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Abstract 
 
We theoretically show that there is a fundamental disconnect between the disposition effect, i.e., 
investors’ tendency to sell winning assets too early and losing assets too late, and its common 
empirical measure, namely a positive difference between the proportion of gains and losses 
realized. While its common measure cannot identify the disposition effect, it identifies the 
presence of some systematic bias. We further investigate the measure’s comparative statics 
regarding markets, investors’ information level, and their attention. Besides generating novel 
testable predictions, this analysis reveals that, in contrast to the measure’s sign, variations in its 
magnitude are informative for its cause. 
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1 Introduction

One of the most robust patterns of investor behavior is the greater tendency to sell as-
sets that have gained rather than lost value since purchase.1 This pattern is reflected
in the empirical observation that the proportion or probability of gains realized (PGR)
often exceeds the proportion or probability of losses realized (PLR) and has triggered
considerable interest in the literature. The standard interpretation of this pattern is
that investors have a “general disposition to sell winners too early and hold losers too
long.” (Shefrin and Statman, 1985, p.777) In this paper, we show that there is a funda-
mental disconnect between the empirical observation (PGR > PLR) and its standard
interpretation. In order to do so, we need to cleanly distinguish these commonly iden-
tified concepts. Therefore, we refer to the empirical pattern PGR > PLR as positive
disposition measure, while referring to its common interpretation of a “disposition to sell
winners too early and hold losers too long” as the disposition effect.

Intuitively, observing a positive disposition measure seems to indicate irrational
behavior: “over the horizon that these investors trade, stock returns exhibit ’momen-
tum’: stocks that have recently done well continue to outperform, on average, while
those that have done poorly continue to lag. As such, investors should concentrate
their selling among stocks with poor past performance – but they do the opposite.”
(Barberis, 2013, p.183) However, the standard interpretation of the observed pattern as
a disposition effect apparently confuses the sign of the stock movement with a signal
of stock quality. While it is intuitive that gains are a signal of high stock quality and
losses are a signal of poor stock quality, this interpretation remains blind for the over-
all environment. For example, a stock that went up by 1% in a strong bull market is a
“winner” but still underperformed, whereas a stock that went down by 1% in a strong
bear market is a “loser” despite having outperformed the market.

This observation highlights where the disconnect between the disposition effect
and its common measure stems from. The disposition effect, i.e., the tendency to sell
winners too early and losers too late, pertains to some rational benchmark for when a
specific asset should be sold. While such a benchmark is clearly correlated with the
sign of the stock movement, it is not identical to the sign of the stock movement. In
other words, the standard interpretation of the empirical disposition measure (i.e.,
PGR > PLR) as disposition effect neither distinguishes gains from good news nor
losses from bad news and therefore implicitly identifies gains with a benchmark action

1This effect has, first and foremost, been observed for individual investors (e.g., Odean, 1998; Feng
and Seasholes, 2005), but also for institutional investors (e.g., Grinblatt and Keloharju, 2001; Shapira
and Venezia, 2001; Frazzini, 2006) and experimental subjects (e.g., Weber and Camerer, 1998). It ap-
plies beyond stock markets, e.g., to real estate markets (Genesove and Mayer, 2001), traded option
markets (Poteshman and Serbin, 2003), executive stock options (Heath et al., 1999), futures markets
(Heisler, 1994; Coval and Shumway, 2005; Locke and Mann, 2005), online betting markets (Hartzmark
and Solomon, 2012), and to corporate settings (Crane and Hartzell, 2010).
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of holding the asset and losses with a benchmark action of selling the asset. In this pa-
per, we introduce a novel setup that takes the overall market environment into account
and thereby enables a separation of gains from good news (i.e., news that increase the
likelihood that the owned asset is expected to outperform the market) and losses from
bad news. Our setup allows to explicitly establish a rational benchmark based on first-
order stochastic dominance as well as individual-specific risk preferences. This bench-
mark prescribes for each possible state of the world – both for winners and losers –
whether an investor should hold, switch, or liquidate an asset. Therefore, this bench-
mark enables us to cleanly distinguish the disposition effect from its common measure
and to theoretically investigate the link of the two.

The basis of our theoretical investigation is a decomposition of PGR and PLR into
frequencies of various benchmark violations. The frequency of a specific benchmark
violation is the product of two components: First, the probability of the benchmark
event, i.e., the probability of a specific action to be appropriate. And second, the condi-
tional probability of choosing a different action, i.e., of violating the benchmark. While
the former is shaped by the stochastic environment, the latter is determined by individ-
ual behavior. Since the stochastic environment naturally induces different probability
distributions of benchmark events in gains and losses, drawing inferences on bench-
mark violations from observing PGR > PLR is not straightforward.

By cleanly separating benchmark violation frequencies from individual violation
propensities, the decomposition allows us to show that the disposition effect is nei-
ther necessary nor sufficient for PGR > PLR. Moreover, we find that investors with a
propensity to hold winners too long and sell losers too early – a “violation pattern” that
represents the opposite of the disposition effect – can still exhibit PGR > PLR. Also,
investors whose violation pattern is neither action- nor domain-specific – the latter be-
ing a typical feature of distorted beliefs where gains and losses have no impact beyond
providing different news – may still cause a positive disposition measure. This discon-
nect between the disposition measure and the disposition effect is especially surprising
because we further confirm a common intuition about the disposition measure in the
rational benchmark: the proportion of assets that should be realized is larger in losses
than in gains for any risk attitude of the investor and for any parameterization of the
stochastic environment. Intuitively, a rational investor wants her asset to outperform
both the market and the safe outside option, and this is more likely to be the case for
winners than for losers.

While these model-independent results suggest that many more violation patterns
than the disposition effect are able to generate PGR > PLR, we further show that un-
systematic benchmark violations, such as randomization, are not able to generate it. In
other words, only systematic biases give rise to the empirical observation PGR > PLR.
Thus, the commonly used disposition measure is indeed well suited to identify the
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presence of some behavioral bias. It is, however, neither suited to pin down the exact
bias at work or which kind of violation pattern is present, nor is it suited to measure
the severity of “mistakes” in general. In fact, behavioral biases beyond the ones that
have been proposed so far as possible explanations may cause a positive disposition
measure. In another paper (Maier and Fischer, 2021) where we investigate the link
between benchmark violations and models of behavioral biases – rather than the link
between benchmark violations and the disposition measure as in this paper – we find
that many yet unconsidered behavioral biases indeed fulfill the necessary condition for
generating PGR > PLR that we identify here. These include both models with non-
standard utility functions and models of non-standard belief formation.2 Whether the
benchmark violations induced by a behavioral bias are also sufficient for PGR > PLR
depends on the parameterization of both the stochastic environment and the model
capturing the bias. This is the case for any behavioral bias, including those generating
a disposition effect.

While our results on the sign of the disposition measure reveal that PGR > PLR
is not conclusive for its cause, we also show that this insight further extends to the
magnitude of the disposition measure (captured by either PGR− PLR or PGR

PLR − 1): al-
though the disposition measure is increasing in the benchmark violations described by
the disposition effect and decreasing in the opposite benchmark violations, it is also in-
creasing in overall “mistakes,” making the cause of a higher disposition measure rather
ambiguous. In contrast, variations in the magnitude of the disposition measure turn out
to be indicative of the predominant violation pattern. This metric has remained mostly
unexplored, though. We derive several novel and insightful comparative statics on the
disposition measure.

First, we show that, depending on the presence of a disposition effect, the mag-
nitude of the disposition measure varies with the characteristics of the market (e.g.,
emerging vs. mature markets) or market segment (e.g., “startup” vs. “blue chip” seg-
ments) of an investor’s (sub-)portfolio. This result suggests novel testable predictions.
For instance, an investor who suffers from the disposition effect is expected to exhibit
a larger (smaller) disposition measure in the more conservative (aggressive) fraction

2To be precise, in Maier and Fischer (2021) we discriminate among various model-specific behavioral
biases by the kind of violation patterns they induce. While this analysis is not restricted to benchmark
violations that are relevant for the disposition measure, it still identifies which behavioral biases may ex-
plain a positive disposition measure, i.e., fulfill the necessary condition for generating PGR > PLR. This
list includes prospect theory with a status-quo and lagged-rational-expectations reference point, real-
ization utility, regret theory, base-rate neglect, extrapolative expectations, confirmation bias, motivated
beliefs (e.g., anticipatory utility, cognitive dissonance, self-attribution bias), beliefs in mean reversion,
and even simple price heuristics. Note that all these models generate different violation patterns. Some
models induce more of the benchmark violations that increase the disposition measure (e.g., realization
utility) while others induce less of them (e.g., status-quo prospect theory), so that this analysis further
helps explaining why some of these models more readily explain PGR > PLR than others (see Barberis
and Xiong, 2009; Hens and Vlcek, 2011; Meng and Weng, 2017).
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of his portfolio. Since this prediction is reversed for investors suffering from an oppo-
site disposition effect, variations in the magnitude of the disposition measure between
sub-portfolios allow to infer what the prevailing violation pattern in fact is.

Second, depending on the domain-specific prevalence of benchmark violations,
the disposition measure varies in magnitude with the information level of initial in-
vestment decisions. Suppose, for instance, that benchmark violations are sufficiently
more prevalent in losses than gains. Then, well-informed professional traders would
have lower disposition measures than less informed households, even if professionals
were prone to the exact same benchmark violations as non-professionals. This alter-
native explanation for the common empirical finding that professionals tend to have
lower disposition measures is complementary to the standard explanation that this is
due to professionals being “more rational.” Again, since the prediction is reversed for
benchmark violations being sufficiently more prevalent in gains than losses, varying
magnitudes of the disposition measure are informative for the predominant violation
pattern.

Third, we show that, depending on the overall prevalence of benchmark viola-
tions, the disposition measure varies in magnitude with the investor’s attention or
curiosity, i.e., the duration between trading decisions.3 If overall benchmark violations
are sufficiently rare, as for professional investors, we find that more attention increases
the disposition measure. On the other hand, if benchmark violations are sufficiently
prevalent, as for “household” investors, more attention decreases the disposition mea-
sure. This result suggests a novel testable prediction where the effect of attention on
the disposition measure depends on the group of investors. Indeed, in line with our
prediction for non-professional investors, Dierick et al. (2019) find that more attentive
retail investors have significantly lower disposition measures. While demonstrating
that the disposition measure is not a proper measure of overall “mistakes,” this re-
sult further shows that variations in its magnitude can identify their incidence since
“low error” and “high error” types imply opposite signs of the disposition measure’s
comparative static with respect to attention.

Finally, our analysis reveals an interesting limit property: If the investor received
an infinite amount of information prior to trading, the disposition measure would
only depend on the benchmark violations described by the disposition effect. Thus,
the common interpretation of PGR > PLR in terms of a disposition effect – namely
the latter being a necessary condition for the former – turns out to be accurate in the
full-information limit, when the investor knows with certainty that a winner will out-
perform the market and a loser will underperform.

3Such financial attention is typically approximated by the frequency of trading account “log-ins”
(Karlsson et al., 2009; Gherzi et al., 2014; Sicherman et al., 2016; Olafsson and Pagel, 2018; Dierick et al.,
2019)

4



Related Literature. Our paper contributes to a vast literature in behavioral eco-
nomics and finance. By providing theoretical results on the link between the disposi-
tion measure and individual behavior, our paper is most closely related to theoretical
explanations of a positive disposition measure (e.g., Barberis and Xiong, 2009, 2012; In-
gersoll and Jin, 2012; Henderson, 2012; Hens and Vlcek, 2011; Meng and Weng, 2017).
There are two main differences to our approach.

On the one hand, while existing approaches derive model-specific results, the the-
oretical results we derive are model-independent and thereby offer a different and
complementary perspective: Instead of investigating whether and how a given choice
model can generate PGR > PLR, we analyze which benchmark violations are neces-
sary and sufficient for PGR > PLR. Our findings show that more violation patterns
than the disposition effect are able to generate PGR > PLR. Since potential explana-
tions for PGR > PLR have been selected on the basis of generating a disposition effect,
this implies that behavioral biases in addition to the ones proposed so far are potential
drivers of PGR > PLR.4 Thus, by enlarging the set of potential explanations, our paper
also contributes to an ongoing empirical debate on the causes of PGR > PLR. While
knowing these causes may be helpful to “de-bias” investors or to better understand
other aspects of their behavior, field as well as laboratory evidence has been inconclu-
sive in this regard. Importantly, our decomposition and the results of our comparative
statics analysis offer new ways to better distinguish among (this larger set of) poten-
tial explanations, so that the new insights of this paper help to empirically identify the
cause of a positive disposition measure.5

On the other hand, while being more general in other dimensions, previous the-
oretical approaches use setups with only one risky asset of known distribution (or
several identically distributed risky assets) and therefore neither take the overall mar-
ket environment into account nor do they leave scope for “momentum,” i.e., price
drift predictability. Having a different objective, we establish a novel setup that takes
the market environment into account and allows for “momentum,” and thereby in-

4Explanations based on both distorted utility functions and distorted belief formation have been
proposed. While the former mainly include variants of Kahneman and Tversky’s (1979) prospect theory
(for overviews see, e.g., Camerer, 2000; DellaVigna, 2009; Barberis, 2013), the latter mainly focus on an
irrational belief in mean reversion. These explanations have been selected on the basis of generating
a disposition effect. Also, the connection to other phenomena, such as underreaction to news, post-
earnings announcement drift, or “momentum” (Frazzini, 2006; Grinblatt and Han, 2005), is based on the
interpretation of PGR > PLR in terms of a disposition effect. Overall, the interpretation of PGR > PLR
as a disposition effect has long guided the literature.

5While going beyond the disposition measure, in Maier and Fischer (2021) we take a first step in
this direction and directly measure individuals’ benchmark violation propensities using a novel exper-
imental design. We find that our subjects are on average prone to holding losers and winners too long
– a violation pattern different from the disposition effect but one that nevertheless fulfills the necessary
condition for PGR > PLR that we identify here. Since different behavioral biases are further shown
to induce different violation patterns, empirically identifying the predominant violation pattern is in-
deed informative for the underlying psychological mechanism. For instance, our experimental subjects’
buying and selling behavior is only consistent with belief distortions motivated by ownership.
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corporates the main reason for why PGR > PLR is considered indicative of irrational
behavior (see Barberis, 2013).6 It is this setup that enables us to separate gains (losses)
from good (bad) news, so that violation patterns other than the disposition effect can
be identified.

By providing a rational benchmark, our paper further relates to empirical studies
which compare proportions of realized assets to a rational benchmark value (e.g., Mag-
nani, 2015; Fischbacher et al., 2017; Frydman et al., 2014, 2017). However, while previ-
ous approaches compare behavior only to a risk-neutral benchmark, our rational bench-
mark allows for individual-specific risk preferences and therefore not only prescribes
how agents should invest, but also whether they should undertake a risky investment.
Note that prominent explanations, such as prospect theory, explain PGR > PLR solely
through a change in risk attitudes between the buying and selling decision. Thus, tak-
ing risk preferences into account is essential when studying the causes of a positive dis-
position measure in terms of benchmark violations. In addition, our paper is markedly
distinct in using the rational benchmark to decompose the disposition measure, and it is
this decomposition that is central to the new insights we generate.

Outline. The remainder of this paper is structured as follows. Section 2 introduces
our theoretical framework. In this section, we present the general setup (Section 2.1),
define the well-known disposition measure (Section 2.2), present the rational bench-
mark (Section 2.3), show how the benchmark disposition measure can be computed
and used as comparison (Section 2.4), and, last but not least, decompose the disposi-
tion measure (Section 2.5). Section 3 illustrates our theoretical concept with a numer-
ical example. In Section 4, we derive model-independent results on the benchmark
disposition measure (Section 4.1), on the sign of the disposition measure (Section 4.2),
and on the magnitude of the disposition measure (Section 4.3). Formal proofs of these
results are all gathered in Appendix A, while Appendix B is devoted to the explicit
computation of the benchmark disposition measure. We conclude in Section 5.

2 Theoretical Framework

2.1 Setup

We model a stylized asset market with two risky assets A and B and a safe outside
option O for a finite horizon in discrete time, t ∈ {0, 1, ..., T}, from the viewpoint of
an individual investor.7 That is, asset prices are determined exogenously by indepen-

6Another reason why PLR should be larger than PGR is that differential tax rates on short-term versus
long-term capital gains and losses provide an incentive to sell losers quickly, but hold on to winners
(Constantinides, 1983, 1984).

7The opportunity to invest in a safe outside option is necessary to allow for individual-specific risk
preferences in the rational benchmark. Without this outside option, the rational benchmark could only
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dent stochastic processes Fh and Fl with known distributions, but it is unknown to
the investor which of the two risky assets adheres to which of the processes.8 Specif-
ically, Fh and Fl are binomial processes with corresponding appreciation probabilities
ph, pl ∈ (0, 1), where ph > pl. While the prices of the risky assets evolve along two
different binomial trees, the return rate of the safe asset is r ∈ R per period. For sim-
plicity, we normalize r to zero so that choosing O corresponds to not investing. While
our setup could accommodate any return rate of the safe asset, the two natural defini-
tions of what a gain and loss are – either in relation to the returns of the safe asset or
relative to the asset’s purchase price – coincide for the special case r = 0, which we use
as a simplification throughout.

The investor is assumed to have an uninformative prior q0 = 1/2 about the like-
lihood that asset A adheres to process Fh. As the two price processes differ in their
appreciation probabilities, observing price paths of both assets is informative about
which asset follows which process, i.e., price changes are noisy signals of asset quality.
Hence, there is scope for learning.9 Specifically, when counting the number of price
appreciations of assets A and B until period t as at and bt, the Bayesian posterior in
period t, qt, is fully determined by the difference ∆t := at − bt, i.e.,

qt =
(ph(1− pl))

∆t

(ph(1− pl))∆t + (pl(1− ph))∆t
.

Since the prior probability that asset A adheres to Fh is q0 = 1/2, ∆t = 0 induces an
uninformative Bayesian posterior in period t, i.e., qt = 1/2. Observing more (less) price
appreciations for asset A than B, i.e., ∆t > (<) 0, corresponds to a Bayesian posterior
of qt > (<) 1/2. The larger the absolute value of ∆t ∈ Z is, the more extreme is the
Bayesian posterior.

While asset prices are observed in every period, trading is restricted to periods τ

and τ′, with 0 < τ < τ′ < T. Hence, our setup can be interpreted as capturing an
investment episode, which represents one element of a longer aggregation of many
such elements. To simplify our further investigations, we impose equal time horizons
for both investment choices, and denote this common time horizon as n := T − τ′ =

τ′ − τ.10 Together with the novel feature of having two risky assets, the fact that in-

comprehend first-order stochastic dominance. On the other hand, two risky assets are necessary not
only for the rational benchmark to comprehend first-order stochastic dominance, but also to separate
gains from good news and losses from bad news (see below).

8Asset A adheres to process Fh if and only if asset B adheres to process Fl .
9Thus, we capture “momentum,” i.e., price drift predictability, in the simplest possible way, namely

by inducing an auto-correlation from the perspective of an individual investor without imposing a com-
plex path dependence of appreciation probabilities. Note that we do not require “momentum” to be
particularly strong. In fact, our results also hold when the “signal-to-noise ratio” is rather low (i.e., pl is
close to ph), so that the scope for learning is limited.

10Note that equality of investment horizons is an implicit assumption in settings where investors
trade in every period.
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vestors cannot trade in every period (in discrete time) allows for the existence of states
where an asset is in losses or gains for both good and bad news, so that we can separate
asset returns from quality signals.11 Note that for r = 0, an asset is in gains (losses)
when its price at t = τ′ is above (below) its price at t = τ, independently of whether
gains and losses are defined with respect to the safe outside option or with respect
to the asset’s purchase price. Good (bad) news refers to an increase (decrease) of the
likelihood of the investor’s asset to follow process Fh based on observed asset price
changes between t = τ and t = τ′. Let

g := min{k ∈N|uk dn−k > 1}

denote the minimum number of price appreciations within n periods for an asset to be
in gains (with u and d defined below).12 Then, the condition 1 < g < n guarantees
the existence of states where an asset is in losses (gains) despite good (bad) news. Im-
portantly, the separation of asset returns from quality signals is necessary for allowing
investors to make any kind of benchmark violation, not only the ones described by the
disposition effect. In particular, the possibility of realizing too early in losses or keeping
for too long in gains is precluded by assumption without such a separation, despite be-
ing a pervasive feature of real-world trading.13 Note that n > τ (n ≥ 2τ) is a necessary
(sufficient) condition for allowing investors to make any kind of benchmark violation.

