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Abstract 
 
We study a small open economy displaying Pareto-distributed wealth resulting from random 
death. The government runs a distribution scheme on inheritance. We present the mathematical 
background that allows to study the dynamics of means. We end up with ordinary differential 
equations for the mean of age and of individual and government wealth. We also study 
distributional dynamics analytically. Starting from any distribution of age and wealth, the 
aggregate distribution converges, both on a transition path towards a steady state and on a 
transition path towards balanced growth, to an exponential distribution of age and a Pareto-
distribution of wealth. The findings are illustrated for different distribution schemes. 
JEL-Codes: C610, D310, E210. 
Keywords: analytical dynamics of mean and distribution, age and wealth, government budget, 
stochastic differential equation, Kolmogorov backward equation. 
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1 Introduction

[Motivation] Distributional analyses gain in importance in times where wealth or income appear
to become increasingly unequally distributed across individuals. An observed distribution that
differs at two points in time can be understood in (at least) two ways. First, by comparative
static analysis of a stationary distribution or by studying the transition process from the first
realization of the distribution to the second. As the former is the dominating approach in
the literature and the latter is often performed numerically, we focus on the latter from an
analytical perspective for the case of a ’perpetual youth’model.
[Setup] We model the age process of representatives of a dynasty by a stochastic differential

equation. Wealth of the dynasty is derived from this age process while individuals are alive.
Newborns are endowed with a constant initial wealth level. We assume that capital is the only
source of income. This setup implies a stochastic differential equation for the wealth process
as well. We study dynasties in a small open economy framework with free international capital
flows. We investigate convergence properties towards a steady state and balanced growth path.
We emphasize that our setup reflects the age process of a typical ’perpetual youth’Yaari-

Blanchard model (Yaari, 1965, Blanchard, 1985). The wealth process in our setup is an al-
ternative representation of the evolution of wealth in Jones (2014, 2015). An endowment that
is identical at birth reminds of Kasa and Lei (2018), among others (see below for a detailed
comparison with the literature).
[Contribution] Our contribution is fourfold. The crucial departure from the economic birth-

death literature we are aware of lies in a modelling choice. We represent the age process resulting
from a birth-death process by a stochastic differential equation (SDE). As a consequence, the
wealth process in our economy can also be represented by an SDE. This allows us to apply
standard stochastic methods to understand its properties.
Second, building on the SDE, we derive an ordinary differential equation (ODE) that de-

scribes how mean age and mean wealth evolve over time. While mean age always converges to
a constant, we derive conditions under which mean wealth does so as well and under which it
converges to a growth path. We derive an SDE for government wealth as well. The government
taxes income (with a positive or negative rate), receives all wealth at death and endows each
newborn with a constant initial wealth level. The corresponding ODE tells us under which
conditions the debt to GDP ratios approach a steady state or a balanced growth path.
Third, combining conditions at the household level with conditions for government wealth,

we obtain equilibrium conditions. The economy can converge to a steady-state economy or
to a balanced growth path. The conditions are expressed in terms of the interest rate, time
preference rate, death rate and intertemporal elasticity of substitution.
Finally, we obtain results on the dynamics of distributions by steps that differ from the more

popular Fokker-Planck equations (FPEs). We rather solve the SDEs and derive distributions
from these solutions. We show that our age process converges to an exponential and our wealth
process converges to a Pareto distribution in the limit. Starting from any arbitrary initial
condition, we characterize transitional dynamics of age and wealth distributions analytically
and illustrate them graphically.
[Table of contents] The next section briefly surveys the literature to which we relate our

work. Section 3 introduces the model. Section 4 provides the stochastic background of our
analysis. Section 5 provides findings on the evolution of expected age, individual wealth and
government wealth. Section 6 first derives conditions for a steady state vs. a balanced growth
path, illustrates the difference between time paths for expected values and realizations and
offers our analytical characterization of transitional dynamics of distributions. The final section
concludes.
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2 Related literature

Birth-death process. We employ Poisson processes to model birth-death processes as many other
papers in the wealth-distribution literature (Cao and Lou, 2017, Gabaix et al., 2016, Kasa and
Lei, 2018, Aoki and Nirei, 2017). We share with others (Blanchard, 1985, Benhabib et al., 2016,
Gabaix et al., 2016, Kaymak and Poschke, 2016, Kasa and Lei, 2018, Toda, 2014, Benhabib
et al., 2011, Aoki and Nirei, 2017, Benhabib et al., 2019, Itskhoki and Moll, 2019) that death
and birth rates are identical. This differs from analyses that allow rates of birth and death to
differ leading to population growth (Jones, 2014, 2015, Cao and Lou, 2017). Yaari (1965) and
d’Albis (2007) consider age-dependent death rates.
Identical initial endowment. Newborns in our model receive a constant initial endowment.

This captures the idea of equality of chances with respect to initial wealth.2 This assumption
is also made by Kasa and Lei (2018). Newborns born at the same point in time receive
identical endowments also in Jones (2015). This endowment can grow over time, however. The
literature employing insurance companies in finite-life models in the tradition of Yaari (1965)
and Blanchard (1985) redistribute wealth intragenerationally. Both use insurance companies
selling an annuity to a consumer who then receives a frequent payment until the point of death.
After that, the insurance company claims the annuity without any further obligation (Yaari,
1965), or keeps the individual’s total wealth (Blanchard, 1985). In models in the Blanchard-
tradition, all individuals also have an identical initial wealth level (of zero).3

Kolmogorov backward equations. Analysis of the mean is facilitated by employing Kol-
mogorov backward equations. An introduction can be found in Stokey (2008, ch. 3.7). They
are also applied in finance papers like Cox and Ross (1976), Aoki (1995), Kawai (2009), or
Eberlein and Glau (2014).
Kolmogorov forward / Fokker-Planck equations. Fokker-Planck equations (FPEs) became

very popular recently and we share the belief in their usefulness with Benhabib, Bisin and
Zhu (2016), Achdou et al. (2020), Jones and Kim (2017), Cao and Luo (2017), Aoki and Nirei
(2017), Kaplan et al. (2018), Nuño and Moll (2018) and Itskhoki and Moll (2019).4 ,5

Probability theory. Given the nature of our project, we used textbooks on probability
theory. They include Oksendal (1998), Kallenberg (1997), or Privault (2018). In order to
understand stochastic integral equations, their solutions, and the infinitesimal generator of
Markov processes, Protter (1995) is helpful. Davis (1993) establishes a theorem on the evolution
of an expected value as being entirely determined by a generator for certain assumptions which
is essential when analyzing the mean.
Poisson processes. Going beyond the analysis of wealth distributions, we emphasize that

Poisson processes are ubiquitous in other parts of economics as well. Modelling strategies to
which our method of analyzing the mean could be applied include models of R&D (Aghion
et al., 2001, Grossman and Helpman, 1991, Helpman et al., 2005, Klette and Kortum, 2004,
Aghion and Howitt, 1992). Search and matching models in the tradition of Diamond (1982),
Mortensen (1982) and Pissarides (1985) also build on Poisson processes as do some business
cycles models (Brunnermeier and Sannikov, 2014, Wälde, 2005, He and Krishnamurthy, 2011,

2We ignore other determinants of equality of chances such as cognitive and non-cognitive skills or fam-
ily background. We also acknowledge a long literature studying alternative redistribution schemes. Recent
contributions include Cao and Luo (2017), Benhabib et al. (2016) and Benhabib et al. (2011).

3Including an annuity in our model would lead to a different deterministic evolution of wealth over time. It
would not change our main points, however. Thus, we share the ideas of Jones (2014, 2015), Toda (2014, p.
329), or Cao and Luo (2017) and omit insurance markets.

4Achdou et al. (2014) provide an overview of partial differential equation models in macroeconomics. Ahn
et al. (2017) describe numerical methods for continuous time models.

5Bayer and Wälde (2015, p. 4) provide a short survey on the use of FPEs in economics prior to these
papers. Bayer and Wälde (2010a, sect. 5) showed how to derive FPEs for relatively general cases (using a
Bewley-Huggett-Aiyagari model as example).
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2013, or Di Tella, 2017) or the trade literature in the tradition of Melitz (2003).
Pareto and double-Pareto distributions. Pareto distributions have become very popular re-

cently (Piketty and Zucman, 2015). They appeared in the analysis of top income changes (Saez
and Zucman, 2016), income growth per person, population growth (Jones, 2015), financial
deregulation, (corporate) taxes (Cao and Luo, 2017) or bequests and saving rate inequality
(Benhabib et al., 2019). Some models derive a ’double Pareto distribution’for wealth. This
can be achieved by introducing a diffusion processes in a model with exponentially distributed
lifetimes (Reed, 2001, 2003, Toda, 2012, 2014).6 Our focus is on analytical results for transi-
tional dynamics of distributions. We believe that they can also be applied to (appropriately
modified) double-Pareto structures.7

3 The model

The model presentation starts from small agents (one individual and one dynasty), passes by
a large agent (the government) and ends in equilibrium (the small open economy).

3.1 The individual

Each individual is endowed with a time preference rate ρ̂ > 0 and has a finite life that ends at
a random point in time. This point T is exponentially distributed with parameter δ, denoted
death rate. The individual maximizes expected utility Et

∫ T
t
e−ρ̂[s−t]u (c (s)) ds, where expec-

tations are formed with respect to T > t given information up to t. Instantaneous utility is
u (c (s)) and the individual chooses the time path of consumption c (s). It is well-known from
Blanchard-Yaari models that this maximization problem is identical to maximizing a determin-
istic objective function

U (t) =

∫ ∞
t

e−ρ[s−t]u (c (s)) ds, (1)

where discounting takes place at the rate ρ = ρ̂ + δ, i.e. adding the death rate δ to the time
preference rate. As the objective function shows, the individual cares about own consumption
only. They do not value bequests or utility of offsprings. Consumption c (s) is therefore
perceived to be deterministic. All bequests in our model will be accidental. We consider a
standard, constant relative risk aversion (henceforth CRRA), instantaneous utility function

u (c (t)) =
c1−σ − 1

1− σ . (2)

The budget constraint of our individual is deterministic as well and reads

ȧ (t) = (r − τ) a (t)− c (t) . (3)

In the absence of labor income, the only source of income is interest r on individual wealth a (t).
Furthermore, a wealth tax τ is paid to the state.8 Consumption reduces wealth accumulation
and the price of the consumption good is normalized to one. The time derivative of wealth is
denoted by the usual ȧ (t) .

6See also the analyses by Benhabib et al. (2016), Reed (2011) or Toda and Walsh (2015).
7So far double-Pareto findings are built on a combination of Brownian motion and exponential age. Toda

(2014) writes that “the double Pareto property is robust in the sense that it depends only on multiplicative
growth and the geometric age distribution and not on the details of the stochastic process governing growth”.
Gabaix (1999) conjectures that the power law should hold even if the multiplicative process is time-varying.
Hence, obtaining double-Pareto findings employing Poisson processes only seems possible.

8The wealth tax τ turns into a capital income tax τc when we replace τ by rτc. The budget constraint (3)
would then read ȧ (t) = (1− τc) ra (t)− c (t).
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When we solve the individual’s maximization problem, optimal consumption is available in
closed form (see app. A.1),

c (t) = φa (t) with φ ≡ ρ− (1− σ) (r − τ)

σ
. (4)

Consumption is a constant share φ out of wealth. Deriving this solution also shows that
consumption grows at a rate

z ≡ r − τ − ρ
σ

. (5)

As long as the net interest rate r−τ exceeds the time preference rate ρ, wealth of the individual
increases over time.
Now imagine an individual is born at tB. Age of the individual is then t− tB. Using (4), (3)

and endowing the individual with initial wealth a (tB) , wealth is a function of age and follows

a (t) = a (tB) ez[t−tB ]. (6)

This finding is well-known from many closed-form solutions or steady-state properties: Wealth
also grows at the rate z.

3.2 The dynasty

Turning to a dynasty i, an offspring is born once an individual dies. A dynasty is therefore
characterized by a stochastic age process and a stochastic wealth process. We describe both of
them by stochastic differential equations driven by Poisson processes. This is the key novelty
of our paper from a methodological perspective.

