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Abstract 
 
Declining hours of work per worker in conjunction with a growing work force may give rise to 
fluctuations between growth regimes. This is shown in an overlapping generations model with 
two-period lived individuals endowed with Boppart-Krusell preferences (Boppart and Krusell 
(2020)). On the supply side, economic growth is due to the expansion of consumption-good 
varieties through endogenous research. A sufficiently negative equilibrium elasticity of the 
individual supply of hours worked to an expansion in the set of consumption-good varieties 
destabilizes the steady state so that equilibrium trajectories may fluctuate between two growth 
regimes, one with and the other without an active research sector. Fluctuations affect 
intergenerational welfare, the evolution of GDP, and the functional income distribution. A 
stabilization policy can shift the economy onto its steady-state path. Fluctuations arise for 
empirically reasonable parameter constellations. The economics of fluctuations between growth 
regimes is linked to the intergenerational trade of shares and their pricing in the asset market. 
JEL-Codes: J220, O330, O410. 
Keywords: endogenous fluctuations, growth regimes, endogenous technological change, 
endogenous labor supply, OLG-model. 
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1 Introduction

At least since 1870 hours worked per worker have substantially declined in many of today’s
industrialized countries. Estimates of Huberman (2004) and Huberman and Minns (2007) sug-
gest that a male full-time production worker in the U.K. had a weekly workload of 56.9 hours
in the year 1870. In 2000 this number comes down to 42 hours of work, an absolute decline
of roughly 35%. According to these authors a similar tendency can be found in Australia,
Belgium, Canada, Denmark, France, Germany, Ireland, Italy, the Netherlands, Spain, Sweden,
Switzerland, and the US. At the same time the total workforce of these countries has been in-
creasing.

Boppart and Krusell (2020) and Irmen (2018) interpret these stylized facts as properties of
country-specific balanced growth paths driven by exogenous technical change. In contrast to
this view, the present paper shows that declining hours of work per worker may cause fluctua-
tions between growth regimes when technical change is endogenous. Over time the evolution
is unbalanced, yet, consistent with the data income and wages increase and individual hours
of work decline.

We obtain these features in an overlapping generations model with exogenous population
growth where the individual supply of hours worked and technological change are both en-
dogenous. The household side has two-period lived individuals endowed with a periodic
log-log utility function that belongs to the Boppart-Krusell class (Boppart and Krusell (2020)).
Individuals work when young and retire when old. Therefore, the Marshallian wage elasticity
of their supply of hours worked is negative and constant (Irmen (2018)). In the spirit of Gross-
man and Helpman (1991) and Jones (1995), the production side has endogenous technological
change through an expansion of the set of consumption-good varieties. New varieties are in-
vented by research firms. There are two growth regimes. One regime has an active research
sector, in the other the research sector is inactive. The global dynamics exhibits fluctuations
between these two growth regimes.

The occurrence of two growth regimes is closely linked to the mechanics of the market for as-
sets and its repercussions on the evolution of the economy over time. In this market, ownership
shares of the firms that produce a variety of the consumption good are traded. The demand
side has the current young with their need to save for old age. In the regime without an op-
erating research sector, the supply of shares stems solely from the current old. They own the
shares of all firms and sell them to finance their consumption demand. In the regime with an
active research sector, there is an additional source of share supply. New firms emit owner-
ship shares to finance the purchase of a blueprint that grants them the right to market a new
consumption-good variety invented by a research firm.

In the regime without an active research sector the amount of existing consumption-good vari-
eties is large relative to the cohort size of the current young. Accordingly, the supply of shares
is large relative to its demand and the equilibrium share price will be low. Therefore, the finan-
cial resources that new firms may raise to pay for a blueprint are too small for a research firm
to break even. As a result, the research sector remains inactive.
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In the regime with an active research sector the amount of existing consumption-good varieties
is small relative to the cohort size of the current young. Therefore, in spite of the additional
supply of shares through the primary offering of new firms, the equilibrium price of shares is
sufficiently high so that research firms enter the market and break even.

The supply of hours worked plays a key role for the fluctuations between the two regimes. The
transition into the regime with an active research sector is driven by the extensive margin of
the supply of hours worked. Without an active research sector wages, the individual supply of
hours worked, individual savings, and the amount of traded shares remains constant. How-
ever, through population growth the cohort size of the young increases over time. This boosts
the total demand for shares. Therefore, the equilibrium share price increases over time and,
eventually, reaches a level at which an additional share supply of new firms can be absorbed
and research firms break even.

The transition into the regime without an active research sector is driven by the effect of newly
invented consumption-good varieties on the intensive margin of the supply of hours worked
and its repercussions for the asset market. On its demand side, new varieties increase the wage
which leads to a reduction in the individual supply of hours worked. Therefore, individual
incomes and savings increase by less than wages. This attenuates the increase in the total de-
mand for shares. On the supply side, new varieties affect the cost of research firms through
higher wages and an intertemporal knowledge spillover. Since the spillover increases the pro-
ductivity of research labor the break-even price of a blueprint increases by less than wages.
Then, what matters is the relative strength of the effects of new varieties on the reduction in
the supply of hours worked and on the cost reduction through the knowledge spillover. If the
former channel dominates the latter, then, in spite of the cost reduction through the knowledge
spillover, the demand for shares becomes so weak that the asset market equilibrium cannot
support a share price at which research firms can break even.

To further highlight the role of an endogenous supply of hours worked for the occurrence of
fluctuations between growth regimes, observe that the economy has a unique steady state in
the regime with an active research sector. This steady state is globally stable with monotone
convergence if the wage elasticity of the individual supply of hours worked is zero. If this
elasticity becomes negative, then the stability properties of the steady state and the occurrence
of fluctuations between growth regimes hinge in the equilibrium elasticity of the individual supply
of hours worked to an expansion in the set of consumption-good varieties. If the latter is slightly neg-
ative, then the steady state remains stable, possibly with oscillatory convergence. If it becomes
sufficiently negative then the steady state is unstable and the global dynamics give rise to fluc-
tuations between the two growth regimes.

A closer look at the economic conditions that determine the local stability properties of the
steady state reveal a tension between two channels through which an active research sector
today affects the economy tomorrow. The first channel operates through the expansion of
the set of consumption good varieties. Since the equilibrium elasticity of the individual sup-
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ply of hours worked to an expansion in the set of consumption-good varieties is negative the
individual supply of hours worked, aggregate wage income, and the demand for shares de-
cline. Hence, for a given share price fewer primary offers can be placed and, therefore, fewer
blueprints will be invented. The second channel is due to positive intertemporal knowledge
spillovers that render each hour worked in the research sector more productive. This reduces
the costs of creating a blueprint. For a given demand for shares, more primary offers can be
placed and, therefore, more blueprints will be invented.

If the wage elasticity of the individual supply of hours worked is slightly negative (or zero),
then the second channel dominates the first and the intertemporal knowledge spillover that op-
erates under diminishing returns is the source of stability. The growth rate of newly invented
blueprints tomorrow increases in the respective growth rate today in a way that assures a
monotone convergence to its steady-state level. However, if the first channel dominates then
the growth rate of newly invented blueprints tomorrow decreases in the respective growth rate
today. This gives either rise to oscillatory convergence, or, if the equilibrium elasticity of the
individual supply of hours worked to an expansion in the set of consumption-good varieties is
sufficiently negative, to instability. In the latter case an economy starting out in the vicinity of
the steady state will eventually fluctuate between the two growth regimes.

We establish that these fluctuations enter an absorbing interval in finite time. Moreover, we
show that the average geometric growth factor of the number of consumption-good varieties
associated with any equilibrium paths converges to the growth factor of the steady state as the
number of periods becomes unbounded.

In our discussion section, we establish additional properties of equilibrium paths and inquire
further into the economic consequences of fluctuations between growth regimes. First, we
study the evolution of intergenerational welfare of two overlapping cohorts along different
equilibrium paths. The welfare comparison hinges on the evolution of wages and interest fac-
tors faced by the two cohorts. We identify two, possibly opposing channels that determine
whether the welfare of the earlier or the one of the later cohort is higher. As a consequence, the
relative welfare of overlapping generations hinges on whether fluctuations between growth
regimes occur, and, if they occur, on their direction, and on whether they occur during the life-
time of the earlier or the later cohort.

Second, we analyze the evolution ofGDP in absolute and per-capita terms as well as the evolu-
tion of the functional income distribution along different equilibrium paths. GDP is defined as
the sum of the value added in the production and in the research sector. Since the production
sector operates under monopolistic competition its value added per hour worked is greater
than in the perfectly competitive research sector. Therefore, an increase in the fraction of the
workforce employed in the research sector reduces GDP .

We find that GDP steadily increases over time, though at different rates. Since the growth rate
of GDP reflects exogenous population growth, the growth factor of wages and the evolution
of the fraction of the workforce employed in the research sector, GDP in absolute terms may
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increase over time while per-capitaGDP declines. For instance, a switch from the regime with-
out an active research sector into the regime with an active research sector reduces per-capita
GDP since it requires some workers to join the research sector where the value added per hour
worked is lower.

The economy features two types of income, dividend income and wage income. We study the
evolution of the functional income distribution through the lens of the labor share. We show
that the latter increases in the fraction of the workforce allocated to the research sector. As labor
earns the same wage in the production and the research sector such a reallocation leaves the
economy’s aggregate wage bill unaffected. However, for the reason set out above, it reduces
GDP , i. e., the sum of total incomes earned, and the labor share increases. As a consequence,
a switch into the regime with an active research sector will increase the labor share whereas a
switch in the opposite direction reduces it.

Third, we consider the possibility of a stabilization policy that upon its implementation avoids
an evolution involving fluctuations. Moreover, we require this policy to be consistent with a
balanced budget. We show that such a policy exists. Depending on the current state of the
economy it involves either a tax on wage income in conjunction with a subsidy to capital in-
come or vice versa. The purpose of this policy is to move the economy instantaneously into its
steady state that is unstable and, therefore, can not be attained.

If the research sector of the economy is too small relative to its steady-state size then the policy
involves a subsidy to wages. This pushes the demand for ownership shares up so that the ap-
propriate amount of research firms becomes active. To balance the budget, this policy involves
a tax on asset income. Hence, the policy involves a transfer from the current old to the current
young. If the research sector is too big relative to its steady state level, then the policy pre-
scribes a tax on wages to weaken the demand for ownership shares and to reduce the amount
of active research firms. Then, the policy will involve a transfer from the current young to the
current old.

Finally, we provide some evidence on how the possibility of fluctuations between growth
regimes may be linked to empirical evidence. In particular, we show that the condition for
the instability of the steady state is satisfied for empirically reasonable parameter constella-
tions.

This paper contributes to at least two strands of the literature. First, it contributes to the growth
literature ignited by Boppart and Krusell (2020) that incorporates the secular decline in hours
worked per worker into the neoclassical growth model of Ramsey (1928), Cass (1965), and
Koopmans (1965). Irmen (2018) applies it to an overlapping generations setting. In both pa-
pers technical change is exogenous. Irmen (2020) studies the economic consequences of au-
tomation in a model with endogenous technical change where households are endowed with
Boppart-Krusell preferences. These contributions have in common that the steady state is ei-
ther a globally stable or a saddle-path stable balanced growth path. In contrast, the present
paper establishes, that Boppart-Krusell preferences may be the source of fluctuations between
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growth regimes. Indeed, if the individual supply of hours worked does not respond to move-
ments in the real wage, then the steady state of our model is globally stable. It is the negative
wage elasticity of the individual supply of hours worked that opens the possibility of fluctua-
tions between the regime with and the one without an active research sector.

Second, our analysis contributes to the literature on endogenous fluctuations and growth regimes.
Unlike the present paper, this literature maintains the assumption of an exogenous labor sup-
ply. Hence, the mechanics behind the fluctuations that we identify are new to this literature.

A paper closely related to our study is Matsuyama (1999) who studies a variant of the lab-
equipment model of Rivera-Batiz and Romer (1991). Matsuyama argues that the growth pro-
cess may involve fluctuations between growth regimes including cycles where an economy
moves back and forth between a regime with capital accumulation alone and a regime that has
capital accumulation and innovation. Moreover, since the accumulation of capital is subject to
diminishing returns, the economy may be trapped in a regime without long-run growth.1

Our rationale for fluctuations between growth regimes substantially differs from Matsuyama’s
in at least two ways. First, there is no capital accumulation in our setup. Rather, the economy
“accumulates” workers through population growth. As this accumulation is not subject to di-
minishing returns the economy either converges to a steady state with growth of per-capita
variables or keeps on fluctuating between the regime with and without an active research sec-
tor.

Second, we maintain the assumption that new blueprints are sold in conjunction with a perpet-
ual patent. Hence, a key mechanism for the emergence of cycles in Matsuyama (1999), namely,
the temporary monopoly power of new products, is mute in our model. In contrast, we empha-
size in line with the empirical evidence that individuals reduce their supply of hours worked
in response to higher wages. This is the key driver of instability of the unique steady state.

The remainder of this paper is organized as follows. Section 2 presents the model. Section 3 de-
fines the intertemporal general equilibrium, proves its existence, derives the dynamical system,
and determines the unique steady state. Section 4 deals with the transitional dynamics. Here,
we derive the main results of our analysis on the possibility of fluctuations between the two
growth regimes. Section 5 discusses relevant economic implications of fluctuating trajectories.
The focus of Section 5.1 is on the evolution of intergenerational welfare along different equi-
librium paths. Section 5.2 studies the implications of fluctuations for the evolution of GDP in
absolute and per-capita terms as well as for the functional income distribution. In Section 5.3,
we devise a stabilization policy that eliminates fluctuations. Finally, Section 5.4 shows that the
condition under which fluctuations arise is satisfied for empirically plausible parameter con-
stellations. Section 6 concludes. All proofs are contained in Section 7, Appendix A. The (online)

1 Other studies emphasizing the presence of physical capital and research as a source of growth cycles in-
clude Matsuyama (2001) with cyclical deterministic growth and Bental and Peled (1996), Wälde (2002),
and Wälde (2005) with cyclical stochastic growth. The growth process in the presence of a regime
with capital accumulation alone and a regime that has capital accumulation and research can also be
construed as globally stable as in Irmen (2005).
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Appendix B contains additional results.

2 The Model

The economy has a household sector with overlapping two-period lived individuals, a pro-
duction sector where monopolistically competitive firms manufacture differentiated varieties
of a consumption good, and a research sector where new varieties of the consumption good
are invented. Time is discrete and extends from one to infinity, i. e., t = 1, 2, ...,∞.

In all periods, there are markets for the following objects of exchange. First, there are mar-
kets for a continuum of differentiated varieties of the consumption good. These varieties are
supplied by the production sector and demanded by the household sector. Second, there is a
labor market where the current young supply hours of work that the firms of the production
and the research sector demand. Third, there is a market for the blueprints of newly invented
varieties of the consumption good. These blueprints are supplied by the inventing research
firms and demanded by new firms that enter the production sector. Finally, there is an asset
market where bonds (in zero net supply) and ownership shares in the firms of the production
sector are traded. At the beginning of each period, all assets are owned by the current old. To
finance their consumption, the old sell their ownership shares to the young. In addition, there
are primary stock offerings by the new firms of the production sector. They need to finance
their purchase of a blueprint for a newly invented variety of the consumption good. The de-
mand for both types of shares corresponds to the savings of the current young.

The Household Sector The population at t consists of Lt young and Lt−1 old individuals. Ex-
cept for their age, individuals are identical. The number of young individuals between two
adjacent periods grows at the exogenous rate gL > 0. For short, we shall refer to gL as the
growth rate of the labor force.

When young, individuals supply labor, earn wage income, save, and enjoy leisure as well as
the consumption goods. When old, they retire, sell their wealth, and consume the receipts.

For cohort t, denote consumption when young and old by cyt and cot+1, savings by st, and leisure
time enjoyed when young by lt. We normalize the maximum per-period time endowment
supplied to the labor market to unity. Then, 1 − lt = ht, where ht ∈ [0, 1] is the individual
supply of hours worked when young. Individuals of all cohorts assess bundles (cyt , lt, c

o
t+1)

according to the lifetime utility function2

U(cyt , lt, c
o
t+1) = ln cyt + ln (1− φ(1− lt)(cyt )

ν
1−ν ) + β ln cot+1; (2.1)

here, the parameter φ > 0 determines the strength of the disutility of labor, and β ∈ (0, 1) is the
discount factor. As shown in Irmen (2018), ν ∈ (0, 1) implies that consumption when young

2 The two periodic utility functions featured inU(cyt , lt, c
o
t+1) are of the generalized log-log type proposed

for applied use in Boppart and Krusell (2020), Section V. As retirement in old age means lt+1 = 1 utility
when old boils down to ln cot+1.
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and leisure are complements in the cardinal sense of ∂2U/∂cy∂l > 0.