With appreciation and depreciation increments of each process being proportional
to its value, the common time horizon n further assures that the same posterior beliefs
in periods τ and τ′ translate into identical gambles (proportional to wealth). As this
feature allows us to identify a rational benchmark incorporating individual-specific
risk attitudes, we assume that each process appreciates by a factor of u > 1 and depre-
ciates by a factor of d < 1.14 For simplicity, we further assume that an asset purchased

11In reality, investors cannot trade in subsequent periods either as some (continuous) time will always
have passed until the next trading decision.

12With an arbitrary return rate of the safe asset, and gains and losses being defined with respect to
the safe outside option, we would have g := min{k ∈N|uk dn−k > (1 + r)n}. Thus, with r = 0, the two
natural candidates for the reference point (see Barberis and Xiong, 2009) coincide.

13To see that, suppose the investor has invested in a risky asset. Until her next investment decision,
the asset’s price may go up or down. If there is no other risky asset, or if the next investment decision
is already in the subsequent period, a price increase (decrease) can never be bad (good) news, in the
former case because any gain (loss) is good (bad) news and in the latter case because any gain (loss)
is either good (bad) or no news (when the other asset’s price went in the same direction). Thus, it can
never be rational to sell (hold) an asset in gains (losses), given that the initial purchase decision was
rational. As a result, by construction an investor can only hold losers too long and sell winners too early,
but she can never hold winners too long or sell losers too early. Having two risky assets as well as more
than one period in between investment decisions relaxes this severe restriction, because the other asset’s
price increasing (decreasing) more often than the own asset’s price induces bad (good) news.

14These multipliers are necessarily identical for Fh and Fl , because otherwise observing price paths
for only one period would suffice to deterministically infer which asset follows which process. There are
three additional reasons for using relative rather than absolute price changes: First, for absolute price
increments, the asset that follows the low process can rationally be preferred in case it is sufficiently
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at time τ is always either in gains or in losses at time τ′, but never breaks even, i.e.,
that uαdβ 6= 1 for all α + β = n.

Finally, trading is restricted to binary choices, i.e., the investor must put her en-
tire current wealth in either asset A, B, or O. This simplification is crucial for estab-
lishing the rational benchmark respecting both first-order stochastic dominance and
individual-specific risk attitudes, as it reduces the degrees of freedom in the invest-
ment decision.15 Furthermore, such all-or-nothing investment decisions prevent fully
rational investors from exhibiting PGR > PLR by mere portfolio re-balancing, which
constitutes an important prerequisite when interpreting such an observation as a mis-
take.16 Note that since the investor is invested in at most one risky asset, the second
risky asset can be interpreted as representing the overall market environment. In the
final period T, all investments are automatically liquidated at current prices.17

In order to reduce notational load, we drop the time index of the above introduced
notations and use the following shorthands instead:

aτ =: a bτ =: b ∆τ =: ∆ qτ =: q

aτ′ =: a′ bτ′ =: b′ ∆τ′ =: ∆′ qτ′ =: q′.

2.2 Disposition Measure

Going back to Odean (1998), the literature commonly uses a positive disposition mea-
sure PGR > PLR to identify the disposition effect, where PGR and PLR denote either
the proportion or the probability of gains and losses realized, respectively. In the former
case, PGR and PLR are defined from an “ex-post” perspective, i.e., as the number of
assets that were realized in gains and losses divided by the number of all assets in
gains and losses, respectively. In the latter case, PGR and PLR are defined from an
“ex-ante” perspective, i.e., as the probability to realize an asset conditional on being in

cheap. In contrast, using relative price changes makes the asset following process Fh always more at-
tractive for a rational investor, regardless of the absolute price level. Second, relative price changes
guarantee that asset prices always remain positive for arbitrary realizations of the price processes and
any number of periods. And third, the number of ups and downs still uniquely determines an asset’s
final price, regardless of the order of ups and downs. This is due to the commutativity of multiplication.

15While all-or-nothing selling decisions represent a common simplifying assumption in theoretical
approaches (e.g., Ingersoll and Jin, 2012), Henderson (2012) shows that for prospect theory investors it
is indeed an optimal strategy. Also, empirical evidence supports this assumption as individual investors
indeed sell entire asset positions most of the time (Feng and Seasholes, 2005; Shapira and Venezia, 2001;
Kaustia, 2010; Calvet et al., 2009).

16Note that the empirical literature has ruled out portfolio re-balancing (e.g., of CRRA investors)
as an explanation for PGR > PLR, as the disposition measure is similar when restricting the data to
sales of entire asset holdings of a stock (Odean, 1998). Moreover, re-balancing is a rather sophisticated
strategy, but it is the less sophisticated (Dhar and Zhu, 2006) and low-IQ (Grinblatt et al., 2012) investors
who have larger measures. Also, disposition measures tend to be larger for individual rather than
institutional or professional investors (Brown et al., 2006; Barber et al., 2007; Chen et al., 2007; Choe and
Eom, 2009; Calvet et al., 2009).

17We follow the literature and prohibit leverage, which is uncommon for individual investors.
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gains and losses, respectively. While in our setup the ex-ante approach is equivalent
to the ex-post approach at the aggregate level for an infinite number of homogenous
investors, it avoids problems that arise with the ex-post approach at the individual
level for heterogeneous investors (see, e.g., Feng and Seasholes, 2005). Our investiga-
tion therefore uses the more robust ex-ante approach: we calculate an ex-ante expected
disposition measure of an individual investor in a single trading period τ′, based on
complete contingent choice rules and the true underlying price processes of the assets.

First, we define an investor’s complete contingent choice rules of which asset to
choose in periods τ and τ′, conditional on (the differences in) both assets’ price appre-
ciations until then, as

f : {−τ, ..., τ} −→ {A, B, O}, ∆ 7−→ z,

f ′ : {−τ, ..., τ} × {A, B, O} × {−τ′, ..., τ′} −→ {A, B, O}, (∆, z, ∆′) 7−→ z′,

where z and z′ denote the investment decision in periods τ and τ′, respectively.18 We
calculate the disposition measure as the difference of the ex-ante probabilities to realize
a gain or loss. That is, realizing gains or losses are probability events with respect to
the probability measure that is induced by the true price processes of the risky assets.

Second, we (slightly abuse notation and) define the auxiliary events of basic actions
of an investor who adheres to choice rules f and f ′ as

A := {buy A at t = τ} = {(a, b, a′, b′)| f (∆) = A},
A′ := {buy A at t = τ′} = {(a, b, a′, b′)| f ′(∆, f (∆), ∆′) = A}.

The events B, B′, O, and O′ are defined analogously. Note that the actions of choosing
either asset A, B, or O are state contingent, which is captured by the individual choice
rules f and f ′. That is, each event is the set of precisely those contingencies, in which
the respective action is undertaken. As the above three basic actions capture the entire
universe of possible states of the world, Pr(A ∪ B ∪O) = Pr(A′ ∪ B′ ∪O′) = 1 holds.

18E.g., given that E[Fh|n] + E[Fl |n] > 0 the choice rules of a risk-neutral Bayesian EUT agent are

f (∆) =


A if ∆ > 0
(0.5 ◦ A, 0.5 ◦ B) if ∆ = 0
B if ∆ < 0

and f ′(∆, z, ∆′) =


A if ∆′ > 0
z if ∆′ = 0
B if ∆′ < 0.

Note that the choice rule f ′ of the risk neutral Bayesian EUT type in period τ′ is independent of its
argument ∆, and depends on its argument z only by convention. However, these arguments are crucial
for the choice rules of non-standard models.
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Third, we deduce events of relative actions, i.e., actions at time τ′ in relation to the
initial purchase decision at time τ:

KA := {buy A at t = τ and keep it at t = τ′} = A ∩ A′,

SA := {buy A at t = τ and switch to B at t = τ′} = A ∩ B′,

QA := {buy A at t = τ and liquidate it at t = τ′} = A ∩O′.

The events KB, SB, and QB are defined analogously. Since PGR and PLR are not tied to
specific assets (i.e., A or B), we need to define the following compound events:

K := {buy A or B at t = τ and keep it at t = τ′} = KA ∪ KB,

S := {buy A or B at t = τ and switch to the other at t = τ′} = SA ∪ SB,

Q := {buy A or B at t = τ and liquidate it at t = τ′} = QA ∪QB.

Furthermore, PGR and PLR do not treat the actions switch and liquidate differentially,
but view them both as realizations,

R := {buy A or B at t = τ and realize (i.e., sell) it at t = τ′} = S ∪Q.

While differentiating S and Q is not necessary for the disposition measure, the distinc-
tion will become crucial for defining our benchmarks and for decomposing PGR and
PLR.

Fourth, we introduce gain and loss states: An asset is in gains if its price at time τ′

exceeds its price at time τ. Otherwise, it is in losses. As already introduced, g denotes
the minimum number of price appreciations within n periods for an asset to be in
gains, so we can define the following gain and loss events as

GA := {asset A is in gains} = {(a, b, a′, b′)|a′ − a ≥ g},
LA := {asset A is in losses} = {(a, b, a′, b′)|a′ − a < g},
G := {own asset is in gains} = (A ∩ GA) ∪ (B ∩ GB),

L := {own asset is in losses} = (A ∩ LA) ∪ (B ∩ LB).

As above, GB and LB are defined analogously to GA and LA in the definitions of G and
L.

Finally, we are able to state

11



Definition 1 (Disposition Measure) The investor’s (ex-ante expected) disposition measure
DMi with i ∈ {1, 2} is defined as

DM1 := PGR− PLR and DM2 := PGR
PLR − 1, where

PGR := Pr(realize own asset|own asset in gains) = Pr(R|G) = Pr(G∩R)
Pr(G)

,

PLR := Pr(realize own asset|own asset in losses) = Pr(R|L) = Pr(L∩R)
Pr(L) .

As both measures are used in the literature, throughout we investigate the disposition
measure defined either as a difference between PGR and PLR (DM1) or as a ratio of
the two (DM2). Note that in both cases DMi > 0 ⇐⇒ PGR > PLR holds. All our
results hold independently of which definition is used.19

2.3 Rational Benchmark

A key contribution of our paper is its ability to derive a complete contingent bench-
mark of what action should be undertaken in which state of the world. Our bench-
mark is based on first-order stochastic dominance as well as individual-specific risk
preferences.

First, we define benchmark events of first-order stochastic dominance (FOSD) viola-
tions, i.e., we collect states in which some specified action constitutes such a violation.
We impose the simplifying convention that switching assets is a first-order violation in
case of uninformative posteriors.20 Then,

VA := {A is 1st-order dominated at t = τ′} = {(a, b, a′, b′)|a′ < b′},
VK := {own asset is 1st-order dominated at t = τ′} = (A ∩VA) ∪ (B ∩VB),

VS := {other asset is 1st-order dominated at t = τ′} = (A ∩VC
A ) ∪ (B ∩VC

B ),

where VB is defined analogously to VA in the above definitions of VK and VS, and VC
A

and VC
B denote the complements of VA and VB, respectively. Note that these events do

not collect states where the investor chooses an action which is a first-order violation,
but states where some specified action would be a violation. For instance, VK collects
the states in which keeping one’s own asset at time τ′ would constitute a first-order
violation.

19Further, note that although PGR and PLR are defined as probabilities, we sometimes refer to them
as proportions for reasons of readability.

20This assumption ensures that there is a first-order benchmark in all states of the world. It becomes
necessary only due to the discrete time structure of our setup – in a time-continuous world, uninforma-
tive states are zero-probability events. In our time-discrete world, the convention that a rational investor
should keep her asset for uninformative Bayesian posteriors would be implied, for instance, by an arbi-
trary small (physical or mental) transaction cost. The larger n is, the less likely are states in which the
Bayesian posterior is uninformative, so that the convention is not restrictive in practice.
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Second, besides violations of FOSD, investors may exhibit inconsistent risk pref-
erences between the two trading periods τ and τ′. This gives rise to an individual-
specific second-order benchmark of which risks should be accepted at time τ′, given
own choices at time τ. Note that changing risk preferences are one possible non-
rational explanation of the disposition effect, e.g., in prospect theory. Therefore, we
need to abstract away from such changes in the rational second-order benchmark.
However, this second-order benchmark is only meaningful for investors whose ini-
tial purchase decisions are monotonic in the informativeness of states. Thus, while
our first-order benchmark is always applicable as both assets can always be ordered in
terms of FOSD, applying our second-order benchmark requires an assumption on the
investor’s choice rule in period τ: choice rule f is monotonically increasing, i.e.,

∃ q ∈ [1/2, 1) with either q > 1/2 s.t. f (∆) =


A if q ≥ q

O if 1− q < q < q

B if q ≤ 1− q,

or q = 1/2 s.t. f (∆) =


A if q > 1/2

(0.5 ◦ A, 0.5 ◦ B) if q = 1/2

B if q < 1/2.

This assumption imposes minimal requirements on rationality that are fulfilled by all
models in which agents, prior to asset ownership, update in the same direction as
Bayesians, do so similarly for both assets, and have monotone preferences.21 As we
show in Maier and Fischer (2021), these minimal requirements are fulfilled by almost
all behavioral biases with a potential to generate DMi > 0.

We can now define benchmark events of second-order risk preference (SORP) vio-
lations, which collect states where some specified action constitutes a risk preference
inconsistency:

VQ := {liquidate own asset is a 2nd-order violation at t = τ′}
= {(a, b, a′, b′)| f (sgn(∆′)min{|∆′|, τ}) 6= O},

VI := {invest in risky asset is a 2nd-order violation at t = τ′}
= {(a, b, a′, b′)| f (sgn(∆′)min{|∆′|, τ}) = O}.

21The assumption that the choice rule is symmetric (i.e., the same q applies to both risky assets) is only
used for simplicity. All results we derive would equally hold if the thresholds for assets A and B were
different. However, since this would imply an irrationality which is independent of asset ownership –
e.g., because initial priors would not be uninformative or one of the assets is somehow “favored” over
the other – we impose symmetry for the rational second-order benchmark.
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Again, these events do not refer to states where the investor chooses an action which is
a second-order violation, but to states where some specified action would be a violation.
Thus, VQ collects states where investment at time τ′ offers an identical (proportional)
gamble as some initial investment opportunity at time τ, which would have been ac-
cepted according to choice rule f , so that liquidating constitutes a risk preference incon-
sistency. Analogously, VI collects states where investment at time τ′ offers an identical
(proportional) gamble as some initial investment opportunity at time τ, which would
have been rejected according to choice rule f . This benchmark is normative from the
point of view of a Bayesian EUT investor with CRRA preferences.22

Combining the first- and second-order benchmarks provides us with the full bench-
mark. Intuitively, in each state of the world there is a first-order benchmark of stochas-
tic dominance as well as a second-order benchmark of risk preference. As above, we
introduce benchmark events of combinations of FOSD and SORP violations:23

VKQ := {keep is a 1st-order and liquidate a 2nd-order violation} = VK ∩VQ,

VKS := {keep is a 1st-order and switch a 2nd-order violation} = VK ∩VI ,

VSK := {switch is a 1st-order and keep a 2nd-order violation} = VS ∩VI ,

VSQ := {switch is a 1st-order and liquidate a 2nd-order violation} = VS ∩VQ.

Again, these events do not refer to states where the investor chooses an action which
is a violation, but to states where two specified actions would be a first- or second-order
violation. These events constitute a full benchmark in the sense that they pin down
a unique action that should be undertaken for each state of the world. For instance,
in the event VKQ, switching to the other risky asset is the only action that neither con-
stitutes a first-order nor a second-order violation and therefore represents the unique
appropriate (i.e., rational) action. As usual, we specify these benchmark events per
domain. For example, GVKQ := G ∩ VKQ is the event where keeping is a first-order
and liquidating a second-order violation in gains. Throughout the paper, we use the
concatenation of events as a shorthand for their intersection.

22Note that preferences satisfying expected utility theory (EUT) and constant relative risk aversion
(CRRA) constitutes the standard assumption in the literature for rational investors.

23Note that the second-order investment violations are tied to investing into the first-order dominant
asset. While investing into the first-order dominated asset could be seen as a second-order violation
as well, we chose to define the various violations without any overlap. That is, for each of the four
benchmark events, exactly one action is a first-order violation, exactly one (other) action is a second-
order violation, and the remaining third possible action is the unique appropriate action. Therefore,
first- and second-order violations are in fact hierarchical, i.e., we regard a decision as a second-order
violation only if it is no first-order violation. For liquidation, this is trivial, as liquidating can never be a
first-order violation. For investing, however, we have to impose the above restriction.
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Furthermore, we write PGX and PLX as shorthands for the conditional probabili-
ties Pr(X|G) and Pr(X|L) of an event X, conditional on domain G and L, respectively.24

We call these conditional probabilities of the above introduced benchmark events vi-
olation possibilities. For example, PGVKQ := Pr(VKQ|G) is the probability mass of all
states in which keeping and liquidating are possible violations, conditional on being in
gains.

2.4 Benchmark Disposition Measure

These violation possibilities (or benchmark event probabilities) allow us to derive pro-
portions of gains and losses that should be realized, which we denote as PGR and PLR,
respectively.

Definition 2 (Benchmark Disposition Measure) The investor’s (ex-ante expected) bench-
mark disposition measure DMi with i ∈ {1, 2} is defined as

DM1 := PGR− PLR and DM2 := PGR
PLR
− 1, where

PGR := Pr(should realize own asset|own asset in gains) = ∑
V∈{VKQ,VKS,VSK}

Pr(V|G)

= PGVKQ + PGVKS + PGVSK,

PLR := Pr(should realize own asset|own asset in losses) = ∑
V∈{VKQ,VKS,VSK}

Pr(V|L)

= PLVKQ + PLVKS + PLVSK.

Intuitively, an asset should be realized whenever either switching or liquidating is the
unique appropriate action. This is the case when either keeping and liquidating (VKQ),
keeping and switching (VKS), or switching and keeping (VSK) constitute the respective
first- and second-order violation possibilities. Analogously, we define the proportions
of gains and losses that should be kept as PGK = PGVSQ and PLK = PLVSQ, respec-
tively. Our benchmark is complete in the sense that it specifies a unique appropriate
action for each state of the world, both in gains and losses. Hence, all violation possi-
bilities of a domain add up to one, and the proportions of gains or losses that should
be realized and that should be kept add up to one as well:

PGVKQ+PGVKS+PGVSK+PGVSQ = 1 so that PGR+PGK = 1,

PLVKQ +PLVKS +PLVSK +PLVSQ = 1 so that PLR+PLK = 1.

Importantly, our framework allows to fully formalize PGR and PLR (and hence also
PGK and PLK), so that we can explicitly compute an investor’s benchmark disposition

24Note that this notation is in line with our above definitions of PGR and PLR as probabilities of
realizing one’s asset, conditional on being in gains and losses, respectively.
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measure DMi. Appendix B shows how this computation can be performed for any
given parameterization of the stochastic environment and for any given risk attitude
of the investor.