3.2.1 Age

We start by specifying the age process. As emphasized above, our specification is representative
of age processes in many papers employing a birth-death framework with constant population
size. Our findings obtained below are possible as we model this age process by a stochastic
differential equation. It reads

dXi (t) = bdt−Xi (t−) dQδ
i (t) . (7)

Age of the currently alive individual of dynasty i at a point in time t is denoted by Xi (t). It
increases linearly and deterministically in time with slope b. When age and time are measured
in the same units, b equals one. Age drops to zero at random points in time, i.e. when the
increment dQδ

i (t) of the Poisson process (Q(t))t≥0 equals one. Poisson processes Qδ
i (t) are

independent of each other.
The arrival rate of this Poisson process is the constant death rate introduced above before

(1). Age dropping to zero means that an individual that dies is replaced by a newly born
offspring of age zero. Population size N therefore remains constant. We denote the initial age
of the currently alive individual of dynasty i by xi.9

3.2.2 Wealth

We can now describe the wealth process of a dynasty i.While alive, an individual accumulates
wealth according to (6). When death hits according to (7), all wealth of a dynasty goes to

9Parameters of the process (7) could differ across dynasties. Concerning the age process, we only allow for
differences in initial age in this paper.
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the state which, in turn, endows the newborn with some initial endowment ā.10 This wealth
accumulation and redistribution scheme is captured by

dAi (Xi (t)) = zAi (Xi (t)) dt+ [ā− Ai (Xi (t−))] dQδ
i (t) . (8)

Wealth Ai of dynasty i whose currently alive member has age Xi (t) at time t changes according
to a deterministic and a stochastic part. The deterministic part incorporates optimal wealth
accumulation (6) at the individual level via the parameter z: as long as the individual is alive,
(8) describes a deterministic growth of wealth at the rate of z, just as (6).11 The stochastic
part shows that in the case of death at t, wealth is reduced by the wealth level Ai (Xi (t−)) at
t−, i.e. an instant before death. Wealth is increased by ā such that the newborn starts with
this initial endowment.12

3.3 The government

Consider a government that levies a tax on wealth, collects all wealth at the moment of death
and endows all newborns with an initial constant amount of wealth. We can express the change
in government wealth based on one dynasty by the following SDE

dGi (Ai (t)) = τAi (t) dt+ [Ai (t−)− ā] dQδ
i (t) . (9)

The first source of income is given by tax revenue τAi (t) . The second source is wealth Ai (t−)
of individuals being transferred to the state at the moment of death, i.e. when dQδ

i (t) = 1.
Government spending consists in endowing the newborn with a constant amount of wealth ā.
We do not impose a balanced government budget at each instant (as e.g. Benhabib et al.,
2016). We rather allow the government to trade government bonds on the international capital
market.13

When we denote total government wealth by G (t) , its evolution follows from summing over
all dynasties N ,

dG (t) = ΣN
i=1

{
τAi (t) dt+ [Ai (t−)− ā] dQδ

i (t)
}
. (10)

3.4 The small open economy

We study a small open economy. All of our distributional findings below concerning age and
wealth can therefore be understood as findings describing the population of a small open econ-
omy. In this small open economy, international capital flows fix the domestic interest rate r.
Optimal consumption as described in (4) is therefore determined by the international interest
rate (and preferences of households).
Concerning production processes, we could think of AK technologies as in Toda (2014).

With an AK technology (used domestically and abroad), domestic output would be indetermi-
nate as it does not matter where capital is allocated. In the case of a neoclassical production

10As discussed above, the absence of planned bequests and identical endowments of newborns is a common
assumption in the literature (Kasa and Lei, 2018, Jones, 2015 and models in the Blanchard, 1985, tradition).
11Even though Ai (Xi (t)) precisely describes the deterministic link between wealth and age in models of this

type, we will also employ Ai (t) when appropriate.
12An obvious extension reduces the inheritance tax from 100% as in (8) to some 0 < τb < 1. The wealth

constraint would read dAi (Xi (t)) = zAi (Xi (t)) dt + [ā− τbAi (Xi (t−))] dQδi (t) . Extending our analyses for
the mean and aggregate equilibrium is straightforward. The analysis of distributional dynamics is an order of
magnitude more complex. We return to this issue once we have understood distributional dynamics of wealth
following (8).
13This allows to study wealth of domestic dynasties and government wealth independently of each other.
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function with capital and labour, the wage w would be fixed as well.14 We could add labour
income to the household budget constraint. Closed-form solutions would persist.
The production process in our model is not central to the results, however, as long as the

consumption good is homogenous and traded internationally. Domestic production would be
constant in the neoclassical case with a constant interest rate r. Households would nevertheless
grow richer and experience exponential consumption growth as they accumulate wealth abroad.
For all of our results on inequality and output, we either measure output by consumption or
by wealth directly.

4 Mathematical background: Describing the mean of a
stochastic process

This section discusses principles behind computing means in section 4.1. Section 4.2 looks at a
linear stochastic differential equation (SDE) that describes a stochastic process. This section
also computes the time derivative of the mean of this stochastic process. We propose two
approaches: a “fast and intuitive”approach and one that follows a general rigorous approach
from stochastic theory. Both approaches yield the same results.15

4.1 Preliminaries

We are interested in a class of real-valued stochastic processes (X(t))t≥0. This class can be
described as solutions of an SDE driven by a Poisson process (Q(t))t≥0 with intensity λ > 0.
Given suitable functions f, g : R→ R, the SDE takes the form16

dX(t) = f(X(t))dt+ g(X(t−))dQ(t), t ≥ 0. (11)

Intuitively, the dynamics of the solution to (11) is the following: The path (X(t)) moves along
solution curves of the ordinary differential equation ẋ = f(x). Whenever the Poisson process
(Q(t)) jumps at a certain time, say τ , the process jumps from its position X(τ−) immediately
before τ to its new position X(τ) = X(τ−) + g(X(τ−)).
For completeness, let us briefly discuss the general mathematical set-up behind (11): The

process is defined on a filtered probability space17
(

Ω,F , P, F̃
)
where Ω is the sample space,

F is a σ−algebra and P is a probability measure on F and F̃ = (F̃t)t≥0 is a filtration of
sub-σ-algebras of F . Strictly speaking, X : [0,∞) × Ω → R is then a function of time and
“randomness”, where X(t, ω) is the (random) value of the process at time t ≥ 0 in the sample
point ω. We will follow the usual approach and suppress the dependence on ω in the notation,
so X(t) denotes the real-valued random variable which describes the state of the process at a
fixed time t ≥ 0. We will write (X(t)) ≡ (X(t))t≥0 to denote the (random) path of the process
and sometimes simply write X to denote the process when the context is clear. We will try
to follow the usual notational convention to denote random variables by capital letters and
possible (fixed) values by small letters. A Poisson process (Q(t))t≥0 with intensity λ > 0 on

14It would also imply a constant domestic wage rate. In the presence of unemployment as in Bayer et
al. (2019), the domestic capital stock would adjust accordingly.
15Readers interested in understanding means can go to section 4.2 immediately. The analysis of the mean

can be understood without the rigorous background in section 4.1.
16As usual, we understand (11) to be a shorthand notation for the equation X(t) = X(0) +

∫ t
0
f(X(s)) ds+∫ t

0
g(X(s−)) dQ(s) with t ≥ 0.
17We can and will assume that the “usual conditions”are fulfilled, i.e., F̃ is right-continuous and complete,

see e.g., Garcia and Griego (1994, p. 338).

7



(
Ω,F , P, F̃

)
is a process with Q(0) = 0 which is constant between jumps of size +1 with the

property that Q(t)−Q(s) is independent of F̃s and Poisson distributed with mean λ(t− s) for
any 0 ≤ s < t.
Under suitable assumptions,18 it is known that (11) has a unique solution for any starting

value X(0) (which could itself be random) which is adapted to the filtration F̃ and has right-
continuous paths. Furthermore, if X(0) has finite expectation E[|X(0)|] < ∞, we have then
E[|X(t)|] <∞ for all t > 0 as well. The analogous statement holds for second moments.
The solutions are semi-martingales and also (strong) Markov processes.19 This allows to

use tools both from stochastic analysis and from the theory of Markov processes in order to
analyze the behavior of the process (X(t)).
For the Markov process viewpoint, we need a family Px, x ∈ R of probability measures on

(Ω,F) where for given x ∈ R, Px describes the law when starting from the fixed x = X(0), in
particular Px(X(0) = x) = 1. We will write expectations with respect to Px as Ex such that

Ex[h(X(t))] = E[h(X(t)) | X(0) = x], (12)

where h : R→ R is (a suitable) test function.20 The transition semigroup21 is (Pt)t≥0 where Pt
is defined via

Pth(x) ≡ Ex[h(X(t))], x ∈ R. (13)

In an economic spirit, if the test function h : R→ R, represented utility, Pth(x) is the expected
value at time 0 of the random utility h(X(t)) at time t given that we know X(0) = x.
The generator A of a (Feller) transition semigroup (Pt)t≥0 is defined as

Ah (x) = lim
t→0,t>0

Pth(x)− h(x)

t
, x ∈ R (14)

for functions h in its domain D(A). By definition, D(A) consists of all functions h ∈ C(R) for
which the limit on the right hand side of (14) exists (in the “strong”sense of the supremum
norm on C(R), i.e., uniformly in x). For a more probabilistic interpretation of (14), we re-write
this as Ah (x) = limt→0,t>0

Ex[h(X(t))]−h(x)
t

. Thus, for a very small positive time t > 0 and a given
starting point x, we have

Ex[h(X(t)] ≈ h(x) + tAh (x)

and, hence, Ah(x) describes approximately22 how the mean of h(X(t)) changes from its initial
value h(x) over a very short time interval.
The generator for the solution of (11) looks as follows23

Ah (x) = f(x)h′(x) + λ [h(x+ g(x))− h(x)] (15)

18We will either assume that f is Lipschitz continuous, that is there exist cf < ∞ so that |f(x) − f(y)| ≤
cf |x − y| holds for all x, y ∈ R and that g is either Lipschitz continuous or bounded (see for example Garcia
and Griego, 1994, Theorem 6.2).
19In fact, they belong to the class of piece-wise deterministic Markov processes: Between the jump times

of (Q(t)), (X(t)) follows a differentiable curve. Such processes are discussed in much greater detail in Davis
(1993). See also Garcia and Griego (1994, p. 362) for the Markov property.
20Suitable means that the expectation in (12) is well-defined. This is, for example, the case when h is

measurable and bounded or non-negative.
21The semigroup property means PtPs = Pt+s, compare e.g. Protter (2004, p. 35). It is known that

for our examples (Pt)t≥0 is a so-called Feller transition semigroup, see e.g. Davis (1993, Thm. (27.6)), that
is Pt : C(R) → C(R) where C(R) denotes the set of continuous functions which vanish at ±∞. This is
mathematically convenient since it allows to work on the Banach space C(R).
22A precise meaning of ≈ is here that in fact Ex[h(X(t)] = h(x) + tAh (x) + o(t) as t ↓ 0, where the “error

term”o(t) goes to 0 faster than linearly in t.
23See, e.g., Garcia and Griego (1994, p. 361—362).
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and D(A) contains all differentiable functions h ∈ C(R) such that the derivative h′ ∈ C(R).
Let us briefly discuss why (15) holds. For an intuitive approach, consider h ∈ D(A), X(0) = x,
t > 0 very small. Then Px(Q(t) = 1) = λt + O(t2), Px(Q(t) = 0) = 1− λt + O(t2), Px(Q(t) ≥
2) = O(t2). On the event {Q(t) = 0} (no jump before time t), we have, by linearizing the ODE,
X(t) ≈ x+ tf(x); on the event {Q(t) = 1} we have X(t) ≈ x+ g(x). Hence

Ex[h(X(t))] ≈ (1− λt)h(x+ tf(x)) + λth(x+ g(x))

= h(x+ tf(x))− h(x) + λt [h(x+ g(x))− h(x)]− λt [h(x+ tf(x))− h(x)]

subtracting h(x) on both sides, dividing by t and letting t ↓ 0 then yields (15) (use the chain
rule on d

dt
h(x+ tf(x)) and observe that λt

(
h(x+ tf(x))− h(x)

)
= O(t2)).

A rigorous argument goes as follows: Applying to (X(t))t≥0 the chain rule for paths of
bounded variation,24 we find

h(X(t)) = h(X(0)) +

∫ t

0

h′(X(s))f(X(s)) ds+

∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
dQ(s)

= h(X(0)) +

∫ t

0

h′(X(s))f(X(s)) ds+ λ

∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
ds

+

∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
d[Q(s)− λs].

By martingale properties of compensated Poisson processes (see, e.g. Garcia and Griego, 1994,
Thm. 5.3), the process∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
d[Q(s)− λs], t ≥ 0

is a martingale, in particular its expectation equals 0. Thus, taking expectations with respect
to Px shows

Ex[h(X(t))] = h(x) + Ex

[∫ t

0

h′(X(s))f(X(s)) ds

]
+ λEx

[∫ t

0

(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)
ds

]
= h(x) +

∫ t

0

Ex [h′(X(s))f(X(s))] ds

+ λ

∫ t

0

Ex

[(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)]
ds,

where we used Fubini’s theorem in the second equation. Thus

Ex[h(X(t))]− h(x)

t
=

1

t

∫ t

0

Ex [h′(X(s))f(X(s))] ds

+
λ

t

∫ t

0

Ex

[(
h
(
X(s−) + g(X(s−))

)
− h(X(s−))

)]
ds.

Using the fact that lims↓0X(s) = lims↓0X(s−) = X(0) because paths are right-continuous, this
shows (15) by taking t ↓ 0.
This a good place to highlight the difference between Kolmogorov backward equations and

Kolmogorov forward equations (aka Fokker-Planck equations). If distributional properties are

24See, e.g., Garcia and Griego (1994, p. 344).
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to be understood, the forward equation is applied. If the interest lies in the mean, the backward
equation can be used (see for instance Kallenberg, 1997, p. 192). For Markov processes the
general Kolmogorov backward equation reads (compare Davis, 1993, p.30, equ. 14.11)

d

dt
Ex [h (X (t))] = Ex [(Ah) (X (t))] (16)

for all functions h ∈ D(A).25

We are particularly interested in computing the mean

µ(x, t) ≡ Ex[X(t)] (17)

for processes of the form (11). We will do this in the following section.

4.2 An example

We start by looking at a stochastic process X(t) described by a SDE,

dX (t) = −aX (t) dt+ bdQ (t) (18)

with X (0) > 0 and a, b > 0. To connect (18) to (11), set f(x) = −ax and g(x) = b. This
implies that X (t) ≥ 0 ∀ t as the deterministic decay is exponential, i.e. X (t) approaches zero
asymptotically in the absence of jumps. The arrival rate of Q(t) is given by the constant λ > 0.
The support of X (t) is R∗+, i.e. neither zero nor infinity are included, ]0,∞[. The support is
infinitely large as in principle Q(t) can jump very often relative to the speed of a. Figure 1
shows one possible realization of process (18).

