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Abstract 

We study the small sample properties of conditional quantile estimators such as classical and IV 
quantile regression. First, we propose a higher-order analytical framework for comparing 
competing estimators in small samples and assessing the accuracy of common inference 
procedures. Our framework is based on a novel approximation of the discontinuous sample 
moments by a Hölder-continuous process with a negligible error. For any consistent estimator, 
this approximation leads to asymptotic linear expansions with nearly optimal rates. Second, we 
study the higher-order bias of exact quantile estimators up to O (1/n). 
Using a novel non-smooth calculus technique, we uncover previously unknown non-negligible 
bias components that cannot be consistently estimated and depend on the employed estimation 
algorithm. To circumvent this problem, we propose a “symmetric” bias correction, which admits 
a feasible implementation. Our simulations confirm the empirical importance of bias correction. 
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1 Introduction

Many interesting empirical applications of classical quantile regression (QR) (Koenker and
Bassett, 1978) and instrumental variable quantile regression (IVQR) (Chernozhukov and
Hansen, 2005) feature small samples sizes, which can arise either as a result of a limited num-
ber of observations or when estimating tail quantiles, or both (e.g., Elsner et al., 2008; Cher-
nozhukov and Fernández-Val, 2011; Adrian and Brunnermeier, 2016; Adrian et al., 2019).
While many existing QR and IVQR estimators exhibit comparable statistical properties in
sufficiently large samples, they differ dramatically with respect to their computational per-
formance. As with other nonlinear estimators, they also differ with respect to their small
sample bias and mean squared error (MSE) and the size accuracy of the corresponding infer-
ence procedures. However, there is no small sample theory providing guidance for choosing
between the many available estimators in applications. In this paper, we develop a higher-
order analytical framework allowing us to compare the competing estimators in small samples
and provide new methods for improving efficiency and reducing their bias.

The main challenge when analyzing the most popular QR and IVQR estimators is that
they solve optimization problems with non-smooth objective functions and discontinuous
sample moments.1 To formally study the properties of these estimators, we develop a novel
approximation of their sample moments by a Hölder-continuous process with an explicit
modulus of continuity and a negligible approximation error. This approximation allows us
to characterize the key factors that determine the performance of these estimators: (i) the
modulus of asymptotic stochastic continuity of the sample moments and (ii) the magnitude
of the sample moment error evaluated at the estimators.

An important practical implication is that exact estimators such as linear programming
(LP) estimators of QR and mixed integer programming (MIP) estimators of IVQR models
(Chen and Lee, 2018; Zhu, 2019) are more efficient than estimators that do not exactly min-
imize the sample moment error. However, computing exact minima of non-smooth functions
may be computationally prohibitive, and hence approximate but tractable estimators are
often unavoidable.

Our higher-order analytical framework directly suggests an approach for alleviating the
trade-off between computational feasibility and small-sample performance. We show that
applying a 1-step Newton correction to any approximate solution reduces the bias and MSE
to nearly O

(
1

n3/4

)
. This analysis further allows us to explicitly establish the precision, also

nearly Op

(
1

n3/4

)
, of asymptotic normal and bootstrap approximations of general QR and

IVQR estimators.
1We discuss approaches based on smoothed objective functions and estimation equations in Section 2.3.
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We also characterize the higher-order bias of exact QR and IVQR estimators, which is a
key aspect of their small-sample performance. Our simulations show that quantile estimators
can exhibit substantial biases even in simple location models (see the blue dots in Figure 1).
The bias is non-negligible even at the median and can be arbitrarily large in the tails (see the
results for DGP3 in Section 5.3). To study the bias, we develop a novel non-smooth calculus
technique, which allows us to compute the asymptotic bias of exact QR and IVQR estimators
up to even higher order than that of the MSE — namely O

(
1
n

)
. An important implication of

our results is that the bias contains previously unknown and non-negligible components that
cannot be consistently estimated and depend on the specifics of the employed numerical
estimation algorithm.2 To overcome this challenge, we propose a feasible bias correction
procedure based on a novel symmetric correction, which eliminates the components that
cannot be consistently estimated.

The trade-off between the computational cost of QR and IVQR estimators and their
higher-order bias and MSE, which we document, has important implications for empirical
practice. For small samples, we recommend the exact moment estimators: they achieve
the smallest bias, which can be further reduced using our bias correction approach. Bias
reduction is particularly important for valid inference and enables applying QR and IVQR
estimators in small samples. In larger samples, where exact estimators may be computation-
ally prohibitive, estimators can be chosen based on their computational performance. We
show that a 1-step Newton correction can reduce both bias and MSE of any

√
n-consistent

approximate estimator (e.g., inverse quantile regression (Chernozhukov and Hansen, 2006),
Quasi-Bayesian MCMC (Chernozhukov and Hong, 2003), or fixed-point estimators (Kaido
and Wüthrich, 2019)).

Higher-order analysis has been successfully applied to compare the small sample per-
formance of alternative estimators and inference procedures in a wide range of statistical
problems, including linear IV (e.g., Nagar, 1959; Rothenberg, 1984), smooth moment esti-
mators (e.g., Rilstone et al., 1996; Newey and Smith, 2004; Anatolyev, 2005), HAR inference
in time series (e.g., Andrews, 1991; Sun et al., 2008; Lazarus et al., 2021), incidental parame-
ters in panel data (e.g., Hahn and Newey, 2004; Dhaene and Jochmans, 2015), among others.
By its very nature, this approach relies on differentiability of the corresponding empirical
processes. Extending this approach to the case of non-smooth quantile estimators has proven
to be particularly challenging (e.g., Kiefer, 1967; Jurečková and Sen, 1987).

The existing literature on the higher-order properties of conditional quantile models with
2We emphasize that our approach is different from the generalized function heuristic or “shortcut” used in

the existing literature (Phillips, 1991; Lee et al., 2017, 2018). It is rigorous and captures previously unknown
non-negligible bias components.
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non-smooth objective functions has only considered specific convex M-estimators that satisfy
subgradient optimality conditions, which coincide with the sample moment equations up to a
negligible error (e.g., Zhou and Portnoy, 1996; Knight, 2002; Portnoy, 2012). Here our goal is
to study and compare general quantile estimators based on non-smooth moment conditions,
including IVQR estimators with endogenous covariates. Such general estimators solve non-
convex (often discrete) optimization problems that do not admit optimality conditions in
finite samples. To overcome this obstacle, we developed novel proof techniques for bounding
the asymptotic error of the sample moment conditions.

Moreover, the existing literature provides no complete characterization of the asymptotic
bias of QR and IVQR estimators.3 In fact, such a result is not even available for uncondi-
tional quantiles. An analytical characterization of the bias is particularly important in our
context because alternative bootstrap-based methods for higher-order bias correction are
not applicable (Knight, 2003). We believe that our higher-order methods can be useful for
studying other estimators that have a linear index structure and are based on discontinuous
sample moments or loss functions (e.g., censored QR and maximum score). Other directions
for future research are outlined in Section 6.

2 Detailed discussion of the theoretical results

Here we provide a detailed discussion of the theoretical results of the paper and relate them
to the existing literature. We make four main theoretical contributions, each described in
more detail in the subsections below. First, we establish a novel coupling of the weighted
empirical cumulative distribution function (CDF) with a tight Hölder continuous process
with a uniform remainder bound. Second, based on this coupling result, we derive remainder
rates for asymptotic linear expansions and MSE of exact (moment) estimators and k-step
estimators. Third, we derive an asymptotic bias formula for exact estimators up to order
O
(

1
n

)
. Fourth, we propose a feasible bias correction procedure that eliminates the bias

components that cannot be consistently estimated.
Throughout the paper, we will often refer to QR and IVQR estimators collectively as

conditional quantile estimators.
3Lee et al. (2017, 2018) provided a partial characterization of the bias based on the generalized functions

heuristic of Phillips (1991). As we discuss below, this approach does not capture all terms of the bias.
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2.1 Coupling of sample moments

In Theorem 1, we develop a novel coupling of the stochastically weighted empirical CDF
process with a tight Hölder continuous process with exponent 1

2
− γ for any small γ > 0

and a uniformly bounded Op

(
logn
n

)
error. The expectation of the absolute approximation

error depends only on the support of the random weights and the sample size; the expected
Hölder constant depends both on the bound on the conditional probability density function
(PDF) of the outcome and the support of the weights. Our result is a generalization of
the celebrated KMT coupling of the uniform empirical process (Komlós et al., 1975, 1976),
which additionally exploits the smoothness of the conditional CDF. Hölder continuity of the
approximating process follows from the Kolmogorov-Chentsov theorem (e.g., Schilling and
Partzsch, 2014, Theorem 10.6). Under some conditions on the regressors and the instruments,
this result translates into a coupling of the sample moments with a Hölder continuous process
with optimal remainder rates.4

Both properties of the approximation we derive, Hölder continuity and rate optimality,
are essential for bounding the error of the sample moment conditions in the higher-order
representations and equivalence results. By contrast, the existing generic strong approxi-
mations have suboptimal remainder rates that only imply very crude bounds on the sample
moments. These generic bounds dominate all other higher-order terms in the expansion of
conditional quantile estimators and, thus, are not useful for our purposes.5

2.2 Bahadur-Kiefer representations

Conditional quantile estimators are non-linear. Nevertheless, it is well-known that such es-
timators can be approximately represented as sample averages of score functions. Such
asymptotic linear expansions are called Bahadur-Kiefer representations (Bahadur, 1966;
Kiefer, 1967). To make statements about the precision of normal and bootstrap approx-
imations of different estimators, it is important to derive explicit bounds on the non-linear
remainder terms.

Using our coupling result, we derive Bahadur-Kiefer expansions for
√
n-consistent condi-

tional quantile estimators under some support restrictions on the regressors (see Theorem 2).
After a 1-step Newton correction, any

√
n-consistent estimator has an asymptotic linear rep-

resentation with nearly Op

(
1

n3/4

)
remainder rate.6 This rate is nearly-optimal in the sense

4See Rio (1994) for a discussion of the optimality of remainder rates.
5Examples include: Massart (1989), Koltchinskii (1994), and Berthet et al. (2006). Chernozhukov et al.

(2020) apply these results to study nonparametric IVQR models.
61-step estimators have a long tradition in statistics and econometrics, starting with Fisher, Neyman, and

others; see, for example, Bickel (1975), which was one of the first papers to study non-smooth M-estimators,
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that it matches (up to a logarithmic factor) the classical Bahadur-Kiefer remainder rate in
the univariate order statistics case.

To our knowledge, this paper is the first to provide an explicit, nearly-optimal rate of the
remainder in the Bahadur-Kiefer representation for general IVQR estimators with possibly
endogenous regressors.7 The available explicit results are limited to order statistics (Bahadur,
1966; Kiefer, 1967), classical QR with exogenous regressors (e.g., Zhou and Portnoy, 1996;
Knight, 2002), and nonparametric series QR with exogenous regressors (e.g., Belloni et al.,
2019). We show that the availability of a Bahadur-Kiefer expansion with nearly Op

(
1

n3/4

)
rate does not depend on the specific structure of the estimator, but rather on the (asymptotic
stochastic) Hölder continuity of the sample moments.

Our results have important implications for the higher-order properties of k-step estima-
tors (e.g., Zhu, 2019) and complement the findings in Robinson (1988) for estimators based
on smooth sample moment conditions. Unlike with smooth extremum estimators, additional
Newton steps may not result in convergence of k-step estimators to the exact minimizer
of the GMM objective function. However, we show that

√
n-consistent estimators become

equivalent up to nearly Op

(
1

n3/4

)
after a single Newton correction (see Theorems 3 and 4).

This is in contrast to Andrews (2002a,b) who shows that 1-step corrected smooth estimators
are equivalent with higher precision, Op

(
1

n3/2

)
.

Our results also have important implications for exact estimators, which exactly mini-
mize an `p norm of the sample moments. Such estimators can be implemented using MIP
techniques (Chen and Lee, 2018; Zhu, 2019), or, in the case of classical QR, exact LP algo-
rithms. We use the coupling result to prove that the norm of the sample moments computed
at the exact estimators attains a nearly Op

(
1
n

)
asymptotic rate and establish a higher-order

expansion of exact estimators of just-identified models up to the nearly Op

(
1

n5/4

)
order (see

Theorem 5). It implies, in particular, that any two exact minimizers (possibly corresponding
to different norms) are equivalent up to nearly Op

(
1
n

)
. This equivalence applies to the exact

estimators proposed by Chen and Lee (2018) and Zhu (2019), which minimize the `2 and `∞
norm, respectively.8

In related work, Portnoy (2012) developed a nearly
√
n-Gaussian approximation for clas-

sical QR estimators based on exact LP formulations using a saddlepoint approximation.9

and the references therein.
7Bahadur-Kiefer expansions with suboptimal (non-explicit) op

(
1√
n

)
remainder rates can be obtained

using standard VC class arguments (e.g., Chernozhukov and Hansen, 2006, Theorem 3).
8Pouliot (2019) proposed an alternative MIP approach based on the inverse quantile regression estimator

of Chernozhukov and Hansen (2006). We further discuss this approach in Section 4.4.
9Ronchetti and Sabolová (2016) developed a saddlepoint inference procedures for classical QR, which are

shown to be more accurate than existing methods in simulations.
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His results imply the presence of a nearly O
(

1
n

)
bias of the classical QR estimator. Un-

fortunately, the saddlepoint approach is difficult to extend to general conditional quantile
estimators such as IVQR, which do not admit convex programming formulations. The main
technical challenge is that the sample moment error and the resulting bias of general esti-
mators can be nearly as large as Op

(
1√
n

)
as opposed to Op

(
1
n

)
for classical QR estimators

based on exact LP algorithms. Therefore, this approach cannot be used to compare different
estimators and obtain higher-order equivalence results in our setup. Moreover, while the sad-
dlepoint approximation is convenient for analyzing the approximate density of the estimator
and the order of the bias, it is less suitable for deriving a feasible bias correction procedure
(cf. Section 2.3–2.4). We take a different approach based on our coupling of the sample
moments with a continuous process admitting the nearly optimal remainder rate. This ap-
proach allows us to show higher-order improvements of k-step estimators and provides an
improved bound on the sample moments evaluated at the exact IVQR estimator.

2.3 Higher-order bias formula

We provide a formula for the bias of the exact QR and IVQR estimators in just-identified
conditional quantile models up to an error of O

(
1
n

)
. The bias has four components: (1)

the bias from non-zero sample moments at the optimum; (2) the bias from the covariance
of the linear influence of a single observation and the sample moments; (3) the bias from
the residuals having point mass at 0; (4) the bias from the typical higher-order quadratic
component of the population moment conditions (e.g., Rilstone et al., 1996).

To obtain the formula, we develop a novel non-smooth calculus argument to compute
the expectation of the discontinuous sample moments evaluated at the estimated parameter
value. In particular, we exploit the fact that the sample moments admit a directional Taylor
expansion after conditioning on the estimator. This novel approach could be used to study
the bias of other estimators based on discontinuous sample moments and loss functions (e.g.
censored QR and the maximum score estimator).

