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A Q-Theory of Banks 
 
 

Abstract 
 
We propose a dynamic bank theory with a delayed loss recognition mechanism and a regulatory 
capital constraint at its core. The estimated model matches four facts about banks’ Tobin’s Q that 
summarize bank leverage dynamics. (1) Book and market equity values diverge, especially during 
crises; (2) Tobin’s Q predicts future bank profitability; (3) neither book nor market leverage 
constraints are binding for most banks; (4) bank leverage and Tobin’s Q are mean reverting but 
highly persistent. We examine a counterfactual experiment where different accounting rules 
produce a novel policy tradeoff. 
JEL-Codes: G210, G320, G330, E440. 
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1 Introduction

Banking theory shapes financial regulation and, through regulation, macroeconomic outcomes.

However, developing frameworks suitable for policy analysis is a fine-tuning process in which regu-

lators and academics constantly reassess models. In fact, bank regulation was entirely redesigned in

the aftermath of the Great Recession, only to meet a wave of regulatory forbearance in the Covid-

19 crisis. Hence, the continuous development of banking models is a macroeconomic priority and

understanding the dynamics of bank leverage is critical to that process.

This paper presents a novel theory of banks and bank leverage dynamics with slow recognition

of loan losses on bank accounting statements and a regulatory capital constraint at its core. Our

theory is motivated by four stylized facts about banks’ leverage characteristics. Tobin’s Q, the

ratio of market-to-book equity, is a unifying theme among these facts. Slow loan-loss recognition

induces a distinction between the fundamental value of equity, which fully incorporates information

on losses, and the book value of equity, which does not. We label the ratio of fundamental-to-

book value "little q”, which is the part of Tobin’s Q ("big Q") that can be attributed to delayed

accounting.1 The motivating facts for our Q -theory are:

1. On the decomposition of Tobin’s Q: Tobin’s Q fluctuations are primarily driven by

market equity. Book equity is very stable, even during the 2008/2009 financial crisis.

2. On the informational content of Tobin’s Q: Market equity captures information that

book equity does not. In the cross-section, Tobin’s Q predicts loan charge-offs and bank

profits over a two-year horizon.

3. On the cross-section of Tobin’s Q and bank leverage constraint: The cross-sectional

dispersion of Tobin’s Q varies over time. The dispersion of market leverage increased during

the financial crisis of 2008/2009. By contrast, the distribution of book leverage is very stable.

Nearly all banks keep a capital buffer above the regulatory minimum; only a minor fraction

of banks violated their regulatory constraints during 2008/2009.

4. On the dynamic response of Tobin’s Q to shocks: Tobin’s Q and market-leverage are

slowly mean-reverting after a shock that proxies net-worth losses. By contrast, the response

of book leverage is protracted.

Collectively, these facts suggest that incorporating a distinction between market and book equity

values driven by delayed accounting into banking models would improve macroprudential policy

analysis. Fact 1 emphasizes the time-series difference between the book- and the market-value of

equity.2 Understanding this difference is essential for taking a stance on whether the book or the

1We formulate the facts in terms of Tobin’s Q because it is observable, while q is not.
2The dichotomy between book and market values prompted policy discussions even in earlier banking crises (see

the survey by Berger et al., 1995).
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market value of equity is the relevant state variable for bank models.3 Empirically, book leverage

and market leverage lead to different inferences about the time-series properties of leverage and

the price of risk (see the debate between Adrian et al. 2014 and He et al. 2017). Typically, both

measures co-move in models, but not in the data. Fact 2 implies that the market contains more

information about book losses, consistent with findings in Blattner et al. (Forthcoming) and much

of the accounting literature.4

Fact 3 is about leverage constraints and the cross-sectional dynamics of market and book lever-

age. Before the 2008 crisis, market leverage already featured substantial cross-sectional dispersion.

Yet, this dispersion was particularly high during 2008 and 2009 as well as at the beginning of our

sample, the end of the savings and loan crisis. The distribution of book leverage is much more

concentrated and near an equity buffer below the regulatory requirement. Amid a severe banking

crisis (2008-2009), most banks kept their capital ratios above the regulatory limit, even among

those whose market valuations eroded significantly.5 Together, these facts suggest that leverage

constraints are unlikely to be strictly binding. Although market values of bank equity are more

informative about bank losses compared to book values, market leverage does not appear to be

constrained as it increased dramatically for most banks during different crises. Book equity values

are not a timely predictor of bank health. Since book values incorporate information on losses with

a delay, banks have time to adjust book their leverage in order to avoid hitting the regulatory limit.

These patterns are inconsistent with the formulation of financial constraints in earlier models.

Fact 4 summarizes the slow adjustment dynamics of market and book leverage to a net-worth

shock. It is challenging to empirically identify net-worth shocks because, as we note in fact 2, ac-

counting measures do not convey all the information on bank losses. Unfortunately, while market

values capture information not contained in books, variations in risk premia also affect market val-

uations. Hence, we cannot directly exploit variation in market valuations. However, we can exploit

cross-sectional variation in market returns, which builds on the efficient-market hypothesis. The

idea is that once we partial out variation driven by adequately chosen risk factors, the idiosyncratic

variation in excess stock returns contains information about changes to the effective net-worth of

banks. In conjunction with several robustness checks, we argue that these idiosyncratic-return

shocks are valid proxies for net-worth shocks. We then construct a time series of return shocks

for each bank and estimate an average impulse responses of market and book leverage, liabilities,

dividends, and book equity from a panel of US bank data. These impulse responses inform us

about the adjustment process after a shock to banks’ net-worth. We find that banks adjust very

3Papers that study the asset pricing implications of intermediary net-worth (e.g., He and Krishnamurthy, 2013
and Brunnermeier and Sannikov 2014) use market equity as a state variable, whereas papers that focus on the
effects of regulation use book measures of equity (e.g., Adrian and Boyarchenko 2013; Begenau 2020; Adrian and
Shin 2013; Corbae and D’Erasmo 2021; Begenau and Landvoigt Forthcoming).

4Laux and Leuz (2010) explains how banks have flexibility in accounting for losses. In fact, this was an issue
raised by the United States Congress after the Savings and Loans crisis (General Accounting Office, 1990).

5A noteworthy example is Citibank, a bank that experienced market-based losses of up to 90% with only minor
changes in its book equity.
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slowly to net-worth shocks.6 Namely, in response to a negative return shock that mechanically

increases market leverage, banks reduce market leverage back to the initial level by selling assets

and slowly rebuild capital.7 The gradualism of the adjustment suggests an economic mechanism

behind this slow adjustment process.

We demonstrate that a model with slow loan-loss recognition in conjunction with a regulatory

constraint can qualitatively and quantitatively explain the four stylized facts about bank leverage

dynamics. Our partial-equilibrium model features a cross-section of banks. Book values differ from

fundamental values due to delayed loan loss accounting. Market values differ from fundamental

values due to a valuation difference between equity inside and outside the bank. Banks are owned

by diversified risk-neutral shareholders. Banks maximize the discounted stream of dividends under

risk neutrality (i.e., they are risk-neutral firms) but prefer smoothed dividends. They fund risky

loans with deposits and internal equity (no new outside equity isssuance). The exogenous expected

return spread between loans and deposits is positive and constant, such that the return on equity

increases with leverage. However, when leverage is too high, loan default shocks increase the risk

of costly liquidation. This trade-off induces an optimal fundamental leverage.8 Smooth dividends

prevent market leverage from adjusting immediately via retained earnings and drive a wedge

between a dollar inside and outside the bank, a source of variation in Tobin’s Q. Our accounting

mechanism drives a wedge between the fundamental value and the book value of banks. Specifically,

there are two types of loan default shocks. With some probability, the loan loss has to be recognized

at once, while with 1 minus that probability losses are only gradually recognized on the books.

Our model generates variation in Tobin’s Q, predictability of profits, a cross-section of market and

book leverage with banks keeping an equity buffer, and slow responses to a negative net-worth

shock.

We take the model to the data by estimating six important model parameters: the parameters

that govern the discount rates of investors and bankers, the intertemporal elasticity of substitution,

the size of the loan default shock, the loan loss recognition rate on books, and the probability that

the loan default shock is recognized immediately. We estimate them using US bank data on the

average equity growth rate, the market-to-book ratio of equity, the book leverage ratio, and the

impulse responses of market leverage and liabilities to net-worth shocks proxied by excess-return

shocks.

Our model accounts for the four facts without asset adjustment costs that generate the slow

adjustment of balance sheet variables in other models. Because banks do not immediately recognize

losses and prefer to stay levered, they do not immediately delever when hit by a loan default shock.

6This is consistent with the literature on slow moving capital, see Darrell Duffie’s presidential address to the
American Finance Society in 2010 (Duffie, 2010).

7Gropp and Heider (2010) document that banks’ capital ratios follow a target leverage ratio.
8In corporate finance, it is standard to explain a leverage target through either the tradeoff theory or a risk-

return tradeoff (e.g., Kraus and Litzenberger, 1973, Leland and Pyle, 1977a, Myers, 1984, Hennessy and Whited,
2005, Frank and Goyal, 2011). In O’Hara (1983), a leverage target follows from the undiversified ownership that
induces risk-averse behavior.
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While there is an immediate market leverage response, book leverage does not respond on impact

and reacts very slowly. Over time, banks delever gradually as they slowly recognize past losses,

which tightens their regulatory constraints. As a result, banks reduce liabilities at the pace at

which they recognize losses. Hence, delayed accounting explains the dynamics of market leverage,

book leverage, and liabilities. As a result of these dynamics, the model explains the time-series

and cross-sectional properties of Tobin’s Q in addition to its predictive power over future losses.

With an aggregate shock of 2.5%, the model explains about 50% of the observed decline in Tobin’s

Q during the crisis, exclusively attributed to changes in little q.

Our Q-theory also has a novel policy implication. It reveals a trade-off: more lenient accounting

rules allow banks to increase their fundamental leverage beyond regulatory limits. That is, banks

are more fragile than their book leverage levels make them appear. A severe shock would then lead

to more defaults in the banking sector. However, more lenient accounting rules also help banks

to recover faster after a significant shock. Thus, our model shows that accounting rules imply a

trade-off between higher financial fragility and a speedier recovery after a severe financial shock.

Related Literature. The financial crisis of 2008 renewed interest in banking theories (e.g.,

Adrian and Shin, 2010; Bianchi, 2010; Rampini and Viswanathan, 2019; Jermann and Quadrini,

2012; Gertler et al., 2012; Adrian and Shin, 2013; He and Krishnamurthy, 2012, 2013; Brunnermeier

and Sannikov, 2014; Gertler et al., 2016; Christiano and Ikeda, 2016; Lenel, 2017; Piazzesi and

Schneider, 2018; Li, 2019). Some theories place constraints on market values and others on book

values. Most do not differentiate between market and book values, or both measures move closely

together. Models with market-based constraints include Gertler and Kiyotaki (2010); Jermann and

Quadrini (2012); Brunnermeier and Sannikov (2014); He and Krishnamurthy (2013); Gertler et al.

(2016); Nuño and Thomas (2017) are motivated by agency frictions.9 Models with book-based

constraints emphasize the fact that regulatory constraints are based on book values (Adrian and

Boyarchenko, 2013; Begenau, 2020; Bianchi and Bigio, Forthcoming; Martinez-Miera and Suarez,

2011; Corbae and D’Erasmo, 2021; Elenev et al., 2021) and do not differentiate between book and

market values.

In this paper, we propose a theory that jointly speaks to economic differences in market and

book equity valuation of banks. Our paper makes two contributions. First, it organizes facts about

Tobin’s Q that shed light on the relevant constraints on banks. Second, it presents a Q-theory based

on delayed loan loss accounting. This theory reconciles the behavior of book and market values and

sheds light on the economics of bank leverage constraints. We argue that existing models cannot

explain all of these facts without relying on economically implausible loan adjustment costs.