Figure 1 One possible realization of the stochastic process (X(t))t≥0 in (18)

4.2.1 The mean (simple approach)

We will now derive the expected value Ex[X(t)] in a rather straightforward way. The linearity
of (18) helps in this respect.

25As further information, a brief and reader-friendly introduction is Garcia and Griego (1994). Standard
texts include Davis (1993), Protter (1995), Privault (2018), Kallenberg(1997) and Liggett (2010). In particular,
Liggett (2010, ch. 3) has a very readable introduction to Feller processes.
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In a first step, we express the SDE in (18) in its integral version. It reads X (t)−X (0) =
−a
∫ t

0
X (s) ds+ b

∫ t
0
dQ (s) . When we apply the expectations operator Ex from (12), we get

Ex[X (t)]− Ex[X (0)] = −a
∫ t

0

Ex[X (s)] ds+ bEx

[∫ t

0

dQ (s)

]
= −a

∫ t

0

Ex[X (s)] ds+ bλ

∫ t

0

ds. (19)

We can pull the expectations operator inside the integral as the appropriate version of a Fubini
theorem holds (see Protter, 2004, p. 207 or Bichteler and Lin, 1995, p. 277, ex. 4.1 for more
background). The second equality uses the martingale result of Garcia and Griego (1994,
theorem 5.3).
In a second step, we rewrite (19) employing µ (x, t) from (17) and obtain µ (x, t)−µ (x, 0) =

−a
∫ t

0
µ (x, s) ds+ bλ

∫ t
0
ds. Computing the derivative with respect to time t gives

dµ (x, t)

dt
≡ µ̇ (x, t) = −aµ (x, t) + bλ. (20)

The Kolmogorov backward equation has thus turned into an ordinary differential equation. It
describes the change over time of the expected value of X (t) . Expectations are formed from
the perspective of the initial point of the process, here 0. The initial condition for t = 0 is
µ(x, 0) = x.
It would then be straightforward to study the properties of this ODE. As one can easily

verify, the mean converges to the fixpoint µ∗ = bλ/a from above and below.

4.2.2 The mean (generic approach)

We now show how to derive the ODE for the mean in (20) in a way more closely related to
section 4.1. The idea consists in using the identity function h(x) = x as a test function and
insert it into the corresponding Kolmogorov backward equation.
With h(x) = x, h′(x) = 1, (16) becomes

d

dt
Ex [X (t)] = Ex [(Ah) (X (t))] = Ex [−aX(t) + b] = −aEx [X(t)] + b.

Replacing Ex [X (t)] by µ(x, t) from (17) again, yields (20). Hence, we can either work with the
integral version of an SDE and form expectations as in section 4.2 or we use the machinery from
section 4.1 to obtain an ODE for the mean of our stochastic process. The second approach also
shows why (and when) the first approach works so nicely: We need that for h(x) = x, Ah(x)
is an affi ne function of x.

5 Mean dynamics for dynasties, the population and the
government

We now apply the results of section 4 to the model from section 3. There is no need to apply
our findings to an individual as an individual experiences a deterministic evolution of age and
wealth up to death. We therefore study expectations for dynasties, the population and the
government.
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5.1 Expected age

• A dynasty

Define µ (xi, t) as the expected age of the currently alive individual of dynasty i at point in
time t given that the initial age at t = 0 is known and equals xi. With definition (17),

µ (xi, t) = ExXi (t) ≡ E [Xi (t) |Xi (0) = xi] . (21)

There are two sources of heterogeneity in age over time. First, individuals differ in initial age
xi. Second, they differ in the realization of death and birth. This is why the mean µ (xi, t) has
the same functional form for all dynasties. The heterogeneity in initial age is captured by the
argument xi, the heterogeneity in the realization of death and birth is captured by forming the
expectation.26

Applying (16) to our age process (7) yields a linear ODE describing the evolution of the
expected age over time (see app. A.2),

µ̇ (xi, t) = b− δµ (xi, t) . (22)

Expected age increases with b and decreases with the death rate δ times the current expected
age of an individual. Solving this equation for t > 0 yields

µ (xi, t) = e−δt [xi − µ∗] + µ∗ (23)

where µ∗ = b/δ is the limit for very large t. Intuitively, when we ask about the expected age of
an individual belonging to a dynasty i for very far in the future, current age does not matter.
The expected age is larger, the faster the individual grows old (i.e. the larger b) and is smaller,
the larger the death rate δ: If individuals are replaced by a newborn with age 0 very frequently,
individuals do not have enough time to grow old.
The analytical solution (23) shows that expected age at t = 0 is current age and that the

impact of initial age on expected age falls over time at the rate of δ. As figure 2 shows, this is
true both for initial age above and below the long-run level µ∗.

Figure 2 Evolution of individual mean age over time
26Concerning a generalization briefly discussed in footnote 9, we would write µi (xi, t) if parameters differed

across dynasties. If only death rate differ, one could employ µ (xi, δi, t) .
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Note that a declining expected age in the case of initial age µ (xi, 0) above the long-run
value µ∗, makes sense. As the term ’perpetual youth’says, expected remaining life-time b/δ
is independent of age. Yet, age of an old individual will drop by more when replaced by a
newborn compared to age of a young individual. Hence, expected age of any individual above
µ∗ starts falling as soon as we look into the future.

• The population

Now imagine we study a population that consists of many dynasties. For a given point in
time, (individuals representing the) dynasties all have different ages. Average age X̄ (t) of the
population at some t is

X̄ (t) ≡ ΣN
i=1Xi (t) /N . (24)

When t lies in the future, X̄ (t) is a sum of random variables and thereby a random variable as
well. Applying expectations shows that expected average age equals the average of expected
individual age, EX̄ (t) = 1

N

(
ΣN
i=1µ (xi, t)

)
.27 Employing our solution from (23), some simple

algebra (available upon request) yields exactly the same structure as for expected individual
age

EX̄ (t) = e−δt
[
ΣN
i=1xi/N − µ∗

]
+ µ∗. (25)

The only difference consists in the initial condition. Initial age xi is replaced by average initial
age of the population, ΣN

i=1xi/N . Graphically, average expected age of the population evolves
in the same way as displayed in fig. 2 for individual age.

5.2 Expected wealth

• A dynasty

We now return to wealth, our main variable of interest. We define the expected level of
dynasty wealth, η (ai, t) , as

η (ai, t) = Ea (Ai (t)) ≡ E [Ai (t) |Ai (0) = ai] . (26)

Following the intuitive description from above, we are at an initial point in time 0, consider an
individual with initial age Xi (0) and endow them with initial wealth Ai (0) = ai. The mean
η (ai, t) then provides the expected value for individual i with initial wealth ai at a future point
in time t.Following similar steps as for age, we again obtain a linear differential equation (see
app. A.3),

η̇ (ai, t) = δā+ (z − δ) η (ai, t) . (27)

Expected wealth depends on the death rate δ, on endowment ā of a newborn and on the growth
rate z of individual consumption and wealth from (5). Solving this equation yields

η (ai, t) = (ai − η∗) e(z−δ)t + η∗, with η∗ ≡ − δ

z − δ ā. (28)

The solution shows that expected wealth can rise or fall over time. For the age process,
expected age could rise or fall as well. The time path in (23) shows that this depends only on the
initial condition: If age is above the long-run value, expected age falls. Otherwise expected age
rises. The “convergence parameter”for age is the death rate δ. Here, expected wealth rises or
falls independently of the initial condition. The convergence parameter here is z−δ = r−τ−ρ

σ
−δ,

27A more precise notation for the expectations operator E would follow (12) and display all initial conditions
{x1, x2, ..., xN} . We stick to this simpler notation here as more involved notation does not promise additional
insights.
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which can be positive or negative, depending on all those five parameters. When individual
wealth increases quickly while alive, i.e. z is large, dynasty wealth will rise as well.

Figure 3 Expected wealth as a function of parameters z and δ

When z < δ, the long-run expected wealth level η∗ ≡ δ
δ−z ā is positive. The initial expected

value is ai which can be of course larger or smaller than η∗. Any initial wealth level converges
to η∗, i.e. η∗ is a globally stable fix point. This fix point is larger than the initial endowment
ā as long as δ/ (δ − z) > 1 i.e. as long as z > 0.
For the empirically more relevant case of z > δ, the stationary level η∗ is negative. When

the initial condition ai = η∗, which would require initial debt, the expected wealth level always
stays at η∗. For ai < η∗, expected wealth falls to minus infinity, for ai > η∗ and thereby for all
positive initial wealth levels, expected wealth rises without bound. Hence, η∗ is an unstable fix
point.

• The population

Average wealth of the population at t is defined as the average over dynasty wealth levels
Ai (t),

Ā (t) ≡ ΣN
i=1Ai (t) /N . (29)

Once again, the population size N is independent of time and, therefore, constant. As dynasty
wealth from (8) is stochastic, we need to form expectations for any point in time t > 0 in order
to be able to make any model predictions. We obtain

EĀ (t) = E
[
ΣN
i=1Ai (t) /N

]
= ΣN

i=1Ea [Ai (t)] /N . (30)

As we can pull the expectation operator into the sum, we end up with a familiar expression,
namely Ea [Ai (t)]. As Ea [Ai (t)] = η (ai, t) from (26), the expected population mean equals
the mean over expected dynasty means, EĀ (t) = ΣN

i=1η (ai, t) /N . Employing the solution for
expected dynasty wealth (28) yields

EĀ (t) =
(
ΣN
i=1ai/N − η∗

)
e(z−δ)t + η∗ (31)

where η∗ is the same expression as defined in (28) for expected dynasty wealth.
Here we need to distinguish the two cases of z−δ being positive or negative as well. As z > δ

is the empirically relevant case, we focus on this assumption. The long-run average wealth level
η∗ in our economy is then negative and an unstable fix point. As the initial average wealth
ΣN
i=1ai/N needs to be positive by empirical relevance, expected average wealth increases at the
exponential rate z − δ > 0.
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If we assume that population size goes to infinity, i.e. N → ∞, the variance of average
wealth Ā (t) from (29), as a result of the law of large numbers,28 tends towards 0. Hence, in any
practical sense the observation Ā (t) equals the expected value EĀ (t) (plus some small error).
We can therefore equate EĀ (t) with empirical data.

5.3 Expected government wealth

The government runs a redistribution scheme based on inheritances. Is this scheme feasible for
government wealth? Under which conditions will the government exhibit a balanced budget
in the long run? To start answering these questions, we first study the evolution of expected
government wealth as an outcome of applying its distribution scheme to one dynasty only. We
then aggregate over all dynasties. The full answer will be obtained when we study equilibrium
in section 6.1.

• Expected government wealth based on one dynasty

We define expected government wealth following (9) as

γ (ai, t) ≡ E [Gi (Ai (X (t))) |Ai (X (0)) = ai] . (32)

The initial condition ai is the same as in (26). Following methods from above, the mean γ (ai, t)
follows (see app. A.4)

γ̇ (ai, t, τ) = −δā+ (τ + δ) η (ai, t) . (33)

The dynamics can be easily understood when comparing this ODE with the ODE for ex-
pected wealth of a dynasty in (27). Expected wealth of a dynasty rises in δ (via a first channel)
as the dynasty receives ā when an offspring is born. Expected wealth of the government falls
in δ as a new offspring is an expenditure for the government. Expected wealth of a dynasty
falls in δ (via a second channel) as the household loses expected wealth η (ai, t). By contrast,
government wealth rises in this second channel as the government receives this expected wealth.
Expected wealth of the household rises at the rate of z, resulting from the optimal consumption
decision of the household. Wealth of the government rises at τ as this is the tax rate applied
to expected wealth of the dynasty.
While ODEs between the dynasty and government level have very similar interpretations,

the solution of (33) looks very different from the solution at the dynasty level. This is not
surprising as the right hand side of the government’s expected wealth (for this dynasty) contains
expected wealth of the dynasty. Hence, (33) is not an autonomous differential equation but
needs to be solved by taking the solution of the dynasty budget constraint (28) into account.
The solution to (33) reads (see app. A.4.3)

γ (ai, t, τ) = Gi,0 + ((τ + δ) η∗ − δā) t+
(τ + δ) (ai − η∗)

z − δ
(
e(z−δ)t − 1

)
, (34)

whereGi,0 describes the government wealth at the initial point in time 0 stemming from dynasty
i. Given its complexity and differences compared to expected wealth of a dynasty, different
interpretations emerge. Equilibrium implications or requirements of (34) will be discussed later.

28The summands in ΣNi=1Ai (Xi (t)) are independent of each other as Ai (Xi (t)) is a deterministic function
of random age Xi and, given independence of Poisson processes in (7), random variables Xi are independent of
each other.
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• Expected total government wealth

Similar to (10), expected total wealth of the government is simply the sum over dynasty-
specific means, Γ (t, τ) = ΣN

i=1γ (ai, t) . After some steps (see app. A.4.4), we obtain an expres-
sion for expected government wealth per capita that reads

Γ (t, τ)

N
=
G0

N
+ ((τ + δ) η∗ − δā) t+

(τ + δ)
(
Ā (0)− η∗

)
z − δ

(
e(z−δ)t − 1

)
. (35)

Juxtaposing this equation with (34) shows that dynasty initial wealth Gi,0 is replaced by G0/N
and dynasty initial wealth ai is replaced by average initial wealth Ā (0) defined as in (29). The
interpretation is therefore in perfect analogy to the earlier expression.
We can apply a law of large numbers for per capita government wealth in the same way as we

did for average individual wealth Ā (t) from (29). Hence, we can equate expected government
wealth per capita Γ (t, τ) /N to observed government wealth in the data.