Consumption when young and old, cyt and cot+1, represent bundles of differentiated consump-
tion goods, i. e.,

cyt = A
σ− 1

α
t

[∫ At

0

(xyt (j))αdj

] 1
α

and cot+1 = A
σ− 1

α
t+1

[∫ At+1

0

(xot+1(j))αdj

] 1
α

, (2.2)

where σ > 1 and α ∈ (0, 1). Here, xyt (j) and xot+1(j) denote the respective quantity of con-
sumption good j consumed when young and old. The “number” of available consumption
goods at any time t is given by At. As σ > 1 there is a “taste for variety”. The parameter
α ∈ (0, 1) determines the elasticity of substitution between any pair of existing consumption
good varieties. As α increases consumption goods become better substitutes.

The optimal behavior of an individual of cohort t results from a two-stage budgeting pro-
cedure. First, it allocates its spending across the differentiated consumption goods available
when young and old age. Second, it determines its labor supply when young as well as the
consumption profile over her life cycle. The first stage delivers the following conditional de-
mands for each differentiated consumption good

xyt (j) =
pt(j)

− 1
1−α cyt

A
σ− 1

α
t

[∫ At
0

pt(j′)
− α

1−α dj′
] 1
α

and xot+1(j) =
pt+1(j)−

1
1−α cot+1

A
σ− 1

α
t+1

[∫ At+1

0
pt+1(j′)−

α
1−α dj′

] 1
α

(2.3)

as well as the two expenditure functions pertaining to period t, Ptc
y
t for all young and Ptcot for

all old individuals. Here,

Pt = A
1
α−σ
t

[∫ At

0

pt(j
′)−

α
1−α dj′

]− 1−α
α

(2.4)

is the ideal price index.

In the second stage, each member of cohort t chooses a plan (cyt , ht, c
o
t+1, st) that maximizes her

lifetime utility subject to two periodic budget constraints. We follow Irmen (2018) and denote
by P the set of permissible bundles (cyt , ht, cot+1) out of which the individual chooses. Elements
of this set satisfy the condition

1− 2ν − (1− ν)φht(c
y
t )

ν
1−ν > 0, (2.5)

which assures that U is strictly concave.

Let wt > 0 denote the wage per hour worked and Rt+1 > 0 the (perfect foresight) interest
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factor paid per unit saved.3 Then, cohort t solves

max
(cyt ,ht,cot+1,st)∈P×R

ln cyt + ln (1− φht(cyt )
ν

1−ν ) + β ln cot+1

(2.6)

s. t. Ptc
y
t + Ptst ≤ wtht and Pt+1c

o
t+1 ≤ Rt+1Ptst.

Before we state and discuss the solution to this maximization problem it proves useful to define

wc ≡

(
(1 + β)(1− ν)

(φ (1 + (1 + β)(1− ν)))
1−ν

(1− ν(1 + β))
ν

) 1
ν

, (2.7)

and to make the following assumption:

Assumption 1 It holds that

0 < ν < ν̄(β) ≡
3 + β −

√
5 + β(2 + β)

2(1 + β)
,

and, for all t,

wt
Pt
≥ wc.

Assumption 1 serves two purposes. The first inequality assures that the optimal plan derived
in the following proposition satisfies condition (2.5). The second inequality implies that the
individual chooses a positive demand for leisure.

Proposition 2.1 (Optimal Plan of Cohort t)

Suppose Assumption 1 holds. Then, the optimal plan of cohort t involves the conditional demands (2.3)
and

ht = wνc

(
wt
Pt

)−ν
, Ptst =

β

(1 + β)(1− ν)
wνc

(
wt
Pt

)1−ν

,

Ptc
y
t =

1− ν(1 + β)

(1 + β)(1− ν)
wνc

(
wt
Pt

)1−ν

, Pt+1c
o
t+1 =

β

(1 + β)(1− ν)
Rt+1w

ν
c

(
wt
Pt

)1−ν

.

Hence, the optimal plan of cohort t hinges critically on the ratio wt/Pt which has an interpreta-
tion as the real wage in units of contemporary consumption. Assumption 1 assures a positive
demand for leisure since wt/Pt is sufficiently high. Moreover, (−ν) is the wage elasticity of
the individual labor supply. Accordingly, the individual supply of hours worked declines in
the wage. Finally, Proposition 2.1 implies that consumption when young and leisure are also

3 For simplicity our notation does not distinguish between a wage rate paid in the production and a wage
rate paid in the research sector. As individuals are identical they may supply homogeneous labor to
either sector. Hence, in any constellation that has both sectors operating there can only be one wage.
Moreover, observe that the individual supply of hours worked is assumed to be perfectly divisible
across occupations.
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“demand complements,” i. e, in response to a higher Pt or a lower wt, both, cyt and lt fall.

The Production Sector At all t there are At monopolistically competitive firms. Each firm
possesses the blueprint and a perpetual patent for the exclusive production of one variety
j ∈ [0, At] that it acquired in the past. All firms produce their variety with the same linear
production function,

xt(j) = hx,t(j), (2.8)

where hx(j) is the amount of working hours hired by firm j to produce xt(j) units of consump-
tion good j. Each firm’s profit is

πt(j) = pt(j)xt(j)− wthx,t(j), (2.9)

where xt(j) and hx,t(j) are linked via (2.8), and, in light of (2.3),

xt(j) = Lt−1x
o
t (j) + Ltx

y
t (j). (2.10)

Then, profit maximization delivers the price set by all firms as

pt = pt(j) =
wt
α
. (2.11)

The less substitutable the differentiated consumption goods are, the higher their price. Since all
firms charge the same price, pt, they all supply the same quantity, i. e., xyt = xyt (j), xot = xot (j),
and xt = xt(j). Then, (2.8), (2.9) and (2.11) imply that the profit of each firm at t is

πt = πt(j) = (1− α)ptxt. (2.12)

These profits are paid as dividends to old individuals who are the shareholders of the firms in
the production sector. Finally, since hx,t = hx,t(j) the total amount of hours worked demanded
by the production sector, Hx,t, equals

Hx,t = Athx,t = Atxt. (2.13)

The Research Sector At all t there are many small competitive research firms. They may either
enter the market or remain inactive. If they enter the market then they hire labor, invent new
varieties of the consumption good, and sell the respective blueprints to a newly created firm of
the production sector. All research firms have access to the same technology for the invention
of new varieties. Therefore, the analysis of the research sector can be done through the lens of
a competitive representative firm in conjunction with a free-entry condition.

Following Jones (1995), the representative firm has access to a technology for the creation of
new consumption-good varieties given by

∆At =
HA,t

a
Aψt , 0 < ψ < 1. (2.14)

Here, ∆At ≡ At+1 − At denotes the additional varieties invented in period t, HA,t ≥ 0 is the
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total amount of working hours demanded in the research sector, and a > 0 determines the
productivity of labor in research. Since ψ > 0 the productivity of hours worked in research
increases in the number of varieties invented in the past, At. The assumption ψ < 1 constrains
the extent of intertemporal knowledge spillovers.

Let vt denote the revenue generated from selling a blueprint of a newly created variety. Then,
the profit associated with an invention is

vt − wt
a

Aψt
, (2.15)

where a/Aψt is the amount of hours worked in the research sector required to invent one new
variety.

Since the total amount of hours worked demanded by research firms must be finite the profit
of (2.15) cannot be strictly positive in equilibrium. This gives rise to the following equilibrium
free-entry condition:

vt ≤ wt
a

Aψt
, with “=”, if ∆At > 0. (2.16)

Hence, if at t the revenue obtained from selling a blueprint of a new variety is too low, then the
research sector will not be active and ∆At = 0. However, if the research sector is active at t,
then condition (2.16) must hold as equality since in equilibrium entering research firms must
be just as well-off as non-entering ones. This distinction plays a key role in our analysis of the
economy’s transitional dynamics below.

3 Intertemporal General Equilibrium

This section states and interprets the definition of the intertemporal general equilibrium, de-
velops the dynamical system, and establishes the existence of a unique steady state.

Definition For all j ∈ [0, At], a price system is a sequence {wt, Rt, Pt, pt(j), πt(j), vt}∞t=1, an al-
location is a sequence {cyt , lt, cot , st, x

y
t (j), xot (j), xt(j), Hx,t, HA,t, At}

∞
t=1. The latter comprises

a plan {cyt , lt, cot , st, x
y
t (j), xot (j)}

∞
t=1 for all cohorts, consumption of the old at t = 1, cot , and

strategies for the production and the research sector {xt(j), Hx,t, HA,t, At}∞t=1.

For an exogenous evolution of the labor force, Lt = L1(1 + gL)t−1, gL > 0, with L1 > 0 and
a given initial stock of varieties of the consumption good, A1 > 0, an intertemporal general
equilibrium with perfect foresight corresponds to a price system and an allocation that satisfy
for all t = 1, 2, · · · ,∞ Proposition 2.1, (2.11), (2.14), (2.16), and the respective market clearing
conditions for the consumption good and for hours of work, Ptc

y
tLt + Ptc

o
tLt−1 = ptAtxt and

Hx,t + HA,t = htLt. Moreover, the asset market clears and values all shares according to fun-
damentals.

In the asset market at t, the ownership shares of the At existing varieties and of the ∆At new
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varieties are traded. Since these shares are perfect substitutes as stores of value, they must have
the same price denoted by vt. Moreover, a market valuation of shares according to fundamen-
tals requires

vt =
πt+1

Rt+1
+

πt+2

Rt+1Rt+2
+ · · · , (3.1)

where πt+i, i = 1, 2, ..., are the (perfect foresight) dividends paid to the shareholders in the
future. The latter implies the following no-arbitrage condition for bonds and stocks

vt+1

vt
+
πt+1

vt
= Rt+1. (3.2)

The equilibrium conditions imply for all t that the market for ownership shares satisfies

stLt = vt (At + ∆At) . (3.3)

In other words, the savings of the young is equal to the period-t market capitalization of all
consumption-good varieties available in t + 1, i. e., those already produced at t and those in-
vented at t. Condition (3.3) reflects two economic transactions. First, the old at t sell their At
shares to the current young at a price vt. Second, the firms of the production sector that pur-
chase by auction at t one of the ∆At new blueprints at a price vt need to finance this purchase.
This is done through the issue of new shares with an aggregate value of vt∆At. Clearly, if (2.16)
holds as inequality then ∆At = 0 and At+1 = At, if it holds as equality then At+1 = At + ∆At.

Henceforth, we choose the consumption aggregate when young as the numéraire, i. e., Pt = 1

for all t. In view of (2.4) this choice implies for any symmetric configuration that

pt = Aσ−1t . (3.4)

Due to the “taste for variety,” i. e., σ > 1, the real price of each consumption good variety
increases in the number of differentiated consumption goods. Moreover, with the latter in the
mark-up formula (2.11) the equilibrium real wage is

wt = αAσ−1t . (3.5)

Accordingly, from Proposition 2.1 a higher At reduces the supply of hours worked and in-
creases savings. Henceforth, we refer to −ν(σ − 1) as the equilibrium elasticity of the individual
supply of hours worked to changes in At. It indicates how young individuals convert a 1 percent-
age point gain in the number of varieties and the associated productivity gain into more leisure
as opposed to more consumption.

Dynamical System Throughout our focus is on equilibria with a positive demand for leisure.
From Proposition 2.1 this requires wt ≥ wc. Since At cannot decline and the equilibrium real
wage is given by (3.5) this inequality holds for all t if the following assumption is satisfied.
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Assumption 2 It holds that

A1 ≥
(wc
α

) 1
σ−1

.

The transitional dynamics of the intertemporal general equilibrium may be studied through
the evolution of the transformed variable

zt ≡
Lt
Aηt

, (3.6)

where η ≡ 1− ψ + ν(σ − 1) > 0, and

zc ≡
(
α

wc

)ν
a(1 + β)(1− ν)

β
(3.7)

denotes a critical value of zt. To interpret the variable zt, observe that in equilibrium the total
amount of hours worked, Ht ≡ htLt, can be expressed as Ht = (wc/α)νA

−ν(σ−1)
t Lt where

use is made of Proposition 2.1 and (3.5). Let γA,t ≡ HA,t/Ht denote the fraction of total
hours worked in research. Then, given γA,t equation (2.14) implies that the productivity of
existing consumption-good varieties in the invention of new ones, ∆At/At, is proportionate to
A
−ν(σ−1)
t LtA

ψ−1
t = zt. Accordingly, keeping γA,t constant, η is the elasticity of ∆At/At with

respect to changes in At.

The following proposition shows that, depending on how zt relates to zc, the economy is in one
of two distinct regimes. If zt ≤ zc then the economy is said to be in Regime 0, and the research
sector is inactive. If zt ≥ zc then the research sector is active, and the economy is said to be in
Regime 1.

Proposition 3.1 (Existence, Uniqueness, and Dynamical System)

Suppose Assumption 2 holds. Then, a unique intertemporal general equilibrium exists. Moreover, the
transitional dynamics of this equilibrium is given by a unique equilibrium sequence, {zt}∞t=1, generated
by the piecewise defined difference equation Φ : R+ → R+ where

zt+1 = Φ(zt) ≡


(1 + gL)zt if zt ≤ zc,

(1 + gL)zc

(
zt
zc

)ψ−ν(σ−1)
if zt ≥ zc.

(3.8)

Proposition 3.1 establishes the existence and the uniqueness of an equilibrium for any permis-
sible initial value z1 > 0. Moreover, it shows that the transitional dynamics may involve a
passage through two regimes. In Regime 0, zt is small, i. e., cohort t is small and/or the stock
of existing varieties is large. Under these circumstances inequality (2.16) is strict in equilib-
rium, and the research sector remains inactive. In Regime 1, zt is large, (2.16) holds as equality,
and the research sector is active.4
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Why are there two regimes? The explanation starts with the observation that the free-entry
condition (2.16) in conjunction with (3.5) determines the equilibrium value of a blueprint of a
newly invented variety if ∆At > 0 as

vt = aαAσ−1−ψt . (3.9)

Hence, if the research sector is active then the equilibrium value of a new variety equals the
total labor cost associated with its invention. The exponent σ − 1− ψ reflects the two channels
through which At affects these costs. First, from (3.5) a higher At increases the wage per hour
worked, i. e., to break even vt must increase. Second, a higher At increases the productivity of
labor in research. Hence, research firms break even at a lower vt.

The question is then whether the current young are ready to buy some ∆At > 0 primary of-
ferings of the newly invented varieties in addition to the shares of existing varieties at the
break-even price of equation (3.9). The equilibrium condition of the market for ownership
shares stated in (3.3) has the answer. Here, givenAt, the demand increases in Lt. This supports
a higher equilibrium price of shares. Indeed, with Proposition 2.1 one readily verifies that the
current young are ready to buy some ∆At > 0 newly emitted shares at a price equal to vt of
(3.9) if Lt > zcA

η
t or zt > zc. Hence, in Regime 1, cohort t is sufficiently large and/or the stock

of existing varieties is sufficiently small.

In Regime 0 the equilibrium value of ownership shares obtains directly from the equilibrium
condition of the market for ownership shares. In other words, vt is the equilibrium value of
shares that solves (3.3) for ∆At = 0. The comparison between vt and aαAσ−1−ψt , the break-
even price of a new blueprint as stated in (3.9), reveals that (see equation (7.13) in the Proof of
Proposition 3.1) zt < zc⇒ vt < aαAσ−1−ψt . Hence, in equilibrium inequality (2.16) is strict. The
intuition is the following. If vt < aαAσ−1−ψt then the shares of existing varieties are cheaper
than those of newly invented ones. Since both types of shares generate the same stream of re-
turns investors will only buy the shares of existing varieties. Accordingly, there is no demand
for newly emitted shares. In equilibrium, potential research firms anticipate this and, therefore,
will not become active.

Steady State Define a steady-state equilibrium as a path along which all variables except
leisure grow at constant rates. Let gm,t ≡ ∆mt/mt, ∆mt ≡ mt+1 − mt, denote the growth
rate of an arbitrary variable mt, and m and gm their respective steady-state values.