To our knowledge, there is no complete characterization of the higher-order bias of con-
ditional quantile estimators up to O

(
1
n

)
, not even in the sample quantile case. Unlike the

approach taken in the existing literature (Lee et al., 2017, 2018), which is based on the
generalized functions heuristic or “shortcut” of Phillips (1991), our argument is rigorous and
leads to the discovery of additional non-negligible bias terms. We discuss their work in more
detail in Section 5.

A popular approach for studying the higher-order properties of QR and IVQRmodels is to
consider smoothed estimating equations or objective functions (e.g., Horowitz, 1998; Kaplan
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and Sun, 2017; Fernandes et al., 2021). This approach has several important limitations.
First, as we show in this paper, optimal smoothing introduces a bias that is larger than that
of exact estimators with 1-step correction (see Section 5). Second, this approach requires
choosing a smoothing bandwidth, which is often difficult in small samples. This appears
to be one major reason why smoothed estimators have not been more popular in practice.
Finally, smoothing may also unintentionally create multiple local optima, which complicates
the search for the actual global optimum. For these reasons, we prefer to work directly with
the original sample moment conditions.

2.4 Feasible bias correction

Bias component (1), the bias from non-zero sample moments at the optimum, and bias
component (3), the bias from residuals having point mass at 0, appear because of the dis-
continuity of the sample moments. These two components depend on the realization of the
estimator and, to our knowledge, there exists no approach to consistently estimate them.
To overcome this issue, we suggest a symmetric 1-step correction of exact estimators, which
is the average of two Newton corrections based on the sample moments corresponding to
(τ, Yi) and (1 − τ,−Yi), where τ is the quantile level and Yi is the outcome variable. This
correction eliminates bias components (1) and (3). The remaining components involve the
Jacobian of the moment functions and weighted average derivatives, which can estimated
using standard plug-in methods (e.g., Powell, 1986; Powell et al., 1989; Angrist et al., 2006;
Kato, 2012; Hong et al., 2015).

Figure 1: Bias of slope coefficient before (blue circle) and after correction (gold squares),
both scaled by n with n = 50. The true model is a bivariate location model with uniform
errors (DGP1 in Section 5.3). Based on Monte Carlo simulations with 20,000 repetitions.
The error bands correspond to 3 × Monte Carlo error. Note that the scale of the y-axis for
DGP3 is different.
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We validate our bias correction procedure in a Monte Carlo study. The simulations show
that the asymptotic bias correction removes a substantial portion of the finite sample bias
for sample sizes as small as n = 50. Figure 1 shows the actual bias and the impact of bias
correction in a simple bivariate location model with uniform errors. Before bias correction,
the bias can be substantial and varies considerably across quantiles. Unaccounted for, this
bias will lead to size distortions of standard analytical inference methods. After the bias
correction, the Monte Carlo error bands for the remaining bias contain zero for all quantile
levels.

Our general bias formula has implications for order statistics. Specifically, since order
statistics can be represented as exact moment estimators, our results also apply in that case.
We show that our asymptotic bias formula matches the well-known exact bias formula for
the case of uniformly distributed data up to O

(
1
n2

)
.

3 Setup and background

In this section, we introduce the model, review existing approaches for deriving stochastic
expansions of estimating equations estimators, and discuss the complications in deriving
higher-order results arising from discontinuous sample moments.

3.1 The model

Consider a setting with a continuous outcome variable Y , a (k × 1) vector of covariates
W , and a (k′ × 1) vector of instruments Z. Every observation (Yi,Wi, Zi), i = 1, . . . , n, is
jointly drawn from a distribution P . We assume that (Yi,Wi, Zi) is iid. The parameter of
interest θ0(τ) ∈ Rk is defined as a solution to the following unconditional quantile moment
restrictions

E[(1{Y ≤ W ′θ0(τ)} − τ)Z] = 0, (1)

for a fixed quantile level τ ∈ (0, 1). These moment restrictions arise from linear IVQR model
(Chernozhukov and Hansen, 2006, 2008) when W 6= Z, from classical QR (Koenker and
Bassett, 1978) when W = Z, and from unconditional quantiles when W = Z = 1.10 We

10As explained by Chernozhukov and Hansen (2006, Footnote 1), IVQR also nests the two-stage quantile
regression (2SQR) model considered in Amemiya (1982), Powell (1983), Chen and Portnoy (1996) as a case
with constant QTE. Our results do not cover instrumental variables approaches based on the local average
treatment effects framework (e.g., Abadie et al., 2002; Frölich and Melly, 2013; Melly and Wüthrich, 2017;
Wüthrich, 2020) and triangular models (e.g., Ma and Koenker, 2006; Lee, 2007; Imbens and Newey, 2009,
among others). An alternative approach to conditional distribution modeling is based on distribution regres-
sion (Foresi and Peracchi, 1995; Chernozhukov et al., 2013; Rothe and Wied, 2013); distribution regression
can also be used for estimating IVQR models (Wüthrich, 2019). Distribution and quantile regression are not
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refer to Koenker (2005) for a comprehensive review of classical QR and to Chernozhukov
and Hansen (2013) and Chernozhukov et al. (2017) for recent reviews of IVQR.

We will focus on a fixed quantile level τ ∈ (0, 1) and omit the dependence on τ un-
less it causes confusion. We will use the following notation for the unconditional moment
restrictions as a function of θ ∈ Θ,

g(θ) , E(1{Y ≤ W ′θ} − τ)Z. (2)

To abstract from additional complications arising from the estimation of the optimal weight-
ing matrix, we focus on the just-identified case where k = k′.

We will maintain the following assumptions, which rule out partial and weak identifica-
tion.

Assumption 1 (Identification).

1. θ0 is the unique solution to g(θ) = 0 over Θ, where θ0 is in the interior of the compact
set Θ.

2. The Jacobian of the moment functions evaluated at θ0, G(θ0), is well-defined and has
full rank.

Assumption 1 is a high-level assumption commonly imposed in GMM settings and in
the literature on general conditional quantile models (e.g., Chernozhukov and Hansen, 2006,
2008; Kaido and Wüthrich, 2019); see Chernozhukov and Hansen (2006) and Kaido and
Wüthrich (2019) for primitive conditions for global identification. As noted by Chernozhukov
and Hansen (2006), compactness of the parameter space Θ “is not restrictive in micro-
econometric applications” (p. 502). The full rank assumption is necessary for asymptotic
normality of the estimator and underlies our higher-order expansion.

3.2 Complications due to discontinuous sample moments

Consider any estimator θ̂ of θ0 that approximately solves

ĝ(θ) = 0, (3)

where ĝ(θ) is the sample analog of moment condition (1), ĝ(θ) , En(1{Y ≤ W ′θ} − τ)Z

for θ ∈ Θ. Here we used the notation Enm as a shortcut for expectation with respect to
the empirical measure, i.e., 1

n

∑n
i=1mi. We denote the generic empirical process operator as

nested in general and, thus, the results in our paper do not directly apply to distribution regression models.
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Gn ,
√
n(En − E), and introduce the following shortcut notation for the sample moment

process,
Gn(θ) , Gn(1{Y ≤ W ′θ} − τ)Z =

√
n(ĝ(θ)− g(θ)), θ ∈ Θ. (4)

The standard way to get an approximate solution to (3) is to minimize ||ĝ(θ)||p, where || · ||p
is an `p norm on Rk.

When the sample moment conditions ĝ(θ) are a.s. differentiable, the higher-order ex-
pansions of the exact and `2−approximate solutions of (3) were studied correspondingly in
Rilstone et al. (1996) and Newey and Smith (2004) (unlike these papers, we abstract from
the additional higher-order bias terms arising from overidentification and estimation of the
GMM weighting matrix). One can understand the nature of the standard argument using
the following tautology,

ĝ(θ̂)︸︷︷︸
(i)

= g(θ0)︸ ︷︷ ︸
(ii)

+
1√
n
Gn(θ0)︸ ︷︷ ︸
(iii)

+ g(θ̂)− g(θ0)︸ ︷︷ ︸
(iv)

+
1√
n

(Gn(θ̂)−Gn(θ0))︸ ︷︷ ︸
(v)

. (5)

Under standard assumptions (e.g., Rilstone et al., 1996, Assumptions B and C), includ-
ing Lipschitz continuity of the sample moments and non-degeneracy of their Jacobian, the
following results hold:11

(i) can be made arbitrarily small since (3) admits an exact solution;

(ii) is zero for correctly specified models;

(iii) is Op

(
1√
n

)
and is asymptotically normal (after rescaling) by the CLT;

(iv) is approximately linear in (θ̂ − θ0) with an error that is Op

(
1
n

)
by the Taylor theorem

applied to g(θ) at θ0;

(v) is Op

(
1
n

)
by a.s. Lipschitz continuity of ĝ(θ).

Moreover, the exact solution to (3) is unique by the assumed non-degeneracy of the Jacobian
∂θĝ(θ̂). However, the quantile sample moment conditions ĝ(θ) are a.s. discontinuous and do
not admit a Jacobian, which gives rise to three main complications.

Non-existence of exact solutions to the estimating equations. Even in the just-
identified setting (k = k′), equations (3) do not have an exact solution in most cases. As a
result, we cannot assume that the error in the estimating equations is arbitrarily small. This
issue is illustrated in the following example.

11See also Assumptions 2(b) and 2(c) in Newey and Smith (2004).
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Example 1. Suppose we are interested in the τ -quantile of a one-dimensional, continuous
r.v. Y . The corresponding estimating equations take the form

En(1{Y ≤ θ)} − τ) = 0. (6)

Equation (6) can be satisfied exactly only if τn is an integer. In general, the best approximate
solution θ̂ can take any value in [Y(bτnc), Y(bτnc+1)] depending on τn.12 Then by definition,

En(1{Y ≤ θ̂}) =
bτnc
n

, (7)

which implies ĝ(θ̂) = En(1{Y ≤ θ̂} − τ) = Op

(
1
n

)
.

Example 1 illustrates that even in the simplest case where W = Z = 1, the estimating
equations can have an error that is bounded away from zero by Op

(
1
n

)
for most values of τ .

In the general case with non-constant regressors W and instrumental variables Z, the error
in the estimating equations may be bounded away from 0 even if τn is an integer. However,
in Theorem 5 in Section 4, we show that in the general case there exists an approximate
solution to (3) achieving nearly Op

(
1
n

)
value of the objective function, as in the univariate

Example 1. This error is non-negligible and appears in the expansion up to order Op

(
1
n

)
.

Non-uniqueness of the best approximate solution. In the case of sample moments
with non-degenerate Jacobian, the exact solution to the estimating equations is unique by
the implicit function theorem. By contrast, due to the presence of the indicator function,
the quantile sample moment conditions are step functions that do not admit a Jacobian. As
as result, the set of solutions has non-negligible diameter. This is true even if the estimating
equations admit exact solutions. To illustrate, let us revisit Example 1.

Example 2 (Example 1 cont.). Suppose that τn is an integer. Suppose further that Y has a
uniform distribution on [0, 1]. Consider two solutions of (6), θ̂ = Y(τn) and θ̂∗ = Y(τn) + (1−
ε)(Y(τn+1)−Y(τn)) for some small ε > 0. Both solutions will have the norm of the error exactly
equal to 0. The well known formula for the order statistic in the case of uniform distribution
is EY(j) = j

n+1
, so the difference in the means of the solutions is E(θ̂∗ − θ̂) = (1−ε)

n+1
.13 As a

result, θ̂∗ − θ̂ ≥ Op(
1
n
) since θ̂∗ ≥ θ̂ a.s.

This example shows that different solutions can have stochastic expansions that differ by
Op

(
1
n

)
. Corollary 2 of Theorem 4 in Section 4 shows that the equivalence of different exact

estimators holds with nearly 1
n
-rate for general conditional quantile models.

12We use the notation bxc for the integer part of a real number x and Y(k) for the k-th order statistic.
13See Ahsanullah et al. (2013, Example 8.1).
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Non-Lipschitz sample moments. Typically, for models with smooth sample moments
the empirical process Gn(θ) has a Lipschitz constant Kn that is bounded in probability in a
neighborhood of θ0.14 By this property, for any

√
n-consistent estimator θ̂,

‖Gn(θ̂)−Gn(θ0)‖ ≤ Kn‖θ̂ − θ0‖ = Op

(
1√
n

)
. (8)

This result is instrumental in showing that the precision of the linear approximation of the
normalized estimating equations estimator

√
n
(
θ̂ − θ0

)
is Op

(
1√
n

)
.

Unfortunately, such a high-precision linear approximation is not available for conditional
quantile models since property (8) does not hold (see Example 3 below). To study the
precision of this approximation, we exploit the special structure of the quantile moment
conditions that resemble the empirical CDF. This structure is particularly evident in the
special case of the sample quantile estimator, where the sample moment conditions can be
directly represented using the empirical CDF F̂Y (y) = En1 {Y ≤ y}. When Y is uniformly
distributed on [0, 1], the empirical CDF admits the following strong approximation, which
was first derived by Komlós et al. (1975, 1976).

Theorem (KMT coupling, Theorem <26> on p.252 in Pollard (2002)). There exists a
Brownian Bridge {B◦(y) : 0 ≤ y ≤ 1} with continuous sample paths, and a uniform empirical
process Fn(y) ,

√
n(F̂Y (y)− FY (y)), for which

P

{
sup

0≤y≤1
|Fn(y)−B◦(y)| ≥ C1

x+ log n√
n

}
≤ C0 exp(−x) for all x ≥ 0, (9)

with constants C1 and C0 that depend on neither n nor x.15

The KMT theorem suggests that Op

(
1√
n

)
is unattainable even in the case of the sample

quantile of a uniform r.v., as the following example shows.

Example 3 (Example 1 cont.). For a uniform Y , the CDF is FY (y) = y for y ∈ [0, 1]. The
KMT theorem implies the following a.s. representation for the sample moment conditions
(cf. Pollard, 2002, p.255),

Gn(θ) = Fn(θ) = B(θ)− θB(1) +Rn(θ), (10)

where sup0≤θ≤1 |Rn(θ)| = Op

(
logn√
n

)
, B(1) is a standard Gaussian r.v. and B(θ) , B◦(θ) +

θB(1) is the standard Brownian motion process. It follows from the Kolmogorov-Chentsov
14See for example Assumption C in Rilstone et al. (1996) with s ≥ 2.
15Theorems 1.7 and 1.8 in Dudley (2014) provide a specific choice of constants. By Theorem 1.8, one can

choose C1 = 12 and C0 = 2 for n ≥ 2.
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theorem (see Lemma A.5 in Appendix A.2) that, for any small γ > 0,

B(θ)−B(θ0) = Op

(
‖θ − θ0‖

1
2
−γ
)
. (11)

Therefore, the increment of the empirical process Gn evaluated at a random point θ̂ has the
following representation for each n,

Gn(θ̂)−Gn(θ0) = Op

(
‖θ̂ − θ0‖

1
2
−γ
)

+Rn(θ̂)−Rn(θ0). (12)

The remainder here is uniformly bounded since |Rn(θ̂)−Rn(θ0)| ≤ 2 sup0≤t≤1 |Rn(t)|. Hence,
for any

√
n-consistent estimator θ̂ and any small γ > 0, we get

Gn(θ̂)−Gn(θ0) = Op

(
1

n1/4−γ

)
. (13)

This results in a nearly Op

(
1

n3/4

)
term in the stochastic expansion of θ̂, see equation (5).