9Examples of these frictions include costly verification (Townsend, 1979; Bernanke and Gertler, 1989), lack of
commitment (Hart and Moore, 1994), or moral hazard (Holmstrom and Tirole, 1997, 1998). Bernanke and Gertler
(1989) and Kiyotaki and Moore (1997) were the first to model the connection between firm equity and aggregate
outcomes. A different perspective is taken by Diamond and Rajan (2000), who argue that deposits through bank
runs (a là Diamond and Dybvig, 1983) act as a disciplining device in the presence of agency frictions]
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Our facts suggest that leverage constraints operate in more complex ways than conceived

in banking models. Take the case of models with market-leverage constraints. Whereas these

models generate the countercyclical movements in market leverage (fact 1), they cannot account

for the lack of response in book values. Also, without economically large portfolio adjustment

costs these models cannot generate an increase in the cross-sectional dispersion of market-leverage

during crises (fact 3). Upon an aggregate shock, these models would predict a compression of

market-leverage distribution at some higher level, the opposite of what we observe. Models with

book-based constraints assume that book losses are immediately registered. Hence, Tobin’s Q

would not predict future bank profits and losses. More importantly, the delayed accounting of

losses alters how the regulatory constraint operates.

Models built on He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), or Gertler

et al. (2016) also produce a slow response in bank variables (fact 4). The differences is that in those

models, the slow leverage dynamics follow from portfolio adjustment costs. This is akin to the neo-

classical adjustment cost models of investment built on Hayashi (1982). In finance, adjustment

costs are rationalized through asymmetric information—e.g., Myers and Majluf (1984), Leland

and Pyle (1977b); Diamond (1984); Williamson (1986); Dang, Gorton, Holmström and Ordonez

(2017); Hachem (2011). In recent work—e.g., DeMarzo and He (2016) and Gomes et al. (2016)—

slow-moving leverage emerges as the result of debt dilution. A novel feature of our Q -theory is

that slow moving leverage dynamics arise through delayed accounting alone.

There is substantial evidence for delayed loss accounting (e.g., Caballero et al., 2008; Behn

et al., 2016; Blattner et al., Forthcoming; Plosser and Santos, 2018; Flanagan and Purnanandam,

2019; Acharya et al., 2019). Laux and Leuz (2010) argue that delayed accounting was prevalent

during the Great Recession.10 In the macro-finance literature, the effects of accounting rules on

bank decisions and regulatory policies are understudied. A notable exception is Milbradt (2012)

who studies theoretically the effect of accounting rules on banks’ trading behaviors in risky assets.

Our paper relates to the literature on accounting regulation. Some authors argue that marking

assets to market can amplify a crisis by worsening financial frictions (Shleifer and Vishny, 2011;

Laux and Leuz, 2010; Plantin and Tirole, 2018). Related to the Covid-19 crisis, questions such as

whether banks should mark down their assets and the extent of regulatory forbearance are at the

center stage of marcro-prudential policy discussions (Blank, Hanson, Stein and Sunderam, 2020).

Our paper is the first to study delayed accounting quantitatively and highlights a novel tradeoff

between ex-ante leverage and ex-post adjustments.

Finally, our paper relates to Corbae and D’Erasmo (2021) and Rios-Rull et al. (2020) in the

sense that we also study a cross-section of banks. However, our economic question and mechanism

differs from this prior work as we focus on a novel mechanism–delayed loan loss accounting–to

shed light on the balance sheet and leverage dynamics of banks.

10In Appendix A.3, we further detail the bank accounting literature. Bushman, 2016 and Acharya and Ryan,
2016 provide a good overview.
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2 Four Stylized Facts

This section presents four stylized facts about banks’ Tobin’s Q and bank leverage dynamics. We

are of course by no means the first to highlight that market and book values of banks behave very

differently, nor that market data is forward looking. Rather, we present this collection of facts as

critical empirical guideposts for our model.

Data. We use panel level accounting data (balance sheet and income statements) on United

States Bank Holding Companies (BHCs) from the FR-Y-9C regulatory reports filed with the

Federal Reserve.11 We merge the accounting data with market data from the Center for Research

in Security Prices (CRSP). We focus on the sample period from 1990 Q1 to 2021 Q1.12 BHCs file

FR-Y-9C forms if they have assets above one billion dollars.13 This sample is highly representative

of the banking sector. Appendix A.2 reports the time series of balance sheet variables for all BHCs

and the largest four: Bank of America; J.P. Morgan, Citigroup, and Wells Fargo.

2.1 Tobin’s Q and the Time Series of Market versus Book Equity

In most banking models, bank equity is a key state variable. We can measure a bank’s equity

using either accounting values (book equity) or market values (market equity). We refer to the

ratio of market equity to book equity as Tobin’s Q.14 The left panel of Figure 1 presents the time

series of Tobin’s Q of the aggregate banking sector. Market valuations of banks relative to their

book value fluctuate a lot. We measure book equity alternatively as total book equity and total

Tier 1 equity. While the former is available for our entire sample period, Tier 1 capital is a key

variable for book regulatory constraints. We choose to focus the stylized facts on the total book

equity based definition simply because both variables are highly correlated and the book based

definition is available for a longer time.15

After low market valuations relative to banks’ book values in the years after the Savings and

Loan crisis, Tobin’s Q reached their highest levels in the late 1990s and early 2000s, but then

fell dramatically during the financial crisis and has not yet recovered. The right panel shows the

components of Tobin’s Q, i.e., the market equity and book equity aggregated across all BHCs.

Most of the fluctuations in Tobin’s Q are driven by fluctuations in market valuations. There is

11A bank holding company is an umbrella company that holds banks and other financial institutions. A com-
mercial bank is a single bank that provides traditional banking services such as deposits and loans. For example,
Citibank, a commercial bank, is held by Citigroup, a BHC that holds Citibank and other banks, including non-
commercial banks.

12When constructing aggregate time series, we drop entrants to correct for the entry of major financial institutions
such as Goldman Sachs and Morgan Stanley. Without this correction, aggregate bank assets increase due to the
reclassification of large actors such as Morgan Stanley and Goldman Sachs into bank holding companies.

13Prior to 2015 Q1, this threshold was $500 million and prior to 2006 Q1, this threshold was $100 million.
14We are referring to the market-to-book equity ratio as Tobin’s Q, as opposed to the market-to-book assets ratio.
15A regression of book equity on Tier 1 equity results in a R2 of 0.99 and a coefficient of 1.2.
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Figure 1: Tobin’s Q and the Book Equity and Market Equity for Bank Holding Companies.
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preferred equity data come from the FR Y-9C. Market equity is from CRSP. All level variables are converted to

2012 Q1 dollars using the seasonally-adjusted GDP deflator. We exclude new entrants in 2009 such as Goldman

Sachs and Morgan Stanley from these aggregate time series. “Equity (Public BHCs)” refers to the publicly-traded

BHCs that we can match to CRSP data. “Tier 1 Equity” refers to the Tier 1 Equity Capital of publicly traded

BHCs. The figure reports aggregate preferred equity and market equity, i.e. shares outstanding times the share

price, of the publicly traded BHCs.

often a stark discrepancy between market and book valuations of banks, in particular during crises.

For instance, just by looking at book equity over the years between 2008 and 2009, it is hard to

detect any trouble in the financial sector. The sharp drop in market equity, on the other hand,

clearly indicates a crisis. At the end of 2008, the market equity of banks fell by more than 54%

relative to 2007 Q3 (see Table 3 in the Appendix). For comparison, the S&P500 index fell by 42%

relative to 2007 Q3 and partially recovered whereas bank equity remained depressed. In contrast

to market valuations, banks’ book equity actually increased by almost 12% over the same horizon.

At the beginning of the Covid-19 crisis, market valuations fell again sharply in the first quarter of

2021 without any movement in book equity.16 To summarize, the first fact for our theory is:

Fact 1. Tobin’s Q of the aggregate banking sector fluctuates widely over time, primarily driven by

banks’ market valuations. Book equity is very stable, even during the 2008/2009 financial crisis.

Other studies have also documented the divergence between book and market equity during

the crisis (see for example Adrian and Shin, 2010; He et al., 2017). However, this paper proposes

16This difference between market and book equity is not the result of the composition of public equity injections.
Although these injections are counted as preferred equity in accounting books and market equity is measured relative
to common equity, Figure 1 shows that preferred equity cannot explain the discrepancy between market and book
equity. Preferred equity rose temporarily during the crisis due to the Troubled Asset Relief Program (TARP). Note
that preferred equity is included in book equity, but not in market equity.
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delayed accounting as a mechanism to reconcile book and market value dynamics. We next turn

to cross-sectional evidence to provide suggestive evidence of the delayed accounting mechanism.

2.2 Tobin’s Q and Predictability

The differences between market and book equity values naturally reflect differences in the informa-

tional content of these measures when book values take time to recognize loan losses. Conceptually,

book measures are backward-looking in that they register historical losses. By contrast, market

equity measures are forward-looking in that they price future expected cash flows. Still, this con-

ceptual difference does not imply that both measures contain different information: In principle,

we can write a model where the history of events is encoded in a bank’s balance sheets and the

information contained in the books is enough to predict future cash flows. In such a case, the

informational content of market values would be the same while the time-series and cross-sectional

variation of Tobin’s Q would only reflect changes in risk premia.

However, there are at least two reasons to expect different information content in market and

book value measures. One reason is the delayed acknowledgment of known losses, which is a

widely documented fact in the accounting literature. As long as banks delay the recognition of

losses, or refinance non-performing loans to avoid registering losses (evergreening), book values

will not reflect banks’ actual losses. If market participants can update their valuations more

quickly, detecting these losses, differences in informational content will emerge. This alone can

produce differences in the informational content of market and book equity. The other reason is

that changes in the underlying market value of loans reflect default expectations while the book

value of loans does not (see filing instructions for FR-Y-9C BHCs regulatory reports) at least until

January 2020. Before 2020, loan loss expectations were not updated in loan accounting books

and loans were only written off once the loss had occurred. Publicly traded banks were supposed

to change their accounting system to the new “current expected credit loss” (CECL) accounting

system in January 2020.17 Note that our model can capture these accounting system changes (see

Section 4.2) and study their effects on bank lending.

Figure 2 suggests that indeed market values contain more information than book values of

equity. Loan loss provisions, denoted as PLL in the figure, peak in early 2009 when market values

had already tanked. Loan net charge-offs peaked even later in 2010 when the economy was no

longer officially in a recession.18 The decomposition of net charge-offs shows that these losses were

heavily driven by real estate, which is consistent with the nature of the crisis. Loan loss provisions

17See https://www.occ.treas.gov/news-issuances/bulletins/2021/bulletin-2021-20.html. However, on
March 27, 2020, the Fed moved to provide an optional extension of the regulatory capital transition for the new credit
loss accounting standard, see https://www.federalreserve.gov/newsevents/pressreleases/bcreg20200327a.
htm.

18When a bank has a loss that is estimable and probable, it first provisions for loan losses on the income statement,
which shows up as PLL in the figure. Later when the loss has realized, the asset is charged off and thus taken off
the books, which shows up as charge-offs. Occasionally, the bank can recover the asset later.
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lead net-charge-offs, which can be best seen for the 2008/2009 crisis and in the beginning for the

Covid crisis (note we present data until 2020 Q1).

Figure 2: Decomposition of Net Charge-offs
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(e.g. inter-bank loans, agricultural loans, and loans to foreign governments).

Next, we formally show that variation in the cross-section of Tobin’s Q reflects differences in

the information content of market and book equity values. If market equity values contain more

information about bank profitability and credit losses than book equity values, then we expect

for Tobin’s Q to predict future bank profits and loan losses even after controlling for book equity.

