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Abstract 
 
In this paper I revisit the interpretation of the linear instrumental variables (IV) estimand as a 
weighted average of conditional local average treatment effects (LATEs). I focus on a 
practically relevant situation in which additional covariates are required for identification while 
the reduced-form and first-stage regressions implicitly restrict the effects of the instrument to be 
homogeneous, and are thus possibly misspecified. I show that the weights on some conditional 
LATEs are negative and the IV estimand is no longer interpretable as a causal effect under a 
weaker version of monotonicity, i.e. when there are compliers but no defiers at some covariate 
values and defiers but no compliers elsewhere. The problem of negative weights disappears in 
the overidentified specification of Angrist and Imbens (1995) and in an alternative method, 
termed “reordered IV,” that I also develop. Even if all weights are positive, the IV estimand in 
the just identified specification is not interpretable as the unconditional LATE parameter unless 
the groups with different values of the instrument are roughly equal sized. I illustrate my 
findings in an application to causal effects of college education using the college proximity 
instrument. The benchmark estimates suggest that college attendance yields earnings gains of 
about 60 log points, which is well outside the range of estimates in the recent literature. I 
demonstrate that this result is driven by the existence of defiers and the presence of negative 
weights. Corrected estimates indicate that attending college causes earnings to be roughly 20% 
higher. 
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1 Introduction

Many instrumental variables are only valid after conditioning on additional covariates. Angrist and
Imbens (1995) provide an influential interpretation of the two-stage least squares (2SLS) estimand
in this context as a convex combination of conditional local average treatment effects (LATEs),
i.e. average effects of treatment for individuals whose treatment status is affected by the instrument.
However, Angrist and Imbens (1995) restrict their attention to saturated models with discrete co-
variates as well as reduced-form and first-stage regressions that include a full set of interactions
between these covariates and the instrument; this is equivalent to requiring that the researcher esti-
mates a separate reduced-form and first-stage regression for every combination of covariate values.
Such specifications are very rare in empirical work. For example, in a survey of recent papers with
multiple instruments, only 13% of applications use covariate interactions with an original instru-
ment (Mogstad, Torgovitsky, and Walters, 2020). This severely limits the applicability of Angrist
and Imbens (1995)’s result to interpreting actual IV and 2SLS estimates.

Recent contributions to this line of research, notably those of Kolesár (2013) and Evdokimov
and Kolesár (2019), relax many of the limitations of Angrist and Imbens (1995)’s result and support
the view that linear IV and 2SLS estimands can generally be written as a convex combination of
conditional LATEs. Evdokimov and Kolesár (2019) consider nonsaturated specifications and pro-
vide a generalization of Angrist and Imbens (1995)’s result under the assumption that the reduced-
form and first-stage regressions are correctly specified. Kolesár (2013) allows for misspecification
of these regressions as well as what I refer to as “weak monotonicity,” i.e. the existence of compli-
ers but no defiers at some covariate values and the existence of defiers but no compliers elsewhere,1

and concludes that even in this case the interpretation of linear IV and 2SLS estimands as a convex
combination of conditional LATEs is generally correct, subject to some additional assumptions.
These assumptions essentially require that the first stage postulated by the researcher provides a
sufficiently good approximation to the true first stage.

In this paper I present a more pessimistic view of the causal interpretability of linear IV and
2SLS estimands. In particular, I study the questions of whether the IV weights on conditional
LATEs are positive and, if they are, whether they have an intuitive interpretation. My answer
to both of these questions is rather negative. To be specific, I make four main contributions to
the literature on instrumental variables. First, I demonstrate that under weak monotonicity the

1Following Angrist, Imbens, and Rubin (1996), “compliers” are individuals who get treated when encouraged to
do so but not otherwise, while “defiers” are those who do not get treated when encouraged to do so and get treated
otherwise. Usually, the existence of defiers is ruled out for all covariate values (e.g., Abadie, 2003; Frölich, 2007),
and the instrument is assumed to influence treatment status in only one direction. I refer to this assumption as “strong
monotonicity.” In a related context of randomized experiments with endogenous sample selection, Semenova (2020)
argues that strong monotonicity is often implausible and provides evidence against this assumption in the case of the
Job Corps training program (Schochet, Burghardt, and McConnell, 2008; Lee, 2009).
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weights on some conditional LATEs are negative in the common situation where the reduced-form
and first-stage regressions incorrectly restrict the effects of the instrument to be homogeneous.
While Kolesár (2013)’s results apply to a wide range of specifications, his conditions for positive
weights are not satisfied in this benchmark case. It follows that the IV estimand may no longer
be interpretable as a causal effect; this parameter may turn out to be negative (positive) even if
treatment effects are positive (negative) for everyone in the population.

Second, unlike in previous contributions to this literature, I explicitly compare the weights in
the usual (just identified) application of IV and in the overidentified specification of Angrist and
Imbens (1995) with the “desired” weights that recover the unconditional LATE parameter. The
advantage of Angrist and Imbens (1995)’s specification is that it is guaranteed to produce a convex
combination of conditional LATEs even under weak monotonicity. However, under a “strong”
version of monotonicity, where the existence of defiers is ruled out at any value of covariates, the
difference between the “desired” weights and Angrist and Imbens (1995)’s weights is greater than
that between the “desired” weights and the weights in the just identified specification.

Third, I provide a simple diagnostic for negative weights and an alternative estimation method,
which shares the ability of Angrist and Imbens (1995)’s specification to deliver a convex combina-
tion of conditional LATEs as well as the advantage of the usual application of IV of only using a
single instrument. In particular, I recommend that empirical researchers always begin their analysis
by estimating the first stage in a flexible way, allowing for heterogeneous effects of the instrument.
A testable implication of strong monotonicity is that the sign of the first stage is the same for all
covariate values. If this requirement is not satisfied, which is easy to verify, the next step of my
procedure, referred to as “reordered IV,” amounts to redefining the (binary) instrument to take the
value 1 for this value of the original instrument that encourages treatment conditional on covariates
and the value 0 otherwise. This new instrument is then used in a just identified specification, where
the weights on all conditional LATEs are again positive.

Finally, I demonstrate that the weights in the standard (just identified) specification are often
problematic for interpretation even under strong monotonicity. I show that the IV estimand may
be quantitatively and qualitatively different from the unconditional LATE parameter whenever the
groups with different values of the instrument are not approximately equal sized. Put another way,
I demonstrate that the IV estimand may be substantially different from the parameter of interest
even if all weights are positive and integrate to one, unless the relevant population is balanced in a
particular sense. I develop simple diagnostic tools that can be used to detect whether the otherwise
positive weights are problematic or not.

I conclude this paper with a replication of Card (1995)’s analysis of returns to schooling using
the college proximity instrument. Focusing on causal effects of college education, I show that the
benchmark estimates suggest that college attendance yields earnings gains of about 60 log points,
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which substantially exceeds the range of estimates in the recent literature (e.g., Hoekstra, 2009;
Zimmerman, 2014; Smith, Goodman, and Hurwitz, 2020). Then, however, I demonstrate that this
result is driven by the failure of strong monotonicity and the presence of negative weights. Cor-
rected estimates, including nonparametric estimates of the unconditional LATE parameter, indicate
that attending college causes earnings to be roughly 20% higher.

The remainder of the paper is organized as follows. Section 2 introduces my framework. Sec-
tion 3 studies the question of whether linear IV and 2SLS estimands can generally be written as a
convex combination of conditional LATEs. Section 4 demonstrates that the IV weights may con-
tinue to be problematic even in cases where they are positive. Section 5 illustrates my findings in
an application to causal effects of college education. Section 6 concludes.

2 Framework

In this section I formally define the statistical objects of interest, i.e. the conditional and uncon-
ditional IV and 2SLS estimands. I reserve the term “2SLS” for the appropriate estimator and
estimand in overidentified models; see equation (3) below. When the model is just identified, I use
the term “IV” or “linear IV”; see equation (2). In what follows, I also review identification in the
LATE framework with covariates (see, e.g., Abadie, 2003; Frölich, 2007). Unlike in most previous
studies, I devote particular attention to the possibility that compliers and defiers may coexist but
not at any given value of covariates (see also Kolesár, 2013; Semenova, 2020). Throughout the
paper I also assume that the appropriate moments exist whenever necessary.

2.1 Notation and Estimands

Suppose that we are interested in the causal effect of a binary treatment, D, on an outcome, Y . For
every individual, we define two potential outcomes, Y(1) and Y(0), which correspond to the values
of Y that this individual would attain if treated (D = 1) and if not treated (D = 0), respectively.
Thus, Y(1)−Y(0) is the treatment effect. The treatment D is allowed to be endogenous but a binary
instrument, Z, is also available. Let D(1) and D(0) denote the potential treatment statuses that
correspond to the treatment actually received by an individual when their instrument assignment is
given by Z = 1 and Z = 0, respectively. Consequently, Y = Y(D) and D = D(Z). If the observed
outcome were to depend directly on Z, we would write Y = Y(Z,D). Finally, let X = (1, X1, . . . , XJ)

denote a row vector of covariates. In some cases I will allow for the possibility that additional
instruments have been created by interacting Z with all elements of X; then, ZC = (Z,ZX1, . . . ,ZXJ)

will be used to denote the resulting row vector of instruments.
To provide motivation for what follows, let us consider the standard single-equation linear
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model for our outcome of interest:
Y = Dβ + Xγ + υ, (1)

where X and the instrument(s) are assumed to be uncorrelated with υ. Also, β is the main coefficient
of interest. Unlike in textbook treatments of this model but in line with the literature on local
average treatment effects, I do not assume that equation (1), often referred to as the “structural
model,” is correctly specified; in particular, I allow the effect of D on Y to be heterogeneous and
correlated with both observables and unobservables.

In practice, however, many researchers act as if this model is correctly specified and use linear
IV or 2SLS for estimation. In what follows, I will focus on the interpretation of the probability
limits of the IV and 2SLS estimators of β when the structural model is possibly misspecified. With
a single instrument, the probability limit of linear IV or, simply, the (linear) IV estimand is

βIV =
[(

E
[
Q′W

])−1 E
[
Q′Y

]]
1
, (2)

where W = (D, X), Q = (Z, X), and [·]k denotes the kth element of the corresponding vector. It is
useful to note that equation (2) characterizes the usual (just identified) application of instrumental
variables when a single instrument is available. This specification also corresponds to reduced-
form and first-stage regressions that project Y and D, respectively, on X and Z, excluding any
interactions between X and Z.