Theorem 1 in Section 4 provides an analog of the KMT theorem that accommodates gen-
eral quantile models, and Corollary 1 shows that the sample moments can be approximated
by a Hölder continuous process such that the remainder rate of nearly Op

(
1

n3/4

)
is still valid.

4 Higher-order expansions and equivalence of quantile

estimators

In the previous section, we illustrated the key ideas behind the stochastic expansion of
a simple quantile estimator. In this section, we obtain stochastic (asymptotically linear)
expansions of general conditional quantile estimators and provide higher-order equivalence
results.

4.1 Coupling of sample moments with a Hölder continuous process

The quantile sample moment conditions are discontinuous functions of the parameter θ,
which invalidates standard arguments for deriving higher-order properties. As we have seen
in the previous section in the case of the sample quantile estimator, the sample moment con-
ditions can be approximated by a Brownian bridge process, which has continuous trajectories
and admits a strong version of stochastic equicontinuity that we call `1 Hölder continuity.
Namely, the expectation of the `1 norm of the increments of the process is bounded by a

14



polynomial function of the increments. Here we extend this one-dimensional result to derive
a coupling of the quantile sample moments with a Hölder continuous process.

To develop intuition for our main arguments, consider the following example.

Example 4 (QR with binary regressor). Consider a classical QR model with one exogenous
binary regressor and an intercept. In this case, the instruments are equal to the regressors,
Zi = Wi, where Wi = (W1i,W2i)

′ ∈ {(1, 0)′, (1, 1)′}, and the moment functions are (1{Yi ≤
W ′
iθ}−τ)W1i and (1{Yi ≤ W ′

iθ}−τ)W2i. The corresponding empirical processes are indexed
by the 2-dimensional parameter θ ∈ R2, and hence the standard univariate coupling results
like the KMT theorem are not applicable. Our theoretical argument is based on the following
observation:

1{Yi ≤ W ′
iθ}W1i = 1{Yi ≤ y1,Wi = (1, 0)}+ 1{Yi ≤ y2,Wi = (1, 1)}, (14)

1{Yi ≤ W ′
iθ}W2i = 1{Yi ≤ y2,Wi = (1, 1)}, (15)

where y1 = (1, 0)θ and y2 = (1, 1)θ are scalar parameters. This observation allows us to
separate the empirical process indexed by θ into processes with 1-dimensional parameters to
which univariate coupling results can be applied.

To derive a coupling of the quantile sample moments with a Hölder continuous process,
we develop conditions under which the dimension reduction technique illustrated in Example
4 can be extended to general conditional quantile models. Specifically, we will show that one
can separate the empirical process corresponding to the quantile moment conditions, which
is indexed by the k-dimensional parameter θ, into weighted conditional empirical processes
that take the following form:

Zn(y, a) ,
1√
n

n∑
i=1

(Zi1{Yi ≤ y, Ai = a} − EZi1{Yi ≤ y, Ai = a}) , for a ∈ {0, 1}, (16)

where Ai is a Bernoulli random variable. The next theorem provides a coupling result for
Zn(y, a).

Theorem 1. Suppose that Z ∈ R and |Z| < m < ∞ a.s.. Suppose further that Y has
density conditional on Z and A that is bounded by f̄ . Then, for any a ∈ {0, 1}, the process
Zn(y, a) can be a.s. represented as

Zn(y, a) = Z(y, a) +Rn(y, a), (17)

where Z(y, a) is a zero mean process with a.s. Hölder continuous paths that has increments

15



with bounds

lim sup
r→0+

sup
y1,y2∈R,|y2−y1|<r

|Z(y2, a)− Z(y1, a)|√
Ψ(f̄ |y2 − y1|)

≤ 4
√

2m, a.s. (18)

E sup
y1 6=y2

|Z(y2, a)− Z(y1, a)|
|y2 − y1|

1
2
−γ

≤ mc̃γ f̄
1
2
−γ, for any γ ∈ (0, 1/2), (19)

where Ψ(x) , x log(1/x) and Rn(y, a) is such that E(Rn(y, a)) = 0 for all y ∈ R and

E sup
y∈R+

|Rn(y, a)| ≤ mc̃1
log n+ c̃0√

n
, (20)

with constants c̃1, c̃0, and c̃γ that do not depend on n, x, or the distribution of (Y, Z,A).

Proof. See Appendix A.

Equation (17) corresponds to the a.s. representation implied by the KMT theorem. The
moment bounds on the remainder term could be replaced by the corresponding tail proba-
bility bounds, as in the KMT theorem; however, we found it more convenient to work with
moment bounds for deriving stochastic expansions.

Equation (19) generalizes Example 3 to the case of a stochastically weighted CDF. 16 This
equation shows the relationship between the bound on the conditional density, f̄ , and the
modulus of continuity of the quantile sample moments. Whether the modulus of continuity
r

1
2
−γ in Equation (19) can be replaced with r

1
2 up to a log term is an open question.17

Remark 1 (Unbounded support). In the proof, we treat the support of the instruments
as fixed. This assumption is made to simplify the exposition. We can allow the diameter of
the support, m, to grow with sample size at a slow rate. In particular, if Z is a sub-Gaussian
or a sub-exponential random variable, the effective rate of growth of m will be

√
log n or log n

correspondingly. We leave this extension for future work.

Under the following sufficient conditions, Theorem 1 implies a coupling result for the
quantile sample moments with nearly-optimal remainder rates, see Corollary 1.

Assumption 2 (Regressors and instruments).

1. There exists m <∞ such that ‖Z‖ < m and ‖W‖ < m a.s.
16Because of the stochastic Zi assumption, our results are not suitable for studying classical QR with

fixed designs. We conjecture that one can develop analogous results based on strong approximations of
(deterministically) weighted empirical processes (e.g., Csörgő et al., 1986).

17The recent work by Fischer and Nappo (2009) suggests that it may be possible to achieve r
1
2 up to a

log term.
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2. ‖Wi‖ > 0 a.s. and W̃i , Wi/‖Wi‖ ∈ {w̃1, . . . , w̃s} ⊂ Rk where s� n.

Bounded support of the instruments is required for applying Theorem 1. Assumption 2.2
is a restriction on the support of the regressors Wi, which enables extending Theorem 1 to
general conditional quantile estimators. In particular, this assumption allows us to reduce
the k-dimensional empirical process to s univariate processes to which Theorem 1 can be
applied. Such a dimension reduction is sufficient for obtaining explicit remainder rates for
general conditional quantile estimators that are nearly-optimal in the sense that they match,
up to a logarithmic factor, the classical Bahadur-Kiefer remainder rate in the univariate order
statistics case. In Appendix E, we consider an alternative to Assumption 2.2, which allows
for continuous directions W̃i, see Remark 2 below.

We impose the following additional restrictions on the conditional density.

Assumption 3 (Conditional density).

1. The conditional density of Yi given (Wi, Zi), fY (y|W,Z), exists and is a.s. uniformly
bounded in y on supp(Y ) by f̄ .

2. fY (y|W,Z) is a.s. twice continuously differentiable on supp(Y ).

The uniform bound in Assumption 3.1 is essential for applying the coupling in Theo-
rem 1. This assumption is standard in the literature (e.g., Chernozhukov and Hansen, 2006,
Assumption R3). Under Assumption 3.2, the Jacobian of the population moment functions
G(·) , ∂θg(·) is twice continuously differentiable (see Lemma B.1); we will use this property
for second-order Taylor expansions of the population moments. Such smoothness assump-
tions are standard in the literature on higher-order properties of moment-based estimators
(e.g., Rilstone et al., 1996; Newey and Smith, 2004).

To state the coupling result for the quantile sample moments, it is useful to introduce
the following notation. For θ ∈ Θ, we define

g◦(θ) , E1{Y ≤ W ′θ}Z, (21)

B◦n(θ) ,
√
n(En1{Y ≤ W ′θ}Z − g◦(θ)), (22)

Bn(θ) , B◦n(θ)−B◦n(θ0). (23)

Corollary 1. Suppose that Assumptions 2 and 3.1 hold. Then

Bn(θ) = B(θ) +Rn(θ), (24)

where B(θ) is a k-dimensional 1
2
− γ Hölder continuous process with expected `1 modulus

bounded by ksmc̃γ(mf̄)
1
2
−γ and E supθ∈Θ ‖Rn(θ)‖1 is bounded by ksmc̃1

logn+c̃0√
n

.
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Proof. Define Ỹ , Y
‖W‖ and Aq , 1{W̃ = w̃q} for q = 1, . . . , s. Consider the empirical

process

Bq
n(y) , Gn(Z1{Ỹ ≤ y, Aq = 1}), (25)

where Z ∈ Rk is the vector of instruments and y ∈ R. By Assumption 2.2, the events
{W̃ = w̃q}, q = 1, . . . , s, form a partition of the probability space, so for any θ ∈ Θ,

Bn(θ) = Gn(1{Ỹ ≤ W̃ ′θ}Z) =
s∑
q=1

Bq
n

(
w̃′qθ
)
. (26)

By Assumption 3.1, fY (y|W,Z) ≤ f̄ for all y. By Assumption 2.1, it follows that fỸ (y|W,Z) ≤
mf̄ . Finally, for each q = 1, . . . , s, apply (19) from Theorem 1 and Lemma A.4 component-
wise to Bq

n(·) to get the desired result.

Corollary 1 shows that one can explicitly construct a smooth approximation of the sample
moments process with a uniform error bound. This coupling is useful for deriving higher-
order expansions as it allows us to relate the non-smooth sample moment process to a smooth
process, which can be studied using existing approaches. To our knowledge, Corollary 1
provides the first coupling of the general (k ≥ 1) quantile sample moment process with
nearly-optimal remainder rate (see Rio, 1994, for optimal rates of strong approximation for
generic empirical processes).18

The coupling in Corollary 1 may be of independent interest. As in Theorem 1, Corollary 1
gives explicit moment bounds that hold for any finite n. Results of this nature are particularly
useful for establishing the uniform (with respect to classes of DGPs) validity of inference
procedures. For example, coupling techniques have been used for inference under shape
restrictions (Chernozhukov et al., 2020).

4.2 Bahadur-Kiefer representations of general quantile estimators

Consider the infeasible linear and unbiased estimator

θ̂1 , θ0 −G−1(θ0)
1

n

n∑
i=1

Zi (1{Yi ≤ W ′
iθ0} − τ) . (27)

The linear structure of this estimator makes it easy to study the quality of the asymptotic
normal approximation using the corresponding results on explicit CLT precision bounds for

18We thank Andres Santos for pointing out this reference to us.
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multivariate sample means. Under some regularity conditions, the estimator θ̂1 is first-order
equivalent to most conditional quantile estimators (e.g., Koenker and Bassett, 1978; Cher-
nozhukov and Hansen, 2006; Kaplan and Sun, 2017; Kaido and Wüthrich, 2019). However,
it is important to have a bound on the higher-order terms to study the precision of the nor-
mal approximation and bootstrap procedures. Rilstone et al. (1996) and Newey and Smith
(2004) provide results for smooth objective functions suggesting the higher-order properties
of first-order equivalent estimators may be very different.19 We focus on estimators with
non-smooth objective functions such that these results are not applicable in our context (see
Section 3.2).

For conditional quantile models, explicit remainder bounds in asymptotic linear represen-
tations are only available for classical QR (e.g., Zhou and Portnoy, 1996; Knight, 2002) and
series QR (Belloni et al., 2019). As explained in Section 2.2, these results cannot directly be
extended to general conditional quantile models such as IVQR with endogenous covariates.
In what follows, we use Theorem 1 and Corollary 1 to obtain such bounds for a much broader
class of estimators.

Consider an infeasible single Newton step correction corresponding to the minimization
of ‖ĝ(θ)‖2, T (θ) , θ − G−1ĝ(θ). The next theorem provides a Bahadur-Kiefer expansion
with an explicit bound on the remainder term for any estimator of θ0 after applying a single
Newton step.20

Theorem 2. Suppose that Assumptions 1–3 hold. Suppose further that θ̂ = θ0 +Rn. Then

θ̂1−step , T (θ̂) = θ̂1 +Op

(
sm

3
2R

1
2
−γ

n

n1/2

)
+Op(‖Rn‖2). (28)

Proof. By Lemma B.2 , θ̂ satisfies

G(θ0)(θ̂ − θ0) +
1

2
(θ̂ − θ0)′∂θG(θ0)(θ̂ − θ0)

= ĝ(θ̂)− 1√
n
B◦n(θ0)− τ(EZ − EnZ)− 1√

n
Bn(θ̂) +Op

(
‖Rn‖3

)
. (29)

19Kaplan and Sun (2017) derive higher-order properties of smoothed IVQR estimators.
20Arcones and Mason (1997) provide a second-order distributional analysis of 1-step estimators based on

generic estimating equations. However, their framework cannot directly accommodate general conditional
quantile models. We leave the exact distributional analysis of the Bahadur-Kiefer remainder in our setup
for future research.
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By Assumption 2, we have

θ̂ −G−1(θ0)ĝ(θ̂) = θ̂1 −G−1(θ0)
1√
n
Bn(θ̂) +Op

(
‖Rn‖2

)
.

By Lemma B.5, which uses Corollary 1, 1√
n
Bn(θ̂) = Op

(
sm

3
2R

1
2−γ
n

n1/2

)
. This result completes

the proof.

In particular, Theorem 2 implies that θ̂1−step has an asymptotically linear representation
with nearly Op

(
1

n3/4

)
rate if Rn = op

(
1

n1/4

)
. Moreover, if Rn = Op(

1√
n
), then for the two step

estimator θ̂2−step , T (T (θ̂)), we get the nearly conventional order of the remainder, Op(
1

n3/4 ),
as in the sample quantile case (see p.122 in Jurečková et al., 2012). This implication for the
2-step estimator is analogous to the results in Robinson (1988) for smooth estimators.21

Theorem 2 also complements Zhu (2019), who established first-order equivalence of k-
step estimators and GMM estimators for the IVQR model, by providing an explicit bound
on the remainder term.

Remark 2 (Continuous directions Wi/‖Wi‖). v Assumption 2.2 is a transparent suffi-
cient condition allowing us to derive Bahadur-Kiefer expansions and prove equivalence re-
sults in the following subsections. However, this condition may not be plausible in some
applications. Assumption 2.2 only enters the theoretical arguments through Lemma B.5. In
Appendix E, we provide an alternative to Lemma B.5, which allows for continuously dis-
tributed directions Wi/‖Wi‖. The same remark applies to all results in Sections 4.3 and 4.4.
(The results on the bias in Section 5 do not rely on Assumption 2.2.)

4.3 Higher-order equivalence results for quantile estimators

In stark contrast with the smooth extremum estimators (e.g., Andrews, 2002a,b), additional
Newton steps may not result in convergence of the k-step estimator to the exact minimizer
of the GMM objective function. The reason is that the Newton steps are not guaranteed
to reduce the objective function ‖ĝ(θ̂)‖ below Op

(
sm

3
2

n3/4−γ

)
since this function is non-smooth.

