity.

Excluding the maximally perturbing set sheds light on the worst-case scenario.4

Many contributions are concerned with the related task of detecting multiple outliers.

Whereas influential observations are influential with respect to some quantity, the concept

of an outlier is less clear and identification is essentially an unsupervised learning task.

To ensure computational feasibility, attempts have built upon sequential application of

methods for single-observation statistics (Caroni and Prescott, 1992), an approach that

is closely related to the algorithms outlined below. Alternatively, clustering methods

to identify sets of outliers have been put forward (Hadi, 1992; Hautamaki et al., 2004;

Kaufman and Rousseeuw, 2009; Kim and Krzanowski, 2007). A number of contributions

suggest model selection procedures that attempt to compare relevant metrics across all

possible subsets of observations (Hoeting et al., 1996; Kim et al., 2008). However, even

for moderately sized samples, the cardinality of the model space to assess is prohibitive.

Even efficient algorithms, such as those based on Markov chain Monte Carlo methods,

only explore an extremely small fraction of the full space of specifications.

Because of these obstacles, the literature addressing the identification of influential

sets of arbitrary size Nα is limited, despite the abundant methods for detecting individual

influential observations. A notable exception is the recent work by BGM, who propose

an approximate metric to identify observations with large impact on a quantity of in-

terest when dropped. The metric is built on gradients of the quantity of interest – such

as the one given in Equation (5) – which are computed once for the full sample. Sets

of influential observations are then identified iteratively by choosing observations corre-

sponding to the largest gradients. Perturbations are calculated by cumulatively summing

up individual gradients. This implies minimal computational expense, since both the

influential set and the associated perturbation are obtained in one sweep. The metric

can be computed efficiently for conceivable influence measures using auto-differentiation.

4In particular, dropping the maximally perturbing set of size Nα reveals the extreme bounds of a

delete-Nα jackknife distribution of estimates.
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It is generally applicable and provides “an exact finite-sample lower bound on sensitivity

for any estimator” (Broderick et al., 2020, p.1). Guaranteed computational feasibility

makes this an appealing approach for sensitivity analysis.

However, minimal computational efforts imply a loss of accuracy that can be prob-

lematic when assessing sensitivity. In the absence of particularly influential observations,

i.e. by extent masking and swamping, such an approximation may suffice. In fact, it will

largely mirror conclusions from conventional measures, such as the one given in Equa-

tion (5). However, in the presence of these obstacles, initial measures of influence may

impair the quality of the detected sets considerably. For the approximation used by

BGM, this holds true not only with respect to the identification of influential sets, but

also with respect to the accuracy of the reported perturbations. The latter conclusion

directly results from the fact that δ{i,j} does not equal δi + δj.

Taken together, these considerations imply that computationally cheap, but näıve

measures of sensitivity to influential sets suffer precisely in the situations they are con-

ceived to detect. In the subsequent sections, we illustrate, discuss, and address these

issues in various settings. We compare three algorithms for identifying minimal perturb-

ing sets and the associated perturbations that provide remedies for the challenges related

to masking and swamping.

3 Algorithmic approaches to the identification of in-

fluential sets

In the following, three algorithms with the objective of identifying minimal perturbing

sets are outlined. The first one is a näıve approximation based on influence measures

for the full sample. The second and third algorithm use adaptive techniques instead of

static approximations and provide substantial improvements on the näıve approximation

at minimal extra cost.5

3.1 Algorithm 0 – Initial set and initial perturbation

The first algorithm – henceforth Algorithm 0 – is based on influence measures of single

observations, computed once using the full sample. It is extremely cheap from a com-

putational perspective, but likely to give inaccurate results when identifying influential

sets. Algorithm 0, which essentially coincides with the approach proposed by BGM,

approximates perturbations by accumulating influence measures derived from omitting

5The idea of employing adaptive algorithms to identify influential sets has been previously outlined,

but not explored in detail, in Belsley et al. (1980).
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Algorithm 0: Initial set and initial perturbation approximation.