In Figure 3, we show binned scatter plots of logged outcomes on the log market-to-book equity

ratio. The plots control for time fixed effects, the Tier 1 regulatory capital ratio, and log book

equity.19 The top left panel shows the log return on equity over the next year plotted against the

log market-to-book ratio. Banks with higher market-to-book ratios earn higher future profits. A

bank with a lower Tobin’s Q today is also more likely to have higher loan loss previsions even eight

quarters ahead (top right panel). Banks with higher market-to-book ratios also have a lower share

of delinquent loans (bottom left panel) and a lower future net charge-off rate on their loans (bottom

right). Thus, Tobin’s Q predicts future book realized profits and actual loan losses beyond what is

reflected in book values, suggesting that book values account for loan losses only very slowly. This

is consistent with the fact that book equity did not decline during the crisis, despite widespread

issues in credit markets. Note that discount rate variations affect most banks similarly and are

therefore unlikely to drive these cross-sectional results. Indeed, our results suggest that banks

19To control for log book equity, the left and right-hand side variables are residualized on log book equity, and
then the mean of each variable is added back to maintain the centering. It is important to control for log book
equity to prevent spurious results due to ratio bias (see Kronmal, 1993).
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Figure 3: Market equity contains more cash-flow relevant information than book equity
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Notes: This figure presents cross-sectional binned scatter plots of log outcomes on the log Tobin’s Q for BHCs. All

plots control for log book equity as a proxy for size, the Tier 1 capital ratio of each bank and a quarter-time fixed

effect. Data on market equity are from CRSP. All other data are from the FR Y-9C reports. Return on equity

over the next year is defined as book net income over the next four quarters divided by book equity in the current

quarter. The two-year ahead loan provision rate is calculated as the ratio of eight quarter ahead quarterly loan

provisions divided over total loans. The share of delinquent loans is the ratio of 30 days or more past due loans plus

loans in non-accrual over total loans. The net charge-off rate is calculated as the difference between loan charge-offs

over the next quarter and loan recoveries over the next quarter, divided by total loans this quarter.

with lower profitability and more delinquencies have lower Tobin’s Q, and that Tobin’s Q predicts

future loan write-downs and future profitability. The second motivating fact for our theory is as

follows:

Fact 2. Tobin’s Q predicts future cash flows in the cross-section of banks. Market equity values

capture information that book equity values do not. In particular, in the cross-section, Tobin’s Q

predicts loan charge-offs and profitability over a two-year horizon.

2.3 Tobin’s Q and Leverage Constraints

Models of banks typically impose constraints on either market or book leverage. In this section, we

discuss the time series pattern of banks’ market and book leverage ratios and their cross-sectional

differences. The left panel in Figure 4 presents the aggregate market and book leverage time series

for the entire sample of public BHCs. Book leverage has been on a downward sloping trend from
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Figure 4: Book and Market Leverage of Bank Holding Companies
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Notes: This figure shows book and market leverage of the aggregate BHC banking sector, and the distribution of

banks constrained by capital requirements. The left panel uses book data (book equity and liabilities) from the FR

Y-9C and market equity data from CRSP data. We exclude new entrants in 2009 from the aggregate time series

(e.g., Goldman Sachs and Morgan Stanley). Book leverage is computed as assets/book equity, and market leverage is

computed as (liabilities + market equity)/market equity. The aggregate leverage ratios are computed as (aggregate

liabilities + aggregate book equity)/aggregate book equity. The right panel shows data on the distribution of the

Tier-1 capital ratio, defined as (Tier-1 capital)/(Risk-weighted assets). In particular, we plot the share of banks

whose regulatory capital ratio falls below a given level, computed using the full, unweighted sample. The regulatory

capital requirements are shown on the graph and described in the text.

a value of 17 in 1990 to under 10 at the end of the sample.20 During the financial crisis, book

leverage fell. Market leverage, by contrast, spiked dramatically in 1990, during the financial crisis,

and again at the beginning of the Covid-19 crisis. Market leverage also remained almost twice as

high for at least four years after the onset of the financial crisis. This suggests that even in the

midst of a financial crisis banks did not face a strictly binding ceiling on market leverage—else,

we should have observed a concentration of banks with market leverage values close to a ceiling

during crises.

Whereas constraints on market leverage are a theoretical possibility that has to be validated

empirically, regulatory constraints are written in legislation. The right panel in Figure 4 presents

the times series of the fraction of banks whose Tier 1 capital ratio falls below different values that

are at or close to the regulatory constraint.21 The vast majority of banks have kept a capital

20Recall that we chose total book equity as opposed to Tier 1 equity for Tobin’s Q and leverage definitions simply
because both are (a) highly correlated and (b) Tier 1 equity is only available since 1996.

21Under Basel II (the regulatory standard in place during the crisis), bank holding companies were subject to
regulatory minimums on their total capital ratio and their tier-1 capital ratio. These capital ratios are computed
as qualifying capital/risk-weighted assets and, thus, a bank with a higher capital ratio has lower leverage. Basel
II required that banks hold a minimum tier-1 capital ratio of 4% and a minimum total capital ratio of 8%. In
order to be categorized as “well-capitalized,” banks had to meet minimum capital ratios that were two percentage
points higher (6% and 10%, respectively). Being categorized as well-capitalized is desirable because banks that
are not well-capitalized are subject to additional regulatory scrutiny (Basel Committee on Banking Supervision,
1998, 2006). After the crisis, tighter capital requirements were phased in under Basel III. The minimum total
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buffer above the regulatory minimum. Even during the financial crisis, less than 10% of banks

were “under-capitalized” according to their Tier 1 capital ratio. Consistent with a delayed loan

loss recognition mechanism, the share of banks that were near the regulatory limits peaked in the

first quarter of 2010, at least 2 years after the first symptoms of a mortgage crisis.

Figure 5: Quantiles of Market Leverage, Book Leverage, and Tobin’s Q

Panel (a) Panel (b) Panel (c)
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Notes: This figure shows the quantiles of market leverage (Panel A), book leverage (Panel B), and Tobin’s Q (Panel

C) for BHCs on a log scale. Book data (liabilities) comes from the FR Y-9C, and market equity data is from CRSP

data. Market leverage is computed as (liabilities + market equity)/market equity. Book leverage is computed as

(liabilities + book equity)/book equity. Tobin’s Q is computed as market equity/book equity. The median value is

plotted in maroon. Each tenth percentile is plotted in blue.

Figure 5 presents different sections of the distribution of market leverage (panel A), book

leverage (panel B), and Tobin’s Q (panel C) over time. The median value is plotted in maroon and

each 10th quantile is depicted in blue. In the early 1990s (after the savings and loan crisis) and

during the financial crisis, market leverage increased across the entire bank distribution. Strikingly,

the distribution of market leverage fans out, with a substantial 10% of banks sustaining market

leverage ratios of nearly 80 during the financial crisis, while another 10% of banks had market

leverage ratios of 8, implying a leverage difference factor of 10. Market leverage also took a long

time to return to its pre-financial crisis levels. Panel A poses a challenge to many macro-finance

models based on market leverage constraints. We should expect systemic loan defaults during

a crisis like the one that occurred in 2008 and this should have led to an increase in market

leverage for all banks, provided that assets were not immediately liquidated. At the same time,

we would expect substantial reallocation of assets from highly levered banks toward banks with

lower leverage. This would imply a compression in the dispersion of leverage in the cross-section.

Panel A suggests that there was no such compression. Hence, at the very least the reallocation of

assets across banks was delayed.

capital ratio stayed at 8% throughout our sample period, but the tier-1 capital ratio rose to 4.5% in 2013, 5.5% in
2014, and finally settled at 6% starting in 2015. Also under Basel III, additional capital ratios (e.g., tier-1 leverage
and common equity capital ratio) began being monitored (however these ratios are quite similar to the preexisting
tier-1 and total capital ratios) and, starting in 2016, a “capital conservation buffer” and special requirements for
systemically important financial institutions were introduced (Basel Committee on Banking Supervision, 2011).
Kisin and Manela (2016) study whether banks violate different regulatory constraints and find that typically banks
do not violate multiple regulatory constraints.
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Panel B shows that the distribution of book leverage is much less dispersed relative to the

market leverage distribution. In fact, it is also fairly stable: the top and bottom 10th percentile

of the book leverage distribution differ by a factor of 2. The distributional differences between

market and book leverage imply large cross-sectional and time-varying dispersion in Tobin’s Q (see

panel C). We summarize these observations into our third motivating fact:

Fact 3. Most banks keep an equity buffer above the regulatory capital ratio minimum; fewer banks

did so during the financial crisis of 2008/2009. The cross-section of Tobin’s Q shows large disper-

sion across banks. The dispersion in market leverage is by far greater than the dispersion in book

leverage.

From the perspective of banking models, we contend that neither regulatory nor market con-

straints bind in a static way. Of course, we do not conclude that neither constraint affects banks.

On the contrary, banks may worry that a constraint will bind in the future and will take steps to

avoid that state, as we model in our Q-theory.

2.4 Tobin’s Q and the Dynamic Responses to Shocks

This section analyzes how Tobin’s Q and other variables of interest respond to a bank net-worth

shock. To this end, we estimate the following panel regressions:

∆ log(yi,t) = αt +
k∑

h=0

βh · log(1 + εi,t−h) + ψi,t, (1)

where i indexes over banks, t indexes over quarters, yi,t is the outcome of interest, αt is a time fixed

effect, and εi,t denotes our measure of a cash flow shock to net-worth (i.e., the idiosyncratic excess

stock return innovations over the past quarter for bank i in quarter t; see detailed description

in the next paragraph).22 These regressions allow us to construct impulse-response functions for

Tobin’s Q and to better understand the response in several other bank variables such as liabilities,

market leverage, market equity, and book equity.23 We include time fixed effects αt to absorb

22One might favor an alternative specification that includes lags of the dependent variable in addition to con-
temporaneous and lagged returns. This poses two issues: Nickell bias and bad control. Including the dependent
variable as a lag will induce bias, as documented by Nickell (1981). Dealing with this bias is challenging and may
result in poor precision. Perhaps more importantly, the lagged dependent variable is a "bad control," in that it is
endogenous to the regressor. We wish to back out the effect of a return shock in t − 3 on the change in liabilities
in t: if we condition on liabilities in t − 1, which is itself also affected by the past return shock, then we will not
identify our parameter of interest.

23Since market returns are changes in market equity valuations, taking first differences in logs provides a tight
conceptual link between the outcome and the regressor. Using levels would mean that the outcome is highly
correlated with bank size. This would raise concerns about stationarity. Using levels could also result in a regression
that is heavily influenced by a few large banks, given the highly skewed bank size distribution. For the same reason,
we do not weight our regressions: the bank size distribution is highly skewed and so a weighted regression would be
equivalent to a regression with only a handful of the largest banks. If the variance of the residuals were lower for
larger banks, then using weights would yield a more efficient estimator. Empirically however, the variance of the
residuals does not appear to vary substantially by bank size.
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aggregate shocks; e.g., the price of loans due to aggregate demand shocks. We thus recover a

partial equilibrium supply-side impulse response, estimated from the cross-sectional variation in

return shocks. In all specifications, we use k = 21. We cluster standard errors by bank. Finally,

to report the impulse-response function, we sum the coefficients: the contemporaneous response is

β0, the next period is β0 + β1, and so on.

A critical component of our empirical design is the how we obtain εi,t, the cash flow shock

to banks’ net-worth. We follow a similar procedure as Vuolteenaho (2002), who shows how to

decompose an individual bank’s stock return into a cash flow shock and a discount rate shock

component. To control for the discount rate shock component in banks’ stock return we use the

same aggregate risk factors as in Gandhi and Lustig (2015). That is, we regress the excess stock

returns ri,t − rft of bank i on a bank fixed effect αi and a matrix of factors Xt as follows:

rit︸︷︷︸
Raw Return

− rft︸︷︷︸
Risk-Free Rate

= αi + Xt︸︷︷︸
factors

βi︸︷︷︸
loadings

+ εi,t︸︷︷︸
Idiosyncratic Component

.