While observing DMi > 0 tells us that relatively more gains than losses are real-
ized, it cannot identify whether this is due to the fact that more gains or less losses are
realized than should be realized. For such an identification, we need to define a dispo-
sition measure in gains (DMGi) and losses (DMLi) as the deviations in actually realized
gains and losses compared to the domain-specific benchmark: DMG1 := PGR− PGR,
DML1 := PLR− PLR and DMG2 := PGR

PGR
− 1, DML2 := PLR

PLR
− 1. The common un-

derstanding is that DMGi > 0 and DMLi < 0, i.e., more winners and fewer losers are
actually realized than should be realized. Note, however, that even if DMGi > 0 and
DMLi < 0, it may still be the case that DMi < 0. The reason is that DMi is always
negative (as we show below in Proposition 1) and, indeed, can be so negative that
both domain-specific disposition measures are simply not large enough to induce an
aggregate disposition measure DMi > 0. Measuring

DMi − DMi or DMi
DMi
− 1

instead allows to resolve this problem, because DMGi > 0 and DMLi < 0 implies
DMi > DMi.25 Thus, comparing DMi to its negative rational benchmark value DMi

clearly yields a more sensitive measure than comparing it to zero (as usually done), as
it can identify aggregate disposition-prone behavior even for cases where DMi < 0.

This insight seems particularly relevant for experiments: Since the value of DMi

depends on the parametrization of the stochastic environment chosen by the experi-
menter, a constant positive deviation of DMi from its rational benchmark value DMi

may lead to DMi > 0 in some environments, but not in others. As a result, differences
in calibrations may help explain why some experimental studies find DMi > 0 while
others do not. Thus, in experimental studies, comparing DMi to its rational benchmark
value seems more appropriate than comparing it to zero in order to identify aggregate
disposition-prone behavior. Indeed, some experimental studies provide such a bench-
mark comparison under the assumption of risk neutrality (e.g., Fischbacher et al., 2017;
Frydman et al., 2014, 2017).

In contrast, when the value of DMi is unknown, as is typically the case in field
studies, it is natural to compare DMi to zero. Actually, the comparison to zero even
has an important advantage: as we show below (in Proposition 5), unsystematic bench-
mark violations, such as randomization, are not able to generate DMi > 0, whereas
DMi is still larger than its rational benchmark value for any (parametrization of the)

25This is easily verified by noting that DMi > DMi ⇐⇒ DMGi > DMLi. Thus, DMGi > 0 and
DMLi < 0 implies DMi > DMi, while DMi > DMi implies DMGi > 0 or DMLi < 0. Also, note that
DMi > 0 is sufficient but not necessary for DMi > DMi, because DMi < 0 (see Proposition 1 below).
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stochastic environment. Thus, the only way to identify systematically biased behavior
via the disposition measure’s sign is by comparing DMi to zero.

While the comparisons of DMi to both zero and DMi have their eligibility, the
central disconnect to the disposition effect that we uncover in this paper applies to
both measures: all our results on benchmark violation propensities (Propositions 2
to 4 below) hold similarly no matter whether DMi is compared to zero or its negative
rational benchmark value. Thus, the disconnect we uncover is not a result of comparing
DMi to zero, but is rather due to misinterpreting an observed aggregate frequency as
individual propensity.26 Our decomposition presented next facilitates this insight.

2.5 Decomposition

We now introduce violations of the above introduced benchmarks. A benchmark vi-
olation occurs when an action is chosen that constitutes a violation. Hence, the inter-
sections of the four full benchmark events with the events of one of their respective
violating actions give rise to eight violation events. Analogously, we define the four
events of non-violation as intersections of the benchmark events with their respective
unique appropriate action. Table 1 summarizes these action-benchmark combinations.

Table 1: Action-Benchmark Combinations

1st-order violations KVKQ KVKS SVSK SVSQ
2nd-order violations QVKQ SVKS KVSK QVSQ

No violations SVKQ QVKS QVSK KVSQ

Note that each column of Table 1, i.e., each of the four benchmark events, is in-
tersected with one of the three possible actions K, S, and Q, but depending on the
benchmark (column), different actions induce a first-order, second-order, or no viola-
tion. In particular, all entries of the table are probability events themselves, defined
according to the above introduced concatenation notation. As always, these events are
defined for gains and losses, and their domain-conditional probabilities are denoted in
the familiar PGX-PLX-notation.

26Note that this applies similarly to the domain-specific disposition measures DMGi and DMLi. For
instance, suppose that both PGR and PGR were 50%. Then, the disposition measure in gains would be
zero, but every individual investment choice may still constitute a benchmark violation. Even when the
exact right number of winning assets is sold, it may comprise exactly those assets that should have been
kept, while the kept assets are the ones that should have been sold.
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This gives rise to a decomposition of PGR and PLR into individual action-benchmark
combinations:

PGR = PGSVKQ + PGSVKS + PGSVSK + PGSVSQ

+ PGQVKQ + PGQVKS + PGQVSK + PGQVSQ,

PLR = PLSVKQ + PLSVKS + PLSVSK + PLSVSQ

+ PLQVKQ + PLQVKS + PLQVSK + PLQVSQ.

Clearly, a realization occurs whenever the investor switches to the other risky asset or
liquidates her own asset, which are possible actions for each of the four benchmark
events. In this decomposition of PGR (PLR), the probabilities PGSVKQ, PGQVKS, and
PGQVSK (PLSVKQ, PLQVKS, and PLQVSK) refer to realizations that are appropriate
actions, while the other five terms refer to realizations that are benchmark violations.
We call these probabilities of benchmark violations, conditional on their domain, vio-
lation frequencies. For instance, we refer to PGKVKQ = Pr(KVKQ|G) as the frequency of
keeping one’s asset in gains when it is a first-order violation to do so, while liquidating
would have been a second-order violation, and switching the appropriate action.

Note, however, that the disposition effect – or any other benchmark violation pat-
tern of an investor – refers to the probabilities of benchmark violations, conditional on
both their domain and their benchmark, which we call violation propensities. We denote
these propensities by the Greek letter referring to the committed violation, indexed by
the benchmark on which it is conditioned:

κKQ:=Pr(K|VKQ), λKQ:=Pr(Q|VKQ),

κKS :=Pr(K|VKS), σKS :=Pr(S|VKS),

κSK :=Pr(K|VSK), σSK :=Pr(S|VSK),

σSQ :=Pr(S|VSQ), λSQ :=Pr(Q|VSQ).

For instance, κKQ is the propensity to keep one’s asset when it is a first order-violation
to do so, while liquidating would have been a second-order violation, and switching
the appropriate action. Note that for each of the four benchmark events, the propensi-
ties of the first-order violation, second-order violation, and appropriate action add up
to one, as they cover all possible actions (keep, switch, and liquidate). Table 2 gives
an overview of all propensities (of violations and appropriate actions) per benchmark
event.27

All violation propensities are canonically defined for gains and losses. Note that
each violation frequency is the product of its respective violation propensity and violation

27Note that we abstained from using the same notation for the propensities of appropriate actions
(e.g., σKQ), so that Greek letters are “reserved” for benchmark violations throughout.
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Table 2: Propensities per Benchmark Event

VKQ VKS VSK VSQ

K κKQ κKS κSK 1− σSQ − λSQ
S 1− κKQ − λKQ σKS σSK σSQ
Q λKQ 1− κKS − σKS 1− σSK − κSK λSQ

possibility (i.e., the likelihood of the underlying benchmark event), e.g., PGKVKQ =

κG
KQ × PGVKQ. Hence, we can restate the decomposition of PGR and PLR to obtain

Definition 3 (Decomposition) The disposition measure DMi can be decomposed such that

PGR = PGVKQ(1− κG
KQ) + PGVKS(1− κG

KS) + PGVSK(1− κG
SK) + PGVSQ(σ

G
SQ + λG

SQ),

PLR = PLVKQ(1− κL
KQ) + PLVKS(1− κL

KS) + PLVSK(1− κL
SK) + PLVSQ(σ

L
SQ + λL

SQ).

The decomposition of PGR (PLR) consists of four components. First, the frequency
of gains (losses) that should not be kept and not be liquidated, and that are not kept.
Second, the frequency of gains (losses) that should not be kept and not be switched,
and that are not kept. Third, the frequency of gains (losses) that should not be switched
and not be kept, and that are not kept. And fourth, the frequency of gains (losses) that
should not be switched and not be liquidated, but that are switched or liquidated.

Note that there are three violation propensities in both gains and losses that do not
appear to be relevant for the disposition measure at all, namely σSK, σKS, and λKQ. The
intuition for this is straightforward: These violations constitute some asset realization
in states of the world where the other possible asset realization would have been the
appropriate action. For instance, σSK is the propensity to switch assets when it is a
first-order violation to do so, and liquidating the asset would have been the appropri-
ate action. However, by its very definition, it makes no difference for the disposition
measure whether the asset was appropriately realized (here, liquidated), or inappro-
priately so (here, switched). It only makes a difference whether it was realized or kept.

Restricting attention to those violations that appear relevant in our decomposition,
for ease of interpretation we subsequently distinguish “conventional” from “uncon-
ventional” violations, thereby referring to the disposition effect.

Definition 4 (Conventional & Unconventional Violations) The domain-specific propen-
sities κL

KQ, κL
KS, κL

SK and σG
SQ, λG

SQ are called “conventional” violation propensities. Likewise,
κG

KQ, κG
KS, κG

SK and σL
SQ, λL

SQ are called “unconventional” violation propensities.

As stated in Definition 4, conventional violations refer to the benchmark violations
that constitute the disposition effect, i.e., realizing (either switching or liquidating) a
gain that should be kept and keeping a loss that should be realized. On the other
hand, unconventional violations refer to the exact opposite and commonly disregarded
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benchmark violations of realizing a loss that should be kept and of keeping a gain that
should be realized.

3 Illustration

In this section, we present a numeric example to illustrate our decomposition of PGR
and PLR. Section 4 proceeds with our theoretical results. The example applies a spe-
cific parameterization of the stochastic environment where

T = 10, τ = 2, τ′ = 6, ph = 0.55, pl = 0.45, u = 1.3, d = 0.8,

so that the high process Fh yields three times the expected return of the low process
Fl per period.28 We further consider a specific, risk averse investor (called Nat), who
prefers to invest in a risky asset whenever its likelihood to be the “good” asset exceeds
2/3.29 More specifically, Nat’s threshold of q = 2/3 (just like any other threshold lying
between 0.6 and 0.69) translates into buying asset A for ∆ ≥ 2, asset B for ∆ ≤ −2,
and no asset for −1 ≤ ∆ ≤ 1. This buying behavior and its relation to ∆ and the
corresponding Bayesian posteriors is illustrated by the top three rows in Figure 1.

Figure 1: Illustrative Example

Benchmark Event
Corresponding ∆′-Events

VKQ

∆′ = −2
VKS VSK VSQ

∆′ = −1 0 ≤ ∆′ ≤ 1 2 ≤ ∆′ ≤ 6

invest in B | investing invest in A | investing

invest investnot invest
FOSD

SORP

Rational Benchmark
for Selling Decision
(in t = τ′)

-2 -1 0 1 2 3 4 5 6
Difference in Ups until t = τ′ (∆′)

0 1
Bayesian Posterior qt

0 1 2-1-2
Difference in Ups until t = τ (∆)

Buying Decision invest in B not invest invest in A
(in t = τ)

1/3 1/2 2/3

28Precisely, Fh yields an expected return of 0.55× 0.30− 0.45× 0.20 = 7.5% per period, whereas Fl
yields only 0.45× 0.30− 0.55× 0.20 = 2.5%. Note that compounding amplifies this effect over time.
Over the maximum number of eight periods, the high process yields an expected return of 1.0758 − 1 =
78.35% and the low process 1.0258 − 1 = 21.84%.

29Assuming an investor is Bayesian, any such likelihood threshold corresponds to a specific risk
aversion coefficient. If the investor was not Bayesian, this coefficient would be over- or under-estimated
(in terms of utility curvature), but the threshold would still measure her risk attitude appropriately
(stemming from utility curvature and biased beliefs).
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Next, we suppose that ∆ = 2 realizes (indicated by the grey circle around ∆ = 2
in Figure 1), so that Nat buys asset A in period τ according to his choice rule f . Until
period τ′, prices of both assets go up or down in each period, so ∆′ (see the fourth row
in Figure 1) can take any value between −2 (A never and B always appreciates) and 6
(A always and B never appreciates).

Rational Benchmark. The fifth row in Figure 1 shows Nat’s rational benchmark
for his selling decision in period τ′. The rational benchmark consists of two dimen-
sions. First, a rational investor should never invest in (i.e., never switch to or keep
holding) the asset that is less likely to be the “good” asset, independent of what she
owned before, as doing so constitutes a first-order stochastic dominance violation. Thus,
by first-order stochastic dominance (FOSD), conditional on investing in a risky asset,
any rational investor should invest in asset A (B) for Bayesian posteriors q′ above (be-
low) 1/2. In terms of our example, Nat should not keep asset A for ∆′ < 0 and should
not switch to B for ∆′ ≥ 0 by FOSD. Second, a rational investor with EUT preferences
satisfying CRRA should not change her “uninvested” investment threshold – in our
example to invest if and only if qt 6∈ (1/3, 2/3) – because for a fixed belief, investing in-
duces the same gamble proportional to wealth in both trading periods τ and τ′. Thus,
changing this investment strategy means the investor must have changed her risk pref-
erence from the buying to the selling decision, and doing so constitutes a second-order
risk preference violation (according to her individual benchmark derived from her buy-
ing behavior).30 Thus, while FOSD postulates how to invest conditional on investing,
an investor’s second-order risk preference (SORP) rather postulates whether to invest.
Taking both first- and second-order concerns into account, Nat should keep asset A for
∆′ ≥ 2, i.e., for no news or good news, but should not keep his asset for bad news:
he should switch to asset B for ∆′ = −2 and liquidate asset A for 1 ≥ ∆′ ≥ −1.
Any diverging behavior constitutes either a first- or a second-order benchmark viola-
tion. Thus, both FOSD and SORP together determine the full rational benchmark of a
Bayesian EUT agent with CRRA.

Benchmark Disposition Measure. Note that an investor can always keep her as-
set (K), liquidate her asset (Q), or switch to the other asset (S). In our example, Nat
purchased asset A in period τ, so that K, Q, and S correspond to choosing A, O, and
B in period τ′. A benchmark event collects states in which a specific action constitutes a
first-order and another specific action constitutes a second-order violation. Therefore,
these benchmark events pin down a full benchmark that specifies a unique appropri-
ate action for each possible state of the world. For instance, in the event VKQ switching

30For instance, Nat may shy away from investing when he should invest, e.g., by liquidating his asset
for some likelihood larger than 2/3. Or, he may invest when he should not according to his benchmark,
e.g., by keeping his asset for some likelihood between 1/2 and 2/3. These are second-order benchmark
violations as they require a change in risk attitude between the initial purchase and the selling decision
to be rationalized (either via changed utility curvature or changed updating).
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to the other risky asset is the only action that neither constitutes a first-order nor a
second-order violation. In this benchmark event, keeping the asset would be a first-
order violation (i.e., would violate FOSD) and liquidating would be a second-order
violation (i.e., would violate SORP). Each benchmark event V ∈ {VKQ, VKS, VSK, VSQ}
comprises those ∆′ that induce the same benchmark, and the set of all benchmark
events {VKQ, VKS, VSK, VSQ} captures all possible states of the world. The bottom row
in Figure 1 displays these benchmark events and their corresponding ∆′ in our exam-
ple.

Note two important properties. First, while the probability mass of each ∆′ is
solely determined by the stochastic environment, an agent’s choice rule f determines
which ∆′ are summarized within the same benchmark event. Second, because ∆′

can result from different combinations of ups and downs of both assets, the own
asset may be either in gains or losses for a given ∆′. Therefore, a given ∆′ may oc-
cur with positive probability both in gains and losses.31 As each benchmark event
comprises one or several ∆′, we can thus further determine the probabilities with
which a benchmark event occurs in gains and losses. For instance, in our example
the corresponding probability masses of (VKQ, VKS, VSK, VSQ) are (0, 0, 0.101, 0.658) in
gains and (0.002, 0.016, 0.141, 0.082) in losses, so that, e.g., Pr(VSQ|G) = 0.658

0.759 and
Pr(VSQ|L) = 0.082

0.241 .32 This implies that an investor can realize her asset (i.e., switch
or liquidate) too readily or keep her asset for too long in both gains and losses.

The proportions of gains and losses that should be realized can then be easily con-
structed from the benchmark event probabilities of exactly those benchmark events for
which realizing constitutes the unique appropriate action. Thus, in our example we
have

PGR = ∑
V∈{VKQ,VKS,VSK}

Pr(V|G) = 0
0.759 +

0
0.759 +

0.101
0.759 = 0.13,

PLR = ∑
V∈{VKQ,VKS,VSK}

Pr(V|L) = 0.002
0.241 +

0.016
0.241 +

0.141
0.241 = 0.66,

31For instance, given that ∆ = 2, ∆′ = 3 can be generated through various price appreciations of asset
A vs. asset B between the two investment periods τ and τ′, denoted (a′ − a, b′ − b): (1, 0), (2, 1), (3, 2),
and (4, 3). Although all these states represent “good news” in the sense that the likelihood for Nat’s
own asset being the better asset has increased since purchase (from 69% to 77%), in the state (1, 0) his
asset is in losses, while his asset is in gains in the other three states. In fact, for every possible ∆′, we can
calculate the probabilities with which this event generates a gain and loss state: e.g., conditional on A
being the better asset, the corresponding mass of ∆′ = 3 of the four states (1, 0), (2, 1), (3, 2), and (4, 3)
is 0.018, 0.110, 0.110, and 0.018 (e.g., the last one is equal to 4 ∗ 0.554 ∗ 0.453 ∗ (1− 0.45)). Thus, the mass
of ∆′ = 3 is 0.018 in losses and 0.110 ∗ 2 + 0.018 = 0.238 in gains.

32While these specific probabilities are derived under the condition that asset A follows Fh, we could
equally assume that B follows Fh. For all our results, it is completely irrelevant which of the two is the
“good” asset.
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so that DM1 = PGR − PLR = −0.53 and DM2 = PGR
PLR
− 1 = −0.80. Note that the

benchmark disposition measure is negative. Proposition 1 below establishes that this
holds in general, regardless of the parameterization of the stochastic environment and
the investor’s risk attitude (captured by choice rule f ).

Decomposition. Finally, we we apply our decomposition of PGR and PLR to the
example. Both PGR and PLR consist of their respective probabilities of benchmark
events, each multiplied with the probability to realize an asset (i.e., switch or liquidate)
given the benchmark event, i.e.,

PGR = Pr(R|G) = ∑
V∈{VKQ,VKS,VSK ,VSQ}

Pr(V|G)× Pr(R|V, G),

PLR = Pr(R|L) = ∑
V∈{VKQ,VKS,VSK ,VSQ}

Pr(V|L)× Pr(R|V, L),

where Pr(R|V, D) = Pr(S|V, D) + Pr(Q|V, D) in domain D ∈ {G, L}. The first factor
in the products represents the probability of a benchmark event and the second factor
represents the probability to realize an asset given that benchmark event. While the
former is influenced by the stochastic environment, the latter is determined by indi-
vidual behavior.

Importantly, since K, S, and Q cover the entire action space, we have Pr(K|V, D) +

Pr(S|V, D) + Pr(Q|V, D) = 1. As a result, the (conditional) realization probability
can be expressed solely in terms of violation propensities for all V. More specifically,
Pr(R|V, D) can be expressed as 1 − Pr(K|V, D) for V ∈ {VKQ, VKS, VSK}, and as
Pr(S|V, D) + Pr(Q|V, D) for V = VSQ. This yields

PGR = ∑
V∈{VKQ,VKS,VSK}

Pr(V|G)
(

1− Pr(K|V, G)
)

+Pr(VSQ|G)
(

Pr(S|VSQ, G) + Pr(Q|VSQ, G)
)

,

PLR = ∑
V∈{VKQ,VKS,VSK}

Pr(V|L)
(

1− Pr(K|V, L)
)

+Pr(VSQ|L)
(

Pr(S|VSQ, L) + Pr(Q|VSQ, L)
)

.