Result: An estimate of S∗∗α and associated ∆∗α and α∗.

regress y ∼ X, set initial size s.t. Nα = 1, and maximal size α;

calculate the influence measure δi = ∆
(
λ(S 1

N
), λ(∅)

)
for all i;

create an ordered set S1 by ranking δi;

while ∆ < ∆∗∗ ∨ α̂∗ > α < α do
build the set Sα using the first Nα elements of S1;
approximate the perturbation ∆ =

∑
n δn for all n ∈ Sα;

if ∆ < ∆∗∗ then increase the size α;

else set α̂∗ = α and decrease the size α;

end

single observations. Computation of most measures of interest is trivial, since they are

often available in closed form. The desired results can usually be obtained from the same

factorisation that is used to arrive at the least squares coefficient estimates. This is typ-

ically a QR factorisation, which allows the use of efficient triangular solvers, resulting in

a computational complexity of O(NP 2).

The approximate set identification of Algorithm 0 may yield useful estimates when

there is one distinct and homogeneous influential set. If there are multiple sets or obser-

vations are relatively spread out, the approximation suffers from masking and swamping

problems. The quality of the perturbation approximation, ∆̂∗α, is restricted by the quality

of the approximate maximally perturbing set. In addition, its accuracy suffers severely

when there is more than one influential observation present. Taken together, Algorithm 0

is only expected to work well when there is at most one influential observation. Larger

influential sets or multiple influential sets of any size will necessarily distort influence

scores of any single observation and hence negatively affect approximation quality.

3.2 Algorithm 1 – Initial set and exact perturbation

Algorithm 1 is a slight adaptation of Algorithm 0 that employs the same initial approxi-

mation to identify maximally perturbing sets, but computes exact measures of perturba-

tion. Under the assumption that perturbations are increasing with the size of the set (as

implicit in Algorithm 0), the task can be interpreted along the lines of a binary search.

The size is initialised and updated by halving the interval to search repeatedly, following

a divide-and-conquer strategy. The computational overhead amounts to a worst case

of O(logNα) recalculations of the perturbation, where α denotes the maximal allowed

9
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Algorithm 1: Initial set approximation and exact perturbation.

Result: An estimate of S∗∗α and associated ∆∗α and α∗.

regress y ∼ X, set initial size α, and maximal size α;

calculate the influence measure δi = ∆
(
λ(S 1

N
), λ(∅)

)
for all i;

create an ordered set SN by ranking δi;

while ∆ < ∆∗∗ ∨ α̂∗ > α < α do
build the set Sα using the first Nα elements of SN ;

calculate the perturbation ∆(λ(Sα), λ(∅));

if ∆ < ∆∗∗ then increase the size α;

else set α̂∗ = α and decrease the size α;

end

size of the maximally perturbing set (which could be determined using Algorithm 0).6

For least squares estimation, the computational cost of recalculation is hardly restrictive,

making the calculation of full paths of perturbation, i.e. for α such that Nα = 1, . . . , Nα∗ ,

attractive.

Algorithm 1 addresses one major concern of the näıve approach, since re-calculating

the exact perturbations for a given value of α accounts for the joint impact of individ-

ual influential sets. Nevertheless, the set approximation still suffers from masking and

swamping. It is worth to note that, due to the computation of exact perturbation mea-

sures, this algorithm can actually be used to diagnose the existence of such phenomena.

In the case where only one heavily influential set is present, the algorithm should be able

to identify the set based on the gradient of individual influences and should therefore be

able to yield the correct perturbation, which exceeds the cumulative sum of individual

gradients. Assessing the perturbation path after such a highly influential set is removed

entirely may be informative of masking and swamping issues. For instance, if the induced

perturbations decrease considerably after the removal of a set, this can be interpreted as

evidence for the existence of a masking problem.

In summary, Algorithm 1 uses a computationally efficient approximation to the min-

imal perturbing set and yields exact associated perturbation measures at negligible com-

putational cost. Minimal perturbing sets are expected to be considerably smaller than

those for Algorithm 0. Nevertheless, the set identification procedure may not adequately

address masking and swamping issues; a flaw that is addressed in the third algorithm,

outlined below.