The following theorem gives a general result on the norm of the objective for a generic
estimator θ̂.

Theorem 3. Suppose that Assumptions 1–3 hold. Any estimator of the form θ̂ = θ̂1 + Rn,
21The same implication would hold for k-step estimators with G−1 replaced by a consistent estimator with

sufficiently fast convergence rate. See discussion of such estimators in Section 5.2.
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where ‖Rn‖ = op

(
1√
n

)
, satisfies

ĝ(θ̂) = G(θ0)Rn +Op

(
sm

3
2

n3/4−γ

)
. (30)

for any small γ > 0.

Proof. Since ‖Rn‖ = op

(
1√
n

)
, θ̂ = θ0 +Op

(
1√
n

)
. As in the proof of Theorem 2, we have

Rn = θ̂ − θ̂1 = G−1(θ0)ĝ(θ̂)−G−1(θ0)
1√
n
Bn(θ̂) +Op

(
1

n

)
. (31)

By Lemma B.5, which uses Corollary 1, 1√
n
Bn(θ̂) = Op

(
sm

3
2 ‖θ̂−θ0‖

1
2−γ

n1/2

)
= Op

(
sm

3
2

n3/4−γ/2

)
for

any small γ > 0. Hence equation (31) becomes

ĝ(θ̂) = Op

(
sm

3
2

n3/4−γ/2

)
+Op

(
1

n

)
+G(θ0)Rn. (32)

The termOp

(
1
n

)
is negligible when compared to the first term, which completes the proof.

The previous theorem suggests that the order of magnitude of the sample moments
evaluated at the estimated value θ̂ additively depends on the remainder of the Bahadur-
Kiefer expansion. The following statement provides the converse result: estimators θ̂∗, θ̂,
for which the values ĝ(θ̂∗) and ĝ(θ̂) are close to each other, are equivalent up the order of
magnitude of ĝ(θ̂∗)− ĝ(θ̂).

Theorem 4. Suppose that Assumptions 1–3 hold. Consider any pair of asymptotically linear
estimators θ̂ = θ̂1+op(

1√
n
) and θ̂∗ = θ̂1+op(

1√
n
). If ĝ(θ̂)−ĝ(θ̂∗) = Op

(
|Rn|√
n

)
for some bounded

sequence Rn, then the following is true

θ̂ − θ̂∗ = Op

(
|Rn|√
n

)
+Op

(
m3s2

n1−γ

)
. (33)

Proof. By Lemma B.2, both estimators satisfy representation (29). Then, for any small
γ > 0,

θ̂ − θ̂∗ = −G−1(θ0)
Bn(θ̂)−Bn(θ̂∗)√

n
+G−1(θ0)(ĝ(θ̂)− ĝ(θ̂∗)) +Op

(
s2m3

n5/4−γ

)
. (34)

The the result follows immediately from Lemma B.6.
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One direct implication of Theorems 3 and 4 is that any
√
n-consistent estimators of θ0

become equivalent up to nearly Op

(
1

n3/4

)
after a single Newton step correction. This result

is reminiscent of the results obtained by Andrews (2002a) for smooth extremum estimators,
although the non-differentiability of the objective function leads to equivalence of order
nearly 1

n3/4 instead of 1
n3/2 .

4.4 Stochastic expansion of exact estimators

The previous results hold for generic estimators. Theorem 3 shows the connection between
the remainder in the Bahadur-Kiefer expansion and the sample moments evaluated at the es-
timator. It is therefore useful to study estimators that precisely minimize a finite-dimensional
`p norm of the sample moments

θ̂`p = argminθ∈Θ ||ĝ(θ)||p. (35)

This class of exact estimators includes GMM, which corresponds to || · ||2 norm as in Chen
and Lee (2018) for just-identified models, and the estimator proposed by Zhu (2019), which
corresponds to || · ||∞. In the Monte Carlo section of this paper we consider || · ||1 for
computational convenience; see Appendix D.22 The classical QR estimator implemented
using exact LP algorithms is another leading example to which our results apply. Indeed,
exact LP estimators yield exact zeros of the subgradient, which differs from sample moment
functions by at most k-terms, or Op(

k
n
).

The next theorem provides a bound on the minimal norm of the sample moments for
the exact estimator and an explicit stochastic expansion up to order nearly 1

n5/4 . We use the
following notation,

G , G(θ0), (36)

∂θGj ,
∂2gj(θ0)

∂θ∂θ′
. (37)

For any x ∈ Rk, we will use x′∂θGx to denote a vector with components x′∂θGjx for j =

1, . . . , k.

Theorem 5. Suppose that Assumptions 1–3 hold. Consider θ̂`p obtained from program (35)

22The cases || · ||1 and || · ||∞ have computationally convenient MILP representations, while the MILP
formulation for || · ||2 proposed in Chen and Lee (2018) has many more decision variables.
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for some p ∈ [1,∞]. Then

θ̂`p −G−1ĝ(θ̂`p) = θ̂1 −G−1

[
Bn(θ̂`p)√

n
+

1

2
(θ̂1 − θ0)′∂θG(θ̂1 − θ0)

]
+Rn, (38)

where ĝ(θ̂`p) = Op

(
m3s2

n1−γ

)
, Bn(θ̂`p) = Op

(
sm3/2

n1/4−γ

)
, and Rn = Op

(
sm3/2

n5/4−γ

)
, for any small

γ > 0.

Proof. By Lemma B.2 applied to θ̂`p ,

θ̂`p −G−1ĝ(θ̂`p) = θ̂1 −G−1

[
Bn(θ̂`p)
√
n

+
1

2
(θ̂`p − θ0)′∂θG(θ̂`p − θ0)

]
+Op(‖θ̂`p − θ0‖3). (39)

By Lemma B.4, θ̂`p − θ0 = Op

(
1√
n

)
. The result Bn(θ̂`p) = Op

(
sm3/2

n1/4−γ

)
follows from

Lemma B.5. Under Assumptions 1–3, Lemma B.7, which is based on the Hölder continuity
of Bn, yields

ĝ(θ̂`p) = Op

(
m3s2

n1−γ

)
. (40)

To complete the proof, notice that

(θ̂`p − θ0)′∂θG(θ̂`p − θ0) = (θ̂1 − θ0)′∂θG(θ̂1 − θ0) +Op

(
sm3/2

n5/4−γ

)
. (41)

Theorem 5 implies that any two estimators θ̂`p and θ̂`p′ yield sample moments that differ

by at most Op

(
m3s2

n1−γ

)
. Then Theorem 4 implies the following corollary.

Corollary 2. Under Assumptions 1–3, the difference between any two solutions to (35),
possibly corresponding to different norms, is at most Op

(
m3s2

n1−γ

)
for any small γ > 0.

This corollary generalizes Example 2 to general conditional quantile models. In partic-
ular, Corollary 2 implies the equivalence of the exact MIP estimators proposed by Chen
and Lee (2018) and Zhu (2019) for just identified models. Pouliot (2019) also proposed a
dual MIP approach based on the inverse quantile regression estimator of Chernozhukov and
Hansen (2006). His MIP formulation has sample moment equations constraints, which gen-
erally cannot be satisfied exactly. Therefore, the asymptotic rate of the tolerance level on the
sample moment constraints would determine the order of equivalence of the dual estimator
and θ̂`p .
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5 Higher-order bias of exact estimators

5.1 Bias formula

Here we provide the bias formula for θ̂`p that is a corner solution to program (35). We say
that a solution is a corner solution if it is a corner of the polygon corresponding to the closure
of the argmin set of (35). We focus on corner solutions because such solutions are the default
output of exact MILP solvers. In particular, our bias formula also applies to classical QR
implemented using exact linear programming algorithms. Importantly, the proof of the bias
formula only relies on stochastic equicontinuity of the sample moment empirical process and
does not require the stronger Hölder property in Theorem 1 and Corollary 1. As a result,
the formula remains valid even if Assumption 2.2 (or the alternative conditions in Appendix
E) is violated.

Note that, under the maintained assumptions, the true parameter θ0 has an equivalent
alternative definition as a solution to

g∗(−θ0) , E[(1{−Y ≤ W ′(−θ0)} − (1− τ))Z] = 0. (42)

The sample analog of (42), ĝ∗(−θ), is different from ĝ(θ), and thus would typically deliver
a different corner solution, which we refer to as θ̂∗`p . To resolve this apparently arbitrary
choice of the corner solutions, Theorem 6 below is written in a symmetric form. Namely,
the choice of the sample moment conditions, ĝ(θ) or ĝ∗(−θ), does not affect the resulting
bias formula (50), which is symmetric with respect to the permutation of (Y, θ, τ, θ̂`p) and
(−Y,−θ, 1− τ,−θ̂∗`p).

We use the following notation

εi , Yi −W ′
iθ0, (43)

fε(0|W,Z) , fY (y −W ′θ0|W,Z), (44)

κ1(τ) ,

(
τ − 1

2

)
Efε(0|W,Z)ZW ′G−1Z, (45)

κ2(τ) , nE
ĝ(θ̂`p) + ĝ∗(−θ̂`p)

2
=
n

2
EZi1{ε̂i = 0}, (46)

ε̂i , Yi −W ′
i θ̂`p , (47)

Ω , V ar[Z(1{Y ≤ W ′θ0} − τ)], (48)

Qj , vec
[
(G−1)′∂θGjG

−1
]
, Q is a matrix with columns Qj, (49)

where the operator vec(·) denotes the standard matrix vectorization.
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Theorem 6. Consider any corner solution θ̂`p of program (35). Suppose that Assumptions 1,
2.1, and 3 hold. Then

Eθ̂`p − θ0 = G−1

[
Eĝ(θ̂`p)−

κ1(τ)

n
− κ2(τ)

n
− 1

2n
Q′vec(Ω)

]
+ o

(
1

n

)
. (50)

Proof. Following the proof of Theorem 5, Lemma B.2 implies

θ̂`p −G−1ĝ(θ̂`p) = θ̂1 −G−1

[
Bn(θ̂`p)√

n
+

1

2
(θ̂1 − θ0)′∂θG(θ̂1 − θ0)

]
+Rn, (51)

where Rn = op
(

1
n

)
is implied by Lemma B.4. Lemma C.1, which relies on a novel non-smooth

calculus argument, implies

1√
n
EBn(θ̂`p) =

1

n
κ1(τ) +

1

n
κ2(τ) + o

(
1

n

)
. (52)

For correctly specified models, Eθ̂1 = θ0 and

E(θ̂1 − θ0)′∂θGj(θ̂1 − θ0) = Eĝ′(θ0)(G−1)′∂θGjG
−1ĝ(θ0) (53)

= vec((G−1)′∂θGjG
−1)′vec(V ar(m(Yi,Wi, Zi, θ0))) (54)

=
1

n
Q′jvec(Ω). (55)

The statement of the theorem follows immediately.

The key technical ingredient in the proof of Theorem 6 is Lemma C.1, which is based
on a directional Taylor expansion of the conditional PDF. Specifically, conditioning on the
estimator allows us to compute a Taylor expansion of the discontinuous sample moments
under the expectation operator.

The formula (50) has four components:

1. EG−1ĝ(θ̂`p), the bias from non-zero sample moments;

2. G−1 κ1(τ)
n

, the bias from the covariance of linear influence of a single observation on θ̂`p
and the sample moments;

3. G−1 κ2(τ)
n

, the bias from non-zero probability of ε̂i = 0;

4. G−1Q
′vec(Ω)

2n
, the bias from non-uniform conditional distribution of Y given (W,Z).

Component (1) is equal to zero when it is possible to find exact zeros to the sample moments.
That is generally only possible in the univariate case when τn is an integer. Component (2)
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is generally equal to zero only at the median (τ = 1
2
) and is linear in τ . Component (3) is

always present for corner solutions. Component (4) is typically present in most non-linear
estimators with non-zero Hessian of the score function (see, for example, Rilstone et al.,
1996). For example, in the simple location model used in the simulations in Section 5.3, this
component captures deviations from the uniform distribution in the error term.

It is instructive to study those four components of the asymptotic bias formula in the
uniform sample quantile case, where exact formulas are available.

Example 5 (Example 2 cont.). Suppose we are interested in estimating the τ -quantile of a
uniformly distributed outcome variable Y . This is a special case of the general framework
with W = Z = 1, fY (y) = 1{0 ≤ y ≤ 1}. We start by discussing the four components in this
special case. There are two ways of defining an estimator: as a minimizer of |ĝ(θ)| or as a
minimizer of |ĝ∗(−θ)|, where

ĝ(θ) = En(1{Y ≤ θ} − τ), (56)

ĝ∗(−θ) = En1{−Y ≤ −θ} − (1− τ). (57)

The derivatives of the population moment conditions g(θ) = g∗(−θ) = 0 are G = 1, ∂θG = 0

and G∗ , ∂θg
∗(−θ) = −1, ∂θG∗ = 0, respectively. In either case, the closure of the argmin

set will be [Y(k), Y(k+1)], where k , bτnc. If the fractional part {τn} , τn − bτnc ≤ 1
2
, a

minimizer of |ĝ(θ)| (|ĝ∗(−θ)|) is the order statistic Y(k) (Y(k+1), respectively); if {τn} ≥ 1
2
, a

minimizer of |ĝ(θ)| (|ĝ∗(−θ)|) is Y(k+1) (Y(k), respectively)— on the real line R1, all norms
‖ · ‖p, p ∈ [1,∞], are just the absolute value. Let us now compute the bias of the corner
solutions Y(k) and Y(k+1) using formula (50) corresponding to either ĝ(θ) or ĝ∗(−θ), depending
on the value of {τn}.

Suppose {τn} ≤ 1
2
. Then Component (1) takes forms

G−1ĝ(Y(k)) =
k − τn
n

, (58)

(G∗)−1ĝ∗(−Y(k+1)) = (G∗)−1n− k − (1− τ)n

n
=
k − τn
n

. (59)

Component (2) is equal to 1
n
(τ − 1

2
) for both estimators. Component (3) is

G−1 ĝ(Y(k)) + ĝ∗(−Y(k))

2
=

1

2n
, (60)

(G∗)−1 ĝ(Y(k+1)) + ĝ∗(−Y(k+1))

2
= − 1

2n
. (61)

Finally, since ∂θG = ∂θG
∗ = 0, Component (4) is equal to zero for both estimators. Overall,
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formula (50) yields asymptotic bias expansions

EY(k) − τ =
k − τn
n

+
1

n

(
1

2
− τ
)
− 1

2n
+ o

(
1

n

)
= −{τn}

n
− τ

n
+ o

(
1

n

)
, (62)

EY(k+1) − τ =
k − τn
n

+
1

n

(
1

2
− τ
)

+
1

2n
+ o

(
1

n

)
= −{τn}

n
+

1− τ
n

+ o

(
1

n

)
. (63)

The case {τn} ≥ 1
2
is analogous and results in the same formulas for asymptotic bias.