If a vector of instruments, ZC, has been created and 2SLS is used for estimation, the relevant
probability limit or, simply, the 2SLS estimand is

β2SLS =

[(
E

[
W ′QC

] (
E

[
Q′CQC

])−1 E
[
Q′CW

])−1
E

[
W ′QC

] (
E

[
Q′CQC

])−1 E
[
Q′CY

]]
1
, (3)

where QC = (ZC, X). In this specification, the corresponding reduced-form and first-stage regres-
sions project Y and D, respectively, on X and ZC, and hence we implicitly allow for heterogeneity
in the effects of Z on Y and D.

Regardless of the implicit restrictions on the effects of the instrument, the true first stage can
be written as

E [D | X,Z] = ψ(X) + ω(X) · Z, (4)

where
ω(x) = E [D | Z = 1, X = x] − E [D | Z = 0, X = x] (5)

is the conditional first-stage slope coefficient or, equivalently, the coefficient on Z in the regression
of D on 1 and Z in the subpopulation with X = x. Similarly, the conditional IV (or Wald) estimand
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can be written as
β(x) =

E [Y | Z = 1, X = x] − E [Y | Z = 0, X = x]
E [D | Z = 1, X = x] − E [D | Z = 0, X = x]

. (6)

This parameter is equivalent to the coefficient on D in the IV regression of Y on 1 and D in the
subpopulation with X = x, with Z as the instrument for D.

2.2 Local Average Treatment Effects

In what follows, I will briefly review the LATE framework of Imbens and Angrist (1994) and
Angrist et al. (1996), focusing on its extension to the case with additional covariates.

The population consists of four latent groups: always-takers, for whom D(1) = 1 and D(0) = 1;
never-takers, for whom D(1) = 0 and D(0) = 0; compliers, for whom D(1) = 1 and D(0) = 0;
and defiers, for whom D(1) = 0 and D(0) = 1. As demonstrated by Imbens and Angrist (1994),
if, among other things, we rule out the existence of defiers and assume that X is orthogonal to Z,
the estimand of interest, βIV = β2SLS = E[Y |Z=1]−E[Y |Z=0]

E[D|Z=1]−E[D|Z=0] , recovers the average treatment effect for
compliers, usually referred to as the local average treatment effect (LATE).

Some of my results will allow for the existence of both compliers and defiers, and hence
throughout this paper I follow Kolesár (2013) in defining LATE as

τLATE = E [Y(1) − Y(0) | D(1) , D(0)] , (7)

i.e. the average treatment effect for individuals whose treatment status is affected by the instrument.
This group includes both compliers and defiers; it will be restricted to compliers whenever the
existence of defiers is ruled out. It is useful to note that this unconditional LATE parameter can
also be written as

τLATE =
E [π(X) · τ(X)]

E [π(X)]
, (8)

where
τ(x) = E [Y(1) − Y(0) | D(1) , D(0), X = x] (9)

is the conditional LATE and
π(x) = P [D(1) , D(0) | X = x] (10)

is the conditional proportion of compliers and defiers. The following assumption, together with
additional assumptions below, will be used to identify τ(x) and π(x), and thereby also τLATE.

Assumption IV.

(i) (Conditional independence)
(
Y(0, 0),Y(0, 1),Y(1, 0),Y(1, 1),D(0),D(1)

)
⊥ Z | X;

(ii) (Exclusion restriction) P [Y(1, d) = Y(0, d) | X] = 1 for d ∈ {0, 1} a.s.;
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(iii) (Relevance) 0 < P [Z = 1 | X] < 1 and P [D(1) = 1 | X] , P [D(0) = 1 | X] a.s.

Assumption IV(i) postulates that the instrument is “as good as randomly assigned” conditional on
covariates. Assumption IV(ii) states that the instrument does not directly affect the outcome; its
only effect on the outcome is through treatment status. Finally, Assumption IV(iii) requires that
there is variation in the instrument as well as a distinct number of compliers and defiers at every
value of covariates, that is, the instrument is relevant. I do not assume that X is orthogonal to Z.

Assumption IV is not sufficient to identify τ(x) and π(x). It is also necessary to restrict the
existence of defiers (Imbens and Angrist, 1994). The following assumption, due to Abadie (2003),
rules out the existence of defiers at any value of covariates.

Assumption SM (Strong monotonicity). P [D(1) ≥ D(0) | X] = 1 a.s.

The basic premise of this paper is that Assumption SM may often be too restrictive (cf. Gautier and
Hoderlein, 2015; de Chaisemartin, 2017; Dahl, Huber, and Mellace, 2019). A testable implication
of Assumption SM is that ω(x), the conditional first-stage slope coefficient, is always nonnegative.
If this implication is rejected, an alternative assumption is necessary to obtain point identification.
One possibility is to restrict the heterogeneity in treatment effects conditional on covariates, as
discussed by Heckman and Vytlacil (2005) and Mogstad and Torgovitsky (2018), among others,
in which case we will be able to identify the average treatment effect rather than the unconditional
LATE parameter.2 Another possibility is to replace Assumption SM with a weaker assumption that
postulates the existence of compliers but no defiers at some covariate values and the existence of
defiers but no compliers elsewhere (cf. Kolesár, 2013; Semenova, 2020). While the relative appeal
of these two assumptions is context dependent, I will mostly focus on the latter in what follows.

Assumption WM (Weak monotonicity). There exists a partition of the covariate space such that
P [D(1) ≥ D(0) | X] = 1 a.s. on one subset and P [D(1) ≤ D(0) | X] = 1 a.s. on its complement.

Assumption WM is obviously weaker than Assumption SM but it is still restrictive. While it allows
compliers and defiers to coexist, it postulates that the sign of the effect of Z on D depends only
on observables. For example, many papers use the distance to the nearest college as an instrument
for educational attainment (e.g., Card, 1995). It may be the case that college proximity never
discourages poor students from attending college and never encourages rich students to do so.
This would be consistent with Assumption WM. In contrast, Assumption SM would require that

2Indeed, if we assume that the marginal treatment effect, i.e. the effect of treatment conditional on observables
and unobservables, does not, in fact, depend on unobservables, then the conditional Wald estimand, β(x), identifies the
conditional average treatment effect, E [Y(1) − Y(0) | X = x]. In this case, we can also identify the average treatment
effect (ATE), since τATE = E [Y(1) − Y(0)] = E

[
E [Y(1) − Y(0) | X]

]
. Of course, this restriction on treatment effects is

fairly strong, as it implies that either Y(1) − Y(0) is identical for all individuals with X = x or these individuals do not
select into treatment based on their unobserved returns from this treatment (Heckman and Vytlacil, 2005).
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there are no students at any value of covariates for whom college proximity is discouraging. This
would also be consistent with, although not required by, Assumption WM.

Although Assumption WM is not innocuous, it may constitute a useful way forward when
Assumption SM is rejected and the researcher is unwilling to restrict treatment effect heterogeneity.
Indeed, Assumption WM, together with Assumption IV, still allows us to identify τ(x) and π(x).
Before stating the relevant lemma, it is useful to define an auxiliary function

c(x) = sgn
(
P [D(1) ≥ D(0) | X = x] − P [D(1) ≤ D(0) | X = x]

)
, (11)

where sgn(·) is the sign function. Clearly, c(x) equals 1 if there are only compliers at X = x and −1
if there are only defiers at X = x.

The following lemma summarizes identification of the conditional LATE parameter and the
conditional proportion of individuals whose treatment status is affected by the instrument.

Lemma 2.1.

(i) Under Assumptions IV and SM, τ(x) = β(x) and π(x) = ω(x).

(ii) Under Assumptions IV and WM, τ(x) = β(x) and π(x) = |ω(x)| = c(x) · ω(x).

Lemma 2.1 consists of well-known results and straightforward extensions of these results, and as
such it is stated without proof. The conditional Wald estimand identifies the conditional LATE
parameter under both strong and weak monotonicity. Under Assumption SM, the conditional pro-
portion of compliers is identified as the conditional first-stage slope coefficient, ω(x). Under As-
sumption WM, the conditional proportion of compliers or defiers is identified as the absolute value
of this coefficient; the coefficient is negative if and only if there are defiers but no compliers at a
given value of covariates. Finally, it will be useful for what follows that [π(x)]2 = [ω(x)]2 under
either strong or weak monotonicity.

3 Are the Weights Positive?

In this section I study whether linear IV and 2SLS estimands can be interpreted as a convex com-
bination of conditional local average treatment effects (LATEs). I argue that in many situations the
answer is negative. Indeed, in the usual application of IV the weights on some conditional LATEs
are negative under Assumption WM and, in general, whenever there are more defiers than com-
pliers at some covariate values. I propose a diagnostic and a simple correction for this problem,
which offers protection against negative weights. I refer to this procedure as “reordered IV.”

8



3.1 Angrist and Imbens (1995), Revisited

Let us begin by revisiting Angrist and Imbens (1995)’s representation of the 2SLS estimand. Re-
call that Angrist and Imbens (1995) study a special case of the model in equation (1) where all
covariates are binary and represent membership in disjoint groups or strata. In this case, each of
the original covariates needs to be discrete, in which case the population can be divided into K

groups, where K corresponds to the number of possible combinations of values of these variables.
(For example, with six binary variables, we have K = 26 = 64.) Let G ∈ {1, . . . ,K} denote group
membership and Gk = 1[G = k] denote the resulting group indicators. Angrist and Imbens (1995)
consider a model where original covariates are replaced with these group indicators while reduced-
form and first-stage regressions include a full set of interactions between these indicators and Z.
Put another way, X = (1,G1, . . . ,GK−1) and ZC = (Z,ZG1, . . . ,ZGK−1). As a result, we have a
separate first-stage coefficient on Z for every value of X. The following lemma restates Angrist
and Imbens (1995)’s and Kolesár (2013)’s interpretation of the 2SLS estimand in this context.

