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CESifo Working Paper No. 9190 

On the Road (Again): Commuting and Local 
Employment Elasticities in Germany 

Abstract 

This paper develops a quantitative spatial general equilibrium model for the German economy to 
address two issues. First, we explore the role of commuting for local labor markets and their 
capacity to absorb productivity shocks. Second, we address the role of housing markets for 
quantitative analyses. Germany is an exciting laboratory because commuting across local labor 
markets is pervasive, unique data are available, and because Germany’s high degree of trade 
openness poses a thrilling counterpoint to the United States. Our key findings for German counties 
are that the employment and resident elasticities associated with local productivity shocks are 
much above unity, yet disparate (the former larger than the latter), very heterogeneous, and only 
poorly predicted by simple labor market statistics. Allowing the supply of land/housing to be price 
elastic increases the elasticities and reinforces our conclusions. The regional heterogeneity of the 
land/housing shares in Germany turns out to be inessential for our findings, the level of the 
land/housing share plays an important role, however. We perform a plethora of robustness checks 
which allow us to gain perspective on extant findings for the United States. 
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1 Introduction 

What once fired the imaginations of poets and musicians, Jack Kerouac, the Canned Heat and 

Willie Nelson has become dreary reality for zillions of workers today, albeit in an altogether 

different vein. The world is on the road (again). Workers spend substantial shares of their time 

and budgets on traveling between residences and workplaces and these shares have steadily 

risen in the last decades (Redding and Turner 2015). In deciding where to live and where to 

work households trade off living costs, access to consumption goods, amenities, and 

idiosyncratic factors, such as family ties, networks and personal tastes. Until recently, research 

on the implications of the separation of workplaces and residences has almost exclusively 

focused on the internal structure of cities and so on commuting within cities.1 Novel research 

has shifted attention to regional economies and the importance of commuting across local labor 

markets.2 This requires to address spatial linkages in goods and factor markets, trade, 

commuting and migration, and their respective costs. The seminal study by Monte et al. (2018) 

develops a quantitative spatial general equilibrium model which integrates these linkages and 

which corroborates the crucial role that commuting across local labor markets plays for the 

American economy. Research along this line is still very scant, however, and little systematic 

is known for other countries.3 

This paper makes two contributions to this research line. First, we perform quantitative analyses 

to explore the role of commuting for local labor markets in Germany, an exciting scientific 

laboratory for a number of reasons. Commuting across local labor markets is pervasive. 

According to our data, on average only 60% of a county’s residents work at the same place 

where they live. Figure 1 depicts the kernel densities of this ‘own-commuting share’. It can be 

seen that the peak of the distribution is also at about 60% and that a large share of counties 

exhibits values (much) below one.4 Moreover, we have exceptionally good data, notably a 

unique observation-based dataset for bilateral manufacturing trade at the county level, a 

decisive advantage over extant work which relies on imputations. A final reason is that, with 

its high degree of trade openness, Germany poses a thrilling counterpoint to the United States. 

The ambition of this paper goes much beyond replicating extant work for another country, 

however. Our second contribution is of methodological nature. We use the German case to 

address the role of housing markets for quantitative analysis. The key parameter on the demand 

1 See Duranton and Puga (2015) for a recent survey and Ahlfeldt et al. (2015) for a recent key contribution. 
2 This redirection is largely due to the work by Autor et al. (2013) whose empirical findings highlight the role and 
diversity of American local labor markets and their adjustment to the rise of China in world trade (Redding 2020). 
3 See Redding (2020), Redding and Rossi-Hansberg (2017) and our review of the literature below. 
4 See section 4 and appendix E for details. 



2 
 

side is the expenditure share devoted to land/housing.5 Since widely differing numbers are used 

for this share in the extant literature, we carefully discuss its choice. Further, this share is taken 

to be uniform across local labor markets in the canonical model of spatial quantitative analysis 

(Redding 2016; Redding and Turner 2015; Redding and Rossi-Hansberg 2017; Redding 2020). 

German regional data show that the housing share varies markedly across counties, however. 

This inspires us to explore the implications of this local heterogeneity. We also scrutinize the 

key parameter on the supply side, the elasticity of housing supply, and we highlight its interplay 

with the housing share in shaping regional outcomes. 

 
Figure 1:  Kernel densities for the own-commuting share (share of non-commuters in residents of German counties), 

95% confidence interval shaded. See section 4 and appendix E for the data and further details. 

Both aims are addressed in the context of an analysis of the absorption of counterfactual local 

productivity shocks by German local markets. Specifically, we pose the following key 

questions. How is local production and employment affected by these treatments? How do local 

labor markets adjust? Specifically, how are the agents’ choices of workplaces and residences 

affected by these shocks? In what ways do the results depend on the parameters in the housing 

market and further features of the model?  

To explore these questions, we develop a quantitative spatial general equilibrium model with 

heterogeneous locations tailored to the German economy. We borrow the main model from 

Monte et al. (2018) who abstract from external trade in addressing the U.S. economy.6 With 

export and import shares in GDP of about 45%, Germany can hardly be treated as a closed 

economy, however.7 We therefore go beyond Monte et al. (2018) and consider Germany’s 

internal and external trade relations. We explore the importance of trade openness in a 

robustness check which shuts down all international trade. In calibrating the model, we devote 

special attention to the housing market and we derive model-consistent technologies and trade 

costs as a check of the model’s specification. We proceed in two steps. We first numerically 

                                                 
5 Throughout this paper we use ‘land’ and ‘housing’ as synonymously referring to land and structures. 
6 This also holds true for Caliendo et al. (2018). 
7 See the German Statistical Office at https://www.destatis.de. 
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compute and analyze the general equilibrium local employment and resident elasticities in 

response to a treatment with productivity shocks. We then perform regressions to analyze how 

well the elasticities can be predicted with labor and commuting market statistics. This second 

part of our analysis is important because it provides a backdrop on the scope of reduced-form 

approaches to local labor markets, in particular on treatment effect heterogeneity, an issue 

which is also crucial for policymakers seeking guidance for their decisions on local 

infrastructure, taxes, subsidies, and place-based policies.8 

Our thought experiment (‘treatment’) throughout is a counterfactual 5% productivity shock in 

each German local labor market, holding productivity at all other locations as well as all other 

exogenous parameters constant.9 Our exploration is centered around a ‘baseline scenario’ which 

grounds on the observation-based bilateral trade data for internal and external trade, a uniform 

expenditure share of housing of 10% (our preferred value for the economy-wide application, as 

explained below), and inelastic housing supply. We focus on Germany’s 402 counties, since 

our model explicitly deals with spatial linkages in goods and labor markets. This allows us to 

perform the analysis at a finer spatial scale than that of Germany’s 141 commuting zones (which 

are simply aggregated up from counties). We perform extensive robustness checks which put 

the assumptions of this baseline under scrutiny. 

Our key results are as follows. The general equilibrium local employment elasticities in the 

baseline scenario are all well above unity. This points to very strong home market effects. 

Resident elasticities are smaller but also typically exceed 1. Their (unweighted) mean (1.89) is 

half the one for employment elasticities (3.72). This divergence demonstrates the importance 

of commuting in Germany. Both types of elasticities are very heterogeneous across counties. 

Hence, seriously wrong conclusions would be drawn, if an average elasticity was applied in 

policy analysis. Our regression analyses show that ex-ante observable labor and commuting 

market statistics are poor predictors of the local employment elasticities. A regression focusing 

on the own-commuting share (depicted in Figure 1) is indicative of our findings: the regression 

R-squared is only 0.2.  

Our robustness checks focusing on the size and heterogeneity of the housing shares yield 

remarkably different results. There are views – differing from our economy-wide approach – 

which put the level of the housing share at up to 40% (see below). Increasing the share from 

our preferred 10% to 40% has two consequences. First, whilst the employment elasticities 

                                                 
8 Redding (2020, section 2) provides an in-depth discussion of the relationship between reduced-form empirical 
approaches such as Autor et al. (2013) and quantitative spatial models. 
9 We have also experimented with 1% and 10% shocks. This leaves the results virtually unchanged. 
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remain larger than the resident elasticities, and whilst both remain heterogeneous, the 

elasticities fall sharply. Second, the explanatory power of simple labor and commuting market 

statistics as predictors of the employment elasticities increases strongly. The R-squared of a 

regression focusing on the own-commuting share rises up to 0.89 with a housing share of 40%. 

Both findings are intuitive: increasing this share fosters the dispersive force of housing prices, 

which reduces the elasticities; the general equilibrium repercussions in the economy are also 

much weaker when a high share of expenditures is local, and this explains why simple (partial-

equilibrium) statistics become better predictors. The heterogeneity of housing shares across 

German counties turns out to play only a negligible role, in contrast. We find that the 

distribution of employment and resident elasticities differs only marginally from those when a 

uniform housing share is imposed at the same average level, and our verdict with respect to the 

poor explanatory power of labor market statistics remains intact. 

We address the supply side of the housing market by rerunning the treatments for a range of 

elasticities that we take from the extant literature (see section 3.2.3 for details). Employment 

and resident elasticities turn out to be larger and the predictive power of the own-commuting 

share falls sharply with larger supply elasticities. Both findings are intuitive and can be related 

to our results for the housing share. A larger supply elasticity reduces pressure on housing prices 

associated with the wage and mobility effect of positive local productivity shocks, similar as a 

smaller housing share does from the demand side. The key insight that we derive from this 

analysis is that small housing shares and positive supply elasticities wipe out the predictive 

power of simple labor and commuting market statistics and this holds true for a considerable 

share of ranges for the two parameters. 

In further robustness analyses we run the treatments disregarding Germany’s external trade, we 

look at commuting zones rather than counties, and we consider trade in services in addition to 

manufacturing (this forces us to use imputed data, see below). Whilst each of these extensions 

yields a number of specific results, our key results remain intact. 

Previous research. Theoretical literature addressing the separation of workplaces and 

residences in regional analysis is sparse. One exception is Borck et al. (2010), who set up a two-

region new economic geography model with commuting across regions which allows for 

demand and supply linkages, crowding in goods markets and congestion in housing markets, 

and multiple equilibria. A simultaneous reduction of trade and commuting costs fosters the 

spatial concentration of production and a dispersion of residences in the model, so that the 

importance of commuting rises. New quantitative spatial economics has turned away from such 
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stylized settings to models with an arbitrary number of locations with heterogeneous geography, 

productivities, amenities, and local factors, as well as trade and commuting costs. This research 

derives its thrust from restraining the parameters so that multiple equilibria are excluded. The 

payoff is that combining, measuring and quantifying theoretical mechanisms and identifying 

key structural parameters becomes possible and that counterfactuals can be addressed (see 

Redding 2020, Redding and Rossi-Hansberg 2017). A milestone in this research is the model 

developed by Redding (2016) which generalizes Helpman’s (1998) model to arbitrary many 

locations, and which builds a bridge to various trade models, such as the Armington model 

(Anderson 1979; Anderson van Wincoop 2003), the monopolistic competition model with 

homogeneous firms (Krugman 1980; Helpman and Krugman 1985), or heterogeneous firms 

(Melitz 2003), and the multi-region Ricardo model (Eaton and Kortum 2002). Our analysis is 

most closely related Monte et al (2018), who introduce commuting across locations in 

Redding’s (2016) model and who perform quantitative analysis of local labor market shocks 

for the United States.10 We highlight the relation of our analysis with this work, as we go along. 

The Monte et al. (2018) model is also used by Seidel and Wickerath (2020) to study rush hours 

congestion in Germany.11 

The structure of our paper is as follows. Section 2 introduces the model. Section 3 characterizes 

the data, the calibration of the model, and the derivation of model-consistent trade costs and 

local productivities. Our quantitative analyses are performed in section 4 starting with the 

baseline scenario and moving on to extensive robustness checks. Section 5 concludes. 

2 The Model 

The Setup. We build on the spatial general equilibrium model developed by Monte et al. 

(2018). Locations are linked through trade, migration and commuting. Households consume 

land and a compound good which consists of differentiated varieties produced with labor under 

increasing returns. Space is divided into a set of locations Ω ൌ ሼ1, . . ,𝑁ሽ which serve as 

workplaces and residences. Each location 𝑛 ∈ Ω is endowed with an exogenous supply of 

land/housing 𝐻ഥ௡ owned by local immobile landlords who earn rents from the residential use by 

households. Monte et al. (2018) consider an economy with an internal geography only. Our 

adaptation of the model for Germany allows for external trade. We assume that the set of 

locations Ω ൌ ሼ1, . . ,𝑁ሽ is exhaustively divided into disjoint subsets (territorial entities), Ω௚ ⊆

                                                 
10 Dingel and Tintelnot (2020) develop an extension with granular interactions. 
11 They use the same transport data as we do but arrive at different bilateral trade flows since they apply simple 
unit values for traded tons. See section 3.1.2 and appendix D. 



6 
 

Ω. Each subset is populated by an exogenous measure 𝐿ത௚ of workers who supply 1 unit of labor 

each. Workers are mobile and can commute to work within subsets but not across them.12 

German local labor markets are one such subset in our analysis and Germany’s external trading 

partners (countries) form the other subsets. 

Preferences. A consumer 𝜔 who lives in location 𝑛 ∈ Ω and works in location 𝑖 ∈ Ω has 

preferences characterized by an upper-tier utility of the Cobb-Douglas-type over a basket of 

goods 𝐶௡ఠ and housing 𝐻௡ఠ with expenditure shares 𝛼 and 1 െ 𝛼, respectively,13 

    𝑈௡௜ఠ ൌ ௕೙೔ഘ
఑೙೔

ቀ஼೙ഘ
ఈ
ቁ
ఈ
ቀு೙ഘ
ଵିఈ

ቁ
ଵିఈ

, 0 ൏ 𝛼 ൏ 1  (1) 

where 𝜅௡௜ ∈ ሾ1,∞ሻ is a parameter of iceberg commuting costs in terms of utility and 𝑏௡௜ఠ is a 

consumer-specific work-residence amenity pair drawn from the Fréchet-distribution: 

    𝐺௡௜ሺ𝑏ሻ ൌ 𝑒ି஻೙೔௕
షച

,  𝐵௡௜ ൐ 0, 𝜖 ൐ 1  (2) 

The scale parameter 𝐵௡௜ indicates the average amenity level of the work-residence pair and 𝜖 ൐

1 parameterizes the dispersion of these amenities.  

The basket of goods is a CES-bundle of differentiated varieties 𝑗: 

   𝐶௡ఠ ൌ ቂ∑ ׬ 𝑐௡௜ఠሺ𝑗ሻ
഑షభ
഑ 𝑑𝑗

ெ೔

଴௜∈ே ቃ
഑

഑షభ
,  𝜎 ൐ 1   (3) 

where 𝑐௡௜ఠሺ𝑗ሻ is consumption of variety 𝑗 produced in 𝑖, 𝑀௜ is the mass of varieties, and 𝜎 is 

the elasticity of substitution between any two varieties. Price indices dual to (1) and (3) are 

     𝑃௡ ൌ 𝑝௡ఈ𝑞௡ଵିఈ,    and   𝑝௡ ൌ ቂ∑ ׬ 𝑝௡௜ሺ𝑗ሻଵିఙ𝑑𝑗
ெ೔

଴௜∈ே ቃ
భ

భష഑ ,   (4) 

respectively, where 𝑞௡ is the price of housing in 𝑛, 𝑝௡௜ሺ𝑗ሻ the price of variety 𝑗 produced in 𝑖 

paid by consumers in 𝑛, and consumer 𝜔’s indirect utility is 

     𝑉௡௜ఠ ൌ ௕೙೔ഘ
఑೙೔ 

 ௘೙೔
௉೙

     (5) 

where 𝑒௡௜ denotes the total expenditure of any consumer choosing to commute from 𝑛 to 𝑖. 

Since indirect utility is a monotonic function of the amenity draw 𝑏௡௜ఠ, it also follows a Fréchet-

distribution, 𝒢௡௜ሺ𝑈ሻ ൌ 𝑒ି஍೙೔ ௎ష∈, where Φ௡௜ ൌ 𝐵௡௜ ቀ
௘೙೔
఑೙೔௉೙

ቁ
∈
. 

                                                 
12 We face similar data-limits as Monte et al. (2018) and we therefore abstract from international cross-border 
commuting, too. 
13 Following standard practice, we use the term ‚goods‘ to comprise services where appropriate. Davis and Ortalo-
Magné (2011) provide empirical evidence in favor of constant expenditure shares. We allow this parameter to be 
heterogeneous across local labor markets in our robustness analysis. 
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Production. Producers in location 𝑖 produce varieties 𝑗 under increasing returns and 

monopolistic competition according to the total cost function Υ௜ሺ𝑗ሻ ൌ ቀ𝐹௜ ൅
௬೔ሺ௝ሻ

஺೔
ቁ𝑤௜, where 

𝑦௜ሺ𝑗ሻ is output, 𝐹௜ and 𝐴௜ are the location-specific fixed input of labor and productivity, 

respectively, and 𝑤௜ is the location-specific wage. Symmetry allows us to suppress the index 𝑗, 

from now on. Profit maximization implies that prices are constant markups on marginal costs. 