From (3.8) one readily verifies that the steady state has zt = z for all t, is unique, and given by

z ≡ zc(1 + gL)
1
η > zc. (3.10)

4 Observe that equations (3.6) - (3.8) include the case ν = 0 for which the individual supply of hours
worked is time-invariant and equal to h = (1 + β)/[φ(2 + β)]. The parameter restriction φ ≥ (1 +
β)/(2 + β) ensuring that h ≤ 1 will then replace Assumption 2. Details for this case are available from
the authors upon request.
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Hence, z is in Regime 1.5 In steady state the endogenous growth rate of Aηt adjusts to the
exogenous growth rate of Lt. This reflects two steady-state requirements. First, from (2.14) the
invention of new consumption-good varieties requires HA,t to grow at rate (1 + gA)1−ψ − 1.
Hence, the total demand for of hours worked must grow at this rate to keep the fraction of the
workforce employed in both sectors constant. Second, with Proposition 2.1 and (3.5) the total
supply of hours worked grows at rate (1 + gL)(1 + gA)−ν(σ−1) − 1. Hence, zt is constant if
(1 + gA)1−ψ = (1 + gL)(1 + gA)−ν(σ−1) or

1 + gA = (1 + gL)
1
η (3.11)

which is the steady-state growth factor of A.6 Interestingly, the steady-state growth rate of A
is not only determined by population growth and technology parameters as in Jones (1995). It
also depends on the preference parameters ν and σ.

4 Transitional Dynamics

This section develops the main result of the paper on the transitional dynamics of the dynam-
ical system of Proposition 3.1. Using z of (3.10) allows to write the equilibrium difference
equation Φ(zt) for zt > zc as

zt+1 = zηz
ψ−ν(σ−1)
t . (4.1)

Then, the transitional dynamics follow from the stability properties of the steady state.7

Proposition 4.1 (Transitional Dynamics and the Stability Properties of the Steady State)

Consider the dynamical system of Proposition 3.1. Its steady state, z, is locally stable if and only if∣∣∣∣∣∣ ψ − ν(σ − 1)

∣∣∣∣∣∣ < 1.

Moreover, for any initial value z1 ∈ R++, z1 6= z, the evolution of zt for t > 1 satisfies the following:

5 A simple argument shows why the steady state has to be in Regime 1. Suppose the economy starts
in Regime 0. Then, the initial values are such that z1 < zc. The research sector is not competitive and
remains inactive since v1 < aαAσ−1−ψ

1 . As long as the economy remains in Regime 0, the real wage, the
individual supply of hours worked, and individual savings remain constant. However, the cohort size
and, therefore, the demand for shares and the equilibrium share price grow exponentially at rate gL.
Then, there is a period τc ≥ 2 such that v1(1 + gL)τc−1 ≥ aαAσ−1−ψ

1 , or, equivalently, z1(1 + gL)τc−1 ≥
zc. The equilibrium at τc involves vτc = aαAσ−1−ψ

1 and ∆Aτc ≥ 0. In other words, ongoing population
growth implies in finite time that the demand for ownership shares becomes sufficiently large and the
young are willing to buy A1 + ∆Aτc shares at a price vτc .

6 See Section 8.1 of Appendix B for a detailed analysis of the structural properties of the steady state.
7 See Proposition 5.1 and 5.2 in Iong and Irmen (2020) for a discussion of the transitional dynamics under

the non-generic parameter constellations −ν(σ − 1) = −ψ and −ν(σ − 1) = −(1 + ψ).
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1. if −ν(σ − 1) ∈ (−ψ, 0) then limt→∞ zt = z with monotone convergence;

2. if −ν(σ − 1) ∈ (−(1 + ψ),−ψ) then limt→∞ zt = z with oscillating convergence in Regime 1.
Moreover,

(a) if z1 < zc then the economy eventually settles down in Regime 1, then oscillates about and
eventually converges to the steady state,

(b) if zc(1 + gL)−
1

ψ−ν(σ−1) ≥ z1 ≥ zc then the economy evolves in Regime 1 with oscillating
convergence to the steady state,

(c) if z1 > zc(1 + gL)−
1

ψ−ν(σ−1) , then the economy immediately transits to Regime 0, and after
a finite amount of periods moves back to Regime 1, where it oscillates about and eventually
converges to the steady state z;

3. if −ν(σ − 1) < −(1 + ψ) then the economy enters an absorbing interval [Φ2(zc),Φ(zc)] in finite
time. Inside this region the economy fluctuates between Regime 0 and 1.

Hence, the local stability properties of the steady state hinge on how the intertemporal knowl-
edge spillover represented by ψ ∈ (0, 1) relates to −ν(σ − 1), the equilibrium elasticity of the
individual supply of hours worked to changes in At. The latter vanishes for ν = 0. In this case,
the individual supply of hours worked does not respond to changes in the real wage, and the
steady state is unequivocally locally stable with monotone convergence. Hence, any deviation
from this transitional behavior results since ν ∈ (0, 1). Figures 4.1 and 4.2 provide an illustra-
tion for the local and the global dynamics of Case 1 and Case 2(a).

To develop an intuition for the local dynamics about the steady state consider the equilibrium
condition of the market for ownership shares (3.3) at t and t+ 1 for an economy in Regime 1

st+1Lt+1

stLt
=
vt+1 (At+1 + ∆At+1)

vt (At + ∆At)
. (4.2)

From Proposition 2.1 and (3.5) we have st+1/st = (ht+1/ht)(wt+1/wt) = (1 + gA,t)
(1−ν)(σ−1).

Hence, the growth factor of individual savings reflects an effect of an increasing amount of
varieties on wages and an effect on the supply of hours worked. Similarly, with (2.16) and (3.9)
we obtain vt+1/vt = (wt+1/wt)(At+1/At)

−ψ = (1 + gA,t)
σ−1−ψ . Hence, the growth factor of the

share price reflects an effect of an increasing amount of varieties on wages and on the produc-
tivity of labor in research through the knowledge spillover. As the effects through wages on
st+1/st and vt+1/vt on the left and the right-hand side of (4.2) cancel, we write this equation
as8

(1 + gA,t)
ψ−ν(σ−1)(1 + gL) = 1 + gA,t+1. (4.3)

8 Equation (4.3) is equivalent to the second difference equation in the dynamical system (3.8).
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Figure 4.1: Case 1: Local and Global Dynamics of a Stable Steady-State Equilibrium for−ν(σ−
1) ∈ (−ψ, 0).

The steady state of this difference equation is stated in (3.11). Its local stability properties hinge
on the exponent ψ − ν(σ − 1) which captures the respective effect of gA,t on the demand and
the supply side of the market for ownership shares. On the demand side, −ν(σ− 1) < 0 means
that a higher gA,t reduces the individual supply of hours worked, the individual wage income
and savings at t+1. Accordingly, for a given share price at t+1 fewer primary offerings can be
placed and ∆At+1 falls. On the supply side, ψ > 0 means that a higher gA,t reduces the costs
of creating a blueprint. Accordingly, for a given demand for shares, more primary offers can
be placed and ∆At+1 increases.

If ψ > ν(σ−1) then the effect a higher gA,t on the supply side dominates and supports a higher
gA,t+1. As ψ < 1 the strength of the supply side effect is limited. Accordingly, the steady state
is locally stable with monotone convergence. If ψ < ν(σ−1) then the effect a higher gA,t on the
demand side dominates and the relationship between gA,t and gA,t+1 becomes negative. As
long as this dominance is not too pronounced, i. e., ν(σ − 1) < 1 + ψ, the steady state remains
locally stable with oscillatory convergence. However, for ν(σ−1) > 1+ψ, it becomes unstable.

The qualitative properties of the global dynamics are driven by the extensive and the inten-
sive margin of the supply of hours worked. On the one hand, a growing labor force enlarges
the demand for ownership shares. This force pushes the economy into Regime 1 in finite time
irrespective of its initial position in Regime 0. On the other hand, the decline in the individ-
ual supply of hours worked to a higher wage determines the stability of the steady state. The
value of −ν(σ− 1) decides whether the economy remains eventually inside Regime 1 or keeps
on fluctuating between both regimes.
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Figure 4.2: Case 2(a): Local and Global Dynamics of a Stable Steady-State Equilibrium for
−ν(σ − 1) ∈ (−(1 + ψ),−ψ).

Case 1 and 2 exhibit global convergence. The comparison between Case 2(b) and 2(c) reveals
why the economy may fluctuate between growth regimes. In both cases, the economy starts
in Regime 1, however, with different initial values. The equilibrium in the market for owner-
ship shares, z1/zc = A2/A1, reveals that A2 is smaller in Case 2(b) than in Case 2(c). There-
fore, Case 2(b) has the economy remaining inside Regime 1 with oscillatory convergence to-
wards the steady state. In contrast, A2 will be large in Case 2(c). As −ν(σ − 1) < −ψ the
induced reduction in the individual supply of hours worked and savings will be more pro-
nounced than the increase in the productivity of research labor. As a consequence, inequality
(2.16) will be strict in period 2. Hence, a switch from Regime 1 into Regime 0 is possible for
−(1 + ψ) < −ν(σ − 1) < −ψ if the initial value z1 is sufficiently high.9

If −ν(σ − 1) < −(1 + ψ) then the economy eventually enters an absorbing interval given by[
Φ2(zc),Φ(zc)

]
that ranges over Regime 0 and 1 (see Figure 4.3 for an illustration). The econ-

omy will then fluctuate between both regimes. These fluctuations may be chaotic or involve
unstable basic cycles of any finite periodicity.10 Figure 4.4 shows four possible trajectories.

9 Formally, one readily verifies that v2 = s2L2/A2 < aαAσ−1−ψ
2 is equivalent to z2 < zc. In turn, from

the dynamical system of (3.8), the latter holds if z1 > zc(1 + gL)
− 1
ψ−ν(σ−1) as stated in Proposition 4.1.

10 A rigorous and comprehensive mathematical analysis of the fluctuations between the two growth
regimes is beyond the scope of this paper. In Iong and Irmen (2020) we prove the possibility of chaotic
fluctuations with the construction of a 3-cycle in conjunction with “period three implies chaos” (Li
and Yorke (1975)). In the latter paper, we also characterize unstable basic cycles of any finite periodic-
ity. More advanced methods to establish these and to elicit further mathematical properties of possible
evolutions are described, e. g., in Sushko, Avrutin, and Gardini (2015). We leave this for future research.
In any case, the underlying economic mechanisms that explain fluctuations between the two growth
regimes as well as an evolution within a given growth regime are comprehensively described in the
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Figure 4.3: The Absorbing Interval and a 2 - Cycle Arising if −ν(σ − 1) < −(1 + ψ).

Nevertheless, the following corollary shows that irrespective of the type of fluctuation the av-
erage growth factor of At converges to its steady-state growth rate given in (3.11).

Corollary 4.1 (Convergence of the Average Growth Factor)

Consider the dynamical system of Proposition 3.1. It holds that

lim
T→∞

[
T∏
t=1

(1 + gA,t)

] 1
T

= (1 + gL)
1
η = 1 + gA.

Since the proof of Corollary 4.1 highlights the underlying intuition we develop it here. In fact,
from the definition of zt given in (3.6) one readily verifies that

At+1

At
= (1 + gL)

1
η

(
zt+1

zt

)− 1
η

.

Then, for any finite T > 1 the average geometric growth factor of At can be expressed as

[
T∏
t=1

(1 + gA,t)

] 1
T

= (1 + gL)
1
η

(
zT+1

z1

)− 1
ηT

.

Hence, the average growth factor of At exceeds its steady state level whenever zT+1 < z1 and
vice versa.11 Then, the corollary follows since zt enters the absorbing interval [Φ2(zc),Φ(zc)] ⊂

discussion ensuing Proposition 4.1.
11 Observe that for all trajectories satisfying zT+1 = z1 the average growth factor after T periods coincides
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(a) ψ − ν(σ − 1) = (−2), with z1 = 0.9 (b) ψ − ν(σ − 1) = (−2), with z1 = 1.05

(c) ψ − ν(σ − 1) = (−8), with z1 = 0.45 (d) ψ − ν(σ − 1) = (−8), with z1 = 1.1

Figure 4.4: Four Possible Trajectories if −ν(σ − 1) < −(1 + ψ). Throughout, we set 1 + gL =
1.00630 and choose parameters such that zc = 1.

R++ in finite time. Accordingly, limT→∞(zT+1/z1)−
1
ηT = 1.

5 Discussion

5.1 The Evolution of Intergenerational Welfare

How does the welfare of two overlapping cohorts evolve along different equilibrium paths? To
address this question let Vt denote the indirect lifetime utility of cohort t. Then, with Proposi-
tion 2.1, the indirect lifetime utility function of cohort t is

Vt ≡ V (wt, Rt+1) = (1 + β)(1− ν) lnwt + β lnRt+1 + ω, (5.1)

where ω is a constant reflecting parameters that remain unchanged across cohorts. Hence, with
∆Vt denoting the difference between the indirect lifetime utility of cohort t and t− 1 we have

∆Vt ≡ Vt − Vt−1 = (1 + β)(1− ν) ln

(
wt
wt−1

)
+ β ln

(
Rt+1

Rt

)
(5.2)

and the following holds.

with the steady state growth factor. Therefore, any period-T cycle satisfies this property.
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Proposition 5.1 (Evolution of Intergenerational Welfare)

Consider the dynamical system of Proposition 3.1 and suppose that −ν(σ − 1) < −(1 + ψ).

1. If 0 < zt−1 ≤ zc(1 + gL)−2 then ∆Vt = 0,

2. if zc(1 + gL)−2 < zt−1 ≤ zc(1 + gL)−1 then ∆Vt < 0,

3. if zc(1 + gL)−1 < zt−1 < zc(1 + gL)
ψ−ν(σ−1)

η then ∆Vt R 0,

4. if zc(1 + gL)
ψ−ν(σ−1)

η ≤ zt−1 then ∆Vt > 0.

Proposition 5.1 compares the welfare of cohort t − 1 and t for all permissible starting values,
zt−1, ordered from small to large, and all possible evolutions under the parameter constella-
tion for which the steady state is unstable.12 The key finding is that the sign of ∆Vt is not
unequivocal. It depends on the qualitative and the quantitative properties of the sequence
{zt−1, zt, zt+1}. The intuition is the following.

In Case 1, zt−1 is so small that cohort t − 1 and cohort t spend their entire lives in Regime 0.
Then, At−1 = At, wt−1 = wt, ht−1 = ht, c

y
t−1 = cyt , Rt = Rt+1, and cot = cot+1, hence, ∆Vt = 0.

In Case 2, cohort t − 1 spends its entire life in Regime 0 whereas cohort t has its old age in
Regime 1. Then, At−1 = At, wt−1 = wt, ht−1 = ht, and cyt−1 = cyt . However, ∆At+1 > 0. This
affects Rt+1 in two ways. First, as some labor shifts into the research sector, the scale of pro-
duction, xt+1, profits, πt+1, and the dividend yield, πt+1/vt, is smaller than in Case 1. Second,
in the asset market there will be additional primary share offerings at t + 1. This increase in
the supply of shares puts pressure on vt+1 so that vt+1/vt is smaller than in Case 1. As a con-
sequence, the no-arbitrage condition (3.2) for t and t + 1 delivers Rt+1 < Rt. Hence, cot+1 < cot
and ∆Vt < 0.

In Case 3, cohort t−1 spends its youth in Regime 0 and its old age in Regime 1 whereas cohort t
spends its entire life in Regime 1. In addition, the evolution of the state variable is monotonous,
i. e., zt−1 < zc < zt < zt+1. Then, At−1 = At, wt−1 = wt, ht−1 = ht, and cyt−1 = cyt . However,
∆At > 0 and ∆At+1 > 0 so that the induced changes in the growth factor of the share price and
in the dividend yield may either deliver Rt ≥ Rt+1 or Rt ≤ Rt+1. The latter implies ∆Vt ≤ 0

or ∆Vt ≥ 0, respectively.