The exact bias formulas are given by (e.g., Ahsanullah et al., 2013)

EY(k) − τ =
k

n+ 1
− τ = −{τn}

n+ 1
− τ

n+ 1
, (64)

EY(k+1) − τ =
k + 1

n+ 1
− τ = −{τn}

n+ 1
+

1− τ
n+ 1

. (65)

Comparing these formulas with the asymptotic formulas (62) and (63), we see that they
indeed coincide up to O

(
1
n2

)
. Figure 2 illustrates the exact and the asymptotic bias formula

(scaled by n) for n = 10.

Figure 2: Exact and asymptotic bias (scaled by n) for Y(bτnc) and Y(bτn+1c), where Y ∼
Uniform(0, 1), n = 10.

There are very few results about the higher order bias of QR. Portnoy (2012) derived a
near root-n Gaussian approximation for the QR process, which implies near 1

n
order of the
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bias. However, he did not provide explicit bias formulas. We are not aware of any results on
the higher order bias of IVQR estimators. We contribute to this literature by providing the
first complete formula for the bias up to O

(
1
n

)
in for both QR and IVQR estimators.

We would like to mention an interesting approach to higher-order bias analysis of non-
smooth estimators that is based on the generalized functions heuristic (e.g., Phillips, 1991).
In recent work, Lee et al. (2017, 2018) derived an asymptotic bias formula for classical QR
and IVQR under the assumption that the sample moments are equal to zero. Example
1 shows that this assumption is violated even in simple cases. Moreover, the generalized
function approach neglects the multiplicity of solutions (cf. Example 2). As a result, the
bias formulas in Lee et al. (2017, 2018) neglect Components (1) and (3) of the bias formula
(50) in Theorem 6. Both the analytical Example 5 as well as the Monte Carlo evidence
presented in Section 5.3 suggest that these two components contribute substantially to the
higher-order bias.

Finally, our results imply that exact quantile estimators based on non-smooth moment
conditions exhibit a lower bias than those based on smoothed moment condition. One can
evaluate the order of bias in smoothed estimators using the higher-order MSE. Kaplan and
Sun (2017) show that the higher-order MSE of IVQR estimators can be reduced using a
smoothed estimating equations approach. In particular, they can guarantee that the bias is
O(n−α) for some 1

2
< α < 1, where α depends on the smoothness of the PDF of Y given

(W,Z) (Section 5 in Kaplan and Sun, 2017). By contrast, Theorem 6 shows that the 1-step
corrected exact non-smooth estimator has bias of order 1

n
, which is substantially lower than

O(n−α) for any 1
2
< α < 1. In Section 5.2, we propose a bias correction that reduces the

bias of exact estimators even further.

5.2 Feasible bias correction

The theoretical bias formula (50) has a feasible counterpart that can be used for bias cor-
rection of an exact estimator θ̂`p .

Bias Components (1) and (3) depend on the realization of θ̂`p and, thus, to our knowl-
edge, cannot be consistently estimated using existing methods. Therefore, we consider the
following symmetric 1-step correction of θ̂`p ,

θ̂sym = θ̂`p −G−1

(
ĝ(θ̂`p)− ĝ∗(−θ̂`p)

)
2

. (66)

The 1-step estimator θ̂sym is first-order equivalent to θ̂`p (see Lemma B.4 in the Appendix).23

23We emphasize that the symmetric one 1-step estimator is different from standard 1-step estimators as
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Our key insight is that θ̂sym admits a concise bias formula that can be consistently estimated
using sample analogs,

Eθ̂sym − θ0 = − 1

n
G−1

[
κ1(τ) +

1

2
Q′vec(Ω)

]
+ o

(
1

n

)
. (67)

The corresponding bias-corrected estimator is then defined as follows,

θ̂bc = θ̂sym +
1

n
G−1

[
κ1(τ) +

1

2
Q′vec(Ω)

]
, (68)

Estimators of the Jacobian G are readily available (e.g., Powell, 1986; Chernozhukov and
Hansen, 2006; Angrist et al., 2006; Kato, 2012; Hong et al., 2015). The variance of the
sample moments Ω can be estimated using its sample analog. The parameter κ1(τ) has the
same structure as G and can be estimated accordingly. The remaining parameters ∂θGj

take the form of weighted-average derivatives. Consistent kernel estimators of parameters
with such structure were considered, for example, in Powell et al. (1989). In sum, feasible
bias correction can proceed based on well-established plug-in estimators. In particular, this
approach does not rely on any resampling or simulation-based methods. This is important
in practice as exact estimators can be computationally quite expensive.

5.3 Monte Carlo validation of the bias formula

To validate our bias formula, we perform Monte Carlo simulations based on the following
simple location model:

Y = W ′β + F−1(U), U | W ∼ Uniform(0, 1), (69)

where W = (1, X)′, β = (0, 1)′, and X ∼ Uniform(0, 1). In this model, the conditional
quantile of Y given W is

QY (τ |W ) = W ′θ0(τ), (70)

where θ0(τ) = (F−1(τ), 1). We use the location model (69) because there are explicit formulas
for all the bias components, allowing us to avoid any approximation errors. We consider three
different choices for F :

DGP1 (Uniform) F (y) =
∫ y
−∞ 1{t ∈ [0, 1]}dt

DGP2 (Triangular) F (y) =
∫ y
−∞ 2t1{t ∈ [0, 1]}dt

DGP3 (Cauchy) F (y) =
∫ y
−∞

1
π(1+(4t)2)

dt

considered, for instance, in Zhu (2019).
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The asymptotic bias formula in the case of DGP1 is expected to be precise even for small
n since all the higher-order derivatives of fY (y|W,Z) are zero. By construction, Q = 0 such
that Component (4) of the bias formula (50) is zero. DGP2 has non-zero first derivative of
fY (y|W,Z). Unlike DGP1, this DGP has Q 6= 0, which allows us to assess the contribution
of Component (4). At the same time, the second and higher-order derivatives of fY (y|W,Z)

are equal to zero, such that the population moments are quadratic in θ. As a result, the
asymptotic formula then fully captures the shape of the population moments. In addition,
fY (y|W,Z) is asymmetric around the median. This feature is useful to illustrate the effects
of small fY (y|W,Z) (and thus large G−1) on the bias. Finally, DGP3 is more complex and
features all the four components of the bias. The bias correction under DGP3 is less precise
than under DGP1 and DGP2 since the influence of the neglected higher-order terms of the
population moments is o

(
1
n

)
. The remaining bias can potentially be quite substantial for

tail quantities and for small n.
We use the MILP formulations defined in Appendix D to compute θ̂`1 . We compare the

bias of θ̂`1 = (θ̂`1,1, θ̂`1,2)′ and θ̂bc = (θ̂bc,1, θ̂bc,2)′ computed using formula (68). We use the
sample size n = 50 and perform 20,000 Monte Carlo simulations for a grid of values for τ .
The results of the experiments are summarized in Figure 3.

To evaluate precision of the Monte Carlo integration, we compute MCSE, standard errors
based on CLT with sample size 20,000. We report 3 × MCSE to account for the joint testing
of 18 hypotheses. Despite its approximate nature, the asymptotic bias correction formula
systematically reduces the bias across all the designs and quantile levels. In the case of
DGP1, the bias correction leaves a remainder bias that is statistically indistinguishable from
zero, given the number of simulations. This result is consistent with the exact comparison
presented in Figure 2. The bias correction for DGP2 is very precise at the right tail of the
distribution, since the asymptotic formula precisely captures the population moments. The
remaining bias in the left tail is still significant.

For DGP3, the bias reduction is even more noticeable than in the previous two designs.
However, for θ0,1, the remaining bias is still significant for most τ 6= 0.5; for θ0,2, the remaining
bias is statistically indistinguishable from zero at all but two quantiles. The comparison
with DGP2 suggests that the large size of the remainder bias is partially due to the fact
the asymptotic formula only captures the quadratic terms of the population moments, and
partially due to the small density fY (y|W,Z) away from the median.
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Figure 3: Bias of θ̂`p (blue circle) and θ̂bc (gold squares), both scaled by n with n = 50 for
DGP1-3. We report results for quantile levels τ ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 0.8, 0.85, 0.9}.
Based on Monte Carlo simulations with 20,000 repetitions. The error bands correspond to 3
× MCSE to account for the joint testing of 18 hypotheses. Note that the scale of the y-axis
for DGP3 is different.

6 Directions for future research

We would like to conclude the paper by outlining some promising avenues for future research.
The seminal contributions by Robinson (1988), Rilstone et al. (1996), Andrews (2002b), and
Newey and Smith (2004), among many others, have stimulated an extensive literature on
small sample performance of GMM estimators with smooth sample moments. We hope that
our paper will, in turn, generate interest in the small sample analysis of models with dis-
continuous estimating equations, which include (but are not limited to) conditional quantile
models. In particular, let us outline three directions for further research.

First, an interesting extension of our results would be to the case of overidentified models
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that fully utilize the information in the conditional moment restrictions implied by condi-
tional quantile models.

Second, it would be useful to extend our higher-order expansions and bias correction
formulas to panel and time series data; see for instance Anatolyev (2005) for higher-order
results in the case of smooth sample moments.

Finally, our Bahadur-Kiefer expansions (Theorems 2 and 5) can be used to study and
compare the higher-order properties of competing resampling procedures such as the non-
parametric bootstrap, the wild bootstrap, and the pivotal bootstrap. Furthermore, we con-
jecture that the symmetric 1-step correction may enable convenient resampling-based bias
correction procedures such as the jackknife.
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Online appendix

A Coupling of sample moments, proofs

A.1 Proof of Theorem 1

The proof consists of four steps below which depend on auxiliary lemmas in Section A.2.

Step 1 (bound on the approximation error). First, let us split Z into a sum of a
positive and negative parts Z = Z+ − Z− , max(Z, 0) −min(−Z, 0). We will consider the
positive part Z+ only, since the argument for the negative part is analogous.

Denote

Z0 , [0,m], (71)

Zj,` ,
(
jm

2`
,
(j + 1)m

2`

]
, j ∈

{
0, . . . , 2` − 1

}
, ` ≥ 0. (72)

Hence Zj,` is a subinterval of [0,m] with lengthm2−` and midpointm(j+ 1
2
)/2`. The intervals

are nested such that the union of Z2j,`+1 and Z2j+1,`+1 constitutes Zj,`24. Denote the union
of even numbered subintervals at level ` > 0 as Z`, i.e.

Z` , ∪2`−1−1
j=0 Z2j,`. (73)

Using these intervals, we can define an approximating sequence of simple random variables

Z+,¯̀ ,

(
1−

¯̀∑
`=1

1

2`
1 {Z ∈ Z`}

)
m. (74)

By construction, |Z+ − Z+,¯̀| ≤ m/2
¯̀.

Hence, the empirical process Z+
n (y, a) , Gn1{Y ≤ y, A = a}Z+ can be written as

m−1Z+
n (y, a) = Gn1{Y ≤ y,A = a, Z ∈ Z0} −

∞∑
`=1

2−`Gn1{Y ≤ y,A = a, Z ∈ Z`} (75)

, Z+,0
n (y, a)−

∞∑
`=1

2−`Z+,`
n (y, a), (76)

where the last line defines Z+,`
n , for ` ≥ 0.

By Lemmas A.2 and A.3, for each ` ≥ 0, there exists an approximating Brownian bridge
24This is the Hungarian construction (see, for example, p.252 in Pollard, 2002).
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Z+,`(y, a), such that the remainder

R+,`
n (y, a) , Z+,`

n (y, a)− Z+,`(y, a) (77)

satisfies the bound E supy∈R |R+,`
n (y, a)| ≤ c̃1

logn+c̃0√
n

.

Now, with a convenient abuse of notation, define

Z+,¯̀

n (y, a) , Z+,0
n (y, a)−

¯̀∑
`=1

2−`Z+,`
n (y, a), (78)

Z+,¯̀(y, a) , Z+,0(y, a)−
¯̀∑

`=1

2−`Z+,`(y, a). (79)

The total remainder of the approximation of Z+,¯̀
n by Z+,¯̀ is then

R+,¯̀

n (y, a) , Z+,¯̀

n (y, a)− Z+,¯̀(y, a) = R+,`
n (y, a)−

¯̀∑
`=1

2−`R+,`
n (y, a). (80)

By the triangle inequality,

E sup
y∈R
|R+,¯̀

n (y, a)| ≤
¯̀∑

`=0

2−`E sup
y∈R
|R+,`

n (y, a)| ≤

( ¯̀∑
`=0

2−`

)
c̃1

log n+ c̃0√
n

. (81)

Note that the bound
∑¯̀

`=0 2−` ≤ 2 does not depend on ¯̀. Then we can define an approxi-
mating process

Z+(y, a) , mZ+,¯̀(y, a), (82)

so that
Z+
n (y, a) = Z+(y, a) +R+

n (y, a), (83)

where

E sup
y∈R
|R+

n (y, a)| ≤

( ¯̀∑
`=0

2−`

)
c̃1

log n+ c̃0√
n

m+mE
∞∑

`=¯̀+1

2−` sup
y∈R
|Z+,`

n (y, a)| (84)

≤

( ¯̀∑
`=0

2−`

)
c̃1

log n+ c̃0√
n

m+m

∞∑
`=¯̀+1

2−`E sup
y∈R
|Z+,`

n (y, a)|. (85)
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By the triangle inequality,

E sup
y∈R
|Z+,`

n (y, a)| ≤ E sup
y∈R
|Z+,`(y, a)|+ E sup

y∈R
|R+,`

n (y, a)|. (86)

By the KMT theorem, the first term on the right is bounded by the expectation of a supre-
mum of a standard Brownian bridge over [0, 1], denoted as constant cB. The constant cB
is finite by the definition of a Brownian bridge and the tail bounds for Brownian motions
(Shorack and Wellner, 2009, p.34). The second term is bounded by c̃1

logn+c̃0√
n

. Note that
both bounds do not depend on `, and hence

E sup
y∈R
|R+

n (y, a)| ≤ 2c̃1
log n+ c̃0√

n
m+m2−(¯̀−1)cB. (87)

We can take ¯̀= 1 + log2(
√
n) so that

E sup
y∈R
|R+

n (y, a)| ≤ 2c̃1
log n+ c̃0 + cB/(2c̃1)√

n
m = c1

log n+ c0√
n

m, (88)

for appropriately defined constants c0, c1.

The bound on the remainder of the analogous approximation for Z− is the same. To
complete the argument, take Z(y, a) , Z+(y, a)−Z−(y, a) and apply the triangle inequality
to bound the total remainder.