6 Aggregate and distributional findings

We now characterize equilibrium in our small open economy. Subsequently, we describe distri-
butional properties of age and wealth.

6.1 Steady state and balanced growth path equilibrium

Depending on parameter values, the model ends up in a stationary equilibrium or on a growth
path. We say that our economy is in a steady-state equilibrium when both individual variables
(e.g. dynasty wealth) and aggregate variables (e.g. government wealth) converge to stationary
values. The economy is in a growth equilibrium when individual and aggregate variables con-
verge to a balanced growth path where (most) variables grow at identical rates. Interestingly,
distributions can be stationary on a balanced growth path.

6.1.1 Convergence to a general steady-state equilibrium

As the expected wealth analysis, summarized in figure 3, has shown, a partial stationary equi-
librium holds if z < δ, i.e. when the rate of wealth growth falls short to the death rate δ.
Expected wealth of a dynasty (28) as well as expected average wealth of the population (31)
converge to their long-run value η∗, where the latter is described by (28). With constant
wealth, consumption and utility are constant as well, where the rate z is treated as exogenous
by individuals.
In order to describe the general stationary equilibrium, however, we need to consider the

evolution of the government budget as well. For a steady-state equilibrium, we require that
government wealth approaches a long-run constant value.

• A stationary government wealth implies an endogenous tax rate

The solution (34) shows that expected government wealth from one dynasty can rise or fall
over time. The exponential term clearly shows that one necessary condition for a steady state
is z < δ. This makes sure that the final term in (34) approaches a constant. The term linear in
time t, by contrast, requires that the term in front of t equals zero at each instant,

τη∗ = δ [ā− η∗] . (36)
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This condition needs to be fulfilled in order to describe a steady-state equilibrium as otherwise
the state runs a surplus or a deficit in the long run. If η∗ is larger in equilibrium than ā (which
holds for z > 0 as shown in the discussion of figure 3), this condition suggests a negative tax
rate: A positive government income per birth, η∗ > ā, implies subsidies to capital income,
τ < 0.
In order to determine τ , we start from (36) and employ η∗ from (28). After some steps (see

app. A.4.3), the resulting tax rate reads

τ =
r − ρ
1− σ . (37)

Interestingly, this tax rate is constant over time. As (36) already suggests, a long-run balanced
budget only requires that the tax rate obeys long-run values, here, the long-run expected wealth
of a dynasty. Short run average wealth of the population or current government wealth do not
matter.
As the tax rate has now endogenously been determined, we need to adjust the growth rate

z from (5). After some simple steps (see appendix A.5), the revised wealth growth rate reads

z =
r − ρ
σ − 1

. (38)

• Conditions for convergence to a steady-state equilibrium

So far, we obtained two necessary conditions for a steady-state equilibrium. First, steady
state requires z < δ as (i) expected household wealth then approaches a constant and as (ii)
the second term of the wealth expression for the government (35) also approaches a constant.
Second, steady state requires an endogenous tax rate, the condition for τ in (37). This tax rate
makes sure that government wealth approaches a constant in the long run. The endogenous
tax rate led to the new expression for z in (38). A steady state for both the household and the
government level therefore requires that z < δ also holds for z from (38).

Figure 4 The steady-state condition for σ for r > ρ (left) and r < ρ (right)

To understand when z < δ, consider figure 4. It plots z from (38) as a function of σ. The
left panel displays the case of r > ρ, the right panel of r < ρ. There are poles at σ = 1. We
understand when z < δ by defining a threshold level σ∗ that implies z = δ. This threshold level
is given by

σ∗ ≡ r − ρ+ δ

δ
(39)
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and is also shown in both panels for an example of δ.
When r > ρ, the threshold level is σ∗ > 1 for all positive δ. There is a steady state (where

z < δ with endogenous τ from (37)) if and only if σ < 1 or σ > σ∗. For levels inbetween, i.e.
for 1 < σ < σ∗, the economy is on a growth path. When r < ρ (right panel) and δ < − (r − ρ)
(as not drawn in the panel), the threshold level is negative, σ∗ < 0. There is a steady state
if and only if σ > 1. For σ < 1, the economy is on a growth path. By contrast, when r < ρ
and δ > − (r − ρ) (as drawn in the right panel), the threshold level is between zero and one,
0 < σ∗ < 1. There is a steady state if and only if σ < σ∗ or σ > 1. For σ∗ < σ < 1, the economy
is on a growth path. These conditions are summarized in the following table.

σ < 1
r > ρ  σ* < σ

1 < σ < σ* growth path
σ > 1 steady state
σ < 1 growth path

σ < σ*
1 < σ

σ* < σ < 1 growth path

steady state

δ < —  (r —   ρ)
r < ρ

steady state
δ > —  (r —   ρ)

Table 1 Parameter conditions for steady state and growth path

• The importance of risk aversion for the equilibrium type

We would like to emphasize the importance of σ in determining the equilibrium type. To the
best of our knowledge, risk aversion never played this role in any models of the optimal growth
or new growth theory. Risk aversion (in optimal saving rules of the type ċ/c = (r − ρ) /σ)
amplifies the growth rate, but does not have an effect on the sign of the growth rate —whether
the economy ends up in a steady state or on a balanced growth path.
This importance of sigma is illustrated in figure 5. The horizontal axis plots the difference

between r and ρ, the vertical axis plots risk aversion σ.

Figure 5 Steady state and balanced growth path regions
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Consider first the case of a positive difference r − ρ. With a risk aversion below 1, the
economy ends up in a steady state. As z < 0, wealth falls over time. This holds in individual
data but not for empirical aggregate averages over the lifetime. This is therefore the empirically
less relevant steady state. A risk aversion equal to 1 (see app. A.4.5 ) or larger than 1 but still
below σ∗ implies a balanced growth path (provided that (44) holds). When σ rises further, we
return to a steady-state economy. For this region of σ > σ∗, z is positive such that expected
dynasty wealth η (t, ai) rises and approaches the steady state from below (as illustrated by the
trajectory starting at a1 in the left panel of figure 3).
When r − ρ is negative but still larger than −δ, an increase in σ also moves the economy

through three regimes. With risk aversion below σ∗, the economy is in a steady state with
positive z. Wealth evolves as just illustrated by η (t, a1) in figure 3. A higher σ brings us to a
growth equilibrium and risk aversion above one leads to an empirically non-convincing steady
state with z < 0.
For r − ρ < −δ, the economy starts (at low σ) in a growth equilibrium. Risk aversion

exceeding 1 yields the steady state just described.
Why does σ play this role here? It enters the condition whether z > δ (growth) or z < δ

(steady state) as a determinant of z. Hence, the reason why σ matters for the equilibrium
type is the fact that individual wealth growth and aggregate wealth growth differ. In a model
without death, aggregate wealth would grow at z from (5). The sign of this growth rate is
independent of σ. In our model with death and birth, the sign of the aggregate wealth growth
rate z− δ is determined by σ. The precise channel through which σ affects aggregate growth or
steady state is not z from (5) but z from (38). Hence, it is also the presence of a government
budget that we require to be balanced in a steady state that determines the effect of σ on the
type of equilibrium.
What is the intuition behind this channel of σ? The parameter should be understood here

in its interpretation (of its inverse) as intertemporal elasticity of substitution (and not in terms
of risk aversion). We prefer this interpretation as the channel through which σ acts is through
its effect on the wealth growth rate z of an individual while alive, i.e. in the absence of any
risk.
Generally speaking, the higher 1/σ, the higher the individual (deterministic) growth rate.

This is a well-known property and visible here in (5). High needs to be understood in an absolute
sense, however. If the numerator in (5) is negative, the growth rate has a high negative number.
The sign also plays a crucial role in the expression for the growth rate z from (38) with the
tax rate from (37) guaranteeing a balanced government budget. In this version for z, which is
relevant for our discussion here, the sign of z depends on the sign of r − ρ and on the level of
σ, given the term “−1”in the denominator of (38).
When r exceeds ρ, the growth rate z (38) is negative as long as σ is below 1, i.e. as long as

the intertemporal elasticity of substitution (IES) exceeds 1. Hence, z < δ and the economy is
in a steady-state equilibrium. This is the grey lower right area in figure 5. When the IES falls
(σ rises further) below 1, the growth rate (38) turns positive. We are in a growth equilibrium.
When the IES falls further (σ rises even more), the growth rate z (38) falls. At some point
(when σ exceeds σ∗), the growth rate is below the death rate and the economy is back in a
steady-state equilibrium.
An interpretation in the same spirit can be given for r falling short of ρ.

• Equilibrium convergence to a steady state

We can now summarize equilibrium dynamics of means in our small open economy. The
economy starts with initial wealth levels ai for dynasties i. Expected dynasty wealth converges
to a steady state following (28). Average wealth in our economy follows (31). These paths are
illustrated in the left panel of figure 3.
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Expected government wealth follows

Γ (t, τ)

N
=
G0

N
+
(
Ā (0)− η∗

) (
1− e(z−δ)t) . (40)

It can rise or fall over time, depending on whether initial wealth Ā (0) of households lies above
or below expected wealth η∗. Interestingly, the per-capita government wealth in the steady
state, G0/N + Ā (0) − η∗, displays two initial conditions. Usually (as e.g. in dynasty wealth
(28) or average wealth (31)), initial conditions vanish in the long run. Here, they persist as
(initial) government wealth is not directly owned by households and therefore not subject to
the death-birth process (as discussed after (9)).
Concerning realized consumption and wealth growth while alive, given the optimal con-

sumption share φ from (4) and τ from (37), consumption reads c (t) = ra (t) . This illustrates
that, if taxes are instantaneously chosen such that the long-term budget is balanced, the opti-
mal, utility-maximizing share of wealth consumed is equal to the gross before-tax interest rate.
From the budget constraint (3), wealth therefore falls at the rate of τ . Remember that τ can
be positive or negative, depending on parameter values.

• Expected values vs. realizations

It appears useful to be explicit about the difference between an expected evolution and
realizations in our model. To this end, figure 6 illustrates expected wealth dynamics vs. realized
wealth while alive. Such a distinction helps intuition and is central for relating the model to
data. Equilibrium dynamics for expected wealth in a steady-state economy are shown in black
in the left panel of figure 6. In addition to figure 3, this panel also shows an example of a
realized wealth path in red. The corresponding paths for the growing economy are in the right
panel to which we turn later.

Figure 6 Realized wealth paths (red) vs. expected wealth paths (black) of a dynasty

In a steady-state economy with a long-run balanced government budget, the link between
expected dynasty wealth η∗ and initial endowment ā from (28) adjusts due to the endogenous
tax rate and the implied new accumulation rate z from (38). After some steps (see appendix
A.5), expected dynasty wealth reads

η∗ =
(1− σ) δ

r − ρ+ (1− σ) δ
ā. (41)

Obviously, η∗ exceeds ā if r < ρ and falls short of it for r > ρ. The left panel shows the case
of a z < δ economy converging towards a steady state with r < ρ. When we look at expected
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dynasty wealth η (ai, t) in black, it approaches η∗ irrespective of initial conditions a1 or a3. By
contrast, when we look at an example of a realized growth path Ai (t) of a dynasty i from (8)
in red, it starts at the initial level a2 and grows at the constant rate z as long as the current
representative of the dynasty stays alive. Whenever the individual is replaced by an offspring,
wealth jumps to ā. The black curves also represent realized average wealth in the economy as
a whole, i.e. Ā (t) from (31).
Empirically, the expected value η (t) or Ā (t) should be employed when looking at average

wealth data (as some deaths do occur in a large group of individuals). When looking at wealth
of one individual, the realized wealth path a (t) should be used as point of reference.

6.1.2 Convergence towards a balanced growth path

Figure 5 shows parameter values for which the economy finds itself on a growth path. On such a
path, condition (36) making sure that the government wealth approaches a constant might not
be required. A growing economy would not require a constant (expected) government wealth
level. It would be enough to think of government wealth (or debt) as staying within a certain
range of GDP or overall wealth (think of the Maastricht criteria of the EU).