6Further improvements in computational speed are possible, some of which are outlined in Subsec-

tion 3.3.
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Algorithm 2: Adaptive set approximation and exact perturbation.

Result: An estimate of S∗∗α and associated ∆∗α and α∗.

regress y ∼ X, set initial size α = 0, maximal size α, and step size t;

while ∆ < ∆∗∗ do

calculate the influence measure δi = ∆
(
λ(Sα+ 1

N
), λ(Sα)

)
for all i 6∈ Sα;

build the set Tt from the t observations with maximal influence;

build the set Sα+t by forming the union Sα ∪ Tt;
calculate the perturbation ∆(λ(Sα), λ(∅));

if α < α then increase the size α by t;

else break;

end

3.3 Algorithm 2 – Adaptive set and exact perturbation

Algorithm 2 uses an adaptive procedure for identifying the minimal perturbing set. In-

fluential observations are identified at each step in a recursive manner, facilitating the

discovery of potentially masked observations. Essentially, Algorithm 2 can be charac-

terised along the lines of a greedy algorithm that makes locally optimal decisions after

dropping an observation. Starting with influential sets formed by single observations, the

procedure adds observations with maximal influence to the set and updates the perturbed

measures of interest until the target perturbation is achieved. Algorithm 2 addresses

masking and swamping issues, yielding the arguably preferable method in settings with

multiple influential sets.

The computational complexity of Algorithm 2 and Algorithm 1 differs primarily due

to the number of recalculations that are required. The fact that we need to adaptively and

step-wise increase the size of the identified set prevents us from using a divide-and-conquer

strategy. That is, there is an upper bound of O(Nα) on the recalculations needed. Gen-

erally, this procedure may appear to be computationally prohibitive, but efforts required

are much smaller than e.g. alternative delete-d jackknife algorithms. In fact, the compu-

tational efforts are hardly restrictive in the framework of least squares estimation with

moderate sample sizes.7

7For the applications presented in the following section, computation was effectively instantaneous

or, at worst, a matter of seconds. Large-scale problems can be tackled by increasing the speed of the

algorithm via more efficient methods to solve the linear system of equations (Shewchuk, 1994; Trefethen

and Bau, 1997), various updating methods (Hammarling and Lucas, 2008; Reichel and Gragg, 1990;

Sherman and Morrison, 1950), the Frisch-Waugh-Lovell theorem (Frisch and Waugh, 1933) to isolate

coefficients of interest, and increased or adaptive step sizes for each iteration.
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4 Illustrative empirical examples

This section presents a number of empirical examples to illustrate the performance of

the algorithms discussed above and demonstrate their relative merits. We focus on per-

turbations of a coefficient of interest. Other perturbations and targets, such as changes

in statistical significance or significant sign switches, are reported in passing, but could

be pursued explicitly. First, we present examples based on simulated data. Second, we

revisit seven RCTs that assess the effects of microfinance on household profits and have

been studied previously in Meager (2019) and BGM. Third, we discuss the role of influ-

ential sets when assessing cross-country convergence in poverty rates. For each empirical

example, we investigate and report the performance of the three algorithms outlined

above.8

4.1 Simulated data

Consider fitting a simple linear regression model to the data depicted in Figure 1. The

three observations in the right-most area of the scatter plot, marked (a), are extremely

influential with respect to β̂. This circumstance is reflected in common diagnostics, such

as residuals, leverage, scale-location plots, and Cook’s distance. Unsurprisingly, this set

of observations is also identified as an influential set by all three outlined algorithms.

The identified influential sets of size larger than three, however, strongly differ across

algorithms. The influence of the observations marked as (b) in Figure 1 is masked by the

three observations in (a). As a result, neither Algorithm 0 nor Algorithm 1 include them

in approximations of the maximally perturbing set for reasonable sizes.9 In contrast,

the adaptive nature of Algorithm 2 leads to the identification of these data points as

influential for sets of size four or larger.