Thus, our decomposition enables us to express PGR and PLR as sum over the
products of all violation possibilities and their corresponding violation propensities.
As defined in the previous section, we denote these violation propensities by a Greek
letter referring to the action of the committed violation – i.e., κ for keep, σ for switch,
and λ for liquidate – indexed with the benchmark on which it is conditioned, so that in
domain D ∈ {G, L}we have Pr(K|V, D) = κD

V for V ∈ {VKQ, VKS, VSK}, Pr(S|VSQ, D) =

σD
SQ, and Pr(Q|VSQ, D) = λD

SQ. Applying this decomposition to our example, we get
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an expression for Nat’s PGR and PLR that depends on his individual benchmark vio-
lation propensities:

PGR = 0
0.759(1− κG

KQ) +
0

0.759(1− κG
KS) +

0.101
0.759(1− κG

SK) +
0.658
0.759(σ

G
SQ + λG

SQ),

PLR = 0.002
0.241(1− κL

KQ) +
0.016
0.241(1− κL

KS) +
0.141
0.241(1− κL

SK) +
0.082
0.241(σ

L
SQ + λL

SQ).

To summarize, in this section we illustrated our decomposition by means of an
example: We assumed a specific parameterization of the stochastic environment and
considered a risk-averse investor with a specific choice rule at time τ, namely f (∆ ≥
2) = A, f (∆ ≤ −2) = B, and f (−2 < ∆ < 2) = O. Then, conditional on asset A
following Fh and the exemplary realization of ∆ = 2, we decomposed the disposition
measure into the induced probabilities of the various benchmark events and their vio-
lation propensities. These violation propensities remained unspecified, i.e., we allowed
for any choice rule f ′ at time τ′. In contrast to this example, our general framework (see
Section 2) allows for any parameterization of the stochastic environment as well as for
any monotonically increasing choice rule f at time τ, is independent of which asset in
fact follows which process, and probabilistically accounts for any possible realization
of ∆. The following results are based on the general framework.

4 Results

This section presents model-independent results that we derive from our decomposi-
tion (see Definition 3). All formal proofs are relegated to Appendix A. Our focus is on
analyzing the link between the disposition measure and benchmark violation propen-
sities. Before turning to this link, we first investigate the benchmark disposition mea-
sure.

4.1 On the Benchmark Disposition Measure

Our first result helps reconcile our investigations with the previous literature by con-
firming the intuition that an investor should rather realize losses than gains.

Proposition 1 The proportion of losses that should be realized exceeds the proportion of gains
that should be realized, i.e., PLR > PGR.

Intuitively, the positive correlations of gains with good news and losses with bad news
imply that a winner is more likely to have received good news than a loser. Therefore,
keeping a winner is in expectation more attractive than keeping a loser. This is the case
from the viewpoints of both FOSD and SORP, the latter because the likelihood to invest
increases in informativeness for any given risk preference – and given a monotonically
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increasing choice rule for the initial purchase decision (see Section 2.3), informativeness
increases in good news and decreases in comparable bad news.

Note that Proposition 1 holds for any parameterization of the stochastic environ-
ment, in particular for any pl, ph ∈ (0, 1) with ph > pl. As shown in the following
corollary, DMi does not converge when the price processes become similar.

Corollary 1 PLR > PGR still holds in the limit when pl → ph.

Corollary 1 shows that Proposition 1 is robust towards deteriorations of the “signal-to-
noise ratio.” With pl and ph being close, the observed difference in price appreciations
constitutes a very noisy signal. As a result, the SORP benchmark becomes negligible
for the benchmark disposition measure as the investor should either invest or not in-
vest, but similarly so in both investment periods and without being sensitive to the
observed price paths of the assets. In contrast, conditional on investing, the FOSD
benchmark is still relevant, since a rational investor wants her asset to outperform the
market (i.e., the other asset) and therefore should still invest in the asset that is more
likely to be the “good” asset (i.e., the asset with more price appreciations). For FOSD,
it is irrelevant how much more likely this is or how much better the asset quality is in
expected terms. Even if the price processes are similar, there is variance in observed
price paths which are used to infer what the “good” asset is.

Proposition 1 directly implies that observing a positive disposition measure, ei-
ther in the sense of DMi > 0 or DMi > DMi, requires some benchmark violation.
Vice versa, an investor who does not commit any benchmark violation cannot exhibit
a positive disposition measure and has DMi = DMi < 0. However, while the ex-
istence of benchmark violations is necessary for a positive disposition measure, it is
not sufficient. Even if benchmark violations occur, the disposition measure may still
be negative. Next, we closely examine various possible benchmark violation patterns
and how they relate to the sign of the disposition measure.

4.2 On the Sign of the Disposition Measure

In light of Proposition 1, observing DMi > 0 or DMi > DMi seems to suggest that the
predominant benchmark violations are the conventional ones (see Definition 4), and
the literature reflects this intuition. However, as we show in this section, this intuition
is inaccurate. Throughout, we derive our results both for the rational benchmark (i.e.,
DMi > DMi) as well as for the zero benchmark (i.e., DMi > 0). We start by investigat-
ing the link between a positive disposition measure and the disposition effect.

Proposition 2

(i) Some conventional violation is necessary for the disposition measure to be positive, i.e.,
DMi > 0 ∨ DMi > DMi =⇒ κL

KQ + κL
KS + κL

SK + σG
SQ + λG

SQ > 0.
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(ii) Conventional violations are not sufficient for the disposition measure to be positive, i.e.,
κL

KQ + κL
KS + κL

SK + σG
SQ + λG

SQ > 0 6=⇒ DMi > 0 ∨ DMi > DMi.

(iii) For DMi > 0, case (ii) holds even if no unconventional violations occur, i.e.,
κL

KQ + κL
KS + κL

SK + σG
SQ + λG

SQ > 0 ∧ κG
KQ = κG

KS = κG
SK = σL

SQ = λL
SQ = 0 6=⇒

DMi > 0.

Case (i) of Proposition 2 implies that every preference- or belief-based model that ex-
plains a positive disposition measure needs to generate at least one conventional vio-
lation, but certainly not all of them. Thus, the disposition effect is not necessary for
PGR > PLR. According to case (ii), not even all conventional violations (i.e., the dis-
position effect) are sufficient for a positive disposition measure. As illustrated by case
(iii), for the zero benchmark comparison this remains true even in the absence of any
countervailing unconventional violation. Thus, even if an investor exhibits all conven-
tional violations, and only those, it may still be the case that DMi < 0. Intuitively, as
the proportion of losses that should be realized is larger than the proportion of gains
that should be realized (see Proposition 1), the propensities of conventional violations
may simply be too low to induce DMi > 0.33

Two additional insights underscore how fragile the link between the sign of the
disposition measure and the disposition effect actually is. First, a positive disposition
measure can arise even in the case of uniform violation propensities. Note that violation
propensities are necessarily capped at 1/2 when uniform, because all action propensi-
ties of one benchmark state add up to one, and there are two possible violations in each
benchmark state (one first- and one second-order violation).

Proposition 3 Let all violation propensities be equal to µ ∈ [0, 1/2]. Then, DMi > 0 ⇐⇒
µ > 1/3 and DMi > DMi ⇐⇒ µ > 0.

Proposition 3 shows that no specific violation pattern is required for a positive disposi-
tion measure. In particular, benchmark violations do not need to be domain- or action-
specific in order to induce a positive disposition measure.34 The former is particularly
surprising, as it shows that a difference in violation propensities between gains and
losses is not needed to generate a positive disposition measure.

In the literature, there is a long-standing debate whether PGR > PLR is caused
by non-standard “preferences” (specifically, utility functions) or non-standard beliefs.

33For the robustness of Proposition 2, it is instructive to consider the hypothetical scenario where
PLR = PGR. Here, cases (i) and (ii) still hold, but not case (iii): if unconventional violations are
entirely absent, exhibiting some conventional violation – though not necessarily all – becomes necessary
and sufficient for DMi > 0. Thus, even in this hypothetical scenario, the disposition effect is not necessary
for a positive disposition measure.

34Benchmark violations are not domain-specific whenever κG
KQ = κL

KQ, κG
KS = κL

KS, κG
SK = κL

SK, σG
SQ =

σL
SQ, and λG

SQ = λL
SQ. Benchmark violations are not action-specific whenever κG

KQ = κG
KS = κG

SK = σG
SQ =

λG
SQ and κL

KQ = κL
KS = κL

SK = σL
SQ = λL

SQ.
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Proposition 3 speaks to this debate in showing that identical violation propensities in
gains and losses do not prevent the disposition measure from being positive. This
insight enlarges the set of potential explanations for PGR > PLR, in particular by in-
cluding many belief-based biases. To see this, note that preference-based explanations
make investors sell an asset too early (late) despite their rational belief that its price will
likely increase (decline), but because experiencing gains and losses triggers certain at-
titudes. In contrast, belief-based explanations make investors sell an asset too early
(late) because of their irrational belief that its price will probably decline (increase). A
major difference between these two explanations is that an investor with biased pref-
erences distorts rational behavior based on gains or losses, but not upon good or bad
news. An investor with biased beliefs has a biased reaction to good or bad news, but
not to gains or losses per se. Thus, in contrast to biased preferences, an investor with
biased beliefs makes benchmark violations that are not domain-specific, as gains and
losses have no impact on her decision beyond providing different news.35

Consider, for instance, the belief-based bias of (over-)extrapolative expectations,
which has been used to explain important financial phenomena other than a positive
disposition measure (for an overview see Barberis, 2019). Extrapolative expectations
are able to generate over-optimistic beliefs towards the owned asset after good news
and over-pessimistic beliefs after bad news (Hartzmark et al., 2020). As a result, an in-
vestor with such a bias keeps her asset after good news, but this is also what she should
do given that she purchased it in the first place, so that no benchmark violations occur
after such news. In contrast, after (not too) bad news, the rational benchmark may still
prescribe to keep the asset, but the over-pessimistic investor may violate this bench-
mark and realize too early. Since bad news correspond to a decreased likelihood that
the owned asset is a “good” asset, such news can occur in both gains and losses. Thus,
the investor has a propensity to realize too early not only in losses but also in gains,
and this latter benchmark violation implies that extrapolative expectations indeed sat-
isfy the necessary condition for PGR > PLR (as specified in Proposition 2), despite
being unable to generate a disposition effect.36

Our second result on the fragility of the link between a positive disposition mea-
sure and the disposition effect is even more surprising.

Proposition 4 Let all unconventional violation propensities be equal to γ and all conventional
violation propensities be equal to γ− ν (with ν > 0). Then,

DMi > 0 ⇐⇒ ν < (PLR−PGR)(3γ−1)
2+PLR−2PGR

,

35In Maier and Fischer (2021), we provide an extensive analysis as to which kind of benchmark vio-
lations are induced by various preference- and belief-based behavioral biases.

36Just like for any violation pattern (including the disposition effect), whether the benchmark viola-
tions induced by over-extrapolative expectations are sufficient for PGR > PLR depends on the parame-
terization of both the stochastic environment and the investor’s (risk) preferences and beliefs.
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which in turn implies ν < γ ∈ (1/3, 1/2]. Moreover,

DM1 > DM1 ⇐⇒ ν < (PLR−PGR)3γ

2+PLR−2PGR
and DM2 > DM2 ⇐⇒ ν < (PLR−PGR)2γ

PLR(2−PGR)
,

which in turn imply ν < γ ∈ (0, 1/2].

Proposition 4 shows that a positive disposition measure can arise even if unconven-
tional violations are more prevalent than conventional ones, i.e., even if investors tend
to realize losers too early and hold winners too long. Such a violation pattern reflects
the opposite of the disposition effect. Note that the margin by which the unconven-
tional violation propensities may exceed the conventional ones is capped by a thresh-
old which increases in the former, i.e., γ. In other words, although unconventional vio-
lation propensities may exceed conventional ones, the latter still need to be sufficiently
large to induce a positive disposition measure. However, the permissible positive dif-
ference between unconventional and conventional violation propensities increases in
the prevalence of unconventional violations.

Propositions 2 to 4 suggest that we cannot learn much about benchmark violations
from observing DMi > 0 or DMi > DMi. Such positive disposition measures can arise
from various violation patterns, not just the disposition effect. Therefore, it is too re-
strictive to only consider models that predominantly generate conventional violations
as potential explanations of an empirically observed positive disposition measure. One
may be inclined to interpret these results as a critique of the commonly used disposi-
tion measure. However, our further results demonstrate that such an interpretation
would be premature.

While our previous analysis shows that DMi > 0 can hardly be attributed to spe-
cific violation patterns (such as the disposition effect), our next result shows that the
commonly used disposition measure is indeed well suited to identify the presence of
some systematic bias.

Proposition 5 Suppose that investment decisions are independent of both the benchmark event
V ∈ {VKQ, VKS, VSK, VSQ} and the domain D ∈ {G, L}, i.e., Pr(K|V, D) = Pr(K),
Pr(S|V, D) = Pr(S), and Pr(Q|V, D) = Pr(Q). Then, DMi = 0 and DMi > DMi.

Proposition 5 shows that behavior which is independent of the rational benchmark as
well as the domain of gains and losses yields the neutral result DMi = 0. Thus, an in-
vestor who chooses her actions unconditionally – e.g., to keep the asset in any state of
the world – will have DMi = 0. Another example captured by Proposition 5 is random
behavior: an investor who randomizes over the three possible actions keep, switch,
and liquidate will have DMi = 0.37 Therefore, Proposition 5 shows that DMi > 0 can

37For instance, uniform randomization over all possible actions would mean to choose K, S, and Q
with probability 1/3 each. Or, sequential uniform randomization, i.e., first choosing to invest or not with
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only be caused by systematic biases of investors. It cannot be caused by behavior that
is independent of both the domain of gains and losses and the rational benchmark,
such as purely random behavior. In this respect, the zero benchmark has a clear ad-
vantage over the rational benchmark, since such unsystematic benchmark violations
still induce a positive measure DMi > DMi.38 Hence, when comparing DMi to its
rational benchmark value, it is important to additionally measure individual violation
propensities in order to exclude the possibility that observing DMi > DMi is due to
unsystematic rather than systematic biases.

4.3 On the Magnitude of the Disposition Measure

Propositions 2 to 5 are concerned with conclusions that can and cannot be drawn on
violation patterns from observing a positive disposition measure. In this section, we
show that our decomposition further allows us to derive new insights with respect
to the comparative statics of the disposition measure. Note that the magnitude of the
disposition measure has remained mostly unexplored so far. Instead, the literature has
focused on the sign of the disposition measure alone (see Section 4.2).

Proposition 6

(i) The disposition measure DMi is increasing in conventional and decreasing in unconven-
tional violation propensities.

(ii) Let all violation propensities be equal to µ ∈ [0, 1/2). Then, the disposition measure DMi

is increasing in µ.

(iii) Suppose ε ∈ [0, ε̄) is uniformly added to all violation propensities, where ε̄ = 1/2 −
max{κD

KQ, κD
KS, κD

SK, σD
SQ, λD

SQ} and D ∈ {G, L}. Then, the disposition measure DM1 is
increasing in ε, and DM2 is increasing in ε if PLR > (<) 2/3∧ PGR > (<) PLR.

Case (i) of Proposition 6 is very intuitive and follows directly from our decomposition.
It suggests that the larger the disposition measure is, the more likely is it caused by
a disposition effect rather than the opposite violation pattern. However, as shown by
cases (ii) and (iii), uniformly increasing all violation propensities increases the dispo-
sition measure as well. Thus, while case (i) suggests that the magnitude of the dispo-
sition measure may be indicative of the benchmark violations that are predominant,
cases (ii) and (iii) show that such a conclusion cannot be drawn. In fact, a higher dis-
position measure may be caused by more conventional violations, less unconventional

probability 1/2 each and, in case of investment, to choose each risky asset with probability 1/2 would
mean to choose K, S, and Q with probabilities 1/4, 1/4, and 1/2, respectively. Recall that the disposition
measure is defined as an ex-ante expectation, so that DMi = 0 is theoretically possible.

38This is due to the fact that DMi < 0 (see Proposition 1).
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violations, or by more violations overall. Thus, it is unclear whether a higher dispo-
sition measure is caused by behavior that is more in line with the disposition effect
or by behavior that is more mistaken overall.39 Since DMi is independent of violation
propensities, Proposition 6 not only applies to DMi, but also to DMi−DMi or DMi

DMi
− 1.

In contrast to the sign or the magnitude itself, in the remainder of this section we
show that variations in the magnitude of the disposition measure turn out to be informa-
tive for violation patterns. We investigate comparative statics of DMi with respect to
three exogenous variables of our setup, namely g, τ, and n. As we explain below, these
variables may be interpreted as capturing the market segment (e.g., “old” vs. “new”
economy), how informed investors are (e.g., professionals vs. households), and how
attentive investors are (e.g., frequency of account “log-ins”), respectively.40

Markets and Market Segments. First, we are interested in the effect of changing
g, which denotes the minimum number of price appreciations within n periods for an
asset to be in gains. Thus, the smaller g ∈ {1, 2, . . . , n} is, the higher are the expected
returns of the market (for given ph, pl, and either u or d). Therefore, the comparison
of small and large g markets or market segments may be considered as a proxy for the
comparison of emerging and mature markets, or “startup” and “blue chip” segments,
respectively.

Lemma 1 Fix some q ∈ [1/2, 1). Then, the proportions of gains and losses that should be
realized (i.e., PGR and PLR, respectively) decrease in g.

Lemma 1 shows that a larger g decreases both PGR and PLR. Intuitively, the likeli-
hood of unpleasant surprises that would force a rational investor to sell a previously
attractive stock is lower in mature than emerging markets. The reason for this in our
model, and plausibly also in reality, is that gains are a stronger signal of good asset
quality in mature than emerging markets (i.e., for larger g), so that a rational investor
is less prone to realizing gains in mature than emerging markets. On the other hand,
losses are a stronger signal of bad asset quality in emerging than mature markets, so
that a rational investor is also less prone to realizing losses in mature than emerging
markets.

Using our decomposition, we analyze how differences in g affect the disposition
measure.

39Note that the upper bound of DMi (which is 1 for DM1 and ∞ for DM2) is only reached when
the investor makes as many conventional violations as possible and no unconventional violations at
all, whereas an investor who makes both conventional and unconventional violations to the fullest
extent has a positive DMi below this upper bound, namely DM1 = PLR − PGR = −DM and
DM2 = PLR−PGR

1−PLR
.

40Note that the comparative statics with respect to g and n constitute a “partial” analysis by fixing
some q ∈ [1/2, 1). For risk neutral investors and positive expected values of the stochastic processes
this restriction is irrelevant as these investors always invest in a risky asset. For risk averse investors it
implies that we neglect possible indirect effects on investors’ investment thresholds (see Section 2.3).

30



Proposition 7 Fix some q ∈ [1/2, 1). Let all unconventional violation propensities be equal
to γ ∈ (0, 1/2] and all conventional violation propensities be equal to γ− ν ∈ (0, 1/2]. Sup-
pose that kν = 3γ − 1 with k ∈ {1, 2}. Then, the disposition measure DMi is increasing
(decreasing) in g if and only if ν < (>) 0.

Proposition 7 shows that the effect of a larger g on the disposition measure depends
on the prevalent violation pattern. Suppose, for instance, that the disposition effect
is present, so that conventional violation propensities are 1/2 and unconventional vi-
olation propensities are 1/4. Then, as shown in Proposition 7, DMi is increasing in
g. Hence, we expect an investor who suffers from the disposition effect to exhibit a
larger (smaller) disposition measure in the more conservative (aggressive) fraction of
his portfolio. Conversely, an investor who suffers from an opposite disposition effect,
e.g., an investor whose conventional violation propensities are 1/4 and unconventional
violation propensities are 1/2, exhibits a smaller disposition measure in markets or mar-
ket segments with larger g. Hence, we expect an investor suffering from an opposite
disposition effect to exhibit a larger (smaller) disposition measure in his more aggres-
sive (conservative) sub-portfolio.