In Case 4, zt−1 is large enough so that cohort t − 1 spends at least one period of its life in
Regime 1. Then, all possible sequences of the state variable, {zt−1, zt, zt+1}, deliver ∆Vt > 0.
As becomes clear from the proof of Proposition 5.1, if cohort t − 1 lives its youth in Regime 0

the sign of ∆Vt is due to Rt+1 > Rt.13 If cohort t − 1 lives its youth in Regime 1 then cohort t

12 Mutatis mutandis, the qualitative results stated in Proposition 5.1 carry over to parameter constellations
that satisfy 0 > −ν(σ− 1) ≥ −(1 +ψ). We provide a comprehensive analysis of this case in Section 8.2.
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benefits from the research done in period t− 1 as At−1 < At means that wt−1 < wt, ht−1 > ht,
and cyt−1 < cyt . This channel determines the sign of ∆Vt irrespective of whether Rt+1 > Rt or
Rt+1 < Rt.

What is the role of fluctuations for the welfare comparison of two overlapping cohorts? Propo-
sition 5.1 suggests that the answer hinges on the direction of the regime switch as well as on
whether the regime switch occurs during the lifetime of cohort t − 1 or of cohort t. A regime
switch from Regime 0 into Regime 1 during the lifetime of cohort t decreases its relative wel-
fare (Case 2). If this regime switch occurs during the lifetime of cohort t − 1 then the welfare
comparison is not unequivocal (Case 3 and 4). The regime switch from Regime 1 into Regime 0

is covered by Case 4. Here, the welfare comparison is unequivocal. Irrespective of whether co-
hort t− 1 or cohort t experiences the regime switch during their respective lifetime the welfare
of cohort t will be higher.

5.2 The Evolution of GDP and the Functional Income Distribution

How does GDP in absolute and per-capita terms as well as the functional income distribution
evolve for different equilibrium paths? To address this question, defineGDPt as the economy’s
total value added at t. The latter is equal to the sum of the value added in the production and
the research sector, i. e., GDPt = Atptxt + vt∆At. Using pt = wt/α, xt = Hx,t/At, vt∆At =

wtHA,t, and γA,t, GDPt may be expressed as

GDPt =
wtHt

α
(1− γA,t(1− α)) , (5.3)

where γA,t = 0 holds in Regime 0 and 0 < γA,t < 1 in Regime 1. A higher fraction of hours
worked in research reduces GDPt. Due to monopolistic competition the value added per hour
worked in the production sector is equal to wt/α and higher than wt, the value added of an
hour worked in the competitive research sector. Let gdpt denote per-capita GDP at t so that

gdpt ≡
1 + gL
2 + gL

× GDPt
Lt

.

To describe the evolution of GDP and gdp over two consecutive periods of different equi-
librium paths, four cases must be distinguished. The first and simplest is the one with the
economy staying in Regime 0 for the two periods, t and t + 1. In these periods, the economy
differs only with respect to its population size, i. e., Ht+1 = ht+1Lt+1, Ht = htLt, ht+1 = ht,
and Lt+1 = (1 + gL)Lt. Hence, GDPt+1 = (1 + gL)GDPt and gdpt+1 = gdpt.

The second case has the economy in Regime 1 for two consecutive periods. Then,

GDPt = Aσ−1t Ht (1− γA,t(1− α)) and GDPt+1 = Aσ−1t+1Ht+1 (1− γA,t+1(1− α)) ,

13 As in Case 3, cohort t−1 may spend its youth in Regime 0. However, in Case 4 the subsequent evolution
of the state variable must not be monotonous. Moreover, observe that Case 4 includes the steady state.
Here, ∆Vt > 0 as wt > wt−1 and Rt = Rt+1.
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with Ht = wνcA
−ν(σ−1)
t Lt, Ht+1 = wνcA

−ν(σ−1)
t+1 Lt+1, 0 < γA,t < 1, and 0 < γA,t+1 < 1.

Accordingly, we have

GDPt+1

GDPt
= (1 + gA,t)

(1−ν)(σ−1)(1 + gL)

(
1− γA,t+1(1− α)

1− γA,t(1− α)

)
> 1, (5.4)

where the sign follows from the proof of Proposition 5.2 below. Intuitively, GDPt+1 > GDPt is
the result of population growth and higher wages at t+ 1. These forces may be weakened but
cannot be dominated by γA,t+1 > γA,t, i. e., when a larger fraction of the workforce moves into
the sector with the lower value added.

However, wage growth is not sufficient for per-capita GDP to increase, i. e.,

gdpt+1

gdpt
= (1 + gA,t)

(1−ν)(σ−1)
(

1− γA,t+1(1− α)

1− γA,t(1− α)

)
R 1. (5.5)

Clearly, gdpt+1 > gdpt will obtain if γA,t > γA,t+1. For this constellation the research sector
at t is large so that the wage growth between t and t + 1 is strong. Moreover, the growth of
gdp benefits from the allocation of a larger fraction of hours worked to the production sector at
t+ 1.14

Third, consider the case of an economy starting in Regime 0 at t and switching into Regime 1

at t+ 1. Then, At+1 = At and wt+1 = wt so that

GDPt+1

GDPt
= (1 + gL) (1− γA,t(1− α)) > 1,

where again the sign follows from the proof of Proposition 5.2 below. Hence, the dampening
effect of moving hours of work into the research sector cannot outweigh population growth.
However, it implies that per-capita GDP unequivocally falls, i. e., gdpt+1 < gdpt.

Finally, consider the case where the economy is in Regime 1 at t and switches to Regime 0 in
period t + 1. Then, GDPt = Aσ−1t Ht (1− γA,t(1− α)) whereas GDPt+1 = Aσ−1t+1Ht+1. Since
Ht = wνcA

−ν(σ−1)
t Lt and Ht+1 = wνcA

−ν(σ−1)
t+1 Lt+1 we have

GDPt+1

GDPt
=

(1 + gA,t)
(σ−1)(1−ν)

(1 + gL)

1− γA,t(1− α)
> 1.

The latter reveals thatGDP growth exceeds population growth for two reasons. First, research
at t delivers wage growth between t and t+ 1. Second, as the research sector closes at t+ 1 the
whole workforce will be employed in the production sector where the value added per hour
worked is higher. As a consequence, per-capita GDP will also grow between t and t + 1, i. e.,
gdpt+1 > gdpt.

14 The proof of Proposition 5.2 below reveals that an economy starting to the right of its steady state will
exhibit gdpt+1 > gdpt.
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The following proposition summarizes the findings of the above discussion.

Proposition 5.2 (Evolution of GDP and gdp)

Consider the evolution of GDP and gdp as defined above over two consecutive periods, t and t + 1.
Then, irrespective of the economy’s evolution GDPt+1 > GDPt. Moreover,

1. if the economy starts in Regime 0 and

• stays there, then gdpt+1 = gdpt;

• switches into Regime 1, then gdpt+1 < gdpt.

2. if the economy starts in Regime 1 and

• stays there, then gdpt+1 R gdpt, and zt > z implies gdpt+1 > gdpt;

• switches into Regime 0, then gdpt+1 > gdpt.

The functional income distribution at t has to account for the labor income earned in the pro-
duction and the research sector as well as for the dividend income that accrues to the owners
of the At producing firms. One readily verifies that the value added in the production sector
can be expressed asAtptxt = Atπt+wtHx,t. Hence, GDPt is also equal to total incomes earned
in the economy at t. In light of (5.3), the labor share at t, defined as the share of wage incomes
in total incomes, is

LSt ≡
wtHt

GDPt
=

α

1− γA,t(1− α)
. (5.6)

In Regime 0, γA,t = 0 and the labor share boils down to the share of wage income in the pro-
duction sector, i. e., LSt = wtHt/(Atptxt) = α. In Regime 1, the labor share is higher the greater
γAt > 0. Intuitively, shifting a larger fraction of the total amount of hours worked into the re-
search sector reduces the scale of output, hence, the value added generated in the production
sector. Accordingly, GDPt falls. As this shift in hours worked has no effect on wage incomes
the labor share will increase.

With this mechanism at hand it is straightforward to establish how the labor share may evolve
over two consecutive periods, t and t+ 1, for different equilibrium paths. If the economy stays
in Regime 0 for these two periods, the labor share will not change, i. e., LSt = LSt+1 = α. If
the economy stays in Regime 1 for two consecutive periods, then

LSt R LSt+1 ⇔ γA,t R γA,t+1,

i. e., if the evolution is such that the research sector gets bigger over time then γA,t+1 > γA,t

and the labor share will increase (and vice versa). An analogous argument reveals that a switch
from Regime 0 into Regime 1 will increase the labor share as 0 = γA,t < γA,t+1. Finally, a regime
switch from Regime 1 into Regime 0 will reduce the labor share as γA,t > γA,t+1 = 0.
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5.3 Stabilization Policy

If the economy exhibits fluctuations then a government may consider a stabilization policy to
eliminate them. Since the steady state allocation is the only trajectory with this property such a
policy has to implement the steady-state path. From Proposition 5.1 we know that the steady-
state path has ∆Vt > 0 for all overlapping cohorts. A stabilization policy may then be justifiable
as a device to exclude the possibility of ∆Vt < 0 that arises along fluctuating trajectories.15

We focus on the possibility of a one-time stabilization policy implemented at t such that from
period t+ 1 onwards the economy will be in steady state. We show that such a policy exists if
zt is sufficiently large. Depending on whether zt < z or zt > z the policy involves a transfer
from the old to the young or vice versa. The policy induces these transfers through a negative
or a positive tax on the wage income of cohort t in conjunction with a negative or a positive tax
on the asset income of cohort t− 1 such that the budget of the government is balanced.

Let τw,t < 1 denote the tax rate on the wage income of cohort t. Moreover, denote by τR,t < 1

the tax rate on the asset income of cohort t − 1. Then, a one-time stabilization policy imple-
mented at t is a pair

(
τPw,t, τ

P
R,t

)
∈ (−∞, 1)× (−∞, 1) such that

zt+1 = z and τw,twthtLt = −τR,tRtst−1Lt−1. (5.7)

Hence, from t+ 1 onwards taxes will be eliminated and the economy will be on its steady-state
path. Moreover, the government’s budget is balanced at t. Such a policy affects the budget
constraint of cohort t− 1 when old and the budget constraint of cohort t when young, i. e.,

cot =
β(1− τR,t)Rtwνcw1−ν

t−1
(1 + β)(1− ν)

, ht = wνc ((1− τw,t)wt)−ν , st =
βwνc ((1− τw,t)wt)1−ν

(1 + β)(1− ν)
. (5.8)

Imposing (τw,t, τR,t) changes the evolution of the state variable zt. The arguments that lead to
the dynamical system of Proposition 3.1 reveal here the dynamics of zt between period t and
t+ 1 as

zt+1 =


(1 + gL)zt if zt ≤ zc

(1−τw,t)1−ν ,

(1 + gL)zc

(
zt
zc

)ψ−ν(σ−1)
(1− τw,t)−(1−ν)η if zt ≥ zc

(1−τw,t)1−ν .

(5.9)

Three remarks are in order. First, the government can only use the tax on wage income, τw,t,
as an instrument to manipulate the evolution between t and t + 1. The role of τR,t is merely
to balance the government’s budget. Second, the critical value of zt that separates Regime 0

from Regime 1 depends on τw,t. In particular, the range of zt for which the economy is in
Regime 0 shrinks if τw,t becomes negative and declines. The intuition is the following. In
Regime 0 the demand for shares is so weak that the equilibrium share price is below the level

15 See Case 2 and 3 of Proposition 5.1. Observe that a justification of a stabilization policy on Pareto
grounds is problematic. As compared to the steady-state path, a fluctuating evolution may imply a
higher life-time utility for some cohorts. Moreover, as we show below, the implementation of the pro-
posed stabilization policy creates winners and losers.
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at which entering research firms break even. As a consequence, the research sector is inactive.
A government that sets τw,t < 0 effectively subsidizes wage incomes and boosts savings as
well as the demand for shares.16 Third, the stabilization policy is only effective if the economy
at t is in Regime 1 where the research sector is active and the equilibrium share price is given
by (3.9). Then, the choice of τPw,t fine-tunes the demand for shares such that ∆At is such that
zt+1 = Lt+1/ (At + ∆At)

η
= z.

Denote

z̄ ≡ (1 + gL)1−ηzc. (5.10)

Then, the following holds.

Proposition 5.3 (Stabilization Policy)

Suppose −ν(σ − 1) < −(1 + ψ) and zt ≥ z̄. Then, there is a unique stabilization policy,
(
τPw,t, τ

P
R,t

)
,

where

τPw,t = 1−
(
z

zt

) η−1
η(1−ν)

and τPR,t = − α(1 + β)(1− ν)

(1− α)(1− ν(1 + β)) + β zczt

τPw,t
(1− τPw,t)ν

.

If zt < z̄ then a stabilization policy implemented at t+ τ involving

τPw,t+τ = 1−
(

z

zt+τ

) η−1
η(1−ν)

and τPR,t+τ = − α(1 + β)(1− ν)

(1− α)(1− ν(1 + β)) + β zc
zt+τ

τPw,t+τ
(1− τPw,t+τ )ν

delivers zt+τ+1 = z for all t = t + τ + 1, t + τ + 2, ... under a balanced government budget at t + τ

where τ is the smallest integer greater than ln (z̄/z) / ln(1 + gL).

Hence, if zt is sufficiently large then a unique stabilization policy exists. Moreover, if zt is
small then the economy may grow smoothly for a few periods before the stabilization becomes
implemented. In both cases fluctuations involving switches back and force between the two
growth regimes are avoided.

Observe that −ν(σ − 1) < −(1 + ψ) implies η > 2. Therefore, if zt > z then τw,t > 0 and the
stabilization policy induces a transfer from the young to the old. If zt < z then τw,t < 0 and the
intergenerational transfer has the opposite direction.

If zt > z then the old benefit in addition from a higher asset income. To see this, observe that
the stabilization policy reduces the size of the research sector while leaving wt and the aggre-
gate amount of hours worked unaffected. As explained in the previous section, the induced

16 Indeed, from (5.9) one readily verifies that the economy is in Regime 1 if τw,t < 1 − (zc/zt)
1

1−ν < 0.
Whenever the latter inequality is satisfied the demand for shares will be sufficiently strong such that
shares are traded at the break-even share price (3.9).
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shift of hours worked into the production sector increases dividends. Moreover, as zt > zc the
policy leaves vt unaffected so that the interest factor, hence, asset income, will increase. As the
economy’s wage bill remains constant, the increase in dividends also means a higher GDPt.
Hence, the labor share will decline.

If zt < z the policy increases the size of the research sector. The concomitant shift of hours
worked from the production into the research sector reduces dividends and GDPt. If zc < zt <

z then the stabilization policy leaves vt unaffected. Hence, the interest factor declines and the
old suffer from a loss in their asset income. However, if z̄ < zt < zc < z then the stabilization
policy increases vt. Hence, there are two opposing effects on the level of the interest factor.
In any case, as the stabilization policy leaves wt unaffected the decline in GDPt implies an
increase in the labor share.

5.4 Empirical Plausibility of the Instability Condition

The aim of this section is to investigate the empirical plausibility of the condition for the in-
stability of the steady state, −ν(σ − 1) < −(1 + ψ). To accomplish this, we first calibrate the
steady state of our model. Then, we check whether the condition for instability is satisfied. The
calibration exercise is conducted for given values of gh, gc, gL, β, and γA where gc = gcy = gco .
We approximate these values with real world data and use them to determine ν, σ, and ψ.

Boppart and Krusell (2020) estimate the average annual growth rate of hours worked per
worker to equal −0.57%. Then, over 30 years we have 1 + gh = 0.994330. As to gc, we stipulate
an average annual growth rate of per capita consumption of 1.9% so that 1 + gc = 1.01930.17

Then, Proposition 2.1 implies for the steady state that

ν =

(
1− ln(1 + gc)

ln(1 + gh)

)−1
= 0.233.

With equation (7.20) in the proof of Proposition 5.2, z/zc = 1 + gA, equation (3.5), and 1 + gc =

(1 + gA)(σ−1)(1−ν) we obtain the steady-state fraction of hours worked in the research sector as

γA =
β

(1 + β)(1− ν)

[
1− (1 + gc)

−1
(1−ν)(σ−1)

]
.

For γA we use the fraction of researchers as a percentage of the labor force in the United King-
dom in 2017. According to the OECD Main Science and Technology Indicators database, this
figure is 0.87%. The annual discount factor is often estimated to be around 0.96 implying
β = 0.294. Accordingly, given the values for gc, ν, β and γA, the calibrated value of σ is
25.13.

Finally, using Proposition 2.1, (3.5) and (3.11) delivers the link between ψ and gL through

1 + gh = (1 + gL)
−ν(σ−1)

1−ψ+ν(σ−1) .