Lemma 3.1 (Angrist and Imbens, 1995; Kolesár, 2013). Under Assumptions IV and either SM or

WM, and with X = (1,G1, . . . ,GK−1) and ZC = (Z,ZG1, . . . ,ZGK−1),

β2SLS =
E

[
σ2(X) · τ(X)

]
E

[
σ2(X)

] ,

where σ2(X) = E
[
(E [D | X,Z] − E [D | X])2

| X
]
.

Lemma 3.1 establishes that the 2SLS estimand in the overidentified specification of Angrist and
Imbens (1995) is a convex combination of conditional LATEs, with weights equal to the condi-
tional variance of the first stage. This result is due to Angrist and Imbens (1995) and has usually
been interpreted as requiring that the existence of defiers is completely ruled out (see, e.g., Angrist
and Pischke, 2009). Kolesár (2013) demonstrates that it also holds under weak monotonicity.

A limitation of Lemma 3.1 is that it may not be immediately obvious how the 2SLS weights
differ from the “desired” weights in equation (8). The following result, which is a straightforward
implication of Lemma 3.1 but nonetheless appears to be novel, facilitates such a comparison.

Theorem 3.2. Under Assumptions IV and either SM or WM, and with X = (1,G1, . . . ,GK−1) and

ZC = (Z,ZG1, . . . ,ZGK−1),

β2SLS =
E

[
[π(X)]2 · Var [Z | X] · τ(X)

]
E

[
[π(X)]2 · Var [Z | X]

] .

Proof. Lemma 3.1 states that β2SLS =
E[σ2(X)·τ(X)]

E[σ2(X)] . It remains to show that σ2(X) = [π(X)]2 ·

Var [Z | X]. Indeed, it follows from the definition of σ2(X), equation (4), and iterated expectations
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that σ2(X) = [ω(X)]2 · Var [Z | X]. Then, it follows from Lemma 2.1 that σ2(X) = [π(X)]2 ·

Var [Z | X] because [ω(X)]2 = [π(X)]2 under Assumptions IV and either SM or WM. �

Theorem 3.2 shows that the 2SLS estimand in Angrist and Imbens (1995)’s specification is a
convex combination of conditional LATEs, with weights equal to the product of the squared con-
ditional proportion of compliers or defiers and the conditional variance of Z.3 Since the “desired”
weights, as shown in equation (8), consist only of the conditional proportion of compliers or de-
fiers, Angrist and Imbens (1995)’s specification overweights the effects in groups with strong first
stages (i.e. many individuals affected by the instrument) and with large variances of Z. This inter-
pretation holds under both strong and weak monotonicity.

Remark 3.1. A major limitation of Lemma 3.1 and Theorem 3.2 is that empirical applications
of IV methods rarely consider fully heterogeneous first stages and saturated specifications with
discrete covariates. As mentioned above, in a survey of recent papers with multiple instruments,
only 13% of applications interact covariates with an original instrument (Mogstad et al., 2020).
Specifications using many overidentifying restrictions appear to have been more common in ear-
lier work using IV methods (e.g., Angrist, 1990; Angrist and Krueger, 1991) but have effectively
disappeared from empirical economics out of concern for weak instruments.4

Remark 3.2. If we replace either of the monotonicity assumptions with an appropriate restriction
on treatment effect heterogeneity, as discussed in Section 2.2, the 2SLS estimand in Angrist and
Imbens (1995)’s specification will correspond to a convex combination of conditional ATEs, with
weights equal to the product of the squared conditional first-stage slope coefficient and the con-
ditional variance of Z. Since the unconditional ATE, τATE = E [Y(1) − Y(0)], is an unweighted
average of conditional ATEs, this weighting may be undesirable whenever ATE is of interest.

3.2 Results for Just Identified Models

Remark 3.1 suggests that Theorem 3.2 is not necessarily useful for interpreting actual empirical
studies because modern applications of IV methods avoid using many overidentifying restrictions.
A similar point is made by Angrist and Pischke (2009, p. 178), who write that “[i]n practice, we
may not want to work with a model with a first-stage parameter for each value of the covariates. . . It
seems reasonable to imagine that models with fewer parameters, say a restricted first stage impos-
ing a constant [effect of Z on D], nevertheless approximate some kind of covariate-averaged LATE.
This turns out to be true, but the argument [due to Abadie (2003)] is surprisingly indirect.” In what

3See also Walters (2018) for a similar remark that focuses on “descriptive” estimands and does not use the LATE
framework for interpretation.

4Indeed, Bound, Jaeger, and Baker (1995) write that their results “indicate that the common practice of adding
interaction terms as excluded instruments may exacerbate the [weak instruments] problem” (emphasis mine).
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follows, I will show that this claim would be false under weak monotonicity. The claim is true un-
der strong monotonicity, which I will be able to demonstrate directly. I will revisit Abadie (2003)’s
indirect argument later on.

To save space, I combine two extensions of Angrist and Imbens (1995)’s analysis in what
follows. On the one hand, I am interested in the interpretation of the IV estimand when we retain
Angrist and Imbens (1995)’s restriction that the model for covariates is saturated but no longer
require that there is a separate first-stage coefficient on the instrument for every combination of
covariate values. This analysis does not require any additional assumptions. On the other hand,
I am also interested in the interpretation of the IV estimand in nonsaturated specifications. This
analysis proceeds under the assumption that the instrument propensity score, defined as

e(X) = E [Z | X] , (12)

i.e. the conditional probability that an individual is assigned Z = 1, is linear in X. This assumption
is standard and has been used by Abadie (2003), Kolesár (2013), Lochner and Moretti (2015), and
Evdokimov and Kolesár (2019), among others.

Assumption PS (Instrument propensity score). e(X) = Xα.

Assumption PS holds automatically when Z is randomized, and also when all covariates are dis-
crete and the model for covariates is saturated. (This is why the extensions for saturated and
nonsaturated specifications result in the same interpretation of the IV estimand.) Assumption PS
may also provide a good approximation to e(X) in other situations, especially when X includes
powers and cross-products of original covariates.

Let us first consider the case of weak monotonicity. The following result clarifies the lack of
causal interpretability of the linear IV estimand in this context.

Theorem 3.3. Under Assumptions IV and WM, and additionally (i) with X = (1,G1, . . . ,GK−1) or

(ii) under Assumption PS,

βIV =
E [c(X) · π(X) · Var [Z | X] · τ(X)]

E [c(X) · π(X) · Var [Z | X]]
.

Proof. See Appendix A. �

Theorem 3.3 provides a new representation of the IV estimand in the standard specification, i.e. one
that, perhaps incorrectly, restricts the effects of the instrument in the reduced-form and first-stage
regressions to be homogeneous. Unlike in Angrist and Imbens (1995)’s specification, the estimand
in the standard specification is not necessarily a convex combination of conditional LATEs. This
is because c(x) takes the value −1 for every value of covariates where there exist defiers but no
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compliers, and hence the corresponding weights in Theorem 3.3 are negative as well. It follows
that, when IV is applied in the usual way, the estimand may no longer be interpretable as a causal
effect. It is possible that this parameter may turn out to be negative (positive) even if treatment
effects are positive (negative) for everyone in the population.

The following result demonstrates that this problem disappears when we impose the strong
version of monotonicity.

Corollary 3.4. Under Assumptions IV and SM, and additionally (i) with X = (1,G1, . . . ,GK−1) or

(ii) under Assumption PS,

βIV =
E [π(X) · Var [Z | X] · τ(X)]

E [π(X) · Var [Z | X]]
.

Proof. Note that Assumption SM is a special case of Assumption WM where the existence of
compliers but no defiers is postulated at all covariate values and the existence of defiers but no
compliers everywhere else (i.e. on an empty set). Thus, it follows from Theorem 3.3 that, under
Assumptions IV and SM, βIV =

E[c(X)·π(X)·Var[Z|X]·τ(X)]
E[c(X)·π(X)·Var[Z|X]] and c(X) = 1 a.s. �

Corollary 3.4 provides a direct argument for Angrist and Pischke (2009)’s assertion that the stan-
dard specification of IV recovers a convex combination of conditional LATEs. As noted previously,
however, this statement is no longer true under weak monotonicity. If strong monotonicity holds,
then the weights in Corollary 3.4 may be more desirable than those in Angrist and Imbens (1995)’s
specification. Indeed, a comparison of Corollary 3.4 and equation (8) shows that the standard
specification, like Angrist and Imbens (1995)’s specification, overweights the effects in groups
with large variances of Z but not, unlike the latter, in groups with strong first stages.5

Remark 3.3. Bond, White, and Walker (2007) discuss the interpretation of an overidentified and a
just identified specification in randomized experiments with noncompliance in which the existence
of defiers is completely ruled out. In this case, the standard specification of IV recovers the uncon-
ditional LATE parameter but the overidentified specification does not.6 This is a special case of the
difference between Theorem 3.2 and Corollary 3.4 where Var [Z | X] is constant. However, Theo-
rem 3.3 makes it clear that under weak monotonicity the standard specification no longer recovers
the unconditional LATE parameter or even a convex combination of conditional LATEs.

Remark 3.4. Abadie (2003) shows that, under Assumptions IV, SM, and PS, the IV estimand is
equivalent to the coefficient on D in the linear projection of Y on D and X among compliers.7 In

5To be clear, both specifications attach a greater weight to conditional LATEs in groups with strong first stages, as
required by equation (8). But Angrist and Imbens (1995)’s specification places even more weight on such conditional
LATEs than is necessary to recover the unconditional LATE parameter.

6A similar point about models without additional covariates is made by Huntington-Klein (2020), who also re-
visits the link between the existence of defiers and negative weights in this context (cf. Imbens and Angrist, 1994;
de Chaisemartin, 2017).

7To be precise, Abadie (2003)’s formulation of what I refer to as Assumption IV(iii) is slightly different but this
is not consequential in the present context.
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other words, IV is analogous to ordinary least squares (OLS), with the exception of its focus on
this latent group. Corollary 3.4 provides another argument that “IV is like OLS.” Indeed, as shown
by Angrist (1998), the only difference between OLS and ATE is due to the dependence of the OLS
weights on the conditional variance of D. Similarly, as shown in Corollary 3.4, the only difference
between IV and LATE (under Assumption SM) is due to the dependence of the IV weights on the
conditional variance of Z. This analogy between OLS and IV is potentially problematic for IV
given the results on OLS in Słoczyński (2020). I will return to this point in Section 4.