The vector of factor loadings, β, has dimension K × 1 and the matrix of factors Xt has dimension

T×K. We include the same factors as in Gandhi and Lustig (2015), namely the three Fama-French

factors (Fama and French, 1993), a credit factor calculated as the excess return on an index of

investment-grade corporate bonds, and an interest rate factor calculated as the excess return on

an index of 10-year US Treasury bonds.24 (See Appendix Section B.1 for further details on the

risk-adjustment process.) The idea behind risk-adjusting returns and using return innovations is

that we want to isolate information about banks’ cash flows as opposed to variation in discount

rates, since the latter are driven by aggregate movements in the factors.25 Our empirical design

thus relies on the efficient-markets hypothesis according to which excess return variations should be

unpredictable ex ante after adjusting for risk premia. By stripping out the predictable components

of returns, the innovations εi,t to the risk-adjusted returns are ex-ante unpredictable across banks.

This forms the basis of our identification strategy: we treat the cross-sectional variation in εi,t as

unanticipated shocks that perturb bank equity. In the Appendix (see Figure 20), we show the time

series of εi,t for the largest four banks that indeed resemble white noise. In Section 2.4, we conduct

a variety of robustness checks to validate our identification strategy and interpretation of εi,t as

cash flow shocks. For the rest of the paper, we refer to these innovations εi,t as return shocks.

Impulse responses. We estimate impulse-response functions for Tobin’s Q, liabilities, market

capitalization, book equity, market leverage, and the common dividend rates, and show the results

24The three Fama-French factors are downloaded from Ken French’s website. The credit factor is the excess return
on the Dow Jones Corporate Bond Return Index that we download from Global Financial Data. The interest rate
factor is the U.S. 10-year Government Bond Total Return Index (ltg) that we also download from Global Financial
Data. We use the one-month risk-free rate from Ken French’s website to calculate excess returns.

25The results for simply adjusting returns with a time-fixed effect are qualitatively and quantitatively similar,
and are also reported in the Appendix Section B.2.
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in Figure 6. To normalize the effect, we report the response to a negative one percent return shock.

The y-axis of our plots shows the contemporaneous response (−β0) as quarter 1, the cumulative

response one quarter later (−β0 − β1) as quarter 2, and so on.

The general take-away of the impulse response functions in Figure 6 is that banks adjust very

slowly. Let us begin with the dynamic response in Tobin’s Q to a return shock presented in Panel

A. A 1% negative return shock lowers Tobin’s Q by about 0.9% on impact (the inverse of the

response in market leverage in Panel B), and slowly increases over four years to a new permanent

lower level. To see why, note that the shock affects the components of Tobin’s Q, i.e., market equity

and book equity, differently (see the impulse response functions in Panel D and F, respectively).

Market equity falls immediately by roughly 1% in response to a 1% negative net-worth shock and

increases subsequently only slightly to -0.8% after four years where it remains stable. Book equity

only shows a very muted response on impact and slowly declines roughly to -0.5% after 10 quarters

and remains at this level subsequently. That is, our estimation shows that the effect of the shock

does not fully show up in book equity within the five years of our estimation window suggesting

a very slow transmission of shocks onto the book balance sheet of banks and into book equity.26

Since book equity and market equity do not converge within the 5 years of our estimation window,

Tobin’s Q does not recover to its pre-shock level. In other words, small cash flow shocks can drive

a long lasting wedge between the market and book valuation of banks. Our quantitative results

will test how much of this divergence between market and book equity can be explained by our

delayed loan loss accounting mechanism.

Bank liabilities, Panel C, also adjust very slowly. In response to a return shock, banks slowly

delever by paying off liabilities. On impact of the negative return shock, banks in fact increase div-

idend payout to shareholders though by a very small amount (see Panel E). Subsequently though,

they reduce dividends to shareholders for a couple of years to rebuild their capital base (hence

the small increase in banks’ market capitalization). If banks maintain a target market-leverage

ratio, then we would expect banks to respond to a negative wealth shock (which mechanically

increases market leverage) by moving back towards their target leverage. As we can see, from

the impulse-response function of market leverage in Panel B of Figure 6, the data is consistent

with a slow adjustment back to a leverage target. The impulse response of log market leverage,

defined here as log(liabilities/market capitalization), is the difference between the response of the

log market capitalization (Panel D) and the log liabilities (Panel C).27 These observations lead us

to our final motivating fact for our Q-theory:

Fact 4. Banks adjust very slowly to return shocks. Small shocks can drive a long-lasting wedge

between the market and book equity valuations of banks, and thus Tobin’s Q. Market leverage takes

26We estimated these impulse response functions also for up to lags of 50 quarters but the confidence intervals
are then extremely large. That is, we just do not have enough power to test for convergence over the long horizon.

27Estimating the impulse response function for 50 quarters, we can see that market leverage returns back to its
intial state after about 50 quarters. The confidence intervals on those estimates are however extremely large.
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a long time to return to its pre-shock level mainly driven by a slow delevering process.

Identification and Robustness. Our interpretation of the estimates relies on the assumption

that bank-specific variations in risk-adjusted bank stock returns identify cash flow shocks on the

existing portfolio, such as specific default shocks, as opposed to shocks to the profitability of future

business opportunities. We conduct various analyses to alleviate identification concerns, including

a narrative approach to validate our interpretation of the return shocks as being unanticipated

and specific cash flow shocks.

One could be concerned that the return shocks capture idiosyncratic information about the

relative profitability of a bank’s future portfolio (e.g., the default rate on this bank’s future mort-

gages) and, thus, affect the bank’s problem through channels other than perturbing equity. If a

bank’s expected return on its future assets falls, then this bank would want to reduce its equity

or lower its scale for a reason that would be unrelated to a target leverage ratio and adjustment

costs.

Figure 6: Estimated Impulse Responses
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the estimated percent impulse response

to a 1% negative return shock. For example, in Panel b) we show that market capitalization decreases by roughly 1% in response to

a 1% negative return shock. Dashed lines denote the 95% confidence interval. Standard errors are clustered by bank. Data on market

capitalization and returns are from CRSP, and all other data are from the FR Y-9C. The panels display the impulse responses of log

market leverage (Panel a), log market capitalization (Panel b), log liabilities (Panel c), log book equity (Panel d), and the common

dividend rate (Panel e). Market leverage is defined as (Liabilities/Market Capitalization). The logged common dividend rate is defined

as log(1 + Common Dividends/Market Capitalization).

To investigate this concern, we study how banks’ liquid asset ratios respond to a negative return
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shock. If negative return shocks indeed predict lower future investment opportunities rather than

current cash flows, we would expect banks to respond to these shocks by moving their portfolio into

liquid assets. We test this notion by looking at the impulse-response function of banks’ liquidity

ratios, calculated as (cash + treasury bills) / total assets. The impulse-response function in the

Appendix, Figure 25, shows no statistically significant response.28 In sum, banks do not tilt their

portfolios towards safe and liquid assets in response to our return shock, which pushes against a

story of worsening investment opportunities.

The lack of response of the liquid asset ratio is suggestive for our interpretation of the return

shocks. However, we cannot fully rule out that the shock picks up information about the profitabil-

ity of future assets. To provide additional corroborating evidence for our identification strategy,

we use a narrative approach, which is detailed in Appendix B.3. To this end, we take the largest

positive and negative values of the return shocks εi,t over the sample period for each of the four

largest banks (J.P. Morgan Chase, Bank of America, Citigroup, and Wells Fargo). We then search

various newspapers for articles that mention the name of any of the four banks in the quarter for

which the absolute value of εi,t was high. Table 4 in the Appendix lists the results of our newspaper

article search. In most cases, we can find supporting evidence for our εi,t estimates. For example,

in the second quarter of 2009, Bank of America had a high and positive value of εi,t. Our article

search revealed that Bank of America fared better in the stress test and exceeded expectations.

In 1999 Q1, Citigroup had a large positive εi,t. This coincided with a Wall Street Journal article

that stated that Citigroup had exceeded profit expectations even though profits fell. In 2001 Q1, a

negative shock at Wells Fargo coincided with news reports that stated that Wells Fargo’s venture

capital portfolios had incurred significant losses.

In Appendix Section B.3, we provide additional robustness checks. We verify that our results

are not driven by mergers, or by specific events during the crisis, by excluding mergers and the

crisis years 2008 and 2009 from our sample. For more details refer to Appendix Section B.3.29

2.5 Taking stock

Thus far, we established that book equity values and market equity values diverge during crises

(fact 1). Moreover, from the cross-section, we show that variation in Tobin’s Q reflects current

information about future book profitability and loan losses (fact 2). We also document that the

cross-sectional dispersion of market leverage increases during crises, whereas the dispersion of book

leverage—and book equity—remains relatively constant (fact 3). These facts challenge standard

models: they indicate that most banks choose leverage levels away from a common constraint and

28This is not a perfect test as perhaps banks would also want to raise liquidity in response to a cash flow shock
on their current portfolio. A hypothetical example is the following. Suppose the bank was caught in unfair lending
practices that causes a lawsuit. Banks might respond by increasing their cash holdings to prepare for the upcoming
lawsuit.

29We also test for heterogeneous impulse responses by type of bank. We do not find evidence of sizable hetero-
geneity, but we have limited statistical power to detect these differences.
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that constraints operate dynamically. In fact, we show that banks adjust very slowly to adverse

net-worth shocks (fact 4).

Standard bank models also generate slow leverage dynamics and a wedge between book and

market values through adjustment costs (Hayashi, 1982). However, fact 2 suggests that book

values do not accurately reflect shocks to net-worth. We can generate predictability (fact 2) by

adding delayed loan-loss accounting into a standard model as a measurement error. However,

measurement error is innocuous to bank decisions. In reality, bank regulation is formulated in

terms of book values, so delayed accounting does affect bank decisions. In fact, there is evidence

that bank decisions are shaped by incentives to under report loan losses to avoid hitting regulatory

constraints (e.g., Begley et al., 2017; Behn et al., 2016; Blattner et al., Forthcoming; Flanagan and

Purnanandam, 2019; Plosser and Santos, 2018). In the next section, we develop a model where

delayed loan-loss accounting and regulation, on their own, drive the bank leverage dynamics in

a qualitatively and quantitative way consistent with the four facts. This model does not rely on

adjustment costs. Section 4.3 compares our model with one that relies on adjustment costs.

3 Q-Theory

This sections presents our Q-theory of banks that is inspired by the facts presented in Section 2.

The novel component of our theory is that economic decisions are affected by accounting rules.

Proofs and derivations are contained in Appendix C.2.

3.1 The Model

Environment. Time is continuous, runs to infinity, and is indexed by t.30 There is a continuum

of banks owned by diversified investors. Idiosyncratic loan defaults are the only source of risk.

Each bank maximizes the expected discounted value of dividends.

We define the bank objective function recursively as

Vt = Et
[∫ ∞

t

f (Cs, Vs) ds

]
where f (C, V ) ≡ ρ

1− θ

[
C1−θ − {(1− ψ)V }

1−θ
1−ψ

{(1− ψ)V }
1−θ
1−ψ−1

]
.

Ct denotes dividend payouts at time t and f is a Duffie-Epstein aggregator with a time discount

rate ρ > 0, an intertemporal elasticity of substitution (IES) 1/θ, and a risk aversion parameter

ψ. The Duffie-Epstein aggregator is the continuous-time analogue of Epstein-Zin preferences. We

assume recursive preferences to generate smooth dividend payouts that are consistent with the

30We choose a continuous-time setup for analytic and computational reasons. An earlier version of this paper
presented the same model in discrete time. Whereas the cross-sectional properties of both models are quantitatively
close, the speed of computation is substantially faster in the continuous-time setup, something that facilitates the
estimation.
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empirical evidence; e.g., Lintner (1956); Dickens et al. (2002); Leary and Michaely (2011), while

preserving risk-neutrality (by taking ψ = 0) as is standard in the theory of the firm.31

Equity. We distinguish between three concepts of bank equity: the fundamental value of equity,

W , the book (or accounting) value of equity, W̄ , and the market value of equity, S. Only the book

value and the market value have data counterparts. The fundamental value of equity determines

the future cash-flows. The book value differs from fundamental values because some equity losses

generated by loan defaults are not written down immediately in the accounting books. Hence,

book values do not entirely capture the cash-flow that the bank will generate over time.