17 According to the Penn World Table 9.1, this is the average annual growth rate of per capita consumption
in the United Kingdom over the period from 1950 to 2017.

27



1 + gL ψ −ν(σ − 1)

1.005830 0.9342 −4.6871− ψ
1.00630 0.7387 −4.8826− ψ
1.006530 0.2500 −5.3712− ψ

Table 5.1: Calibration Results.

Table 5.1 presents the calibration results. Column 2 shows the calibrated values of ψ using
the numerical values stated above for differing values of gL. As required, for average annual
population growth rates around 0.6% the calibrated values for ψ lie in the interval (0, 1).18

Column 3 reveals that −ν(σ − 1) < −(1 + ψ) holds for all cases. Hence, the corresponding
steady states are unstable.

6 Concluding Remarks

In the literature on endogenous fluctuations between growth regimes, the labor-leisure choice
of households plays no role. This omission is hard to justify on empirical grounds. More im-
portantly, we show that it leaves our understanding of these fluctuations incomplete. The main
point of this paper is that a negative and sufficiently strong equilibrium elasticity of the indi-
vidual supply of hours worked to an expansion of the set of consumption-good varieties may
be a cause of instability that opens up the possibility of fluctuations between growth cycles.
These findings require a negative wage elasticity of the individual supply of hours worked
that is consistent with the empirical evidence for many of today’s industrialized countries.

Since the household sector of our model features two-period lived overlapping generations
the evolutions that we describe and explain apply to periods with a length of roughly 30 years.
This raises at least two interesting questions. The first asks whether our analytical framework
can be adapted to capture fluctuations in the short run that the empirical literature detects (see,
e. g., Wälde and Woitek (2004)). One route to accomplish this would be to stipulate a constant
savings rate and an exogenous labor supply with a negative and constant wage elasticity. As
an alternative, one may attempt to derive such functions endogenously from a representative
Ramsey household equipped with Boppart-Krusell preferences. The second question starts
with the observation that the actual working period of individuals extends to more than 30
years. Allowing individuals to chose their supply of working hours and their retirement date
when old could capture this (see, e. g., Hu (1979), Reichlin (1986), or Matsuyama (2008)).

Finally, at the technical front, one may wonder whether our model harbors additional proper-
ties that are beyond the mathematical scope of the present paper. Contributions like Mukherji
(2005), Gardini, Sushko, and Naimzada (2008), and Deng and Khan (2018) elicit such properties
for the model of Matsuyama (1999). Studies of this kind applied to our model would certainly
shed light on the role of the linear segment of our dynamical system for the global dynamics

18 Observe that average annual population growth rates of roughly 0.6% is in line with the empirical
evidence. For instance, for the U.K. and Sweden over the time span 1870 to 2010 this rate is equal to
0.59% and 0.58%, respectively (see UN Population Division (2019)).
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and on the link between the possibility of chaos and the instability of the cycles we identify. At
this stage, we leave these questions for future research.
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7 Appendix A: Proofs

7.1 Proof of Proposition 2.1

In the first stage, the individual chooses the quantities xyt (j) for given prices pt(j), j ∈ [0, At],
and the quantities xot+1(j) for given (perfect foresight) prices pt+1(j), j ∈ [0, At+1], so as to
minimize the costs of attaining aggregate consumption levels cyt and cot+1, i. e., the two cost-
minimization problems solved by cohort t are

min
{xyt (j)}

At
j=0

∫ At

0

pt(j)x
y
t (j)dj s. t. A

σ− 1
α

t

[∫ At

0

(xyt (j))αdj

] 1
α

= cyt ,

min
{xot+1(j)}

At+1
j=0

∫ At+1

0

pt+1(j)xot+1(j)dj s. t. A
σ− 1

α
t+1

[∫ At+1

0

(xot+1(j))αdj

] 1
α

= cot+1.

Consolidating the two periodic budget constraints, the problem stated in (2.6) gives rise to the
following Lagrangian

L= ln cyt + ln (1− φht(cyt )
ν

1−ν ) + β ln cot+1 + λt

[
wtht − Ptcyt −

Pt+1c
o
t+1

Rt+1

]
.

Then, standard arguments following the algorithm developed in the proof of Proposition 1 in
Irmen (2018) complete the proof. �

7.2 Proof of Proposition 3.1

First, we derive algebraically the difference equation (3.8) in Section 7.2.1. Second, we prove
the existence of a unique intertemporal general equilibrium in Section 7.2.2.

7.2.1 The Equilibrium Difference Equation

In Regime 0, inequality (2.16) is strict, and, accordingly, HA,t = ∆At = 0. Then, with st of
Proposition 2.1 and (3.5), the asset market clearing condition (3.3) delivers

vt =
aαLtA

(σ−1)(1−ν)−1
t

zc
. (7.1)

Using the latter and (3.5) in inequality (2.16), gives

zt ≡
Lt
Aηt

< zc.

If this inequality holds, then the economy is in Regime 0, i. e., At is constant and Lt grows
exogenously at rate gL. Therefore,

zt+1 = (1 + gL)zt if zt < zc. (7.2)

In Regime 1, (2.16) holds as equality, and, accordingly, HA,t ≥ 0 and ∆At ≥ 0. Then, with st of
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Proposition 2.1, (3.5), and (3.9) the asset market equilibrium condition (3.3) becomes

A
(1−ν)(σ−1)
t Lt

zc
= Aσ−1−ψt At+1.

Solving for At+1/At delivers

zt
zc

=
At+1

At
,

hence zt ≥ zc. From the definition of zt given in (3.6), we have

zt+1

zt
=
Lt+1A

−η
t+1

LtA
−η
t

or
At+1

At
= (1 + gL)

1
η

(
zt+1

zt

)− 1
η

. (7.3)

Combining the latter two equations and solving for zt+1 delivers

zt+1 = (1 + gL)zc

(
zt
zc

)ψ−ν(σ−1)
if zt ≥ zc. (7.4)

Hence, for zt < zc the evolution of zt is governed by (7.2), for zt ≥ zc the evolution of zt is
given by (7.4). It is straightforward to show from (7.2) that limzt↑zc zt+1 = zc and from (7.4) that
limzt↓zc zt+1 = zc. Hence, the piecewise defined difference equation stated in the proposition
is continuous.

7.2.2 Existence and Uniqueness of the Intertemporal General Equilibrium

The proof has two steps. Step 1 shows that all elements of the equilibrium price system,
{wt, Rt, pt, πt, vt}∞t=1, and of the equilibrium allocation, {cyt , lt, cot , st, x

y
t , x

o
t , xt, Hx,t, HA,t, At}

∞
t=1,

can be expressed as a function of zt. Step 2 proves that in equilibrium the shares are valued
according to fundamentals.

Step 1 Given Lt, At can be pinned downed by zt using (3.6), i. e.,

At =

(
Lt
zt

) 1
η

. (7.5)

The price of consumption goods and the wage rate are solely determined by At according to
(3.4) and (3.5) respectively. Then using (7.5), we have

pt =

(
Lt
zt

)σ−1
η

and wt = α

(
Lt
zt

)σ−1
η

. (7.6)

The optimal plan of cohort t is given in Proposition 2.1, i. e., ht, c
y
t , and st hinge on wt. Then,
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using (7.6), we have

ht =
(wc
α

)ν (Lt
zt

)−ν(σ−1)
η

, st =
αβ

(1 + β)(1− ν)

(wc
α

)ν (Lt
zt

) (1−ν)(σ−1)
η

,

(7.7)

cyt =
1− ν(1 + β)

(1 + β)(1− ν)
wνcα

1−ν
(
Lt
zt

) (1−ν)(σ−1)
η

.

Using (7.7) the aggregate supply of hours worked becomes

Ht = Ltht =
a(1 + β)(1− ν)

β

zt
zc

(
Lt
zt

) 1−ψ
η

. (7.8)

Using (7.3) in (2.14) gives aggregate hours worked in research as

HA,t =

0 if zt ≤ zc,

a
(
zt
zc
− 1
)(

Lt
zt

) 1−ψ
η

if zt ≥ zc.
(7.9)

Accordingly, aggregate hours worked in the consumption-good sector obtain with (7.9) and
(7.8) as

Hx,t =


a(1+β)(1−ν)

β
zt
zc

(
Lt
zt

) 1−ψ
η

if zt ≤ zc,

a
[
1−ν(1+β)

β
zt
zc

+ 1
] (

Lt
zt

) 1−ψ
η

if zt ≥ zc.
(7.10)

The supply of each consumption goods is given by Hx,t/At. With (7.5) and (7.10) this gives

xt =


a(1+β)(1−ν)

β
zt
zc

(
Lt
zt

)−ψ
η

if zt ≤ zc,

a
[
1−ν(1+β)

β
zt
zc

+ 1
] (

Lt
zt

)−ψ
η

if zt ≥ zc.
(7.11)

Substituting (7.6) and (7.11) into (2.12) delivers the profit of each firm in the production sector
as

πt =

(1− α)a(1+β)(1−ν)β
zt
zc

(
Lt
zt

)σ−1−ψ
η

if zt ≤ zc,

(1− α)a
[
1−ν(1+β)

β
zt
zc

+ 1
] (

Lt
zt

)σ−1−ψ
η

if zt ≥ zc.
(7.12)

The value of the shares of these firms in Regime 0 and Regime 1 result from the substitution of
(7.5) into (7.1) and (3.9), respectively, as

vt =

aα
zt
zc

(
Lt
zt

)σ−1−ψ
η

if zt ≤ zc,

aα
(
Lt
zt

)σ−1−ψ
η

if zt ≥ zc.
(7.13)

Consumption of the old can be obtained using (7.6), (7.7) and (7.11) in the market clearing
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condition for the consumption goods. This gives

cot =


(1+β)(1−ν)−α(1−ν(1+β))

β
zt
zc
a
(
Lt
zt

)σ−ψ
η

if zt ≤ zc,[
(1+β)(1−ν)−α(1−ν(1+β))

β
zt
zc
−
(
zt
zc
− 1
)]
a
(
Lt
zt

)σ−ψ
η

if zt ≥ zc.
(7.14)

One readily verifies that (2.3) in conjunction with (7.5) and, respectively, cyt of (7.7) and cot of
(7.14) delivers xyt and xot as functions of zt.

It remains to be shown that Rt+1 can be expressed as a function of zt. The following lemma
accomplishes this.

Lemma 7.1 (Perfect Foresight Interest Factor Along the Transition)

Denote by Rt+1 the perfect foresight interest factor at t+ 1. Then, the following holds.

1. If zt < zc/(1 + gL) then the economy is in Regime 0, stays there, and

Rt+1 =
1 + gL
αβ

((1− α)(1− ν(1 + β)) + β) .

2. If zc/(1 + gL) ≤ zt ≤ zc then the economy is in Regime 0, transits to Regime 1, and

Rt+1 =
1 + gL
αβ

(
(1− α)(1− ν(1 + β)) +

β

1 + gL

zc
zt

)
.

3. If zc ≤ zt ≤ zc(1 + gL)
−1

ψ−ν(σ−1) then the economy is in Regime 1, stays there, and

Rt+1 =
1 + gL
αβ

(
(1− α)(1− ν(1 + β))

(
zt
zc

)(1−ν)(σ−1)

+
β

1 + gL

(
zt
zc

)σ−1−ψ)
.

4. If zc(1 + gL)
−1

ψ−ν(σ−1) ≤ zt then the economy is in Regime 1, transits to Regime 0, and

Rt+1 =
1 + gL
αβ

((1− α)(1− ν(1 + β)) + β)

(
zt
zc

)(1−ν)(σ−1)

.

Proof of Lemma 7.1

The no-arbitrage condition (3.2) requires expressions for vt+1/vt and πt+1/vt. For all four cases,
these are obtained from (7.12) and (7.13). Finally, using (3.8) delivers the expressions for Rt+1

stated in the lemma. �

Step 2 We use Lemma 7.1 to prove that in equilibrium condition (3.1) holds so that shares are
indeed valued according to fundamentals. Lemma 7.2 accomplishes this.

Lemma 7.2 (Equilibrium Share Valuation According to Fundamentals)

The intertemporal general equilibrium satisfies condition (3.1).
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Proof of Lemma 7.2

The no arbitrage condition (3.2) implies (3.1) if

lim
j→∞

vt+j

Πj
i=1Rt+j

= 0. (7.15)

Since

vt+j = vt

(
vt+1

vt

)(
vt+2

vt+1

)
. . .

(
vt+j
vt+j−1

)
= vtΠ

j
i=1

vt+i
vt+i−1

,

condition (7.15) can be written as

vt lim
j→∞

Πj
i=1

( vt+i
vt+i−1

Rt+j

)
= 0. (7.16)

Equations (7.12) and (7.13) imply that vt+1/vt > 0 and πt+1/vt > 0 for all t. Using this informa-
tion in the no-arbitrage condition (3.2) reveals that Rt+1 > vt+1/vt for all t. As a consequence,
the left-hand side of (7.16) has the product of infinitely many factors each being strictly smaller
than unity. Hence, the limit of these factors vanishes and equation (7.15) holds. �

7.3 Proof of Proposition 4.1

According to Proposition 1.9 of Galor (2007), z of the dynamical system (3.8) is locally stable iff∣∣∣∣∣∣ dzt+1

dzt

∣∣∣∣∣
zt=z

∣∣∣∣∣∣ =

∣∣∣∣∣∣ ψ − ν(σ − 1)

∣∣∣∣∣∣ < 1.

Then, the qualitative findings concerning the local stability are immediate. To prove the prop-
erties of the global dynamics we first state and prove two lemmata.

Lemma 7.3

Suppose zt ≥ zc. As long as the economy stays in Regime 1 for s periods, the dynamics of zt is given by

zt+s
z

=
(zt
z

)[ψ−ν(σ−1)]s
. (7.17)

Moreover, if | ψ − ν(σ − 1) | < 1, then

lim
s→∞

zt+s
z

= 1. (7.18)

Proof of Lemma 7.3

From Proposition 3.10, the population growth factor satisfies 1 + gL = (z/zc)
η . If zt > zc, then

with (3.8) we have zt+1/z = (zt/z)
ψ−ν(σ−1). If zt+s ≥ zc for all s = 0, 1, 2, . . . , then by succes-

sive iteration we obtain (7.17). If | ψ − ν(σ − 1) | < 1, then lims→∞[ψ − ν(σ − 1)]s = 0, i. e.,

34



(7.18) holds. �

Lemma 7.4

Suppose ψ − ν(σ − 1) < 0. Then, for any z1 ∈ R++, there exist τ ≥ 1, such that zτ ∈ [zc,Φ(zc)].

Proof of Lemma 7.4

The piecewise defined difference equation (3.8) is strictly increasing on the subdomain zt ≤ zc

and strictly decreasing on the subdomain zt ≥ zc. Therefore, its maximum is Φ(zc) = (1+gL)zc.
If z1 ≤ zc, then zτ ∈ [zc,Φ(zc)] where τ = 1 + dln (zc/z1)/ ln (1 + gL)e. If z1 > Φ(zc), then
z2 = Φ(zc)(z1/zc)

ψ−ν(σ−1) < Φ(zc). Then, either z2 < zc or z2 ∈ [zc,Φ(zc)]. In the first case,
zτ ∈ [zc,Φ(zc)] where τ = 2 + dln (zc/z2)/ ln (1 + gL)e. �

Proof of Case 1: Suppose −ν(σ− 1) ∈ (−ψ, 0). Then, the difference equation (3.8) is increasing.
If z1 ≤ zc, then the economy transits to Regime 1 in finite time and stays there. If zc < z1, then
the economy stays in Regime 1. With Lemma 7.3, the economy converges to z.

Proof of Case 2: Suppose −ν(σ − 1) ∈ ((−(1 + ψ),−ψ). Then, zc < Φ2(zc) < z where Φ2(zc) =

(1 + gL)1+ψ−ν(σ−1)zc. With Lemma 7.4, we have that zτ+1 ∈ [Φ2(zc),Φ(zc)] ⊂ [zc,Φ(zc)]. More-
over, zτ+1 ∈ [Φ2(zc),Φ(zc)] implies zτ+1+s ∈ [Φ2(zc),Φ(zc)] for all s ≥ 1. Hence, for all t ≥ τ ,
zt ∈ [zc,Φ(zc)]. Finally, Lemma 7.3 implies limt→∞ zt = z.