Therefore, Proposition 7 shows two things. First, it shows that the disposition
measure of an investor who suffers from sufficiently high violation propensities sys-
tematically differs between sub-portfolios that differ in expected returns. Conditional
on segmenting an investor’s portfolio, Proposition 7 therefore yields a novel testable
prediction. Second, since the direction of this comparative static depends on the preva-
lent violation pattern, Proposition 7 allows to infer whether an investor suffers from
the disposition effect (or its opposite) from differences in the disposition measure be-
tween sub-portfolios.

Information Level. Our next investigation concerns differences with respect to
how informed initial investment decisions are, which is captured by τ in our model.

Lemma 2 For “large τ,” i.e., τ → ∞ and n ∈N, we obtain PGR = 0 and PLR = 0.

Lemma 2 shows that varying τ matters for the rational benchmark. For “large τ,” the
investor receives plenty of information already before the buying decision in period
τ and is therefore well informed when initially investing. Such a well-informed in-
vestor is less likely to receive contradicting information to change her mind after the
initial purchase, so that she should not realize her asset in period τ′, independently of
whether she is in gains or losses. Thus, PGR and PLR converge to zero. Intuitively, the
better informed a rational investor is prior to purchasing a stock – e.g., because she has
tracked the stock for a longer time or has engaged in extensive research on the stock –
the longer she will keep it.

Given the effects on the rational benchmark stated in Lemma 2, we can use our
decomposition to further analyze how “large τ” affects the disposition measure.
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Proposition 8 In domain D ∈ {G, L}, let keep violation propensities be uniform across bench-
mark events, i.e., κD

KQ = κD
KS = κD

SK =: κD ∈ [0, 1], and define ρD as the realization
violation propensity σD

SQ + λD
SQ =: ρD ∈ (0, 1]. Then, for “large τ,” the disposition mea-

sures DM1 and DM2 respectively converge to ρG − ρL and (ρG/ρL) − 1 from below (above)
if benchmark violation propensities are sufficiently larger (smaller) in gains than losses, i.e., if
κG + ρG ≥ (≤) 1 ≥ (≤) κL + ρL with one of the inequalities being strict.

Recall that for “large τ,” Lemma 2 shows that in both gains and losses the investor
should not realize but rather keep her asset. Thus, her κD propensity, i.e., to keep the
asset when she should realize it, becomes negligible for the proportions of gains and
losses realized, i.e., PGR and PLR, respectively. On the other hand, her ρD propen-
sity, i.e., to realize the asset when she should keep it, becomes crucial in determining
PGR and PLR, so that her disposition measure DM1 = PGR− PLR converges to the
between-domain difference of this violation propensity, namely ρG − ρL. Likewise, her
disposition measure DM2 = PGR

PLR − 1 converges to the between-domain ratio of this
violation propensity, namely (ρG/ρL)− 1. Thus, in the limit the magnitude of DMi ex-
actly measures the difference or ratio of this violation propensity between gains and
losses. Since both κD and ρD determine DMi outside the limit, their domain-specific
sum determines whether this limit value of DMi is approached from below or above.

Thus, similar to before, Proposition 8 shows that the effect “large τ” has on the dis-
position measure depends on the violation pattern. However, in contrast to Proposi-
tion 7 above, here the decisive factor is not whether the disposition effect or its opposite
is present, but rather whether benchmark violation propensities are sufficiently larger
in gains than losses. An investor who is better informed when purchasing a stock has
a smaller (larger) disposition measure if she is sufficiently more (less) prone to bench-
mark violations in losses than gains. Investors who are arguably well informed are
professional traders, who typically tend to have lower disposition measures (Brown et
al., 2006; Barber et al., 2007; Chen et al., 2007; Choe and Eom, 2009; Calvet et al., 2009).
A standard explanation for this pattern is that professionals are less prone to biases and
therefore exhibit less benchmark violations, which is very plausible indeed. Proposi-
tion 8 offers a complementary explanation that seems plausible, too: even if profession-
als are subject to the same behavioral bias and therefore make the same benchmark vi-
olations as non-professionals, and provided that losses induce sufficiently more bench-
mark violations than gains, Proposition 8 predicts that professionals are still expected
to have lower disposition measures than “household” investors, simply because they
are better informed.

Also, note that the above prediction of Proposition 8 is reversed for gains induc-
ing sufficiently more benchmark violations than losses. Thus, conditional on observ-
ing how well informed an investor is prior to purchasing a stock – which may, for
instance, be approximated by monitoring the investor’s “watch list” – Proposition 8

32



further yields a novel testable prediction and allows to infer whether benchmark vio-
lations are more prevalent in gains or losses from differences in the magnitude of the
disposition measure.

Financial Attention. Our final investigation considers variations of n, i.e., the du-
ration between trading decisions. We interpret n as a proxy for how attentive or curi-
ous an investor is. It may, for instance, be measured by the frequency of “log-ins” into
one’s trading account (Karlsson et al., 2009; Gherzi et al., 2014; Sicherman et al., 2016;
Olafsson and Pagel, 2018; Dierick et al., 2019).

Lemma 3 Fix some q ∈ [1/2, 1). Then, for “large n,” i.e., n→ ∞, τ ∈ N, and pl <
g
n < ph,

we obtain PGR = 0 and PLR = 1, so that DMi = −1.

For “large n,” the investor receives plenty of information between the two trading
decisions. The condition pl <

g
n < ph assures that the high process Fh generates gains

in expectation whereas the low process Fl is expected to generate losses. Thus, for
“large n,” the rational investor will become confident to own a “good” asset when she
is in gains and to own a “bad” asset when she is in losses. If, on the other hand, the
investor is very attentive or curious, so that n is small, she is less informed at her selling
decision and therefore less confident to own a “good” asset in gains and to own a “bad”
asset in losses. Hence, for “large n,” the investor should not realize her asset in gains,
but should do so in losses. As a result, PGR converges to zero and PLR converges to
one, so DMi converges to its lower bound accordingly.

Lemma 3 has implications for the interpretation of experimental results. In ex-
periments where subjects learn more between trading decisions, it becomes less likely
to observe a positive disposition measure since a lower benchmark measure DMi re-
quires subjects to make more (conventional) violations to generate DMi > 0. On the
one hand, this insight may explain why some experimental studies find PGR > PLR
while others do not. On the other hand, it suggests that in experimental studies it may
be more meaningful to compare DMi to DMi rather than to zero (see Section 2.4).

Given the effects on the rational benchmark stated in Lemma 3, we can again use
our decomposition to analyze how the disposition measure is affected.

Proposition 9 Fix some q ∈ [1/2, 1). In domain D ∈ {G, L}, let keep violation propensities
be uniform across benchmark events, i.e., κD

KQ = κD
KS = κD

SK =: κD ∈ [0, 1), and define ρD

as the realization violation propensity σD
SQ + λD

SQ =: ρD ∈ (0, 1]. Then, for “large n,” the
disposition measures DM1 and DM2 respectively converge to κL + ρG − 1 and (ρG/1−κL)− 1
from below (above) if benchmark violation propensities in gains and losses are sufficiently large
(small), i.e., if κG + ρG ≥ (≤) 1∧ κL + ρL ≥ (≤) 1 with one of the inequalities being strict.

Recall from Lemma 3 that for “large n” the investor should not realize a gain but should
realize a loss. Thus, her proportion of gains realized is solely determined by her ρG
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propensity, i.e., to realize the asset in gains when she should keep it, so that PGR = ρG.
Likewise, her proportion of losses realized is solely determined by her κL propensity,
i.e., to keep the asset in losses when she should realize it, so that PLR = 1− κL. Hence,
the disposition measure DM1 = PGR− PLR converges to ρG − (1− κL) and DM2 =
PGR
PLR − 1 converges to (ρG/1−κL)− 1 in the limit. Note that this limit value only depends
on conventional violation propensities. Thus, if full information was obtained prior to
the selling decision, there would indeed be a strong link between a positive disposition
measure and the disposition effect, i.e., the latter becomes a necessary condition for the
former in the limit. Intuitively, “large n” identifies all gains with a benchmark action
of keeping and all losses with a benchmark action of realizing the asset, so that the
standard interpretation of a positive disposition measure as disposition effect becomes
in fact accurate. However, the violation propensities that are negligible in the limit
have an effect outside the limit. And as shown in Proposition 9, the non-limit value of
the disposition measure is lower (higher) than its limit value if benchmark violations
in gains and losses are sufficiently prevalent (rare).

Proposition 9 clarifies that more attention or curiosity, i.e., a shorter duration be-
tween trading decisions, may increase or decrease the disposition measure. Intuitively,
waiting for a shorter period until taking a trading decision on the one hand allows for
quicker adjustments so that “mistakes” have a smaller impact, but on the other hand
implies that decisions are taken in response to shorter horizons so that they are less
informed. Interestingly, the proposition shows that it depends on the investor’s over-
all prevalence of benchmark violations whether the disposition measure is increased
or decreased. If overall benchmark violations are sufficiently rare, as may be the case
for professional investors,41 more attention or curiosity increases the disposition mea-
sure. Here, the disadvantage of less informed trading decisions outweighs the advan-
tage of a smaller impact of “mistakes” as they are rare anyway. On the other hand, if
benchmark violations are sufficiently prevalent, as may be the case for “household” or
non-professional investors, more attention or curiosity decreases the disposition mea-
sure. In this case, the advantage of a smaller impact of “mistakes” becomes dominant
and outweighs the disadvantage of less informed decisions. Thus, Proposition 9 of-
fers a novel testable prediction, where the direction of the effect that more or less at-
tention has on the disposition measure depends on the group of investors. Indeed,
in line with Proposition 9, Dierick et al. (2019) find in a dataset covering retail (i.e.,
non-professional) investors that more attention (measured by account “log-ins”) sig-
nificantly reduces the disposition measure.

41Note that this is the standard assumption for why professional investors exhibit lower disposi-
tion measures, and is complementary to our above explanation of better informed buying decisions of
professional investors.
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The fact that more attention or curiosity leads to a higher (lower) disposition mea-
sure if benchmark violations are sufficiently rare (prevalent) demonstrates that DMi is
not a measure of “mistakes.” For given violation propensities, attention affects DMi

because it changes the distribution of benchmark events.42 While DMi cannot identify
the overall incidence of “mistakes,” changes in the magnitude of DMi can identify it
since “low error” and “high error” types imply opposite signs of DMi’s comparative
static with respect to attention. Thus, observing different magnitudes of DMi with
varying attention allows to infer whether benchmark violations in gains and losses are
rare or prevalent.

5 Conclusion

In this paper we theoretically investigate the link between the disposition effect, i.e.,
investors’ tendency to sell winning assets too early and losing assets too late, and its
common empirical measure, namely a positive difference between the proportion or
probability of gains realized (PGR) and losses realized (PLR). While the standard in-
terpretation of PGR > PLR as a disposition effect apparently confuses the sign of the
stock movement with a signal of stock quality, we propose a novel setup that takes
the overall market environment into account and thereby enables a separation of gains
from good news (i.e., news that increase the likelihood that the owned asset is expected
to outperform the market) and losses from bad news. Our setup explicitly establishes a
rational benchmark based on first-order stochastic dominance and individual-specific
risk preferences, which prescribes whether and how individuals should invest in any
state of the world. This benchmark allows us to decompose PGR and PLR into fre-
quencies of various benchmark violations, where each such frequency is the product
of two components: first, the probability of a benchmark event prescribing the appro-
priate action and, second, the conditional probability of choosing a different action, i.e.,
of violating the benchmark. The clean separation of the former from the latter provides
the basis for our theoretical investigation.

We uncover a surprising disconnect: The disposition effect is neither necessary
nor sufficient for PGR > PLR. Even investors with an opposite disposition effect
(i.e., a tendency to hold winners too long and sell losers too early) can still exhibit
PGR > PLR. Also, investors whose benchmark violation pattern is neither action-
nor domain-specific may still cause PGR > PLR. While these model-independent re-

42Our decomposition shows that with benchmark violations being rare, DM1 and DM2 are mainly
determined by PGR− PLR and PGR

PLR
− 1, respectively. Thus, DMi is increasing (decreasing) with more

(less) attention by Lemma 3. In contrast, with benchmark violations being prevalent, DM1 and DM2 are
mainly determined by 1− PGR− (1− PLR) and 1−PGR

1−PLR
− 1, respectively. Hence, in this case Lemma 3

implies that DMi is decreasing (increasing) with more (less) attention.
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sults suggest that many violation patterns other than the disposition effect are able to
generate PGR > PLR, we further show that unsystematic benchmark violations (such
as randomization) are not, so that only systematic biases can give rise to the empirical
observation PGR > PLR.

Just like the sign of the disposition measure, a comparative statics analysis reveals
that the magnitude of PGR − PLR or PGR

PLR − 1 is also not informative for the predom-
inant violation pattern or the overall incidence of “mistakes.” Instead, variations in
the magnitude do turn out to be informative for the predominant violation pattern,
although this metric has remained unexplored so far. Our comparative statics analy-
sis further generates novel testable predictions of how these magnitudes are expected
to change in response to variations in the market or market segment (e.g., “old” vs.
“new” economy), investors’ information level (e.g., professionals vs. households), and
investors’ financial attention (e.g., frequency of account “log-ins”). The latter variation
provides two additional insights: First, investors who are able to learn more between
trading decisions are expected to have lower (benchmark) disposition measures and
are therefore less likely to exhibit PGR > PLR, which may partly explain the large
variance of experimental results regarding the disposition measure. Second, the stan-
dard interpretation of PGR > PLR as a disposition effect turns out to be accurate in
the hypothetical full-information limit, when the investor knows with certainty that a
winner will outperform the market and a loser will underperform. In this limit, the
sign of the stock movement becomes a perfect signal of stock quality.

Our paper should not be understood as a critique of the commonly used dispo-
sition measure, but rather suggests that caution is warranted regarding its interpre-
tation. While PGR > PLR identifies the existence of systematically biased behavior,
neither the sign nor the magnitude of the disposition measure is suited to identify the
specific way this behavior is biased. However, variations in the magnitude of the dis-
position measure are in fact informative in this respect. Thus, our theoretical results
suggest new ways of using PGR− PLR or PGR

PLR − 1 to better understand what is caus-
ing PGR > PLR in terms of rational benchmark violations. This is an important task
for future empirical research, as it ultimately allows to narrow down the underlying
psychological mechanism (or behavioral bias) at work.
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A Appendix: Proofs

Proof. [Proposition 1] This proof relies on the following lemma:

Lemma 4 Let (αi)i∈{0,...,n} and (βi)i∈{0,...,n} be positive sequences such that αi
βi

is strictly decreasing in
i. Then,

∀ k ∈ {0, . . . , n− 1} : ∑k
i=0 αi

∑k
i=0 βi

>
∑n

i=k+1 αi

∑n
i=k+1 βi

.

Proof. [Lemma 4] Since αi
βi

is strictly decreasing in i, we know that

αi

βi
>

αk+1

βk+1
∀ i ∈ {0, . . . , k}, (1)

and that

αk+1

βk+1
≥ αi

βi
∀ i ∈ {k + 1, . . . , n}. (2)

Since (1) is equivalent to αiβk+1 > βiαk+1 ∀ i ∈ {0, . . . , k}, it implies that

k

∑
i=0

αiβk+1 >
k

∑
i=0

βiαk+1 ⇐⇒
∑k

i=0 αi

∑k
i=0 βi

>
αk+1

βk+1
.

Since (2) is equivalent to βiαk+1 ≥ αiβk+1 ∀ i ∈ {k + 1, . . . , n}, it implies that

n

∑
i=k+1

βiαk+1 ≥
n

∑
i=k+1

αiβk+1 ⇐⇒
αk+1

βk+1
≥ ∑n

i=k+1 αi

∑n
i=k+1 βi

.

Thus, (1) and (2) together imply that

∑k
i=0 αi

∑k
i=0 βi

>
∑n

i=k+1 αi

∑n
i=k+1 βi

.

Note that for the strict inequality result in Lemma 4 to hold it is actually sufficient that sequence
is decreasing with only one strict inequality.

This proof of Proposition 1 builds upon Appendix B, where we explicitly state the bench-
mark disposition measure. The proof works similarly both for θ > 0 and θ = 0. For brevity, in
the following we focus on θ > 0 only. The case of θ = 0 can be shown analogously, but requires
more notation due to the initial randomization for uninformative priors at t = τ.

Note first that we can rewrite DMi as

DMi =
∑τ

k=θ ∑k−θ
l=0 Pr(a = k, b = l)(DMi|a = k, b = l)

∑τ
k=θ ∑k−θ

l=0 Pr(a = k, b = l) + ∑τ
k=θ ∑k−θ

l=0 Pr(b = k, a = l)

+
∑τ

k=θ ∑k−θ
l=0 Pr(b = k, a = l)(DMi|b = k, a = l)

∑τ
k=θ ∑k−θ

l=0 Pr(a = k, b = l) + ∑τ
k=θ ∑k−θ

l=0 Pr(b = k, a = l)

Thus, to prove that DMi < 0, it is sufficient to prove that (DMi|a = k, b = l) < 0 and
(DMi|b = k, a = l) < 0 for all values of k and l satisfying |k − l| ≥ θ. The double sums
over k and l specify an asset price combination at the initial purchase decision at t = τ, and the
boundaries are chosen such that only those combinations are considered where a risky asset
is purchased, given the risk preference represented by θ. These sums are always non-empty:
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θ ≤ τ is needed for the investor to buy an asset in some contingency, which is of course neces-
sary for the disposition measure to exist; k− θ ≥ 0 is implied by k ≥ θ by definition of the first
sum.

In the following, we will prove that (DMi|a = k, b = l) < 0. By “swapping” places of a
and b, the proof for (DMi|b = k, a = l) < 0 works similarly and is therefore omitted. Note that

(DMi|a = k, b = l) < 0 ⇐⇒ (PGR|a = k, b = l) < (PLR|a = k, b = l)

⇐⇒ (NPGR|a = k, b = l)
(DPGR|a = k, b = l)

<
(NPLR|a = k, b = l)
(DPLR|a = k, b = l)

,

where

(NPGR|a = k, b = l) :=
k+n

∑
m=k+g

l+n

∑
j=m−θ+1

Pr
(
a′ = m, b′ = j|a = k, b = l

)
=

k+n

∑
m=k+g

Pr
(
a′ = m|a = k, b = l

) l+n

∑
j=m−θ+1

Pr
(
b′ = j|a = k, b = l

)
,

(DPGR|a = k, b = l) :=
k+n

∑
m=k+g

l+n

∑
j=l

Pr
(
a′ = m, b′ = j|a = k, b = l

)
=

k+n

∑
m=k+g

Pr
(
a′ = m|a = k, b = l

) l+n

∑
j=l

Pr
(
b′ = j|a = k, b = l

)
,

(NPLR|a = k, b = l) :=
k+g−1

∑
m=k

l+n

∑
j=m−θ+1

Pr
(
a′ = m, b′ = j|a = k, b = l

)
=

k+g−1

∑
m=k

Pr
(
a′ = m|a = k, b = l

) l+n

∑
j=m−θ+1

Pr
(
b′ = j|a = k, b = l

)
,

(DPLR|a = k, b = l) :=
k+g−1

∑
m=k

l+n

∑
j=l

Pr
(
a′ = m, b′ = j|a = k, b = l

)
=

k+g−1

∑
m=k

Pr
(
a′ = m|a = k, b = l

) l+n

∑
j=l

Pr
(
b′ = j|a = k, b = l

)
.