Without regulation, the book value of equity would be irrelevant for any decision, and bank

choices would only depend on fundamental values. However, since regulatory constraints are

specified in terms of book values, these influence fundamental leverage. In turn, market values

differ because the bank has a franchise value and cannot raise equity freely.

Tobin’s Q is defined as,

Q ≡ S

W
=

S

W
· q, (2)

where q ≡ W/W . Thus, relative to standard Q-theory models, here Tobin’s Q is decomposed into

two ratios, the market-to-fundamental value, S/W , and the fundamental to book value, little q.

Without delayed loss recognition, q = 1.

Banks hold long-term loans that are funded with deposits and equity. Thus, at each instant,

the bank chooses its leverage, λ ≥ 1. Hence, loans are given by L = λ ·W . Deposits are denoted by

D, so the bank’s balance sheet is given by L = D +W. Loans mature at an intensity δ. Maturity

is important only for taking the model to the data.

We work in partial equilibrium: the supply of deposits and the demand for loans are perfectly

elastic, with exogenous rates rD and rL > rD, respectively. Loans are risky because they can be

defaulted. In the event of a loan default, a fixed fraction ε of loans is not repaid. We assume that

default events are governed by a Poisson process dN with intensity σ.

Below, we show that the bank’s problem is scale invariant. It is convenient to express the

dividend rate as c ≡ C/W . Next, we present the laws of motion of key objects. The growth rate

of bank equity satisfies the following stochastic differential equation:

dW =

rLλ− rD (λ− 1)︸ ︷︷ ︸
leveraged return

− c︸︷︷︸
dividend rate

W
︸ ︷︷ ︸

≡µWW

dt− ελW︸ ︷︷ ︸
default loss︸ ︷︷ ︸
≡JWW

·dN, (3)

where µW denotes the drift and JW the jump in equity produced by a default, per dollar of equity.

31Similar objective functions for banks are found in Bianchi and Bigio (Forthcoming) and Di Tella and Kurlat
(Forthcoming).
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The first term of Equation (3) represents leveraged returns: the interest income on loans, rLλ, net

of the interest on deposits, rD (λ− 1), per unit of equity. The second term is the dividend rate.

The final term is the jump in equity after a default, which scales with leverage λ.

There are two types of default events: defaults immediately recognized, and defaults slowly

recognized. Upon a default, the loss is recognized immediately with probability 1 − p and slowly

recognized with probability p. We keep track of the stock of unrecognized loan losses. With abuse

of terminology, we refer to this stock as zombie loans, because in the accounting books unrecognized

losses appear as loans that will not yield returns. Zombie loans satisfy the following law of motion:

dZ = −αZ︸ ︷︷ ︸
loss recognition rate︸ ︷︷ ︸

≡µZ ·W

·dt+ ελW︸ ︷︷ ︸
unrecognized default︸ ︷︷ ︸

≡JZW

·dN z, (4)

where dN z is a Poisson process such that Pr (dN = 1 ∩ dN z = 1) = σp and Pr (dN = 1 ∩ dN z = 0) =

σ (1− p). When a default event occurs and is not recognized immediately, dN z = 1, then loans are

added to the stock of zombie loans. If no additional zombie loans are added, zombie loans decrease

at rate α because past losses are recognized at that rate. We need both types of default events:

Unrecognized defaults provide deviations between book and market values. In turn, recognized

defaults are important to produce a book equity buffer.

Fundamental and book variables. We let X̄ denote the book value of fundamental variable

X. Book loans are the sum of fundamental loans, plus the amount of loans that no longer have

value, Z, L̄ = L+ Z. Likewise, book equity also includes zombie loans W̄ = W + Z = L̄−D.
Figure 7 presents the balance sheet corresponding to the fundamental values (panel a) and the

book values (panel b). As shown in panel (b), zombie loans add to the stock of book loans and

book equity. Thereby, their presence means that measured book leverage looks less high compared

to the bank’s fundamental leverage.

Panel (a) Fundamental Balance Sheet

Lt Dt

Wt

Panel (b) Accounting Balance Sheet

Lt = λt ·Wt Dt = (λt−1)·Wt

Wt

Zt = zt ·Wt Zt

L̄t

W̄t

Figure 7: Fundamental and Accounting Balance Sheet

Since the laws of motion feature drifts and jumps produced by defaults, we introduce the

following notation: We use µxW to denote the drift of a variable x scaled by fundamental equity.
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Similarly, we use JxW and J̄xW to refer to a jump, scaled by W , in variable x produced by the

events dN and dN z, respectively.

Leverage Ratio and Zombie Loan Ratio. We define fundamental leverage as λ ≡ L/W. We

also define the ratio of zombie loans to fundamental equity, the zombie loan ratio, as z ≡ Z/W . In

turn, book leverage is given by λ̄ ≡ L̄/W̄ = (λ+ z) / (1 + z) . Thus, zombie loans hide a portion

of fundamental leverage:

λ− λ̄ =
z

1 + z
(λ− 1) > 0.

Fundamental leverage follows the following law of motion:

dλ =
(
ι− µW

)
λ︸ ︷︷ ︸

≡µλ

dt+ λε

[
λ− 1

1− λε

]
︸ ︷︷ ︸

≡Jλ

·dN − dF,

where ι is the continuous issuance rate of loans, a choice variable for banks, in excess of the

depreciation rate δ. Leverage jumps whenever there is a default event, dN . Finally, the term dF

corresponds to a countable process for a discrete jump in loan sales—which is controlled by the

bank, but not measurable in dN .

The zombie loan ratio follows:

dz = − z
(
α + µW

)︸ ︷︷ ︸
≡µz

dt+ λε

[
1 + z

1− λε

]
︸ ︷︷ ︸

≡Ĵz

dN z + λε

[
z

1− λε

]
︸ ︷︷ ︸

≡J̃z

(dN − dN z) .

Note that the jump on z depends on whether the default is unrecognized, dN z = 1, or recognized,

dN − dN z = 1.

Liquidation. Banks remain operational if they satisfy two constraints. First, as occurs in prac-

tice, banks must satisfy a regulatory requirement. The regulation stipulates that book leverage

cannot exceed a regulatory limit Ξ > 1. Thus, banks must satisfy the following regulatory limit

L̄ ≤ Ξ ·W̄ ⇔ λ̄ ≤ Ξ.32 We express this regulatory requirement in terms of leverage and the zombie

loan ratio:

λ ≤ Ξ + (Ξ− 1) z.

32Notice that we can equivalently, write the constraint as a limit to risk-weighted assets over Tier-1 capital. Let
% be a risk-weight on loans and κ a capital ratio restriction. Then, a Tier-1 capital constraint can be written as:

%L̄ ≤ κ
(
%L̄−D

)
.

Equivalently, this can be re-interpreted as a constraint that stipulates that deposits cannot exceed a fraction ξ of
their book loans D ≤ ξL̄. Re-arranging terms, we have that the three constraints are related through (κ− 1) %/κ =
ξ = 1− 1/Ξ < 1. In the calibration section, we calibrate Ξ directly.
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Observe that regulation imposes a constraint on fundamental leverage, which depends on the

zombie loan ratio. A lower z—a smaller gap between book and fundamental values—generates a

tighter regulatory constraint. This constraint is meant to capture Tier 1 capital ratio requirements.

Second, banks are subject to a solvency condition imposed by markets, which states that the

bank must remain with positive fundamental equity after a default shock: W − εL ≥ 0. We can

express this constraint as an upper bound on fundamental leverage

λ ≤ 1/ε. (5)

The solvency constraint is introduced as a technical condition to prevent banks from accumulating

losses as they increase their zombie loan ratio (to prevent a Ponzi scheme). The constraint is

almost never binding in the simulations. On the contrary, the regulatory requirement is the main

focus of interest.

We can combine both constraints into a single condition for leverage:

λ ≤ Γ (z) ≡ min {1/ε, Ξ + (Ξ− 1) z} , (6)

where Γ (z) indicates the liquidation boundary.

If either the regulatory or the solvency conditions are violated, the bank is liquidated. For

simplicity, we assume that if the bank is liquidated, the bank is closed and its value is given by

v0W where v0 is an exogenous value. Because the bank earns a spread between the deposit and

loans rate, it has a franchise value so liquidation is never desirable.

Timing. Liquidation is possible because banks cannot immediately offset the jump in leverage

at the exact instant of the occurrence of a default. Thus, even though banks may, and will in

equilibrium, offset the increase in leverage selling loans immediately after the shock, the assumption

is that if they violate a constraint for a measure zero time interval, they are liquidated. In

particular, given a choice of λ, the jump in leverage on the instant of a default event is given by

Jλ. Thus, if λ+ Jλ > Γ (z + Jz) the bank is liquidated.

Bank problem. We now solve the bank’s problem. At each t, the bank has state variables

{Z,W} and chooses a dividend payout C and leverage λ. Banks solve the following problem:

Problem 1 [Bank’s Problem] The bank’s policy functions {C (Z,W ) , λ (Z,W )} are the solutions

to:

0 = max
{C,λ∈[1,Γ(Z/W )]}

f (C, V (Z,W )) + VZ (Z,W )µZW + VW (Z,W )µWW

+ σp
[
V
(
Z + JZ ,W + JW

)
− V (Z,W )

]︸ ︷︷ ︸
unrecognized default

+σ (1− p)
[
V
(
Z,W + JW

)
− V (Z,W )

]︸ ︷︷ ︸
recognized default
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subject to the laws of motion of fundamental equity, (3), and zombie loans, (4), and the liquidation

constraint: V
(
Z + JZ ,W + JW

)
= v0W if λ + Jλ > Γ

(
z + Ĵz

)
, and V

(
Z,W + JW

)
= v0W if

λ+ Jλ > Γ
(
z + J̃z

)
.

This problem features a standard Hamilton-Jacobi-Bellman (HJB) equation, associated with

Duffie-Epstein preferences. The last two terms represent the jumps in the value function after

unrecognized and recognized default events, respectively.

Market value of equity. We need to price bank equity to produce a value for Tobin’s Q and

to obtain the market returns needed to reconstruct the cross-sectional impulse responses to return

shocks. To price bank equity, we assume that banks are owned by outside investors who own the

claims to bank dividends, but cannot directly make loans and cannot inject equity. Because of

this friction, and the curvature on dividends, as we anticipated above, the market value of equity

diverges from the fundamental value. Moreover, this frictions drive a wedge between an outside

investor’s and an the bank’s value function. We endow the investor with a constant discount rate

ρI that differs from ρ,the discount rate of the bank, to have a parameter that controls Tobin’s Q.

We further assume that investors are diversified so that a bank’s idiosyncratic risk does not affect

their discount rate. Because we are interested only in the cross-sectional behavior of banks, our

asset pricing abstracts from changes in investor risk premia. In principle, we could allow discount

rates to vary with time which would not change the cross-sectional implications. For simplicity we

set investors’ discount rate to a constant.

Next, we construct a pricing equation for the bank’s equity. We map the underlying default

shocks to the return shocks, to be able to build the analogue impulse responses to those presented

in Section 2. Investors price bank shares according to the net present value of discounted dividends.