Consumers in location 𝑛 pay 𝑝௡௜ ൌ 𝑑௡௜ ቀ
ఙ

ఙିଵ
ቁ ௪೔

஺೔
 for any variety 𝑗 produced in 𝑖, with 𝑑௡௜ ൒ 1 

denoting iceberg costs for shipments from 𝑖 to 𝑛. Zero-profits then imply a firm’s output 𝑦௜ ൌ

𝐴௜ሺ𝜎 െ 1ሻ 𝐹௜, its labor use 𝑙௜ ൌ 𝜎 𝐹௜, and its total costs Υ௜ ൌ 𝜎 𝐹௜ 𝑤௜ . Labor market clearing in 

𝑖 commands that labor use 𝑀௜𝑙௜ equals supply 𝐿௜ so that the equilibrium number of firms is: 

     𝑀௜ ൌ
௅೔

 ఙ ி೔
      (6) 

Trade and price indices. Goods trade between any two locations is characterized by a gravity 

equation. Using the CES-structure of demand as well as the pricing rule, the measure of firms 

(6), and total costs Υ௜ ൌ 𝜎 𝐹௜  𝑤௜, the share of location 𝑛’s expenditure on varieties produced in 

𝑖 (relative to location 𝑛’s total spending on goods) is derived as: 

   𝜋௡௜ ൌ
ெ೔ ௣೙೔భష഑

∑  ெ೘ ௣೙೘భష഑
೘∈ಿ

ൌ
ಽ೔

  ಷ೔ 
 ൬ 
೏೙೔
ಲ೔
൰
భష഑

 ௪೔
భష഑

∑ ಽ೘
 ಷ೘ 

 ቀ ೏೙೘
ಲ೘

ቁ
భష഑

 ௪೘భష഑
೘∈ಿ

   (7) 

Using optimal pricing along with eq. (6), the CES price indices (4) can be rewritten as: 

    𝑝௡ ൌ ቀ ఙ

ఙିଵ
 ቁ ቀ ௪೙ௗ೙೙ 

஺೙
ቁ ቀ ௅೙

గ೙೙ ఙ ி೙ 
 ቁ

భ
భష഑    (8) 

Market clearing. In each location 𝑖 total sales equal production costs. Hence we can write: 

     ∑ 𝜋௡௜𝑋௡௡∈ே ൌ 𝑤௜𝐿௜     (9) 

We follow Monte et al. (2018) in assuming that landlords spend all rental income on goods and 

that total regional spending 𝑋௡ may differ from residential income 𝑤ഥ௡ 𝑅௡ by an exogenous trade 

deficit 𝐷௡ (or surplus) which is borne by local landlords. Combining the expenses of consumers 

on goods, 𝛼 𝑤ഥ௡ 𝑅௡ , with the spending of local landlords, ሺ1 െ 𝛼ሻ 𝑤ഥ௡ 𝑅௡ ൅ 𝐷௡, where 𝑤ഥ௡ is the 

average wage in location 𝑛 (characterized below) and 𝑅௡ is the measure of residents, location 

𝑛’s total spending on goods (services) is thus:14 

                                                 
14 A region’s expenditure, 𝑋௡, may differ from the region’s value of production 𝑤௡ 𝐿௡ for two reasons. To see this, 
rewrite equation (10) as 𝑋௡ െ 𝑤௡ 𝐿௡ ൌ  ሺ𝑤ഥ௡𝑅௡ െ 𝑤௡ 𝐿௡ሻ  ൅  𝐷௡. First, the production value and residential income 
may differ due to commuting, ሺ𝑤ഥ௡𝑅௡ െ 𝑤௡ 𝐿௡ሻ. Second, a region may run trade deficit (surplus) 𝐷௡. 
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     𝑋௡ ൌ  𝑤ഥ௡ 𝑅௡ ൅  𝐷௡      (10) 

In the housing market housing is consumed by residents with an associated spending of 

ሺ1 െ 𝛼ሻ𝑤ഥ௡𝑅௡. Following Saiz (2010) we assume that the housing supply 𝐻௡ at each residence 

𝑛 depends on exogenous characteristics of the location 𝐻ഥ௡ and on the price of housing 𝑞௡ 

according to the specification 𝐻௡ ൌ 𝐻ഥ௡𝑞௡ఎ೙ where 𝜂௡ ൒ 0 is the price elasticity of the supply 

of developed land. The standard specification of a completely exogenous and perfectly inelastic 

supply (𝐻௡ ൌ 𝐻ഥ௡) is portrayed by 𝜂௡ ൌ 0. A perfectly elastic housing supply is depicted by the 

case 𝜂௡ → ∞. Housing market clearing in location 𝑛 thus commands: 

    𝑞௡ଵାఎ೙𝐻ഥ௡ ൌ ሺ1 െ 𝛼ሻ𝑤ഥ௡𝑅௡     (11) 

Labor mobility and commuting. From the subset of available location pairs 𝑚, 𝑙 ∈ Ω௚ each 

worker chooses the commute that offers the highest utility taking her idiosyncratic preferences 

(5) into account. With the Fréchet distribution of indirect utility, the probability that a worker 

chooses to live in location 𝑛 and to work in location 𝑖 is (where we now use 𝑒௡௜ ൌ 𝑤௜ሻ: 

    𝜆௡௜|ஐ೒ ൌ
஻೙೔൬

ೢ೔
ഉ೙೔ು೙

 ൰
∈

∑ ∑ ஻೘೗൬
ೢ೗

ഉ೘೗ౌౣ
൰
∈

೗ചಈ೒೘∈ಈ೒

≡ ஍೙೔

஍೒
   (12) 

The share of workers employed by all firms in location 𝑛 must match the overall probability 

that a worker chooses to work in this location:  

     𝜆௡௅ ≡
௅೙
௅ത೒
ൌ ∑ 𝜆௜௡|ஐ೒௜ఢஐ೒     (13) 

Moreover, the share of residents in location 𝑛 must match the overall probability that a worker 

chooses to live in this location:  

      𝜆௡ோ ≡
ோ೙
௅ത೒
ൌ ∑ 𝜆௡௜|ஐ೒௜ఢஐ೒     (14) 

The expected wage conditional on living in location 𝑛 equals the wages paid at all possible 

workplaces weighted with the probabilities of commuting to those workplaces from location 𝑛: 

     𝑤ഥ௡ ൌ ∑ ஻೙೔఑೙೔ష∈௪೔
∈

∑ ஻೙೗఑೙೗ష∈௪೗
∈

೗∈ಈ೒

𝑤௜௜∈ஐ೒    (15) 

The expected utility of a worker is the same for all pairs of residence and workplace within the 

relevant subset of locations because of population mobility. It can be calculated as: 

   𝑈ഥ ൌ 𝔼ሾ𝑈௡௜ఠሿ ൌ Γ ቀ ఢ

ఢିଵ
ቁ ൤∑ ∑ 𝐵௠௟ ቀ

௪೘
఑೘೗௉೗

ቁ
∈

௟∈ே௠∈ே ൨

భ
ച
  (16) 

where 𝔼 is the expectations operator and Γሺ∙ሻ is the Gamma function. 
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General equilibrium and uniqueness. In the general equilibrium the set 

ሼ𝑤௡,𝜋௡௜ ,𝑋௡,𝑤ഥ௡, 𝐿௡,  𝑞௡,𝑅௡,𝑝௡ሽ of endogenous variables is simultaneously determined by the 

set of equations (7), (8), (9), (10), (11), (14), (15) and (16) after the substitution of 𝜆௡௜|ஐ೒. The 

techniques developed in Allen et al. (2020; 2016) imply the sufficient condition ሺ𝜎 െ 1ሻ 𝜖⁄  ൒

1 for the general equilibrium to exist and to be up-to-scale unique (appendix A provides details). 

Hence, this condition requires the Fréchet parameter of idiosyncratic location preferences 𝜖 to 

be small relative to the elasticity of substitution 𝜎.15 Importantly, this condition does not involve 

the housing share ሺ1 െ 𝛼ሻ, a finding, which to the best of our knowledge, is novel and also 

intuitive. Whilst housing and idiosyncratic location preferences are dispersion forces, the 

respective parameters have distinct roles in a model with commuting. The Fréchet parameter 

ensures that all locations are residences and workplaces, a (positive) housing share only implies 

that all locations are residences.16 Hence, in a model with commuting, the Fréchet parameter 

‘dominates’ the housing share. That the housing supply elasticity does not enter this condition 

is also intuitive. Different supply elasticities relax or tighten price pressure in the housing 

market (just as housing shares do) and so only influence whether residences are non-empty. 

This is, however, already implied by a low enough Fréchet parameter. 

3 Data and Model Inversion 

Section 3.1 describes our data (details are provided in appendix D and E). Section 3.2 takes up 

the model calibration. Section 3.3 explores model consistent structural fundamentals. 

3.1 Data Sources 

3.1.1 Commuting. Our commuting data stem from the German Federal Employment Agency 

(‘Pendlerstatistik’). They contain bilateral flows between all 412 German counties (‘Kreisfreie 

Städte und Landkreise’) in 2010 for all workers with social security whose workplace differs 

from the registered residence. In 2011 an administrative reform reduced the number of counties 

to 402. Since other data sets are only available for this classification we work with the latter. 

We complement this data with total local employment supplied by the German Institute for 

Labor Market Research (IAB) to derive the number of non-commuters (workers whose 

workplaces coincide with their residences) in each county. Both data sets are based on social 

security accounts which exclude self-employed workers and other workers without social 

                                                 
15 This is intuitive since agglomeration forces in the Krugman-Dixit-Stiglitz model are weaker, the larger is 𝜎 (e.g. 
Fujita et al. 1999), whilst dispersion forces are stronger the smaller is the Fréchet location choice parameter 𝜖. 
16 This difference is important as in models with trade and migration but without commuting (i.e. unlike ours), the 
dispersive forces of land/housing and the Frechet-parameter are isomorphic, see e.g. Allen and Arkolakis (2014). 
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security. Preparing the final commuting data, on which all figures, tables and quantitative 

analyses are based, we faced two challenges. First, in the raw data all bilateral commuting flows 

between two counties with less than 10 commuters are censored and, hence, indistinguishable 

from county pairs with no commuters. Second, the raw data contain commuting distances that 

are implausibly long for a daily commute. We take this as indicative of misreporting which is 

quite likely the case as the process of data collection is error-prone for two reasons. First, the 

data are based on the accounts of companies which may report the wrong workplace of a worker 

by muddling up the company’s headquarter or main plant with the actual plant, where the 

worker is employed. Second, the residence address of the worker may be misreported because 

workers in Germany may be registered at a main address (‘Hauptwohnsitz‘) and a secondary 

address (‘Nebenwohnsitz’). Note that such possible misreporting concerns all our data, and so 

also the data for commutes with plausible distances. We mend the two problems of censoring 

and misreporting with the help of further, aggregate data, and with the help of gravity estimates, 

as we explain in appendix E. Our final data set contains commutes up to a threshold of 120 km 

and/or a travel time of less than 1:45 hours by train. The data show that commuting across local 

labor markets is pervasive in Germany as documented by the own-commuting shares in Figure 

1. Across German counties, the unweighted average share of a county’s residents that work at 

other locations is 40%, and that of a county’s total workforce that lives in a different location 

is 36%. Appendix E provides more detailed information about commuting in Germany. 

3.1.2 Trade. Our trade data are based on a unique data set, the traffic forecast (‘Verkehrs-

verflechtungsprognose 2030’) administered by the German Federal Ministry of Transport and 

Digital Infrastructure.17 These data contain the weight of goods shipped between German 

counties and their trade partners by ship, train or truck, disaggregated across 25 product 

categories. Sources for the data stem from the respective agencies for rail- and waterways and 

from a representative weekly sample of truck shipments in Germany.18 Krebs (2018) uses these 

data to construct an interregional input output table at the level of 17 sectors for all German 

counties and 26 foreign countries which replicates observed German county level sectoral 

revenues, value added, and intermediate demand reported by the regional statistical offices, and 

whose aggregates for Germany are cell-by-cell compatible with the national and international 

                                                 
17 See appendix D for further details on the following. 
18 Air transport is not included in the data. However, it only makes up about 0.1 percent of total transported weight 
in Germany (4.2 million tons compared to 3.7 billion tons, see Schubert et al. (2014)), and only about 1 percent of 
the value of total foreign trade (source: ‘Bundesverband der Deutschen Luftverkehrswirtschaft’). 
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data from the World Input Output Database (WIOD).19 An important feature of the input-output 

table derived in Krebs (2020) is that, unlike in other works, the weight data are not mechanically 

transformed into value data on the basis of national unit values for sectoral outputs (cf. footnote 

11). Rather, Krebs (2020) uses additional information about the counties’ specific production 

structure before transforming weight data into value data. This is important because shipments 

within one and the same sector may include goods of entirely different nature and, hence, weight 

(e.g. car seats and car engines in the auto-industry), so that an application of national unit values 

would grossly misrepresent the regional production and trade structure. Being based on 

observable data, the interregional input-output table derived in Krebs (2020) thus allows us to 

obtain a detailed and reliable portrait of bilateral manufacturing trade between German counties 

as well as between German counties and foreign trade partners (countries). This is a key 

advantage over extant research where the entries for regional trade shares were imputed on the 

basis of regional production values, the regional workforce, and/or higher-level spatial 

aggregates (see e.g. Monte et al. 2018). 

Monte et al. (2018) and Caliendo et al. (2018) focus on manufacturing in their analyses of US 

local labor markets. With our superior observation-based regional manufacturing trade data, 

such a focus is particularly justified in our case. Since the size of the service sector in Germany 

and the fact that a considerable and growing share of services is tradeable, we view it as 

desirable to challenge our baseline case with a robustness scenario which allows for trade in 

services in addition to manufactures, however. We borrow the respective data from Krebs 

(2020) who complemented the observation-based manufacturing data with regional trade data 

in service industries which he imputed on the basis of gravity estimates in establishing a full 

interregional input-output table for German counties and their international trading partners. 

3.1.3 Further Data. Total wage sums (‘totales Arbeitnehmerentgelt’) for German counties, the 

size and number of flats by county (which we use as controls in our empirical section and also 

in our robustness check) are available from the Regional and Federal Statistical Offices 

(‘Statistische Ämter des Bundes und der Länder’). Disaggregated (regional) rent data from the 

German Federal Office for Building and Regional Planning (BBSR) are key for our robustness 

check concerning the heterogeneity of housing shares. 

  

                                                 
19 See Timmer et al. (2015) for the World Input Output Database (WIOD) and Table (WIOT). The 26 countries in 
our study are Austria, Belgium, Bulgaria, Switzerland, the Czech Republic, Denmark, Spain, Estonia, France, 
Great Britain, Croatia, Hungary, Italy, Lithuania, Latvia, Luxemburg, the Netherlands, Poland, Portugal, Rumania, 
Russia, Slovakia, Slovenia, Sweden, Turkey, all other trade partners are in the rest of the world (ROW). 
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3.2 Calibration 

In order to calibrate the model we need estimates of four exogenous parameters, the share of 

expenditures devoted to housing (1 െ 𝛼), the price elasticity of the supply of developed land 𝜂, 

the elasticity of substitution in consumer’s preferences 𝜎, and the commuting elasticity 𝜖, as 

well as initial values of wages at the county level 𝑤௡, bilateral trade shares 𝜋௡௜, bilateral 

commuting shares 𝜆௡௜|ஐ೒ , the number of residents 𝑅௡ and workers 𝐿௡  in each county, and the 

average wage (income) on the county level 𝑤ഥ௡.  

3.2.1 Initial values of endogenous variables. Using our final set of commuting flows we can 

calculate the location choice probabilities 𝜆௡௜|ஐ೒  and aggregate flows to obtain total labor in 

Germany 𝐿ത௚. Recall that this number is based on social security data and thus excludes the self-

employed and workers without social security. Wages at the county level 𝑤௡ are obtained by 

dividing county level total wage bills (‘totales Arbeitnehmerentgelt’) reported by the German 

Federal and Regional Statistical Offices by the local working population. Using the values for 

𝐿ത௚, 𝜆௡௜|ஐ೒  and 𝑤௡, the total number of residents 𝑅௡ and the total number of workers 𝐿௡ can 

immediately be calculated from (13) and (14), respectively, and the average wage of residents 

follows as 𝑤ഥ௡ ൌ ቀ∑ 𝜆௡௜|ஐ೒ ୧∈ ஐౝ 𝐿ത௚𝑤௜ቁ /𝑅௡ . By making use of the interregional input-output 

table established by Krebs (2020), we derive the exogenous deficit transfers 𝐷௡ and the trade 

shares  𝜋௡௜. We proceed as follows. To arrive at total trade flows (𝑋௡௜) across German counties 

and foreign countries we aggregate the data from the IO-table across sectors and we scale values 

such that German county level production equals county level wage sums.20 Aggregating the 

values for total imports (including own consumption) we arrive at a region’s expenditure 𝑋௡, 

and we calculate import shares as 𝜋௡௜ ൌ 𝑋௡௜ 𝑋௡⁄ . With the data for 𝑋௡, 𝑅௡ and 𝑤ഥ௡, trade deficits 

can be calculated from (10), 𝐷௡ ൌ 𝑋௡ െ 𝑅௡𝑤ഥ௡. 