• Convergence of government wealth to a balanced growth path

In this vein, we divide government wealth (35) per capita by aggregate average wealth (31)
and obtain

Γ (t, τ) /N

EĀ (t)
=
G0/N + ((τ + δ) η∗ − δā) t+ τ+δ

z−δ
(
e(z−δ)t − 1

) (
Ā (0)− η∗

)(
Ā (0)− η∗

)
e(z−δ)t + η∗

. (42)

When we now consider the long run, i.e. t→∞, both the linear growth expression, ((τ + δ) η∗ − δā) t,
and the exponential growth expression,

(
Ā (0)− η∗

)
e(z−δ)t, tend towards infinity. As the expo-

nential term grows faster than linear or constant terms, limit arguments yield

lim
t→∞

Γ (t, τ) /N

EĀ (t)
= lim

t→∞

G0/N+((τ+δ)η∗−δā)t

e(z−δ)t
+ τ+δ

z−δ
[
1− 1

e(z−δ)t

] (
Ā (0)− η∗

)
Ā (0)− η∗ + η∗

e(z−δ)t

=
τ + δ

z − δ . (43)

In the long run, government wealth relative to expected average wealth is constant. The gov-
ernment budget is balanced asymptotically even though in absolute terms government wealth
features linear and exponential growth. In the long run, government wealth follows the same
growth path as dynasty wealth —independently of the tax rate τ .
Even though the government has one additional degree of freedom in a growing economy as

compared to an economy that converges to a steady state, the tax is subject to one constraint:
It must not be too large such that z > δ still holds. This is the case as long as the tax does
not exceed an upper bound (see app. A.5)

z > δ ⇔ τ < τ ∗ ≡ r − ρ− δσ. (44)

If it did, individual returns to wealth would fall too much and wealth growth z would become
smaller than the death rate. The economy would return to a steady-state equilibrium.29

29If by accident τ takes on the expression (37), the linear component in (43) is removed. The debt to wealth
ratio still converges to the same constant in the limit.
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• Equilibrium convergence to a balanced growth path

Equilibrium dynamics in our growing small open economy are as follows. Expected wealth of
a dynasty starts from an initial value and grows at a rate z−δ as described in (28). Population
average wealth follows (31). The debt to GDP ratio (42) in our growing economy is potentially
non-monotonic over time. It starts at t = 0 at G0/N

Ā(0)
and converges to τ+δ

z−δ from (42).
Equilibrium dynamics for expected and realized wealth are shown in the right panel of figure

6. (Remember that (41) only holds for the left panel.) As for the steady-state economy, black
curves show expected growth paths for dynasties, η (ai, t) , given initial conditions a1 or a3.
Both grow at the same rate and there is no convergence in expectation. Realized wealth of
subsequent representatives of one dynasty starting at initial wealth a2 are shown by the red
curve. Each offspring starts at ā and experiences higher wealth growth than expected wealth
growth. Given that average wealth Ā (t) from (31) is again (as in the steady-state economy)
also represented by the black curves, each individual becomes richer over life relative to the
population average.

6.2 Distributional dynamics

How do our aggregate equilibrium dynamics square with transitional distributional dynamics
of age and wealth? We now present analytical findings on the dynamics of these distributions
on the adjustment paths towards a steady state or towards the balanced growth path.30

6.2.1 The age distribution

We denote the probability that age Xi of an individual belonging to dynasty i is below a certain
age y at time t by

ϕ (xi, B, t) ≡ Pr (Xi (t) ∈ B|Xi (0) = xi) (45)

where B = [0, y] ⊂ R and xi is initial age at time 0.

Figure 7 Age distribution with an initial uniform distribution

After some steps, we obtain an explicit solution for the age distribution at each point in
time. The derivation works in analogy to deriving the wealth distribution in the next section.

30We know from more abstract (probability based) work by Bayer et al. (2019) that processes like our age
and the related wealth process are characterized by the existence of a unique long-term distribution which is
stable. The latter means that for all (meaningful) initial distributions, an initial distribution converges over
time to this unique and stable long-term distribution.
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Hence, we restrict our presentation to an intuitive explanation here by offering a visualization
in figure 7.31

As an example, assume an initial uniform distribution of age. The density is horizontal
between minimum, xmin, and maximum age, xmax. It has a probability mass of 1 at t = 0. Note
that we can allow for any initial distribution.
Over time, some individuals grow older and “stay within”the uniform distribution. Others

die and “leave the density”at the rate δ introduced in the age process (7). The boundaries of
the uniform distribution increase deterministically over time with slope b, also stemming from
(7). The probability mass is given by e−δt.
When individuals “are reborn”with age 0, probability mass moves from the uniform distrib-

ution to the newly emerging distribution. All newborns start at age 0, which thereby constitutes
the lower bound of the new (sub-) density. This subdensity features an upper bound bt. This
is the age of an individual reborn at t = 0 and alive since then. After having moved from the
uniform to the new density, individuals continue to be subject to the death-birth process from
(7). As the latter is driven by a standard Poisson process, the subdensity between 0 and bt is
a truncated exponential density. Its probability mass is 1− e−δt.
In the very long run, age is exponentially distributed with parameter δ/b. The long-run

probability to be of age y or younger is given by the distribution P (y) = 1− e− δb y.

6.2.2 The wealth distribution

We now describe the derivation of the wealth distribution in detail. We first undertake the
fundamental analytical steps. Subsequently, we illustrate the dynamics of the wealth density
for an initial mass point and for an initial (non-degenerate) distribution.

• Deriving distributional dynamics

Define the probability that realized dynasty wealth Ai (t) from (8) for an initial wealth level
of ai and at a point in time t lies within a certain range or set B ⊂ R by

π (ai, B, t) ≡ Pr (Ai (t) ∈ B|Ai (0) = ai) . (46)

We introduce an indicator function IA (z) = 1 if z ∈ A and zero otherwise.
The essential step in translating this definition into informative expressions consists in

solving the SDE (8). Given the framework defined and discussed in section 4.1 and given
an initial condition Ai (0) = ai ≥ 0, the unique solution (strong and weak solutions coincide in
this framework) to (8) reads (see appendix A.6.1)

Ai (t) = I
Qδ
i
(t)

(0) aie
zt +

(
1− I

Qδ
i
(t)

(0)
)
āez(t−T ), (47)

where T marks the most recent point in time before t where a jump of (Qδ
i (s))s≥0 occurred, i.e.

where a member of dynasty i deceased for the last time.
The indicator function I

Qδ
i
(t)

(0) equals 1 for Qδ
i (t) = 0 and zero otherwise. The former

represents the absence of death: the individual initially representing dynasty i lives on to
accumulate wealth based on the initial value of wealth ai and rate z. The latter describes
the opposite, namely an individual being born as a result of the previous individual’s death.
Wealth initially starts with ā and then exponentially accumulates over the time span between
birth date T and today t at rate z.

31A formal derivation, following exactly the same steps as studied in detail below for wealth, is available upon
request.
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We now specify the set B from (46) as B = [ā, x]. We also assume, to avoid tedious case-
by-case analyses, that ai > ā. We can then rewrite the probability in (46) as π (ai, x, t) ≡
Pr (Ai (t) ≤ x|Ai (0) = ai) . Building on the solution in (47), this probability can be expressed
by (see appendix A.6.2)

π (ai, x, t) = e−δtIB
(
aie

zt
)

+

∫
B

δ

z

ā
δ
z

v
δ
z

+1
I [ā,āezt] (v) dv. (48)

To understand this expression, consider three ranges for x. Initially, imagine x is small, i.e.
ā ≤ x < āezt. Then IB (aie

zt) = 0 and I [ā,āezt] (x) = 1. The probability (48) reads

π (ai, x, t) =

∫ x

ā

δ

z

ā
δ
z

v
δ
z

+1
dv for ā < x < āezt. (49)

In the second range āezt < x < aie
zt, it still holds that IB (aie

zt) = 0. In addition, the second
indicator function is zero, I [ā,āezt] (v) = 0 for all v > āezt. Hence, we can replace the general set
B by a lower bound ā and an upper bound āezt such that (48) reads

π (ai, x, t) =

∫ āezt

ā

δ

z

ā
δ
z

v
δ
z

+1
dv for āezt < x < aie

zt. (50)

Note that the integral in (50) is not a function of x but only of time t. For the third range when
x ≥ aie

zt, the probability that Ai (t) is smaller than x is one, π (ai, x, t) = 1.
In simple words, when we are interested in the probability that wealth x is small (the first

range), this probability can only come from being reborn. Wealth of an individual that lived as
of 0 would be aiezt and would be too high. Hence, we only consider the range of wealth from
endowment ā at birth to the wealth level x of interest, as shown in (49). The integrand in (49)
is the Pareto density. It follows from the Pareto density in the general expression (48) which
in turn is the outcome of a simple parameter substitution (see appendix A.6.2) starting from
(47). Why do we see the Pareto density in (49) from an intuitive perspective? First, when we
are interested in small wealth levels x, small levels would result from just being reborn. When
being young, wealth cannot be much larger than initial endowment ā. Second, we obtain a
Pareto distribution in the short run for the same reason that there are Pareto distributions in
the long run: There is exponentially distributed age. We can start our analysis of the wealth
distribution from any initial age or wealth distribution. As soon as an individual is reborn,
however, our age process (7) makes sure that age is back to an exponential distribution. With
exponential age distribution, it seems intuitive, that we obtain a (truncated) Pareto distribution
for wealth in the transition.
When our wealth level x of interest is a bit larger (second range), we integrate in (50) over

the entire range from ā to āezt. When we think about its construction, we integrate over the
entire density apart from the probability of not having died. So the integral in (50) equals
1− e−δt where e−δt is the probability of still being alive at t.

• Illustration for an initial mass point

We have described the distribution function most generally in (48). Figure 8 illustrates this
expression for an initial mass point.
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Figure 8 Dynamics of the wealth density for an initially degenerate distribution

When we start from an initial condition a (0) = ai, the probability to hold wealth ai in t = 0
equals one. At any point t, the wealth distribution has a probability mass of e−δt at aiezt where
δ is again the death rate from the age process (7). As long as the individuals do not die, they
start with ai and accumulate wealth at the rate of z. The probability to survive until t is given
by the probability mass e−δt.
Now imagine the individual is replaced by an offspring. Wealth jumps to ā. If this jump takes

place at t = 0, the maximum wealth level that can be reached is āezt. Hence, as shown in (49),
there is an expanding support [ā, āezt] within which wealth is (truncated) Pareto distributed
with density

f (a) =
δ

z

ā
δ
z

a
δ
z

+1
. (51)

As the mass point loses mass over time at rate δ, the truncated Pareto density gains in mass at
rate δ. As we assume ai > ā, the mass point at aiezt is always to the right of the upper bound
of the Pareto support. In the long run, the mass-point vanishes and the support of the Pareto
density is [ā,∞[ .

• Illustration for an initial distribution

Now consider figure 9 where the initial condition is given by an initial distribution. Let the
support be given by [ai, a

max[ where amax could be infinity. We could think of this initial distri-
bution as being Pareto whose parameters follow from a certain tax policy being characterized
by āold and a tax rate τold translating into a zold. This initial distribution has a mass of 1 and
reads

f (a) =
δ

zold

ā
δ
z
old

a
δ
z

+1
for a ≥ āold.

As time goes by, the support of the initial distribution moves to the right and is given by
[āolde

zt, amaxezt[ . Given the death rate δ, the mass of the distribution is e−δt.
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Figure 9 Dynamics of the wealth density with an initial Pareto distribution of wealth

For wealth levels ā < w < āezt, the density behaves identically to the case of an initial
condition being given by a fixed number. With a new tax policy, the density on the support
ānew < a < ānewe

zt is truncated Pareto,

f (a) =
δ

znew

ā
δ
z
new

a
δ
z

+1
for ānew < a < ānewe

zt. (52)

In the long run, the complete mass “walked into”the latter density function. This marks the
completion of the transition from an old to a new stationary distribution of wealth. As we
assume āold > ānew, the old stationary distribution’s lower bound is always to the right of the
upper bound. The long-run support of the Pareto density is [ānew,∞[.

6.2.3 The link between the distribution and the mean

Let us briefly comment on the link between the distributions and the mean. For our economy
converging to a steady state, it is not hard to imagine that mean wealth converging to η∗ (left
panel in figure 3) goes hand in hand with a density that converges to a stable density (figure 8
or 9). But how does an exploding mean (right panel in figure 3) in our growing economy square
with a density that is stationary in the long run?
The answer comes from the property that the Pareto distribution has an undefined mean

for z > δ. Computing the mean over a range [ānew, a] based on the (truncated) density f (a)

from (52), we get (see appendix A.6.3)
∫ a
ānew

xf (x) dx = ωāωnew

[
a1−ω−ā1−ωnew

1−ω

]
where ω ≡ δ/znew.

This mean approaches infinity when znew approaches δ and a becomes larger and larger. When
we look at figure 8, it is clear that for any finite t, we have a finite mean of wealth. Yet, mean
wealth grows and approaches infinity as the long-run density is Pareto with z > δ and a support
[ā,∞[ and therefore an infinite mean. Wealth of the economy grows in expectation, yet the
distribution of wealth approaches a stationary distribution.

6.2.4 A note on Fokker-Planck equations

Before concluding, we would like to point out the link to Fokker-Planck equations. Following
the usual steps (see the references in the literature section or app. A.7), the FPE for wealth
reads

∂p (Ai, t)

∂t
= − (z + δ) p (Ai, t)− zAi

∂p (Ai, t)

∂Ai
.
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The analytical solution and its illustration in the above figures lead to three observations.
The transition from the original to the new distribution in figure 9 can best be understood
by a transfer of probability mass from one distribution to another. The original density is
characterized by a uniform loss of density at rate δ across its entire range. This simply means
that individuals of each wealth level die at the same rate. It is also characterized by an
exponential shift to the right driven by the growth of its lower bound.
The new density is characterized by ∂p(Ai,t)

∂t
= 0. The new density gains probability mass

by an increasing upper bound, not by an increasing density for any given Ai. Third, the entire
density is characterized by non-differentiability (with respect to wealth) at ānewezt and at āoldezt.
Approximating this evolution by a numerical solution to the FPE could easily miss these

points. We acknowledge that more complex models do not allow for analytical solutions and
solving FPEs is the only option to understand model properties. Yet, features of the analytical
structures identified here are bound to be present in more complex models as well.