Step 2 (Z+,`(·, a) is a.s. 1/2-Hölder, up to a log term). Denote ψ(y) = P{Y ≤ y, Z ∈
Z`, A = a}. Since Z+,`(y, a) = B(`)(y)− yB(`)(1) for some Brownian motion B(`), we have

Z+,`(y2, a)− Z+,`(y1, a) = B(`)(ψ(y2))−B(`)(ψ(y1))− (ψ(y2)− ψ(y1))B(`)(1). (89)

Therefore,

|Z+,`(y2, a)− Z+,`(y1, a)|√
Ψ(f̄ |y2 − y1|)

≤ |B
(`)(ψ(y2))−B(`)(ψ(y1))|√

Ψ(f̄ |y2 − y1|)
+
|ψ(y2)− ψ(y1)| · |B(`)|√

Ψ(f̄ |y2 − y1|)
(90)

=
|B(`)(ψ(y2))−B(`)(ψ(y1))|√

2Ψ(|ψ(y2)− ψ(y1)|)︸ ︷︷ ︸
(i)

√
2 · Ψ(|ψ(y2)− ψ(y1)|)

Ψ(f̄ |y2 − y1|)︸ ︷︷ ︸
(ii)

(91)

+
√
|ψ(y2)− ψ(y1)| ·

√
|ψ(y2)− ψ(y1)|

f̄ |y2 − y1| log(1/f̄ |y2 − y1|)
· |B`(1)︸ ︷︷ ︸

(iii)

|. (92)

The goal of this step is to derive an a.s. bound of lim sup sup , lim supr→0+ sup0<|y2−y1|≤r

of the left-hand side.
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By Lévy’s modulus of continuity theorem (Theorem 10.6 in Schilling and Partzsch, 2014),
we have

lim sup
r→0+

sup
x1,x2∈[0,1],|x2−x1|≤r

|B`(x2)−B`(x1)|√
2Ψ(r)

= 1 a.s., (93)

so, since ψ(·) ∈ [0, 1], the lim sup sup of term (i) is a.s. bounded by 1 too.
In the second term (ii), we have, for |y2 − y1| small enough,

0 <
Ψ(|ψ(y2)− ψ(y1)|)

Ψ(f̄ |y2 − y1|)
≤ 1, (94)

since Ψ(x) is positive and strictly increasing in (0, e−1) (see Lemma 10.4 in Schilling and
Partzsch, 2014). Hence lim sup sup of the term (ii) is bounded by

√
2 a.s..

Finally, in the term (iii),

√
|ψ(y2)− ψ(y1)| ≤

√
f̄ |y2 − y1|, (95)

and therefore
lim sup
r→0+

sup
0<y2−y1≤r

√
|ψ(y2)− ψ(y1)| = 0 a.s. (96)

Since √
|ψ(y2)− ψ(y1)|

f̄ |y2 − y1| log(1/f̄ |y2 − y1|)
≤

√
|ψ(y2)− ψ(y1)|
f̄ |y2 − y1|

≤ 1, (97)

and lim supr→0+ sup0<|y2−y1|≤r |B
`(1)| = |B`(1)| a.s., we have

lim sup
r→0+

sup
0<|y2−y1|≤r

(iii) = 0 a.s. (98)

Combining the bounds for lim sup sup of terms (i), (ii) and (iii), we obtain

lim sup
r→0+

sup
0<|y2−y1|≤r

|Z+,`(y2, a)− Z+,`(y1, a)|√
Ψ(f̄ |y2 − y1|)

≤
√

2 a.s. (99)

Step 3 (Z(·, a) is a.s. 1/2-Hölder, up to a log term). By the definition of Z+(y, a) in
Equation (82),

m−1(Z+(y2, a)− Z+(y1, a)) = Z+,0(y2, a)− Z+,0(y1, a)−
¯̀∑

`=1

1

2`
· (Z+,`(y2, a)− Z+,`(y1, a)). (100)
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Dividing by
√

Ψ(f̄ |y2 − y1|) and using the triangular inequality, we obtain

m−1 |Z+(y2, a)− Z+(y1, a)|√
Ψ(f̄ |y2 − y1|)

≤ |Z
+,0(y2, a)− Z+,0(y1, a)|√

Ψ(f̄ |y2 − y1|)
+

¯̀∑
`=1

1

2`
· |Z

+,`(y2, a)− Z+,`(y1, a)|√
Ψ(f̄ |y2 − y1|)

. (101)

Taking lim sup sup of both sides and multiplying by m yields

lim sup
r→0+

sup
0<y2−y1≤r

|Z+(y2, a)− Z+(y1, a)|√
Ψ(f̄ |y2 − y1|)

≤ m(
√

2 +
√

2) = 2m
√

2. (102)

The case of Z− is analogous and yields the overall bound

lim sup
r→0+

sup
0<|y2−y1|≤r

|Z(y2, a)− Z(y1, a)|√
Ψ(f̄ |y2 − y1|)

≤ 4m
√

2. (103)

Step 4 (Z is (1/2− γ)-Hölder in expectation). First, note that, for any fixed γ ∈ (0, 1
2
),

E sup
y1 6=y2

|Z+(y2, a)− Z+(y1, a)|
|y2 − y1|

1
2−γ

≤ E sup
y1 6=y2

ψ(y1) 6=ψ(y2)

|Z+(y2, a)− Z+(y1, a)|
|ψ(y2)− ψ(y1)| 12−γ

(
|ψ(y2)− ψ(y1)|
|y2 − y1|

) 1
2−γ

+ E sup
y1 6=y2

ψ(y1)=ψ(y2)

|Z+(y2, a)− Z+(y1, a)|
|y2 − y1|

1
2−γ

≤ E sup
ψ(y1) 6=ψ(y2)

|Z+(y2, a)− Z+(y1, a)|
|ψ(y2)− ψ(y1)| 12−γ

· f̄ 1
2−γ . (104)

By the definition of Z+(y, a) in Equation (82),

m−1(Z+(y2, a)− Z+(y1, a)) = Z+,0(y2, a)− Z+,0(y1, a)−
¯̀∑

`=1

1

2`
· (Z+,`(y2, a)− Z+,`(y1, a)).

Dividing by |ψ(y2)− ψ(y1)| 12−γ and using the triangular inequality, we obtain

m−1 |Z+(y2, a)− Z+(y1, a)|
|ψ(y2)− ψ(y1)| 12−γ

≤ |Z
+,0(y2, a)− Z+,0(y1, a)|
|ψ(y2)− ψ(y1)| 12−γ

+

∞∑
`=1

1

2`
· |Z

+,`(y2, a)− Z+,`(y1, a)|
|ψ(y2)− ψ(y1)| 12−γ

. (105)

Taking E supψ(y1)6=ψ(y2) of both sides and multiplying by m yields

E sup
ψ(y1)6=ψ(y2)

|Z+(y2, a)− Z+(y1, a)|
|ψ(y2)− ψ(y1)| 12−γ

≤ 2Cγm <∞, (106)

where the bound holds by Lemma A.5, since Z+,`, ` ≥ 0, are Brownian bridges.
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Combining with (104) yields

E sup
y1 6=y2

|Z+(y2, a)− Z+(y1, a)|
|y2 − y1|

1
2
−γ

≤ 2Cγmf̄
1
2
−γ, (107)

which is the definition of (1/2− γ)-Hölder continuity of Z+ in expectation.
The case of Z− is analogous and yields the overall bound

E sup
y1 6=y2

|Z(y2, a)− Z(y1, a)|
|y2 − y1|

1
2
−γ

≤ 4Cγmf̄
1
2
−γ. (108)

A.2 Auxiliary Lemmas

Lemma A.1. Let Y be a r.v. with CDF F (y). Then there exist a uniformly distributed r.v.
V such that F−1(V ) = Y a.s.

Proof. This result follows immediately from Proposition 3.2 in Shorack (2017).

Consider a simple r.v. A ∈ {0, 1} defined on the same probability space with Y . Let
Gn(y, a) , 1√

n

∑n
i=1(1{Yi ≤ y, Ai = a} − P{Yi ≤ y, Ai = a}) for a ∈ {0, 1}.

Lemma A.2. For all a ∈ {0, 1}, there exist a tight Brownian Bridge {B◦(t) : 0 ≤ t ≤ 1}
such that, for all x ≥ 0,

P

{
sup
y∈R
|Gn(y, a)−B◦(P{Y ≤ y, A = a})| ≥ c1

x+ log n√
n

}
≤ c0 exp(−x), (109)

where the constants c1 and c0 do not depend on n, a, and x .

Proof. First, consider the case a = 1. Note that for any CDF F and its left-continuous
inverse F−1 the following holds: for any p ∈ [0, 1] and x ∈ R,

F−1(p) ≤ x if and only if p ≤ F (x).

Let V be the uniform r.v. such that F−1(V ) = Y a.s. as in Lemma A.1. Then

{Y ≤ y, A = 1} = {F−1(V ) ≤ y, A = 1} = {V ≤ F−1(y), A = 1} = {V + 2(1− A) ≤ F (y)}.

Now let F̃ be the CDF of V + 2(1− A) and let U be the uniform r.v. such that F̃−1(U) =
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V + 2(1− A) a.s. as in Lemma A.1. Then

{V + 2(1− A) ≤ F (y)} = {F̃−1(U) ≤ F (y)} = {U ≤ F̃ (F (y))}

By the KMT theorem, there exist a tight Brownian bridge B◦(u), such that

Rn , sup
0≤u≤1

∣∣∣∣∣ 1√
n

n∑
i=1

(1{Ui ≤ u} − P{Ui ≤ u})−B◦(u)

∣∣∣∣∣ (110)

is uniformly tight and satisfies, for any x > 0,

P

{
Rn ≥ c1

x+ log n√
n

}
≤ c0 exp(−x), (111)

where constants c1 and c0 depend neither on x nor n.
Therefore,

RY
n , sup

y∈R

∣∣∣∣∣ 1√
n

n∑
i=1

(1{Yi ≤ y, Ai = 1} − P{Yi ≤ y, Ai = 1})−B◦(P{Yi ≤ y, Ai = 1})

∣∣∣∣∣
= sup

y∈R

∣∣∣∣∣ 1√
n

n∑
i=1

(1{Ui ≤ F̃ (F (y))} − P{Ui ≤ F̃ (F (y))})−B◦(P{Ui ≤ F̃ (F (y))})

∣∣∣∣∣
≤ sup

0≤u≤1

∣∣∣∣∣ 1√
n

n∑
i=1

(1{Ui ≤ u} − P{Ui ≤ u})−B◦(u)

∣∣∣∣∣ = Rn

This establishes that RY
n ≤ Rn a.s., which means that RY

n also satisfies the tail bound
(111).

The case a = 0 is analogous since A = 0 is equivalent to Ac = 1, where Ac = 1−A. This
completes the proof.

Lemma A.3. Let a sequence of r.v. Rn ≥ 0 satisfy

P

{
Rn ≥ c1

x+ log n√
n

}
≤ c0 exp(−x) for all x ≥ 0. (112)

Then
ERn ≤ c̃1

log n+ c̃0√
n

. (113)
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Proof. Define ξn ,
√
n
c1
Rn and consider the following decomposition

Eξn = Eξn1{ξn ≤ log n}+ Eξn1{ξn > log n}.

The first term is bounded by log n. The second term can be bounded as follows:

Eξn1{ξn > log n} = E(ξn − log n)1{ξn − log n > 0}+ log n · P (ξn − log n > 0)

≤ Eζn + c0 log n,

where ζn = (ξn − log n)1{ξn − log n > 0}.
By assumption of the lemma, for x ≥ 0,

P {ζn ≥ x} = P

{
Rn ≥ c1

x+ log n√
n

}
≤ c0 exp(−x) for all x ≥ 0,

Therefore, by the Fubini theorem (e.g., Kallenberg, 2006, Lemma 3.4), Eζn ≤ c0. Overall,
we obtain

Eξn ≤ log n+ c0 + c0 log n = c0 + (1 + c0) log n (114)

or, substituting the expression for ξn,

ERn ≤
c1(1 + c0) log n+ c1c0√

n
. (115)

Taking c̃1 = c1(1 + c0) and c̃0 = c0/(1 + c0) completes the proof.

Lemma A.4. If a sequence of stochastic processes θ 7→ Xn(θ) defined on Θ ⊂ Rk satisfies
the bound

E sup
θ′ 6=θ

|Xn(θ′)−Xn(θ)|
||θ′ − θ|| 12−γ

≤ Cγ <∞ (116)

for some constant Cγ that does not depend on n, then for any random sequences θ′n, θn we
have

Xn(θ′n)−Xn(θn) = Op

(
||θ′n − θn||

1
2
−γ
)
. (117)

Proof. For M > 0, Markov’s inequality implies

P
(
|Xn(θ′n)−Xn(θn)| > M ||θ′n − θn||

1
2−γ

)
≤ P

(
sup
θ′ 6=θ

|Xn(θ′)−Xn(θ)|
||θ′ − θ|| 12−γ

> M

)
(118)

≤M−1E sup
θ′ 6=θ

|Xn(θ′)−Xn(θ)|
||θ′ − θ|| 12−γ

≤M−1Cγ (119)

Therefore, the left-hand side can be made arbitrarily small (for all n) by choosing large
enough M . The statement of the theorem follows.
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Lemma A.5. Any sequence of Brownian bridges t 7→ BBn(t) defined on Θ = [0, 1] satisfies
the bound (116).

Proof. Since BBn(t) = BMn(t)− tBMn(1) for some Brownian motion BMn(·), we have

BBn(t′)−BBn(t) = BMn(t′)−BMn(t)− (t′ − t)BMn(1). (120)

For the first term in (120), we have

E sup
t′ 6=t

|BMn(t′)−BMn(t)|
|t′ − t| 12−γ

≤ E sup
0<|t′−t|<1

|BMn(t′)−BMn(t)|
|t′ − t| 12−γ

+ E|BMn(1)−BMn(0)| <∞, (121)

where the last inequality holds since the first term on the right is finite by Theorem 10.1
and Corollary 10.2 in Schilling and Partzsch (2014).

For the second term in (120), we have

E sup
t′ 6=t

|(t′ − t)BMn(1)|
|t′ − t| 12−γ

= E sup
t′ 6=t
|t′ − t|

1
2
−γ|BMn(1)| ≤ E|BMn(1)| <∞. (122)

Combining (121) and (122) yields

E sup
t′ 6=t

|BBn(t′)−BBn(t)|
|t′ − t| 12−γ

≤ E sup
t′ 6=t

|BMn(t′)−BMn(t)|
|t′ − t| 12−γ

+ E sup
t′ 6=t

|(t′ − t)BMn(1)|
|t′ − t| 12−γ

<∞. (123)

The conclusion follows since no bounds in this proof depend on n.
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B Bahadur-Kiefer representation, proofs

Lemma B.1. Under Assumptions 2.1 and 3.2, g(θ) is three times continuously differentiable.

Proof. By definition, g(θ) = E(1{Y ≤ W ′θ}− τ)Z = E(E(FY (W ′θ|W,Z)− τ)Z). The result
then follows from the dominated convergence theorem.

Lemma B.2. Suppose Assumptions 2.1 and 3.2 hold. Then for any estimator θ̂, we have a
representation

ĝ(θ̂) =
1√
n
B◦n(θ0) + τ(EZ − EnZ) +

1√
n
Bn(θ̂)

+ g(θ0) +G(θ0)(θ̂ − θ0) +
1

2
(θ̂ − θ0)′∂θG(θ0)(θ̂ − θ0) +Op

(
‖θ̂ − θ0‖3

)
. (124)

Proof. By definition

ĝ(θ̂) = En1{Y ≤ W ′θ̂}Z − τEnZ, (125)

=
1√
n
B◦n(θ̂) + g◦(θ̂)− τEnZ (126)

=
1√
n
B◦n(θ0) +

1√
n
Bn(θ̂) + τ(EZ − EnZ) + g(θ̂) (127)

By Lemma B.1, g(·) is three times continuously differentiable. The Taylor theorem implies
that there exist a neighborhood of θ0 such that for any θ in the neighborhood,

g(θ) =g(θ0) +G(θ0)(θ − θ0) +
1

2
(θ − θ0)′∂θG(θ0)(θ − θ0)) +R(θ), (128)

where R(θ) = O (‖θ − θ0‖3). Then (124) follows immediately.