3.2.2 Exogenous parameters. Our estimate of the commuting elasticity is based on the location 

choice probabilities 𝜆௡௜|ஐ೒. We follow the approach taken by Monte et al. (2018) to arrive at a 

regression which we estimate using two-step least squares to account for the endogeneity of 

wages and commuting as we explain in appendix E. We instrument wages with the technology 

levels 𝐴௜ that we recover as structural fundamentals from model inversion (see below). In the 

baseline with internal and external trade and our observation-based bilateral trade data our 2 

                                                 
20 Monte et al. (2018, Online Appendix: p. 73) scale trade values from the Commodity Flow Survey to match the 
total wage bill in each county despite the fact that this bill also includes wages earned in the service sector, whereas 
trade flows from the Commodity Flow Survey do not comprise services. We follow their practice in our baseline 
scenario. We cover an extension where trade also encompasses services in section 4.7. 
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SLS-estimation yields a highly significant coefficient 𝜖 ൌ 4.56.21 We choose a substitution 

elasticity for the CES-basket of 𝜎 ൌ 5.6.22 

3.2.3 Housing market. A key contribution of this paper is to address the role of housing 

markets for spatial quantitative analysis by putting the key factors on the demand and supply 

side, the expenditure share of housing and the supply elasticity under scrutiny. 

Size of the housing share. The canonical model of new quantitative spatial economics 

stipulates a uniform housing share across local labor markets. Widely different numbers have 

been chosen for this parameter in taking the model to the data. The considerations behind these 

choices are usually not made explicit. A critical examination reveals different stances on two 

issues.23 A first issue concerns the scope of the quantitative model. One notion is to think of the 

model as a representation of only a segment of the economy whose expenditure side consists 

strictly of the household sector, only. An alternative is to view the model as applying for the 

aggregate economy, which also comprises the government and firms as final users. In this 

second approach, households’ expenditure patterns are assumed to represent aggregate 

expenditures and, hence, also those of firms and the government.24 The macroeconomic 

perspective entails that housing expenditures are related to gross or net value added (the 

denominator in the calculation of the share) whilst from a pure household perspective gross or 

net household income or personal consumption expenditure are relevant. The second issue 

concerns what to count as ‘land/housing’ expenditures. A narrow concept focuses on rental 

payments (contract rent and imputed rent for owner occupied housing). A broader approach 

counts expenditures for utilities (electricity, gas, water), in addition. A yet much broader view 

includes further expenditures on items associated with ‘living’.25 A further approach moves 

away from a literal interpretation of ‘land/housing’ altogether and takes this label to stand for 

non-traded goods and factors that cannot adjust in the time horizon considered by the model.26 

                                                 
21 The vector of 𝐴௜’s depends on the dataset (manufacturing trade or also service trade) and on whether the 
economy is open to international trade or not. Our 2 SLS estimates for the other scenarios are reported in sections 
4.4 and 4.7. All estimates are highly significant. 
22 This ensures that the sufficient condition for existence and uniqueness (section 2) is fulfilled in all scenarios. 
23 See Davis and Ortalo-Magné (2011), Davis and Van Nieuwerburgh (2015), Monte et al. (2018), Piazzesi and 
Schneider (2016), Rognlie (2015), the US Bureau of Economic Analysis (BEA) at https://www.bea.gov/, and the 
further works referenced in this paragraph. 
24 The implicit assumption in this second interpretation is to take the model of section 3 as a short-cut such that 
households‘ preferences mimic the objective functions of governments and firms. This short-cut avoids the 
complication of explicitly introducing firms and the government into the model.  
25 Such a very broad approach is exemplified by the US Bureau of Labor Statistics (BLS 2018) whose aggregate 
‘housing’ category comprises e.g. ‘laundry and cleaning supplies’, ‘postage’, ‘furniture’ or ‘household textiles’. 
26 We have benefitted from communication with Esteban Rossi-Hansberg on this point. 
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Our choices are the following. We want our analysis to speak to the aggregate economy which 

is also what our trade and production data represents on the supply side. This economy-wide 

stance leads us to adopt the model interpretation where households’ expenditures represent the 

economy’s total final expenditures. Moreover, we adopt a narrow concept of ‘land/housing’ 

expenditures which focuses on (factual and imputed) rental payments by all economic agents 

(households, the government, firms) in the economy, for the following reasons. We do not 

include expenditures on utilities because these have become highly traded in supra-regional 

markets, rather than being tied to local markets and local land. Hence, they are a part of the 

basket of goods and services. The same reasoning applies to spending categories broadly related 

with ‘living’. We view our static model as depicting a long-run equilibrium, since we allow for 

the relocation of firms and households, and since our counterfactual local productivity shock is 

thought to affect a location’s fundamentals. We discard the interpretation of ‘land/housing’ as 

standing broadly for non-traded goods, because ‘land/housing’ is intended to serve as dispersion 

force in the model,27 and this role cannot be taken on by non-traded goods.28 Against the 

background of an economy-wide perspective and a narrow concept of ‘land/housing’ 

expenditures our preferred level for the housing share in Germany is 10% as derived in Krebs 

and Pflüger (2018) by relating census data for housing from the German Statistical Office to 

total final expenditure backed up by the WIOD. Note that a value in this range gets strong 

support from the macroeconomic factor shares documented in Rognlie (2015).29 Since different 

stances can be taken with respect to the housing share, we view it to be desirable to check 

robustness, however. We do so and allow this parameter to be as large as in Monte et al. (2018: 

                                                 
27 Land, the only generically fixed and immobile resource, is a key dispersion force in any spatial model. This 
holds true irrespective of whether housing is equated with land, as in Helpman (1998), or whether housing space 
is assumed to be provided by a competitive construction industry which uses land and other factors to produce lots 
(e.g. Duranton and Puga 2015). Pflüger and Tabuchi (2010) highlight this role of land in a new economic 
geography framework. Notice that land maintains this role as key dispersion force in the quantitative model with 
commuting, too, even though it is no longer essential for existence and uniqueness (cf. Section 2 and appendix A). 
28 The argument is the following. Unless non-traded goods are produced with decreasing returns, they cannot play 
a role as dispersion force. With constant returns, the supply of non-traded goods can be tuned up to any scale. With 
increasing returns, non-traded goods even become an agglomeration force as in the canonical model of Abdel-
Rahman and Fujita (1990) which is heavily used in urban economics (e.g. Duranton and Puga 2014). If non-traded 
goods are produced with decreasing returns this necessitates a fixed factor, which, ultimately, must be land. 
29 Rognlie (2015) shows that the increase in the (average) capital share in the G7 economies in the last decades is 
largely due to housing’s contribution to net capital income which expanded „…from roughly 3 percentage points 
in 1950 to nearly 10 percentage points today.“ Rognlie‘s (2015:14) numbers for Germany are even lower due to 
problems of recording imputed rent on self-owned housing. Note that our preferred value is in the range reported 
by Davis and Ortalo-Magné (2011), Davis and Van Nieuwerburgh (2015) and Piazzesi and Schneider (2015), once 
their denominator is broadened from personal consumption expenditures to net or gross household income. 
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3870) who opt for a level of 40%.30 We also check the results for a level of 25%, as in Davis 

and Ortalo-Magné (2014) and Redding (2016).31 

Local heterogeneity of the housing share. With our data on housing consumption and offer 

rents at the county level we can also challenge the assumption of uniformity of the housing 

share imposed in the canonical model. Together with the expenditure data at the county level, 

𝑋௡, and after scaling, we obtain housing shares for German counties which at the national level 

correspond to the 10% expenditure share of our baseline scenario. These data reveal 

considerable heterogeneity: housing shares vary strongly across regions ranging from about 

2.4% in Bremerhaven and 4.4% in Hof to levels of up to 16% for cities such as Munich, 

Frankfurt, and Tübingen. Rescaling of these shares allows us to study scenarios with national 

levels of 25% and 40% in our robustness checks. 

Elasticity of housing supply. Whilst excellent data are available for most features of German 

local labor markets, this does not hold true for the supply side of local housing markets. To 

cope with this issue, we draw on two research lines, macroeconomic housing research and 

Saiz’s (2010) regional analysis for the United States. The macroeconomic literature recognizes 

that empirical estimates of the price elasticity of housing supply vary widely, depending on data 

and methods. A recent study for the United States therefore uses a benchmark of 2.5 but 

considers a range between 0 and 6 (Floetotto et al. 2016).32 Even though we have a housing 

supply elasticity of 0.428 for Germany from Caldera and Johansson (2013), the findings for the 

United States make us cautious. Saiz (2010) reports housing supply elasticities for US MSA’s 

ranging from 0.60 to 5.45. In the light of these two sets of findings we challenge the assumption 

of an exogenous supply of housing supply in a robustness check, by considering a range from 

0 to 5.45 for Germany and we apply these uniformly for all locations. 

  

                                                 
30 They refer to data from Bureau of Economic Analysis. We have been unable to verify their „central value“, 
however. For 2016 the BEA lists total personal consumption expenditure for the US at $12,816,386 million and 
personal consumption expenditure in the category ‘housing and utilities’, which includes imputed rents for owner 
occupied housing, at $2,331,526 million. These numbers imply a spending share of 18.2% when utilities are 
included. The corresponding values for 2010 are $10,196,850 million for personal consumption and $1,908,992 
million for ‘housing and utilities’, resulting in a share of 18.7%. We acknowledge that, for methodological 
considerations, the choice of the parameter may abstract from a literal interpretation, cf. footnote 26. 
31 Such a level can be rationalized from a pure household perspective when expenditures on utilities are included. 
Davis and Ortalo-Magné (2011) use the Decennial Census of Housing files, to obtain a share of pure contract rent 
in household’s wage and salary income of 18% which is scaled up by 6% if expenditures for utilities are added. 
32 For the United States, Caldera and Johansson (2013) report a housing supply elasticity of 2.0 whilst Sommer 
and Sullivan (2018) arrive at an estimate of 0.90.  
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3.3 Model Consistent Structural Fundamentals 

Given the model and the German data, the general equilibrium can be inverted to identify model 

consistent values for bilateral trade costs and local productivities, which turn out to provide 

strong support for our model. We summarize the approach here and provide further details and 

results in appendix D. Assuming that the fixed input of labor is the same across locations (𝐹௜ ൌ

𝐹௠ ∀ 𝑖,𝑚 ∈ 𝑁) and using equation (7) trade flows from location 𝑖 to 𝑛 can be written as  

𝜋௡௜𝑋௡ ൌ
𝐿௜𝑤௜

ଵିఙ  ቀ 
𝑑௡௜
𝐴௜
ቁ
ଵିఙ

∑ 𝐿௠𝑤௠ଵିఙ  ቀ 
𝑑௡௠
𝐴௠

ቁ
ଵିఙ

௠∈ே

 ሺ𝑅௡𝑤ഥ௡ ൅ 𝐷௡ሻ . 

We parameterize trade barriers as 𝑑௡௜ ൌ 𝑑𝑖𝑠𝑡ூ,௡௜
ట಺  𝑑𝑖𝑠𝑡ோ,௡௜

టೃ  𝑑𝑖𝑠𝑡ூே்,௡௜
ట಺ಿ೅  𝑒̃௡௜, where 𝑑𝑖𝑠𝑡ூ,௡௜ denotes 

intraregional distance (1 for 𝑛 ് 𝑖), 𝑑𝑖𝑠𝑡ோ,௡௜ interregional distance (taking a value different 

from one if both 𝑛, 𝑖 ∈ Ω௚), and 𝑑𝑖𝑠𝑡ூே்,௡௜  international distance (1 for either 𝑛 ൌ 𝑖 or both 

𝑛, 𝑖 ∈ Ω௚) and where 𝑒̃௡௜ ൌ 𝑒௡௜
ଵ/ሺଵିఙሻ is a transformed error term that captures any remaining 

unobserved bilateral characteristics. Together with exporter fixed effects 𝑆௜ and importer fixed 

effects 𝑀௡ our econometric representation of equation (7) becomes 𝜋௡௜𝑋௡ ൌ

𝑆௜𝑀௡𝑑𝑖𝑠𝑡ூ,௡௜
ሺଵିఙሻట಺  𝑑𝑖𝑠𝑡ோ,௡௜

ሺଵିఙሻటೃ  𝑑𝑖𝑠𝑡ூே்,௡௜
ሺଵିఙሻట಺ಿ೅  𝑒௡௜. Relying on a Poisson Pseudo Maximum 

Likelihood (PPML) estimator (we discuss this choice and alternatives in appendix D) we obtain 

highly significant composite parameters 𝜓ூሺ1 െ 𝜎ሻ ൌ  െ0.842, 𝜓ோሺ1 െ 𝜎ሻ ൌ  െ1.183, and 

𝜓ூே்ሺ1 െ 𝜎ሻ ൌ  െ1.153 in our baseline scenario. Making use of our assumption that 𝜎 ൌ 5.6 

yields coefficients 𝜓ூ ൌ 0.150,𝜓ூ ൌ 0.211, 𝜓ூ ൌ 0.206. Given the parameterization of trade 

barriers the resulting exporter fixed effects 𝑆௜ are up-to-scale equivalent to 𝐿௜𝑤௜
ଵିఙ𝐴௜

ଵିఙ and 

can be used together with our data on wages and employment to directly recover the unobserved 

technology levels 𝐴௜ after normalization.33 

Bilateral trade barriers. Our specification of 𝑑௡௜ which includes the error term yields model 

consistent trade barriers, that is, trade barriers which under the structure of the model reproduce 

the observed trade flows. Figure 2 displays their relationship with observable distances. The 

clear log-linear relationship for all three types of barriers makes us confident in our 

parameterization of iceberg trading costs. 

We can also look at county level barriers with respect to a specific location. The left-hand panel 

of Figure 3 depicts the implied barriers between all German counties exporting to Hamburg 

                                                 
33 Note that while the joint variability of exporter fixed effects and bilateral terms is determined by the model we 
need to parameterize trade barriers to separate the two. Specifically, without our assumption on trade barriers the 
exporter fixed effects would contain any exporter specific parts of 𝑑௡௜. 
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relative to Hamburg’s internal trade barriers. As shown, trade barriers increase with distance to 

Hamburg, in general. However, barriers to far-away locations may effectively be low when 

there are particularly favorable railway lines or waterways or when there are established 

personal, firm or cultural ties. The figure shows that there are some cities in the Middle and 

South of Germany – Nuremberg, the bright small spot in the Southeast is a case in point – that 

have very low trade frictions with Hamburg despite their considerable distance. Moreover, 

barriers with respect to cities are typically lower than with respect to rural areas. 

    
       Figure 2: Model consistent trade barriers and distance 

Local productivities. To look at the technology levels implied by the model we normalize 

productivity in Hamburg at 1 and depict all productivities relative to that in Hamburg in the 

right-hand panel of Figure 3. The figure visualizes the well-known ‘German problem’ that, with 

the data from 2010 and thus almost 20 years after reunification, productivity levels in the East 

of Germany are – with the exception of some emerging cities – still considerably lower than in 

the rest of the country. In line with expectations, given observable trade flows, our model 

implies that cities in the south and west of Germany, as well as their surrounding areas are the 

most productive locations in the country. 

  

Trade barriers with respect to Hamburg Technologies with respect to Hamburg 

            Figure 3: Model consistent trade costs and technologies relative to Hamburg  
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4 Productivity Shocks, Employment and Resident Elasticities 

We now use the calibrated model to explore the functioning of local labor markets in Germany. 

Our ‘treatment’ throughout is a counterfactual 5% productivity shock at one location, holding 

productivity at all other locations and all other exogenous parameters of the general equilibrium 

system constant. We use the ‘exact hat’-algebra popularized by Dekle et al. (2007)34. Sections 

4.1 and 4.2 start with our ‘baseline scenario’. Sections 4.3 to 4.7 cover various extensions and 

section 4.8 compares our results with the extant findings for the US. 

4.1 General equilibrium elasticities 

Baseline scenario. The baseline scenario assumes that the housing share is equal across 

counties at our preferred level of 10%, the supply of housing is inelastic, there is trade between 

German counties and between these counties and Germany’s international trade partners, and 

this trade is backed-up by our unique observation-based regional trade data. Panels A and B of 

figure 4 display the results of 402 separate treatments, depicting for each case respectively the 

general equilibrium employment and resident elasticities in the treated German county. Panel 

C condenses this information by showing the kernel densities of employment elasticities (blue) 

and of resident elasticities (red) in the treated counties, with the 95% confidence intervals given 

by the shaded areas.35  

 
Panel A:  

Employment elasticities 

 
Panel B:  

Resident elasticities 

 

  

 

Panel C: Kernel densities 

Figure 4: General equilibrium employment elasticities (panel A) and resident elasticities (panel B) in treated counties in 
response to counterfactual 5% productivity shocks. Panel C depicts the associated kernel densities of employment 
elasticities (blue) and resident elasticities (red). Shaded areas depict 95% confidence bands.  