Figure 2 depicts the identified influential set of increasing size for the three algorithms.

In addition, the least squares regression lines after removing influential sets of size three

and seven are provided. The panels of Figure 2 reveal how masking and swamping

can affect the identification of influential sets. New members of the set for sizes above

three are constrained to the lower left quadrant when using Algorithms 0 or 1. These

observations are relatively inconsequential with respect to the least squares fit and their

membership in the influential set is the product of swamping effects. The perturbation

8For comparability reasons, we use the implementation of Algorithm 0 in the R package zaminfluence

(Broderick et al., 2020), which is available at github.com/rgiordan/zaminfluence. Given the targeted

perturbations, this should be equivalent to using Algorithm 0 with the measure of influence given in

Equation (5). In practice, the BGM metric falls slightly behind, as documented in Figure A4 of the

Appendix.
9The observations are removed at sizes Nα of 36 and 40, out of a total of 50 observations.
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Figure 1: Scatter plot of the dependent against the explanatory variable (N = 50). The

least-squares fit is indicated by the gray line, influential sets are labelled (a) and (b).

achieved by Algorithm 0 and 1 reaches a relative peak after removing three observations.

Estimates of the regression line which are essentially indistinguishable when larger sets are

considered (see the Appendix, Figure A1 for more details). Moreover, the approximation

in Algorithm 0 fails to account for the full influence of the first influential set, yielding

a significantly lower perturbation after its removal. Algorithm 2 does not suffer from

these problems and yields considerably more accurate sets for Nα > 3. The additional

perturbations induced remain relevant and the regression lines differ clearly.

In order to assess whether differences across algorithms are systematic, we perform

a simulation exercise with four different data generating processes (DGPs). DGP1 is

a linear regression model where observations of the dependent variable are linked to

a covariate drawn from a standard normal distribution using a slope parameter β=1.

DGP2 is similar, but ten percent of the draws of the covariate correspond to a normal

distribution with higher variance, resulting in a subsample with increased leverage. DGP3

introduces a mixture component, where ten percent of the observations of the covariate

have high leverage and a coefficient above unity. These observations can be seen as a

(potentially disjoint) influential set with α = 0.1. In DGP4, two five percent mixture

components are simulated to contaminate the dataset instead. The first component

mirrors the mixture component from DGP3. The second component has slightly higher

leverage and a coefficient which is further increased. This process induces two sets of

influential observations which have the potential to mask each other. A formal description

of the DGPs is given in the caption of Figure 3.
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Figure 2: Influential set identification with Algorithms 0 and 1 (left panel, identical sets)

and Algorithm 2 (right panel). Regression lines with the approximated maximal pertur-

bations for sets of size three and seven are indicated as solid and dashed lines, respectively.

Lines for Algorithm 0 are held in gray, Algorithm 1 in purple, and Algorithm 2 in teal.

We simulate 1,000 data sets for N = 100 and a single explanatory variable and collect

the perturbations detected by Algorithms 0, 1, and 2.10 The average coefficient paths as

influential sets are removed are reported in Figure 3. It can be seen that Algorithm 1

improves upon the coefficient paths obtained by Algorithm 0 due to the computation of

exact perturbations. Algorithm 2 dominates the other two alternative methods whenever

more than one observation is removed, and its relative performance increases with the

number of influential observations. This result extends to statistics based on individual

runs for the simulation setting presented (see Appendix, Table A1).

In the top-left panel of Figure 3, with data based on DGP1, we observe similar perfor-

mance of Algorithms 1 and 2, while Algorithm 0 lags behind slightly. When introducing

high leverage observations in DGP2 (top-right panel), the gap between search algorithms

based on initial and adaptive influential set identification schemes widens. This can be

explained by the fact that Algorithms 0 and 1 are not able to account for masking of

influential observations as others are removed.