6.2.5 Outlook: Generalizing the tax scheme

Let us briefly return to the issue of extending the SDE on wealth (8) as discussed in footnote
12. The task is considerably more complex than above as can be seen from the solution of the
SDE (8) in (47). Our above solution is “simple”as the initial wealth endowment after being
reborn is ā, irrespectively of the previous wealth level Ai (X (t−)) . Hence, the solution (47)
displays one term only in addition to the case of no jump.
When we allow for an inheritance tax lower than 100%, initial wealth after being reborn

is a function of wealth of the previous dynasty representative. The generalization of (8) leads
to a generalized solution of (47) with a countable but infinite number of terms. These terms
consist of multiple integrals. Understanding their property is the objective of future research.

7 Conclusion

This paper studies a small open economy with finitely lived households and an inheritance-based
redistribution scheme for wealth. We describe the death-birth process of members of dynasties
by a stochastic differential equation. This allows us to describe expected age and wealth of
a dynasty by ordinary differential equations. Expected government wealth also follows an
ordinary differential equation. By a law of large numbers, per capita wealth and per capita
government wealth are deterministic.
The economy approaches either a steady state or a balanced growth path, depending on the

interest rate, time preference rate, death rate and risk aversion. Especially the latter is crucial
for pinning down equilibrium properties. Requiring a balanced long-run government budget
endogenizes the tax rate on wealth for a steady-state economy. When the economy approaches
a balanced growth path, the tax rate is a free parameter.
Solving our SDEs for age and dynasty wealth, we can analytically describe the transition

of the age and wealth distribution from any initial distribution to its long-run exponential and
Pareto distribution, respectively. These transitions are illustrated both for initial degenerate
distributions and for initial well-behaved distributions. The effects of a change in fiscal policies
are illustrated.
We explain how a balanced growth path at the aggregate level is consistent with a stationary

wealth distribution in the long run. The key is the mean of a Pareto distribution that approaches
infinity when the shape parameter is smaller than one.
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A Appendix

A.1 Deriving the closed-form solution (4)

We first derive the Keynes-Ramsey rule which reads ċ
c

= r−τ−ρ
σ
. The derivation is standard and

is available upon request. We then obtain the closed-form solution by guess and verify.32

A.1.1 Guess

Guesses need to be based on the utility function and the Bellman equation of the maximization
problem. The value function is defined as V (a) ≡ max

c(t)
U (t) subject to the constraint. The

Bellman equation reads33

ρV (a (t)) = max
c(t)

{
u (c (t)) +

1

dt
EtdV (a (t))

}
. (A.1)

Computing the expected differential dV (a), given the constraint (3) and using a change-of-
variable formula (for a non-technical approach, seeWälde, 2012), yields dV (a) = V ′ (a) {(r − τ) a− c} dt.
Since everything is certain in t, we rewrite (A.1) as

ρV (a) = max
c
{u (c) + V ′ (a) [(r − τ) a− c]} . (A.2)

The first-order condition then reads

u′ (c) = V ′ (a) . (A.3)

Keeping the expression for instantaneous utility (2) in mind, we start from a guess J (a) for
the true value function V (a) . The guess, its derivative and a guess for consumption read

J (a) = Γ0a
1−σ − Γ2, (A.4)

J ′ (a) = (1− σ) Γ0a
−σ, (A.5)

c = Γ1a. (A.6)

A.1.2 Verification

We have to verify that our guesses satisfy the first-order condition and the Bellman equation.
The former, i.e. (A.3), can be rewritten, employing the derivative of our guess (A.5) and the
derivative of (2) with respect to c, as c−σ = (1− σ) Γ0a

−σ. Rearranging with respect to Γ0

yields Γ0 = 1
1−σ

(
c
a

)−σ
. Replacing c with our guess (A.6) and reallocating leads to

Γ1 = [(1− σ) Γ0]−
1
σ , (A.7)

which determines Γ1.
Considering the Bellman equation and inserting our guesses, i.e. (A.4), (A.5) and (A.6), we

get

ρΓ0a
1−σ − ρΓ2 =

(
Γ1−σ

1 a1−σ − 1

1− σ

)
+ (1− σ) Γ0a

−σ [(r − τ) a− Γ1a] .

Replacing Γ1 and reallocating yields

1

1− σ − ρΓ2 = (1− σ)
−1
σ Γ

− 1−σ
σ

0 a1−σ + (1− σ) Γ0 (r − τ) a1−σ

− (1− σ)−
1−σ
σ Γ

− 1−σ
σ

0 a1−σ − ρΓ0a
1−σ.

32An overview of guess and verify approaches is provided by Wälde (2011).
33For some formal background, see Sennewald (2007) and the references therein.

32



This equation holds if, for instance, the left hand side and the right hand side are 0. Hence,
the left hand side requires

Γ2 =
1

ρ (1− σ)
.

For Γ0 on the right hand side, we get

0 = (1− σ)
−1
σ Γ

− 1−σ
σ

0 a1−σ + (1− σ) Γ0 (r − τ) a1−σ − (1− σ)−
1−σ
σ Γ

− 1−σ
σ

0 a1−σ − ρΓ0a
1−σ

= Γ0a
1−σ
[
(1− σ)

−1
σ Γ

− 1
σ

0 + (1− σ) (r − τ)− (1− σ)−
1−σ
σ Γ

− 1
σ

0 − ρ
]
.

For an economically meaningful solution, we need

(1− σ)
−1
σ Γ

− 1
σ

0 + (1− σ) (r − τ)− (1− σ)−
1−σ
σ Γ

− 1
σ

0 − ρ = 0.

Rewriting yields

Γ0 =
1

1− σ

[
σ

ρ− (1− σ) (r − τ)

]σ
and therefore, with (A.7),

Γ1 =
ρ− (1− σ) (r − τ)

σ
.

A.1.3 The closed-form solution

The previous section provides our final solutions for the guesses above

J (a) =
1

1− σ

[
σ

ρ− (1− σ) (r − τ)

]σ
a1−σ − 1

ρ [1− σ]

J ′ (a) =

[
σ

ρ− (1− σ) (r − τ)

]σ
a−σ

c =

(
ρ− (1− σ) (r − τ)

σ

)
a.

This consumption equation is used in the main text.

A.1.4 Deriving a closed-form solution for the logarithmic case (σ = 1)

• Guess

Keeping the expression for instantaneous utility in mind, we begin again by guessing the
value function and the consumption path

J (a) = Γ1 ln (a)− Γ2, J ′ (a) =
Γ1

a
, c = Γ3a.

• Verification

We have to verify our guesses satisfying the first-order condition and the Bellman equation.
Given our guess, the first-order condition reads

1

c
=

Γ1

a
,

1

Γ3

= Γ1.
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Considering the Bellman equation and inserting our guesses, we get

ρΓ1 ln (a)− ρΓ2 = ln [Γ3a] +
Γ1

a
[(r − τ) a− Γ3a]⇔

ρΓ1 ln (a)− ρΓ2 = ln (Γ3) + ln (a) + Γ1 [(r − τ)− Γ3] .

Reallocating with respect to a and the remaining constant expressions allow us to pin values
for Γ1, Γ2 and Γ3 such that both sides of the equation are 0. We obtain

ρΓ1 ln (a)− ln (a) = ρΓ2 + ln (Γ3) + Γ1 [(r − τ)− Γ3]⇔

(ρΓ1 − 1) ln (a) = ρΓ2 + ln (Γ3) +
r − τ

Γ3

− 1.

In order for the left hand side to be 0, we get Γ1 = 1
ρ
. This leads to Γ3 = 1

Γ1
= ρ. Regarding

the right hand side, we get Γ2 = 1
ρ
− ln(Γ3)

ρ
− r−τ

ρΓ3
. Inserting Γ3, we get Γ2 =

1−ln(ρ)− r−τ
ρ

ρ
.

• Closed-form solution

We obtain

J (a) =
1

ρ
ln (a)−

1− ln (ρ)− r−τ
ρ

ρ
, J ′ (a) =

1

ρa
, c = ρa.

A.2 Deriving (22) —Evolution of the mean for age

The age process for one individual representing dynasty i is given by (7). In order to determine
the evolution of the expected individual age for the given process, we follow the simple approach
outlined in 4.2.1. We are allowed to do so since we have shown that both, the generic and the
simple approach, will yield the same result.

A.2.1 Deriving the ODE

In a first step, we express the SDE in (7) in its integral version. It reads

Xi (t)−Xi (0) = b

∫ t

0

ds−
∫ t

0

Xi (s−) dQδ
i (s) .

When we apply the expectations operator Ex from (21) onto our SDE, we get

Ex[Xi (t)]− Ex[Xi (0)] = b

∫ t

0

ds− Ex
∫ t

0

Xi (s−) dQδ
i (s)

= b

∫ t

0

ds− δ
∫ t

0

Ex [Xi (s−)] ds. (A.8)

We can pull the expectations operator inside the integral as the necessary properties hold
(compare section 4.2). The last line also applies the martingale result of Garcia and Griego
(1994, theorem 5.3).
In a second step, we rewrite (A.8) employing µ (xi, t) from (21) and obtain

µ (xi, t)− µ (xi, 0) = b

∫ t

0

ds− δ
∫ t

0

µ (xi, s) ds.

Computing the derivative with respect to time t gives

µ̇ (xi, t) = b− δµ (xi, t) , (A.9)
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which corresponds to (22).
(A.9) describes the timely change of the mean age of an individual representing dynasty

i at point in time t. This change is characterized by a constant positive drift b, with which
the mean steadily rises. The second term δµ shows the decrease over time. This fraction is
supposed to increase as the individual ages further because the older an individual gets, the
larger the mean age and ultimately, the stronger the negative impact. As soon as δµ supersedes
b, the mean age will decrease over time. In the long run, expected age reads

µ∗ ≡ µ∗ (xi) = lim
t→∞

µ (xi, t) =
b

δ
, (A.10)

which reflects the unit age increases with b over the arrival of death δ.

A.2.2 Solving the ODE

In order to find a solution for µ (xi, t), we guess an expression for which its time derivative
yields (22) when inserting the solution candidate. Eventually, the equation that describes the
individual expected age is

µ (xi, t) = e−δtxi +
(
1− e−δt

) b
δ
, (A.11)

which can be viewed as the probability of having reached a certain age, i.e. e−δt, multiplied by
the age at initial point in time, i.e. xi, and the probability of not having reached a certain age,
i.e. 1− e−δt, multiplied by the expected age in the long run.

A.2.3 Checking the solution

The derivative of (A.11) with respect to t reads

µ̇ (xi, t) = −δe−δtxi + be−δt (A.12)

= −δ
[
e−δtxi −

b

δ
e−δt +

b

δ

]
+ b

= −δ
[
e−δtxi +

(
1− e−δt

) b
δ

]
+ b (A.13)

= −δµ (xi, t) + b, (A.14)

where (A.14) is exactly equal to (22), showing that we obtained a perfectly valid solution.

A.3 Deriving (27) —Evolution of the mean of wealth

Given the process introduced in section 3.2.2, we can again apply the simple approach from
4.2.1 and determine the mean and its evolution over time. We employ Ai (t) here, as discussed
in footnote 11.

A.3.1 Deriving the ODE

Following the simple approach, we begin with expressing (8) using integrals. We get

Ai (t)− Ai (0) = z

∫ t

0

Ai (s) ds−
∫ t

0

(Ai (s−)− ā) dQδ
i (s) .
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When we apply the expectations operator Ea from (26) onto our SDE, we get

Ea[Ai (t)]− Ea[Ai (0)] = zEa

∫ t

0

Ai (s) ds− Ea
∫ t

0

(Ai (s−)− ā) dQδ
i (s)

= z

∫ t

0

Ea [Ai (s)] ds− δ
∫ t

0

Ea [Ai (s−)] ds+ δā

∫ t

0

ds. (A.15)

We can pull the expectations operator inside the integral as the necessary properties hold again
(compare section 4.2). The last line also applies the martingale result of Garcia and Griego
(1994, theorem 5.3). Since ā is a constant, it does not require expectations to be formed.
In a second step, we rewrite (A.15) employing η (ai, t) from (26) and obtain

η (ai, t)− η (ai, 0) = z

∫ t

0

η (ai, s) ds− δ
∫ t

0

η (ai, t) ds+ δāt.

Computing the derivative with respect to time t gives

η̇ (ai, t) = δā+ (z − δ) η (ai, t) . (A.16)

This linear ODE describes mean wealth evolving positively with a fraction δ of the starting
wealth of a newborn ā and then either continuing positively or negatively, depending on z ≶ δ.
Setting (A.16) equal to 0 allows to come up with the stationary solution

η∗ ≡ η∗ (ai) = − δ

z − δ ā =
1

1− z
δ

ā. (A.17)

Hence, the long-run mean wealth of an individual is a fraction 1
1− z

δ
of the wealth newborns are

endowed with, i.e. ā. Given δ > 0 by construction, the whole fraction is either negative (in
case z

δ
> 1), implying the mean of individual wealth to characterize an unstable steady-state

value, or the fraction is smaller than 1 (in case z
δ
< 0, which occurs when r < τ + φ) or larger

than 1 (in case z
δ
< 1) implying a positive mean wealth in the long run.

A.3.2 Solving the ODE

A solution to (A.16) is (see e.g. Wälde, 2012, p.95)

η (ai, t) = (ai − η∗) e(z−δ)t + η∗ (A.18)

where we used η∗ from (28).

A.3.3 Checking the solution

Computing a time derivative of (A.18) yields

η̇ (ai, t) = (ai − η∗) e(z−δ)t [z − δ] = (η (ai, t)− η∗) (z − δ) ,

where the second equality employed (A.18). Rearranging and employing η∗ from (28), or (A.17)
in the appendix, yields

η̇ (ai, t) = η (ai, t) [z − δ] + δā,

which is (A.16).