Proof of Case 3: First, we prove that−ν(σ−1) < −(1+ψ) implies for any initial value z1 ∈ R++

that the economy enters the indicated absorbing interval in finite time. The argument is a fol-
lows.

Some straightforward algebra reveals that Φ2(zc) < zc < Φ(zc). Since Φ′(zt) > 0 for all
zt ∈ [Φ2(zc), zc] and Φ′(zt) < 0 for all zt ∈ [zc,Φ(zc)], Φ(zc) ≥ Φ(zt) and Φ(zt) ≥ Φ2(zc)

for all zt ∈ [Φ2(zc),Φ(zc)]. Therefore, [Φ2(zc),Φ(zc)] is an absorbing interval in the sense that
zt ∈ [Φ2(zc),Φ(zc)] implies zt+τ ∈ [Φ2(zc),Φ(zc)] for all τ > 0.

Second, we prove that inside the absorbing interval the evolution fluctuates between Regime 0

and 1. The argument is as follows.

If zt ∈ (Φ−1(zc),Φ(zc)], then zt+1 < zc. Moreover, since ψ−ν(σ−1) < (−1), if zt ∈ [zc,Φ
−1(zc)]

and zt 6= z, then zt+τ ∈ (Φ−1(zc),Φ(zc)] where τ is finite. Therefore, the economy will move
from Regime 1 to Regime 0 after a finite number of periods. Together with Lemma 7.4, it
follows that inside the absorbing interval [Φ2(zc),Φ(zc)], the evolution of zt fluctuates between
Regime 0 and 1. �

7.4 Proof of Corollary 4.1

Given in the main text. �
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7.5 Proof of Proposition 5.1

To assess the sign on ∆Vt we have to study the evolution of wt and Rt. To accomplish this, we
use equation (7.6) to express the equilibrium wage, wt, as a function of (zt, Lt) and Lemma 7.1
to express Rt+1 as a function of zt. One readily verifies that Cases 1 - 4 cover all starting values
for zt−1.

Cases 1 and 2 are explained in the main text. Case 3 follows from a comparison of the expres-
sions of Rt and Rt+1 stated in Case 2 and 3 of Lemma 7.1. The proof of Case 4 requires the
distinction of six subcases. To simplify the notation define

γ1 ≡
(1− α)(1− ν(1 + β))(1 + gL)

αβ
and γ2 ≡ ψ − ν(σ − 1).

4.1 If zc(1 + gL)
ψ−ν(σ−1)

1−ψ+ν(σ−1) ≤ zt−1 < zc(1 + gL)
ν(σ−1)−ψ−1
ψ−ν(σ−1) , then zt−1 < zc < zt+1 ≤ zt and

wt−1 = wt. Using (3.8) and Case 2 and Case 3 of Lemma 7.1, we have

β ln

(
Rt+1

Rt

)
= β ln

γ1
(

(1+gL)zt−1

zc

)(1−ν)(σ−1)
+ 1

α

(
(1+gL)zt−1

zc

)σ−1−ψ
γ1 + 1

α
zc
zt−1

 .
Since zc(1 + gL)

ψ−ν(σ−1)
1−ψ+ν(σ−1) ≤ zt−1, the second term in the numerator is greater than the

denominator. Hence, ln(Rt+1/Rt) > 0 and ∆Vt > 0.

4.2 If zc(1 + gL)
ν(σ−1)−ψ−1
ψ−ν(σ−1) ≤ zt−1 < zc, then zt−1 < zc < zt, zt+1 < zc, and wt−1 = wt.

Moreover, Lemma 7.1 implies Rt < Rt+1, hence, cot < cot+1 and ∆Vt > 0.

4.3 If zc < zt−1 ≤ zc(1 + gL)
ν(σ−1)−ψ−1

(ψ−ν(σ−1))2 then zt+1 ≤ zc < zt−1 < zt. Here, At−1 < At < At+1

and wt−1 < wt. Moreover, Lemma 7.1 implies Rt < Rt+1, hence, cot < cot+1 and ∆Vt > 0.

4.4 If zc(1 + gL)
ν(σ−1)−ψ−1

(ψ−ν(σ−1))2 < zt−1 ≤ zc(1 + gL)
−1

ψ−ν(σ−1) then {zt−1, zt, zt+1} > zc and the
following sequences may obtain:

a) If zc(1 + gL)
ν(σ−1)−ψ−1

(ψ−ν(σ−1))2 < zt−1 < z then zc < zt+1 < zt−1 < zt. It follows that
At−1 < At < At+1 and wt−1 < wt. Moreover, Lemma 7.1 delivers Rt < Rt+1 as
zt−1 < zt, thus, ∆Vt > 0.

b) If zt−1 = z then both cohorts live in steady state where Rt = Rt+1 and the real wage
grows at a constant rate. Therefore, ∆Vt > 0.

c) If z < zt−1 ≤ zc(1 + gL)
−1

ψ−ν(σ−1) then zc < zt < z < zt−1 < zt+1, At−1 < At,
and wt−1 < wt. However, as zt < zt−1 Lemma 7.1 gives Rt > Rt+1. Nevertheless,
∆Vt > 0 follows. To see this, observe that (7.6) and Proposition 3.1 allow us to write
wt/wt−1 = (zt−1/zc)

σ−1 so that

(1 + β)(1− ν) ln

(
wt
wt−1

)
= (1 + β)(1− ν)(σ − 1) ln

(
zt−1
zc

)
. (7.19)

Next, expressRt+1/Rt according to Case 3 of Lemma 7.1 and use the latter, (3.8), and
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(7.19) in (5.2) to obtain ∆Vt as a function of zt−1/zc, i. e.,

∆Vt = β ln

(
zt−1
zc

) (σ−1)(1+β)(1−ν)
β

+ β ln

γ1
(

(1 + gL)
(
zt−1

zc

)γ2)(1−ν)(σ−1)
+ 1

α

(
(1 + gL)

(
zt−1

zc

)γ2)σ−1−ψ
γ1

(
zt−1

zc

)(1−ν)(σ−1)
+ 1

α

(
zt−1

zc

)σ−1−ψ
 .

Then, using the boundary condition, zt−1 ≤ zc(1 +gL)
−1

ψ−ν(σ−1) in the latter, one finds
that

∆Vt > β ln

γ1
(
zt−1

zc

) (σ−1)(1+β)(1−ν)
β

+ 1
α

(
zt−1

zc

) (σ−1)(1+β)(1−ν)
β

γ1

(
zt−1

zc

)(1−ν)(σ−1)
+ 1

α

(
zt−1

zc

)σ−1−ψ
 > 0,

where the last inequality follows since 1 > ν(1 + β) is implied by (2.5) (see Irmen
(2018)).

4.5 If zc(1 + gL)
−1

ψ−ν(σ−1) < zt−1 < zc(1 + gL)
−2

ψ−ν(σ−1) then zt−1 > zc > zt and zt+1 > zc. Then,
At−1 < At and wt−1 < wt. Moreover, Lemma 7.1 delivers Rt > Rt+1. Nevertheless,
∆Vt > 0. To see this, observe that (1 − β)(1 − ν) ln (wt/wt−1) is the same as in (7.19).
ExpressRt+1/Rt according to Case 2 and Case 4 of Lemma 7.1. Using the latter, (3.8), and
(7.19) in (5.2) delivers ∆Vt as a function of zt−1/zc, i. e.,

∆Vt = β ln

γ1
(
zt−1

zc

) (1+β)(1−ν)(σ−1)
β

+ 1
α (1 + gL)−1

(
zt−1

zc

)ν(σ−1)−ψ+ (1+β)(1−ν)(σ−1)
β

γ1

(
zt−1

zt

)(1−ν)(σ−1)
+ 1

α (1 + gL)
(
zt−1

zt

)(1−ν)(σ−1)
.

Since 1 > ν(1 + β), we have ∆Vt > 0.

4.6 If zc(1 + gL)
−2

ψ−ν(σ−1) ≤ zt−1, then zt−1 > zc > zt+1 > zt. Then, At−1 < At and wt−1 < wt.
Again, Lemma 7.1 delivers Rt > Rt+1 but, nevertheless, ∆Vt > 0. To see this, observe
that (1−β)(1− ν) ln (wt/wt−1) is the same as (7.19). Express Rt+1/Rt according to Case 1
and Case 4 of Lemma 7.1. Using the latter and (7.19) in (5.2) delivers ∆Vt as a function of
zt−1/zc, i. e.,

∆Vt = β ln

γ1
(
zt−1

zc

) (1+β)(1−ν)(σ−1)
β

+ 1
α (1 + gL)

(
zt−1

zc

) (1+β)(1−ν)(σ−1)
β

γ1

(
zt−1

zt

)(1−ν)(σ−1)
+ 1

α (1 + gL)
(
zt−1

zt

)(1−ν)(σ−1)
.

Since β ∈ (0, 1), we have ∆Vt > 0. �
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7.6 Proof of Proposition 5.2

First, we establish that the equilibrium share of aggregate hours worked in the research sector
is given by

γA,t =

0 if zt ≤ zc,
β

(1+β)(1−ν)

(
1− zc

zt

)
if zt ≥ zc.

(7.20)

To see this, express HA,t in terms of At and zt. From the definition of zt in (3.6), we have

zt+1

zt
= (1 + gL)

(
At+1

At

)−η
.

For zt ≥ zc, (3.8) can be written

zt+1

zt
= (1 + gL)

(
zc
zt

)η
.

Equating the latter two equations deliversAt+1/At = zt/zc, which upon substitution into (2.14)
delivers

HA,t = aA1−ψ
t

(
zt
zc
− 1

)
.

Now, express Ht in terms of Lt and At. With ht of Proposition 2.1 and (3.5), we obtain

Ht =
(wc
α

)ν
LtA

−ν(σ−1)
t .

Then, γA,t results as stated in (7.20) for zt ≥ zc. For zt ≤ zc, HA,t = 0 and thus γA,t = 0.

With (7.20) one readily verifies that (5.3) can be expressed in terms of the state variable zt as

GDPt =


aAσ−ψt ξ

(
zt
zc

)
, if zt ≤ zc,

aAσ−ψt

[
(ξ − (1− α)) ztzc + (1− α)

]
, if zt ≥ zc,

(7.21)

where ξ ≡ (1 + β)(1− ν)/β > 1.

Case 1 is shown in the main text. As to Case 2, one finds that

GDPt+1 > GDPt since (1 + gA,t)
σ−ψ

[
(ξ − (1− α)) zt+1

zc
+ (1− α)

(ξ − (1− α)) ztzc + (1− α)

]
> 1.

The stated inequality clearly holds if zt+1 ≥ zt since σ > ψ and ξ > 1. If zt+1 < zt then it holds
since zt+1 = (1+gL)zc(zt/zc)

ψ−ν(σ−1)−1, 1+gA,t = zt/zc, and (σ−1)(1−ν) > 0. For per-capita
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GDP the result is not unequivocal as

gdpt+1

gdpt
=

(ξ − (1− α))
(
zt
zc

)(σ−1)(1−ν)
zt
zc

+ (1− α)
(
zt
zc

)σ−ψ
(1 + gL)−1

(ξ − (1− α)) ztzc + (1− α)
R 1.

Suppose zt > z = zc(1 + gL)1/η . Then, the second term in the numerator satisfies

(
zt
zc

)σ−ψ
> (1 + gL)

σ−ψ
η or

(
zt
zc

)σ−ψ
(1 + gL)−1 > (1 + gL)

(σ−1)(1−ν)
η > 1.

Hence, since (zt/zc)
(σ−1)(1−ν) > 1 and (zt/zc)

σ−ψ(1 + gL)−1 > 1, gdpt+1 > gdpt.

For Case 3, (7.21) delivers

GDPt+1 > GDPt since
zt+1

zt
− 1− α

ξ

[
zt+1

zt
− zc
zt

]
> 1,

where the sign follows with zt+1 = (1 + gL)zt and zt ≤ zc. As shown in the main text, gdpt+1 <

gdpt. The proof of Case 4 is given in the main text. �

7.7 Proof of Proposition 5.3

If τw,t = τPw,t then (5.9) becomes

zt+1 =


(1 + gL)zt if zt ≤ z̄,

(1 + gL)zc

(
zt
zc

)ψ−ν(σ−1)
(1− τw,t)−(1−ν)η if zt ≥ z̄.

(7.22)

If zt < z̄ then the proposed stabilization policy cannot induce zt+1 = z. Instead, the economy
remains in Regime 0 until zt+τ > z̄ where τ = 1, 2, .... As zt+τ = (1+gL)τzt, the desired τ is the
smallest integer such that (1 + gL)τzt > z̄. Solving for τ delivers the expression stated in the
proposition. Since zt+τ > z̄, the reason why the taxes

(
τPw,t+τ , τ

P
R,t+τ

)
are part of a stabilization

policy at t+ τ is the same as for the taxes
(
τPw,t, τ

P
R,t

)
being part of a stabilization policy at t.

If zt ≥ z̄. Then, τPw,t solves zt+1 = z, i. e., from (7.22)

z = (1 + gL)zc

(
zt
zc

)ψ−ν(σ−1)
(1− τPw,t)−(1−ν)η.

The tax rate τPR,t adjusts such that the second equation in (5.7) holds. Solving the latter using
Proposition 2.1, (3.5), and (5.8) delivers

τPR,t = − (1 + β)(1− ν)(1 + gL)

β
R−1t

(
At
At−1

)(1−ν)(σ−1) τPw,t
(1− τPw,t)ν

. (7.23)

From Claim 2 and Claim 3 of Lemma 7.1, the expression of Rt depends on whether zt−1 ≤ zc

39



or zt−1 > zc. If zt−1 ≤ zc, then At−1 = At,

R−1t =
αβ

1 + gL

(
(1− α)(1− ν(1 + β)) +

β

1 + gL

zc
zt−1

)−1
,

and (7.23) delivers τPR,t as stated in the proposition. If zt−1 > zc, then At/At−1 = zt−1/zc and

R−1t =
αβ

1 + gL

(
(1− α)(1− ν(1 + β))

(
zt−1
zc

)(1−ν)(σ−1)

+
β

1 + gL

(
zt−1
zc

)σ−1−ψ)−1
.

Using At/At−1 = zt−1/zc and (3.8) in (7.23) delivers again the expression for τPR,t stated in the
proposition. �
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8 Appendix B: Additional Results

This appendix collects additional results for an online appendix. Section 8.1 fully charac-
terizes the steady-state paths of all endogenous variables. This includes an analysis of the
comparative-static properties of these paths, the analysis of the steady-state allocation of hours
worked as well as of the steady-state functional income distribution. Section 8.2 complements
Section 5.1 of the main text and provides the analysis of the evolution of the intergenerational
welfare for a fluctuating economy with a stable steady state. Finally, the focus of Section 8.3
is on period-n cycles. We first establish their existence. Then, we study the properties of such
cycles and relate them to results obtained in Section 4 and 5 of the main text.

8.1 Structural Properties of the Steady State

The following proposition derives the steady-state growth rates of key variables.

Proposition 8.1 (Structural Properties of the Steady State)

Consider the steady state of Proposition 3.10. The steady-state growth factor of consumption-good vari-
eties is

1 + gA = (1 + gL)
1
η > 1. (8.1)

Moreover, it holds that

a) 1 + gw = (1 + gL)
σ−1
η ,

b) 1 + gh = (1 + gL)
−ν(σ−1)

η ,

c) 1 + gcy = 1 + gco = (1 + gL)
(1−ν)(σ−1)

η ,

d) 1 + gH = (1 + gL)
1−ψ
η ,

e) 1 + gv = (1 + gL)
σ−1−ψ

η .

Proof of Proposition 8.1

The steady-state growth rate of At is derived in the main text. The growth rate of wt follows
from (3.5). The growth rates of ht, c

y
t , and cot follow with Proposition 2.1. Since Ht = Ltht, the

growth rate of Ht equals to (1 + gL)(1 + gh). Finally, gv follows with (3.9). �

According to Proposition 8.1 the number of available consumption-good varieties increases in
steady state at a rate approximately equal to gL/η. In addition to population growth and tech-
nology, this growth rate reflects preferences through the parameters ν and σ. The intuition is
the following.

From the research technology (2.14) we have

gA =
∆At
At

=
HA,t

a
Aψ−1t ⇒ 1 + gA = (1 + gHA)

1
1−ψ . (8.2)
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Since increments in At improve the productivity of research at a decreasing rate, the amount
of hours devoted to research, HA,t, has to increase at a constant rate to support the steady-state
growth rate gA.