In the bottom-left panel, with data based on DGP3, the problems created by masking

of influential observations are even more striking. The initial approximation employed

10Other simulation settings for model size P = 5, where a single covariate is distorted, and with influ-

ential sets of reduced size are qualitatively similar. Results are presented in the Appendix (see Figures A2

and A3). Additional simulation designs for N = {100, 500, 1000}, reduced influential sets corresponding

to α = 0.05, and different number of covariates were also implemented and led to qualitatively similar

results. These results are available from the authors upon request.
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by Algorithms 0 and 1 suffers from masking problems, even for observations within the

influential set, which is not identified consistently. The results presented in this panel

also highlight the fact that the total perturbation induced by the set exceeds the sum

of perturbations induced by its parts (as would be implied by initial estimates). This

leads to a characteristic break point in the coefficient paths when ten observations (the

true number of highly influential observations) are removed for Algorithms 1 and 2. This

break is absent for Algorithm 0, which coincides with a considerable underestimation of

the magnitude of the perturbation.

These effects are even more pronounced under the DGP4, for which results are pre-

sented in the bottom-right panel. Algorithm 0 identifies the first influential set but vastly

underestimates its induced perturbation. Algorithm 1 reliably finds the first influential

set and yields good estimates of the size of its attached perturbation, but fails to identify

the second set accurately. Algorithm 2 correctly identifies both sets, as can be recognised

by the distinct breaks at influential set sizes of 5 and 10.

4.2 Seven microfinance studies

Much work in development economics has aimed at quantifying the impact of microfi-

nance on poverty in developing countries. While a general interest in microfinance as

a development policy tool has a relatively long history in economics (Morduch, 1999),

large-scale studies based on experimental designs have become available only recently.

Meager (2019) discusses and summarises seven of these studies in the context of an exter-

nal validity assessment. These studies analyse data from RCTs that took place in Bosnia

& Herzegovina (Augsburg et al., 2015), Ethiopia (Tarozzi et al., 2015), India (Banerjee

et al., 2015), Mexico (Angelucci et al., 2015), Mongolia (Attanasio et al., 2015), Morocco

(Crépon et al., 2015), and the Philippines (Karlan and Zinman, 2011). BGM assess these

studies and focus on robustness of the average treatment effect (ATE) estimates when

excluding a small number of influential observations. In general, their findings imply that

the effect of microcredit on household level business profits is not particularly robust and

that the size of ATE estimates are usually driven by very small sets of observations.

We address the problem of assessing perturbations in ATE estimates in these stud-

ies using the replication data accompanying the study of Meager (2019). The model

considered is a simple treatment effect model of the form

yi = α +Diβ + εi εi ∼ N(0, σ2) (6)

where yi corresponds to household business profits in household i = 1, . . . , N and Di is a

randomised treatment dummy indicating whether household i has been assigned to the
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Figure 3: Average coefficient paths along the number of observations removed, calculated

using Algorithms 0, 1, and 2. Results are based on averages across 1000 simulation runs in

four different settings with N = 100. Process 1 is a linear model with β = σ2 = 1, where

the only control is drawn from N (0, 1). In process 2, ten observations of the covariate

are drawn from N (0, 5) instead. For process 3, a set of ten observations has high leverage

(being drawn from N (7, 1)) and a different coefficient (βa ∼ N (1.5, 0.5)). Process 4 splits

this set of ten observations into two, one of which has even higher leverage (being drawn

from N (10, 1)) and a different coefficient (βb ∼ N (2, 0.5)).

treatment group that benefits from easier access to microfinance compared to the control

group. Under assumptions that are standard in experimental contexts, β measures the

ATE. This simple model is estimated separately for each dataset, with sample sizes that

range from around 1,000 to around 16,500 observations. To ensure comparability to the
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Study region BIH MON ETH MEX MOR PHI IND

Algorithm (0) (2) (0) (2) (0) (2) (0) (2) (0) (2) (0) (2) (0) (2)