                                                 
34 Appendices B and C document the equilibrium system in changes as well as the algorithm we use to obtain 
counterfactual equilibrium values. 
35 Model consistent general equilibrium elasticities are calculated as ൫𝐿෠௜ െ 1൯ ൫𝐴መ௜ െ 1൯ൗ  and ൫𝑅෠௜ െ 1൯ ൫𝐴መ௜ െ 1൯ൗ , 
respectively, where the relative change of a variable is denoted by a hat, 𝑥ො ≡ 𝑥ᇱ 𝑥⁄ , and 𝑥ᇱ is the value of a variable 
in the counterfactual equilibrium. Note that these counterfactual elasticities follow deterministically from the 
model, the depicted confidence bands relate to the estimation of the kernel density. 
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Three results emerge from Figure 4. First, employment elasticities exceed a value of 1 by far in 

all treated counties, with a minimum at about 2.8 and a maximum at about 4.9. The average 

(unweighted) employment elasticity across counties is at 3.72. Resident elasticities, though 

smaller than the employment elasticities, also take on values that typically exceed a level of 1, 

with an unweighted mean of 1.88. This points to strong home market effects associated with 

local productivity shocks which most strongly show up in the employment responses. Second, 

the difference between employment and resident elasticities is typically very large. This points 

to the paramount importance of commuting for local labor markets in Germany. Third, both the 

employment and the resident elasticities are very heterogeneous and this holds true even more 

so for the latter. The difference between the maximum and minimum elasticities is about 2.2 

for employment elasticities but 3.7 for the resident elasticities. Resident elasticities exhibit a 

variance of 0.27, the variance of employment elasticities is 0.10. This heterogeneity implies 

that seriously wrong conclusions would be drawn, if policymakers acted on the presumption 

that some “average” elasticity applied for all locations. 

The housing share. We made a strong case that our aggregate perspective implies a choice of 

the housing share of (about) 10% for Germany. However, we also pointed out, that other 

perspectives can be taken, so it is important to explore the implications of alternative levels for 

this parameter.36 Figure 5 depicts the kernel densities for employment and resident elasticities 

arising from 14 x 402 simulations of counterfactual 5% productivity shocks for seven levels of 

the housing share (from 10% up to a maximum of 40% that we have recorded in the literature). 

It is immediately seen that the qualitative results that we have found for our preferred 

specification of 10% carries over for larger levels of the housing share. Employment elasticities 

are always much larger than resident elasticities and both elasticities are very heterogeneous. 

The distinct difference is that both types of general equilibrium elasticities fall sharply as the 

housing share is successively increased. In fact, the mean employment elasticity falls from 3.61 

(at 10%) to 2.99 (at 25%) and 2.67 (at 40%) and the mean resident elasticity falls from 1.88 (at 

10%) to 1.01 (at 25%) and to 0.61 (at 40%). Hence, the home market effect becomes 

successively weaker but it is still strongly borne out in the employment elasticities. What is the 

reason for this evolution of employment and resident elasticities? Intuitively, the successive 

increase of the housing share strongly enhances the role of housing as a congestion force in the 

                                                 
36 Our analytical calculations (linearizing the system by total differentiation) turned out to be unrevealing because 
of the many simultaneous interactions involved. 
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model, implying that less and less workers will choose to shift their residences (i.e. migrate) 

instead of commute to the treated labor market. 

 
Figure 5:  Kernel densities for employment elasticities (light to dark blue) and residence elasticities (yellow 

to red) for housing shares from 10% to 40%. 

4.2 Explaining the general equilibrium elasticities 

The location choices of workers faced with local productivity shocks is simultaneously driven 

by several mechanisms in our general equilibrium model. Workers are attracted to the location 

that experiences a positive productivity shock because of the implied higher wages and lower 

goods prices. Housing costs are driven up when the number of residents increases at a location. 

Whether a worker remains at her residence or relocates to or near to her workplace also depends 

on personal idiosyncrasies. Moreover, the general equilibrium responses are driven more 

broadly by spillover effects through commuting (through changes in the number of workers and 

residents in untreated counties), and through trade linkages with untreated counties. We now 

enquire whether the elasticities which reflect these general equilibrium repercussions can be 

explained by ex-ante available labor and commuting market statistics, focusing on employment 

elasticities and the selection of explanatory variables highlighted by Monte et al. (2018). This 

analysis is important as a backdrop on reduced-form approaches to local labor markets, as 

stressed by Redding (2020), and it is also of practical importance for policymakers. 

Analysis of the baseline. Table 1 presents the results of our regressions for the employment 

elasticities which emerge in the baseline scenario for a housing share of 10%.37 Column 1 

regresses the employment elasticities on a constant capturing the mean across the 402 German 

counties. Column 2 uses the log of the location’s employment as a measure for the size of the 

local labor market, in addition. Column 3 further adds the local wage and the number of flats 

                                                 
37 To facilitate comparison, we maintain the structure of this table in all our analyses. 
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in the county, as a measure of the local housing stock, 𝐻௜. Column 4 complements these 

standard controls by adding the total workforce and the average wage which prevails in 

surrounding labor markets. We define these surrounding labor markets following Monte et al. 

(2018) as all counties with a distance of less than 120km from the county that is exposed to the 

productivity shock. These standard controls explain only about one tenth of the variation of 

employment elasticities, as indicated by the values of the R-squared. 

 
Table 1:  Analysis of the general equilibrium local employment elasticities in response to 5 percent 

 productivity shocks at the county level with a housing share of 10% 

The regressions reported in columns (5), (6) and (7) turn to model-based explanatory variables 

which are easy to observe ex-ante. Column (5) considers the own-commuting share 𝜆௜௜|௜
ோ  

portrayed in Figure 1.38 The lower this share, the more open is a local market to commuting, 

hence, the higher is the expected elasticity of employment. When this variable is used (along 

with a constant) the R-squared rises to 20%. Column 6 includes measures which build on three 

model-based partial equilibrium elasticities, the partial equilibrium elasticities of employment 

and of residents with respect to wages, and the partial equilibrium elasticity of wages with 

                                                 
38 This uses the definition 𝜆௡௜|௡

ோ ≡ 𝜆௡௜|ஐ೒   𝜆௡ோ⁄ . 
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respect to productivity.39 These partial equilibrium elasticities imply a measure of commuting 

linkages, ∑ ൫1 െ 𝜆௡௜|௡
ோ ൯𝜗௡௜௡∈ே , where 𝜗௡௜ ≡ 𝜆௡௜|௡

ோ 𝑅௡/𝐿௜ indicates the fraction of the workforce 

in location 𝑖 that resides in 𝑛 and commutes to work in 𝑖, a measure of migration linkages 

𝜗௜௜ ቂቀ𝜆௜௜|ஐ೒ 𝜆௜
ோ⁄ ቁ െ 𝜆௜

௅ቃ, and, as a measure of what Monte et al. (2018) call ‘trade linkages’, the 

partial equilibrium elasticity of wages with respect to productivity, 
డ௪೔

డ஺೔

஺೔
௪೔

. The explanatory 

power of the three measures considered in column 6 is nearly double that of the own share 𝜆௜௜|௜
ோ . 

Column 7 shows that, interacting the two measures of migration and commuting linkages with 

the partial equilibrium elasticity of wages with respect to productivity, brings the R-squared 

down to little more than one fifth. The specification that performs best combines standard labor 

market controls with the three measures of linkages: this brings the R-squared up to more than 

45%, see column (8). Keeping the standard controls and interacting the linkages with the partial 

equilibrium elasticity of wages, see column (9), brings the R-squared down, similar as in 

column (7). Overall, these results indicate that simple labor and commuting market statistics 

are poor predictors of the general equilibrium employment elasticities. Interestingly, this also 

holds true for the own-commuting share that works so well in the analysis of Monte et al. (2018) 

for the US. One key difference across the two studies concerns the choice of the housing share, 

which we now put under scrutiny (see also section 4.8). 

The housing share. The analysis in section 4.1 shows that the general equilibrium elasticities 

are very sensitive to the size of the housing share. To see whether and how this parameter affects 

our ability to explain the general equilibrium elasticities of the quantitative model, we have 

rerun the regressions of table 2 with housing shares of 25 % and of 40%, respectively (appendix 

F provides the full regression tables). Our key finding is that the size of the housing share 

dramatically affects the results. With a high housing share, model-based partial equilibrium 

measures, the simple inverse measure of openness, 𝜆௜௜|௜
ோ , in particular, perform very well in 

explaining the heterogeneity of employment elasticities across counties, and these measures 

outperform standard controls by far. Figure 6 summarizes this key result by graphing the R-

squared of regressions containing the own-commuting share and a constant as explanatory 

variables for seven values of the housing share. We with our preferred 10% housing share which 

we then increase in steps of 5 percentage points up to 40% interpolating intermediate values. 

For now, we focus on the red curve which applies to our baseline scenario (with manufacturing 

                                                 
39 These partial equilibrium elasticities are derived from total differentiation of equations (9), (13), (14) and (7) 
and evaluating the result for a productivity change in one county. The values of all other endogenous variables, 
including productivities in other counties, are held constant. 
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trade) and a uniform housing share across all locations. The curve shows that the regression R-

squared rises steadily from 0.206 with a housing share of 10% (column 5 in table 1) to a value 

of almost 0.9 with a housing share of 40% (appendix F, table F2, column 5). This finding is 

intuitive. The general equilibrium repercussions are far stronger with a low housing share, 

because the associated congestion force is then much weaker. Simple partial equilibrium-based 

measures, such as the own-commuting share (but also other statistics, cf. table 2 and appendix 

F), capture these general equilibrium repercussions only imperfectly. 

 

Figure 6:  R-squared for a regression of the employment elasticities on the own-commuting shares and a constant. 

4.3 Accounting for the regional heterogeneity of housing shares 

The canonical model of new quantitative spatial analysis assumes a uniform housing share for 

all locations and we have so far adapted this assumption. Our data for German regions reveal 

considerable heterogeneity as we documented in section 3.2.3, however. 

 
Figure 7:  Kernel densities for employment elasticities (blue) and resident elasticities (red) with heterogeneous 

housing shares. Average housing share is 10. Shaded areas show the 95% confidence bands. Dashed curves 
depict the baseline with uniform housing shares, only.  

Possibly surprising, we find that the distributions of employment and resident elasticities 

associated with our treatment hardly change relative to the baseline which assumes a uniform 

housing share of 10%. Figure 7 depicts the essence of this result: the kernel densities for the 

employment and resident elasticities with heterogeneous shares (the dark blue and red curves) 
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are strikingly similar to the kernel densities for the baseline scenario (the dashed blue and red 

curves also depicted in Figure 6 panel C).40 Table 2 shows that the (unweighted) means of 

average employment and resident elasticities are virtually the same: for a heterogeneous 

housing share of on average 10% the mean employment elasticity is 3.73 rather than 3.72 with 

a uniform share of 10% and the mean resident elasticity is 1.91 rather than 1.89, respectively. 

The finding that the elasticities are very similar as in the baseline which stipulates uniform 

shares also carries over to scenarios where the heterogeneous shares are at average values of 

25% and of 40%. This is seen in table 2 by comparing column (3) with (1) for the mean 

employment elasticities and column (4) with (2) for the mean resident elasticities. 

 Uniform housing share in all counties  Heterogeneous housing share 

 

Housing 
share 

(1) 

Mean employment  

elasticity 

(2)  

Mean resident 

 elasticity 

 (3)  

Mean employment 
elasticity 

(4)  

Mean resident 
elasticity 

10% 3.72 1.89  3.73 1.91 

25% 2.99 1.01  3.01 1.04 

40% 2.66 0.61  2.69 0.64 

Table 2: Mean employment and resident elasticities resulting from 5% productivity treatment; baseline shaded. 

Turning to the explanatory power of labor and commuting market statistics in predicting the 

general equilibrium elasticities, we still find that these have little explanatory power for an 

average housing share of 10% but become more powerful at high housing shares. The solid 

blue curve in Figure 6 depicts the evolution of the explanatory power of the own commuting 

share with heterogeneous housing shares. It can be seen that the R-squared increases with 

successively higher average housing shares, but less so than with uniform shares. 

To summarize, we obtain the interesting result that neither the general equilibrium elasticities 

nor our ability to predict these elasticities with simple labor market statistics are much affected 

by the substantial heterogeneity of housing shares that prevails across German regions. What 

greatly matters is the level of the housing share, however.41 

4.4 Elastic supply of housing 

The elasticity housing supply in local labor markets has attracted a lot of attention in recent 

research (e.g. Hsieh and Moretti 2019; Duranton and Puga 2019). The housing supply 

elasticities for US counties supplied by Saiz (2010) on the basis of geographical data and local 

                                                 
40 Figures H11 and H12 in the appendix provide the detailed results for all individual counties. 
41 It should also be noted that our housing shares are averages across local units, which wash out differences 
between e.g. low- and high-income earners which are a subject of the current public discourse (e.g. Economist 
2018) and of academic research (e.g. Dustmann et al. 2018). 
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regulations are pivotal for this research.42 Unfortunately, such information is not available for 

Germany. Since the supply elasticity is an important feature of local labor markets, however, 

we perform quantitative analyses assuming that the supply elasticity is positive and uniform 

across German counties. We hasten to add that this is surely a first approximation only (but so 

is the assumption of inelastic housing). To check robustness, we consider the range of supply 

elasticities documented by Saiz (2010), cf. section 3.2.3. 

Figure 8 depicts the results of our standard treatment (5% local productivity shocks) when 

supply elasticities differ from nil. Specifically, panel A shows how the employment elasticities 

change when the supply elasticity is at the maximal value of 𝜂 ൌ 5.45 found in Saiz (2010) 

compared to 𝜂 ൌ 0 in our baseline. The key result is that this change is always positive, hence 

employment elasticities are unambiguously larger for a larger elasticity of housing supply. 

Panel A also shows that the increase of the supply elasticities is especially large in border areas 

and in large cities like Hamburg, Munich, and Berlin. We caution that the latter result should 

not be overstressed in view of the assumption of uniform supply elasticities. 

 

 

 

Panel A: Change of the employment 
elasticities when switching from 𝜂 ൌ 0 
to 𝜂 ൌ 5.45. 

Panel B: Evolution of kernel densities for employment elasticities (blue) and 
resident elasticities (yellow to red) when the housing supply elasticity is raised in 
steps from 𝜂 ൌ 0 to 𝜂 ൌ 5.45. 

Figure 8:  Treatment effects, baseline scenario, alternative housing supply elasticities 

Panel B complements this analysis by allowing the housing supply elasticity to change in six 

steps from the level of nil to the mentioned maximum and by depicting the kernel densities for 

the local general equilibrium employment elasticities (blue) and also the resident elasticities 

(yellow to red). The pattern is clear. Employment and resident elasticities are larger, the larger 

is the housing supply elasticity. This finding conforms to the intuition that the pressure on land 

prices associated with the wage and mobility effect of positive local productivity shocks is 

                                                 
42 Monte et al. (2018) use these data in an extension of their analysis. We come back to this in section 5.8. 
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lower, when the housing supply elasticity is larger, so that the real income and, hence, location 

choice responses are stronger. Moreover, this qualitative pattern also corresponds to the effect 

of a low housing share which similarly implies smaller price pressure on local land markets in 

response to local productivity shocks, see eq. (11). 

 

Figure 9:  The map considers 7 values for the housing expenditure share and 11 values for the housing 
supply elasticity. The map reports the R-squared for the associated 7 x 11 local general 
equilibrium employment elasticity regressions. 

What are the consequences of a positive housing supply elasticity for our ability to predict the 

employment elasticities with simple ex-ante observable statistics and how do the results 

compare to the effects of different levels of the housing share on the demand side? Our focus 

is again on the regression specification drawing on the own-commuting share. Figure 9 depicts 

the R-squared of the employment elasticity regressions for alternative combinations of the 

elasticity of the housing supply and the economy’s expenditure share devoted to housing. 

Several important results emerge from this map. Broadly speaking, the explanatory power of 

the own-commuting share is the larger, the lower is the elasticity of the supply and the larger is 

the housing share, as already acknowledged.43 The map also reveals more subtle and nuanced 

results. First, the dominant number of parameter combinations shown in the map yield an R-

Squared of 0.2 or below. Second, there is an important asymmetry. With a housing share of 

10%, the preferred value for the economy-wide analysis, the R-squared is almost nil for all 

values of the housing supply elasticity (i.e. even when housing is supplied completely inelastic). 

When a very large housing share of 40% is chosen, there is at least a range of small housing 

supply elasticities where the R-squared is larger than 50%, in contrast.  

The key conclusion from this section is that, simple labor and commuting market statistics 

already have little capacity to predict the strongly heterogeneous local general equilibrium 

                                                 
43 The results of section 4.2 (Figure 6, solid red curve) are represented at the bottom of the map where the housing 
supply is inelastic. The explanatory power of the own-commuting share is almost nil when the housing share is 
10% (bottom left corner) but increases strongly when this share is 40% (bottom right corner). 
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employment elasticities when an economy-wide perspective is taken, and that this insight gets 

further backing when positive supply elasticities are taken into account in addition. Together, 

this yields the two warnings not to base policy prescriptions on average statistics and not to rely 

on such statistics as controls in reduced-form policy analysis. 