To detect the determinants of gHA consider the labor-market equilibrium which requires gHx =

gHA = gH . Hence, the fraction of the workforce allocated to research is constant over time.
Accounting for the extensive and the intensive margin of the supply of hours worked, gH
satisfies

1 + gH = (1 + gL)(1 + gh) = (1 + gL)(1 + gw)−ν , (8.3)

where the last equality follows from Proposition 2.1. Combining (8.2) and (8.3) delivers

1 + gA =
[
(1 + gL)(1 + gw)−ν

] 1
1−ψ , (8.4)

i. e., the research technology and the negative wage elasticity of the individual labor supply
imply that faster wage growth induces a stronger decline in the amount of hours supplied by
research workers and, hence, a smaller gA.19

A second steady-state relationship between the growth rates gA and gw obtains from (3.5), i. e.,

1 + gw = (1 + gA)σ−1. (8.5)

It reflects the role of the taste for variety for the evolution of the real wage. As At increases
so does the real price, pt, charged by the monopolistically competitive firms. The constant
mark-up rule (2.11) implies that pt and wt grow at the same rate. Solving (8.4) and (8.5) for the
steady-state growth rates gA and gw gives the results stated in the proposition.

The steady-state growth rate of hours worked follows from Proposition 2.1 as 1 + gh = (1 +

gw)−ν . The corresponding growth rates of consumption when young and old coincide with the
growth rate of the individual wage income, wtht. The steady-state growth rate of aggregate
hours worked satisfies 1 + gH = (1 + gL)(1 + gh) and takes growth at the extensive and at the
intensive margin into account. Finally, the growth rate of the steady-state value of ownership
shares follows with (3.9). Accordingly, population growth speeds up this rate if σ − 1 > ψ.

8.1.1 The Comparative Statics of the Steady State

The steady state is illustrated in Figure 8.1 where the line doubted Locus I shows equation (8.4),
and the line Locus II shows equation (8.5). The intersection of both loci determines the steady-
state level of gA and gw as stated in Proposition 8.1.

The following proposition derives the determinants of gA and gw.

19 Observe that (8.4) delivers the steady-state growth rate of the discrete-time version of Jones (1995) if
ν = 0. However, here, ν > 0 which calls for an additional relationship to pin down gA.
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Figure 8.1: Steady-State Equilibrium.

Proposition 8.2 (Determinants of the Steady-State Growth Rates gA and gw)

The steady-state growth rate of the consumption-good varieties and the real wage satisfy

∂gA
∂gL

> 0,
∂gA
∂ψ

> 0,
∂gA
∂ν

< 0,
∂gA
∂σ

< 0.

∂gw
∂gL

> 0,
∂gw
∂ψ

> 0,
∂gw
∂ν

< 0,
∂gw
∂σ

> 0.

Proof of Proposition 8.2

The signs of all the partial derivatives can be inspected directly from Proposition 8.1. �

To grasp the intuition behind these findings consider first the effect of a higher labor-force
growth rate, g′L > gL. Intuitively, faster population growth means faster growth at the ex-
tensive margin of the labor supply, hence faster growth of the workforce in research. For all
gw ≥ 0, this supports a higher gA. Accordingly, in Figure 8.1 Locus I shifts outwards along Locus
II, and both gA and gw increase.

Second, a stronger knowledge spillover, ψ′ > ψ, pivots Locus I outwards and leads to a higher
gA and gw. Intuitively, given gw a higher ψ increases the labor productivity in the research
sector, which supports a higher gA.

Third, a lower wage elasticity, −ν′ < −ν, pivots Locus I inwards and results in a lower value
of both gA and gw. Given gw, a higher ν speeds up the decline in the individual labor supply
of research workers. This reduces the growth rate of consumption-good varieties that can be
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supported in steady state.

Finally, a stronger taste for variety, σ′ > σ, pivots Locus II upwards since, given gA, gw will be
higher. However, this speeds up the decline in hours worked in research, and, accordingly, gA
falls whereas gw increases.

8.1.2 The Steady-State Allocation of Hours Worked

Consider the equilibrium allocation of hours worked as stated in (7.20). Clearly, in Regime 0

all labor is in the consumption-good sector. In Regime 1, the position of zt relative to zc is a
summary statistic for the profit opportunities in the research sector. It determines how many
new varieties will be invented, i. e., zt/zc = At+1/At.

The steady-state allocation of aggregate hours worked, γA, will depend on the position of z
relative to zc. In light of Proposition 3.10 one readily verifies that

γA =
β

(1 + β)(1− ν)

[
1− 1

1 + gA

]
=

β

(1 + β)(1− ν)

[
1− 1

(1 + gL)
1
η

]
. (8.6)

As expected, faster steady-state growth of consumption-good varieties requires a larger share
of aggregate hours allocated to the research sector. Therefore, all parameters with a positive
effects on gA will have a positive effects on γA, too. The following proposition makes this more
precise.

Proposition 8.3 (Comparative Statics of the Steady-State Allocation of Labor)
It holds that

d γA
d β

> 0,
d γA
d gL

> 0,
d γA
dα

= 0,
d γA
dψ

> 0,
d γA
d σ

< 0,
d γA
d ν
R 0.

Proof of Proposition 8.3

First, dγA/dβ = [1 − (1 + gA)−1][(1 + β)(1 − ν)]−2 > 0. Then observe that dγA/dgA > 0. The
parameters gL, ψ, and σ affect γA indirectly via gA. Hence, according to Proposition 8.2, we
have dγA/dgL > 0, dγA/dψ > 0 and dγA/dσ < 0. Moreover, the parameter α does not appear
in (8.6), so dγA/dα = 0. Finally, the direct effect of ν on γA is positive but the indirect effect via
gA is negative, so the total effect is ambiguous. �

The discount factor β has a positive level effect on individual saving. Therefore, a higher β
“shrinks” Regime 0, i. e., it reduces zc, and, accordingly, leads a higher γA. Furthermore, the
parameters gL, ψ, and σ affect γA only indirectly through gA. The respective signs of the com-
parative statics follow from Proposition 8.2. Finally, the effect of a higher ν on γA are more
intricate, as it has a positive level effect but a negative growth effect on individual saving (see
Proposition 2.1). The former increases γA through a shrinking of Regime 0, the latter decreases
the growth rate of the number of differentiated varieties, hence, γA.
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8.1.3 The Steady-State Functional Income Distribution

To derive the equilibrium factor incomes recall that the economy has two factors of produc-
tion, labor (in two uses), Ht = Hx,t + HA,t, and technological knowledge, At. In equilibrium
the wage rates in the production and the research sector are the same. Therefore, the wage
income of labor is wtHt. The profits earned by the existing consumption-good firms are paid
out as dividends to the current old who own their shares. Hence, the aggregate dividend in-
come is πtAt. The production of the consumption-good varieties gives rise to a value added
equal to the value of total output, i. e., Atptxt. Then, at any t factor incomes have the following
properties.

Proposition 8.4 (Equilibrium Factor Incomes)

Equilibrium factor incomes satisfy

wtHA,t = {0, vt∆At},

and

wtHx,t + πtAt = Atptxt,

where

wtHx,t

Atptxt
= α and

πtAt
Atptxt

= 1− α.

Proof of Proposition 8.4

Using (2.14) and (2.15) giveswtHA,t = {0, vt∆At}. Then, using (2.11) and (2.13) yieldswtHx,t =

αAtptxt. Finally, (2.12) implies πtAt = (1− α)Atptxt. �

Next, we turn to the equilibrium factor shares. Let GDPt denote the economy’s equilibrium
gross domestic product, i. e., its total value added, LSt, its labor share, and CSt its capital share
at t. The total value added is the sum of the added values in the production and the research
sector, i. e., GDPt = Atptxt + vt∆At. The labor share and the capital share relate, respectively,
the economy’s total wage bill and income from share holdings to its GDPt, i. e.,

LSt ≡
wtHt

GDPt
and CSt ≡

πtAt
GDPt

.
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Proposition 8.5 (GDP and Equilibrium Factor Shares)

In equilibrium GDPt satisfies

GDPt = Atptxt + vt∆At =

 1
αwtHt if zt ≤ zc,
1
αwtHx,t + wtHA,t if zt ≥ zc.

Moreover, the equilibrium factor shares satisfy

LSt =

α if zt ≤ zc,
α

1−(1−α)γA,t if zt ≥ zc.

and

CSt =


1− α if zt ≤ zc,
(1−α)(1−γA,t)
1−(1−α)γA,t if zt ≥ zc.

Proof of Proposition 8.5

In Regime 0, ∆At = 0, so with (2.13) we have

GDPt = Atptxt = ptHt = Aσ−1t Ht. (8.7)

In Regime 1, using (2.13), (2.14), (3.4) and (3.9) in GDPt, we have

GDPt = Atptxt + vt∆At = Aσ−1t (Hx,t + αHA,t). (8.8)

Using (3.5) for the total wage bill yields

wtHt = αAσ−1t Ht. (8.9)

Then dividing (8.9) by (8.7) gives the labor share in Regime 0 as LSt = wtHt/GDPt = α.
Moreover, dividing (8.9) by (8.8) gives the labor share in Regime 1, i. e.,

LSt =
α

1− γA,t + αγA,t
=

α

1− (1− α)γA,t
.

�

In Regime 0 there is no production in the research sector, ∆A = 0, therefore GDPt is the value
added in the production sector, Atptxt. Due to monopolistic competition, the workers receive
wtHt which accounts for a fraction α of the value added while the shareholders of the firms
receive the remaining fraction, 1−α. In Regime 1, the research sector also creates value added.
Since the research sector is competitive with free entry, the researchers’ income is equal to the
value of their production, i. e., wtHA,t = vt∆At. Accordingly, the labor share is higher when
the share of aggregate hours worked in the research sector is higher, i. e., when γA is higher.
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Since γA ∈ [0, 1], the labor share in Regime 1 is always greater than the one in Regime 0. The
following proposition states the steady-state factor shares, LS and CS, and its comparative
statics.

Proposition 8.6 (Steady-State Factor Shares and their Determinants)

Consider the steady state of Proposition 4.1. Then, the corresponding factor shares are

LS =
α

1− (1− α)γA
and CS =

(1− α)(1− γA)

1− (1− α)γA
,

where γA is given in (8.6). Moreover, it holds that

dLS

dβ
> 0,

d LS

d gL
> 0,

d LS

dα
> 0,

d LS

dψ
> 0,

d LS

dσ
< 0,

d LS

d ν
R 0.

Proof of Proposition 8.6

Since the steady-state equilibrium exists in Regime 1, we obtain LS and CS by substituting γA
into the Proposition 8.5 for z > zc. Then observe that LS is increasing in γA. Hence, except α,
the effects of all other parameters on γA follow from Proposition 8.3. Finally, one readily finds
that dLS/dα = (1− γA)[1− (1− α)γA]−2 > 0. �

The rationale behind the positive relation between γA and LS is the same as that discussed in
the context of Proposition 8.5. Due to the monopolistic power of the consumption-good firms,
the steady-state labor share is higher if a larger portion of hours worked is allocated to the
research sector.

With the exception of α, the effect of all parameters on LS operates through γA. Since the asso-
ciation between LS and γA is positive, the qualitative results obtained in Proposition 8.3 carry
over. Recall that α is a measure of the substitutability between consumption-good varieties.
Hence, the more substitutable the consumption-good varieties are, the higher is the steady-
state labor share because the consumption-good firms enjoy less monopolistic power.

8.2 Intergeneration Welfare and Fluctuations for the Economy with a Stable
Steady State

In Section 5.1 of main text, we provide a comprehensive analysis of the intergenerational wel-
fare of consecutive cohorts under the assumption that −ν(σ − 1) < −(1 + ψ), i. e., the steady
state is unstable. This section complements the analysis in the main text and studies the in-
tergenerational welfare of consecutive cohorts under the assumption that the steady state is
stable, i. e., 0 > −ν(σ − 1) ≥ −(1 + ψ). To structure the discussion, we first look at the pa-
rameter constellation −ν(σ − 1) ∈ [−ψ, 0) in Section 8.2.1. Section 8.2.2 has the case where
−ν(σ − 1) ∈ [−(1 + ψ),−ψ).
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8.2.1 The Case −ν(σ − 1) ∈ [−ψ, 0)

From Proposition 4.1, the steady state is either globally stable with monotone convergence if
−ν(σ−1) ∈ (−ψ, 0), or there is a finite τ such that zτ = z for all t > τ . The following proposition
states and proves the implications for the welfare of two consecutive cohorts.

Proposition 8.7 (Intergenerational Welfare II)

Suppose −ν(σ − 1) ∈ [−ψ, 0). Then the following holds:

1. If zt−1 ≤ zc(1 + gL)−2 then ∆Vt = 0.

2. If zc(1 + gL)−2 < zt−1 ≤ zc(1 + gL)−1 then ∆Vt < 0.

3. If zc(1 + gL)−1 < zt−1 < zc then ∆Vt R 0.

4. If zc ≤ zt−1 then ∆Vt > 0.

Proof of Proposition 8.7

1. If zt−1 ≤ zc(1+gL)−2, then zt−1 < zt < zt+1 ≤ zc. Then,At−1 = At, wt−1 = wt, ht−1 = ht,
and cyt−1 = cyt . Moreover, Lemma 7.1 implies Rt = Rt+1, hence, cot = cot+1 and ∆Vt = 0.

2. If zc(1 + gL)−2 < zt−1 ≤ zc(1 + gL)−1, then zt−1 < zt ≤ zc < zt+1. Then, At−1 = At,
wt−1 = wt, ht−1 = ht, and cyt−1 = cyt . Moreover, Lemma 7.1 implies Rt > Rt+1, hence,
cot > cot+1 and ∆Vt < 0.

3. If zc(1 + gL)−1 < zt−1 ≤ zc, then zt−1 ≤ zc < zt ≤ zt+1. Then, At−1 = At, wt−1 = wt,
ht−1 = ht, and cyt−1 = cyt . Moreover, since σ−1−ψ R 0, Lemma 7.1 implies Rt Q Rt+1 ⇔
cot Q c

o
t+1 ⇔ ∆Vt R 0.

4. The following subcases arise:

4.1 If zt−1 = zc, then zc = zt−1 < zt ≤ zt+1. Then, At−1 = At, wt−1 = wt, ht−1 = ht,
and cyt−1 = cyt . Moreover, Case 2 and Case 3 of Lemma 7.1 imply Rt < Rt+1, hence,
cot < cot+1 and ∆Vt > 0.

4.2 If zc < zt−1 < z, then zc < zt−1 < zt ≤ zt+1. Then, At−1 < At, wt−1 < wt, ht−1 > ht,
and cyt−1 < cyt . Moreover, Case 3 of Lemma 7.1 with zt−1 < zt implies thatRt < Rt+1,
hence, cot < cot+1 and ∆Vt > 0.

4.3 If zt−1 = z, then zt−1 = zt = zt+1 = z. Then, At−1 < At, wt−1 < wt, ht−1 > ht, and
cyt−1 < cyt . Moreover, Case 3 of Lemma 7.1 with zt−1 = zt implies that Rt = Rt+1,
hence, cot < cot+1 and ∆Vt > 0.

4.4 If z < zt−1, then zc < zt+1 ≤ zt < zt−1. Then, At−1 < At, wt−1 < wt, ht−1 > ht,
and cyt−1 < cyt . Moreover, for zt−1 > zt Case 3 of Lemma 7.1 implies that Rt > Rt+1,
hence, cot Q cot+1. Nevertheless, ∆Vt > 0. To see this, observe that ∆Vt is given by
(7.20). Since ψ − ν(σ − 1) ≥ 0, we have ∆Vt > 0. �

8.2.2 The Case −ν(σ − 1) ∈ [−(1 + ψ),−ψ)

From Proposition 4.1, the steady state is either globally stable with oscillating convergence if
−ν(σ − 1) ∈ (−(1 + ψ),−ψ), or embarks on a period-2 cycle if −ν(σ − 1) = −(1 + ψ). The
following proposition states and proves the implications for the welfare of two consecutive
cohorts.
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Proposition 8.8 Suppose −ν(σ − 1) ∈ [−(1 + ψ),−ψ). Then the following holds:

1. If zt−1 ≤ zc(1 + gL)−2 then ∆Vt = 0.

2. If zc(1 + gL)−2 < zt−1 ≤ zc(1 + gL)−1 then ∆Vt < 0.

3. If zc(1 + gL)−1 < zt−1 < zc(1 + gL)
ψ−ν(σ−1)

1−ψ+ν(σ−1) then ∆Vt R 0.

