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Abstract

We develop a programming algorithm that predicts a balanced-panel mix-adjusted house price
index for arbitrary spatial units from repeated cross-sections of geocoded micro data. The
algorithm combines parametric and non-parametric estimation techniques to provide a tight local
fit where the underlying micro data are abundant and reliable extrapolations where data are sparse.
To illustrate the functionality, we generate a panel of German property prices and rents that is
unprecedented in its spatial coverage and detail. This novel data set uncovers a battery of stylized
facts that motivate further research, e.g. on the density bias of price-to-rent ratios in levels and
trends, within and between cities. Our method lends itself to the creation of comparable
neighborhood-level qualified rent indices (Mietspiegel) across Germany.
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1 Introduction

Reliable indices that capture the market value of real property at micro-geographic
scales such as neighborhoods are important inputs into housing policy. The ability
of a regulator to enforce rents that are deemed fair critically depends on the capacity
to observe the market value of real estate. The German “Mietspiegel”, for example,
represents a core instrument to settle disputes between landlords and tenants over
rent levels. Micro-geographic property price indices are also an increasingly impor-
tant input into economics research. For instance, quantitative spatial models—the
current general-purpose workhorse tool in spatial economics—require spatially dis-
aggregated data with full geographic coverage for the inversion of the structural
fundamentals before they can be used for quantitative analysis (Allen and Arko-
lakis, 2014; Ahlfeldt et al., 2015)." However, the gold standard in house price index
construction—repeat sales indices such as the prominent Case-Shiller Home Price
Index—are not suitable for micro-geographic areas because property transactions
are rare events at this scale, let alone repeated transactions.

Our contribution is to develop an algorithmic approach to the construction of
micro-geographic purchase and rent price indices that uses spatial methods to over-
come the limitations of sparse property data. Because our approach is entirely
point-pattern based, it is applicable to arbitrary spatial units and does not depend
on administrative boundaries. The input is a conventional data set containing pooled
cross sections of real estate transactions with information on prices or rents along
with geographic coordinates, transaction dates, and property characteristics. The
output is a balanced panel data set of mix-adjusted purchase or rental prices for
arbitrary spatial units. The algorithm automatically adjusts to spatially varying
densities of observations using a combination of parametric and non-parametric es-
timation techniques. Conveniently, it allows the user to manage the bias-variance
trade-off via the program syntax. Our contribution is to provide a reliable and
transparent tool that generates spatial house price indices in an environment that
is typically dominated by commercial data providers to whom their algorithms are
the “secret souce”. Upon final publication of this paper, we will publish our source
code along with novel price and rent indices covering all of Germany at the level
of local labor markets, counties, municipalities, and postcodes for a period of more
than ten years.

The house price and rent index we propose combines several techniques that are

!See Redding and Rossi-Hansberg (2017) for a survey and Monte et al. (2018); Tsivanidis
(2019); Heblich et al. (2020); Almagro and Dominguez-Iino (2020) for recent examples.



established in urban economics and data science. We start with the popular hedonic
regression approach whose micro-foundations were developed by Rosen (1974) to
adjust for observable property characteristics and combine it with recent extensions
of early work by Clark (1951) on price indices that treat spatial units as the nucleus
of a spatial price gradient (Combes et al., 2019; Ahlfeldt et al., 2020a). We nest
this approach that has become canonical in urban economics research into locally
weighted regressions. This approach was originally suggested by Cleveland and
Devlin (1988) and first adopted to studies of property data by Meese and Wallace
(1991) and McMillen (1996). More recently, the method has become a widespread
tool in geographic data science under the label Geographically Weighted Regression.