4.5 Disregarding international trade 

Germany is deeply embedded in world trade. Our bilateral trade data allowed us to track the 

internal trade between German local labor markets as well as their external trade with 

Germany’s foreign trading partners. What are the consequences for the analysis if this 

embedment cannot be tracked, a situation with which extant work for the United States is 

faced?44 To explore this question, we now consider a counterfactual situation where trade only 

takes place between Germany’s counties. We subject local labor markets to the productivity 

shock treatment as before and compare the outcomes with our previous results for the open 

economy. To start, we adjust the regional trade matrix to the counterfactual initial state without 

external trade before the treatment. Simply applying the definition of trade shares it is readily 

derived theoretically that the trade shares between German counties are larger on average, when 

international trade is disregarded in calibration. Individual trade shares may be smaller, 

however. This also conforms with intuition, as bilateral trade that would be classified as 

international is now channeled to trade between counties. Our model inversion implies a new 

set of technology levels 𝐴௜ and our 2SLS estimate for the commuting elasticity now yields 𝜖 ൌ

4.49, hardly a change from the baseline (where 𝜖 ൌ 4.56). We keep all other parameters at their 

previous levels. To tie up our analysis with our baseline scenario we focus on a housing share 

of 10% and we assume that the supply of housing is completely inelastic, 𝜂 ൌ 0. The key change 

vis-à-vis the open-economy baseline-scenario is that the local employment and resident 

elasticities are now larger, and the kernel densities are shifted to the right as can be seen in 

Figure 10.45 Rerunning the treatment with heterogeneous housing shares which average out at 

the 10% level yields almost the same picture as Figure 10 and we therefore omit it here. The 

mean employment elasticities associated with the treatment are 3.87 with a uniform housing 

share and 3.89 with heterogeneous shares and the respective numbers are 2.09 and 2.12 for the 

mean resident elasticities. 

                                                 
44 The Commodity Flow Survey, which is commonly used to capture internal US trade flows, does not track sources 
or destinations outside the USA. Instead, international flows are treated as if they started or ended in the 
administrative region that was the entry point into or exit point out of the US. 
45 Detailed results for the local employment and resident elasticities are provided in appendix J1 and J2. 
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We have also run a full set of regressions to check how well the model-implied local general 

equilibrium employment elasticities can be explained with simple labor-market and commuting 

statistics. Regression table J4 provided in the appendix is indicative of our findings. The own-

commuting share, although significant as before, turns out to be a very poor predictor, the 

regression R-squared is down at a meager 0.006. The intuition for this result parallels our 

explanation for the low explanatory power of this statistic when the housing share is low and/or 

the housing supply elasticity is large. In each of these three cases, the general equilibrium 

repercussions are strong, so that the general equilibrium elasticities become larger, which makes 

them harder to predict with partial equilibrium statistics. 

 

Figure 10:  Kernel densities for local employment and resident elasticities, closed economy; dashed curves 
depict the open-economy-baseline (as in Figure 4, panel C).  

4.6 Commuting Zones 

Our motivation to focus on the 402 German counties was that our underlying framework 

explicitly deals with the spatial linkages involved in trade and commuting, so that we could 

conduct the analysis at a finer spatial scale than that with the 141 German commuting zones 

which result from aggregation of counties. To check the robustness of our results we have rerun 

the numerical simulations of the 5% productivity shock treatment and we have also redone the 

regression analysis at the level of commuting zones for a large variety of scenarios. The essence 

of our findings can be summarized as follows.46 First, compared with the elasticities at the 

county level, resident and employment elasticities are more similar for commuting zones as is 

most easily seen by comparing the respective kernel densities (see appendix K1). This captures 

the fact that commuting is less commonly observed and thus implicitly more costly across 

commuting zones than across counties. Hence, commuting to a treated location is more costly 

and fewer workers will choose to do so. When workers are attracted to a commuting zone which 

experiences a positive productivity shock they are more likely to relocate to that location instead 

of choosing to commute to it. The mentioned kernel densities show that both elasticities are 

                                                 
46 Detailed results are presented in appendix K. 
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very heterogeneous across locations. Second, similar to the results for counties, general 

equilibrium employment and resident elasticities fall substantially, when the housing share is 

raised from our preferred level of 10% to levels of 25% or 40%. The intuition is as before. With 

a larger expenditure share, the importance of housing costs as a congestion force rises strongly. 

Third, as with counties, general equilibrium elasticities are only poorly predicted by labor and 

commuting market statistics, when the housing share is at our preferred level of 10%. Again, 

the predictive power of the own-commuting share increases strongly when we allow for larger 

housing shares. Fourth, all mentioned results still hold when the factual heterogeneity of 

housing shares is taken into account. As with counties, these heterogeneities matter only 

marginally. Finally, the qualitative results that we found when disregarding Germany’s trade 

openness also still hold.  

4.7 Service trade in addition to manufacturing trade (‘all trade’) 

All results derived so far are grounded on unique observation-based regional trade data, a 

decisive advantage over the extant literature which had to draw on imputed data. Once we are 

willing to allow for gravity imputed trade data, we have the advantage to be able to tap the 

interregional input-output table that Krebs (2020) established for Germany which also 

comprehends imputed service trade. Hence, we can perform analyses with the aggregate trade 

flows in manufactures and services, a setting that we term “all trade”. Because of these data 

imputations, our explorations and results should be taken with more caution than our results in 

previous sections. The new setting commands that we adjust the regional trade matrix to the 

additional trade in services.47 Model inversion then delivers a new vector of technology levels 

𝐴௜ and our 2SLS estimate of the commuting elasticity is now at 4.19, down from 4.56 with 

manufacturing trade only (cf. section 3.2.2). 

We start by considering a scenario which follows our baseline with a housing share of 10% but 

where we now consider all trade. Our key result is that the employment and resident elasticities 

associated with counterfactual productivity shocks of 5% at each location are now significantly 

higher than in the baseline with manufacturing trade only (see appendix G, figures G1). The 

essence of this finding is transparently documented by the kernel densities for the employment 

and resident elasticities shown in Figure 11, which have shifted to the right compared to the 

kernel densities for the baseline scenario (as already shown in Figure 3 panel C). The 

                                                 
47 Note that our calibration ties down production at locations to match the local wage bill. Hence, production values 
carry over from the baseline scenario. The bulk of services originates in (big) cities in Germany, however (see 
Krebs 2020), and this causes regional trade shares to change as we now shift to ‘all trade’. 
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(unweighted) average employment elasticity rises from 3.72 to 4.27 and the average resident 

elasticity rises from 1.89 to 2.74 (cf. appendix table H3 which lists these means for various 

scenarios). 

Redoing this simulation exercise for all trade with housing shares of 25% and of 40% delivers 

the insight that, in line with our earlier finding and intuition (cf. section 4.1), the general 

equilibrium elasticities fall strongly with higher housing shares. The (unweighted) mean 

employment elasticity falls from 4.27 to 2.52 and the (unweighted) mean resident elasticity falls 

from 2.74 to 0.78 when the housing share is at 40% rather than at 10%.48 

 
Figure 11:  Kernel densities for employment elasticities and resident elasticities, all trade. Housing share is 

10%. Shaded areas show the 95% confidence bands. Dashed curves depict the baseline with 
manufacturing trade, only.  

What can be said about the explanatory power of simple labor market and commuting statistics 

in predicting the general equilibrium elasticities? The full results of our regressions are provided 

in appendix G. Figure 6 visualizes the key finding: similarly to the scenario with manufacturing 

trade only, the own-commuting share has almost no explanatory power for our preferred 

housing share of 10% but becomes very powerful with a high housing share (see the red broken 

line) and the intuition for this evolution carries over from section 4.2. 

Further robustness checks for ‘all trade’ yield the following. First, the general equilibrium 

elasticities that we obtain when the local heterogeneity of housing is taken into account differ 

only marginally from those for uniform shares (see appendix H3) and the explanatory power of 

the own-commuting share develops similarly under heterogeneity and uniformity when housing 

shares are raised (see Figure 6). Second, positive housing supply elasticities yield larger 

employment and resident elasticities and reduce the explanatory power of simple labor and 

commuting market statistics. Alternative combinations of the housing supply elasticity and 

housing shares have a strikingly similar impact on this explanatory power as in the case when 

                                                 
48 Appendix G2 shows the evolution of the kernel densities for all trade as the housing share is successively 
increased from 10% to 40% (this parallels figure 5). 
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trade is confined to manufacturing (as is seen by comparing appendix I with Figure 9) and for 

the same reason as discussed in section 4.4. Third, we have also analyzed a shutdown of 

international trade with the all trade data. The 2SLS estimate for the commuting elasticity 𝜖 

falls to 3.36, a much more dramatic fall relative to the open economy case compared to the 

respective elasticities with manufacturing trade, only. We find that the kernel densities for 

employment and resident elasticities are shifted to the left (see appendix J3) in accordance with 

this strong fall in the commuting elasticity. 

To sum up, the quantitative outcomes of our treatments differ when we adjust trade to include 

services (as we would expect), but the key qualitative conclusions that we established with our 

observation-based manufacturing regional trade data carry over to the ‘all trade’ scenario. 

4.8 Comparison to the United States 

Our key findings in a nutshell are that – based on our preferred calibration with a housing share 

of 10% -, the employment and resident elasticities associated with the local productivity are 

much above unity, yet disparate (the former larger than the latter), very heterogeneous, and only 

poorly predicted by simple labor and commuter market statistics. Whilst some of our findings 

parallel those of Monte et al. (2018) for the United States at least qualitatively – in particular 

the key role of commuting as a shock absorber, and the heterogeneity of the elasticities -, other 

findings pose a striking contrast. First, employment elasticities for Germany are quantitatively 

way above those for the United States, the mean employment elasticity in Germany is 3.72 (cf. 

table 3) whilst it is 1.52 in the US for the respective preferred settings. Second, simple labor 

and commuting market statistics, notably the own-commuting share, have strong explanatory 

power for these elasticities in Monte et al. (2018), in stark contrast to our finding for Germany. 

Taking these differences at face value would be comparing apples with pears, however. To 

arrive at a sensible evaluation, we stress four key elements which differ across the two studies, 

geographies, the trade regimes, the data, and the parameter choices. 

The geographies differ strongly. The United States has 25fold the area of Germany, long 

distances and geographic barriers between its centers in the East, West, around the Great Lakes 

and in the South, much in contrast to Germany. At the same time, population is only 4fold that 

of Germany, implying a population density of about 36 persons/𝑘𝑚ଶ compared to 226 

persons/𝑘𝑚ଶ for Germany. The average size of the 3111 counties in the United States is about 

1.5 times larger than that of the 402 counties in Germany. For these reasons alone, it is 

unsurprising that commuting activity across counties is much stronger in Germany: the 

unweighted average share of a county’s residents that work at other locations is 40%, and that 
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of a county’s total workforce that lives in a different location is 36 % in Germany, numbers that 

are almost twice those reported for the US (cf. Table 1 and Monte et al. 2018). The stronger 

commuting linkages in Germany are also manifested by our estimate of the commuting 

elasticity of 𝜖 ൌ 4.56 which exceeds the value for the United States (𝜖 ൌ 3.3 estimated in 

Monte et al. 2018). 

A second difference (associated with geography) is that Germany is so deeply embedded in 

international trade that we could not abstract from its external trade in our baseline, in contrast 

to what Monte et al. (2018) and also Caliendo et al. (2018) are forced to do for the United States. 

Neglecting the external trade of the United States altogether is clearly at odds with the facts, 

however (e.g. Costinot and Rodriguez-Claré 2014), and hence the source of a bias, if only 

because external and internal trade are then confounded (see our discussion in section 4.5). Our 

counterfactual scenario for Germany where international trade is disregarded shows that this 

biases the local general equilibrium elasticities upwards. On the basis of our findings, the 

elasticities found in Monte et al. (2018) potentially are too large because of the inability to 

account for the trade openness of the US. 

A third difference concerns the availability and quality of the data. For one (and related to the 

previous issue), a decisive advantage of our observation-based manufacturing trade data is that 

they give us a reliable portrait of internal and external trade which we can take into account in 

our analyses. Hence, we avoid a bias which would result if we counterfactually took Germany 

to be a closed economy. For another, the imputation performed by Monte et al. (2018) to arrive 

from their bilateral trade data for the 123 CFS (Commodity Flow Survey) regions at bilateral 

trade for the 3111 counties, clean as it is from a pure technical viewpoint, leads to numbers 

which have to be taken with a grain of salt. The direction of the bias associated with this 

imputation is not clear, however. Finally, we pointed out that our analyses for ‘all trade’ which 

are based on gravity-imputed service trade data in addition to the observation-based 

manufacturing trade data, have to be taken with caution, too. This notwithstanding, our analysis 

teaches that, accounting for service trade, general equilibrium elasticities would be driven up 

and this would make it harder to predict the employment elasticities with simple statistics. 

The fourth and key difference between our study and Monte et al. (2018) concerns the choice 

of the housing share parameter. Our economy-wide approach, backed by macroeconomic data, 

implies a share of 10 % whereas Monte et al. (2018) move away from a literal interpretation of 

this parameter and work with a share of 40%. Our robustness check for Germany teaches us, 

what to expect if we stipulated a similarly large share. This would substantially lower the 
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general equilibrium elasticities, which would still stay significantly larger than those for the US 

(cf. table 3) – possibly for the mentioned reasons of geography. Moreover, the explanatory 

power of simple labor market statistics – notably the own-commuting share - would also 

improve considerably. Our extensive robustness checks with positive housing supply 

elasticities for Germany revealed that the predictive power of this simple statistic quickly 

vanishes with higher supply elasticities and lower housing shares (cf. Figure 9), which 

reinforces the key result that we spelled out at the start of this section. 

5 Conclusion 

This paper develops a quantitative spatial model with heterogeneous locations linked by costly 

goods trade, migration and commuting to shed light on the functioning of local labor markets 

in Germany and to explore the role of housing markets for quantitative analyses. Unique data, 

a traffic study, in particular, allow us to put our analyses on a much more solid footing than 

extant work which had to impute bilateral trade shares among locations.  

Our key findings are that the employment and resident elasticities associated with local 

productivity shocks are much above unity, yet disparate (the former larger than the latter), very 

heterogeneous, and only poorly predicted by simple labor and commuter market statistics, in 

our preferred calibration which stipulates a housing share of about ten percent. Allowing the 

housing supply to be price elastic increases the employment and resident elasticities and 

reinforces these conclusions. The marked regional heterogeneity of the housing shares in 

Germany turns out to be inessential for this finding, but their level does not. When housing 

shares are very large (and supply elasticities very low), the dispersion force of scarce housing 

become very strong and the general equilibrium repercussions induced by local productivity 

shocks become weak. The much smaller employment and resident elasticities can then be 

predicted much easier with ex-ante observable labor market measures. We also consider a 

Germany which is, counterfactually, shut down to external trade. This exercise teaches us that 

international trade works like a buffer which absorbs part of the effects of productivity shocks 

which reduces the general equilibrium repercussions for the local economy (much like high 

housing share and small housing supply elasticities).  

Whilst some of our findings parallel those of Monte et al. (2018) for the United States – the key 

role of commuting as a shock absorber, and the heterogeneity of the elasticities -, other findings 

pose a striking contrast. First, the quantitative numbers for the employment and resident 

elasticities in Germany are way above those for the United States. Second, simple labor and 

commuting market statistics, notably the own-commuting share, have strong explanatory for 
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these elasticities in Monte et al. (2018), in stark contrast to our findings for Germany. Our 

extensive robustness analyses for Germany allow us to rationalize these differences by referring 

to the varying geographies and trade regimes of the two countries and the data and parameter 

choices used in the studies. 