Sign-switch 14 13 16 15 1 1 1 1 11 11 9 9 6 6

Significant (99%) 49 39 43 37 117 13 20 12 35 33 74 54 41 35

Sample size 1,195 961 3,113 16,560 5,498 1,113 6,863

Table 1: Number of observations needed to induce a sign-switch and a significant

sign-switch as well as sample size for each of the seven microfinance RCTs. BIH =

Bosnia & Herzegovina, MON = Mongolia, ETH = Ethiopia, MEX = Mexico, MOR =

Morocco, PHI = Philippines, IND = India.

results in BGM and Meager (2019), control variables and fixed effects are omitted from

the econometric specification.11

Table 1 presents the number of observations that suffices to reach target perturbations

to the full sample results when excluded. Specifically, we report the number of obser-

vations necessary to switch the sign of the point estimate β̂ and to switch the sign and

achieve a significant estimate of β̂ at the 1% significance level. For the sake of brevity,

we focus on comparing Algorithm 0 to Algorithm 2 and omit the results of Algorithm 1,

which are close to those of Algorithm 2 in this case.

The first take-away from Table 1 is that a relatively small number of observations

drive the full-sample estimate of the ATE, a result which is in line with the findings of

BGM. In the studies based on data for Ethiopia and Mexico, the exclusion of a single

observation is enough to change the sign of β̂. In addition, for the data from Mexico,

dropping around 0.07% of the observations leads to a change in the sign of the ATE and

a resulting parameter which is statistically significant. The second insight from Table 1 is

that Algorithm 2 is more efficient in detecting influential sets compared to Algorithm 0,

in line with the simulation studies outlined above. Focusing on the data for Ethiopia,

Algorithm 0 suggests that the exclusion of 117 observations (3.8% of the data set) changes

the sign of the ATE estimate and leads to statistical significance with an opposite sign

of the estimate obtained with the full sample. Using Algorithm 2 reveals that a much

smaller set of 13 observations (0.4% of the data set) is enough to achieve this level of

perturbation. Algorithm 2 performs particularly well in scenarios where highly influential

observations mask the presence of other influential observations.

Note that, if the possibility of measurement error can be ruled out, small sets of in-

fluential observations driving the ATE may actually imply the presence of heterogeneous

11As argued in BGM and Meager (2019), excluding the set of controls has only minor effects on

inference in these studies.
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treatment effects. A small number of observations driving the treatment effect is equiv-

alent to a small share of the population reacting to the treatment. Assuming that 1%

of the population reacts to the treatment, excluding merely ten observations is enough

to overthrow the full sample results when N = 1000. In the context of microcredit, this

is in line with previous literature that has shown that households with previous business

experience are more sensitive to microcredit interventions when compared to the average

household (Meager, 2019; Crépon et al., 2015). A key finding of Meager (2020) is that

the effects of microcredit interventions are most likely zero for a large proportion of the

population and that significant (positive) effects are concentrated in the right tails of the

outcome distribution. Some of the influential sets identified are far below 1% or even

0.1% of the sample size. From a policy perspective, this may cast doubt on the effec-

tiveness of microcredit as a tool for poverty reduction and inclusive development. From

an econometrician’s viewpoint, this implies that aggregating evidence from many (poten-

tially underpowered) studies may be necessary to draw robust conclusions on the effect of

interest. Evidence aggregation is attempted in Meager (2019) and Meager (2020), where

Bayesian hierarchical models are used to combine effect estimates of the seven studies

discussed above.

4.3 Poverty convergence

A large number of empirical studies assess the patterns of cross-country convergence

in living standards, as measured by GDP per capita (Barro and Sala-i Martin, 1992;

Johnson and Papageorgiou, 2020). Convergence in absolute poverty rates, however, has

been examined less often. Ravallion (2012) addresses this question in the theoretical

framework given by the combination of two facts: higher average incomes tend to lead

to lower poverty rates (Bourguignon, 2003) and mean incomes tend to converge across

countries. While these two concepts taken together clearly point into the direction of

convergence in poverty rates, Ravallion (2012) is not able to detect poverty convergence

in a sample of 89 countries. The proposed econometric specification takes the form