In these expressions, the first sum pins down whether the own asset is in gains or losses, i.e., it
specifies the number of price increases of the own asset between periods τ and τ′ as bigger or
smaller than g. The second sum collects the states where the own asset should be realized in
the numerators, and all possible realizations of “the other” asset in the denominators. An asset
should be realized, i.e., sold, whenever it is first- or second-order dominated, i.e., whenever
the overall difference in the number of ups of the own and the other asset is negative or below
the investment threshold θ. Note that the first sum is always non-empty, whereas the second
sum is empty for “big” m: k + n ≥ k + g follows from n ≥ g; m− θ + 1 > l + n for m = k + n
(upper bound in gains) as k− θ ≥ l by definition of the second sum, and m− θ + 1 ≤ l + n for
m = k (lower bound in losses) as k ≤ τ < n. The equalities follow because the price processes
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are independent. Note that the probabilities in these expressions can be calculated explicitly by
means of the binomial processes. Precisely,

Pr
(
a′ = m, b′ = j|a = k, b = l

)
=

(
n

m− k

)(
n

j− l

)
pm−k

A (1− pA)
n−m+k pj−l

B (1− pB)
n−j+l ,

Pr
(
a′ = m|a = k, b = l

)
=

(
n

m− k

)
pm−k

A (1− pA)
n−m+k,

Pr
(
b′ = j|a = k, b = l

)
=

(
n

j− l

)
pj−l

B (1− pB)
n−j+l ,

where pA = ph, pB = pl if A follows Fh and pA = pl , pB = ph if B follows Fh. Importantly,
however, this proof does not hinge on the explicit values of these probabilities.

Next, we define (αm|a = k, b = l) and (βm|a = k, b = l) as follows:

(αm|a = k, b = l) :=
l+n

∑
j=m−θ+1

Pr
(
a′ = m, b′ = j|a = k, b = l

)
= Pr

(
a′ = m|a = k, b = l

) l+n

∑
j=m−θ+1

Pr
(
b′ = j|a = k, b = l

)
, (3)

(βm|a = k, b = l) :=
l+n

∑
j=l

Pr
(
a′ = m, b′ = j|a = k, b = l

)
= Pr

(
a′ = m|a = k, b = l

) l+n

∑
j=l

Pr
(
b′ = j|a = k, b = l

)
. (4)

As above, the equalities follow because the price processes are independent. Then, (αm|a=k,b=l)
(βm|a=k,b=l) ≤

1 is decreasing in m as the denominator of the reduced fraction is in fact independent of m, and
the numerator shrinks in m as the sum gets smaller. In fact, (αm|a=k,b=l)

(βm|a=k,b=l) is strictly decreasing un-
til the sum in the numerator gets empty, and then remains equal zero. Note that the sequences
(αm|a = k, b = l) and (βm|a = k, b = l) are not at all monotonic, only their ratios are. This,
however, allows us to apply Lemma 4 to these ratios.

Lemma 4 implies that

∑
k+g−1
m=k (αm|a = k, b = l)

∑
k+g−1
m=k (βm|a = k, b = l)

>
∑k+n

m=k+g(αm|a = k, b = l)

∑k+n
m=k+g(βm|a = k, b = l)

. (5)

Plugging (3) and (4) into (5) yields

∑
k+g−1
m=k Pr (a′ = m|a = k, b = l)∑l+n

j=m−θ+1 Pr (b′ = j|a = k, b = l)

∑
k+g−1
m=k Pr (a′ = m|a = k, b = l)∑l+n

j=l Pr (b′ = j|a = k, b = l)

>
∑k+n

m=k+g Pr (a′ = m|a = k, b = l)∑l+n
j=m−θ+1 Pr (b′ = j|a = k, b = l)

∑k+n
m=k+g Pr (a′ = m|a = k, b = l)∑l+n

j=l Pr (b′ = j|a = k, b = l)

⇐⇒ (NPLR|a = k, b = l)
(DPLR|a = k, b = l)

>
(NPGR|a = k, b = l)
(DPGR|a = k, b = l)

⇐⇒ (PLR|a = k, b = l) > (PGR|a = k, b = l)
⇐⇒ (DMi|a = k, b = l) < 0
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Proof. [Corollary 1] This proof directly follows from the proof of Proposition 1. Letting pl →
ph implies that θ = 0, given that the investor initially invests at time τ. Since the proof of
Proposition 1 does not hinge on the explicit value of Pr (a′ = m, b′ = j|a = k, b = l), it also holds
for pl → ph.

Proof. [Proposition 2] We prove each case of Proposition 2 separately, and always start with
DMi > 0 followed by DMi > DMi:

(i) Let DMi > 0. Assume κL
KQ + κL

KS + σG
SQ + λG

SQ + κL
SK = 0 in contra-position. As all

violation propensities are non-negative, this is equivalent to κL
KQ = κL

KS = σG
SQ = λG

SQ =

κL
SK = 0. Then, by our decomposition, DMi > 0 is equivalent to

PGVKQ(1− κG
KQ)+PGVKS(1− κG

KS) +PGVSK(1− κG
SK)

>PLVKQ +PLVKS +PLVSQ(σ
L
SQ + λL

SQ)+PLVSK

which, in turn, implies

PGR =PGVKQ +PGVKS +PGVSK

≥PGVKQ(1− κG
KQ)+PGVKS(1− κG

KS) +PGVSK(1− κG
SK)

>PLVKQ +PLVKS +PLVSQ(σ
L
SQ + λL

SQ)+PLVSK

=PLR +PLVSQ(σ
L
SQ + λL

SQ)

≥PLR.

This is a contradiction to PGR < PLR, i.e., to Proposition 1. Therefore, the assumption
was wrong and the conjecture holds.

Now, let DMi > DMi and note that above we established that PGR ≥ PGR and PLR ≤
PLR. The latter contradicts the former because DM1 > DM1 ⇐⇒ PGR − PGR >
PLR − PLR and DM2 > DM2 ⇐⇒ PGR/PGR > PLR/PLR. Thus, the assumption was
wrong and the conjecture holds.

(ii) For DMi > 0 this is a direct implication of case (iii): DMi decreases in unconventional
violation propensities by Proposition 6, so this case is less restrictive than case (iii).

For DMi > DMi, let κL
KQ + κL

KS +σG
SQ +λG

SQ + κL
SK > 0, i.e., at least one of the conventional

violation propensities has to be strictly positive. Further, let all unconventional violation
propensities be equal to γ ∈ (0, 1/2], i.e., κG

KQ = κG
KS = σL

SQ = λL
SQ = κG

SK = γ. We first
prove the proposition for DM1 − DM1. Let

max{κL
KQ, κL

KS, σG
SQ, λG

SQ, κL
SK} ≤ γ

PGR + 2(1− PLR)
PLR + 2(1− PGR)

,

where PGR+2(1−PLR)
PLR+2(1−PGR)

< 1 by Proposition 1. Then, our decomposition implies
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DM1 − DM1

= PGVKQ(1− γ) + PGVKS(1− γ) + PGVSQ(σ
G
SQ + λG

SQ) + PGVSK(1− γ)− PGR

− PLVKQ(1− κL
KQ)− PLVKS(1− κL

KS)− PLVSQ(γ + γ)− PLVSK(1− κL
SK) + PLR

≤ PGR(1− γ− 1) + PGVSQ(σ
G
SQ + λG

SQ)

− PLR(1−max{κL
KQ, κL

KS, κL
SK} − 1)− PLVSQ ∗ 2γ

= PLR ∗max{κL
KQ, κL

KS, κL
SK}+ (1− PGR)(σG

SQ + λG
SQ)− PGR ∗ γ− (1− PLR)2γ

≤ PLR ∗ γ PGR+2(1−PLR)
PLR+2(1−PGR)

+ (1− PGR)2γ PGR+2(1−PLR)
PLR+2(1−PGR)

− PGR ∗ γ− (1− PLR)2γ

= γ
(

PGR+2(1−PLR)
PLR+2(1−PGR)

(PLR + 2(1− PGR)− PGR− 2(1− PLR)
)

= γ
(

PGR + 2(1− PLR)− PGR− 2(1− PLR)
)

= 0.

We next prove the proposition for DM2 − DM2. Let

max{κL
KQ, κL

KS, σG
SQ, λG

SQ, κL
SK} ≤ γ

2 ∗ PGR− PGR ∗ PLR
2 ∗ PLR− PGR ∗ PLR

,

where 2∗PGR−PGR∗PLR
2∗PLR−PGR∗PLR

< 1 by Proposition 1. Since DM2 − DM2 ≤ 0 ⇐⇒ PGR ∗ PLR−
PLR ∗ PGR ≤ 0, our decomposition implies DM2 − DM2 ≤ 0 if and only if(

PGVKQ ∗ (1− γ) + PGVKS ∗ (1− γ) + PGVSQ ∗ (σG
SQ + λG

SQ) + PGVSK ∗ (1− γ)
)

PLR

≤
(

PLVKQ ∗ (1− κL
KQ)− PLVKS ∗ (1− κL

KS)− PLVSQ ∗ (γ + γ)− PLVSK ∗ (1− κL
SK)
)

PGR,

so that DM2 − DM2 ≤ 0 if(
PGR(1− γ) + (1− PGR)(σG

SQ + λG
SQ)
)

PLR

−
(

PLR(1−max{κL
KQ, κL

KS, κL
SK}) + (1− PLR)2γ

)
PGR ≤ 0,

which is fulfilled since(
PGR(1− γ) + (1− PGR)(σG

SQ + λG
SQ)
)

PLR

−
(

PLR(1−max{κL
KQ, κL

KS, κL
SK}) + (1− PLR)2γ

)
PGR

≤
(

PGR(1− γ) + (1− PGR)2γ 2∗PGR−PGR∗PLR
2∗PLR−PGR∗PLR

)
PLR

−
(

PLR(1− γ 2∗PGR−PGR∗PLR
2∗PLR−PGR∗PLR

) + (1− PLR)2γ
)

PGR

= γ
(

2∗PGR−PGR∗PLR
2∗PLR−PGR∗PLR

(2 ∗ PLR− PGR ∗ PLR) + PGR ∗ PLR− 2PGR
)

= 0.

That is, if conventional violation propensities are positive, but below a certain threshold,
they cannot imply a positive disposition measure.

(iii) Let κL
KQ + κL

KS + σG
SQ + λG

SQ + κL
SK > 0, i.e., at least one of the conventional violation

propensities has to be strictly positive. Further, let all unconventional violation propen-
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sities be equal to zero, i.e., κG
KQ = κG

KS = σL
SQ = λL

SQ = κG
SK = 0. Set ε := PLR− PGR > 0

and let
max{κL

KQ, κL
KS, σG

SQ, λG
SQ, κL

SK} ≤
ε

3 max{PGVSQ, PLR}
.

Then, for DM1 our decomposition implies

DM1 =PGVKQ + PGVKS +PGVSQ∗(σG
SQ + λG

SQ)+PGVSK

−PLVKQ ∗ (1− κL
KQ)− PLVKS ∗ (1− κL

KS) −PLVSK ∗(1− κL
SK)

≤PGR +PGVSQ∗(σG
SQ + λG

SQ)

−PLR ∗ (1−max{κL
KQ, κL

KS, κL
SK})

=PGR− PLR + max{κL
KQ, κL

KS, κL
SK} ∗ PLR+PGVSQ∗(σG

SQ + λG
SQ)

≤ − ε +
ε

3
+

2ε

3
≤0.

For DM2 our decomposition implies

DM2 =
PGVKQ + PGVKS + PGVSQ ∗ (σG

SQ + λG
SQ) + PGVSK

PLVKQ ∗ (1− κL
KQ) + PLVKS ∗ (1− κL

KS) + PLVSK ∗ (1− κL
SK)
− 1

≤
PGR + PGVSQ ∗ (σG

SQ + λG
SQ)

PLR ∗ (1−max{κL
KQ, κL

KS, κL
SK})

− 1,

so that DM2 ≤ 0 if

PGR + PGVSQ ∗ (σG
SQ + λG

SQ)

PLR ∗ (1−max{κL
KQ, κL

KS, κL
SK})

≤ 1

⇐⇒ PGR− PLR + max{κL
KQ, κL

KS, κL
SK} ∗ PLR + PGVSQ ∗ (σG

SQ + λG
SQ) ≤ 0,

which is fulfilled since

PGR− PLR + max{κL
KQ, κL

KS, κL
SK} ∗ PLR + PGVSQ ∗ (σG

SQ + λG
SQ) ≤ −ε +

ε

3
+

2ε

3
= 0.

That is, if conventional violation propensities are positive, but below a certain threshold,
they cannot imply a positive disposition measure, not even in case of zero unconven-
tional violation propensities.

Proof. [Proposition 3] Let κD
KQ = κD

KS = σD
SQ = λD

SQ = κD
SK =: µ ∈ [0, 1/2] for D ∈ {G, L} and let

ε := PLR− PGR = PGK− PLK (since PGK = 1− PGR and PLK = 1− PLR).
Then, our decomposition yields DMi > 0 if and only if

(1− µ)PGR + 2µ ∗ PGK > (1− µ)PLR+2µ ∗ PLK
⇐⇒ 2µ ∗ ε > (1− µ) ∗ ε

⇐⇒ µ > 1/3

That is, a positive disposition measure can arise even if all violation propensities are identical
as long as they are sufficiently large.
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Furthermore, our decomposition yields DM1 > DM1 if and only if

(1− µ) ∗ PGR + 2µ ∗ PGK−PGR > (1− µ) ∗ PLR+2µ ∗ PLK− PLR
⇐⇒ µ ∗ ε > −2µ ∗ ε

⇐⇒ µ > 0

and DM2 > DM2 if and only if(
(1− µ)PGR + 2µ(1− PGR)

)
PLR >

(
(1− µ)PLR + 2µ(1− PLR)

)
PGR

⇐⇒ PGR ∗ PLR(1− µ− 1 + µ− 2µ + 2µ) >2µ(PGR− PLR)
⇐⇒ 0 >2µ(−ε)

⇐⇒ 0 <µ

Proof. [Proposition 4] Let all unconventional violation propensities be equal to γ, so that κG
KQ =

κG
KS = κG

SK = σL
SQ = λL

SQ =: γ, and let all conventional violation propensities be equal to γ− ν,
so that κL

KQ = κL
KS = κL

SK = σG
SQ = λG

SQ =: γ− ν with ν > 0. Then, our decomposition yields

PGR− PLR = PGVKQ(1− γ) + PGVKS(1− γ) + PGVSQ(2γ− 2ν) + PGVSK(1− γ)

−
[

PLVKQ(1− γ + ν) + PLVKS(1− γ + ν) + PLVSQ(2γ) + PLVSK(1− γ + ν)
]

= PGR(1− γ) + PGK(2γ− 2ν)−
[

PLR(1− γ + ν) + PLK(2γ)
]

= (PGR− PLR)(1− γ)− νPLR− (PLK− PGK)(2γ)− PGK(2ν)

= (−ε)(1− γ)− νPLR + ε(2γ)− PGK(2ν),

where the last equality follows by letting ε := PLR − PGR = PGK − PLK (since PGK =
1− PGR and PLK = 1− PLR). Since DMi > 0 ⇐⇒ PGR− PLR > 0, rearranging this last
expression yields PGR− PLR > 0 if and only if

ν <
ε(3γ− 1)

2 + ε− PGR
=

(PLR− PGR)(3γ− 1)
2 + PLR− 2PGR

.

Since 3γ− 1 ≤ 1/2, we have

(PLR− PGR)(3γ− 1)
2 + PLR− 2PGR

=
(PLR− PGR)(3γ− 1)

1 + (1− PLR) + 2(PLR− PGR)

≤ (PLR− PGR)
2 + 2(1− PLR) + 4(PLR− PGR)

<
1
4
< γ,

where the second to last inequality follows since x
4x+y < 1

4 with x := PLR− PGR being positive
(by Proposition 1) and y := 2 + 2(1− PLR) being positive as well. The last inequality follows
by letting γ ∈ (1/3, 1/2], so that ν < γ holds (the lower bound of γ assures that v > 0 and the
upper bound is required as all action propensities of one benchmark state add up to one).

From above it also follows that

DM1 − DM1 = (PGR− PLR)(1− γ)− νPLR− (PLK− PGK)(2γ)− PGK(2ν)− PGR + PLR
= εγ− νPLR + ε(2γ)− PGK(2ν)
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Rearranging this last expression yields DM1 − DM1 > 0 if and only if

ν <
εγ + ε(2γ)

PLR + 2PGK
=

(PLR− PGR)(3γ)

2 + PLR− 2PGR
< γ,

where the last inequality follows since (PLR−PGR)(3γ)

2+PLR−2PGR
= γ (PLR−PGR)3

1+(1−PLR)+2(PLR−PGR)
with 3ε

1+2ε+(1−PLR)
<

1 because 0 < ε < PLR < 1. Now, we have ν < γ ∈ (0, 1/2] (again, the lower bound of γ as-
sures that v > 0 and the upper bound is required as all action propensities of one benchmark
state add up to one).

Finally, we have DM2 − DM2 > 0 if and only if(
(1− γ)PGR + (2γ− 2ν)(1− PGR)

)
PLR >

(
(1− γ + ν)PLR + 2γ(1− PLR)

)
PGR

⇐⇒ PGR ∗ PLR(1− γ− 2γ + 2ν− 1 + γ− ν + 2γ)− 2ν ∗ PLR > 2γ(PGR− PLR)

⇐⇒ ν(PGR ∗ PLR− 2 ∗ PLR) > 2γ(PGR− PLR).

Since PGR ∗ PLR− 2 ∗ PLR < 0 (by Proposition 1), we have DM2 − DM2 > 0 if and only if

ν <
(PLR− PGR)2γ

2 ∗ PLR− PGR ∗ PLR
< γ,

where the last inequality follows since (PLR−PGR)2γ

2∗PLR−PGR∗PLR
= γ 2ε

PLR(2−PGR)
with 2ε

PLR(2−PGR)
< 1 ⇐⇒

2 ∗ PGR > PLR ∗ PGR which is fulfilled since 0 < PGR < PLR < 1. Now, we have
ν < γ ∈ (0, 1/2] (again, the lower bound of γ assures that v > 0 and the upper bound is
required as all action propensities of one benchmark state add up to one).

Proof. [Proposition 5] Let Pr(K|V, D) = Pr(K), Pr(S|V, D) = Pr(S), and Pr(Q|V, D) = Pr(Q)
with V ∈ {VKQ, VKS, VSK, VSQ} and D ∈ {G, L}. Then, by our decomposition we have

PGR = PGVKQ(1− Pr(K)) + PGVKS(1− Pr(K)) + PGVSQ(Pr(S) + Pr(Q)) + PGVSK(1− Pr(K))
= PGR(1− Pr(K)) + PGK(Pr(S) + Pr(Q))

= 1− Pr(K),
PLR = PLVKQ(1− Pr(K)) + PLVKS(1− Pr(K)) + PLVSQ(Pr(S) + Pr(Q)) + PLVSK(1− Pr(K))

= PLR(1− Pr(K)) + PLK(Pr(S) + Pr(Q))

= 1− Pr(K),

where PGR+ PGK = PLR+ PLK = 1 is an implication of the fact that our benchmark specifies
a unique appropriate action for each state of the world, and Pr(K) + Pr(S) + Pr(Q) = 1 is an
implication of the fact that the actions keep (K), switch (S), and liquidate (Q) cover the entire
action space. It follows that DM1 = PGR− PLR = 0 and DM2 = PGR

PLR − 1 = 0. Since DMi < 0
(by Proposition 1), we also have that DMi = 0 > DMi.

Proof. [Proposition 6] We prove each case of Proposition 6 separately.

(i) By our decomposition, PGR (PLR) is increasing (decreasing) in conventional and de-
creasing (increasing) in unconventional violation propensities. Thus, DMi is increasing
in conventional and decreasing in unconventional violation propensities.
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(ii) Let κD
KQ = κD

KS = σD
SQ = λD

SQ = κD
SK =: µ ∈ [0, 1/2) for D ∈ {G, L} and note that

PGK = 1− PGR and PLK = 1− PLR. Then, by our decomposition, we have DM1 =
(PLR− PGR)(3µ− 1), so that

dDM1

dµ
= (PLR− PGR)3,

which is strictly positive by Proposition 1.

By our decomposition, we also have DM2 = PGR+µ(2−3PGR)
PLR+µ(2−3PLR)

− 1, so that

dDM2

dµ
=

(2− 3PGR)(PLR + µ(2− 3PLR))− (2− 3PLR)(PGR + µ(2− 3PGR))
(PLR + µ(2− 3PLR))2

=
(PLR− PGR)2

(PLR + µ(2− 3PLR))2
,

where the denominator is strictly positive and the numerator is strictly positive by Propo-
sition 1.