Remark 3.5. Kolesár (2013) concludes that under weak monotonicity the interpretation of linear
IV and 2SLS estimands as a convex combination of conditional LATEs is generally correct, subject
to some additional assumptions. Theorem 3.3 leads to a different conclusion for the case of the
standard specification of IV, and may thus seem at odds with Kolesár (2013). However, there
is no contradiction between these results. Rather, Kolesár (2013)’s additional requirement for
positive weights is that the first stage postulated by the researcher is monotone in the true first
stage (cf. Heckman and Vytlacil, 2005; Heckman, Urzua, and Vytlacil, 2006), and this condition
necessarily fails, if there are defiers, in the common situation where the first-stage effects of Z on
D are restricted to be homogeneous, that is, in the standard specification of IV.

Remark 3.6. Kolesár (2013) and Evdokimov and Kolesár (2019) also consider a special case
of this problem where the reduced-form and first-stage regressions are correctly specified. How
does this assumption affect the interpretation of the IV estimand? As noted above, the standard
specification of IV corresponds to reduced-form and first-stage regressions that limit the effects of
Z on Y and D to be homogeneous. This is consistent with Assumption SM, and with π(X) and τ(X)
that do not depend on X. Thus, following Corollary 3.4, βIV = τLATE because τ(x) = τLATE for all
covariate values. Still, these homogeneity assumptions will be implausible in many applications.

Remark 3.7. Lochner and Moretti (2015) show that under Assumption PS the unconditional IV
estimand is equivalent to a weighted average of conditional IV estimands, with weights equal to the
conditional covariance between the treatment and the instrument. This “descriptive” interpretation
of the IV estimand is implicit in Theorem 3.3 and Corollary 3.4. Related results are also discussed
by Kling (2001), Walters (2018), and Ishimaru (2021). Note, however, that none of these papers,
including Lochner and Moretti (2015), uses the LATE framework for interpretation.

Remark 3.8. Hull (2018) and Borusyak and Hull (2021) recommend that researchers consider
an alternative estimation method, namely the IV regression of Y on 1 and D, with Z − e(X) as
the instrument for D. When the existence of defiers is completely ruled out, as also shown by
Hull (2018) and Borusyak and Hull (2021), this estimator converges to a convex combination of
conditional LATEs, with weights equal to the product of the conditional proportion of compliers
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and the conditional variance of Z. As shown in Corollary 3.4, when Assumption PS holds, the
standard specification of IV recovers exactly the same parameter.

Remark 3.9. If we replace Assumptions WM and SM with a restriction on treatment effect hetero-
geneity, as discussed in Section 2.2 and Remark 3.2, the IV estimand will correspond to a weighted
average of conditional ATEs, with weights equal to the product of the conditional first-stage slope
coefficient and the conditional variance of Z. Unlike in Angrist and Imbens (1995)’s specification,
some of these weights may be negative. To ensure positive weights, it is sufficient to additionally
impose that there are more compliers than defiers (or more defiers than compliers) at all covariate
values (cf. Mogstad and Wiswall, 2010).

3.3 Reordered IV

As discussed above, a consequence of Theorem 3.3 and Corollary 3.4 is that some of the IV weights
may be negative under weak monotonicity but not under strong monotonicity. Thus, it is important
to see that strong monotonicity has a testable implication, namely that ω(x), the conditional first-
stage slope coefficient, is always nonnegative. Moreover, the IV weights are negative at a given
value of covariates if and only if ω(x) is negative at this value. It follows that estimating the
proportion of the population with a negative weight is equivalent to estimating the proportion of
the population with a negative first stage.

When all covariates are discrete and the model for covariates is saturated, as in Angrist and
Imbens (1995)’s specification, nonparametric estimation of the sign of the first stage is straight-
forward. It is sufficient to regress D on X, separately in subsamples with Z = 1 and Z = 0, and
examine the sign of the difference in fitted values from the two regressions. When some covari-
ates are continuous, nonparametric estimation may be difficult. In a related context of randomized
experiments with endogenous sample selection, Semenova (2020) suggests using a flexible logit
model to estimate how the sign of the effect of treatment on selection varies with covariates. Prac-
tically speaking, this amounts to replacing a linear model with a logit model when estimating the
conditional mean of D given X and Z.

If strong monotonicity is violated and some of the weights are negative, linear IV estimation
is problematic. In what follows, I will develop a simple correction for this problem, which offers
protection against negative weights. Define an alternative, “reordered” instrument as

ZR = 1[ω(X) > 0] · Z + 1[ω(X) < 0] · (1 − Z) . (13)

This instrument is binary and takes the value 1 if either Z = 1 and ω(X) > 0 or Z = 0 and ω(X) < 0;
it also takes the value 0 if either Z = 0 and ω(X) > 0 or Z = 1 and ω(X) < 0. It follows that ZR

14



takes the value 1 for this value of the original instrument that encourages treatment conditional on
covariates and the value 0 otherwise. When we construct the linear IV estimand using ZR rather
than Z, we obtain

βRIV =
[(

E
[
Q′RW

])−1 E
[
Q′RY

]]
1
, (14)

where QR = (ZR, X) and, as before, W = (D, X). It turns out that using this alternative instrument
would ensure that the weights on all conditional LATEs are positive under both strong and weak
monotonicity. Also, under strong monotonicity, ZR = Z and βRIV = βIV.

Theorem 3.5 (Reordered IV). Under Assumptions IV and SM or WM, and additionally (i) with

X = (1,G1, . . . ,GK−1) or (ii) with E [ZR | X] = XαR,

βRIV =
E [π(X) · Var [Z | X] · τ(X)]

E [π(X) · Var [Z | X]]
.

Proof. See Appendix A. �

The new procedure that is implicit in Theorem 3.5 combines the advantages of the usual application
of IV, which is just identified and more robust to a weak instrument problem, and the overidentified
specification of Angrist and Imbens (1995), which guarantees that the weights on all conditional
LATEs are positive. When ZR is used in a just identified specification, all weights are positive as
well.8 In practice, ω(x) is unknown and needs to be estimated. I leave for future research a formal
investigation into the influence of estimation of ω(x) on the properties of “reordered IV.”

4 Are the Weights Intuitive?

In this section I demonstrate that the IV weights continue to be problematic for interpretation even
under strong monotonicity. The theoretical analysis so far makes it clear that the IV estimand in
the standard specification is not necessarily a convex combination of conditional LATEs under
weak monotonicity. Under strong monotonicity, on the other hand, the IV weights are guaranteed
to be positive. In what follows, I will argue that, even in this optimistic scenario, we should not
interpret the IV estimand as if it was somehow guaranteed to (approximately) correspond to the
unconditional LATE parameter.

The analysis of this section also applies to “reordered IV,” where strong monotonicity holds
with respect to ZR if weak monotonicity holds with respect to Z. In either case, the resulting
estimand may be substantially different from the unconditional LATE parameter unless the groups
with different values of the instrument (or reordered instrument) are roughly equal sized. As I am

8The idea of constructing new instruments in a way that produces “desirable” weights dates back at least to
Heckman and Vytlacil (2005).
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now ruling out the existence of defiers altogether (with respect to Z or ZR), I will also refer to these
two groups as “encouraged” and “not encouraged” to get treated. To simplify notation, Z will now
be used to denote the (possibly reordered) instrument that satisfies strong monotonicity.

The starting point is to introduce an additional parameter, namely the local average treat-
ment effect on the treated (LATT), previously discussed by Frölich and Lechner (2010), Hong
and Nekipelov (2010), and Donald, Hsu, and Lieli (2014). We can define LATT as follows:

τLATT = E [Y(1) − Y(0) | D(1) , D(0),D = 1] . (15)

It is also useful to define the local average treatment effect on the untreated (LATU) as

τLATU = E [Y(1) − Y(0) | D(1) , D(0),D = 0] . (16)

Clearly, the unconditional LATE parameter is a convex combination of LATT and LATU; that is,

τLATE = P [D = 1 | D(1) , D(0)] · τLATT + P [D = 0 | D(1) , D(0)] · τLATU. (17)

Under Assumptions IV and SM, we can also represent LATT and LATU as

τLATT = E [Y(1) − Y(0) | D(1) > D(0),D = 1]

= E [Y(1) − Y(0) | D(1) > D(0),Z = 1]

=
E [π(X) · τ(X) | Z = 1]

E [π(X) | Z = 1]

=
E [e(X) · π(X) · τ(X)]

E [e(X) · π(X)]
(18)

and

τLATU = E [Y(1) − Y(0) | D(1) > D(0),D = 0]

= E [Y(1) − Y(0) | D(1) > D(0),Z = 0]

=
E [π(X) · τ(X) | Z = 0]

E [π(X) | Z = 0]

=
E
[(

1 − e(X)
)
· π(X) · τ(X)

]
E
[(

1 − e(X)
)
· π(X)

] . (19)

The first equality in equations (18) and (19) follows from Assumption SM. The second equality
uses the fact that all treated compliers are encouraged to get treated and all untreated compliers
are not (call this “DZ equivalence”). The third and fourth equalities follow from Assumption IV,
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iterated expectations, and a little algebra. We can also use Assumption SM, DZ equivalence, and
Bayes’ rule to rewrite equation (17) as

τLATE =
θ · π1

θ · π1 + (1 − θ) · π0
· τLATT +

(1 − θ) · π0

θ · π1 + (1 − θ) · π0
· τLATU, (20)

where
θ = P [Z = 1] (21)

is the proportion of the population that is encouraged to get treated and

πz = P [D(1) > D(0) | Z = z] (22)

is the proportion of compliers in the subpopulation with Z = z.
In what follows, I will develop two arguments to show that the IV weights in Corollary 3.4

continue to be problematic for interpretation. The starting point for my first argument is to observe
that Var [Z | X] = e(X) ·

(
1 − e(X)

)
. Then, note that Var [Z | X] ≈ e(X) if e(X) is close to zero and,

similarly, Var [Z | X] ≈ 1−e(X) if e(X) is close to one. These approximations are important because
the only difference between the IV estimand in Corollary 3.4 and the parameters in equations (18)
and (19) is in their respective use of Var [Z | X], e(X), and 1 − e(X) to reweight the product of
π(X) and τ(X). This observation implies that, when e(X) is close to zero or one for all covariate
values, which also means that θ is close to zero or one, the IV estimand in Corollary 3.4 is similar
to LATT or LATU, respectively. Perhaps surprisingly, when θ is close to zero (one) or, in other
words, almost no (almost all) individuals are encouraged to get treated, the IV estimand is similar
to the local average treatment effect on the treated (untreated). This is the opposite of what we
want if our goal is to recover the unconditional LATE parameter, as represented in equation (20).9

My second argument formalizes this discussion by demonstrating that under an additional as-
sumption the IV estimand can be written as a convex combination of LATT and LATU, with
weights that, compared with equation (20), are related to θ in the opposite direction. Namely, the
greater the value of θ, the greater is the contribution of LATT to LATE and yet the smaller is the
IV weight on LATT. The following assumption will be useful for establishing this result.