We see at least two fruitful avenues for future research. One involves an extension of the 

analysis to account for vertical linkages in production. The second involves a disaggregation of 

labor along skill groups and/or task groups to study the distributional consequences of local 

labor market shocks. 
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Online Appendix 

On the Road (Again): Commuting and Local Employment Elasticities in Germany 

by Oliver Krebs and Michael Pflüger 
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B Equilibrium in changes 
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  Trade data 
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E Commuting 
  Commuting data 
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  Misreporting 
  Descriptive evidence on commuting 
  Commuting elasticity 

F Regression results: Baseline scenario with other housing shares 
F1 Regression results for employment elasticities, housing share 25% 
F2 Regression results for employment elasticities, housing share 40% 
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G1 Employment and Resident elasticities: Baseline, housing share 10%, all trade 
G2 Kernel densities for employment and resident elasticities for alternative housing shares  
G3 Regression results for employment elasticities, housing share 10% 
G4 Regression results for employment elasticities, housing share 25% 
G5 Regression results for employment elasticities, housing share 40% 

H Results for heterogeneous housing shares 
H1 Baseline scenario with manufacturing trade and average housing share of 10% 

H11 Employment and resident elasticities 
H12 Kernel densities 
H13 Regression results  

H2 All trade (service and manufacturing) and average housing share of 10% 
H21 Employment and resident elasticities  
H22 Kernel densities 
H23 Regression results 

H3 Overview table: Mean employment and resident elasticities  

I Results with positive housing supply elasticities 

J Results when international trade is shut down 
J1 Employment and resident elasticities, manufacturing only, closed economy 
J2 Employment and resident elasticities, all trade, closed economy 
J3 Kernel densities for employment and resident elasticities, all trade, closed economy 
J4 Regression results for employment elasticities, all trade, closed economy 

K Results for Commuting Zones 
K1 Employment and resident elasticities, kernel densities, uniform housing share 10%  
K2 Kernel densities of employment and resident elasticities, uniform housing shares of 25% and 40%  
K3 Employment and resident elasticities, kernel densities, heterogeneous housing share, average level of 10% 
K4 Kernel densities of employment and resident elasticities, heterogeneous housing share, 25% and 40% 

average levels  
K5 Regression results for employment regressions, uniform housing share of 10%  
K6 Regression results for employment regressions heterogeneous housing share, average 10%  
K7 Regression results for employment regressions, uniform housing share of 25 %  
K8 Regression results for employment regressions heterogeneous housing share, average 25%  
K9 Regression results for employment regressions, uniform housing share of 40 %  
K10 Regression results for employment regressions heterogeneous housing share, average 40 %  
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A Existence and Uniqueness 

We use the methods and theorems developed in Arkolakis et al. (2020; 2016) to establish a 
sufficient condition for the existence and uniqueness of the model. We follow Monte et al. 
(2018) in abstracting from trade deficits but generalize their derivation by allowing for positive 
land supply elasticities. Using equations (12), (13) and (15) allows us to derive the income of 
commuters from residence 𝑛 to workplace 𝑖 as: 

  𝑤௜𝜆௡௜𝐿ത ൌ ቀ௎
ഥ

ஔ
ቁ
ିఢ
𝐿ത𝐵௡௜𝜅௡௜ିఢሺ𝑃௡ఈ 𝑄௡ଵିఈሻିఢ𝑤௜

ଵାఢ
   (A.1) 

Total workplace income in location 𝑖 (obtained by summing (A.1) across residences 𝑛) is then 

𝑌௜ ൌ ∑ 𝑤௜𝜆௡௜𝐿ത௡∈ே ൌ ቀ௎
ഥ

ஔ
ቁ
ିఢ
𝐿ത 𝑤௜

ଵାఢ ∑ 𝐵௡௜𝜅௡௜ିఢሺ𝑃௡ఈ 𝑄௡ଵିఈሻିఢ௡∈ே ,  (A.2) 

and total residential income in location 𝑛 (obtained by summing (A.1) across workplaces 𝑖) is: 

 𝑋௡ ൌ ∑ 𝑤௜𝜆௡௜𝐿ത௜∈ே ൌ ቀ௎
ഥ

ஔ
ቁ
ିఢ
𝐿ത ሺ𝑃௡ఈ 𝑄௡ଵିఈሻିఢ  ∑ 𝐵௡௜𝜅௡௜ିఢ௜∈ே 𝑤௜

ଵାఢ  (A.3) 

Using (10) and abstracting from trade imbalances, land market clearing (11) can be written as 

    𝑄௡ ൌ ቂ
ሺଵିఈሻ௑೙

ுഥ೙
ቃ

భ
భశആ೙,     (A.4) 

so that total workplace income in location 𝑖 (A.2) can be rewritten as 

𝑌௜ ൌ ቀ௎
ഥ

ஔ
ቁ
ିఢ
𝐿ത ሺ1 െ 𝛼ሻ

షሺభషഀሻച
భశആ೙ 𝑤௜

ଵାఢ ∑ 𝐵௡௜𝜅௡௜ିఢ𝑃௡ିఈఢ𝑋௡
షሺభషഀሻച
భశആ೙௡∈ே 𝐻ഥ௡

ሺభషഀሻച
భశആ೙  (A.5) 

and total residential income in location 𝑛 (A.3) can be rewritten as 

𝑋௡ ൌ ቀ௎
ഥ

ஔ
ቁ
ିఢ
𝐿തሺ1 െ 𝛼ሻ

షሺభషഀሻച
భశആ೙  𝐻ഥ௡

ሺభషഀሻച
భశആ೙  𝑃௡ିఈఢ𝑋௡

షሺభషഀሻച
భశആ೙  ∑ 𝐵௡௜𝜅௡௜ିఢ௜∈ே 𝑤௜

ଵାఢ (A.6) 

The price index (8) can be re-written using 𝑌௜ ൌ 𝑤௜𝐿௜ 

   𝑃௡
ଵିఙ ൌ ቀ ఙ

ఙିଵ
ቁ
ଵିఙ ଵ

ఙி
 ൤∑ 𝑌௜ ቀ

ௗ೙೔
஺೔
ቁ
ଵିఙ

𝑤௜ିఙ௜∈ே ൨   (A.7) 

Using 𝑌௜ ൌ 𝑤௜𝐿௜ and 𝑋௡ ൌ 𝑣̅௡𝑅௡ and the trade shares (7) the goods market clearing condition 
(9) can be written as 

  𝑤௜ఙ  ൌ ∑ ଵ

ఙி
ቀ ఙ

ఙିଵ
ቁ
ଵିఙ

ቀௗ೙೔
஺೔
ቁ
ଵିఙ

 𝑃௡
ఙିଵ 𝑋௡௡∈ே    (A.8) 

The system of equations for workplace income (A.2), residence income (A.3), the price index 
(A.7) and goods market clearing (A.8) can then be rearranged as follows 

𝑃௡
ଵିఙ ൌ 𝜉௉ ∑ 𝜅௡௜

௉ 𝑌௜𝑤௜ିఙ௜∈ே  where 𝜉௉ ≡ ቀ ఙ
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   (A.9) 

𝑤௡ఙ  ൌ 𝜉௪ ∑ 𝜅௡௜
௪  𝑃௜
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where 𝜉௒ ≡ ቀ௎
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These equations are of the form considered by Allen, Arkolakis and Li (2016; 2020, cf. Remarks 
2 and 3) and the corresponding matrices involving the exponents of 𝑃௡, 𝑤௡, 𝑌௡, 𝑋௡ are given 
by:  

𝐵 ൌ

⎣
⎢
⎢
⎢
⎡
1 െ 𝜎 0 0 0

0 𝜎 0 0
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ଵାఎ೙ ⎦
⎥
⎥
⎥
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⎣
⎢
⎢
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ିሺଵିఈሻ∈
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⎥
⎥
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⎢
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0
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from which we can derive the matrix 𝐴௣ which reformulates matrix 𝐴 such that all of its entries 
appear in absolute terms, ሺ𝐴௣ሻ௞௛ ൌ |ሺ𝐴ሻ௞௛|: 
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ଵାఎ೙
ఢሺଵିఈሻାሺଵାఎ೙ሻ

ఈ ఢ ሺଵାఎ೙ሻ

ሺఙିଵሻሾఢሺଵିఈሻାሺଵାఎ೙ሻሿ
0 0 1 െ

ଵାఎ೙
ఢሺଵିఈሻାሺଵାఎ೙ሻ

0
ఢାଵ

ఙ
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Theorem 1 in Allen et al. (2020) states sufficient conditions for existence and uniqueness of a 
general equilibrium solution in this class of models which depend on the largest eigenvalue 
𝜌ሺ𝐴௣ሻ of matrix 𝐴௣ being smaller or equal to one, 𝜌ሺ𝐴௣ሻ ൑ 1. Remark (5) in Allen et al. (2020) 

then invokes the Collatz–Wielandt formula which shows that the largest eigenvalue or spectral 

radius 𝜌ሺ𝐴௣ሻ of matrix 𝐴௣ is bounded by the smallest and largest summation of each column 
(or row) of 𝐴௉. While columns 3 and 4 trivially sum to 1, the same is true for the other two 

columns under the parameter conditions, 
ሺఙିଵሻ

ఢ
൒ ఈ  ሺଵାఎ೙ሻ

ఢሺଵିఈሻାሺଵାఎ೙ሻ
 and 

ሺఙିଵሻ

ఢ
൒ 1. An inspection 

immediately reveals that the second condition is stronger. Hence, the crucial condition is: 

     
ሺఙିଵሻ

ఢ
൒ 1 

Notice moreover, that if this condition holds, all columns sum to 1 and thus the spectral radius 
is bound from below and above by 1, implying 𝜌ሺ𝐴௣ሻ ൌ 1 (this is to be expected in an 
equilibrium defined nominally, cf. Allen et al. 2020). Under this condition Theorem 1, ii, b in 
Allen et al. (2020) guarantees the up-to-scale, i.e. up to normalization, uniqueness of the 
equilibrium.49 We can thus conclude that only two parameters, the Fréchet parameter of 
idiosyncratic preferences 𝜖 and the preference parameter 𝜎, are crucial for uniqueness and 
existence, but not the housing share ሺ1 െ 𝛼ሻ. Intuition is provided in the body of the paper.  

This result, to the best of our knowledge, has not been stated in the extant literature. Monte et 
al. (2018, online appendix B3) just state the matrix 𝐴௣ (they address the case 𝜂௡ ൌ 0), noting 
that its largest eigenvalue needs to be smaller or equal to one. However, it is easily seen that 
their parameters violate the condition ሺ𝜎 െ 1ሻ 𝜖⁄ ൒ 1.  

                                                 
49 Theorem 1, iii, further shows that there exists in fact some combination of trade and commuting barrier shocks 
that would lead to the existence of multiple equilibria if our condition is violated. 
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B Equilibrium in changes 

We rewrite our equilibrium system in terms of changes. Following the literature, we use a prime 

to denote variables from a counterfactual scenario and a hat to denote the relative change of a 

variable, i.e. 𝑥ො ൌ ௫ᇲ

௫
. The equilibrium system of equations (7) through (15), together with the 

price index of consumption and commuting shares thus becomes: 

(7)’ 𝜋ො௡௜ ൌ
ಽ෡೔

  ಷ෡೔ 
 ൬ 
೏෡೙೔
ಲ෡೔
൰
భష഑

 ௪ෝ೔
భష഑

∑  గ೙೘
ಽ෡೘
ಷ෡೘ 

 ൬ 
೏෡೙೘
ಲ෡೘

൰
భష഑

 ௪೘
భష഑

೘∈ಿ

 

(8)’ 𝑝̂௡ ൌ  
௪ෝ೙
஺෠೙ 

ቂ  ௅෠೙
గෝ೙೙ ி෠೙ 

 ቃ
భ

భష഑
 

(9)’ ∑ 𝜋ො௡௜௡∈ே 𝜋௡௜  𝑋෠௡𝑋௡ ൌ 𝑤ෝ௜  𝐿෠௜𝑤௜𝐿௜ 

 (10)’ 𝑋෠௡𝑋௡ ൌ 𝑤ഥ෡௡ 𝑅෠௡ 𝑤ഥ௡ 𝑅௡ ൅ 𝐷௡𝐷෡௡ 

(11)’ 𝑞ො௡  ൌ 𝑤ഥ෡௡ 𝑅෠௡ 

 (12)’ 𝜆መ௡௜หஐ೒
ൌ

஻෠೙೔ ୔෡౤
షച

 ఑ෝ೙೔
షച௪ෝ೔

∈

∑ ∑ ఒ೘೗|ಈ೒஻෠೘೗ ୔෡ౣ
షച

 ఑ෝ೘೗
షച௪ෝ೗

∈
೗ചಈ೒೘∈ಈ೒

 

(13)’ 
௅෠೙ ௅೙
௅ത೒

ൌ ∑ 𝜆መ௜௡|ஐ೒𝜆௜௡|ஐ೒௜ఢஐ೒  

(14)’ 
ோ෠೙ ோ೙
௅ത೒

ൌ ∑ 𝜆መ௡௜|ஐ೒𝜆௡௜|ஐ೒௜ఢஐ೒  

(15)’ 𝑤ഥ෡௡𝑤ഥ௡ ൌ ∑
஻෠೙೔఑ෝ೙೔

ష∈௪ෝ೔
∈
ఒ೙೔|ಈ೒

∑ ஻෠೙೘఑ෝ೙೘
ష∈௪ෝ೘

∈
೘ചಈ೒ ఒ೙೘|ಈ೒

௜ఢஐ೒ ∙ 𝑤ෝ௜ ∙ 𝑤௜ 

where P෡௡  ൌ 𝑝̂௡
ఈ𝑞ො௡

ଵିఈ 
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C Algorithm 

For any shock defined by 𝐵෠௡௜, 𝜅̂௡௜, 𝐹෠௡, 𝐴መ௡, 𝑑መ௡௜ for all 𝑛, 𝑖, and initial guesses for 𝑤ෝ௜ and 𝜆መ௡௜|ஐ೒ 

we use our data for 𝑤ഥ௡, 𝑤௡, 𝐿௡, 𝑅௡, 𝜋௡௜ and 𝜆௡௜|ஐ೒ to solve the equilibrium in changes using 

the following algorithm. 

Step 1: We calculate new values for 𝐿෠௡, 𝑅෠௡ and 𝑤ഥ෡௡ using equations (13)’ through (15)’. 

Step 2: Using the obtained values we derive changes in housing costs as 𝑞ො௡ ൌ 𝑅෠௡𝑤ഥ෡௡ via 

 equation (11)’ and in trade shares as 𝜋ො௡௜ ൌ
ಽ෡೔
ಷ෡೔
൬
೏෡೙೔
ಲ෡೔
௪ෝ೔൰

భష഑ 

∑ గ೙೘
ಽ෡೘
ಷ෡೘

൬೏
෡೙೘
ಲ෡೘

௪ෝ೘൰
భష഑ 

೘∈ಈ೒

. 

Step 3: Given the changes in trade shares we solve for changes in the consumer goods price 

 index via  𝑝̂௡ ൌ
௪ෝ೙
஺෠೙
ቂ ௅෠೙
గෝ೙೙ி෠೙

ቃ
భ

భష഑ . 

Step 4: Given all new variables we solve for temporary values of 𝑤ෝ௜
௧௠௣ and 𝜆መ௡௜

௧௠௣ using 

equations (9)’ and (10)’ in combined form, i.e. 𝑤ෝ௜ ൌ
ଵ

௅෠೔
∑ 𝜋௡௜𝜋ො௡௜ሺ𝑅௡𝑅෠௡𝑤ഥ௡𝑤ഥ෡௡ ൅௡∈ே

𝐷𝑛𝐷෡𝑛ሻ as well as equation (12)’. 

Step 5: We update our guess for 𝑤ෝ௜ to  𝑤ෝ௜ ൅ 𝜁൫𝑤ෝ௜
௧௠௣ െ 𝑤ෝ௜൯ and our guess for 𝜆መ௡௜|ஐ೒ to 

  𝜆መ௡௜|ஐ೒ ൅ 𝜁 ቀ𝜆መ௡௜|ஐ೒
௧௠௣ െ 𝜆መ௡௜|ஐ೒ቁ where 0 ൏ 𝜁 ൏ 1 represents a dampening factor.50 

We repeat these steps until the equilibrium is reached with a sufficiently small tolerance, that 

is, until 𝑤ෝ௜
௧௠௣ െ 𝑤ෝ௜ and 𝜆መ௡௜|ஐ೒

௧௠௣ െ 𝜆መ௡௜|ஐ೒ converge to 0. 

  

                                                 
50 Throughout a broad range of counterfactuals 𝜁 ൌ 0.3 has proven to be an acceptable compromise between speed 
of convergence and preventing and overshooting of the algorithm. 
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D Goods Trade 

Trade data. Trade data are based on a unique data set, the traffic forecast 

(‘Verkehrsverflechtungsprognose 2030’) administered by the German Federal Ministry of 

Transport and Digital Infrastructure. They contain the weight of goods shipped between 

German counties and their trade partners by ship, train or truck disaggregated across 25 product 

categories. Sources for the construction of the data set stem mainly from the respective agencies 

for rail- and waterways and from a representative weekly sample of truck shipments in 

Germany. Krebs (2020) provides an in-depth analysis of this data set, as well as the implied 

German interregional trade and production network.  

The main challenge in the initial data preparation is to move from shipments in terms of weight 

to trade in terms of value. The traditional approach to this type of problem uses unit values for 

shipped tons. At the broad level of product categories for which shipment data is available this 

implies, for example, that a ton of ‘transport equipment’ exports from a county that hosts car 

seat manufactures would be valued at the same price as exports from a county with engine 

producers. Hence, this assumption implies trade flow values that do not make sense to someone 

who is familiar with the German regional production structure. 

To avoid this problem, we follow Krebs (2020) who uses further regional revenue data from 

the regional statistical offices and county sector level employment data from the Federal 

Institute of Labor Market Research (IAB) to calculate county sector level production values. 18 

of the 25 product categories in the shipment data can be directly matched to the 12 agriculture, 

mining and manufacturing sectors for which county level revenue data can be calculated. 

Weight flows are then used to derive export shares at the county sector level and multiplied 

with the county sector revenues to derive trade values. To integrate world trade, all trade flows 

are rescaled to match the aggregate German exports to foreign locations given in the WIOD. 

Compared to the mentioned traditional approach of using national unit values to translate 

weight flows into value flows, this method has the key advantage that it accounts for the fact 

that goods in the same sector but from different counties can have very different values per ton. 

Krebs (2020) uses this trade matrix as a constraint in a multidimensional extension of the 

iterative proportionate fitting (also known as RAS) method and imputes service sector trade by 

gravity estimation to derive at a full interregional input output table at the level of 17 sectors 

for all German counties and 26 foreign countries.51 This input output table replicates observed 

                                                 
51 Given an initial matrix, the RAS method finds a new matrix that, according to a valuation function, deviates as 
little as possible from the original matrix while satisfying given target values for row and column sums (see 
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German county level sectoral revenues, value added, and intermediate demand reported by the 

regional statistical offices and its aggregates for Germany are cell-by-cell compatible with the 

national and international data from the World Input Output Database (WIOD). It is hence 

strongly rooted in observable data and simultaneously allows us to obtain a detailed portrait of 

bilateral trade of goods between German counties. 

To ease the comparison with the study by Monte et al. (2018) we follow their specifications as 

closely as possible. Faced with the choice to include the imputed service trade flows into total 

trade values, to assume that all services are non-tradable, or to ignore the production of services 

altogether, we follow Monte et al. (2018) and adopt this final option as our baseline scenario. 