Intuitively, we treat the computation of the indices for any spatial unit as a sep-
arate problem that we address in a separate iteration of the algorithmic approach.
In each iteration, the algorithm considers the density of observations in the vicin-
ity of the targeted location and flexibly defines the size of a spatial window that
provides a sufficient amount of observations. Inside this spatial window, observed
prices are adjusted for structural and location characteristics using conventional re-
gression techniques. To predict the price and rent indices right at the target location,
we control for a first-order polynomial of distance from the center. We also allow
for a spatial fixed effect, whose diameter also depends on the density of observa-
tions. Combining parametric and non-parametric specifications avoids the problem
that higher-order polynomials tend to chase after outliers in the tails of a distri-
bution. The strength of the algorithmic approach is that it loads the predictive
power on non-parametric components where many observations are available, such
as in high-density urban neighborhoods, whereas the predictive model becomes more
parametric if observations are sparse, e.g. in rural regions. Importantly, the user
retains control over the bias-variance trade-off via a set of parameters whose values
can be chosen in the programming syntax. We propose to proceed with conserva-
tive parameter values since we wish to avoid implausible outliers. Other users may
choose different values —resulting, for example, in smaller spatial windows— that
best suit their aversion to outliers. Users who are willing to formalize their objective
function that trades off bias against variance may also delegate the identification
of the critical parameter values to another algorithm. In this case, our approach
becomes a variant of supervised machine learning.

For transparency and to facilitate use, we publish a ready-to-use version of our
algorithm in the appendix to this paper and we employ the algorithm in a practical
application for Germany to introduce its functionality. Our application makes use of
geocoded data from the online platform Immoscout2; for the period 2007-2018 that



is largely representative of the rising pool of property price information on prices and
rents that is accessible to researchers and data scientist around the world. Beside
address information, the data also hold information on basic property characteristics
which we exploit following the conventions in the hedonic pricing literature. We start
with an application where we aggregate the price information in official spatial units,
i.e. labor market areas, counties, municipalities and postal codes. This allows us to
visually assess the accuracy of our data but it also reveals that German postal codes
are more coarse than they are in e.g. the UK or the U.S. To illustrate how we can
capture even smaller, arbitrary spatial units, we introduce another application where
we aggregate the house price information in hexagons with a diameter of 500m. To
validate the accuracy of the spatial house price index, we exclude information from
about three quarters of all hexagons and recalculate the index for all locations. A
comparison between the actual and predicted values shows a tight fit that underlines
the validity of our procedure.

The application to the case of Germany comes with the benefit that existing
house price and rent indices are not available below the county level and often
consist of average prices, possibly by house type. This implies that a lot of spatial
heterogeneity within counties remains unobserved and a location’s attractiveness
may be confounded by commuting costs (Combes et al., 2019). By contrast, our
index reports year-specific conditional means of either rents or house prices that are
adjusted for property characteristics and location. Since we develop the index from
micro-data, we can also choose a spatial resolution that is well below the county level.
This allows us to zoom into local housing markets and complement the labor market
data provided by the Research Data Centre of the Federal Employment Agency in
Germany at all spatial aggregation levels with a cost-of-living measure (see Ahlfeldt
et al., 2020a, for an application).

Another benefit of our data is that they include both house price and rent in-
formation. Especially in German cities where ownership rates are still below 60
percent, any picture of the national real estate market remains incomplete unless
the rental market is taken into account. We directly relate to an emerging literature
that analyzes the determinants of price-to-rent ratios, albeit at a much lower level
of spatial detail. Our micro-geographic rent and purchase price indices reveal new
stylized facts that call for further analyses: There is a density bias in the price-to-
rent ratio in levels and trends. Price-to-rent ratios tend to be higher in large cities.
Within cities, they tend to be high in the more central parts. This density bias
increased since 2010 when prices have started to outpace rents earlier and much

more strongly in the largest agglomerations as well as in central-city neighborhoods.



The data set we share will allow researchers to delve into the origins of the spa-
tially biased divergence that may relate to supply conditions (Glaeser et al., 2008;
Hilber and Mense, 2021), credit constraints (Himmelberg et al., 2005), or foreign
direct investment (Badarinza and Ramadorai, 2018), just to name a few. Hence, our
contribution motivates and facilitates an entire research agenda.