Assumption LN.

(i) (Reduced form) E [Y | X,Z] = δ1 + δ2Z + δ3 · e(X) + δ4Z · e(X);

(ii) (First stage) E [D | X,Z] = η1 + η2Z + η3 · e(X) + η4Z · e(X).

9This argument parallels a remark of Humphreys (2009) about the interpretation of the OLS estimand under
unconfoundedness, which asserts that this parameter is similar to the average treatment effect on the treated (untreated)
if the conditional probability of treatment is “small” (“large”) for every value of covariates.
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Assumption LN postulates that the true reduced-form and first-stage regressions are linear in e(X)
conditional on Z. This assumption is fairly strong, although a similar restriction on potential out-
comes under unconfoundedness, i.e. that they are linear in the propensity score, has been used by
Rosenbaum and Rubin (1983) and Słoczyński (2020). The following result confirms that the IV
estimand “reverses” the role of θ in the implicit weights on LATT and LATU.

Theorem 4.1. Under Assumptions IV, SM, PS, and LN,

βIV = wLATT · τLATT + wLATU · τLATU,

where wLATT =
(1−θ)·Var[e(X)|Z=0]·π1

θ·Var[e(X)|Z=1]·π0 + (1−θ)·Var[e(X)|Z=0]·π1
and wLATU =

θ·Var[e(X)|Z=1]·π0
θ·Var[e(X)|Z=1]·π0 + (1−θ)·Var[e(X)|Z=0]·π1

.

Proof. See Appendix A. �

Theorem 4.1 provides an alternative representation of the IV estimand under strong monotonicity.
Unlike in Corollary 3.4, it now follows immediately that the IV weights are potentially problem-
atic for interpretation. The first thing to note is that the weights are always positive and sum to
one. Then, however, it turns out that the weight on LATT is increasing in π1

π0
, which is antici-

pated; decreasing in Var[e(X)|Z=1]
Var[e(X)|Z=0] , which I largely ignore for simplicity; and decreasing in θ, which

is undesirable whenever LATE is our parameter of interest. Indeed, the greater the proportion of
individuals that are encouraged to get treated, the greater should be our weight on LATT, i.e. the
average effect for the treated compliers, but the lower is the IV weight on this parameter; see equa-
tion (20) and Theorem 4.1, respectively. Because wLATU = 1 − wLATT, the weight on LATU always
changes in the opposite direction.10

An implication of Theorem 4.1 is that we can express the difference between the IV estimand
and the unconditional LATE parameter as a product of a particular measure of heterogeneity in
conditional LATEs, i.e. the difference between LATT and LATU, and an additional parameter that
is equal to the difference between the actual and the “desired” weight on LATT.

Corollary 4.2. Under Assumptions IV, SM, PS, and LN,

βIV − τLATE = λ · (τLATT − τLATU) ,

where λ = wLATT −
θ·π1

θ·π1 + (1−θ)·π0
.

The proof of Corollary 4.2 follows from simple algebra and is omitted. This result specifies the
conditions under which the IV estimand recovers the unconditional LATE parameter. One possi-
bility is that the local average treatment effects on the treated (LATT) and untreated (LATU) are

10This result, and some of the subsequent discussion, parallels my earlier work on the interpretation of the OLS
estimand under unconfoundedness (Słoczyński, 2020), which demonstrates that this parameter can be written as a
convex combination of the average treatment effects on the treated (ATT) and untreated (ATU).
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identical. Another possibility is that the IV weights on LATT and LATU correspond to the “de-
sired” weights in equation (20), which would imply that λ = 0. The following restriction, which
requires that the conditional variance of e(X) is the same among the individuals that are encouraged
and not encouraged to get treated, will allow us to simplify the formula for λ.

Assumption EV (Equality of variances). Var [e(X) | Z = 1] = Var [e(X) | Z = 0].

Indeed, under Assumption EV, simple algebra shows that λ =
(1−2θ) · π0π1

(θ·π0 + (1−θ)·π1) · (θ·π1 + (1−θ)·π0) . Clearly,
the only case where the IV weights overlap with the “desired” weights, or λ = 0, occurs when the
groups that are encouraged and not encouraged to get treated are equal sized, θ = 0.5. The follow-
ing result makes it clear that, under Assumption EV, the IV estimand recovers the unconditional
LATE parameter if and only if θ = 0.5 or LATT and LATU are identical.

Corollary 4.3. Under Assumptions IV, SM, PS, LN, and EV,

βIV = τLATE if and only if τLATT = τLATU or θ = 0.5.

Proof. See Appendix A. �

Corollary 4.3 shows that under certain assumptions the IV estimand can be interpreted as the
unconditional LATE parameter only when either of two restrictive conditions is satisfied, θ = 0.5
or τLATT = τLATU. Even if one or more of the assumptions in Corollary 4.3 are not exactly true,
they may be approximately true, in which case the value of θ may provide a useful rule of thumb
for the interpretation of the IV estimand. For example, when the groups with different values of
the instrument are roughly equal sized, or θ ≈ 0.5, we may be willing to interpret the IV estimand
as LATE, but not otherwise. The relevance of this suggestion will be illustrated empirically in the
next section, together with my other theoretical results.

5 Empirical Application

A large literature, originated by Kane and Rouse (1993), Card (1995), and Rouse (1995), uses
the distance to the nearest college as an instrument for educational attainment.11 In this section
I illustrate my results with a replication of Card (1995). This study considers data drawn from
the National Longitudinal Survey of Young Men (NLSYM), which sampled men aged 14–24 in
1966 and continued with follow-up surveys through 1981. In particular, Card (1995) focuses on
a subsample of 3,010 individuals who were interviewed in 1976 and reported valid information

11Subsequent studies include Kling (2001), Cameron and Taber (2004), Carneiro, Heckman, and Vytlacil (2011),
Eisenhauer, Heckman, and Vytlacil (2015), Nybom (2017), Mountjoy (2019), and many others.
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Table 1: Effects of College Attendance in Just Identified Specifications

β̂IV

(1) (2) (3) (4)
College attendance 0.661** 0.575* 0.610* 0.570*

(0.294) (0.308) (0.354) (0.343)

Sample Full Full Full Restricted
Covariates Full Discrete Saturated Saturated

Robust F 12.46 8.97 7.27 7.48
Observations 3,010 3,010 3,010 2,988

Notes: The data are Card (1995)’s subsample of the National Longitudinal Survey of Young Men (NL-
SYM). All estimates are based on a just identified specification in which college attendance is instrumented
by whether an individual grew up in the vicinity of a four-year college. College attendance is defined as
strictly more than twelve years of schooling. The dependent variable is log wages in 1976. “Full” set of
covariates follows Card (1995) and includes experience, experience squared, nine regional indicators, and
indicators for whether Black, whether lived in an SMSA in 1966 and 1976, and whether lived in the South
in 1976. “Discrete” set of covariates follows Kitagawa (2015) and includes indicators for whether Black,
whether lived in an SMSA in 1966 and 1976, and whether lived in the South in 1966 and 1976. “Saturated”
set of covariates includes indicators for all possible combinations of values of covariates in the discrete
set. “Full” sample follows Card (1995). “Restricted” sample discards covariate cells with fewer than five
observations. Robust standard errors are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

on wage and education. His main endogenous variable of interest is years of schooling, which is
instrumented by whether an individual grew up in the vicinity of a four-year college.

Card (1995)’s analysis was subsequently replicated by Kling (2001) and Kitagawa (2015),
among others. What is particularly relevant for my application is that Kitagawa (2015) rejects
the validity of Card (1995)’s instrument in a setting with no additional covariates but not when
controlling for five binary variables: whether Black, whether lived in a metropolitan area (SMSA)
in 1966 and 1976, and whether lived in the South in 1966 and 1976. In what follows, I will mostly
focus on specifications that are saturated in these five covariates.

Similar to Kitagawa (2015), I also replace years of schooling with a binary treatment. While
Kitagawa (2015) focuses on having at least sixteen years of schooling (“four-year college degree”),
I define the treatment as strictly more than twelve years (“some college attendance”). The college
proximity instrument is notably stronger for the treatment margin that I consider.