36



A.4 Deriving (34) —Evolution and determination of expected public
wealth

A.4.1 Deriving the ODE for expected public wealth

Even though we could resort to the simple approach again, for illustration purposes we apply the
approach from sect. 4.1 to the SDE (9) of government wealth. We calculate the time evolution
of expected government wealth and then solve this ODE to obtain an explicit expression for
the expected government wealth based on one dynasty.
Calculating the mean starts with setting up the differential of an auxiliary function f . We

begin with

df (Gi (ζ)) = f ′ (Gi (ζ)) τAi (ζ) dζ

+ {f (Gi (ζ−) + Ai (ζ−)− ā)− f (Gi (ζ−))} dQδ
i (ζ) .

If we think of ζ as a future point in time t + ε, we can rewrite the just-stated equation in its
integral representation

f (Gi (t+ ε)) = f (Gi (t)) +

∫ t+ε

t

τAi (s) f
′ (Gi (s)) ds

+

∫ t+ε

t

f (Gi (s−) + Ai (s−)− ā)− f (Gi (s−)) dQδ
i (s) . (A.19)

Forming expectations gives

Ea [f (Gi (t+ ε))− f (Gi (t))] = τ

∫ t+ε

t

Ea [Ai (s) f
′ (Gi (s))] ds

+ δ

∫ t+ε

t

Ea

[
f (Gi (s−) + Ai (s−)− ā)

−f (Gi (s−))

]
ds. (A.20)

As Gi entirely depends on dynasty i’s wealth, we apply the expectation operator Ea from above.
Rewriting leads to

Ea [f (Gi (t+ ε))− f (Gi (t))] = τ

∫ t+ε

t

Ea [Ai (s) f
′ (Gi (s))] ds

+ δ

∫ t+ε

t

Ea

[
f (Gi (s−) + Ai (s−)− ā)

−f (Gi (s−))

]
ds. (A.21)

Dividing by ε and letting ε move towards 0, we obtain

lim
ε→0

Ea [f (Gi (t+ ε))− f (Gi (t))]

ε
= τ lim

ε→0

∫ t+ε
t

Ea [Ai (s) f (Gi (s))] ds

ε

+ δ lim
ε→0

∫ t+ε
t

Ea

[
f (Gi (s−) + Ai (s−)− ā)

−f (Gi (s−))

]
ds

ε
. (A.22)

Using (26) for Ea, we write

lim
ε→0

E [f (Gi (t+ ε)) |Ai (t) = a]− E [f (Gi (t)) |Ai (t) = a]

ε

= τ lim
ε→0

∫ t+ε
t

E [Ai (s) f
′ (Gi (s)) |Ai (t) = a] ds

ε

+ δ lim
ε→0

∫ t+ε
t

E [f (Gi (s−) + Ai (s−)− ā)− f (Gi (s−)) |Ai (t) = a] ds

ε
. (A.23)
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As the left hand side reflects the infinitesimal generator, we apply its definition (compare section
4.1) and get

Af (Gi (t)) = τ lim
ε→0

∫ t+ε
t

E [Ai (s) f
′ (Gi (s)) |Ai (t) = a] ds

ε

+ δ lim
ε→0

∫ t+ε
t

E [f (Gi (s−) + Ai (s−)− ā)− f (Gi (s−)) |Ai (t) = a] ds

ε
.

In order to take the limit, we have to apply L’Hôspital’s rule. If numerator and denominator
of both limit expressions move towards 0 or ±∞, we are allowed to do so. As this is fulfilled,
we get

Af (Gi (t)) = τAi (t) f
′ (Gi (t)) + δ (f (Gi (t) + Ai (t)− ā)− f (Gi (t))) . (A.24)

Specifying f (Gi (t)) to be the identity function leads to

Af (Gi (t)) = τAi (t) + δ (Ai (t)− ā) .

Knowing that d
dt
E [f (Gi (t))] = E [(Af) (Gi (t))] and using the definition (32) gives

γ̇ (ai, t) = Ea [τAi (t) + δ (Ai (t)− ā)] , (A.25)

which ultimately leads to
γ̇ (ai, t) = −δā+ (τ + δ) η (ai, t) . (A.26)

This linear ODE describes mean government budget evolving negatively with a fraction δ of
the starting wealth of a newborn ā, which describes the expense of the state, and then changes
positively according to τ + δ multiplied with the expected wealth of a dynasty η.

A.4.2 Solving the ODE

To solve the ODE, we employ the solution for η (ai, t) from (28), reproduced here for conve-
nience, η (ai, t) = (ai − η∗) e(z−δ)t + η∗. Plugging this into (A.26) yields

γ̇ (ai, t) = −δā+ (τ + δ)
[
(ai − η∗) e(z−δ)t + η∗

]
= (τ + δ) η∗ − δā+ (τ + δ) (ai − η∗) e(z−δ)t

≡ A+Be(z−δ)t.

The solution to this ODE is

γ (t) = γ̃ + At+
B

z − δ e
(z−δ)t,

which can easily be verified by computing the time derivative: γ̇ (t) = A+Be(z−δ)t. Hence, with
auxiliary parameters being replaced, we have

γ (ai, t) = γ̃ + ((τ + δ) η∗ − δā) t+
(τ + δ) (ai − η∗)

z − δ e(z−δ)t. (A.27)

• The initial value for government wealth

Focusing on the initial value of (A.27), we set t = 0 and get

γ (ai, 0) = γ̃ +
(τ + δ) (ai − η∗)

z − δ .

38



When we want γ (ai, 0) to equal a certain initial government wealth level, we can compute γ̃.
Imagine, we want γ (ai, 0) to equal some government wealth level Gi,0, where Gi,0 ∈ R≥0. Then

γ̃ = Gi,0 −
(τ + δ) (ai − η∗)

z − δ .

Thus, the solution (A.27) eventually reads

γ (ai, t) = Gi,0 −
(τ + δ) (ai − η∗)

z − δ + ((τ + δ) η∗ − δā) t+
(τ + δ) (ai − η∗)

z − δ e(z−δ)t. (A.28)

A.4.3 Deriving (37)

In order to achieve a balanced government budget, the government chooses a tax rate τ such
that its expected value approaches a constant in the long run. This is what we show first.
Additionally, a budget-balancing tax rate shapes the wealth accumulation of the government.
This is why, secondly, we concentrate on the expression for expected government wealth from
one dynasty, given a budget balancing tax τ .

• The tax rate under a balanced government budget constraint

When we ask about the limit, i.e. t→∞, we start from (A.28) and we get, given z < δ,

lim
t→∞

γ (ai, t) = Gi,0 −
(τ + δ) (ai − η∗)

z − δ + (τη∗ − δ [ā− η∗]) lim
t→∞

t.

This limit is plus or minus infinity unless (τ + δ) η∗ = δā. Hence, the latter fixes the tax rate

to τ =
(
ā
η∗ − 1

)
δ. Inserting η∗ from (28) leads to

τ =

(
ā

− δ
z−δ ā

− 1

)
δ =

(
z − δ
−δ − 1

)
δ = −z + δ − δ = −z. (A.29)

Employing z defined in (5), we get

τ = −r − τ − ρ
σ

⇔ τ =
r − ρ
1− σ . (A.30)

• Expected government wealth

Assuming a balanced budget, the solution for mean government wealth (A.28) reads

γ (ai, t) = Gi,0 +
(τ + δ) (ai − η∗)

z − δ
(
e(z−δ)t − 1

)
.

Inserting τ from (37) in the main text or from (A.30) in the appendix, we get

γ (ai, t) = Gi,0 + (ai − η∗)
(
1− e(z−δ)t) .
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A.4.4 Aggregate government wealth

Aggregating γ from (34), we write

Γ (t, τ) = ΣN
i=1γ (ai, t)

= ΣN
i=1

(
Gi,0 −

(τ + δ) (ai − η∗)
z − δ + ((τ + δ) η∗ − δā) t+

(τ + δ) (ai − η∗)
z − δ e(z−δ)t

)
.

Using G0 ≡ ΣN
i=1Gi,0 as well as Ā (0) = ΣN

i=1
ai
N
, where the latter, i.e. Ā (0), stems from (31), we

obtain

Γ (t, τ) = G0 +N

[
((τ + δ) η∗ − δā) t+

(τ + δ)
(
Ā (0)− η∗

)
z − δ

(
e(z−δ)t − 1

)]
. (A.31)

The difference between the state’s wealth based on one individual dynasty and all dynasties
lies in the aggregation of the initial government wealth Gi,0 as well as N times the linear and
exponential evolution of government wealth stemming from one dynasty i. We are allowed to
do the latter as the law of motion holds for every dynasty in the same way.

A.4.5 Expected government wealth for σ = 1

Appendix A.1.4 shows that optimal consumption in the logarithmic case (σ = 1) reads c (t) =
ρa (t) . Given the budget constraint ȧ (t) = (r − τ) a (t) − c (t) , wealth evolution now reads
ȧ (t) = za (t) where

z = r − τ − ρ.
We now assume that a steady-state equilibrium exists and study its properties. We start

by considering the limit for government wealth γ,

lim
t→∞

γ (ai, t) = Gi,0 −
(τ + δ) (ai − η∗)

z − δ + (τη∗ − δ [ā− η∗]) lim
t→∞

t.

We see that the exponential expression drops out due to z < δ. We again require a balanced
budget in the long run. We therefore impose

τη∗ − δ [ā− η∗] = 0 (A.32)

as in the non-logarithmic case.
We finally want to determine the expression for the tax rate taking the endogeneity of η∗

into account. We begin by inserting z into η∗ from (28) and the resulting revised η∗ into (A.32).
We get

τ
δ

δ − r + τ + ρ
ā− δ

(
1− δ

δ − r + τ + ρ

)
ā = 0⇔ (τ + δ) δ

δ − r + τ + ρ
− δ = 0⇔

(τ + δ) δ = (δ − r + τ + ρ) δ ⇔ 0 = (−r + ρ) δ

where reallocating eventually yields
r = ρ. (A.33)

This implies that a steady-state equilibrium only exists for this special case. For all other cases,
a steady-state equilibrium does not exist. We conclude that the logarithmic case with r 6= ρ
implies a growth equilibrium.
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A.5 Some simple derivations

• Deriving (38)

We consider (5) and insert (37). This yields

z =
r − τ − ρ

σ
=
r − r−ρ

1−σ − ρ
σ

=
(r − ρ) (1− σ)− (r − ρ)

1− σ
1

σ
=
−σ (r − ρ)

1− σ
1

σ
= − r − ρ

1− σ .

• Deriving (41)

We start from η∗ = − δ
z−δ ā given in (28). Inserting the updated z from (38), we get

η∗ = − δ

− r−ρ
1−σ − δ

ā = − δ
−r+ρ−(1−σ)δ

1−σ

ā = −δ (1− σ)

−r + ρ− (1− σ) δ
ā =

δ (1− σ)

r − ρ+ (1− σ) δ
ā.

• Deriving (44)

The growth rate z is described by (5). As we are in the balanced growth path equilibrium,
we are interested under which conditions z > δ. We find

z > δ ⇔ r − τ − ρ
σ

> δ ⇔ r − ρ− σδ > τ ⇔ τ < τ ∗,

where we defined
τ ∗ ≡ r − ρ− σδ.

A.6 Dynamics of the wealth distribution

We start from the law of motion for wealth described by the SDE (8), expressed here in its
integral version,

Ai (t) = ai +

∫ t

0

zAi (s) ds+

∫ t

0

[ā− Ai (s−)] dQδ
i (s) . (A.34)

The main part provides the solution of the SDE (8) in (47). We treat this expression in this
appendix as a guess and denote it by Ãi (t) ,

Ãi (t) = I
Qδ
i
(t)

(0) aie
zt +

(
1− I

Qδ
i
(t)

(0)
)
āez(t−T ). (A.35)

The next section proves that this guess satisfies (A.34) and thereby, by definition, is a solution.

A.6.1 Proof for the solution of the SDE

Let us distinguish two cases, Qδ
i (t) = 0 and Qδ

i (t) > 0. For Qδ
i (t) = 0, i.e. the individual has

survived from 0 to t, our guess (A.35) reads Ãi (t) = aie
zt. The integral version (A.34) reads

Ai (t) = ai +

∫ t

0

zAi (s) ds.

Employing our guess, i.e. replacing Ai (s) with aiezs, we get

Ai (t) = ai +

∫ t

0

zaie
zsds = ai + ai

[
ezt − 1

]
= aie

zt = Ãi (t) .
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Hence, our guess fulfills (A.34) for Qδ
i (t) = 0.