Hence, in the baseline we make use of the regional input output table from Krebs (2020) but 

drop all service sector trade data before aggregating trade flows to a single sector. 

Technologies. Our county level shipment data allow us to directly calibrate our model instead 

of relying on estimated trade flows based on distance. However, we do follow the analysis of 

Monte et al. (2018) here and estimate the correlation based on our gravity equation for two 

reasons. First, as a means to compare the results for Germany with the US case and, second, to 

infer technology levels 𝐴௜ that we use an instrument in the estimation of commuting elasticities 

𝜖 in appendix E. Assuming that the fixed input of labor is the same across locations (𝐹௜ ൌ 𝐹௠ 

∀ 𝑖,𝑚 ∈ 𝑁) equation (7) becomes 𝜋௡௜ ൌ
௅೔௪೔

భష഑ ሺ ௗ೙೔ ஺೔⁄ ሻభష഑

∑ ௅೘௪೘
భష഑ ሺ  ௗ೙೘ ஺೘⁄ ሻభష഑೘∈ಿ

, so that trade flows from 

location 𝑖 to 𝑛 can be written as  

𝜋௡௜𝑋௡ ൌ
𝐿௜𝑤௜

ଵିఙ  ቀ 
𝑑௡௜
𝐴௜
ቁ
ଵିఙ

∑ 𝐿௠𝑤௠ଵିఙ  ቀ 
𝑑௡௠
𝐴௠

ቁ
ଵିఙ

௠∈ே

 ሺ𝑅௡𝑤ഥ௡ ൅ 𝐷௡ሻ , 

which in turn can be decomposed into exporter and importer specific effects as well as bilateral 

barriers. We parameterize trade barriers dependent on distance, allowing for coefficients to 

differ between intraregional (𝑑𝑖𝑠𝑡ூ,௡௜, 1 for 𝑛 ് 𝑖) and interregional distances (𝑑𝑖𝑠𝑡ோ,௡௜, 1 for 

𝑛 ൌ 𝑖), as well as, in scenarios with international trade, international distances (𝑑𝑖𝑠𝑡ூே்,௡௜ , 1 for 

either 𝑛, 𝑖 ∈ Ω௚ or 𝑛 ൌ 𝑖). Thus we specify 𝑑௡௜ ൌ 𝑑𝑖𝑠𝑡ூ,௡௜
ట಺  𝑑𝑖𝑠𝑡ோ,௡௜

టೃ  𝑑𝑖𝑠𝑡ூே்,௡௜
ట಺ಿ೅  𝑒̃௡௜, with 𝑒̃௡௜ 

denoting an error term that captures any remaining unobserved bilateral characteristics. 

Together with exporter fixed effects 𝑆௜ and importer fixed effects 𝑀௡ our econometric 

representation of equation (7) becomes 𝜋௡௜𝑋௡ ൌ 𝑆௜𝑀௡𝑑𝑖𝑠𝑡ூ,௡௜
ట಺  𝑑𝑖𝑠𝑡ோ,௡௜

టೃ  𝑑𝑖𝑠𝑡ூே்,௡௜
ట಺ಿ೅  𝑒̃௡௜. 

                                                 
Bacharach (1970) for a detailed description). The multidimensional version extends this approach to 
multidimensional arrays while also allowing for more complex constraints on the target array. 
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Estimating the log-linearized version of this equation with OLS commands that all observations 

with zero trade flows have to be dropped. Moreover, the residual plot in figure D.1 indicates 

heteroscedasticity in the data.52 Both imply that estimation with OLS in the log-linearized form 

would lead to biased results. Hence, while we report the results of this OLS estimation, we 

prefer to keep the gravity equation in its multiplicative form using a Poisson Pseudo Maximum 

Likelihood (PPML) estimator (see Santos Silva and Tenreyro 2006 for a discussion of the 

problem and the PPML method). 

  
Figure D.1: (Log) relationship between trade flows and distance after removing importer and exporter fixed effects. 

Relying on this estimator we obtain highly significant composite parameters 𝜓ூሺ1 െ 𝜎ሻ ൌ

 െ0.842, 𝜓ோሺ1 െ 𝜎ሻ ൌ  െ1.183, and 𝜓ூே்ሺ1 െ 𝜎ሻ ൌ  െ1.153 in our baseline scenario (Table 

D.1 provides results for our alternative scenarios and for estimation with OLS). Making use of 

our assumption that 𝜎 ൌ 5.5 yields 𝜓ூ ൌ 0.150,𝜓ூ ൌ 0.211, 𝜓ூ ൌ 0.206, which are all 

significantly smaller then Monte et al. (2018)’s US result of a common distance elasticity of 

0.43 with respect to trade costs.  

Table D.1: Gravity Estimation Results. 

 OLS  PPML 

Dependent var: log𝜋௡௜𝑋௡  𝜋௡௜𝑋௡ 

log𝑑𝑖𝑠𝑡ூ,௡௜ 
-1.752 
(0.041) 

-0.394 
(0.036) 

-1.779 
(0.042) 

 
-0.842 
(0.107) 

-1.165 
(0.071) 

-1.093 
(0.053) 

log𝑑𝑖𝑠𝑡ோ,௡௜ 
-2.018 
(0.028) 

-1.321 
(0.009) 

-2.031 
(0.028) 

 
-1.183 
(0.093) 

-1.670 
(0.055) 

-1.372 
(0.032) 

log𝑑𝑖𝑠𝑡ூே்,௡௜ 
-1.969 
(0.036) 

-1.527 
(0.018) 

  
-1.153 
(0.098) 

-1.582 
(0.075) 

 

                                                 
52 Specifically, for this figure we separately regress trade flows 𝜋௡௜𝑋௡ and 𝑑𝑖𝑠𝑡௡௜ on importer and exporter 
dummies using PPML and then regress for all non-zero trade flows the logged multiplicative residuals of the first 
regression on those of the latter. 
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Exporter FE x x x  x x x 
Importer FE x x x  x x x 
Internatl. Trade x x   x x  
Services  x    x  

Observations 142,653 183,184 122,064  183,184 183,184 161,604 

 

Given the parameterization of trade barriers the resulting exporter fixed effects 𝑆௜ are up-to-

scale equivalent to 𝐿௜𝑤௜
ଵିఙ𝐴௜

ଵିఙ and can be used together with our data on wages and 

employment to directly recover the unobserved technology levels 𝐴௜, which we depict in Figure 

3 in the main text. 

E Commuting 

Commuting data. Our commuting data stem from the German Federal Employment Agency 

(‘Pendlerstatistik’) and are based on social security data. They contain bilateral flows between 

all 412 German counties in existence in 2010 of all workers with social security whose 

workplace differs from the registered residence. The commuting data excludes any self-

employed workers or other workers without social security.  

Initial data preparation faces two challenges. Firstly, all commuting flows between two counties 

with less than 10 commuters are censored and indistinguishable from county pairs with no 

commuters, an issue that we tackle by imputing censored flows based on gravity estimates as 

explained below. Secondly, the raw data set is generated based on company reports of each 

worker's registered residence address as well as the county of the plant where she is employed. 

This process is prone to reporting errors. Firms may wrongly report their headquarter or main 

plant instead of the actual plant of the worker's employment. Moreover, workers can be 

registered as residents at a main (‘Haupt-‘) and a secondary (‘Nebenwohnsitz’) address 

potentially introducing "fake" commuters to the data. Together, these issues lead to implausibly 

long commutes in the data and introduce systematic error. In response to this problem we 

assume that (very) long distance commutes in the data must consist exclusively of misreported 

values and use the information contained in the size of these flows to clean our data from 

misreporting as we explain below. 

Distance Threshold. Figure E.1 depicts the relationship between the log of uncensored 

commuting flows and the log of distance in the raw commuting data, where all flows are larger 

or equal to 10 and where implausible flows are reported for very long distances (for a commute 

on a daily basis). There is a strong sign of discontinuity at a commuting distance of 120 km, 



46 
 

similar to the one found in Monte et al. (2018), which we interpret as a threshold for possible 

daily commutes. The OLS regression lines for all commuting flows below and above 120 km 

respectively have slopes of -2.58 and -0.08 and we take the low dependence on distance above 

120km as a sign of the data being (mostly) driven by misreporting instead of true commutes. 

    
Figure E.1: Commuting flows and distance between counties in the raw commuting data (log scale). 

We verify that this change in the slope of the regression persists after controlling for county 

size and further workplace and residence specific effects using origin and destination county 

fixed effects and we substantiate the threshold of 120 kilometers by running the following 

gravity specification for close and far commutes.53 

      𝜆ሚ௡௜ ൌ ൣ𝐼௡௘௔௥൫𝑆௜,௡௘௔௥𝑀௡,௡௘௔௥𝑑𝑖𝑠𝑡ఉ೙೐ೌೝ  ൯ ൅ ሺ1 െ 𝐼௡௘௔௥ሻ൫𝑆௜,௙௔௥𝑀௡,௙௔௥𝑑𝑖𝑠𝑡
ఉ೑ೌೝ  ൯൧ 𝑒௡௜    (E.1) 

where 𝜆ሚ௡௜ is the flow of commuters who work in 𝑖 and live in 𝑛 in the raw data, 𝑆௜ and 𝑀௡ are 

workplace and residence fixed effects and 𝑒௡௜ is a multiplicative error term. 𝐼௡௘௔௥ is an indicator 

variable that takes the value 1 if the distance 𝑑𝑖𝑠𝑡௡௜ between the two counties is smaller than 

some threshold. We estimate specification E.1 in its multiplicative form using PPML to account 

for a potential bias from heteroscedasticity (see Santos Silva and Tenreyro 2006 for a discussion 

of the problem and the PPML method). Figure E.2 reports the resulting coefficients 𝛽௡௘௔௥ and 

𝛽௙௔௥ as well as their difference for threshold values ranging from 60 to 240 km (in steps of 

1km). For very low threshold values both coefficients are strongly negative but with a rising 

threshold 𝛽௙௔௥is quickly reduced in magnitude whereas 𝛽௡௘௔௥ remains large and negative. For 

                                                 
53 We also experiment with including quadratic logarithmic terms in this estimation to allow for a nonlinear effects 
of log distance. While we find significant coefficients for these terms, fitted values remain almost linear over the 
range in question and very little explanatory power is gained. 
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a threshold above 120km the difference remains relatively constant as both 𝛽௙௔௥ and 𝛽௡௘௔௥ 

shrink slightly in magnitude reassuring our choice of 120km as kink point. 

 

   
Figure E.2:  Coefficients for different commuting thresholds 

Censored Data. Next to commuting flows equal to or larger than 10 commuters our data set 

also provides aggregate commuter inflows to each workplace county originating in larger 

administrative areas (‘Regierungsbezirke’) or states that include flows censored on a county by 

county level. These aggregate inflows allow us to calculate that for 2.68% of all commuters the 

residence county is censored in the data. However, while the number of affected commuters is 

small a large share of county pairs is affected. Specifically, 78% of all county pairs (25% of all 

county pairs with a distance of less than 120km) list no commuting flows in the data, implying 

that the flow is either truly 0 or censored for being below 10. Simply setting all unknown flows 

to 0, counting censored commuters as non-commuters or dropping them from the total number 

of workers, would thus vastly overstate the role of zero trade flows in our gravity estimations. 

Instead, for each workplace, we split the aggregate worker inflow with censored residence 

county contained in inflows from larger administrative areas across potential residence counties 

relying on the estimates from regression E.1. In particular, we begin by calculating fitted values 

𝜆ሚመ௡௜ for commuting flows between censored county pairs based on our two part estimation from 

above. As explained, the data set also allows to derive ∑ 𝜆ሚ௡௜௜∈௠ , the aggregate commuters to a 

destination county 𝑛 from a group 𝑚 of censored counties and we scale our fitted values to 

match these observations setting54 

𝜆ሚ௡௜|௜∈௠ ൌ
𝜆መ௡௜

∑ 𝜆መ௡௜௜∈௠
෍𝜆ሚ௡௜
௜∈௠

 

                                                 
54 We ignore integer constraints for commuters in this procedure. 
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Figure E.3 again depicts the relationship between log commuters and log distances including 

our imputed values for censored flows.55 

    
Figure E.3: (Log) relationship between commuters and distance with imputed data for censored flows.  

Having derived all commuting flows, we combine our data set with information on total local 

employment from the German Institute for Labor Market Research (IAB) to derive the number 

of non-commuters in each county as the difference between local employment and total 

commuter inflow. 

Misreporting. As explained above, one interpretation of the observed discontinuity is that 

commuting flows above 120km are unlikely to be true commuting flows but instead originate 

from misreporting. Misreporting is independent from distance and hence the slope of the 

regression line beyond 120km is strongly reduced in magnitude. However, misreporting is not 

random, as, for example, counties that have many headquarters such as Munich or Berlin will 

more likely be wrongly attributed to commuters as workplace. While any such county specific 

effects are unproblematic for the estimation of a distance coefficient in our gravity equation 

with county fixed effects they do matter for the calibration of the model that takes commuting 

flows as inputs. Since misreporting also occurs for commutes below 120km distance, we make 

use of the information contained in misreported long distance commutes to clean the raw 

commuting data. Specifically, we split the raw data, as well as imputed flows into commutable 

and non-commutable county pairs. To that end, we assume that commuting can only occur for 

distances below 120km or if there exists a public transportation connection with less than 1 

hour and 45 minutes travel time between the largest cities in the two counties. Our main reason 

for including the latter criterion is that several important commutes between large cities occur 

via Germany's high speed rail network that often connects specific locations much faster than 

the highway system. A case in point is the commute between Germany's largest cities Hamburg 

                                                 
55 Despite using fitted values from our initial estimations, flows for large distances lie on average far below the 
average of uncensored values. This can occur - and indeed is the main reason for – our rescaling to observed 
aggregate inflows. 
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and Berlin with a distance of about 290km and a road travel time of more than three hours but 

with a regular high speed train connection that only takes 1 hour and 45 minutes. We chose the 

travel time threshold such that this commute is still included also because it is similar to the 

expected road travel time for 120kms. 

Further, we assume that an equal share 𝜁 of all true commuting flows 𝜆௡௜ is being misreported 

and that all flows among non-commutable county pairs consist purely of misreported 

commuters that are driven only by county specific factors such as the number of firm 

headquarters in the county. 

Our observed number of commuters in the raw data 𝜆ሚ௡௜ can hence be decomposed as 

    𝜆ሚ௡௜ ൌ 𝐼௖௢௠௠ሺ𝜆௡௜ െ 𝜁𝜆௡௜ሻ ൅ 𝑀෩௡𝑆ሚ௜𝑒̃௡௜  ,   (E.2) 

where 𝐼௖௢௠௠ is a dummy that takes the value 1 if a flow is commutable and 0 otherwise, 𝑀෩௡ 

and 𝑆ሚ௜ are the origin and destination county specific effects determining the size of misreporting 

and 𝑒̃௡௜ is a multiplicative error term. The first term on the left hand side is the number of true 

commuters reduced by the share 𝜁 that is wrongly attributed to some different county pair. The 

second term then adds commuters wrongly attributed to the county pair 𝑛𝑖 from somewhere 

else. 

We make use of the assumption that non-commutable flows consist only of misreporting to 

estimate  

𝜆ሚ௡௜|௡௢௡௖௢௠௠௨௧௔௕௟௘ ൌ 𝑀෩௡𝑆ሚ௜𝑒̃௡௜ 

on the subsample of non-commutable flows, determining which counties are more likely to be 

miss specified as residence 𝑀෩௡ or workplace 𝑆ሚ௜ of a commuter. We can then calculate estimated 

(fitted) sizes of misreporting for commutable flows as 𝑀෩෡௡𝑆ሚ
መ
௜ and derive the “true” commuting 

flows from equation (E.2) as 

𝜆௡௜ ൌ
𝜆ሚ௡௜|௖௢௠௠௨௧௔௕௟௘ െ 𝑀෩௡𝑆ሚ௜𝑒̃௡௜

1 െ 𝜁
  , 

where 𝜁 ൌ
∑ ெ෩೙ௌሚ೔௘̃೙೔೙,೔

∑ ఒ෩೙೔೙,೔
 is directly obtained as the share of all misreported flows in all observed 

flows and where we use the estimate of misreported flows 𝑀෩෡௡𝑆ሚ
መ
௜ instead of 𝑀෩௡𝑆ሚ௜𝑒̃௡௜ for all 

commutable county pairs.  

Figure E.4 depicts the tight (log) relationship between commuters and distance in our final 

cleaned commuting data after removing residence and workplace fixed effects. 
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Figure E.4: Log commuting and log distance (residuals after removing county fixed effects) final data  

Descriptive Evidence on Commuting. Commuting is pervasive in Germany, irrespective of 

whether we look at the administrative classification which divides Germany into 402 counties 

(Kreisfreie Städte and Landkreise), or at the 141 commuting zones which are aggregated up 

from the 402 counties (Kosfeld and Werner 2012; Eckey, Kosfeld and Türck 2006). 

 

  

Figure E.5: Share of total workers who commute into counties (left panel) and share of residents who 
commute out of counties (right panel). 