The market value of a bank, S (Z,W ), satisfies the following recursive representation:

ρIS (Z,W ) = C (Z,W ) + SZ (Z,W )µZW + SW (Z,W )µWW (7)

+ σp
[
S
(
Z + JZ ,W + JW

)
− S (Z,W )

]︸ ︷︷ ︸
unrecognized default

+σ (1− p)
[
S
(
Z,W + JW

)
− S (Z,W )

]︸ ︷︷ ︸
recognized default

,

where S
(
Z + JZ ,W + JW

)
= 0 if λ + Jλ > Γ

(
z + Ĵz

)
, and S

(
Z,W + JW

)
= 0 if λ + Jλ >

Γ
(
z + J̃z

)
.

This equation captures the dividend flow C (Z,W ) determined by the payout policy. Naturally,

this recursive representation reflects the law of motion of the bank’s state variables. The valuation

takes into account how changes in the state variables will affect future valuations, considering the

effect of loan defaults. Upon liquidation, the equity of investors in the bank has a value of zero.

Implicitly, Equation (7) assumes that investors observe {dN, dN z}. Hence, we assume that

market prices contain information about loan losses not contained in their books. In general,
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markets may not observe all information, but for the purposes of relating the model to the empirical

section, this assumption captures that Tobin’s Q has some predictive power.

Discussion of Model Frictions. As any model where financial frictions affect banks’ lending

choice, we need frictions on equity and deposit financing that represent violations of Modigliani-

Miller. In line with the intermediary asset pricing literature, we assume that banks cannot issue

equity and, thus, must rely on retained earnings to grow equity.33 In addition, the objective of

banks features dividend smoothing that also slows down the accumulation of equity. In turn, the

leverage constraint 6 places a limit on deposit financing.

Delayed accounting is a novel feature of our model and is critical to capturing banks’ ability to

engage in evergreening (Caballero, Hoshi and Kashyap, 2008) and to avoid the immediate recog-

nition of losses (e.g., Blattner, Farinha and Rebelo, Forthcoming; Flanagan and Purnanandam,

2019)). By not charging off losses, banks create zombie loans and avoid reductions in book equity,

i.e., regulatory capital. Since rolling over a loan does not require new funds, evergreening allows

a bank to inflate its accounting equity at no cost. The effect of delayed accounting is that the

leverage constraint in 6 is given by the zombie loan ratio.

We next proceed to explain the model’s mechanics, first working out the case with immediate

accounting. Formal results are relegated to Appendix C.2.

Immediate accounting. To build intuition, we first solve for the polar case where all defaults

are instantaneously recognized, so p = 0. In this case, z = 0 so α plays no role. Also, to simplify

the algebra only for th, we assume that v0 = 0. Thus, only the regulatory constraint binds and

Γ (z) = min {1/ε, Ξ} = Ξ. To characterize the solution, we impose the following assumption.

Assumption 1 We assume the following:

a. Returns: rL − σε ≥ rD.

b. No liquidation:
(
rL − rD

)
Ξ− σ < Ξ · rL−σε−rD

1−ε+εΞ .

Assumption 1.a is needed to have positive leverage. Without this assumption, the bank would

lever up as much as possible and liquidate after the first loan default. Assumption 1.b guarantees

banks avoid liquidation in all states. In general, we don’t need assumption 1.b, but we introduce

it to avoid equilibrium default which is not central to our theory. Together, assumptions 1.a and

1.b produce a positive leverage and a capital buffer—banks set leverage below the constraint in 6.

Next, we solve the bank’s problem. A key object for our theory is what we call the shadow

liquidation boundary, Λ. In the case of immediate accounting, the shadow boundary is the highest

leverage ratio, Λ, such that leverage remains under the liquidation limit after a default event.

33The assumption of no equity finance can be relaxed easily by defining utility over net dividends.
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Mathematically, the shadow boundary solves Λ + Jλ (Λ) ≡ Ξ. Solving explicitly for this value

yields:

Λ = Ξ · (1 + ε (Ξ− 1))−1 .

The next proposition shows that with immediate accounting, the bank maintains a constant lever-

age and dividend ratio, and banks only differ in their scale, W .

Proposition 1 [Bank’s Problem] With immediate accounting, the dividend rate, the leverage ratio,

and the bank’s value per unit of equity are constants {c∗, λ∗, v∗}. These constants solve the following

HJB equation:

0 = max
{c}

f (c, v∗)− v∗ · c︸ ︷︷ ︸
dividend choice

+v∗ · Ω (8)

where Ω is the expected leveraged bank return,

Ω = rD + max
λ∈[1,Ξ]

(
rL − rD

)︸ ︷︷ ︸
levered return

λ+ σ
{

(1− ελ) I[λ<Λ] − 1
}

︸ ︷︷ ︸
leverage choice

.

Let Assumption 1 hold. Then, the solutions λ∗ and c∗ are given by:

λ∗ = Λ and c∗ (v) = ρ1/θv∗1−1/θ. (9)

Then, V (Z,W ) = v∗ ·W , C (Z,W ) = c∗ ·W , L = L̄ = λ∗W,D = (λ∗ − 1).

When dN = 0, given c∗, the growth rate of loans ι∗ is given by ι∗ = µW .When dN = 1, the

jump in leverage is immediately offset by a loan sale, such that λ∗ = Λ except when dN = 1; that

is, dF = Jλ. Finally, the market value of equity, is S (W ) = s∗W where s∗ = c∗/(ρI − γ), where

γ is the expected fundamental equity growth rate, γ = rD +
(
rL − rD

)
Λ− σεΛ.

A takeaway from the proposition is the scale invariance of the problem. The bank’s marginal

value, v, transforms one unit of bank net-worth into the certainty-equivalent net present value of

dividends. Furthermore, the proposition shows that the dividend and leverage choices satisfy a

separation property: the leverage choice is independent of the dividend choice. Their solutions

yield constant values per unit of equity.

The optimal leverage choice solves Ω. Banks’ leverage choice results from a trade-off between

intermediation profits and liquidation risk. Figure 8 graphs the objective function of Ω as a

function of λ. There are three regions: if λ > Ξ the bank is liquidated, triggering an immediate

loss. Hence, the bank will only choose leverage λ ≤ Ξ. The other two regions are given by the

points above and below the shadow boundary. Below the shadow boundary, λ < Λ, the bank

survives any default. There, leverage increases the levered returns,
(
rL − rD

)
λ, but also increases

expected losses, −σε. However, the value function increases with leverage because the expected
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levered return is positive, rL − σε − rD ≥ 0, by Assumption 1. If leverage crosses the shadow

boundary, λ > Λ, the objective falls in level because a single default event triggers liquidation.

For leverage above Λ, leverage increases expected returns by rL − rD. Thus, the objective in Ω

has two local maxima, one at the shadow boundary Λ and one at the liquidation boundary, Ξ. By

Assumption 1b, it is optimal for the bank to choose Λ. The rest of the proposition explains that

to guarantee that λ∗ = Λ except when dN = 1, an asset sale must neutralize the jump in leverage

triggered by a loan default immediately after a shock. Along the continuous portion of the equity

path, the loan issuance rate must equal the equity growth rate to keep the leverage ratio constant.

Once we determine the optimal leverage λ∗, the dividend choice is given by a standard in-

tertemporal tradeoff. As we can see from Eq. 9, c∗ is given by a formula that captures wealth and

substitution effects. Here, v acts like a total return on equity. When θ < 1 (θ > 1), the substitution

(wealth) effect dominates and the bank retains (pays out) more dividends as v increases. With

θ = 1, we obtain the usual result that c∗ = ρ because both effects cancel out.

Then, the marginal value v∗ solves the equation:

0 = f (c∗ (v) , v)− v · c∗ (v) + v · Ω.

Finally, observe that because the problem is scale invariant, the market capitalization is also pro-

portional to W , the proportion s∗. It is useful to return to our motivating facts: Immediate

accounting produces a book leverage buffer, as desired. However, the impulse response of leverage

to a return shock, under immediate accounting, would produce a single impulse that reverts im-

mediately. In turn, the response of total liabilities looks like a one-time shock that tracks the path

of W . Furthermore, Tobin’s Q is a constant in this case, has no predictive power and features

no cross-sectional variation. Thus, immediate accounting is inconsistent with any of the facts we

highlight. Delayed accounting allows us to reproduce all four facts, as we show next.

Delayed accounting. We now study the case with delayed accounting where p > 0. The

general model follows a similar logic to the case with immediate accounting. In this case, the

shadow boundary depends on z. Again, the shadow boundary is the value of leverage Λ, for a

given z, such that the bank remains solvent after a recognized default event:

Λ (z) + Jλ [Λ (z)]︸ ︷︷ ︸
leverage after jump

= min

1/ε, Ξ + (Ξ− 1)
(
z + Ĵz

)
︸ ︷︷ ︸

regulatory constraint

 .

We define the shadow boundary in terms of a recognized loan default because for an unrecognized

loan default, there is also a jump in z such that book leverage is unaffected and the bank’s buffer

with respect to the regulatory constraint is unaffected. Moreover, with an unrecognized loan
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Figure 8: Leverage Choice (Immediate Accounting)

default, for the region where the solvency constraint is relevant, the shadow boundary is the same

as the one that the recognized loan default derivation yields. Since Jλ is a function of λ, we can

solve for the shadow boundary:

Λ (z) = min

{
1/ε

2− ε
,
Ξ + (Ξ− 1) z

1− ε+ εΞ

}
.

We make use of this expression to characterize the banks’ problem and market value:

Proposition 2 [Bank’s Problem] With delayed accounting, the dividend rate, leverage, and the

bank’s value are functions of z, {c∗ (z) , λ∗ (z) , v∗ (z)}, that solve the following HJB equation:

0 = max
{c}

f (c, v∗ (z))− (v∗ (z)− v∗z (z) z) · c︸ ︷︷ ︸
dividend choice

−vz · z · α + (v∗ (z)− v∗z (z) z) · Ω (z) (10)

where

Ω (z) = rD + max
λ∈[1,Ξ+(Ξ−1)z]

(
rL − rD

)
λ+ σ

{
E [v̄ (z + Jz)] · (1− ελ)− v∗ (z)

v∗ (z)− v∗z (z) z

}
︸ ︷︷ ︸

leverage choice

where v̄ (z + Jz) = v0 if the bank is liquidated and v̄ (z + Jz) = v∗ (z + Jz) otherwise.

For a sufficiently low liquidation cost, v0,banks choose to avoid liquidation in all states. In that

case, the solutions λ∗ and c∗ are given by λ∗ (z) = Λ (z) and

c∗ (z) = ρ1/θ v (z)1−1/θ

[1 + z · vz (z) /v (z)]1/θ
. (11)
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Then, V (Z,W ) = v (z) ·W , C (Z,W ) = c∗ (z) ·W , L = L̄ = λ∗ (z) ·W, D = (λ∗ (z)− 1) ·W .

Whenever dN = 0, the loan growth rate ι∗ induces a leverage drift given by:

µλ =
(
ι∗ − µW

)
Λ (z) such that µλ = Λz (z)µz. (12)

The instant when dN = 1, the jump in leverage is immediately offset by loan sales, such that

λ∗ = Λ (z + Jz). Finally, the market value of equity, is S (W ) = s∗ (z)W and

ρIs∗ = c∗ (1− (s∗ − s∗z))− s∗zαz + (s∗ − s∗z) γ (z) ,

where γ (z) is the expected equity growth:

γ (z) = rD +
(
rL − rD

)
· Λ (z) + σ

E [s∗ (z + Jz)] · (1− εΛ (z))− s∗ (z)

s∗ (z)− s∗z (z) z
.

Proposition 2 clarifies that two banks with the same value of z but different W behave as scaled

replicas. We now discuss the leverage dynamics characterized by the proposition, illustrated by

Figure 9. Panels (a) and (b) depict two curves, the shadow boundary characterized by the points

{z,Λ (z)} and the liquidation boundary by the points {z,Γ (z)}. Almost all the time, leverage

and zombie loans live on a point of the shadow boundary. Default events dislocate leverage for

the instants in which dN = 1, but leverage returns immediately to another point on the shadow

boundary. When dN = 0, leverage drifts continuously along the shadow boundary. Panels (a) and

(b) depict the trajectories of leverage after recognized and unrecognized default events, respectively.