Table 1 reports baseline estimates of the effects of college attendance on log wages. At this
point, I restrict my attention to the usual application of IV or, in other words, to just identified
specifications with the college proximity instrument. Column 1 uses Card (1995)’s sample and
an extended set of covariates from many of his specifications. Column 2 considers a restricted
set of five covariates from Kitagawa (2015). Column 3 creates a saturated specification based on
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Table 2: Negative First Stage

(1) (2)
P̂ [ω(X) < 0] 0.178** 0.177**

(0.086) (0.087)

Sample Full Restricted
Covariates Saturated Saturated

Observations 3,010 2,988
Notes: The data are Card (1995)’s subsample of the National Lon-

gitudinal Survey of Young Men (NLSYM). The table presents non-
parametric estimates of the proportion of the population for which col-
lege attendance is negatively affected by the college proximity instru-
ment. College attendance is defined as strictly more than twelve years
of schooling. To estimate P̂ [ω(X) < 0], I regress college attendance on
the full set of cell indicators, separately for individuals who did and did
not grow up in the vicinity of a four-year college. Then, P̂ [ω(X) < 0]
is equal to the proportion of observations for which the difference in
fitted values from the two regressions is negative. “Saturated” set of
covariates includes indicators for all possible combinations of values of
covariates in Kitagawa (2015)’s specification, which includes indicators
for whether Black, whether lived in an SMSA in 1966 and 1976, and
whether lived in the South in 1966 and 1976. “Full” sample follows
Card (1995). “Restricted” sample discards covariate cells with fewer
than five observations. Bootstrap standard errors (based on 100,000
replications) are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the

1% level.

these covariates, with 25 = 32 separate subgroups (cells). Column 4 uses the same specification
but additionally discards covariate cells with fewer than five observations. This sample restriction,
which will enable certain within-cell calculations later on, decreases the number of covariates from
32 to 20 and the sample size from 3,010 to 2,988.12

The estimates in Table 1 are all very similar and suggest that college attendance increases
wages by 57–66 log points. Such an effect is implausibly large. Recent work by Hoekstra (2009),
Zimmerman (2014), and Smith et al. (2020) concludes that some college attendance yields earnings
gains of about 20%. In what follows, I will demonstrate that the difference between these estimates
can be fully explained by the failure of strong monotonicity and the presence of negative weights
in the baseline estimates.

It is important to see that the saturated specifications in Table 1 make it easy to nonparamet-
rically estimate the sign of the conditional first-stage slope coefficient, ω(x). See also Section 3.3

12In particular, in the original set of 32 covariate cells, there are 4 cells with zero observations, 1 cell with one
observation, 3 cells with two observations, 1 cell with three observations, and 3 cells with four observations.
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Table 3: Correcting for Negative Weights

β̂IV β̂2SLS β̂RIV τ̂LATE

(1) (2) (3) (4)
College attendance 0.570* 0.156 0.289 0.192

(0.343) (0.138) (0.196) (0.174)

Sample Restricted Restricted Restricted Restricted
Covariates Saturated Saturated Saturated Saturated

Robust F 7.48 3.11 24.21 N/A
Observations 2,988 2,988 2,988 2,988

Notes: The data are Card (1995)’s subsample of the National Longitudinal Survey of Young Men (NL-
SYM). The table presents various estimates of the effect of college attendance on log wages in 1976.
College attendance is defined as strictly more than twelve years of schooling. β̂IV is based on a just iden-
tified specification in which college attendance is instrumented by whether an individual grew up in the
vicinity of a four-year college; see equation (2) and Theorem 3.3 for the corresponding estimand. β̂2SLS
is based on the overidentified specification of Angrist and Imbens (1995) in which college attendance is
instrumented by the full set of interactions between the original instrument and covariates; see equation (3)
and Theorem 3.2 for the corresponding estimand. β̂RIV is based on a just identified specification in which
college attendance is instrumented by the “reordered” instrument that takes the value 1 for this value of
the original instrument that is estimated to encourage treatment conditional on covariates and the value 0
otherwise; see equation (14) and Theorem 3.5 for the corresponding estimand. τ̂LATE is a nonparametric
estimate of the unconditional LATE parameter (under Assumptions IV and WM), which is constructed as a
weighted average of conditional IV estimates, with weights equal to the absolute values of the conditional
first-stage slope coefficients; see equation (8) for the corresponding estimand. “Saturated” set of covariates
includes indicators for all possible combinations of values of covariates in Kitagawa (2015)’s specification,
which includes indicators for whether Black, whether lived in an SMSA in 1966 and 1976, and whether
lived in the South in 1966 and 1976. “Restricted” sample discards covariate cells with fewer than five
observations. Robust standard errors (β̂IV and β̂2SLS) and bootstrap standard errors (β̂RIV and τ̂LATE; based
on 100,000 replications) are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

for further discussion. Indeed, college attendance can be regressed on the full set of cell indicators,
separately for individuals who did and did not grow up in the vicinity of a four-year college. The
difference in fitted values from the two regressions constitutes a nonparametric estimate of ω(x).

Table 2 reports that the first stage is negative for about 18% of observations in Card (1995)’s
data, regardless of whether we use the full sample or discard the smallest covariate cells. To
examine whether this proportion is statistically different from zero, I bootstrap the whole procedure
and conclude that the sign of the first stage is indeed negative for some observations (p < 0.042).
This implies that strong monotonicity cannot possibly hold and some of the IV weights must be
negative. The question is whether the estimates in Table 1 are driven by these negative weights.

Table 3 shows that correcting for negative weights reduces the estimated effects of college
attendance to between one third and one half of the original estimates. Column 1 restates the
restricted-sample estimate from Table 1, β̂IV. All the remaining estimates also use the restricted
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Table 4: Estimated Weights

G1 G2 G3 G4 G5 N P̂ [X = x] V̂ar [Z | X = x] ω̂(x) β̂(x) ŵIV(x) ŵ2SLS(x) ŵRIV(x) ŵLATE(x)
0 0 0 0 0 284 0.095 0.243 –0.081 –0.003 –0.1961 0.0494 0.1098 0.0648
0 0 0 1 1 219 0.073 0.227 0.030 0.536 0.0525 0.0049 0.0294 0.0186
0 0 1 1 1 210 0.070 0.200 0.005 4.554 0.0080 0.0001 0.0045 0.0032
0 1 0 0 0 122 0.041 0.249 0.179 0.586 0.1904 0.1058 0.1066 0.0614
0 1 0 0 1 21 0.007 0.204 –0.067 –3.490 –0.0100 0.0021 0.0056 0.0039
0 1 0 1 0 16 0.005 0.234 0.367 –0.550 0.0480 0.0545 0.0269 0.0164
0 1 0 1 1 71 0.024 0.202 0.262 0.615 0.1314 0.1065 0.0736 0.0521
0 1 1 1 0 53 0.018 0.224 –0.067 0.162 –0.0277 0.0057 0.0155 0.0099
0 1 1 1 1 49 0.016 0.250 0.227 0.629 0.0970 0.0680 0.0543 0.0311
1 0 0 0 0 94 0.031 0.134 –0.046 –0.568 –0.0204 0.0029 0.0114 0.0122
1 0 0 1 0 8 0.003 0.188 –0.500 –0.402 –0.0262 0.0406 0.0147 0.0112
1 0 0 1 1 26 0.009 0.226 –0.301 –0.051 –0.0618 0.0575 0.0346 0.0219
1 1 0 0 0 7 0.002 0.204 –0.600 0.035 –0.0299 0.0556 0.0168 0.0118
1 1 0 0 0 1,029 0.344 0.101 0.186 0.038 0.6755 0.3899 0.3782 0.5376
1 1 0 0 1 61 0.020 0.137 0.124 –0.978 0.0361 0.0138 0.0202 0.0211
1 1 0 1 0 35 0.012 0.078 –0.219 1.348 –0.0210 0.0142 0.0117 0.0215
1 1 0 1 1 311 0.104 0.215 0.028 4.243 0.0643 0.0055 0.0360 0.0240
1 1 1 0 0 130 0.044 0.064 0.133 –0.379 0.0390 0.0161 0.0218 0.0485
1 1 1 1 0 16 0.005 0.109 0.071 –1.189 0.0044 0.0010 0.0024 0.0032
1 1 1 1 1 226 0.076 0.146 0.041 0.184 0.0467 0.0059 0.0261 0.0257

Notes: The data are Card (1995)’s subsample of the National Longitudinal Survey of Young Men (NLSYM). The table presents various within-cell
estimates that correspond to the sample and covariate specification in Table 3. The dependent variable is log wages in 1976. The treatment variable
is college attendance, which is defined as strictly more than twelve years of schooling. College attendance is instrumented by whether an individual
grew up in the vicinity of a four-year college. Values of G1, G2, G3, G4, and G5 define the respective covariate cells, where G1 is an indicator
variable for whether an individual lived in an SMSA in 1966, G2 is an indicator variable for whether an individual lived in an SMSA in 1976, G3 is
an indicator variable for whether an individual is Black, G4 is an indicator variable for whether an individual lived in the South in 1966, and G5 is an
indicator variable for whether an individual lived in the South in 1976. N is the number of observations in a given cell. P̂ [X = x] is the proportion of
observations in a given cell. V̂ar [Z | X = x] is the conditional variance of the college proximity instrument. ω̂(x) is the estimated conditional first-stage
slope coefficient. β̂(x) is the conditional IV estimate. ŵIV(x) is the weight of a given cell in β̂IV. ŵ2SLS(x) is the weight of a given cell in β̂2SLS. ŵRIV(x)
is the weight of a given cell in β̂RIV. ŵLATE(x) is the weight of a given cell in τ̂LATE. Each of β̂IV, β̂2SLS, β̂RIV, and τ̂LATE, as reported in Table 3, can be
obtained as the dot product of β̂(x) and the respective weights.

sample as well as the saturated model for covariates. Column 2 reports β̂2SLS, that is, the estimate
from the overidentified specification of Angrist and Imbens (1995). The advantage of this speci-
fication is that it is guaranteed to produce a convex combination of conditional IV estimates. The
disadvantage is that the additional moment conditions result in a very low value of the F statistic.
Column 3 reports β̂RIV, that is, the estimate from the “reordered IV” procedure of Section 3.3. Us-
ing this method ensures that all weights are positive, too, but the F statistic is now much larger, as
the procedure remains just identified.13 Column 4 reports τ̂LATE, that is, a nonparametric estimate

13The F statistic is also much larger than in the original just identified specification. The intuition for why this is
the case is straightforward. Because strong monotonicity is violated, compliers and defiers cancel each other out in the
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of the unconditional LATE parameter. Because the model for covariates is saturated, this estimate
is easy to obtain as a weighted average of conditional IV estimates with weights equal to the ab-
solute values of the corresponding first-stage slope coefficients (cf. equation (8) and Lemma 2.1).
Interestingly, all of the estimates in columns 2–4, which never exceed 29 log points, are within the
range of plausible results from the recent literature (see, e.g., Hoekstra, 2009; Zimmerman, 2014;
Smith et al., 2020). The estimate of the unconditional LATE parameter is 19 log points, that is,
about one third of the baseline IV estimate.