Commuter shares. To give a perspective on German local labor markets, the left panel of 

figure E.5 shows the share of total workers that commute to work in German counties whilst 

the right panel shows the share of residents that commute to other workplaces. The counties 

with the largest shares of inflows of workers are Schweinfurt (city), Munich (county) and 

Aschaffenburg, the ones with the largest shares of outflows of workers are Rhein-Pfalz-Kreis 

(county), Fürth (county) and Schweinfurt (county).56 A visual comparison of the two panels of 

                                                 
56 The largest nominal inflows can be found in Frankfurt, Munich, and Hamburg and Berlin, the largest nominal 
outflows in Munich, Rhein-Sieg-Kreis and Rhein-Neckar-Kreis. 
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figure E.5 immediately reveals that the intensity of inflows exceeds the intensity of outflows in 

cities and vice versa for the surrounding counties.57 

Distribution of commuters. To bring out this point more clearly, and to have a basis for a 

casual comparison with the United States, table E.1 documents statistics for the distribution of 

commuters. Across German counties, the unweighted average share of a county’s residents that 

work at other locations is 40% and that of a county’s total workforce that lives in a different 

location is 36%. These numbers are almost twice the numbers reported by Monte et al. (2018) 

for the 3111 counties in the United States. When commuting zones rather than (administrative) 

counties are looked at, the numbers are less than half (such a halving is also reported by Monte 

et al. 2018). Table 1 also provides the ratio between workers and residents at various percentiles. 

As one would expect from the construction of commuting zones, the comparison of the numbers 

for counties with the numbers for commuting zones reveals that the latter are very much 

stronger centered around 1. 

         Table E.1: Unweighted average commuting statistics across German counties and commuting zones. 

 min p5 p10 p25 p50 p75 p90 p95 max mean 

  County Level (Kreise) 

commuter outflow/residents 0.09 0.19 0.22 0.29 0.38 0.50 0.62 0.66 0.81 0.40 
commuter inflow/workers 0.08 0.15 0.18 0.23 0.33 0.46 0.62 0.66 0.82 0.36 
workers/residents 0.40 0.58 0.66 0.77 0.89 1.07 1.53 1.80 3.60 1.00 
  Commuting Zones 

commuter outflow/residents 0.04 0.09 0.11 0.14 0.19 0.28 0.32 0.40 0.57 0.22 

commuter inflow/workers 0.07 0.09 0.10 0.13 0.16 0.21 0.27 0.29 0.39 0.18 

workers/residents 0.64 0.81 0.84 0.90 0.96 1.00 1.06 1.10 1.17 0.95 

The message conveyed by table E.1 is reinforced by the kernel densities of the share of non-

commuters in residents depicted in figure E.6 (which is reproduced in the body of the paper as 

figure 1). This figure reveals that the peak of the distribution is at a share of non-commuters in 

residents of slightly higher than 60% which is comparable in range to what has been established 

for the United States (see Monte et al. 2018). 

                                                 
57 Repeating this exercise for the 141 German commuting zones almost halves the numbers, but leaves the 
general pattern documented in figure 1 intact. 
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Figure E.6:  Kernel densities for the share of non-commuters in residents, German counties. 95% confidence 

 interval shaded. See section 4 for the data. 

Two-way commuting. Grubel-Lloyd indices for two-way commuting in and out of German 

local labor markets provide another piece of evidence, see Figure E.7.58 The left panel depicts 

this index for administrative local labor markets and the right panel for commuting zones. The 

left panel reveals that two-way commuting is pervasive in Germany and strongest in large cities 

and regions in the West and Southwest. The mean and median of the GL-index at the county 

level are both at 0.69. The distribution of the Grubel-Lloyd index shown in table E.2 is similar 

to what is found for the United States (cf. Monte et al. 2018). It should be noted that Germany 

also has a number of counties where one-way commuting is extremely strong. These are 

visualized by the few bright areas in the left panel, the most prominent one is Wolfsburg, home 

to the largest VW production plant, followed by Frankfurt, Germany’s financial center, and a 

number of mid-size Bavarian cities such as Regensburg, where BMW has a large plant, 

Bamberg, Erlangen, Schweinfurt and their surrounding counties. With commuting zones, two-

way commuting is more prominent as they combine counties with strong worker inflows with 

counties with strong worker outflows, see the right panel in Figure E7. Yet the overall 

heterogeneity remains strong with values ranging from 0.45 to just below 1. 

                                                 
58 Following the use in international trade, these indices are defined as 𝐺𝐿௜ ൌ 1 െ

ห∑ ௅೔
೙

೙ಯ೔ ି∑ ௅೙
೔

೙ಯ೔ ห

∑ ௅೔
೙

೙ಯ೔ ା∑ ௅೙
೔

೙ಯ೔
. The subscript 

indicates the place of residence and the superscript the workplace, so that ∑ 𝐿௜
௡

௡ஷ௜  are location 𝑖’s total ‘exports’ 
of commuters and ∑ 𝐿௡௜௡ஷ௜  are location 𝑖’s total ‘imports’ of commuters from other residences. The index takes on 
values between 𝐺𝐿௜ ൌ 0 if there is only one way commuting and 𝐺𝐿௜ ൌ 1 if there is perfect two-way commuting.  
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Figure E.7:  Grubel-Lloyd indices for commuting in and out of German local labor markets, left panel for 
 counties, right panel for commuting zones. See section 4 for the data. 

Table E.2: Percentiles of the distribution of the Grubel-Lloyd index. See section 4 for the data. 

 

Commuting elasticity. Similar to the gravity estimation of goods trade above, we can use the 

commuting equation (12) to derive a gravity equation of commuter flows. Note first that (12), 

after substituting the overall price index 𝑃௡ from (4), the goods price index 𝑝௡ from (8) and land 

prices 𝑞௡ from (11) is a system of 𝑁 ∙ 𝑁 equations in the 𝑁 ∙ 𝑁 “ease of commuting parameters” 

ℬ௡௜ ≡ 𝐵௡௜𝜅௡௜
ିఢ. Given the data on 𝑤௜ , 𝐿௜ ,𝜋௜௜ ,𝑤ഥ௜ ,𝑅௜ ,𝐻ഥ௜ and 𝜆௡௜|ஐ೒ as well as the technology 

parameters 𝐴௜ (which we have obtained from model inversion) and given the parameters 𝛼, 𝜎, 

𝜂௡ and 𝜖, these 𝑁 ∙ 𝑁 equations have an up-to-normalization unique solution in the “ease of 

commuting parameters” ℬ௡௜ (Proposition 2, MRRH 2018, online appendix). We follow Monte 

et al. (2018) in modelling ℬ௡௜ in the following way, ℬ௡௜ ൌ 𝔹௡𝔹௜𝑑𝑖𝑠𝑡௡௜
టഊ𝔹௡௜, where 𝔹௡ is a 

residence component, 𝔹௜ is a workplace component, 𝑑𝑖𝑠𝑡௡௜
టഊ is a distance component and 𝔹௡௜ 

is the orthogonal error. Inserting this in (12) yields 𝜆௡௜|ஐ೒ ൌ

𝔹௡𝔹௜𝑑𝑖𝑠𝑡௡௜
టഊ𝔹௡௜  𝒫୬

ିఢ𝑤௜ఢ ∑ ∑ 𝐵௠௟ ቀ
௪೗

఑೘೗𝒫ౣ
ቁ
ఢ

௟ఢஐ೒௠∈ஐ೒ൗ  which, after taking the logarithm, can be 

rewritten as 

ln𝜆௡௜|ஐ೒ ൌ 𝑔଴ ൅ 𝑆ఒ,௜ ൅ 𝑀ఒ,௡ ൅ 𝜓ఒ ln𝑑𝑖𝑠𝑡௡௜ ൅ ln𝔹௡௜ 

where 𝑆ఒ,௜ ≡ lnሾ𝔹௜𝑤௜ఢሿ captures the workplace fixed effect, 𝑀ఒ,௡ ≡ lnሾ𝔹௡ 𝒫୬
ିఢሿ is the 

residence fixed effect, 𝑔଴ ≡ ln ቂ1 ∑ ∑ 𝐵௠௟ ቀ
௪೗

఑೘೗𝒫ౣ
ቁ
ఢ

௟ఢஐ೒௠∈ஐ೒ൗ ቃ is a constant and ln𝔹௡௜ is, by 

construction, orthogonal to log distance. After dropping observations with zero commuters 

ordinary least squares (OLS) estimation yields a coefficient of 𝜓ఒ ൌ െ3.92. Dropping zeros 

 min p5 p10 p25 p50 p75 p90 p95 max mean 

Counties 0.18 0.43 0.48 0.57 0.69 0.83 0.92 0.955 0.998 0.69 
Commuting Zones 0.45 0.58 0.61 0.70 0.82 0.90 0.97 0.986 0.996 0.80 
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and heteroscedasticity may potentially bias the OLS results. However, in contrast to goods trade 

(see appendix D) there is no clear indication of heteroscedasticity in the data, and any bias from 

estimation via OLS turns out to be small as estimating the gravity in commuting equation in its 

multiplicative form using PPML leads to a similar coefficient of -3.67. 

The commuting elasticity 𝜖 can finally be extracted by using the fact that workplace fixed 

effects are given by 𝑆ఒ,௜ ≡ lnሾ𝔹௜𝑤௜∈ሿ. Fixing the estimate of 𝜓ఒ ൌ െ3.67 we rerun the 

estimation of the commuting gravity equation, now using the mentioned definition of the 

workplace fixed effect, ln𝜆௡௜|ஐ೒ ൌ 𝑔଴ ൅ 𝑀ఒ,௡ ൅ ϵ ln𝑤௜ ൅ 𝜓ఒ ln𝑑𝑖𝑠𝑡௡௜ ൅ ln 𝑢௡௜ where ln𝑢௡௜ ≡

ln𝐵௜ ൅ ln𝔹௡௜. To account for the potential endogeneity between wages and commuting inflows 

(workplace wages depend on the supply of commuters and this supply depends on amenities 

appearing in the error term ln 𝑢௡௜) we follow Monte et al. (2018) and instrument wages 𝑤௜ with 

the technology levels 𝐴௜ obtained from our model inversion in section 5. Unfortunately, there 

is currently no consistent estimator that allows to estimate the gravity equation with an 

instrument variable specification and using fixed effects. However, our previous results showed 

that the bias introduced from the OLS estimator is small and we therefore feel confident in 

following Monte et al. (2018) in the estimation of the mentioned linearized version of our 

gravity equation with 2SLS after dropping observations with zero commuters. Our highly 

significant 2SLS estimate for 𝜖 is 4.56 with a clustered standard error of 0.148.59 The fact that 

our estimate is substantially larger than for the US case is in line with our observation of 

stronger commuting flows in Germany. 

  

                                                 
59As in Monte et al. (2018) we find a p-value of the F-statistic of numerically 0 in the first stage, underscoring the 
validity of the instrument. However, in contrast to their work we find the results from a direct estimation via OLS 
(𝜖 ൌ 4.51ሻ or PPML (𝜖 ൌ 4.80ሻ to show only a small bias. 
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F Regression results: Baseline scenario with other housing shares 

F1 Regression results for employment elasticities, housing share 25% 

 

F2 Regression results for employment elasticities, housing share 40% 
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G Results for all trade with uniform housing share 

G1 Employment and Resident elasticities: Baseline, housing share 10%, all trade 

 

Note:   For ease of comparison the results with all trade for employment elasticities (panel A) and resident 
elasticities (B) are contrasted with the respective results with manufacturing trade only, panels C and D 
(which replicate Figure 6) 
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G2 Kernel densities for employment and resident elasticities for alternative housing 
shares  

 

 

G3 Regression results for employment elasticities, housing share 10% 
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G4 Regression results for employment elasticities, housing share 25% 

 

G5 Regression results for employment elasticities, housing share 40% 
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H Results for heterogeneous housing shares 
H1 Baseline scenario with manufacturing trade and average housing share of 10% 

H11 Employment and resident elasticities  
 

 

Note:  For ease of comparison the results with heterogeneous housing expenditure shares for employment 
elasticities (panel A) and resident elasticities (B) are contrasted with the respective results with 
homogeneous housing expenditure shares, panels C and D (which replicate Figure 6) 

H12 Kernel densities 

 
Kernel densities for employment elasticities (blue) and resident elasticities (red) with heterogeneous housing 
shares. Average housing share is 10%. Dashed curves depict the baseline with uniform housing shares, only. 
Shaded areas show the 95% confidence bands. This is Figure 7 in the main text. 
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H13 Regression results  

 

  



61 
 

H2 All trade (service and manufacturing) and average housing share of 10% 

H21 Employment and resident elasticities  

 

Note: For ease of comparison the results with heterogeneous housing expenditure shares and all trade 
for employment elasticities (panel A) and resident elasticities (B) are contrasted with the respective 
results with homogeneous housing expenditure shares and manufacturing trade only, panels C and D 
(which replicate Figure 6) 

H22 Kernel densities 

 
Kernel densities for employment elasticities (blue) and resident elasticities (red) with heterogeneous housing 
expenditure shares and all trade. Average housing share is 10%. Dashed curves depict the baseline with uniform 
housing shares and manufacturing trade only. Shaded areas show the 95% confidence bands. 
  



62 
 

H23 Regression results  

 

 

H3 Overview table 
 

 Uniform housing share in all counties Heterogeneous housing share 

Mean employment 
elasticity 

(1) Manufacturing trade (2) All trade (3) Manufacturing trade (4) All trade 

Housing share 10% 3.72 4.27 3.74 4.30 

Housing share 25% 2.99 3.02 3.02 3.06 

Housing share 40% 2.66 2.52 2.69 2.56 

 

Mean resident elasticity     

Housing share 10% 1.89 2.74 1.91 2.78 

Housing share 25% 1.01 1.35 1.04 1.40 

Housing share 40% 0.61 0.78 0.64 0.83 
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I Results with positive housing supply elasticities 

 

Evolution of kernel densities for employment elasticities (blue) and resident elasticities (yellow to red) when the housing 
supply elasticity is raised in steps from 𝜂 ൌ 0 to 𝜂 ൌ 5.45. Left panel: baseline, manufacturing trade only; Right panel: all 
trade; 
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J Results when international trade is shut down 

J1 Employment and resident elasticities, manufacturing, closed economy 

     

Note:  For ease of comparison the results for the (internationally) closed economy for employment 
elasticities (panel A) and resident elasticities (B) are contrasted with the respective results with 
international trade, panels C and D (which replicate Figure 6) 
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J2 Employment and resident elasticities, all trade, closed economy  

    

Note:  For ease of comparison the results for the (internationally) closed economy for employment elasticities 
(panel A) and resident elasticities (B) with all (regional) trade are contrasted with the respective results 
with international trade, panels C and D. 

 

J3 Kernel densities for employment and resident elasticities, all trade, closed economy 

 
Kernel densities for employment elasticities (blue) and resident elasticities (red) in the (internationally) closed 
economy with all (regional) trade. Average housing share is 10%. Dashed curves depict the open economy with 
all trade (manufacturing and services). Shaded areas show the 95% confidence bands. 
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J4 Regression results for employment elasticities, all trade, closed economy 
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K Results for Commuting Zones 

K1 Employment and resident elasticities, kernel densities, uniform housing share 10%  

 
Panel A:  

Employment elasticities 

 
Panel B:  

Resident elasticities 

 

  

 

Panel C: Kernel densities 

General equilibrium employment elasticities (panel A) and resident elasticities (panel B) in treated CZs in response 
to counterfactual 5% productivity shocks. Panel C depicts the associated kernel densities for employment 
elasticities (blue) and resident elasticities (red). Dashed curves represent results from the same scenario at the 
county level. Shaded areas depict 95% confidence bands.  

K2 Kernel densities of employment and resident elasticities, uniform housing shares of 25% 
and 40% 

  

Kernel densities for employment elasticities (blue) and resident elasticities (red) at the level of CZs with uniform 
housing shares of 25% (left panel) and 40% (right panel). Dashed curves represent results from the same scenarios 
at the county level. Shaded areas depict 95% confidence bands.  
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K3 Employment and resident elasticities, kernel densities, heterogeneous housing share at 
average level of 10% 

 
Panel A:  

Employment elasticities 

 
Panel B:  

Resident elasticities 

 

  

 

Panel C: Kernel densities 

General equilibrium employment elasticities (panel A) and resident elasticities (panel B) in treated CZs in response 
to counterfactual 5% productivity shocks with heterogeneous housing/land shares. Panel C depicts the associated 
kernel densities for employment elasticities (blue) and resident elasticities (red). Dashed curves represent results 
from the same scenario at the county level. Shaded areas depict 95% confidence bands.  
 

K4 Kernel densities of employment and resident elasticities, heterogeneous housing share at 
average levels of 25% and 40% 

  

Kernel densities for employment elasticities (blue) and resident elasticities (red) at the level of CZs with 
heterogeneous housing shares with average levels of 25% (left panel) and 40% (right panel). Dashed curves 
represent results from the same scenarios at the county level. Shaded areas depict 95% confidence bands.  
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K5 Regression results for employment regressions, uniform housing share of 10%  

 

K6 Regression results for employment regressions heterogeneous housing share, average 10%  
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K7 Regression results for employment regressions, uniform housing share of 25 %  

 

K8 Regression results for employment regressions heterogeneous housing share, average 25%  
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K9 Regression results for employment regressions, uniform housing share of 40 %  

 

K10 Regression results for employment regressions heterogeneous housing share, average 
40 % 
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