More generally, our work connects to various important research strands that
are concerned with either generating or using spatial price data. The literature on
house price indices is too large to be comprehensively summarized here. Instead,
we refer to European Commission (2013) for an overview. Recent notable develop-
ments in this literature are the use of matching approaches (Lopez and Hewings,
2018) to broaden samples beyond repeat sales (Bailey et al., 1963), adaptive weights
smoothing to produce land value surfaces (Kolbe et al., 2015), or machine learning
to capture otherwise unobservable housing characteristics (Shen and Ross, 2021).
This strand of research is a manifestation of a broader trend to fit flexible functional
forms to data in a way that supports out-of-sample predictions. For a discussion of
prediction algorithms with a specific focus on housing, we refer the interested reader
to Mullainathan and Spiess (2017) and to Athey and Imbens (2019) for a more gen-
eral discussion of the use of machine learning in economics. Our contribution to
this literature is to combine various recent techniques with the aim of laying out a
transparent theory-consistent methodology for the generation of micro-geographic
price and rent indices that can be viewed as canonical among urban economists.

On the applied side, fine-grained house price data are routinely used to evaluate
housing policies such as rent control (Diamond et al., 2019; Autor et al., 2014;
Sims, 2011), quantify spatial models (see Redding and Rossi-Hansberg, 2017, for a
review), measure the cost of agglomeration (see Ahlfeldt and Pietrostefani, 2019,
for a review), infer quality of life (Roback, 1982; Ahlfeldt et al., 2020a), evaluate
economic cycles (Mian and Sufi, 2014; Hoffmann and Lemieux, 2015; Charles et al.,
2018), or value local public goods such as clean air (Chay and Greenstone, 2005),
safety (Linden and Rockoff, 2008) or the quality of public schools (Cellini et al.,
2010), just to name a few. Our contribution to this vast literature is to provide
researchers with a convenient, transparent, and flexible tool for the preparation of
an essential input into their research.

The rest of the paper is organized as follows. Section 2 introduces our algorithm.
Section 3 provides an application to Germany. Section 4 provides new stylized facts

based on the novel indices we generate. The final Section 5 concludes.



2 Algorithm

The empirical approach outlined in this section generates a mix-adjusted property
price index for an arbitrary set of target spatial units indexed by j € J. For each j,

we run a locally weighted regression (LWR) of the following type:
NPy = a + S+ di(D! x I(z =t)) + 1(D] > TV,
F PG = X + P (Y=Y e,

where P;; is the purchase or rental price of a property i transacted in year t. S;
is a vector of covariates stripped off the national average (we subtract the national
mean from the observed value of S;), and ¥ are the LWR-j-specific hedonic implicit
prices. Dg is the distance from a transacted property ¢ to the target unit j with
d’ being the LWR j-specific gradient in year z. I(.) is an indicator function that
returns a value of one if a condition is true and zero otherwise and 77 is a threshold
distance. Hence, e/I(D? > T7); is a fixed effect for all transacted properties i that
are outside the vicinity of the catchment area. X; and Y; are the coordinates of
transacted properties, X7 and Y7 are the coordinates of the target unit, and f7 and
¢’ are spatial gradients. eg’t is the residual term.
The threshold T7 is chosen using the following rule:

(71, if NOISTY > NT

|12, it NPISTD < NT < N(PIST)
re T3, if NIST) < NT < N(PI<T)
T4, if NWDIST®) o NT.

\ Y

where N (DIST*Ct1234) gives the number of transacted units from a target unit within
distance threshold 7541234} and N7 is a minimum-number-of-transactions thresh-
old, all to be chosen by the user in the program implementation of this algorithm.