(iii) Let ε ∈ [0, ε̄) with ε̄ = 1/2−max{κD
KQ, κD

KS, κD
SK, σD

SQ, λD
SQ} for D ∈ {G, L} be added to all

violation propensities and note that PGK = 1− PGR and PLK = 1− PLR. Then, by our
decomposition, we have

PGR = PGVKQ(1− κG
KQ − ε) + PGVKS(1− κG

KS − ε) + PGVSK(1− κG
SK − ε)

+ PGVSQ(σ
G
SQ + ε + λG

SQ + ε),

PLR = PLVKQ(1− κL
KQ − ε) + PLVKS(1− κL

KS − ε) + PLVSK(1− κL
SK − ε)

+ PLVSQ(σ
L
SQ + ε + λL

SQ + ε).

Thus,

dDM1

dε
=

(
− PGR + (1− PGR)2

)
−
(
(−PLR + (1− PLR)2

)
= (PLR− PGR)3,

which is strictly positive by Proposition 1, and

dDM2

dε
=

(2− 3PGR)PLR− (2− 3PLR)PGR
(PLR)2

,

where the denominator is strictly positive and the numerator is strictly positive by Propo-
sition 1 if PLR > 2/3 and PGR > PLR or if PLR < 2/3 and PGR < PLR.

Proof. [Lemma 1] This proof builds upon Appendix B and the proof of Proposition 1. In this
proof, we investigate the effect that an increase of g by 1 has on PGR and PLR. The effect of
increasing it by more than 1 (up to n− g) evolves accordingly, as it is a strictly monotone effect.
The proof works similarly both for θ > 0 and θ = 0. For brevity, in the following we focus on
θ > 0 only. The case of θ = 0 can be shown analogously, but requires more notation due to the
initial randomization for uninformative priors at t = τ.

We start with the proof of PGR, which relies on the following lemma:
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Lemma 5 Let (αi)i∈{0,...,n} and (βi)i∈{0,...,n} be positive sequences such that αi
βi

is strictly decreasing in
i. Then,

∀ g ∈ {1, . . . , n− 1} :
∑k+n

i=k+g αi

∑k+n
i=k+g βi

>
∑k+n

i=k+g+1 αi

∑k+n
i=k+g+1 βi

.

Proof. [Lemma 5] Since αi
βi

is strictly decreasing in i, we know that

αk+g

βk+g
>

αi

βi
∀ i ∈ {k + g + 1, . . . , k + n}. (6)

Since (6) is equivalent to βiαk+g > αiβk+g ∀ i ∈ {k + g + 1, . . . , k + n}, it implies that

k+n

∑
i=k+g+1

βiαk+g >
k+n

∑
i=k+g+1

αiβk+g

⇐⇒
αk+g

βk+g
>

∑k+n
i=k+g+1 αi

∑k+n
i=k+g+1 βi

. (7)

Also, note that

∑k+n
i=k+g αi

∑k+n
i=k+g βi

=
∑k+n

i=k+g+1 αi + αk+g

∑k+n
i=k+g+1 βi + βk+g

. (8)

We want to prove that

∑k+n
i=k+g αi

∑k+n
i=k+g βi

>
∑k+n

i=k+g+1 αi

∑k+n
i=k+g+1 βi

(9)

⇐⇒
∑k+n

i=k+g+1 αi + αk+g

∑k+n
i=k+g+1 βi + βk+g

>
∑k+n

i=k+g+1 αi

∑k+n
i=k+g+1 βi

, (10)

where the equivalence follows by plugging (8) into (9). Now, (10) is equivalent to(
k+n

∑
i=k+g+1

αi + αk+g

)(
k+n

∑
i=k+g+1

βi

)
>

(
k+n

∑
i=k+g+1

αi

)(
k+n

∑
i=k+g+1

βi + βk+g

)

⇐⇒ αk+g

k+n

∑
i=k+g+1

βi > βk+g

k+n

∑
i=k+g+1

αi

⇐⇒
αk+g

βk+g
>

∑k+n
i=k+g+1 αi

∑k+n
i=k+g+1 βi

,

which is equivalent to (7). Note that for the strict inequality result in Lemma 5 to hold it is
actually sufficient that sequence is decreasing with only one strict inequality.

Note first that we can rewrite PGR as

PGR =
∑τ

k=θ ∑k−θ
l=0 Pr(a = k, b = l)(PGR|a = k, b = l)

∑τ
k=θ ∑k−θ

l=0 Pr(a = k, b = l) + ∑τ
k=θ ∑k−θ

l=0 Pr(b = k, a = l)

+
∑τ

k=θ ∑k−θ
l=0 Pr(b = k, a = l)(PGR|b = k, a = l)

∑τ
k=θ ∑k−θ

l=0 Pr(a = k, b = l) + ∑τ
k=θ ∑k−θ

l=0 Pr(b = k, a = l)
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Thus, to prove that PGR is decreasing in g, for fixed θ it is sufficient to prove that (PGR|a =
k, b = l) and (PGR|b = k, a = l) are decreasing in g for all values of k and l satisfying |k− l| ≥ θ.
In the following, we will prove that (PGR|a = k, b = l) is decreasing in g. By “swapping”
places of a and b, the proof for (PGR|b = k, a = l) decreasing in g works similarly and is
therefore omitted. Note that

(PGR|a = k, b = l) =
(NPGR|a = k, b = l)
(DPGR|a = k, b = l)

,

where (NPGR|a = k, b = l) and (DPGR|a = k, b = l) are already defined in the proof of
Proposition 1. Similar to the proof of Proposition 1, we again use the fact that (αm|a=k,b=l)

(βm|a=k,b=l) ≤ 1
is decreasing in m, where (αm|a = k, b = l) and (βm|a = k, b = l) are defined in (3) and (4) of
the proof of Proposition 1.

Then, Lemma 5 implies that

∑k+n
m=k+g(αm|a = k, b = l)

∑k+n
m=k+g(βm|a = k, b = l)

>
∑k+n

m=k+g+1(αm|a = k, b = l)

∑k+n
m=k+g+1(βm|a = k, b = l)

. (11)

Plugging (3) and (4) into (11) yields

∑k+n
m=k+g Pr (a′ = m|a = k, b = l)∑l+n

j=m−θ+1 Pr (b′ = j|a = k, b = l)

∑k+n
m=k+g Pr (a′ = m|a = k, b = l)∑l+n

j=l Pr (b′ = j|a = k, b = l)

>
∑k+n

m=k+g+1 Pr (a′ = m|a = k, b = l)∑l+n
j=m−θ+1 Pr (b′ = j|a = k, b = l)

∑k+n
m=k+g+1 Pr (a′ = m|a = k, b = l)∑l+n

j=l Pr (b′ = j|a = k, b = l)

⇐⇒ (NPGR|a = k, b = l)
(DPGR|a = k, b = l)

∣∣∣∣∣
g

>
(NPGR|a = k, b = l)
(DPGR|a = k, b = l)

∣∣∣∣∣
g+1

⇐⇒ (PGR|a = k, b = l)|g > (PGR|a = k, b = l)|g+1

Hence PGR is decreasing in g.
Next, we prove PLR, which relies on the following lemma:

Lemma 6 Let (αi)i∈{0,...,n} and (βi)i∈{0,...,n} be positive sequences such that αi
βi

is strictly decreasing in
i. Then,

∀ g ∈ {1, . . . , n− 1} :
∑

k+g−1
i=k αi

∑
k+g−1
i=k βi

>
∑

k+g
i=k αi

∑
k+g
i=k βi

.

Proof. [Lemma 6] Since αi
βi

is strictly decreasing in i, we know that

αk+g

βk+g
<

αi

βi
∀ i ∈ {k, . . . , k + g− 1}. (12)

Since (12) is equivalent to βiαk+g < αiβk+g ∀ i ∈ {k, . . . , k + g− 1}, it implies that

k+g−1

∑
i=k

βiαk+g <
k+g−1

∑
i=k

αiβk+g

⇐⇒
αk+g

βk+g
<

∑
k+g−1
i=k αi

∑
k+g−1
i=k βi

. (13)
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Also, note that

∑
k+g
i=k αi

∑
k+g
i=k βi

=
∑

k+g−1
i=k αi + αk+g

∑
k+g−1
i=k βi + βk+g

. (14)

We want to prove that

∑
k+g−1
i=k αi

∑
k+g−1
i=k βi

>
∑

k+g
i=k αi

∑
k+g
i=k βi

(15)

⇐⇒ ∑
k+g−1
i=k αi

∑
k+g−1
i=k βi

>
∑

k+g−1
i=k αi + αk+g

∑
k+g−1
i=k βi + βk+g

, (16)

where the equivalence follows by plugging (14) into (15). Now, (16) is equivalent to(
k+g−1

∑
i=k

αi + αk+g

)(
k+g−1

∑
i=k

βi

)
<

(
k+g−1

∑
i=k

αi

)(
k+g−1

∑
i=k

βi + βk+g

)

⇐⇒ αk+g

k+g−1

∑
i=k

βi < βk+g

k+g−1

∑
i=k

αi

⇐⇒
αk+g

βk+g
<

∑
k+g−1
i=k αi

∑
k+g−1
i=k βi

,

which is equivalent to (13). Note that for the strict inequality result in Lemma 5 to hold it is
actually sufficient that sequence is decreasing with only one strict inequality.

Note first that we can rewrite PLR as

PLR =
∑τ

k=θ ∑k−θ
l=0 Pr(a = k, b = l)(PLR|a = k, b = l)

∑τ
k=θ ∑k−θ

l=0 Pr(a = k, b = l) + ∑τ
k=θ ∑k−θ

l=0 Pr(b = k, a = l)

+
∑τ

k=θ ∑k−θ
l=0 Pr(b = k, a = l)(PLR|b = k, a = l)

∑τ
k=θ ∑k−θ

l=0 Pr(a = k, b = l) + ∑τ
k=θ ∑k−θ

l=0 Pr(b = k, a = l)

Again, to prove that PLR is decreasing in g, for fixed θ it is sufficient to prove that (PLR|a =
k, b = l) and (PLR|b = k, a = l) are decreasing in g for all values of k and l satisfying |k− l| ≥ θ.
In the following, we will prove that (PLR|a = k, b = l) is decreasing in g. By “swapping” places
of a and b, the proof for (PLR|b = k, a = l) decreasing in g works similarly and is therefore
omitted. Note that

(PLR|a = k, b = l) =
(NPLR|a = k, b = l)
(DPLR|a = k, b = l)

,

where (NPLR|a = k, b = l) and (DPLR|a = k, b = l) are already defined in the proof of
Proposition 1. As before, we use the fact that (αm|a=k,b=l)

(βm|a=k,b=l) ≤ 1 is decreasing in m, where (αm|a =

k, b = l) and (βm|a = k, b = l) are defined in (3) and (4) of the proof of Proposition 1.
Then, Lemma 6 implies that

∑
k+g−1
m=k (αm|a = k, b = l)

∑
k+g−1
m=k (βm|a = k, b = l)

>
∑

k+g
m=k(αm|a = k, b = l)

∑
k+g
m=k(βm|a = k, b = l)

. (17)
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Plugging (3) and (4) into (17) yields

∑
k+g−1
m=k Pr (a′ = m|a = k, b = l)∑l+n

j=m−θ+1 Pr (b′ = j|a = k, b = l)

∑
k+g−1
m=k Pr (a′ = m|a = k, b = l)∑l+n

j=l Pr (b′ = j|a = k, b = l)

>
∑

k+g
m=k Pr (a′ = m|a = k, b = l)∑l+n

j=m−θ+1 Pr (b′ = j|a = k, b = l)

∑
k+g
m=k Pr (a′ = m|a = k, b = l)∑l+n

j=l Pr (b′ = j|a = k, b = l)

⇐⇒ (NPLR|a = k, b = l)
(DPLR|a = k, b = l)

∣∣∣∣∣
g−1

>
(NPLR|a = k, b = l)
(DPLR|a = k, b = l)

∣∣∣∣∣
g

⇐⇒ (PLR|a = k, b = l)|g−1 > (PLR|a = k, b = l)|g

Hence PLR is decreasing in g. Therefore, PGR and PLR are both decreasing in g.

Proof. [Proposition 7] Let the unconventional violation propensities all be equal to γ, so that
κG

KQ = κG
KS = κG

SK = σL
SQ = λL

SQ =: γ ∈ (0, 1/2]. Further, let the conventional violation propensi-
ties all be equal to γ− ν, so that κL

KQ = κL
KS = κL

SK = σG
SQ = λG

SQ =: γ− ν ∈ (0, 1/2]. Then, our
decomposition yields

PGR = PGVKQ(1− γ) + PGVKS(1− γ) + PGVSQ(2γ− 2ν) + PGVSK(1− γ)

= 2γ− 2ν + PGR(1− 3γ + 2ν),
PLR = PLVKQ(1− γ + ν) + PLVKS(1− γ + ν) + PLVSQ(2γ) + PLVSK(1− γ + ν)

= 2γ + PLR(1− 3γ + ν),

because PGVKQ + PGVKS + PGVSK = PGR and PGVSQ = PGK = 1− PGR in gains as well
as PLVKQ + PLVKS + PLVSK = PLR and PLVSQ = PLK = 1− PLR in losses. In this proof,
we denote ∆X(g)

∆g the effect that a change of g has on X(g) (whereas in the remaining paper ∆
denotes the difference in the number of price appreciations between the two risky assets until
period τ). Then,

∆DM1(g)
∆g

=
∆PGR(g)

∆g
(1− 3γ + 2ν)− ∆PLR(g)

∆g
(1− 3γ + ν),

∆DM2(g)
∆g

=

∆PGR(g)
∆g (1− 3γ + 2ν)PLR(g)− ∆PLR(g)

∆g (1− 3γ + ν)PGR(g)

(PLR(g))2 .

Note that PGR > 0 since γ− ν > 0 and PLR > 0 since γ > 0. Suppose first that k = 1, so that

ν = 3γ− 1 ⇐⇒ γ = ν+1
3 . By Lemma 1 we know that ∆PGR(g)

∆g < 0. Thus, ∆DMi(g)
∆g > (<) 0

if and only if 1 − 3( ν+1
3 ) + 2ν < (>) 0 ⇐⇒ ν < (>) 0. Suppose next that k = 2, so

that 2ν = 3γ − 1 ⇐⇒ γ = 2ν+1
3 . By Lemma 1 we also know that ∆PLR(g)

∆g < 0. Thus,
∆DMi(g)

∆g > (<) 0 if and only if 1− 3( 2ν+1
3 ) + ν > (<) 0 ⇐⇒ ν < (>) 0.

Proof. [Lemma 2] This proof applies the de Moivre-Laplace theorem, which is a special case of
the central limit theorem and states that the distribution of total appreciations of a binomial
process, where p ∈ (0, 1) is the probability to appreciate and x the number of trials, converges
to the normal distribution with mean xp and standard deviation

√
xp(1− p) as x grows large.

In this proof, we investigate the effect of τ growing large. By the de Moivre-Laplace theo-
rem, the distribution of |∆| converges to the normal distribution with mean τ|ph − pl |. Thus,
the expected difference in appreciations, i.e., E(|∆|), increases in τ. For sufficiently large τ
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and fixed n, the value of |∆′ − ∆| is irrelevant as |∆| is way above the investment threshold θ
(see Appendix B). These “extreme” values of |∆| become more likely for larger τ. This is be-
cause until period τ, the high (low) process Fh (Fl) converges to the normal distribution with
mean τph (τpl) and standard deviation

√
τph(1− ph) (

√
τpl(1− pl)) as τ grows large, and di-

viding by
√

τ yields the normal distribution with mean
√

τph (
√

τpl) and standard deviation√
ph(1− ph) (

√
pl(1− pl)). As a result, the means of both processes increase with the rate

√
τ

and the standard deviations remain constant as τ grows large. Thus, the probability of |∆| to
be weakly below θ + n is converging to 0 as τ grows large, so that the investor should never
realize her asset. Therefore, PGR and PLR converge to 0 as τ grows large.

Proof. [Proposition 8] Let κD
KQ = κD

KS = κD
SK =: κD ∈ [0, 1] and σD

SQ + λD
SQ =: ρD ∈ (0, 1] in

domain D ∈ {G, L}. Then, for DM1 our decomposition yields

DM1 = PGVKQ(1− κG) + PGVKS(1− κG) + PGVSQ(ρ
G) + PGVSK(1− κG)

−
[

PLVKQ(1− κL) + PLVKS(1− κL) + PLVSQ(ρ
L) + PLVSK(1− κL)

]
= ρG − ρL + PGR(1− κG − ρG)− PLR(1− κL − ρL)

because PGVKQ + PGVKS + PGVSK = PGR and PGVSQ = PGK = 1− PGR in gains as well as
PLVKQ + PLVKS + PLVSK = PLR and PLVSQ = PLK = 1− PLR in losses. By Lemma 2, both
PGR and PLR converge to 0 for “large τ,” so that DM1 converges to ρG − ρL for “large τ.” This
limit value of DM1 is approached from below (above) if and only if

PGR(1− κG − ρG) < (>) PLR(1− κL − ρL).

By Proposition 1, we know that 0 < PGR < PLR < 1 outside the limit. Thus, if κL + ρL ≥
1∧ κG + ρG ≤ 1 (with at least one strict inequality), the limit value of DM1 is approached from
above. If κL + ρL ≤ 1∧ κG + ρG ≥ 1 (with at least one strict inequality), the limit value of DM1
is approached from below.

For DM2 our decomposition yields

DM2 =
PGVKQ(1− κG) + PGVKS(1− κG) + PGVSQ(ρ

G) + PGVSK(1− κG)

PLVKQ(1− κL) + PLVKS(1− κL) + PLVSQ(ρL) + PLVSK(1− κL)
− 1

=
ρG + PGR(1− κG − ρG)

ρL + PLR(1− κL − ρL)
− 1

because PGVKQ + PGVKS + PGVSK = PGR and PGVSQ = PGK = 1− PGR in gains as well as
PLVKQ + PLVKS + PLVSK = PLR and PLVSQ = PLK = 1− PLR in losses. By Lemma 2, both

PGR and PLR converge to 0 for “large τ,” so that DM2 converges to ρG

ρL − 1 for “large τ.” This
limit value of DM2 is approached from below (above) if and only if

PGR(1− κG − ρG)ρL < (>) PLR(1− κL − ρL)ρG.

By Proposition 1, we know that 0 < PGR < PLR < 1 outside the limit. Further, note that
ρD > 0. Thus, if κL + ρL ≥ 1 ∧ κG + ρG ≤ 1 (with at least one strict inequality), the limit
value of DM2 is approached from above. If κL + ρL ≤ 1 ∧ κG + ρG ≥ 1 (with at least one strict
inequality), the limit value of DM2 is approached from below.

Proof. [Lemma 3] Similar to the proof of Lemma 2, this proof applies the de Moivre-Laplace theo-
rem. In this proof, we investigate the effect of n growing large. First, note that by the de Moivre-
Laplace theorem, between periods τ and τ′ the high (low) process Fh (Fl) converges to the nor-
mal distribution with mean nph (npl) and standard deviation

√
nph(1− ph) (

√
npl(1− pl)) as

50



n grows large, and dividing by n yields the normal distribution with mean ph (pl) and stan-

dard deviation
√

1
n ph(1− ph) (

√
1
n pl(1− pl)). Thus, both standard deviations are decreasing

in n and the condition pl <
g
n < ph assures that the high process yields only gains and the low

process only losses when n grows large.
Second, by the de Moivre-Laplace theorem, the distribution of |∆′| converges to the nor-

mal distribution with mean (τ + n)|ph − pl |. Thus, the expected difference in appreciations,
i.e., E(|∆′|), increases in n. For sufficiently large n and fixed τ, the value of |∆| is irrelevant as
|∆′| is way above the investment threshold θ (see Appendix B). These “extreme” values of |∆′|
become more likely for larger n. Thus, the probability of |∆′| to be weakly below θ is converging
to 0 as n grows large. Together with the argument above, this implies that the investor should
never realize a gain and always realize a loss as n grows large. Therefore, PGR converges to 0,
PLR converges to 1, and DMi converges to −1 as n grows large.