Consider the trajectory in Panel (a). A bank experiences a default event starting from a point

{z0, λ0} in the shadow boundary. If the default is recognized, the stock of zombie loans remains

the same, but equity falls. Thus, λ and z jump. The jump takes the bank to a point on the

liquidation boundary. To offset the jump and to return to the shadow boundary, the bank sells

loans in an amount dF to delever. It then reaches the point {z0 + Jz,Λ (z0 + Jz)} on the shadow

boundary. After the jump, leverage drifts along the shadow boundary.
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Panel (a) Recognized Loan Loss Panel (b) Unrecognized Loan Loss

Figure 9: Typical trajectories of fundamental leverage

Panel (b) of 9 depicts a typical path after an unrecogenized default. The logic is similar.

Starting from a point {z0, λ0}, both λ and z jump to a point between the shadow and liquidation

boundaries—the default event does not take z all the way to the liquidation boundary because,

although the default produces a fall in equity, the stock of zombie loans also increases.

It is important to understand that the choice of c and the recognition rate α govern the dynamics

of leverage along the shadow boundary. The points in the frontier are given by λ∗ (z) = Λ (z).

Thus, since z drifts toward zero, leverage must also drift downward within any time interval where

dN = 0. The drift satisfies Eq. 12 in the proposition, which guarantees that leverage stays on

the shadow boundary. Equation Eq. 12 projects the drift of z on the drift of λ, using the shape

of the shadow boundary Λ (z). Recall that the zombie loan ratio z drifts toward zero at rate α

and equity drifts at rate µW , which is in turn influenced by c∗. Hence, the bank chooses a loan

issuance rate ι∗ to maintain leverage at the shadow boundary.

The optimal dividend choice, c∗, is given by Eq. 11. This formula is governed by a race between

wealth and substitution effects. However, different from the case with immediate accounting, the

substitution effect is modified because on the margin the choice of dividends affects z through µW .

Because z determines the leverage consistent with the shadow boundary, the dividend choice affects

the path of expected returns. The effect is encoded in the term z · vz (z) /v (z) in the denominator,

which is an additional substitution effect.34

Once we obtain c∗ (z), we can solve for the loan growth rate along the continuous path:

ι︸︷︷︸
growth in loans

= −αΛz (z)

Λ (z)
+

(1− Λz (z))

Λ (z)
µW . (13)

The first term captures that losses are recognized slowly, at rate α. As losses are recognized, and z

34The intuition is that by paying out more dividends, the bank lowers its fundamental equity, and thus increases
its zombie loan ratio. A higher zombie loan ratio then allows the bank to operate with greater leverage than imposed
by regulation. This raises returns, and as we increase θ, this substitution effect becomes smaller.
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decreases, banks must gradually delever by reducing their loan issuance rates—hence the negative

sign. The second term captures that leverage has a tendency to fall because retained earnings

increase equity, µW (z)—recall that Λz (z) has a positive slope.

The model with delayed accounting is consistent with dynamics where, upon a default shock,

the bank immediately returns to the shadow boundary. Once at the shadow boundary, the bank

continues a slow deleveraging, which induces a slow response of market leverage and total liabil-

ities, as we observe in the data. Thus, even though there are no adjustment costs, the leverage

adjustment is gradual along the shadow boundary. This slow adjustment forms the basis of our Q-

theory. In the next section, we calibrate the model and demonstrate how the model can reproduce

all four motivating facts.

4 Calibration, Estimation and Quantitative Evaluation

We now describe the calibration and estimation procedures and then investigate the model’s ability

to reproduce the four facts described in Section 2. We use quarterly data from 1990 Q3 to 2021 Q1

to produce the target moments. Thus, all corresponding model moments are also at the quarterly

frequency. To keep the parametrization tractable, we calibrate
{
ψ, rL, rD, δ, σ,Ξ

}
independently,

matching model moments to target moments in the data. Then, conditional on these calibrated

parameters, we jointly estimate
{
ρ, ρI , θ, ε, α, p

}
, the parameters that govern the delay in the

balance sheet responses. The parameter values are listed in Table 1. Table 2 presents both the

targeted and untargeted moments in the data and the corresponding model moment.

Calibrated parameters. We set the utility parameter ψ (risk-aversion) to a value of 0 to

capture the idea that banks are risk-neutral, in line with the theory of the firm. The exogenous

returns on loans and deposits, rL and rD, are respectively set to 1.01% and 0.51%, consistent with

the quarterly yield on loans (total interest income on loans divided by total loans) and the rate

banks pay on their debt (total interest expenses divided by interest-bearing liabilities) in bank call

reports. These values are also consistent with the calibration in Corbae and D’Erasmo (2021).

Every period, a fraction of loans δ matures. The fraction is set to 1/(4× 3.5), so that the average

duration of loans is three years and a half. Once we have estimated ε (see below), the default

intensity σ is pinned down by the mean quarterly net-charge-off rate of σ × ε = 0.12%, resulting

in σ = 0.134. We set the capital requirement parameter Ξ to 12.5, reflecting a Tier-1 risk-based

capital ratio requirement of 8% at which a bank is considered well capitalized. 35 Since bank

liquidations are not a focus of this paper, we assume that v0 is low enough such that banks never

choose to expose themselves to liquidation risk.

35See the Federal Reserve Supervision and Regulation Report of November 2018, available here.
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Table 1: Parametrization

Parameter Description Target

Independently calibrated

rL = 1.01% Loan yield BHC data: interest income / loans

rD = 0.51% Bank debt yield BHC data: interest expense / debt

Ξ = 12.5 Regulatory maximum asset to equity ratio Capital requirement of 8% to be well-capitalized

ψ = 0 Banker’s risk aversion Standard value

δ = 0.071 Rate at which loans mature BHC data: average qrt. duration of loans

σ = 0.134 Arrival rate of default shocks Mean quarterly net charge-off rate of 0.12%

Jointly estimated

ε = 0.89% Loan loss rate in event of default Mean book leverage

α = 4.30% Speed of loan loss recognition Liabilities IRF

p = 0.13% Fraction of slowly recognized loan losses shock Initial liabilities IRF

θ = 1.98 Banker’s inverse IES Market leverage IRF

ρ = 2.65% Banker’s discount rate BHC data: book equity growth

ρI = 4.33% Investor’s discount rate CRSP and BHC: market to book ratio of equity

Notes: This table summarizes the parameter values, their role in the model, and the data target used to set or

estimate the value. The text provides more details.

Estimated parameters. We estimate
{
ρ, ρI , ε, θ, α, p

}
using simulated method of moments.

The parameters {α, p} speak directly to our Q-theory: p determines whether loan losses are rec-

ognized on impact and α governs the speed of loan-loss recognition over time. We estimate them

together with the parameters that determine the severity of the loan shock, ε and σ, and bankers’

ρ and investors’ ρI discount rate, and elasticity of substitution θ.

We estimate these parameters to match the growth rate of book equity, the average market to

book equity ratio, the average book leverage ratio, and the impulse response functions of market

leverage and bank liabilities to a return shock in the data. To produce analogue estimated impulse

responses to return shocks in the model, we solve and simulate the model. We run the same

specification for the impulse responses of Section (2). We construct excess return shocks by first

calculating the realized equity returns between adjacent quarters and the cross-sectional equity

return. The bank specific return shock is then just the difference between a bank’s individual

realized equity return and the cross-sectional average of the realized equity returns. The latter

absorbs any potentially time varying aggregate effects on banks’ equity returns, similar to only

using a time fixed-effect specification. Formally, the model is overidentified because each impulse

response in the data contains effectively 21 moments, one for each βh in Equation (1). However,

model generated moments such as these are highly correlated so the effective degree of over-

identification is lower.36

We simulate a panel of 10,000 banks. To compute the stationary distribution we simulate

forward until the cross-sectional mean and standard deviation of z stay approximately constant,

36Each impulse response is well approximated by two moments, the jump on impact and the persistence.
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and discard these initial periods. We then take the last cross-section as initial condition and

simulate the same number of quarters as in the data. From that sample, we calculate the moments

and run the cross-sectional regressions using model simulated data, just as we did with the actual

data. We discuss the values from this estimation and the resulting model fit in the next paragraph.

Identification and Estimated Values. We now describe what variation in the data identifies

the parameters of the model. We estimate these parameters jointly since they jointly determine

the targeted moments in the model. In our discussion below, we highlight which moment speaks

particularly to which parameter. The parameter values are listed in Table 1.

The growth rate of a bank’s book equity is informative about bankers’ discount rate ρ, because it

says how much dividends the banker wants to pay out versus to keep inside the bank to accumulate

equity. Since the ergodic means of the growth rates of fundamental and book equity move together

but we only observe book equity we target the growth rate of book equity that equals 2.00% to

inform us about ρ,which we estimate as 2.66%.

We use the impulse response function of market leverage as a target for θ. This parameter

governs how much bankers dislike variation in dividends from one period to the next. Since

dividends affect the market value of the bank, the impulse response function of market leverage

to a net-worth shock is informative about θ. We estimate an θ = 1.98, which is very close to the

standard value of 2 in the macro literature.

Investors are risk-neutral and hence their discount rate ρI approximately maps into the average

market return on bank shares. Hence, we target a bank market-to-book ratio of 1.316 in the data,

which gives a value of 4.33%.

Banks choose a leverage ratio on the shadow boundary. The distance between the shadow

boundary and the liquidation set is determined by the size of the idiosyncratic loan default shock

ε and the likelihood of not having to acknowledge loan losses on impact p. Thus, once Ξ is fixed,

we estimate ε = 0.89% to match the average book leverage ratio of 11.36.

We use the impulse response functions of liabilities and market leverage to net-worth shocks

proxied by return shocks as targets for p and α. These impulse responses render a transparent

identification: when shocks are not recognized on impact (p = 0) nothing happens to the balance

sheet size upon the arrival of a default shock. Hence p is pinned down by the initial response of

liabilities to the net-worth shock. We estimate that p = 0.13%, which means that in almost all

cases shocks to the loan books are initially unrecognized.

The rate at which losses are recognized on bank books, α, governs how fast book equity reverts

to the fundamental value of equity q = W/W̄ = 1, along the shadow frontier. In response to a

net-worth shock, banks’ book leverage jumps up. As z trends down to 0, the regulatory constraint

becomes tighter and banks are forced to delever. The speed of reversal of the impulse response for

book leverage then informs the value of α.We estimate that α = 4.30%, which means that roughly

65% of unrecognized losses are recognized within 10 quarters. This delay is consistent with Figure
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2, where the net charge-offs taper off by the end of 2010, about two and a half years after the

trough in bank market values.

We do not target second moments of the empirical counterparts. In the data, the dispersion of

variables in the cross-section and over time is influenced by factors such as ex-ante heterogeneity

(e.g., different business models) and aggregate shocks, that our model abstracts from for simplicity

and tractability.

Table 2: Model and Data Moments

Data Model

Log Market Returns 0.020 0.044
(0.176) (0.000)

Market leverage 8.596 8.470
(0.590) (0.000)

Book Leverage 11.361 11.361
(0.361) (0.000)

Market to Book Equity 1.316 1.320
(0.545) (0.000)

Growth Rate of Book Equity 0.020 0.019
(0.112) (0.000)

Log Common Dividend Rate 0.006 0.033
(0.006) (0.000)

Charge-Off Rate 0.001 0.001
(0.003) (0.000)

mean/(s.e.)

z 0.237
(0.002)

q 0.821
(0.001)

λ 13.821
(0.018)

c 0.041
(0.000)

ι 0.020
(0.000)

dW/W 0.021
(0.000)

s(λ, q) 1.625
(0.001)

Notes: The data uses the full sample from 1990 Q1 to 2021 Q1. The moments from the model are generated from

a panel of 10,000 banks with the same number of quarters as in the data. We compute the stationary distribution

by first simulating enough quarters so that the mean and standard deviation of the state variables (λ, z) are

approximately constant, and then keeping the last one as the initial quarter of the simulated sample. The first row

for each variable shows the mean. The second row shows standard error of the mean in parenthesis. For market

leverage, book leverage and market-to-book equity, the mean and standard error are computed on the logs, but

when reporting the mean we apply exponential to show the mean in levels.