In each LWR 7, all transacted properties ¢ are weighted using the following kernel
weight:




~

I(DI < AY), if N(Pi=A) > N4
oIl <A, it NPIEAY < N4 < NOISAY
o [(D] < A%), if NPISAY) < NA < NOI=AD
I(D] < AY), if NPIsA) < N4,

\
where {A!, A%, A3 A*} are distance thresholds and N4 is a minimum-number-of-
transactions threshold, all to be defined by the user in the program implementation
of this algorithm.

The price index for a target unit is then simply defined as:
Pl = exp(dy),

which we recover from the LWR-j-specific estimates of time-fixed effects a{ . To

facilitate the computation of confidence bands, we also report standard errors

(3Ptj = exp(&ag) X 'Ptj,
where (G are estimated allowing for clustering within the areas inside and outside
t ] )
the spatial fixed effect (I(D] > T7);). Intuitively, the price index for a target unit
is a year-specific local conditional mean that is adjusted for property characteristics
(deviations from the national average), location (time-varying distance from j effects,

and time-invariant spatial trends in X and Y coordinates), and a spatial fixed effect.

J

Since {w?, T?} are endogenously chosen by the algorithm, the precision of the index

automatically increases as the density of observations increases.

Via the parameters {A', A%, A3 A* N4, T', 72 T3 T* NT}, the user has flexi-
ble control over the bias-variance trade-off. Smaller values in all parameters will
generally lead to greater spatial variation, at the cost of an increasing sensitivity to
outliers in the underlying micro-data. In choosing N4, it is worth recalling that N4
describes the number of observations that occur over multiple years, but estimates
of conditional means and distance gradients are year-specific. Thus, as a rule of
thumb, N4 should increase proportionately to the number of years over which an

index is predicted.

3 Application

The procedure outlined in the previous section is entirely point-pattern based and
does not rely on context-specific spatial units or administrative data. This makes it

applicable in a wide range of geographic contexts. The programming syntax further



allows users to freely choose parameters for the predictive model, thus making it
easily adjustable to different applications and spatial resolutions. To illustrate the
functionality of our prediction method, we apply the algorithm to five of the arguably
most popular spatial layers in Germany that also corroborate the comprehensive
labor market data provided by the Research Data Centre of the Federal Employment
Agency. Specifically, we calculate price and rent indices at the level of (i) local labor
markets, (ii) counties, (iii) municipalities, (iv) postcodes, and (v) micro grids. Data
generated at these aggregation levels serve different purposes in the literature. Some
units vary greatly in geographic size while others vary greatly in population which
affects the average and the variability of the density of observations. In each case, we
suggest suitable parameter values along with a a rationale for the specific choice and
present a series of maps to illustrate the spatio-temporal variation generated by our

algorithm. In a last step, we validate our method with out-of-sample predictions.

3.1 Data

We rely on highly detailed information on properties listed for rent and purchase.
The data are provided by Immoscout?2j via the FDZ-Ruhr. We observe about 20
million properties listed for rent and an equal amount listed for purchase over the
period 2007-2018. The data set contains the usual property characteristics (e.g.
price, date, floor space, etc.) and a text description which we use to extract a
range of further characteristics, e.g. information on the type of heating system. We
use the following readily accessible scientific use files which is georeferenced at the
level of 1km? grid cells in projected units of the ETRS coordinate system (address-
based georeferences are accessible on site at RWI): RWI and Immobilienscount 24
(2021a,b,c,d). We refer to Schaffner (2021) for a detailed data description. In our
analysis, we discard properties with (i) a monthly rental price below 1€/m? or above
50€/m?; (ii) a purchase price below 250€/m? or above 25,000€ /m?; and (iii) floor
space below 30m? or above 500 m?. We further drop all listings where the per-m?
price is less than 20% or more than 500% of the county median. In total, this
removes about 5% of all the transactions.

To illustrate the house price index, we use shapefiles from the Federal Agency
for Cartography and Geodesy (Bundesamt fiir Kartographie und Geodésie, BKG)

representing jurisdictional boundaries in 2019.