T−1i (lnHit − lnHit−1) = α + β lnHit−1 + εit, (7)

where Hit denotes the poverty headcount ratio in country i in time period t, Ti is the

country-specific observation period in years and εit is an error term assumed to fulfil

the standard assumptions of the linear regression model. This specification relates the

annualised growth rate of the poverty headcount ratio to the log of the initial poverty

headcount index. Ravallion (2012) estimates β and finds it to be slightly positive and

statistically insignificant.
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Figure 4: Data and regression line for Ravallion (2012) before (solid line) and after

(dashed line) removing the minimal perturbing set Ŝ∗5 (highlighted in colour). The hor-

izontal axis holds the logarithm of initial poverty headcount index; the vertical axis

annualised log differences of poverty headcount ratios.

In a response, Crespo Cuaresma et al. (2016) point out that the original,

non-significant finding is likely due to a number of Eastern European countries exhibiting

very low initial poverty headcount ratios. The log-transformation in Equation (7) implies

that small absolute changes translate into large growth rates in poverty headcount ratios

for these economies. This makes the experience of these countries very influential when

estimating the parameters in Equation (7). Crespo Cuaresma et al. (2016) show that

when explicitly controlling for the poverty trajectories of Eastern European countries,

there is indeed empirical evidence for cross-country convergence in poverty rates.

We first revisit the problem using the same data set as used in both Ravallion (2012)

and Crespo Cuaresma et al. (2016). Figure 4 presents the convergence scatter plot, with

coloured observations for the countries that belong to the minimal perturbing set as

identified by Algorithm 2. It suffices to remove only five countries from the data set to

achieve statistically significant poverty convergence (a negative and significant estimate

of β) using the specification given by Equation (7). These five countries are Belarus,

Latvia, Ukraine, Poland, and the Russian Federation. This result stresses the need to

take into account the different experience of Eastern European countries when analysing

cross-country poverty dynamics.

In an additional exercise, we investigate an alternative specification suggested in Cre-

spo Cuaresma et al. (2016) that takes the form
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T−1i (Hit −Hit−1) = α + βHit−1 + εit (8)

where variable definitions are the same as in Equation 7. This econometric specification

is based on the concept of a semi-elastic relationship between poverty reduction and eco-

nomic growth from Klasen and Misselhorn (2008). It relates changes in poverty headcount

ratios to the initial level of poverty instead of growth rates in poverty headcount ratios

to the initial log level of poverty. Using this alternative specification, Crespo Cuaresma

et al. (2016) find clear empirical evidence for poverty convergence using the original data

from Ravallion (2012).

To assess how robust this finding is to excluding sets of observations, we re-estimate

the specification given by Equation (8) using an updated dataset sourced from PovCal-

Net.12 Starting with the full sample of poverty headcount observations (using a poverty

line of $2 a day), a number of data quality filters are applied. First, observations that

are not based on household surveys are excluded. Second, countries where the longest

observation period is below ten years are excluded. Finally, when both income and con-

sumption based poverty rates are available, consumption based data are preferred. This

procedure leaves us with a sample of 124 countries. For each country, the longest time

span available is used to compute annualised changes in poverty rates.

The full sample LS estimate β̂ = −0.019 with a standard error of 0.002 implies

significant poverty convergence. Algorithm 0 does not detect any set of observations that

overthrows this result, even after excluding more than 50% of the sample. Algorithms 1

and 2 detect sets of observations that nullify the significant result when excluded. These

sets include 64 (Algorithm 1) and 26 (Algorithm 2) countries. In other words, one has to

exclude at least 20% of observations to achieve a sign change in the significantly negative

full sample estimate. As a result of these exercises, we conclude that poverty convergence

is a relatively robust empirical regularity.