Lemma B.3. Under Assumptions 1.1, 2.1, and 3.1, any estimator θ̂`p that minimizes θ 7→
‖ĝ(θ)‖p satisfies θ̂`p

p→ θ0.

Proof. By Assumption 1.1,
arg min

θ∈Θ
‖g(θ)‖p = θ0. (129)

Assumptions 2.1 and 3.1 imply that the function class θ 7→ Zi(1{Yi ≤ W ′
iθ} − τ) is Donsker

and thus Glivenko-Cantelli, and hence25

sup
θ∈Θ
|ĝ(θ)− g(θ)| = sup

θ∈Θ
|(En − E)Zi(1{Yi ≤ W ′θ} − τ)| a.s.→ 0. (130)

25See Chernozhukov and Hansen (2006, Lemma B.2) for a more detailed discussion.
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By the argmin theorem (Theorem 2.1 in Newey and McFadden, 1994), applied to Qn(θ) =

‖ĝ(θ)‖p, we get θ̂`p
p→ θ0.

Lemma B.4. Under Assumptions 1, 2.1, and 3, for any estimator θ̂`p that minimizes
‖ĝ(θ)‖p, we have

θ̂`p = θ̂1 + op

(
1√
n

)
, (131)

‖ĝ(θ̂`p)‖p = op

(
1√
n

)
, (132)

where θ̂1 is introduced in equation (27).

Proof. The proof proceeds in four steps.

Step 1. Notice that under the assumptions of the lemma, the empirical process B◦n(θ) is
Donsker and stochastically equicontinuous (see Chernozhukov and Hansen, 2006, Lemma
B.2).

Step 2. By definition, θ̂1 can be written as

θ̂1 = θ0 −G−1

[
τ(EZ − EnZ) +

1√
n
B◦n(θ0)

]
= θ0 +Op

(
1√
n

)
, (133)

where θ0 andG−1 , ∂g(θ0) are well-defined by Assumption 1 and CLT holds as an implication
of Assumption 2.1.

By Lemma B.2 and Step 1,

ĝ(θ̂1) =
1√
n
B◦n(θ0) + τ(EZ − EnZ) +

1√
n
Bn(θ̂1)

+ g(θ0) +G(θ0)(θ̂1 − θ0) +
1

2
(θ̂1 − θ0)′∂θG(θ0)(θ̂1 − θ0) +Op

(
n−

3
2

)
(134)

=
1√
n
Bn(θ̂1) +Op

(
1

n

)
= Op

(
n−

1
2

)
. (135)

Since θ̂`p is defined as the estimator with the minimal norm,

‖ĝ(θ̂`p)‖p ≤ ‖ĝ(θ̂1)‖p = Op

(
n−

1
2

)
. (136)
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Step 3. By Lemma B.2 and Steps 1 and 2, θ̂`p satisfies

G(θ0)(θ̂`p − θ0) +
1

2
(θ̂`p − θ0)′∂θG(θ0)(θ̂`p − θ0)

= ĝ(θ̂`p)−
1√
n
B◦n(θ0)− τ(EZ − EnZ)− 1√

n
Bn(θ̂`p) +Op

(
‖θ̂`p − θ0‖3

)
(137)

= Op

(
1√
n

)
+Op

(
‖θ̂`p − θ0‖3

)
. (138)

By Lemma B.3, ‖θ̂`p − θ0‖
p→ 0. By Assumption 1.2,

θ̂`p − θ0 +Op

(
‖θ̂`p − θ0‖2

)
= Op

(
1√
n

)
, (139)

Op

(
‖θ̂`p − θ0‖

)
= Op

(
1√
n

)
, (140)

which implies θ̂`p = θ0 +Op

(
1√
n

)
. So consistency of θ̂`p implies by Step 1 that

Bn(θ̂`p) = B◦n(θ̂`p)−B◦n(θ0) = op(1). (141)

Step 4. Consider θ̂2 , θ̂1−G−1Bn(θ̂1)√
n

= θ̂1 +op

(
1√
n

)
. Then by the stochastic equicontinuity

of Bn and Lemma B.2,

ĝ(θ̂2) =
Bn(θ̂2)−Bn(θ̂1)√

n
+ op

(
1√
n

)
= op

(
1√
n

)
. (142)

This implies
‖ĝ(θ̂`p)‖p ≤ ‖ĝ(θ̂2)‖p = op

(
n−

1
2

)
. (143)

The remaining result then follows from (138).

Lemma B.5. Suppose that Assumptions 2 and 3.1 hold.26 For any pair of estimators θ̂, θ̂∗ ∈
Θ, the following property holds

Bn(θ̂)−Bn(θ̂∗) = Op

(
sm(mf̄‖θ̂ − θ̂∗‖)

1
2
−γ
)

+Op

(
sm log n√

n

)
. (144)

Proof. In view of Corollary 1, the proof is analogous to the argument in Example 3.

26See Appendix E for an alternative to this lemma that does not rely on Assumption 2.
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Lemma B.6. Suppose Assumptions 1.2, 2 and 3.1 hold. Then for any estimators θ̂ and θ̂∗

that satisfy

θ̂ − θ̂∗ = −G−1(θ0)
Bn(θ̂)−Bn(θ̂∗)√

n
+
Rn√
n
, (145)

for some sequence of random vectors Rn = Op(1), we have, for any small positive γ,

θ̂ − θ̂∗ = Op

(
m3s2f̄

n1−γ

)
+Op

(
‖Rn‖√
n

)
. (146)

Proof. By definition
Bn(θ̂)−Bn(θ̂∗) = B◦n(θ̂)−B◦n(θ̂∗). (147)

By Lemma B.5, for any γ ∈ (0, 1
2
),

Bn(θ̂)−Bn(θ̂∗) = Op

(
sm(mf̄‖θ̂ − θ̂∗‖)

1
2
−γ
)

+Op

(
sm

log n√
n

)
. (148)

By equation (145), we get

θ̂ − θ̂∗ = Op

(
sm(mf̄‖θ̂ − θ̂∗‖) 1

2
−γ

√
n

)
+

ζn√
n
. (149)

where ζn = Op

(
sm logn√

n

)
+ Rn. There are two possibilities. If ζn converges to zero slower

than Op

(
sm(mf̄‖θ̂ − θ̂∗‖) 1

2
−γ
)
, then, according to the big-O notation,

θ̂ − θ̂∗ = Op

(
ζn√
n

)
, (150)

which implies the result of the lemma since logn
n

= o(n−(1−γ)). The other possibility is

ζn = op

(
sm

√
f̄‖θ̂ − θ̂∗‖

)
. Then we can ignore ζn, i.e.

‖θ̂ − θ̂∗‖ =
sm(mf̄‖θ̂ − θ̂∗‖) 1

2
−γ

√
n

Op (1) , (151)

which implies

‖θ̂ − θ̂∗‖ =

(
Op

(
m

3
2
−γsf̄

1
2
−γ

√
n

)) 1
1/2+γ

= Op

(
m

3−2γ
1+2γ s

2
1+2γ f̄

1−2γ
1+2γ n−

1
1+2γ

)
. (152)

This again implies equation (150) and completes the proof.
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Lemma B.7. Under Assumptions 1–2, for any estimator θ̂ that minimizes ‖ĝ(θ)‖p, we have,
for all small enough γ > 0,

ĝ(θ̂`p) = Op

(
m3s2

n1−γ

)
. (153)

Proof. The proof proceeds in three steps. Throughout the proof we will treat f̄ as a constant
to simplify algebra.

Step 1. By Lemmas B.5 and B.4,

Bn(θ̂`p) = Op

(
sm(mn−1/2)

1
2
−γ
)

+Op

(
sm log n√

n

)
= Op

(
sm

3
2

1

n
1−2γ

4

)
. (154)

Step 2. Consider the following estimator

θ̂2 , θ̂1 −
G−1Bn(θ̂`p)√

n
(155)

By Lemma B.2 , we get

ĝ(θ̂2) =
1√
n
B◦n(θ0) + (τEZ − τEnZ) +

1√
n
Bn(θ̂2) (156)

+ g(θ0) +G(θ0)(θ̂2 − θ0) + (θ̂2 − θ0)′
∂G(θ0)

∂θ
(θ̂2 − θ0) +Op

(
1

n3/2

)
, (157)

Then, by definition of θ̂2,

ĝ(θ̂2) =
Bn(θ̂2)−Bn(θ̂`p)√

n
+ (θ̂2 − θ0)′

∂G(θ0)

∂θ
(θ̂2 − θ0) +Op

(
1

n3/2

)
. (158)

Also, by definition,
Bn(θ̂2)−Bn(θ̂`p) = B◦n(θ̂2)−B◦n(θ̂`p). (159)

By Lemma B.5,

Bn(θ̂2)−Bn(θ̂`p) = Op

(
sm

3
2‖θ̂2 − θ̂`p‖

1
2
−γ
)

+Op

(
sm

log n√
n

)
. (160)

Then (158) becomes

ĝ(θ̂2) =Op

(
sm

3
2‖θ̂2 − θ̂`p‖

1
2
−γ

√
n

)
+Op

(
sm

log n

n

)
. (161)
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By Lemma B.2 applied to θ̂`p and the definition of θ̂1,

θ̂`p = θ̂1 +G−1ĝ(θ̂`p)−
G−1Bn(θ̂`p)√

n
−G−1(θ̂`p − θ0)′

∂G(θ0)

∂θ
(θ̂`p − θ0) +Op

(
1

n3/2

)
. (162)

So by (157) and the definition of θ̂2, we get

θ̂`p − θ̂2 = G−1ĝ(θ̂`p) +Op(n
−1). (163)

So (161) becomes

ĝ(θ̂2) =Op

(
sm

3
2

√
n
‖ĝ(θ̂`p)‖

1
2
−γ

)
+Op

(
sm

log n

n

)
. (164)

Step 3. From (164), we obtain

‖ĝ(θ̂`p)‖p ≤ ‖ĝ(θ̂2)‖p = Op

(
sm

3
2

√
n
‖ĝ(θ̂`p)‖

1
2
−γ

)
+Op

(
sm

log n

n

)
. (165)

On the right hand side of this inequality, suppose that the first term dominates the second
term. Then ‖ĝ(θ̂`p)‖ = Op

(
sm logn

n

)
, which has order no larger than O

(
m3s2

n1−γ

)
, from which

the statement of the lemma follows.
Otherwise, if the second term dominates the first term, we have

‖ĝ(θ̂`p)‖
1
2

+γ ≤ Op

(
sm

3
2

√
n

)
(166)

or, after exponentiation,

‖ĝ(θ̂`p)‖ ≤ Op

(
s

2
1+2γm

3
1+2γ

n
1

1+2γ

)
≤ Op

(
s2m3

n1−γ

)
, (167)

which implies the statement of the lemma.
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C Higher-order bias, proofs

Lemma C.1. Consider a corner solution θ̂ = θ̂`p. Under Assumptions 1, 2.1, and 3, we
have

E
1√
n
Bn(θ̂) =

1

n
κ(τ) + o

(
1

n

)
(168)

where

κ(τ) , E
(
τ − 1

2

)
fε(0|W,Z)ZW ′G−1Z + nE

(
ĝ(θ̂) + ĝ∗(−θ̂)

2

)
. (169)

Proof. The proof proceeds in five steps.

Step 1. Note that

1√
n
EBn(θ̂) =

1√
n
E
(
B◦n(θ̂)−B◦n(θ0)

)
(170)

= E
(

1{Y ≤ W ′θ̂}Z
)
− Eg◦(θ̂). (171)

Step 2. Define ε̂i , Yi −W ′
i θ̂ and split the first term in the equation above as follows:

E1{Yi ≤ W ′
i θ̂}Zi = E1{ε̂i = 0}Zi + E1{ε̂i < 0}Zi. (172)

Lemma B.4 implies

θ̂ = θ0 −
1

n
G−1

n∑
i=1

(1{Yi ≤ W ′
iθ0} − τ)Zi +Rn, (173)

where Rn = op(n
−1/2). We can use this structure to isolate an influence of observation i,

1
n
λi , − 1

n
W ′
iG
−1Zi(1{Yi ≤ W ′

iθ0} − τ). The indicator 1{ε̂i < 0} can be rewritten as

1

{
Yi < W ′

i θ̂−i +
1

n
λi

}
, (174)

where

θ̂−i , θ0 −
1

n
G−1

n∑
j=1,j 6=i

(
1{Yj ≤ W ′

jθ0} − τ
)
Zi (175)

is equal to θ̂ without the linear influence of the observation i. Then, using Taylor’s theorem,
the term EZiP (Yi < W ′

i θ̂−i + 1
n
λi|1{Yi ≤ W ′

iθ0}, Zi,Wi) can be represented as

EZiP (Yi < W ′
i θ̂−i|Zi,Wi) + E

1

n
ZiλifY (W ′

i θ̂−i|θ̂−i, λi, Zi,Wi) +O

(
1

n2

)
. (176)
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By Assumption 3, fY (y|Wi, Zi) is uniformly bounded and

Eφ(Wi, Zi)fY (y|θ̂−i, λi,Wi, Zi) = Eφ(Wi, Zi)fY (y|Wi, Zi) ≤ Eφ(Wi, Zi)f̄ (177)

for any non-negative measurable function φ(Wi, Zi). The same is true for the derivative of
the density. So P (fY (y|θ̂−i, λi,Wi, Zi) = ∞) = 0 and P (∂fY (y|θ̂−i, λi,Wi, Zi) = ∞) = 0,
which justifies the Taylor expansion above. By a.s. smoothness of fY (y|θ̂−i, λi, Zi,Wi) and
equation (173),

EZiλifY (W ′
i θ̂−i|θ̂−i,Wi, λi, Zi) = EZiλifY (W ′

iθ0|Wi, Zi, 1{Yi ≤ W ′
iθ0}) +O

(
1√
n

)
. (178)

Notice that the side of the density in the Taylor expansion depends on the direction of
the deviation λ◦i , − 1

n
W ′
iG
−1Zi1{Yi ≤ W ′

iθ0},

EZiλ◦i fY (W ′iθ0|λ◦i , Zi,Wi) = (179)

= E
(
−ZiW ′iG−1Zi1{Yi ≤W ′iθ0} lim

t→0

1{W ′iθ0 − t1{λ◦i ≤ 0} < Yi ≤W ′iθ0 + t1{λ◦i > 0}}
t

)
(180)

= − lim
t→0

EZiW ′iG−1Zi1{Yi ≤W ′iθ0}
1{W ′iθ0 − t1{λ◦i ≤ 0} < Yi ≤W ′iθ0 + t1{λ◦i > 0}}

t
(181)