3.2 Application I: Local labor markets (LLMs)

3.2.1 Context

Quantitative research where commuting decisions are not or cannot be considered
explicitly usually rely on local labor markets (LLMs) that are constructed to mini-
mize inter-regional commuting flows (see Ahlfeldt et al., 2020a; Henkel et al., 2021,
for recent applications in the German context). We follow the classification by Kos-
feld and Werner (2012) who define 141 German LLMs. LLMs can vary greatly in
size which results in sizable variation in average commuting costs. For the interpre-
tation of naive averages of prices or rents within LLMs, this is a problem because it
is well established that households trade housing against commuting costs (Alonso,
1964). To disentangle housing from commuting costs, Combes et al. (2019) propose
to compute housing costs at the centre of the city, where —assuming a monocentric

city structure— commuting cost are zero.

3.2.2 Parameter choices

We follow Combes et al. (2019) and argue that a theory-consistent index that cap-
tures pure housing cost in a LLM should control for a parametric distance gradient
that captures commuting costs in the spirit of the monocentric city model (see
Alonso, 1964; Mills, 1967; Muth, 1969). For the spatial window we use the fol-
lowing parameter values {A! = 25, A% = 50, 4% = 75, A* = 100, N4 = 10,000},
i.e. we consider a commuting zone of 25 km from the centre and only revert to
larger distances if we do not meet the minimum number N7 = 10,000 observa-
tions. Since we wish to capture the price level in the entire commuting zone (albeit
adjusted for commuting cost), we employ the same distance thresholds for the spa-
tial fixed effect, knowing that in most iterations the fixed effect will be dropped:
{T' =100,7?% = 100,73 = 100, 7* = 100, NT = 0}.

3.2.3 Results

We present our results for the years 2007 and 2018 in Figure 1. Panels (a) and
(b) depict prices for purchases while panels (c¢) and (d) are based on rental prices.
The indices clearly reveal an increase in both the levels and the spatial dispersion
of prices. The LLM Miinchen was leading the list in terms of purchase prices with
3,585€ (2007) and 9,393€ (2018) while Elbe-FElster (590€, 2007) and Osnabrick
(642€, 2018) had the lowest prices per square meter. Berlin developed most dy-
namically with a growth rate over the period of 172.4% while prices declined by 6.9%



Figure 1: Local labor markets

a 2000 'mm p:ﬂ’D;m a0o0 10000 a 2000 'mm p:n’D;m ‘2000 10000
(a) Purchases, 2007 (b) Purchases, 2018

: ! D"' Elll'; Da(ﬂ::‘! = b ’ ! D"' Ellr; Da(sl::‘! = b
(¢) Rents, 2007 (d) Rents, 2018

Note: Unit of observation in panels (a)-(d) is 141 local labour markets as defined by Kosfeld and Werner (2012).



in Wirzburg. Describing regional disparities in house prices based on the coefficient
of variation, our index implies an increase in inequality by 64.5% between 2007-2018.

Turning to rental prices, Munchen was the most expensive local labor market in
both 2007 (11.89€) and 2018 (21.37€). Siudvorpommern (3.25€, 2008) and Lichow-
Dannenberg (3.25€, 2018) were at the lower end of the ranking. Rents have grown
by 123.3% in Berlin while they declined by 4.4% in Lichow-Dannenberg. Rental

price dispersion has increased by 38.2% over this period.

3.3 Application II: Counties

3.3.1 Context

In the German context, counties (NUTS3 regions in official EU nomenclature) de-
fine the least granular spatial unit where a variety of data are publicly available.
Examples include the German Regionaldatenbank published by the Federal Statisti-
cal Office or commuting flows published by the Institute for Employment Research
(IAB). Quantitative research conducted at this spatial level depends on publicly
available house price indices that are often subject to the same criticism expressed
above, namely that they are unweighted averages (see Seidel and Wickerath, 2020;
Braun and Lee, 2021, in the German context). As with the LLM areas, our index
provides a theory-consistent measure of housing cost by predicting prices at the
economic center of a county (Combes et al., 2019). We use the jurisdictional classi-
fication in 2019 which comprises 401 counties. At this geographical level, additional

information can be easily matched.