In the case of Qδ
i (t) > 0, we assume jump times T1 to TQδi (t) and set T0 = 0. Employing

these points in time, our integral equation (A.34) can be written as34

Ai (t) = ai +

Qδi (t)∑
j=1

∫ Tj

Tj−1

zAi (s) ds+

∫ t

T
Qδ
i
(t)

zAi (s) ds+

Qδi (t)∑
j=1

[ā− Ai (Tj)] . (A.36)

To understand this, look at the second term on the right hand side first. The integral
∫ Tj
Tj−1

zAi (s) ds

“sums up”capital income zAi (s) between birth at Tj−1 and death at Tj (where Tj is birth of
the offspring). The second term therefore represents the sum of all capital income between
T0 = 0 and the point in time of the last jump, TQδi (t). Employing our guess, i.e. replacing Ai (s)
by aiezs or by āez[s−Tj−1], we can rewrite the second term of (A.36) as

Qδi (t)∑
j=1

∫ Tj

Tj−1

zAi (s) ds =

∫ T1

0

zaie
zsds+

Qδi (t)∑
j=2

∫ Tj

Tj−1

zāez[s−Tj−1]ds. (A.37)

The third term of (A.36) simply integrates over capital income between the last jump
time TQδi (t) and today t. Employing our guess, this term can be replaced by∫ t

T
Qδ
i
(t)

zAi (s) ds =

∫ t

T
Qδ
i
(t)

zāe
z

[
s−T

Qδ
i
(t)

]
ds. (A.38)

The Ai (Tj)-part of the fourth term of (A.36) can be rewritten, using again our guess for
j = 1 or j > 1, as

Ai (Tj) =

{
aie

zT1

āez[Tj−Tj−1]

}
for j

{
=
>

}
1. (A.39)

Inserting (A.37), (A.38) and (A.39) into (A.36), we obtain

Ai (t) = ai +

∫ T1

0

zaie
zsds+

Qδi (t)∑
j=2

∫ Tj

Tj−1

zāez[s−Tj−1]ds+

∫ t

T
Qδ
i
(t)

zāe
z

[
s−T

Qδ
i
(t)

]
ds

+
(
ā− aiezT1

)
+

Qδi (t)∑
j=2

[
ā− āez[Tj−Tj−1]

]
.

Calculating the integral expressions leads to

Ai (t) = ai + ai [e
zs]T10 +

Qδi (t)∑
j=2

ā
[
ez[s−Tj−1]

]Tj
Tj−1

+ ā

[
e
z

[
s−T

Qδ
i
(t)

]]t
T
Qδ
i
(t)

+ ā− aiezT1 +

Qδi (t)∑
j=2

[
ā− āez[Tj−Tj−1]

]

= aie
zT1 +

Qδi (t)∑
j=2

ā
[
ez[Tj−Tj−1] − 1

]
+ ā

[
e
z

[
t−T

Qδ
i
(t)

]
− 1

]

+ ā− aiezT1 +

Qδi (t)∑
j=2

ā
[
1− ez[Tj−Tj−1]

]
34Technically speaking, we should make a distinction in this expression between Tj and Tj(−), an instant

before Tj . As this leads to cumbersome notation and does not increase readability, we always write Tj .

42



= ā

[
e
z

[
t−T

Qδ
i
(t)

]
− 1

]
+ ā = āe

z

[
t−T

Qδ
i
(t)

]
.

As our guess (A.35) for Qδ
i (t) > 0 and therefore I

Qδ
i
(t)

(0) = 0 reads

Ãi (t) = āez[t−T ]

and T in (A.35) is the point in time of the last jump (i.e. it is TQδi (t)), our guess fullfills (A.34)
for Qδ

i (t) > 0 as well. Hence, (A.35) and thereby (47) is a solution to (A.34) and thereby (8).

A.6.2 The probability distribution of Ai (t) —deriving (48)

• The distribution function and an illustration

We denote and define the probability distribution of Ai (t) from (47) by

π (ai, B, t) ≡ Pr (Ai (t) ∈ B|Ai (0) = ai) .

We obtain a more informative expression for this density when starting from the solution of
the SDE in (47), which we reproduce here for reference,

Ai(t) = IQδi (t)=0(0)aie
zt +

(
1− IQδi (t)=0(0)

)
āez[t−T ]. (A.40)

In this equation, T < t is the most recent point in time before t where a jump of
(
Qδ
i (s)

)
s≥0

occurred (we implicitly define T = 0 when Qδ
i (t) = 0, i.e. in case that no such jump occurred

at all). For fixed t ≥ 0 we have P
(
Qδ
i (t) = 0

)
= e−δt. For Qδ

i (t) > 0, by translation invariance
and reflection symmetry of the law of a Poisson process, the distribution of T − t is exponential
with rate δ conditioned on being smaller than t. Thus, using the formula of total probability,
we see from (A.40) that, for any (measurable) set B ⊂ R, the distribution reads

π (ai, B, t) = P
(
Qδ
i (t) = 0

)
P
(
Ai(t) ∈ B|Qδ

i (t) = 0
)

+ P
(
Qδ
i (t) > 0

)
P
(
Ai(t) ∈ B |Qδ

i (t) > 0
)

= e−δtIB(aie
zt) + (1− e−δt)

∫ t

0

δe−δu

1− e−δtIB(āezu) du

= e−δtIB(aie
zt) +

∫ t

0

δe−δuIB(āezu) du. (A.41)

To understand this expression, consider some set B =
{
Ai (t)|wmin < Ai (t) < w

}
. Imagine

that aiezt > w. Then the indicator function IB (aie
zt) equals 0 in the first term of (A.41). In

words, when t is so large that in the case of no jump wealth would have grown above w, then
the event ’no jump’cannot imply wmin < Ai (t) < w. As the event ’no jump’has a probability
of e−δt, this probability does not count towards (Ai (t) ∈ B|Ai (0) = ai). The probability of B
can only result from the event ’at least one jump’.
When there was at least one jump, the most recent one occurred at some u between 0 and

t. Since the last jump, accumulated wealth amounts to āezu as shown in the argument of the
indicator function of the integral. Now we define uw by āezuw = w, i.e. the length in time
since the last jump, such that wealth is just not above w and therefore still in B, is uw. Define
further uminw by āezu

m in
w = wmin, i.e. uminw is the smallest length in time such that wealth just

reaches B. Then, for this example, the probability (A.41) reads

Pr
(
wmin < Ai (t) < w|Ai (0) = ai

)
=

∫ uw

um inw

δe−δudu.
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The probability that wealth Ai (t) lies between wmin and w is the “sum”(the integral) over all
the probabilities that the last jump occurred between uminw and uw.
Consider a final example where B = R. Then the probability for Ai (t) ∈ B must obviously

equal one. Then IB (aie
zt) = IB (āezu) = 1 and the probability reads

π (ai, B, t) = e−δt +

∫ t

0

δe−δudu = e−δt −
[
e−δu

]t
0

= 1. (A.42)

• Rewriting the distribution function

We now rewrite the distribution function (A.41) such that the link to the Pareto distribution
becomes aparent. Define the wealth level v such that v = āezu. This implies u = 1

z
(ln v − ln ā)

and du = 1
zv
dv. Then, our distribution function reads

π (ai, B, t) = e−δtIB
(
aie

zt
)

+

∫ āezt

ā

δe−
δ
z

(ln v−ln ā)IB (v)
1

zv
dv

= e−δtIB
(
aie

zt
)

+

∫ āezt

ā

δ

z

ā
δ
z

v
δ
z

+1
IB (v) dv (A.43)

= e−δtIB
(
aie

zt
)

+

∫
B

δ

z

ā
δ
z

v
δ
z

+1
I{ā,āezt} (v) dv,

where the first equality simply exploits the link between time u and wealth v and the second
equality rearranges. The third equality swaps lower and upper bound for integration and the
condition for the indicator function. This is equation (48) in the main text.

• The stationary distribution

Taking the limit for t → ∞ of (A.43) yields the wealth distribution in the long run. Con-
sidering the set B = {Ai (t)| ā < Ai (t) < w} , we obtain

lim
t→∞

π (ai, B, t) = 0 +

∫ ∞
ā

δ

z

ā
δ
z

v
δ
z

+1
IB (v) dv =

∫ w

ā

δ

z

ā
δ
z

v
δ
z

+1
dv +

∫ ∞
w

δ

z

ā
δ
z

v
δ
z

+1
IB (v) dv

=
δ

z
ā
δ
z

[
v−

δ
z

]w
ā

− δ
z

+ 0 = −ā δz
[
w−

δ
z − ā− δz

]
= 1−

( ā
w

) δ
z

.

A.6.3 The mean of the truncated Pareto distribution

Computing the mean over range [ānew, a] employing the truncated Pareto density from (52)
yields ∫ a

ānew

xf (x) dx =
δ

znew
ā
δ
z
new

∫ a

ānew

x−
δ

znew dx =
δ

znew
ā
δ
z
new

[
x1− δ

znew

1− δ
znew

]a
ānew

=
δ

znew
ā

δ
znew
new

a1− δ
znew − ā1− δ

znew
new

1− δ
z

 = ωāωnew

[
a1−ω − ā1−ω

new

1− ω

]
,

where the last equality employed

ω ≡ δ

znew
.

44



When we study the limit for ω → 1, we see that a1−ω−ā1−ωnew
1−ω approaches zero in numerator and

denominator. Employing L’Hôspital’s rule, we get

lim
ω→1

a1−ω − ā1−ω
new

1− ω = lim
ω→1

eln(a)(1−ω) (− ln (a))− eln(ānew )(1−ω) (− ln (ānew))

−1

= lim
ω→1

eln(a)(1−ω) ln (a)− lim
ω→1

eln(ānew )(1−ω) ln (ānew)

= ln (a)− ln (ānew) .

This obviously approaches infinity when a approaches infinity.

A.7 The FPE for the wealth distribution

We start from the law of motion for wealth in (8). To simplify notation, we abbreviate Ai (t)
by Ai here and start from

dAi = zAidt+ [ā− Ai]dQδ
i (t) . (A.44)

Being in t, consider the probability that some realization Ai of wealth is smaller than some a
at a future point in time t + h for a small h > 0. We denote this probability by P (a, t+ h).
Most generally speaking, a can be larger or smaller than ā. As wealth is larger than ā after
rebirth, we focus on a > ā > 0.35 We can write

P (a, t+ h) = e−δh
[
P (a, t)−

∫ a

(1−zh)a

p (y, t) dy

]
+
(
1− e−δh

)
[P (a, t) + 1− P (a, t)] . (A.45)

When there is no jump over the period of lenght h, for which the probability is e−δh, the
probability mass in t+ h below a is given by the current mass P (a, t) minus the outflow from
the range a− zah = (1− zh) a to a. This is the first term on the right-hand side. As h is very
small, there is either no jump or one jump. In the case of a jump, occuring with probability
1 − e−δh, the mass in t + h is the current mass P (a, t) increased by everything above a, i.e.
1 − P (a, t). The resulting probability is 1. Simply speaking, when there is a jump, all wealth
drops to ā. As we assumed a > ā > 0, P (a, t+ h) = 1 conditional on a jump between t and
t+ h.
Approximating the exponential functions e−δh by 1− δh yields

P (a, t+ h) = (1− δh)

[
P (a, t)−

∫ a(t)

(1−zh)a

p (y, t) dy

]
+ δh.

Subtracting P (a, t) and rearranging, we get

P (a, t+ h)− P (a, t) = (δh− 1)

∫ a

(1−zh)a

p (y, t) dy − δhP (a, t) + δh.

Dividing by h yields

P (a, t+ h)− P (a, t)

h
= (δh− 1)

∫ a
(1−zh)a

p (y, t) dy

h
− δP (a, t) + δ.

Letting h become small, we get

∂P (a, t)

∂t
= −zap (a, t) + δ (1− P (a, t)) . (A.49)

35When assuming ā > a > 0, the derivation is slightly different. The final Fokker-Planck equation is the same
as for a > ā > 0. The derivation is available upon request.
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Note that the last step employed L’Hospital’s rule stating, given well-known conditions,

lim
h→0

f (x)

g (x)
= lim

h→0

f ′ (x)

g′ (x)
.

Setting f (x) ≡
∫ a

(1−zh)a
p (y, t) dy and g (x) ≡ h, we get

lim
h→0

f ′ (x)

g′ (x)
=
zap (a, t)

1
= zap (a, t) ,

where we used the Leibniz rule to determine the derivative of f (x).
Now compute the derivative of (A.49) with respect to a and get

∂p (a, t)

∂t
= −zp (a, t)− za∂p (a, t)

∂a
− δp (a, t) .

Hence, the Fokker-Planck equation describing the evolution of the density of wealth over time
reads

∂p (a, t)

∂t
= − (z + δ) p (a, t)− za∂p (a, t)

∂a
.

46


	Waelde 2021 Dynamics Pareto.pdf
	Introduction
	Related literature
	The model
	The individual
	The dynasty
	Age
	Wealth

	The government
	The small open economy

	Mathematical background: Describing the mean of a stochastic process
	Preliminaries
	An example
	The mean (simple approach)
	The mean (generic approach)


	Mean dynamics for dynasties, the population and the government
	Expected age
	Expected wealth
	Expected government wealth

	Aggregate and distributional findings
	Steady state and balanced growth path equilibrium
	Convergence to a general steady-state equilibrium
	Convergence towards a balanced growth path

	Distributional dynamics
	The age distribution
	The wealth distribution
	The link between the distribution and the mean
	A note on Fokker-Planck equations
	Outlook: Generalizing the tax scheme


	Conclusion
	References
	Appendix
	Deriving the closed-form solution (4)
	Guess
	Verification
	The closed-form solution
	Deriving a closed-form solution for the logarithmic case ( =1) 

	Deriving (22) – Evolution of the mean for age
	Deriving the ODE 
	Solving the ODE 
	Checking the solution

	Deriving (27) – Evolution of the mean of wealth
	Deriving the ODE
	Solving the ODE
	Checking the solution

	Deriving (34) – Evolution and determination of expected public wealth
	Deriving the ODE for expected public wealth
	Solving the ODE
	Deriving (37)
	Aggregate government wealth
	Expected government wealth for =1

	Some simple derivations
	Dynamics of the wealth distribution
	Proof for the solution of the SDE
	The probability distribution of Ai( t)  – deriving (48)
	The mean of the truncated Pareto distribution

	The FPE for the wealth distribution


	9058abstract.pdf
	Abstract