= −EZiW ′iG−1Zi1{−W ′iG−1Zi < 0} lim
t→0

1{εi ≤ 0}1{−t < εi ≤ 0}
t

(182)

− EZiW ′iG−1Zi1{−W ′iG−1Zi > 0} lim
t→0

1{εi ≤ 0}1{0 < εi ≤ t}
t

(183)

= −EZiW ′iG−1Zi1{W ′iG−1Zi > 0}fε(0|Zi,Wi). (184)

So (172) becomes

EZiP (Yi < W ′
i θ̂−i|Zi,Wi) +

1

n
EZiW ′

iG
−1Zi(τ − 1{W ′

iG
−1Zi > 0})fε(0|Wi, Zi)

+ E1{ε̂i = 0}Zi +O

(
1

n3/2

)
. (185)

Step 3. Now consider the second term Eg◦(θ̂). Let (Yn+1,Wn+1, Zn+1) be a copy of (Y,W,Z),
which is independent of the sample {Yi,Wi, Zi}ni=1. Also define λn+1,i = − 1

n
W ′
n+1G

−1Zi(1{Yi ≤
W ′
iθ0} − τ), which satisfies Eλn+1,i = 0. Then

Eg◦(θ̂) = E1{Yn+1 ≤ W ′
n+1θ̂}Zn+1 (186)

= EP{Yn+1 ≤ W ′
n+1θ̂−i −

1

n
λn+1,i|Wn+1, Zn+1}Zn+1 (187)

= EP{Yn+1 < W ′
n+1θ̂−i|Wn+1, Zn+1}Zn+1 +O

(
1

n3/2

)
. (188)
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Combining this equality with (185) yields

E
(

1{Y ≤W ′θ̂}Z
)
− Eg(θ̂) (189)

= EZiP{Yi < W ′i θ̂−i|Wi, Zi} − EZn+1P{Yn+1 < W ′n+1θ̂−i|Wn+1, Zn+1} (190)

+
1

n
EZiW ′iG−1Zi(τ − 1{W ′iG−1Zi > 0})fε(0|Wi, Zi) + E1{ε̂i = 0}Zi +O

(
1

n3/2

)
. (191)

Step 4. By expansion (173)

θ̂−i = θ0 −
1

n
G−1

n∑
j=1,j 6=i

(1{εj ≤ 0} − τ)Zj +Rn. (192)

Define

ζ−i,n ,
n− 1

n

1

n− 1
G−1

n∑
j=1,j 6=i

(1{εj ≤ 0} − τ)Zj, (193)

so that ζ−i,n is a zero mean r.v. that is independent of Yi. Therefore,

EZiP{Yi < W ′
i θ̂−i|Wi, Zi} = EZiP (Yi −W ′

i ζ−i,n < W ′
iW

′
iRn|Wi, Zi) (194)

= EZiP (ξi < W ′
iRn|Wi, Zi), (195)

where ξi , Yi −W ′
i ζ−i,n is a r.v. with PDF conditional on (Wi, Zi) by Assumption 3.1 and

ζ−i,n is independent of Yi.
Apply the Taylor theorem to obtain

EZiP{Yi < W ′
i θ̂−i|Wi, Zi,W

′
iRn} (196)

= EZiP (ξi < W ′
iθ0|Wi, Zi) + EW ′

iRnfξi(W
′
iθ0|Wi, Zi, Rn) (197)

+
1

2
ER′nWi∂fξi(W

′
iθ0|Wi, Zi, Rn)W ′

iRn + EOp

(
‖Rn‖3

)
. (198)

By the Bahadur expansion (173), Rn = Op(
1√
n
). Hence, (198) becomes

EZiP (Yi −W ′
i ζ−i,n < W ′

iθ0|Wi, Zi) + EW ′
iRnfεi(0|Wi, Zi, Rn) + o

(
1

n

)
. (199)
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Similarly,

EZn+1P{Yn+1 < W ′n+1θ̂−i,n|Wn+1, Zn+1} (200)

= EZn+1P (Yn+1 −W ′n+1ζ−i < W ′n+1θ0|Wn+1, Zn+1) (201)

+ EW ′n+1Rnfεn+1
(0|Wn+1, Zn+1, Rn) + o

(
1

n

)
(202)

= EZiP (Yi −W ′i ζ−i,n < W ′iθ0|Wi, Zi) + EZi,nW ′i (ERn)fεi(0|Wi, Zi) + o

(
1

n

)
. (203)

Note that

lim
t→0

EZiW ′i (Rn − ERn)(fεi(0|Wi, Zi, Rn)− fεi(0|Wi, Zi)) (204)

= EZiW ′i (Rn − ERn) lim
t→0

1

t
(E(1{0 < εi ≤ t}|Wi, Zi, Rn)− E(1{0 < εi ≤ t}|Wi, Zi) (205)

= lim
t→0

EZiW ′i (Rn − ERn)
1

t
(1{0 < εi ≤ t} − 1{0 < εi ≤ t}) = 0. (206)

To summarize, (191) becomes

E
(

1{Y ≤W ′θ̂}Z
)
− Eg◦(θ̂) (207)

=
1

n
EZiW ′iG−1Zi(τ − 1{W ′iG−1Zi > 0})fε(0|Wi, Zi) + E1{ε̂i = 0}Zi + o

(
1

n

)
. (208)

Step 5. Formula (208) can be rewritten as

E
(

1{Y ≤W ′θ̂}Z
)
− Eg◦(θ̂) (209)

=
1

n
EZiW ′iG−1Zi(τ − 1{W ′iG−1Zi > 0})fε(0|Wi, Zi) + E1{ε̂i = 0}Zi + o

(
1

n

)
(210)

= E1{ε̂i = 0}Zi − E
(

1{Yi ≥W ′i θ̂}Zi
)

+ E
(

1{Yn+1 ≥W ′n+1θ̂}Zn+1

)
(211)

= E1{ε̂i = 0}Zi − E
(

1{−Yi ≤W ′i (−θ̂)} − (1− τ)
)
Zi + E

(
1{−Yn+1 ≤W ′n+1(−θ̂)} − (1− τ)

)
Zn+1

(212)

= E1{ε̂i = 0}Zi −
[

1

n
EZiW ′iG−1Zi(1− τ − 1{W ′iG−1Zi > 0})fε(0|Wi, Zi) + E1{ε̂i = 0}Zi

]
+ o

(
1

n

)
.

(213)

This implies

1

2
E1{ε̂i = 0}Zi =

1

n
EZiW ′iG−1Zi(1{W ′iG−1Zi > 0} − 1/2)fε(0|Wi, Zi) + o

(
1

n

)
(214)

and

E1{ε̂i = 0}Zi = E

(
ĝ(θ̂) + ĝ∗(−θ̂)

2

)
. (215)
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Hence, equation (208) can be rewritten as

E
(

1{Y ≤ W ′θ̂}Z
)
− Eg◦(θ̂) (216)

=
1

n
EZiW ′

iG
−1Zi

(
τ − 1

2

)
fε(0|Wi, Zi) + E

(
ĝ(θ̂) + ĝ∗(−θ̂)

2

)
+ o

(
1

n

)
. (217)

D MILP implementation

Consider the following exact estimator

θ̂`1 = argminθ∈Θ ||ĝ(θ)||1. (218)

The underlying optimization problem can be equivalently reformulated as a mixed integer
linear program (MILP) with special ordered set (SOS) constraints,

min
e,θ,r,s,t

ι′t

s.t.

εi = ri − si = Yi −W ′
iθ, i = 1, . . . , n,

(ri, ei) ∈ SOS1, i = 1, . . . , n,

(si, 1− ei) ∈ SOS1, i = 1, . . . , n,

ri ≥ 0, si ≥ 0, i = 1, . . . , n,

ei ∈ {0, 1},

− tl ≤ Z ′l(e− τι) ≤ tl, l = 1, . . . , d.

where Zl is an n×1 vector of realizations of instrument l. All constraints except the last one
coincide with the ones derived by Chen and Lee (2018) in Appendix C.1. The last constraint
ensures that the objective function is the `1 norm of the just identifying moment conditions.

We also considered the big-M formulation while performing the Monte Carlo analyses.
The big-M formulation has certain computational advantages, although the arbitrary choice
of tuning parameters may result in sub-optimal solutions. This problem is more prominent
for tail quantiles. Consistent with our theory, the choice of tuning parameters in the big-M
formulation may affect the asymptotic bias. We prefer the above SOS formulation because
it does not depend on tuning parameters as the big-M MILP/MIQP formulations considered

20



in Chen and Lee (2018) and Zhu (2019).27

E An alternative to Lemma B.5

The key ingredient for deriving the Bahadur-Kiefer expansions is Lemma B.5. This lemma
follows from our novel coupling of the sample moments with a Hölder continuous process
and relies on the support restriction in Assumption 2.2. Here we outline an alternative to
Lemma B.5, which does not rely on Assumption 2.2.28 For simplicity, we treat m and f̄ as
fixed and omit them from the remainder bounds.

We impose the following assumptions.

Assumption 4 (Regressors). The distribution of W̃ , W/‖W‖ admits a density.

Assumption 2.2 corresponds to the case where the directions of W have finite support.
Assumption 4 focuses on the complementary case where the directions have continuous
support and distribution. Note that we can combine the two cases via an appropriate
partitioning of the probability space by whether W̃ satisfies Assumption 2.2 or Assumption
4.

Lemma B.5 ultimately relies on the approximate Hölder continuity of the sample moment
process. This property can be formalized in terms of tightness of a certain empirical process.
Namely, given a sequence rn →∞, define the following empirical process indexed by θ ∈ Θ,
‖h‖ = 1, h ∈ Rk, and s ∈

[
− c
rn
, c
rn

]
for some constants c > 0 and 0 < γ < 1

2
,

Ξγ,rn
n (θ, h, s) , Gnr

1/2−γ
n Z

(
1

{
Ỹ − W̃ ′θ

W̃ ′h
≤ s

}
− 1

{
Ỹ − W̃ ′θ

W̃ ′h
≤ 0

})
1{W̃ ′h > 0}. (219)

As in the case of Assumption 2.2, γ < 0 yields an unbounded pointwise covariance Ξγ,rn
n (θ, h, s)

as n→∞.
Notice that for any fixed θ and h, we can use the conditional CDF transform Fθ,h(s|Z)

corresponding to the random variable Ỹ−W̃ ′θ
W̃ ′h

to get a representation

Z1

{
Ỹ − W̃ ′θ

W̃ ′h
≤ s, W̃ ′h > 0

}
= Z1 {Uθ,h ≤ u,Ah = 1} , (220)

27These papers pick the value of the tuning parameter M as a solution to a linear program that in turn
depends on the choice of an arbitrary box around a linear IV estimate. This is problematic if there is a lot of
heterogeneity in the coefficients across quantiles. Moreover, in the linear model with heavy tailed residuals,
the linear IV estimator is not consistent.

28We thank Wolfgang Polonik and Zheng Fang for suggesting to explore VC-class arguments to bound the
modulus of continuity.
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where Uθ,h has the uniform [0, 1] distribution conditional on Z, u = Fθ,h(s|Z) and Ah =

1{W̃ ′h > 0}. Then Theorem 1 would imply that sups ‖Ξγ,rn
n (θ, h, s)‖ is tight for each θ, h.

Unfortunately, this pointwise result is not strong enough for proving Lemma B.5 under
Assumption 4. However, one can obtain an analogous result under the following alternative
assumption.

Assumption 5 (Asymptotic tightness). The empirical process (219) is asymptotically tight.

Assumption 5 could be verified using results on the modulus of continuity of empirical
processes indexed by VC classes of functions; see, for example, Chapter 3.2 in van der Vaart
and Wellner (1996).

Lemma E.1. Suppose Assumptions 4 and 5 hold. For any pair of estimators θ̂ and θ̂∗ ∈ Rd

such that θ̂∗ = θ̂+Op

(
1
rn

)
for some increasing sequence rn, the following property holds for

any 0 < γ < 1
2

Bn(θ̂)−Bn(θ̂∗) = Op

(
‖θ̂ − θ̂∗‖

1
2
−γ
)

+Op

(
1√
n

)
. (221)

Proof. The proof proceeds in two steps.
Step 1. Recall that

B◦n(θ) ,
1√
n

n∑
i=1

1{Yi ≤ W ′
iθ} − E1{Yi ≤ W ′

iθ}. (222)

Notice that

1{Y ≤ W ′θ∗} =1{Y ≤ W ′θ∗, W̃ ′h > 0}+ 1{Y ≤ W ′θ∗, W̃ ′h < 0}

+ 1{Y ≤ W ′θ∗, W̃ ′h = 0}. (223)

By Assumption 4, P{Y ≤ W ′θ∗, W̃ ′h = 0} ≤ P{W̃ ′h = 0} = 0 for all ‖h‖ = 1. Then

Gn{Y ≤ W ′θ∗, W̃ ′h = 0} =
1√
n

n∑
i=1

(1{Y ≤ W ′θ∗, W̃ ′h = 0} − 0) = Op

(
k√
n

)
, (224)

where the last equality follows from the fact that
∑n

i=1 1{W̃ ′
ih = 0} ≤ k a.s. since W̃ has

a density. Indeed, any k independent observations W̃i would be a.s. linearly independent.
Hence any non-zero vector h can be a solution to at most k − 1 equations W̃ ′

ih = 0 a.s.
The other two components in equation (223) can be rewritten as

1{Y ≤ W ′θ∗, W̃ ′h > 0} = 1

{
Ỹ − W̃ ′θ

W̃ ′h
≤ s, W̃ ′h > 0

}
(225)
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and

1{Y ≤ W ′θ∗, W̃ ′h < 0} = 1

{
Ỹ − W̃ ′θ

W̃ ′h
≥ s, W̃ ′h < 0

}
(226)

= 1

{
Ỹ − W̃ ′θ

W̃ ′(−h)
≤ −s, W̃ ′(−h) > 0

}
, (227)

where h , θ∗−θ
s

and s , ‖θ∗ − θ‖.

Step 2. Since θ̂∗ − θ̂ = Op

(
1
rn

)
, we can select a constant c such that ‖θ̂∗ − θ̂‖ ≤ c

rn

with arbitrarily high probability. Then by definition of Bn(θ) and (223), with probability
approaching 1 we get

Bn(θ̂∗)−Bn(θ̂) =
1

r
1
2
−γ

n

(
Ξγ,rn
n

(
θ̂, ĥ, ŝ

)
+ Ξγ,rn

n

(
θ̂,−ĥ,−ŝ)

))
+Op

(
2k√
n

)
, (228)

where ĥ , θ̂−θ̂∗
‖θ̂∗−θ̂‖ and ŝ , ‖θ̂∗ − θ̂‖. By Assumption 5, Ξγ,rn

n

(
θ̂, ĥ, ŝ

)
= Op(1) and

Ξγ,rn
n

(
θ̂,−ĥ,−ŝ)

)
= Op(1). To complete the proof, notice that Op

(
1
rn

)
= Op

(
‖θ̂ − θ̂∗‖

)
.
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