3.3.2 Parameter choices

County-level data are often employed as an approximation for cities in the absence
of more suitable data. To account for this, we recommend the same parametrization
we employed for LLLMs and employ it in our calculations. However, in some instances
researchers may be genuinely interested in county-level variables without a particular
urban model in mind. In these cases, we recommend estimating the municipality-
level index (sub-units of counties) using the parametrization introduced in the next

section and aggregating it to the county level, weighted by population.

3.3.3 Results

The general pattern of relative house prices relate to that observed in the previous

part on local labor markets - albeit at higher resolution (see Figure 2). The most

10



Figure 2: Counties

a 2000 ‘mmp::n:qm 2000 10000 a 2000 immp::n;m 2000 10000
(a) Purchases, 2007 (b) Purchases, 2018
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im Eures per sgm in Eures per sgm

(c) Rents, 2007 (d) Rents, 2018

Note: Unit of observation in panels (a)-(d) is 401 counties based on the jurisdictional definition in 2019. Shapefiles
are provided by the Federal Agency for Cartography and Geodesy (Bundesamt fiir Kartographie und Geodésie).
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expensive county with respect to purchase prices was, again, Minchen (city) both in
2007 (3,585€) and 2018 (9,393€). Vogtlandkreis in Saxony was the least expensive
county with square meter prices of 518€ (2007) and 606€ (2018), respectively. In
terms of changes, purchase prices declined by 14.5% in Gotha (Thuringia) while they
increased by 172.4% in Berlin. Taking the coefficient of variation as a measure of
price dispersion, we find that overall inequality increased by 60.8%.

On the rental market, the city of Minchen was leading the list in both years at
11.89€ (2007) and 21.37€ (2018). Vorpommern-Greifswald ranked at the lower
end in 2007 with 3.24€ per square meter. In 2018, Lichow-Dannenberg took that
place with a rental price of 4.07€. The latter county was also characterized by the
lowest growth rate in rents, namely a decline of 4.4%. Berlin was located at the
top of the ranking also for the country classification with a growth rate of 123.3%.
Rental price dispersion increased by 30.1%.

3.4 Application III: Municipalities

3.4.1 Context

There are about 11,000 municipalities (local administrative units, LAU, in EU
nomenclature) in Germany that differ quite remarkably in their size, both across
states and within states. At the extreme, the city state of Berlin, home to about 3.6
million inhabitants, and Grode or Dierfeld, both home to 10 inhabitants each, are
considered one municipality. Therefore, some states with extremely small municipal-
ities such as Rhineland Palatinate grouped municipalities in municipal associations
(Verbandsgemeinden) that share a common local administration. Because of the
enhanced comparability across states, it is sensible to employ municipal associations
(where they have been formed) in quantitative research (Ahlfeldt et al., 2020b). We
follow this convention and, using the official classification for 2019, construct our

house price index for 4,608 municipalities and municipal associations.

3.4.2 Parameter choices

Municipalities that do not coincide with independent cities (like the extreme case
Berlin) are significantly smaller than LLMs or counties. Consequently, the focus
moves away from a theory-consistent index that adjusts for commuting costs and
towards a purely empirical problem of predicting an index for a relatively small area
within which there will typically not be enough observations to estimate a credible
conditional mean. To increase the number ob observations, we consider distance

buffers around the municipality of interest and add additional observations within

12



Figure 3: Joint municipalities (Verbandsgemeinden)

a 2000 ‘mm p::ﬂ;m a0o0 10000 a 2000 ‘mm p:D’D;m ‘2000 10000
(a) Purchases, 2007 (b) Purchases, 2018