Proof. [Proposition 9] Let κD
KQ = κD

KS = κD
SK = κD ∈ [0, 1) and σD

SQ + λD
SQ = ρD ∈ (0, 1] in

domain D ∈ {G, L}. Then, for DM1 our decomposition yields

DM1 = PGVKQ(1− κG) + PGVKS(1− κG) + PGVSQ(ρ
G) + PGVSK(1− κG)

−
[

PLVKQ(1− κL) + PLVKS(1− κL) + PLVSQ(ρ
L) + PLVSK(1− κL)

]
= ρG − ρL + PGR(1− κG − ρG)− PLR(1− κL − ρL)

because PGVKQ + PGVKS + PGVSK = PGR and PGVSQ = PGK = 1− PGR in gains as well as
PLVKQ + PLVKS + PLVSK = PLR and PLVSQ = PLK = 1− PLR in losses. By Lemma 3, PGR
converges to 0 and PLR converges to 1 for “large n,” so that DM1 converges to κL + ρG − 1 for
“large n.” This limit value of DM1 is approached from below (above) if and only if

PGR(1− κG − ρG) < (>) (PLR− 1)(1− κL − ρL).

By Proposition 1, we know that 0 < PGR < PLR < 1 outside the limit. Thus, if κL + ρL ≤
1∧ κG + ρG ≤ 1 (with at least one strict inequality), the limit value of DM1 is approached from
above. If κL + ρL ≥ 1∧ κG + ρG ≥ 1 (with at least one strict inequality), the limit value of DM1
is approached from below.

For DM2 our decomposition yields

DM2 =
PGVKQ(1− κG) + PGVKS(1− κG) + PGVSQ(ρ

G) + PGVSK(1− κG)

PLVKQ(1− κL) + PLVKS(1− κL) + PLVSQ(ρL) + PLVSK(1− κL)
− 1

=
ρG + PGR(1− κG − ρG)

ρL + PLR(1− κL − ρL)
− 1

because PGVKQ + PGVKS + PGVSK = PGR and PGVSQ = PGK = 1− PGR in gains as well as
PLVKQ + PLVKS + PLVSK = PLR and PLVSQ = PLK = 1− PLR in losses. By Lemma 3, PGR

converges to 0 and PLR converges to 1 for “large n,” so that DM2 converges to ρG

1−κL − 1 for
“large n.” This limit value of DM2 is approached from below (above) if and only if

PGR(1− κG − ρG)(1− κL) < (>) (PLR− 1)(1− κL − ρL)ρG.

By Proposition 1, we know that 0 < PGR < PLR < 1 outside the limit. Further, note that
ρD > 0 and κL < 1. Thus, if κL + ρL ≤ 1 ∧ κG + ρG ≤ 1 (with at least one strict inequality), the
limit value of DM2 is approached from above. If κL + ρL ≥ 1 ∧ κG + ρG ≥ 1 (with at least one
strict inequality), the limit value of DM2 is approached from below.
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B Appendix: Benchmark Disposition Measure

In this appendix, we show how PGR and PLR (and hence DMi) can be explicitly computed for
any parameterization of the stochastic environment and for any risk attitude of the investor.
Precisely,

PGR = PGVKQ + PGVKS + PGVSK =
NPGR(θ)
DPGR(θ)

,

PLR = PLVKQ + PLVKS + PLVSK =
NPLR(θ)
DPLR(θ)

.

Our monotonicity assumption on the choice rule in period τ (see Section 2.3) implies that

∃ θ ≥ 0 with either θ > 0 s.t. f (∆) =


A if ∆ ≥ θ

O if |∆| < θ

B if ∆ ≤ −θ,

or θ = 0 s.t. f (∆) =


A if ∆ > 0
(0.5 ◦ A, 0.5 ◦ B) if ∆ = 0
B if ∆ < 0.

Note that for such a θ to exist, the expected utility of the better process needs to exceed that of
the outside option.

In the case where θ > 0, we then have

NPGR(θ > 0) : =
τ

∑
k=θ

k−θ

∑
l=0

k+n

∑
m=k+g

l+n

∑
j=m−θ+1

Pr
(
a = k, b = l, a′ = m, b′ = j

)
+

τ

∑
k=θ

k−θ

∑
l=0

k+n

∑
m=k+g

l+n

∑
j=m−θ+1

Pr
(
b = k, a = l, b′ = m, a′ = j

)
,

DPGR(θ > 0) : =
τ

∑
k=θ

k−θ

∑
l=0

k+n

∑
m=k+g

l+n

∑
j=l

Pr
(
a = k, b = l, a′ = m, b′ = j

)
+

τ

∑
k=θ

k−θ

∑
l=0

k+n

∑
m=k+g

l+n

∑
j=l

Pr
(
b = k, a = l, b′ = m, a′ = j

)
,

NPLR(θ > 0) : =
τ

∑
k=θ

k−θ

∑
l=0

k+g−1

∑
m=k

l+n

∑
j=m−θ+1

Pr
(
a = k, b = l, a′ = m, b′ = j

)
+

τ

∑
k=θ

k−θ

∑
l=0

k+g−1

∑
m=k

l+n

∑
j=m−θ+1

Pr
(
b = k, a = l, b′ = m, a′ = j

)
,

and DPLR(θ > 0) : =
τ

∑
k=θ

k−θ

∑
l=0

k+g−1

∑
m=k

l+n

∑
j=l

Pr
(
a = k, b = l, a′ = m, b′ = j

)
+

τ

∑
k=θ

k−θ

∑
l=0

k+g−1

∑
m=k

l+n

∑
j=l

Pr
(
b = k, a = l, b′ = m, a′ = j

)
.

These multi-sums of price-path realization-combinations of both assets are the numerators and
denominators of the proportions of gains respectively losses that should be realized, according
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to the full benchmark. The first two sums over k and l specify an asset price combination at the
initial purchase decision at t = τ, and the boundaries are chosen such that only those combi-
nations are considered where a risky asset is purchased, given the risk preference represented
by θ. The third sum pins down whether the own asset is in gains or losses, i.e., it specifies the
number of price increases of the own asset between periods τ and τ′ as bigger or smaller than
g (recall that g is the minimum number of “ups” between τ and τ′ for an asset to be in gains).
Last but not least, the inner-most sum collects the states where the own asset should be realized
in the numerators, and all possible realizations of “the other” asset in the denominators. An
asset should be realized, i.e., sold, whenever it is first- or second-order dominated, i.e., when-
ever the overall difference in the number of ups of the own and the other asset is negative or
below the investment threshold θ.

Two remarks are in order. First, the fact that A and B may “swap” places does not imply
that both sums together are equal to two times one of the sums, because even though the
bounds of the sums are identical, the arguments, i.e., the probabilities, are not symmetric in A
and B since

Pr
(
a = k, b = l, a′ = m, b′ = j

)
=

(
τ

k

)(
τ

l

)(
n

m− k

)(
n

j− l

)
pm

A(1− pA)
τ+n−m pj

B(1− pB)
τ+n−j

and

Pr
(
b = k, a = l, b′ = m, a′ = j

)
=

(
τ

k

)(
τ

l

)(
n

m− k

)(
n

j− l

)
pm

B (1− pB)
τ+n−m pj

A(1− pA)
τ+n−j,

where pA = ph, pB = pl if A follows Fh and pA = pl , pB = ph if B follows Fh.
Second, the outer three sums are always non-empty, whereas the inner-most sum is empty

for “big” m. Precisely, θ ≤ τ is needed for the investor to buy an asset in some contingency,
which is of course necessary for the disposition measure to exist; k− θ ≥ 0 is implied by k ≥ θ
by definition of the first sum; k + n ≥ k + g follows from n ≥ g; m− θ + 1 > l + n for m = k + n
(upper bound in gains) as k− θ ≥ l by definition of the second sum, and m− θ + 1 ≤ l + n for
m = k (lower bound in losses) as k ≤ τ < n.

In the other case where θ = 0, due to the initial randomization for uninformative priors at
t = τ, we have

NPGR(θ = 0) : =
τ

∑
k=1

k−1

∑
l=0

k+n

∑
m=k+g

l+n

∑
j=m+1

Pr
(
a = k, b = l, a′ = m, b′ = j

)
+

τ

∑
k=1

k−1

∑
l=0

k+n

∑
m=k+g

l+n

∑
j=m+1

Pr
(
b = k, a = l, b′ = m, a′ = j

)
+

1
2

τ

∑
k=0

k+n

∑
m=k+g

k+n

∑
j=m+1

Pr
(
a = k, b = k, a′ = m, b′ = j

)
+

1
2

τ

∑
k=0

k+n

∑
m=k+g

k+n

∑
j=m+1

Pr
(
b = k, a = k, b′ = m, a′ = j

)
,
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DPGR(θ = 0) : =
τ

∑
k=1

k−1

∑
l=0

k+n

∑
m=k+g

l+n

∑
j=l

Pr
(
a = k, b = l, a′ = m, b′ = j

)
+

τ

∑
k=1

k−1

∑
l=0

k+n

∑
m=k+g

l+n

∑
j=l

Pr
(
b = k, a = l, b′ = m, a′ = j

)
+

1
2

τ

∑
k=0

k+n

∑
m=k+g

k+n

∑
j=k

Pr
(
a = k, b = k, a′ = m, b′ = j

)
+

1
2

τ

∑
k=0

k+n

∑
m=k+g

k+n

∑
j=k

Pr
(
b = k, a = k, b′ = m, a′ = j

)
,

NPLR(θ = 0) : =
τ

∑
k=1

k−1

∑
l=0

k+g−1

∑
m=k

l+n

∑
j=m+1

Pr
(
a = k, b = l, a′ = m, b′ = j

)
+

τ

∑
k=1

k−1

∑
l=0

k+g−1

∑
m=k

l+n

∑
j=m+1

Pr
(
b = k, a = l, b′ = m, a′ = j

)
+

1
2

τ

∑
k=0

k+g−1

∑
m=k

k+n

∑
j=m+1

Pr
(
a = k, b = k, a′ = m, b′ = j

)
+

1
2

τ

∑
k=0

k+g−1

∑
m=k

k+n

∑
j=m+1

Pr
(
b = k, a = k, b′ = m, a′ = j

)
,

and DPLR(θ = 0) : =
τ

∑
k=1

k−1

∑
l=0

k+g−1

∑
m=k

l+n

∑
j=l

Pr
(
a = k, b = l, a′ = m, b′ = j

)
+

τ

∑
k=1

k−1

∑
l=0

k+g−1

∑
m=k

l+n

∑
j=l

Pr
(
b = k, a = l, b′ = m, a′ = j

)
+

1
2

τ

∑
k=0

k+g−1

∑
m=k

k+n

∑
j=k

Pr
(
a = k, b = k, a′ = m, b′ = j

)
+

1
2

τ

∑
k=0

k+g−1

∑
m=k

k+n

∑
j=k

Pr
(
b = k, a = k, b′ = m, a′ = j

)
.

Thus, for any risk attitude of the investor, PGR, PLR, and hence DMi can be explicitly
computed.

54



References

Barber, Brad M., Yi-Tsung Lee, Yu-Jane Liu, and Terrance Odean, “Is the Aggregate Investor
Reluctant to Realise Losses? Evidence From Taiwan,” European Financial Management, 2007,
13 (3), 423–447.

Barberis, Nicholas and Wei Xiong, “What Drives the Disposition Effect? An Analysis of a
Long-Standing Preference-Based Explanation,” Journal of Finance, 2009, 64 (2), 751–784.

and , “Realization Utility,” Journal of Financial Economics, 2012, 104 (2), 251–271.

Barberis, Nicholas C., “Thirty Years of Prospect Theory in Economics: A Review and Assess-
ment,” Journal of Economic Perspectives, 2013, 27 (1), 173–196.

, “Psychology-Based Models of Asset Prices and Trading Volume,” in Handbook of Behavioral
Economics, 2019, edited by Doug Bernheim, Stefano DellaVigna, and David Laibson, Elsevier Press.

Brown, Philip, Nick Chappel, Ray da Silva Rosa, and Terry Walter, “The Reach of the Dispo-
sition Effect: Large Sample Evidence Across Investor Classes,” International Review of Finance,
2006, 6 (1-2), 43–78.

Calvet, Laurent E., John Y. Campbell, and Paolo Sodini, “Fight or Flight? Portfolio Rebalanc-
ing By Individual Investors,” Quarterly Journal of Economics, 2009, 124 (1), 301–348.

Camerer, Colin F., “Prospect Theory in the Wild: Evidence from the Field,” Chapter 16 in
“Choices, Values, and Frames,” edited by Daniel Kahneman and Amos Tversky, 2000, Cambridge
University Press, 288–300.

Chen, Gongmeng, Kenneth A. Kim, John R. Nofsinger, and Oliver M. Rui, “Trading Per-
formance, Disposition Effect, Overconfidence, Representativeness Bias, and Experience of
Emerging Market Investors,” Journal of Behavioral Decision Making, 2007, 20 (4), 425–451.

Choe, Hyuk and Yunsung Eom, “The Disposition Effect and Investment Performance in the
Futures Market,” Journal of Futures Markets, 2009, 29 (6), 496–522.

Constantinides, George M., “Capital Market Equilibrium with Personal Tax,” Econometrica,
1983, pp. 611–636.

, “Optimal Stock Trading with Personal Taxes: Implications for Prices and the Abnormal
January Returns,” Journal of Financial Economics, 1984, 13 (1), 65–89.

Coval, Joshua D. and Tyler Shumway, “Do Behavioral Biases Affect Prices?,” Journal of Finance,
2005, 60 (1), 1–34.

Crane, Alan D. and Jay C. Hartzell, “Is There a Disposition Effect in Corporate Investment
Decisions? Evidence from Real Estate Investment Trusts,” Working Paper, 2010.

DellaVigna, Stefano, “Psychology and Economics: Evidence from the Field,” Journal of Eco-
nomic Literature, 2009, 47 (2), 315–372.

Dhar, Ravi and Ning Zhu, “Up Close and Personal: Investor Sophistication and the Disposi-
tion Effect,” Management Science, 2006, 52 (5), 726–740.

Dierick, Nicolas, Dries Heyman, Koen Inghelbrecht, and Hannes Stieperaere, “Financial At-
tention and the Disposition Effect,” Journal of Economic Behavior and Organization, 2019, 163,
190–217.

55



Feng, Lei and Mark S. Seasholes, “Do Investor Sophistication and Trading Experience Elimi-
nate Behavioral Biases in Financial Markets?,” Review of Finance, 2005, 9 (3), 305–351.

Fischbacher, Urs, Gerson Hoffmann, and Simeon Schudy, “The Causal Effect of Stop-Loss
and Take-Gain Orders on the Disposition Effect,” Review of Financial Studies, 2017, 30 (6),
2110–2129.

Frazzini, Andrea, “The Disposition Effect and Underreaction to News,” Journal of Finance, 2006,
61 (4), 2017–2046.

Frydman, Cary, Nicholas Barberis, Colin Camerer, Peter Bossaerts, and Antonio Rangel, “Us-
ing Neural Data to Test a Theory of Investor Behavior: An Application to Realization Utility,”
Journal of Finance, 2014, 69 (2), 907–946.

, Samuel M. Hartzmark, and David H. Solomon, “Rolling Mental Accounts,” Review of
Financial Studies, 2017, 31 (1), 362–397.

Genesove, David and Christopher Mayer, “Loss Aversion and Seller Behavior: Evidence From
the Housing Market,” Quarterly Journal of Economics, 2001, 116 (4), 1233–1260.

Gherzi, Svetlana, Daniel Egan, Neil Stewart, Emily Haisley, and Peter Ayton, “The Meerkat
Effect: Personality and Market Returns Affect Investors’ Portfolio Monitoring Behaviour,”
Journal of Economic Behavior & Organization, 2014, 107, 512–526.

Grinblatt, Mark and Bing Han, “Prospect Theory, Mental Accounting, and Momentum,” Jour-
nal of Financial Economics, 2005, 78, 311–339.

and Matti Keloharju, “What Makes Investors Trade?,” Journal of Finance, 2001, 56 (2), 589–
616.

, , and Juhani T. Linnainmaa, “IQ, Trading Behavior, and Performance,” Journal of Finan-
cial Economics, 2012, 104 (2), 339–362.

Hartzmark, Samuel M. and David H. Solomon, “Efficiency and the Disposition Effect in NFL
Prediction Markets,” Quarterly Journal of Finance, 2012, 2 (3).

, Samuel Hirshman, and Alex Imas, “Ownership, Learning, and Beliefs,” Working Paper,
2020.

Heath, Chip, Steven Huddart, and Mark Lang, “Psychological Factors and Stock Option Ex-
ercise,” Quarterly Journal of Economics, 1999, 114 (2), 601–627.

Heisler, Jeffrey, “Loss Aversion in a Futures Market: An Empirical Test,” Review of Futures
Markets, 1994, 13 (3), 793–826.

Henderson, Vicky, “Prospect Theory, Liquidation, and the Disposition Effect,” Management
Science, 2012, 58 (2), 445–460.

Hens, Thorsten and Martin Vlcek, “Does Prospect Theory Explain the Disposition Effect?,”
Journal of Behavioral Finance, 2011, 12 (3), 141–157.

Ingersoll, Jonathan E. and Lawrence J. Jin, “Realization Utility with Reference-Dependent
Preferences,” Review of Financial Studies, 2012, 26 (3), 723–767.

Karlsson, Niklas, George Loewenstein, and Duane Seppi, “The Ostrich Effect: Selective At-
tention to Information,” Journal of Risk and Uncertainty, 2009, 38 (2), 95–115.

56



Kaustia, Markku, “Prospect Theory and the Disposition Effect,” Journal of Financial and Quan-
titative Analysis, 2010, 45 (3), 791–812.

Locke, Peter R. and Steven C. Mann, “Professional Trader Discipline and Trade Disposition,”
Journal of Financial Economics, 2005, 76 (2), 401–444.

Magnani, Jacopo, “Testing for the Disposition Effect on Optimal Stopping Decisions,” American
Economic Review: Papers and Proceedings, 2015, 105 (5), 371–375.

Maier, Johannes K. and Dominik S. Fischer, “Behavioral Biases in Financial Decision Mak-
ing,” Mimeo, 2021.

Meng, Juanjuan and Xi Weng, “Can Prospect Theory Explain the Disposition Effect? A New
Perspective on Reference Points,” Management Science, 2017.

Odean, Terrance, “Are Investors Reluctant to Realize Their Losses?,” Journal of Finance, 1998,
53 (5), 1775–1798.

Olafsson, Arna and Michaela Pagel, “The Ostrich in Us: Selective Attention to Personal Fi-
nances,” Working Paper, 2018.

Poteshman, Allen M and Vitaly Serbin, “Clearly Irrational Financial Market Behavior: Evi-
dence From the Early Exercise of Exchange Traded Stock Options,” Journal of Finance, 2003,
58 (1), 37–70.

Shapira, Zur and Itzhak Venezia, “Patterns of Behavior of Professionally Managed and Inde-
pendent Investors,” Journal of Banking & Finance, 2001, 25 (8), 1573–1587.

Shefrin, Hersh and Meir Statman, “The Disposition to Sell Winners Too Early and Ride Losers
Too Long: Theory and Evidence,” Journal of Finance, 1985, 40 (3), 777–790.

Sicherman, Nachum, George Loewenstein, Duane J. Seppi, and Stephen P. Utkus, “Financial
Attention,” Review of Financial Studies, 2016, 29 (4), 863–897.

Weber, Martin and Colin F. Camerer, “The Disposition Effect in Securities Trading: An Exper-
imental Analysis,” Journal of Economic Behavior & Organization, 1998, 33 (2), 167–184.

57


	9334abstract.pdf
	Abstract