It is important to note that the estimates in columns 2–4 of Table 3 should be preferred to that
in column 1 (and those in Table 1) regardless of whether we believe that weak monotonicity is
plausible or not. What this assumption gives us is a straightforward interpretation of our estimates.
But even if it were to be violated, it would still be the case that β̂IV, β̂2SLS, β̂RIV, and τ̂LATE are all
weighted averages of the same conditional IV estimates. (Without weak monotonicity, these con-
ditional estimates do not correspond to conditional LATEs. Also, τ̂LATE is no longer an estimate
of the unconditional LATE parameter.) Thus, what is essential is that, unlike in the case of β̂IV,
the weights underlying β̂2SLS, β̂RIV, and τ̂LATE are all positive. Table 4 concludes this analysis by
reporting, separately for each covariate cell, the number and proportion of observations, the condi-
tional variance of college proximity, the conditional first-stage slope coefficient, the conditional IV
estimate, and the resulting weights underlying β̂IV, β̂2SLS, β̂RIV, and τ̂LATE. Each of these estimates,
as reported in Table 3, can be obtained as the dot product of the conditional IV estimates and the
respective weights, as reported in Table 4.

In the remainder of this section, I offer a more detailed discussion of the “reordered IV” es-
timate, β̂RIV, as applied to Card (1995)’s data. In particular, I illustrate my theoretical results of
Section 4, which demonstrate that the IV weights on conditional LATEs are often not intuitive even
if they are, in fact, positive. For simplicity, I generally ignore, except for inference, that ZR is based
on an estimated first stage and differs from Z, and use the notation of Section 4 in most cases.

Table 5 reports sample analogues of the parameters in Theorem 4.1 and Corollary 4.2. It turns
out that θ̂, the estimated proportion of individuals that are encouraged to get treated, is 0.667.
Consequently, we expect IV to overweight the effect on the untreated compliers. Indeed, the
estimated weight on LATT is 0.568 while its “desired” weight is substantially larger, and equal
to θ̂·π̂1

θ̂·π̂1 + (1−θ̂)·π̂0
= ŵLATT − λ̂ = 0.764. At the same time, we could have expected, based on the

values of θ̂, π̂1, and π̂0, that the estimated weight on LATT might be even lower than 0.568.14

However, the effect of a large value of θ̂, which decreases the weight on LATT, is partially offset

original first-stage procedures. “Reordered IV” amounts to rearranging the values of the instrument in those covariate
cells in which the first stage is initially negative. It follows that, in the new procedure, all conditional first-stage slope
coefficients “work” in the same direction (cf. Dahl et al., 2019).

14This is because wLATT =
(1−θ)·π1

θ·π0 + (1−θ)·π1
under Assumption EV, which would then correspond to ŵLATT =

(1−θ̂)·π̂1

θ̂·π̂0 + (1−θ̂)·π̂1
= 0.446.
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Table 5: Decomposition of β̂RIV

(1) (2)
Panel A. Original estimate and diagnostics
β̂RIV 0.289

(0.196)
θ̂ 0.667
λ̂ −0.196

Panel B. Decomposition
τ̂LATT 0.296 τ̂LATU 0.280

(0.188) (0.394)
ŵLATT 0.568 ŵLATU 0.432
π̂1 0.134 π̂0 0.083
V̂ar [ê(X) | Z = 0] 0.059 V̂ar [ê(X) | Z = 1] 0.036

Notes: The data are Card (1995)’s subsample of the National Longitudinal Survey of
Young Men (NLSYM). The sample and the covariate specification are as in Table 3. The
dependent variable is log wages in 1976. The treatment variable is college attendance,
which is defined as strictly more than twelve years of schooling. College attendance is
instrumented by the “reordered” instrument that takes the value 1 for this value of the
original instrument that is estimated to encourage treatment conditional on covariates and
the value 0 otherwise. The original instrument is an indicator for whether an individual
grew up in the vicinity of a four-year college. β̂RIV is the “reordered” IV estimate. θ̂ is
the estimated proportion of individuals that are encouraged to get treated. The remaining
estimates are the sample analogues of the parameters in Theorem 4.1 and Corollary 4.2.
Bootstrap standard errors (based on 100,000 replications) are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

by the fact that the variance of the instrument propensity score is much larger in the subsample
that is not encouraged to get treated, which increases the weight on LATT. In any case, τ̂LATT and
τ̂LATU are also very similar in this application, which makes the counterintuitive behavior of the IV
weights somewhat less consequential.

The discussion so far also makes it clear that Assumption EV is likely violated in this empirical
application, and this could undermine the rule of thumb based on Corollary 4.3, that is, that the IV
estimand can be interpreted as the unconditional LATE parameter when the groups with different
values of the instrument are roughly equal sized. To study this problem, I perform the following
analysis. To begin with, observe that λ, the diagnostic in Corollary 4.2, can also be written as
λ =

βIV−τLATE
τLATT−τLATU

, where τLATE, τLATT, and τLATU additionally rely on Assumptions PS and LN. Clearly,
this is just the asymptotic bias of IV that is normalized by a measure of heterogeneity in conditional
LATEs, i.e. the difference between τLATT and τLATU. Under Assumption EV, Corollary 4.3 states
that there is zero asymptotic bias if and only if τLATT = τLATU or θ = 0.5.

But what if some of the assumptions above are indeed violated? To see this, I estimate τLATE,
τLATT, and τLATU nonparametrically, and use these estimates to construct sample analogues of
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Figure 1: Estimated Bias of β̂RIV
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Notes: The data are Card (1995)’s subsample of the National Longitudinal Survey of Young Men (NLSYM).
The sample and the covariate specification are as in Table 3. The dependent variable is log wages in
1976. The treatment variable is college attendance, which is defined as strictly more than twelve years of
schooling. College attendance is instrumented by the “reordered” instrument that takes the value 1 for this
value of the original instrument that is estimated to encourage treatment conditional on covariates and the
value 0 otherwise. The original instrument is an indicator for whether an individual grew up in the vicinity
of a four-year college. The vertical axis represents sample analogues of βIV−τLATE

τLATT−τLATU
, where βIV is replaced

with the “reordered” IV estimate, β̂RIV, and τLATE, τLATT, and τLATU are estimated nonparametrically. The
horizontal axis represents the implied values of θ, that is, the proportion of individuals that are encouraged
to get treated. All estimates are obtained using a weighted estimation procedure, with weights of 1 for
individuals that are encouraged to get treated and weights of w for individuals that are not encouraged to
get treated. The variation in w results in the variation that is represented in this figure.

βIV−τLATE
τLATT−τLATU

, where none of the additional assumptions in Section 4 need to hold. I also repeat
this procedure multiple times, reestimating the (reordered) IV estimand, too, and using weights of
1 for individuals that are encouraged to get treated and weights of w for individuals that are not
encouraged to get treated. As I vary the value of w, I am able to manipulate the implied value of θ
without affecting other relevant features of the data-generating process.

Figure 1 shows that the rule of thumb based on Corollary 4.3 is strikingly accurate in this
application. The estimated bias is clearly dependent on the proportion of individuals that are
encouraged to get treated. Indeed, the bias is approximately zero when the implied value of θ is
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about 0.445, which is similar to the rule-of-thumb value of 0.5. The bias is also increasing in the
distance between the implied value of θ and 0.445, approaching 100% of the difference between
τ̂LATT and τ̂LATU when almost no or almost all individuals are encouraged to get treated.

6 Conclusion

In this paper I study the interpretation of linear IV and 2SLS estimands when both the endogenous
treatment and the instrument are binary, and when additional covariates are required for identifica-
tion. I follow the LATE framework of Imbens and Angrist (1994) and Angrist et al. (1996), and
conclude that the common practice of interpreting linear IV and 2SLS estimands as a convex com-
bination of conditional LATEs, or even as an “overall” (unconditional) LATE, is substantially more
problematic than previously thought. For example, Kolesár (2013) concludes that the weights on
all conditional LATEs are guaranteed to be positive, subject to some additional assumptions about
the first stage, even when there are compliers but no defiers at some covariate values and defiers
but no compliers elsewhere. In this paper I demonstrate that, under this weaker version of mono-
tonicity, Kolesár (2013)’s assumptions about the first stage are not satisfied in the usual application
of IV that limits the effects of the instrument in the reduced-form and first-stage regressions to be
homogeneous. Consequently, some of the IV weights will be negative and the IV estimand may
no longer be interpretable as a causal effect; this parameter may turn out to be negative (positive)
even if treatment effects are positive (negative) for everyone in the population.

There are several lessons to be learned from my theoretical results. Empirical researchers with
a preference for linear IV/2SLS may choose one of three paths to continue interpreting their es-
timands as a convex combination of conditional LATEs. One is to strengthen Kolesár (2013)’s
assumption of weak monotonicity and require that there are no defiers at any combination of co-
variate values. This path is viable if the conditional first-stage slope coefficient is nonnegative at
all covariate values, which can be estimated. Another path is to account for possible heterogeneity
in the reduced-form and first-stage regressions, as in the overidentified specification of Angrist and
Imbens (1995). Yet another is to use a new procedure, termed “reordered IV,” that I also develop in
this paper. Unfortunately, none of these solutions guarantees that the resulting estimand will nec-
essarily be similar to the unconditional LATE parameter. If this is a concern, and I believe it should
be, then my results also suggest that we may be able to claim similarity between the IV estimand
and the unconditional LATE parameter when the groups with different values of the instrument (or
reordered instrument) are approximately equal sized.

If none of these solutions is appealing in a specific empirical context, it may be reasonable
to give up on linear IV and 2SLS altogether. There are many alternative estimators of the un-
conditional LATE parameter that are available under strong monotonicity (see, e.g., Abadie, 2003;
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Frölich, 2007). Under weak monotonicity, and when all covariates are discrete, it is straightforward
to construct an estimator of this parameter by estimating all conditional LATEs and reweighting
them using the absolute values of the estimated conditional first-stage slope coefficients. Future
work should consider a formal treatment of this approach and its extension to the case with con-
tinuous covariates.15

Appendix A Proofs

Proof of Theorem 3.3. Let R and T be generic notation for two random variables, where T is
binary and R is arbitrarily discrete or continuous. The following lemma, due to Angrist (1998) and
Aronow and Samii (2016), will be useful for what follows.