2 4 L} 8 1 12 14 2 4 L} 8 1] 12 14
i Eures per sqm in Eures per sqm

(c) Rents, 2007 (d) Rents, 2018

Note: Unit of observation in panels (a)-(d) 4,608 joint municipalities. These entities are grouped according to joint
administration at the local level. The jurisdictional definition refers to 31 December 2019. Shapefiles are provided
by the Federal Agency for Cartography and Geodesy (Bundesamt fiir Kartographie und Geodasie).
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this buffer until we reach a minimum number of observations that guarantees a
reliable estimate. Specifically, we make the following choices for the distance and size
thresholds {A! = 10, A? = 25, A3 = 50, A* = 100,T" = 10,7? = 15,7% = 20,T* =
50} (all in km) and minimum transaction numbers {N4 = 10,000, NT = 1,000}.
These choices result in a tight local fit in areas where the density of transactions
is high while ensuring that the LWR are run on a sufficiently large sample in areas
that are more sparsely populated. The parametric distance control and the spatial
fixed effect then ensure that we estimate an index that is specific to the municipality

even if we have to use a relatively large window.

3.4.3 Results

Figure 3 illustrates nicely the evolution of house price changes, both for purchases
and rents, at a high resolution. Eyeballing suggests that the largest cities have
experienced the highest growth rates. Indeed, we find Grinwalder Forst near Mu-
nich (4,402€, 2007) and Minchen (10,701€, 2018) at the top of the purchase price
index. Dahlen (Saxony) and Huy (Saxony-Anhalt) had the lowest purchase prices
per square meter at 496€ (2007) and 562€ (2018), respectively. Miinchen expe-
rienced growth rates of 185.1% while prices declined by 27.9% in Peenetal/ Loitz
(Mecklenburg-Western Pomerania). In terms of the coefficient of variation, we find
an increase in price dispersion of 50.9%.

Turning to the rental market, the least expensive municipalities were Neunburg
vorm Wald (Bavaria) with a square meter price of 2.80€ (2007) and Heiligengrabe
(Brandenburg) with 2.89€ (2018). Miinchen was leading the list in both years with
respective rents of 12.34€ and 23.08€. Berlin experienced the highest rent growth
of 141.3% while rents declined by 38.2% in Treptower Tollensewinkel (Mecklenburg-

Western Pomerania). The coefficient of variation increased by 20.9%.

3.5 Application IV: Postcodes

3.5.1 Context

The smallest administrative units, municipalities, provide great spatial granular-
ity outside independent cities (kreisfreie Stdadte). However, they lack spatial detail
within cities as exemplified by the extreme case Berlin, which is one municipality.
A suitable spatial unit for the analysis of variation between and within cities are

2

postcodes.” There are 8,255 postcodes that are designed to accommodate similar

2Note that this problem is less common in other countries where data are available for census
tracts. However, long-lasting protests against census collections mean that census data become very
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populations, but they may vary substantially in terms of geographic size. Within
urban areas they can be small and correspond to neighborhoods; in rural areas they
can be larger than municipalities (note that the next application will address the
problem of heterogeneous geographic size). As more data become available at finer
grids, postcode-level precision will become an option to zoom into German cities
(restricted access labor market data from the Institute for Employment Research
are not yet available at this level). Of course, disaggregate property price and rent
data at the neighborhood level are useful in their own right since they can inform

hedonic regressions that are typically employed to value (dis)amenities.

3.5.2 Parameter choices

Similarly to municipalities, we mainly face an empirical problem of predicting an
index for a relatively small area within which there will typically not be enough
observations to estimate a credible conditional mean. As before, we overcome this
limitation by using observations from neighboring municipalities. Specifically, we
allow for the following choices for thresholds: {A' = 10, A% = 25, A3 = 50, A* =
100, 7" = 2.5, 7% = 5, 7% = 10,7* = 20} (all in km) and we require a minimum of
{N4 = 10,000, NT = 1,000} transactions. These choices allow for a tight local fit
in areas where the density of transactions is high while ensuring that the LWR are
run on a sufficiently large sample in areas that are more sparsely populated. Note
that the small value of T reflects that within urban areas postcodes can be very
small. The small scale fixed effects ensure that we account for large differences in

prices that are typically observed within cities over relatively small distances.