4. If zc(1 + gL)
ψ−ν(σ−1)

1−ψ+ν(σ−1) ≤ zt−1 then ∆Vt > 0.

Proof of Proposition 8.8

1. If zt−1 ≤ zc(1+gL)−2, then zt−1 < zt < zt+1 ≤ zc. Then,At−1 = At, wt−1 = wt, ht−1 = ht,
and cyt−1 = cyt . Moreover, Lemma 7.1 implies Rt = Rt+1, hence, cot = cot+1 and ∆Vt = 0.

2. If zc(1 + gL)−2 < zt−1 ≤ zc(1 + gL)−1, then zt−1 < zt ≤ zc < zt+1. Then, At−1 = At,
wt−1 = wt, ht−1 = ht, and cyt−1 = cyt . Moreover, Lemma 7.1 implies Rt > Rt+1, hence,
cot > cot+1 and ∆Vt < 0.

3. If zc(1+gL)−1 < zt−1 < zc(1+gL)
ψ−ν(σ−1)

1−ψ+ν(σ−1) , then zt−1 ≤ zc < zt < zt+1. Then,At−1 = At,
wt−1 = wt, ht−1 = ht, and cyt−1 = cyt . Moreover, since σ − 1 − ψ R 0 Lemma 7.1 implies
Rt Q Rt+1 ⇔ cot Q c

o
t+1 ⇔ ∆Vt R 0.

4. The following subcases arise:

4.1 If zc(1 + gL)
ψ−ν(σ−1)

1−ψ+ν(σ−1) ≤ zt−1 ≤ zc, then zt−1 < zc ≤ zt+1 ≤ zt. Then, At−1 = At,
wt−1 = wt, ht−1 = ht, and cyt−1 = cyt . Using Case 2 and Case 3 of Lemma 7.1, we
have

β ln

(
Rt+1

Rt

)
= β ln

γ1
(

(1+gL)zt−1

zc

)(1−ν)(σ−1)
+ 1

α

(
(1+gL)zt−1

zc

)σ−1−ψ
γ1 + 1

α
zc
zt−1

 .
Since zc(1 + gL)

ψ−ν(σ−1)
1−ψ+ν(σ−1) ≤ zt−1, the second term in the numerator is greater than

that in the denominator. Hence, β ln(Rt+1/Rt) > 0 and ∆Vt > 0.

4.2 If zc < zt−1 < z, then zc < zt−1 ≤ zt+1 < zt. Then, At−1 < At, wt−1 < wt, ht−1 > ht,
and cyt−1 < cyt . Moreover, Case 3 of Lemma 7.1 with zt−1 < zt implies Rt < Rt+1,
hence, cot < cot+1 and ∆Vt > 0.

4.3 If zt−1 = z, then zt−1 = zt = zt+1 = z. Then, At−1 < At, wt−1 < wt, ht−1 > ht, and
cyt−1 < cyt . Moreover, Case 3 of Lemma 7.1 with zt−1 = zt implies Rt = Rt+1, hence,
cot < cot+1 and ∆Vt > 0.

4.4 If z < zt−1 < zc(1 + gL)
1

ν(σ−1)−ψ , then zc < zt < zt+1 ≤ zt−1. Then, At−1 < At,
wt−1 < wt, ht−1 > ht, and cyt−1 < cyt . Moreover, Case 3 of Lemma 7.1 with zt−1 > zt

implies Rt > Rt+1, hence, cot R cot+1. Nevertheless, ∆Vt > 0. To see this, observe that
∆Vt is given by (7.20). Since zc < zt it follows with (3.8) that

(1 + gL)σ−1−ψ >

(
zt−1
zc

)−γ2(σ−1−ψ)
.
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Using the latter in (7.20), one finds that

∆Vt > β ln

γ1
(
zt−1

zc

) (σ−1)(1+β)(1−ν)
β

+ 1
α

(
zt−1

zc

) (σ−1)(1+β)(1−ν)
β

γ1

(
zt−1

zc

)(1−ν)(σ−1)
+ 1

α

(
zt−1

zc

)σ−1−ψ
 > 0,

where the last inequality follows since 1 > ν(1 + β) is implied by (2.5) (see Irmen
(2018)).

4.5 If zc(1 + gL)
1

ν(σ−1)−ψ < zt−1 < zc(1 + gL)
2

ν(σ−1)−ψ then zt−1 > zc > zt and zt+1 > zc.
Then, since At−1 < At, we have wt−1 < wt, ht−1 > ht, and cyt−1 < cyt . Moreover,
Lemma 7.1 delivers Rt > Rt+1. Hence, cot R cot+1. Nevertheless, ∆Vt > 0. To see this,
observe that (1 − β)(1 − ν) ln (wt/wt−1) is the same as in (7.19). Using (3.8), Case 2
and Case 4 of Lemma 7.1 we write

β ln

(
Rt+1

Rt

)
= β ln

 γ1 + 1
α (1 + gL)−1

(
zt−1

zc

)ν(σ−1)−ψ
γ1

(
zt−1

zt

)(1−ν)(σ−1)
+ 1

α (1 + gL)
(
zt−1

zt

)(1−ν)(σ−1)
. (8.10)

The substitution of (7.19) and (8.10) into (5.2) delivers

∆Vt = β ln

γ1
(
zt−1

zc

) (1+β)(1−ν)(σ−1)
β

+ 1
α (1 + gL)−1

(
zt−1

zc

)ν(σ−1)−ψ+ (1+β)(1−ν)(σ−1)
β

γ1

(
zt−1

zt

)(1−ν)(σ−1)
+ 1

α (1 + gL)
(
zt−1

zt

)(1−ν)(σ−1)
.

Again, since 1 > ν(1 + β), we have ∆Vt > 0.

4.6 If zc(1 + gL)
2

ν(σ−1)−ψ ≤ zt−1, then zt−1 > zc > zt+1 > zt. Then, we have At−1 < At,
wt−1 < wt, ht−1 > ht, and cyt−1 < cyt . Again, Lemma 7.1 delivers Rt > Rt+1. Hence,
cot R c

o
t+1. Nevertheless, ∆Vt > 0. To see this, observe that (1−β)(1−ν) ln (wt/wt−1)

is the same as in (7.19). Using (3.8), Case 1 and Case 4 of Lemma 7.1 we write

β ln

(
Rt+1

Rt

)
= β ln

 γ1 + 1
α (1 + gL)

γ1

(
zt−1

zt

)(1−ν)(σ−1)
+ 1

α (1 + gL)
(
zt−1

zt

)(1−ν)(σ−1)
. (8.11)

The substitution of (7.19) and (8.11) into (5.2) delivers

∆Vt = β ln

γ1
(
zt−1

zc

) (1+β)(1−ν)(σ−1)
β

+ 1
α (1 + gL)

(
zt−1

zc

) (1+β)(1−ν)(σ−1)
β

γ1

(
zt−1

zt

)(1−ν)(σ−1)
+ 1

α (1 + gL)
(
zt−1

zt

)(1−ν)(σ−1)
.

Since β ∈ (0, 1), we have ∆Vt > 0. �

8.3 Period-n Cycles

This section shows that equilibrium paths may take the form of (unstable) period-n cycles. We
first establish this possibility. Then, we discuss the economic implication of such cycles for the
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evolution of the number of available consumption good varieties, At, intergenerational wel-
fare, ∆Vt, GDPt, gdpt, the functional income distribution, and for the stability policy devised
above.

Proposition 8.9 (Existence of Unstable Period-n Cycles)

Let n ∈ {2, 3, . . . } and suppose −ν(σ − 1) < −(n − 1 + ψ). Then, there exists an unstable period-n
cycle with n− 1 consecutive points in Regime 0 followed by one period in Regime 1.

Moreover, suppose z1 < z2 < · · · < zn−1 < zc < zn. Then for t = 1, 2, . . . , n,

zt = zc(1 + gL)
t+(n−t)[ψ−ν(σ−1)]

η . (8.12)

Proof of Proposition 8.9

To establish the existence of a period-n cycle, we need to show that Φn(z1)− z1 = 0 has a solu-
tion. Suppose z1 < z2 < · · · < zn−1 < zc < zn. Then, the dynamical system in Proposition 3.1
gives, for all t = 2, 3, . . . , n,

Φt−1(z1) = (1 + gL)t−1z1 and Φn(z1) = (1 + gL)zc

[
(1 + gL)n−1z1

zc

]ψ−ν(σ−1)
.

Then, solving Φn(z1)− z1 = 0 for z1 gives

z1 = zc(1 + gL)
1+(n−1)[ψ−ν(σ−1)]

η .

Moreover, n − 1 iterative substitutions of the latter equation into the equilibrium difference
equation for Regime 0 gives for t = 1, 2, . . . , n, the expression for zt of (8.12). To ensure that
z1 < z2 < · · · < zn−1 < zc, it is sufficient to show zn−1 < zc. Equation (8.12) implies that

zn−1 = zc(1 + gL)
n−1+ψ−ν(σ−1)

η .

Simple manipulations show that the condition −ν(σ − 1) < −(n− 1 + ψ) ensures zn−1 < zc.

To see that the period-n cycles are unstable observe that such cycles are asymptotically stable
if |Φ′(z1)Φ′(z2), . . . ,Φ′(zn)| < 1, and unstable if |Φ′(z1)Φ′(z2), . . . ,Φ′(zn)| > 1 (see, e. g., Elaydi
(2005), p. 39). Here, for all t = 1, 2, . . . , n− 1, Φ′(zt) = (1 + gL) and Φ′(zn) = [ψ − ν(σ − 1)](1 +

gL)−(n−1). Therefore, |Φ′(z1)Φ′(z2), . . . ,Φ′(zn)| = |ψ−ν(σ−1)|. Since−ν(σ−1) < −(n−1+ψ)

and n ≥ 2, |ψ − ν(σ − 1)| > 1. �

Hence, if the equilibrium elasticity of the individual supply of hours worked to changes in At
is sufficiently small, then period-n cycles with n − 1 consecutive points in Regime 0 followed
by one point in Regime 1 can be pinned down.

The following heuristic may be helpful to develop an intuition for this finding. Suppose all
parameters except σ are fixed. Then, condition −ν(σ − 1) < −(n − 1 + ψ) can be satisfied for
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a larger n if σ is larger. What is the effect of increasing σ on the qualitative properties of the
dynamical system of Proposition 3.1? First, observe that changing σ does not affect zc. Hence,
the rightward boundary of the absorbing interval does not change either as Φ(zc) = (1 + gL)zc.
However, the leftward boundary declines as Φ2(zc) = (1 + gL)1+ψ−ν(σ−1)zc. Hence, a higher σ
allows for a smaller initial value, z1, and, therefore, for more periods in Regime 0.

Economically, this means for a given value of A1 that L1 can be smaller for a higher σ. Then,
through population growth it takes more periods before a sufficiently large cohort is alive will-
ing to purchase A1 + ∆An shares at a price vn = aαAσ−1−ψ1 .

To elicit some further economic implications of these cycles denote by gA,n ≡ [Πn
t=1(1 + gA,t)]

1
n−

1 the average growth rate of At over a period-n cycle. Then, the evolution along a period-n cy-
cles satisfies the following.

Corollary 8.1 (Economic Properties of Period-n Cycles)

Consider some period-n cycle of Proposition 8.9. Then, the following holds:

1. The average growth rates of At over the period-n cycle coincide with the steady-state growth rate,
i. e., gA,n = gA;

2. ∆V2 = · · · = ∆Vn−2 = 0, ∆Vn−1 < 0, ∆Vn > 0, and ∆Vn+1 > 0;

3. GDP1 < · · · < GDPn−2 < GDPn−1 < GDPn < GDPn+1;

4. gdp1 = · · · = gdpn−2 = gdpn−1, gdpn−1 > gdpn, and gdpn < gdpn+1;

5. LS1 = · · · = LSn−1 = α < LSn;

6. z̄ < z1 < · · · < zn and τPw,1 < · · · < τPw,n−1 < 0 < τPw,n.

Proof of Corollary 8.1

Let z1 < · · · < zn−1 < zc < zn and zn+1 = z1. We prove each claim in turn:

1. The period-n cycle begins without an active research sector for n−1 periods, i. e., gA,t = 0

for all t = 1, 2, . . . , n−1. Then, in period n, the growth rate satisfies 1+gA,n = zn/zc. With
Proposition 8.9, we obtain 1 + gA,n = (1 + gL)

n
η . Therefore, the average growth factor of

At over a period-n cycle satisfies (1 + gA,n) = (1 + gL)
1
η . Accordingly, gA,n is equal to the

steady-state growth rate, gA, given in Proposition 8.1.
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On readily verifies that

1 + gv,n =

[(
v2
v1

)
·
(
v3
v2

)
· . . . ·

(
vn−1
vn−2

)
·
(

vn
vn−1

)
·
(

vn
vn−1

)] 1
n

,

where the first n−2 factors are equal to (1+gL), vn/vn−1 = (1+gL)1−n/η , and vn+1/vn =

(1 + gL)1+n(1−ν)(σ−1)/η . Then, the result is immediate.

2. Case 1, Case 2, Case 4.2, and Case 4.6 of Proposition 5.1 imply, respectively, that ∆V2 =

· · · = ∆Vn−2, ∆Vn−1 < 0, ∆Vn > 0, ∆Vn+1 > 0.

3. Proposition 5.2 implies GDP1 < · · · < GDPn < GDPn+1.

4. Case 1 of Proposition 5.2 implies gdp1 = · · · = gdpn−1 and gdpn−1 > gdpn, Case 2 implies
gdpn < gdpn+1.

5. Using γA,1 = · · · = γA,n−1 = 0 < γA,n in (5.6), we have LS1 = · · · = LSn−1 = α < LSn.

6. Condition −ν(σ − 1) < −(n − 1 + ψ) implies z̄ < z1. Hence, we have z̄ < z1 < · · · < zn.
Then, since z1 < · · · < zn−1 < z < zn, Proposition (5.3) implies τPw,1 < · · · < τPw,n−1 < 0 <

τPw,n.

�

According to Claim 1 of Corollary 8.1, the average growth rate over the entire period-n cycle,
gA,n, with no growth of At for n − 1 points, is equal to the steady-state growth rate, gA, of
equation (3.11). Intuitively, the mechanism behind this finding is the following. On a period-n
cycle the only positive growth rate is gA,n which is given by gA,n = zn/zc − 1. Hence, it is
greater the greater is zn. From Proposition 8.9 we have zn = zc(1 + gL)n/η with dzn/dn > 0.
Hence, gA,n increases in n. More precisely, combining the expressions for gA,n and zn gives

gA,n =
zc(1 + gL)

n
η

zc
− 1 = (1 + gL)

n
η − 1.

Since gA,t = 0 for t < n the average growth rate of At along a period-n cycle is indeed equal to
the steady-state growth rate as gA,n = (1 + gL)1/η − 1 = gA.

Second, the evolution of intergenerational welfare reflects the pattern identified in Proposi-
tion 5.1. Cohorts t = 1, ..., n− 2 live their life in Regime 0 so that the intergenerational welfare
remains constant. As the economy switches into Regime 1 at t = n, it is cohort t = n − 1 that
lives its youth in Regime 0 and its old age in Regime 1. This cohort has a lower lifetime utility
compared to its predecessor. The following two cohorts live at least one period of their lives in
Regime 1. Hence, ∆Vn > 0, and ∆Vn+1 > 0.

Claim 3 and 4 reflect the results of Proposition 5.2. Due to population growth GDPt increases
over time. However, gdpt declines when the economy switches from Regime 0 into Regime 1

and increases when the economy switches back from Regime 1 into Regime 0. Claim 4 recalls
that the labor share increases when the economy opens a research sector.

Finally, Claim 5 states that a period-n cycles is such that all points are to the right of the critical
value z̄. Therefore, at any point the stabilization policy

(
τP , w, t, τP , R, t

)
of Proposition 5.3
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can be implemented. Such a policy will involve a subsidy to wages (and a tax on asset income)
when implemented at t = 1, ..., t = n − 1 and a tax on wage (and a subsidy to asset income)
income when implemented at t = n.
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