Lemma A.1 (Angrist, 1998; Aronow and Samii, 2016). Suppose that X = (1,G1, . . . ,GK−1) or

that E [T | X] is linear in X. Then, ξ, the coefficient on T in the linear projection of R on T and X

can be written as

ξ =
E

[
Var [T | X] · ξ(X)

]
E [Var [T | X]]

,

where ξ(X) = E [R | T = 1, X] − E [R | T = 0, X].

Recall that βIV is equal to the ratio of the reduced-form and first-stage coefficients on Z. It follows
that we can apply Lemma A.1 separately to these two coefficients, and thereby obtain the following
expression for the estimand of interest:

βIV =

E[Var[Z|X]·φ(X)]
E[Var[Z|X]]

E[Var[Z|X]·ω(X)]
E[Var[Z|X]]

, (23)

where
φ(x) = E [Y | Z = 1, X = x] − E [Y | Z = 0, X = x] (24)

is the conditional reduced-form slope coefficient and ω(x) is as defined in equation (5). Upon
rearrangement, we obtain

βIV =
E

[
Var [Z | X] · φ(X)

]
E [Var [Z | X] · ω(X)]

=
E

[
Var [Z | X] · ω(X) · β(X)

]
E [Var [Z | X] · ω(X)]

, (25)

15It should also be possible to estimate the unconditional LATE parameter under weak monotonicity using the
toolkit of Mogstad, Santos, and Torgovitsky (2018).
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where the second equality uses the definition of β(x) in equation (6). See also Walters (2018) for a
similar argument. Finally, we know from Lemma 2.1 that β(x) = τ(x) and ω(x) = c(x) · π(x) under
Assumptions IV and WM. This completes the proof because βIV can now be written as

βIV =
E [c(X) · π(X) · Var [Z | X] · τ(X)]

E [c(X) · π(X) · Var [Z | X]]
. (26)

Proof of Theorem 3.5. The restriction that X = (1,G1, . . . ,GK−1) or the conditional mean of the
instrument is linear in X underlies the proof of Theorem 3.3, including equation (25). Under this
restriction, we can use equation (25) to write

βRIV =
E

[
Var [ZR | X] · ωR(X) · βR(X)

]
E [Var [ZR | X] · ωR(X)]

, (27)

where
ωR(x) = E [D | ZR = 1, X = x] − E [D | ZR = 0, X = x] (28)

and
βR(x) =

φR(x)
ωR(x)

, (29)

where
φR(x) = E [Y | ZR = 1, X = x] − E [Y | ZR = 0, X = x] . (30)

Then, it is important to see that ωR(x) = ω(x) and φR(x) = φ(x) if ω(x) > 0, ωR(x) = −ω(x) and
φR(x) = −φ(x) if ω(x) < 0, and consequently βR(x) = β(x) regardless of the sign of ω(x). We can
also write ωR(x) = c(x) ·ω(x), φR(x) = c(x) ·φ(x), and Var [ZR | X = x] = Var [Z | X = x] regardless
of the sign of ω(x). It follows that

βRIV =
E

[
Var [Z | X] · c(X) · ω(X) · β(X)

]
E [Var [Z | X] · c(X) · ω(X)]

. (31)

To complete this proof, we will separately consider two sets of assumptions. First, under Assump-
tions IV and SM, we know from Lemma 2.1 that β(x) = τ(x) and ω(x) = π(x). Also, c(x) = 1.
Thus, it follows that

βRIV =
E [Var [Z | X] · π(X) · τ(X)]

E [Var [Z | X] · π(X)]
. (32)

Second, under Assumptions IV and WM, we know from Lemma 2.1 that β(x) = τ(x) and ω(x) =

c(x) · π(x). Also, [c(x)]2 = 1 because c(x) ∈ {−1, 1}. Thus, it follows that

βRIV =
E

[
Var [Z | X] · [c(X)]2 · π(X) · τ(X)

]
E

[
Var [Z | X] · [c(X)]2 · π(X)

]
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=
E [Var [Z | X] · π(X) · τ(X)]

E [Var [Z | X] · π(X)]
. (33)

This completes the proof because βRIV =
E[π(X)·Var[Z|X]·τ(X)]

E[π(X)·Var[Z|X]] under Assumptions IV and SM or WM.

Proof of Theorem 4.1. Let us use the same notation as in the proof of Theorem 3.3, with R and T

being generic notation for two random variables, where T is binary and R is arbitrarily discrete or
continuous. If L [· | ·] denotes the linear projection, let p(X) denote the best linear approximation
to the “propensity score” for T ; that is,

p(X) = L [T | X] = Xρ, (34)

with X being completely general and not necessarily consisting only of group indicators. We also
need two linear projections of R on 1 and p(X), separately for T = 1 and T = 0; that is,

L
[
R | 1, p(X),T = t

]
= ιt + ζt · p(X). (35)

The following lemma, due to Słoczyński (2020), will be useful for what follows.

Lemma A.2 (Słoczyński, 2020). The coefficient on T in the linear projection of R on T and X,

denoted by ξ, can be written as

ξ = w1 ·
(

(ι1 − ι0) + (ζ1 − ζ0) · E
[
p(X) | T = 1

] )
+ w0 ·

(
(ι1 − ι0) + (ζ1 − ζ0) · E

[
p(X) | T = 0

] )
,

where w1 =
P[T=0]·Var[p(X)|T=0]

P[T=1]·Var[p(X)|T=1] + P[T=0]·Var[p(X)|T=0] and w0 =
P[T=1]·Var[p(X)|T=1]

P[T=1]·Var[p(X)|T=1] + P[T=0]·Var[p(X)|T=0] .

Again, we can use the fact that βIV is equal to the ratio of the reduced-form and first-stage coeffi-
cients on Z, and apply Lemma A.2 separately to these coefficients. Thus, Y will play the role of R in
the reduced-form regression, D will play the role of R in the first-stage regression, and Z will play
the role of T in both regressions. Additionally, under Assumption PS, equation (34) corresponds to
the true instrument propensity score and, under Assumption LN, equation (35) represents the true
reduced-form and first-stage regressions. It follows from Lemma A.2 that under these assumptions
the reduced-form and first-stage coefficients on Z are equal to a convex combination of the average
causal effects of Z on Y and D in the subpopulations with Z = 1 and Z = 0, with weights equal to
w∗1 =

(1−θ)·Var[e(X)|Z=0]
θ·Var[e(X)|Z=1] + (1−θ)·Var[e(X)|Z=0] and w∗0 =

θ·Var[e(X)|Z=1]
θ·Var[e(X)|Z=1] + (1−θ)·Var[e(X)|Z=0] , respectively. Indeed,

βIV =
w∗1 · E [Y(D(1)) − Y(D(0)) | Z = 1] + w∗0 · E [Y(D(1)) − Y(D(0)) | Z = 0]

w∗1 · π1 + w∗0 · π0
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=
w∗1 · π1 · τLATT + w∗0 · π0 · τLATU

w∗1 · π1 + w∗0 · π0

=
(1 − θ) · Var [e(X) | Z = 0] · π1 · τLATT + θ · Var [e(X) | Z = 1] · π0 · τLATU

(1 − θ) · Var [e(X) | Z = 0] · π1 + θ · Var [e(X) | Z = 1] · π0

= wLATT · τLATT + wLATU · τLATU, (36)

where the second equality uses the fact that τLATT =
E[Y(D(1))−Y(D(0))|Z=1]

E[D(1)−D(0)|Z=1] (see, e.g., Frölich and
Lechner, 2010) and likewise τLATU =

E[Y(D(1))−Y(D(0))|Z=0]
E[D(1)−D(0)|Z=0] ; also, πz = E [D(1) − D(0) | Z = z] under

Assumption SM. The remaining equalities follow from simple algebra. This completes the proof.

Proof of Corollary 4.3. Under Assumption EV, it follows from Theorem 4.1 that

βIV =
(1 − θ) · π1

θ · π0 + (1 − θ) · π1
· τLATT +

θ · π0

θ · π0 + (1 − θ) · π1
· τLATU. (37)

We also know from equation (20) that

τLATE =
θ · π1

θ · π1 + (1 − θ) · π0
· τLATT +

(1 − θ) · π0

θ · π1 + (1 − θ) · π0
· τLATU. (38)

The proof consists of three steps. First, we need to show that τLATT = τLATU implies that βIV =

τLATE. This follows immediately from equations (37) and (38) as both βIV and τLATE are convex
combinations of τLATT and τLATU. In fact, this implication does not even rely on Assumption EV.

Second, we need to show that θ = 0.5 implies that βIV = τLATE. Indeed, if θ = 0.5, then it
follows from equation (37) that

βIV =
π1

π0 + π1
· τLATT +

π0

π0 + π1
· τLATU. (39)

Similarly, it follows from equation (38) that

τLATE =
π1

π0 + π1
· τLATT +

π0

π0 + π1
· τLATU, (40)

and hence βIV = τLATE.
Finally, we need to show that βIV = τLATE implies that either τLATT = τLATU or θ = 0.5. We

begin by equating the right-hand sides of equations (37) and (38). Upon rearrangement, we get

θ · χ0 + (1 − θ) · χ1

θ · π0 + (1 − θ) · π1
=

θ · χ1 + (1 − θ) · χ0

θ · π1 + (1 − θ) · π0
, (41)
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where
χz = E [Y(D(1)) − Y(D(0)) | Z = z] . (42)

Upon further rearrangement of equation (41), we obtain

θ2 · χ0 · π1 + (1 − θ)2
· χ1 · π0 = θ2 · χ1 · π0 + (1 − θ)2

· χ0 · π1, (43)

which also implies that
(χ0 · π1 − χ1 · π0) · (2θ − 1) = 0. (44)

For equation (44) to hold, we need either θ = 0.5 or χ1
π1

=
χ0
π0

, where the latter condition is equivalent
to τLATT = τLATU. This completes the proof.
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