3.5.3 Results

As the results at the postcode level look very similar to the index at the munic-
ipality level, we take advantage of the higher resolution and focus on Berlin that
consists of 190 postcode areas (we provide maps for other German cities in the On-
line Appendix). Figure 4 shows four panels according to the previous structure. We
observe that the center and the south-west tend to be the high-price areas and the
development over time clearly reveals the attractiveness of the city center. Purchase
prices have increased between 57-264% translating into an increase in inequality of
22.3%. On the rental market prices were raised between 17-141%. This, however,
led to a more pronounced change in the inequality measure (coefficient of variation)
by 49%.

patchy after 1971-the next waves are 1987 and then 2011-and census tracts are not consistently
assigned.
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Figure 4: Postcodes Berlin
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Note: Unit of observation in panels (a)-(d) 190 postcode areas in Berlin. The jurisdictional definition refers to 2019.
Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt fiir Kartographie und
Geodasie).

3.6 Application V: Micro grids

3.6.1 Context

While postcode-level precision helps us zoom into cities, postcodes in Germany still
tend to be larger than US census tracts or output areas in the UK. They are certainly
much larger than the housing blocks that have been used to analyze the strengths
and spatial scope of social and professional interactions (Ahlfeldt et al., 2015). To
achieve even higher precision, we introduce a last application where we show how
our algorithm can be applied to zoom into even finer grids of arbitrary shape. To
this end, we construct a grid of hexagons with a diameter of 500 meters that covers,

again, the entire Berlin city state. While we could generate an index at this level for
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the entire country, the returns to enhancing the spatial resolution would be confined
to dense urban areas where spatial differences are particularly pronounced over short

distances and the density of observations is sufficiently high.

3.6.2 Parameter choices

Applying the algorithm only to a dense city like Berlin, we can make parameter
choices that aim at maximizing the flexibility of the index subject to the constraint
that there remain sufficient degrees of freedom. Hence, we use small distance thresh-
olds with the intention of only reverting to larger spatial windows and spatial fixed
effects if observations are insufficient. We make the following choices for the thresh-
olds: {A! =5, A2 = 10, 43 = 25, A% = 50, 7" = 1,7? = 2, 7% = 5,7* = 10} (all in
km) for distance and {N“ = 10,000, NT = 1,000} for the number of transactions.

3.6.3 Results

Naturally, the generic pattern of rents and purchase prices at the level of hexagons
in Figure 5 resembles the postcode-level maps in Figure 4. Central areas rapidly
appreciated, even relative to the most attractive wealthy suburbs in the south-west.
This is a manifestation of the gentrification trends observed in cities around the
world. However, more features of the spatial structure become apparent at the finer
hexagon level. Purchase price maps reveal the duo-centric structure of the city, with
prices peaking near the prestigious Boulevards Kurfiirstendamm in former West
Berlin and Unter den Linden in former East Berlin. Turning to rental price maps,
we observe pockets of high rental prices outside the central district Mitte such as in
Kreuzberg and the bordering districts Neukolln and Friedrichshain, a vibrant area

that has become a hub of startup entrepreneurship (Moeller, 2018).

3.7 Validation

In this section, we subject our micro-geographic indices to a fairly demanding out-
of-sample prediction exercise where we use data from a fraction of the hexagons
introduced in Section 3.6 to predict our index for the remaining ones.

This is an interesting exercise because our algorithm is designed to fit a con-
ditional mean non-parametrically in densely populated areas while it extrapolates
spatial trends to predict index values in sparsely populated areas. We claim that the
latter feature results in strong out-of-sample predictive power which is essentially
why we trust our algorithm to fill gaps on a map of 