5 Concluding remarks

In this paper, we investigated the sensitivity of inferential statistics in linear regression

models to sets of influential observations. We showed how masking issues may hamper

näıve approaches to summary measures of sensitivity, which in turn yielded misleading

indications of robustness. This was particularly problematic in the actual presence of

highly influential sets. We proposed two algorithms that are more useful in such sce-

narios and outperform existing approaches considerably at little additional cost. These

12PovCalNet data can be obtained from http://iresearch.worldbank.org/PovcalNet/home.aspx.
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algorithms allow for a more precise assessment of the degree of sensitivity of estimates to

sets of influential observations. Intuitive and directly interpretable summary statistics,

such as the number of observations needed to achieve a sign-flip or change in significance

of coefficients (as done in Broderick et al., 2020), can be easily derived.

While the achievable perturbations may seem alarming in certain applications, in-

terpretation requires careful contextualisation. Sensitivity to removal of observations is

decidedly not a conclusive indicator of a lack of validity. This is particularly the case for

the relative number of removals – a great deal of interesting phenomena are exceedingly

rare and insights hinge on few influential observations, with examples including rare dis-

eases, economic crises or policy interventions that only affect outcomes for a small part of

the population. Nevertheless, caution should be exercised if the sensitivity of regression

results to influential observations is high. Sensitivity to the omission of very few obser-

vations may indicate sampling bias. Assuming that internal validity is given, the sample

size is unlikely to accurately represent the population of interest. This may be a sign of

an underpowered study and of a lack of external validity.

Several pathways for future work that builds upon our results can be envisaged. There

is room for more comprehensive statistics that summarise robustness of inferential statis-

tics to influential sets. Further methodological improvements in terms of computational

efficiency and accuracy, for instance via sampling-based approaches, are possible as well.

Lastly, performing robustness analysis to other empirical phenomena different from those

presented here may deliver valuable insights that are relevant for academics and policy

makers.
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A Additional tables and figures
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Figure A1: Coefficient paths for the data in Figure 1 obtained from Algorithms 0, 1, and
2.
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Process Algorithm 2 removed 5 removed 10 removed 20 removed

DGP1 A (2) 0.064 0.427 0.897 0.999
A (1) & A (2) 0.936 0.573 0.103 0.001
A (0) or A (1) 0 0 0 0

DGP2 A(2) 0.176 0.715 0.968 1.000
A (1) & A (2) 0.824 0.285 0.032 0.000
A (0) or A (1) 0 0 0 0

DGP3 A (2) 0.079 0.543 0.948 1.000
A (1) & A (2) 0.921 0.457 0.052 0.000
A (0) or A (1) 0 0 0 0

DGP4 A (2) 0.086 0.226 0.996 1.000
A (1) & A (2) 0.914 0.774 0.004 0.000
A (0) or A (1) 0 0 0 0

Table A1: Performance measured by the percentage of maximal perturbations between
algorithms achieved at {2, 5, 10, 20} removed observations over 1000 simulations. As can
be seen, Algorithm 2 strictly dominates Algorithm 0 and weakly dominates Algorithm 1
in the simulations when more than one observation is removed. Processes are the same
as in Figure 3.
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Figure A2: Average coefficient paths for four different DGPs over a thousand simulations
calculated with Algorithms 0, 1, and 2. Processes are the same as in Figure 3, but the
simulation includes four additional variables, where both data and coefficients drawn from
a standard normal.
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Figure A3: Average coefficient paths for four different DGPs over a thousand simulations
calculated with Algorithms 0, 1, and 2. Processes are the same as in Figure 3, but the
cardinality of changed sets is adapted. Process 2 and 3 now include five observations
of particular interest. The mixture in process 4 is now composed of three observations
mirroring process 3 and two additional ones.
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Figure A4: Difference between perturbed coefficients retrieved with Algorithm 0 using
the BGM implementation and DFBETA (see Equation (5) for the measure) as measures
of influence. Plotted are the median in black as well as 1%, 5%, and 10% quantiles of the
difference for four different DGPs over a thousand simulations. Processes are the same as
in Figure 3. Note the small but consistent deviations. The BGM approximation already
falls behind slightly on the first removal, for which DFBETA is exact.
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