Model Fit and Interpretation. Table 2 compares the moments generated by the model and

those obtained from the data: our model fits most data moments well, with the exceptions of log

market returns (which in the data includes other aggregate factors) and the common dividend rate.

The model fits market leverage (8.596 in the model vs 8.806 in the data), book leverage (11.361

in the model vs 11.365 in the data), the growth rate of bank equity (2% in the model vs 1.8% in

the data), and the net charge-off rate (0.1% in the model vs 0.1% in the data) very tightly. Note

that the capital requirement constraint limits banks’ book leverage ratio to at most 12.5. Hence,
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in our model banks keep an equity buffer over the capital requirement constraint as in the data.37

The model also hits the market-to-book equity ratio target, 1.316 in the model vs 1.262 in the

data. The model substantially overshoots the dividend rate (0.6% in the data vs 3% in the model)

and the market return of equity (2% in the data vs 4.2% in the model). In the data, banks can

also repurchase shares to return cash to their shareholders, leading to a higher dividend rate in

the model. We also abstract from operating expenses, which leads to a higher market return in

the model.

Table 2 presents unobservable model variables, such as fundamental leverage λ and q (fun-

damental equity/accounting value of equity). Fundamental leverage is 13.8, substantially higher

than the book leverage value of 11.4. The average value for q = W/W̄ is 0.82, implying that the

fundamental value and the accounting value of equity differs by 18 percentage points.

Figure 13 presents the impulse response function of the model to a net-worth shock and com-

pares it to the data, including the 95% confidence interval in gray. Note that each impulse response

function consists of several estimates, which means that our model is overidentified. As in the data

section, all impulse responses are calculated based on a 1% negative net-worth shock. Panel (a)

presents the impulse response function of Tobin’s Q. Our model reproduces the slow return to

pre-shock levels by slowly incorporating the default shock on the books. Panel (b) presents the

impulse response function of market leverage. While the initial jump in market leverage is slightly

smaller compared to the data, the subsequent slow reversal to the initial market leverage level is

very similar. Panel (c) displays the impulse response of bank liabilities that shows the slow delev-

ering process. Finally, panel (d) presents the impulse response function of market equity. Our

model generally replicates the impulse response of market equity in the data, the initial 1% decline

in response to a 1% shock and the very slow recapitalization process. After 20 quarters, market

equity is still below 90% the initial value in the data and 60% in the model. Thus, the model

fits the impulse response in the data with only delayed accounting, standard dividend smoothing

incentives and a capital requirement constraint. In sum, our parsimonious model generates slow

movements in banks’ leverage and balance sheet dynamics.

4.1 Matching Facts

In this section, we evaluate the model’s ability to reproduce the four facts on Tobin’s Q from

Section 2. We focus on the period between 2006Q4 and 2014Q3, where banks experienced a large

credit shock.

Aggregate shocks. With idiosyncratic default events and a continuum of banks, the law of

large numbers guarantees that the aggregate time series generated by the model are deterministic.

37In Appendix C.1, Figure 30 presents the stationary distribution of fundamental leverage λ and the zombie
loan to equity ratio z together with the liquidation set. It also shows that banks keep an equity buffer over the
liquidation boundary determined by the regulatory constraint.
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In this section, we want to evaluate the model’s ability to match cross-sectional and time series

facts and use the model to run counterfactuals. We want to do so in the most parsimonious way

possible. To that end, we assume that the individual default events are of two types: there are

idiosyncratic events with intensity σi, and aggregate events with intensity σa. We maintain the

assumption that σ = σi + σa so that individual bank decisions remain the same. Yet, with this

simple extension, we can calibrate a sequence of realized aggregate defaults to match a particular

time series from the data.

Inferring aggregate default shocks. We infer the series of aggregate default shocks from the

quartelry aggregate provision for loan loss series. That is, we choose the shocks such that the

losses in the model match that of the data (see panel A of Figure 10).38 With this shock series,

we simulate the period from 2006Q4 to 2014Q3 and aggregate over banks in each quarter.

Fact 1. Market and book equity value divergence. Fact 1 describes the divergence of

market and book equity, especially during crises. Panel B of Figure 10 shows the time series of

Tobin’s Q in the model and the data. The delayed loan loss recognition mechanism in our model

generates a sustained and pronounced decline in Tobin’s Q of about 40%, while in the data Tobin’s

Q fell by more than 60%. In our decomposition of Tobin’s Q, Eq. 2, we establish that Q can vary

through two channels: changes in the price per unit of equity s and the discrepancy between book

and fundamental values, q, attributed to accounting. We are interested in knowing what fraction

of the drop in Q can be attributed to q. We exploit a back-of-the-envelope calculation to answer

this question. We distinguish aggregate from idiosyncratic variables and denote by x the aggregate

version of a variable x. Consider a default shock to loans of 1% that lasts one year, and assume

that aggregate leverage is λ = 14. In this case, we obtain:

JW = −JZ ≈ −0.01λW = −0.14W .

This means that the average z is 0.24. As a result, the jump in q satisfies

Jq =
W + JW

W + JW +Z + JZ
− 1 ≈ 1− 0.14

1 + 0.24
− 1 = −30%.

Thus, a one time shock can generate a quantitatively significant movement in Tobin’s Q.

38The model is restricted to generate high losses from slow recognition whenever the fraction of immediately
recognized shocks, p, is low. The restriction comes from the drift in the process for Z, −αZ. Since α is small,
the losses have to be very large for the model to be able to match the PLLs observed during the 2008 crisis.
An alternative specification with curvature in Z would improve the model’s fit. Therefore, to allow the model to
generate the high losses observed during this time period, we assume that p increases unexpectedly to 0.4, which
does not change the policy functions. As a result, banks have to recognize a larger fraction of the default losses
immediately, increasing the loan provision rate in the simulated data.
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Figure 10: Model Fit to Data

a) Aggregate Loan Loss Provision Rate b) Tobin’s Q

2007 2008 2009 2010 2011 2012 2013 2014

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Model

Data

2007 2008 2009 2010 2011 2012 2013 2014

0.6

0.8

1

1.2

1.4

1.6
Model

Data

c) Book Loans

2007 2008 2009 2010 2011 2012 2013 2014

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Notes: This figure compares aggregate series of model generated data (blue line) to the data (black line). These series are based on a

simulation that feeds in shock that are chosen to match the times series of aggregate loan loss provisions (Panel A). Panel B presents

Tobin’s Q. Panel C the evolution of book loans, as deviation from a trend that is based on the 10 years before 2006 Q4. The units for

Panel C are in decimals, hence we document a 70% decline in the model relative to trend.

Fact 2. Predictive power. Our second fact of interest is the predictive power of Tobin’s Q in

terms of book-equity returns and loan charge-off rates up to even two years. Our model captures

this effect because market values capture losses that are unrecognized in books. We replicate fact 2

with model generated data (see Figure 11). As in the data, market equity contains predictive power

for loan losses beyond the information contained in book equity. Recall that without considering

the changes in the price per unit of fundamental equity W , upon a default shock returns fall

approximately by JW . A bank’s charge-off rate per unit of equity is approximately α · z. Since

the jump Jz is correlated with the jump JW , the model generates the predictability of loan losses

with the market-to-book equity ratio as in the data.

Fact 3. Equity buffer. The third fact states that (a) banks keep an equity buffer over the reg-

ulatory capital constraint, and (b) that the cross-sectional dispersion in market leverage increases

a lot during recessions, especially compared to a very stable cross-sectional distribution of book

leverage. We show in Figure 30 in the Appendix that banks indeed keep an equity buffer over
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Figure 11: Model Fit to Data
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Notes: The figure shows the results from predicting net-charge offs with the market to book ratio of banks in the data (Panel A) and

with simulated data generated by the model (Panel B).

the regulatory minimum.39 With the fitted series of losses, Figure 12 shows that the model also

replicates the increase in the cross-sectional dispersion of market leverage (Panel A) without barely

any change in the cross-sectional dispersion of book leverage (Panel B) —note the differences in

the scale. The model does not explain the full extent of the increase in the cross-section of leverage

because we abstract away from features that in the data could generate greater dispersion such as

ex-ante heterogeneity, a fat tail in default shocks, or different risk exposures.

Figure 12: Model Predicted Leverage Quantiles

a) Quantiles of Market Leverage b) Quantiles of Book Leverage
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Notes: The figures show the distribution of market leverage and book leverage for model simulated data in response to the same

sequence of default shock as in Figure 10. The red line shows the median and the blue lines deciles of the distribution. Panel a) presents

the quantiles of the market leverage and Panel b) the quantiles of book leverage. The bottom 10% of banks omitted from this graph as

their book leverage is close to zero.

39In particular, the capital buffer is approximately: Ξ − λ+z
1+z = 12.5 − 13.8+0.24

1+0.24 = 1.2%, which is close to the
value in the simulations.
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Fact 4. Slow mean reversion of leverage. The main takeaway from fact 4 states that the

leverage ratio of banks is mean reverting, but the reversion rate is low—see the impulse response

estimation described in Section 2. Figure 13 compares the impulse responses to return shocks

of Tobin’s Q (Panel a), total liabilities (Panel b), market leverage (Panel c), and market equity

(Panel d) of the model with the data. The black lines are the estimated response from the data,

the shaded areas their 95% confidence interval, and the blue lines represent the model.

Figure 13
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Notes: The figures presents the impulse response functions of model simulated data (blue) for the benchmark calibration and compares

it to the data (gray line represents the point estimates and the shaded area the 95% confidence interval). We show the impulse response

function of Tobin’s Q (Panel a), liabilities (Panel b), market leverage (Panel c), and market equity (Panel d).

The figure shows that the model generates an initial (mechanical) jump in market equity, as

well as the slow adjustments of market leverage, Tobin’s Q, and liabilities to return shocks as

in the data. Note that our Q–theory does not rely on loan adjustment costs once we allow for

accounting values to differ from fundamental values, i.e., p > 0. We also show in Appendix C.1

that the slow adjustment is not driven by θ (the intertemporal smoothing incentives) as they look

virtually identical with θ = 1. In contrast, solving the model with p = 0 and keeping θ at the

benchmark calibration level counterfactually delivers no response in market leverage and Tobin’s

Q and an immediate response in market equity and liabilities. Panels b) and c) are targets of the

estimation—although with a minimal of only two parameters. Panel d) is a consequence of fitting

these two panels. However, we can observe that Tobin’s Q which is not a target, has a dynamic
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response identical to what we observe from the estimation. All in all, our model reproduces all

four facts.

Explaining the aggregate loan series. With the fitted series for aggregate shocks, we repro-

duce the decline in lending consistent with the dynamics of leverage at the micro level. Panel c)

of Figure 10 shows the time series of book loans in the model and the data. Because book loans

are growing, we de-trend book loans in the model and the data using the exponential trend of the

10 years prior 2006 Q4. The shock causes banks to shrink book loans by 70% in the model and

by 40% in the data. The difference between model and data is possibly due to the lack of equity

issuance in our model. Likewise, it is possible that loan-loss recognitions were slower during the

crisis than implied by our estimate.

4.2 Effects of Accounting Rules

Effects of Accounting Rules. In the previous sections, we argued that delayed accounting

is key to explain the four facts this paper highlights. In our model, accounting rules shape bank

decisions. In this section, we show that a reform toward a quicker recognition of loan losses involves

a trade-off: namely, between the fragility of the banking sector and the speed of adjustment after

loan losses.

To highlight this trade-off, we solve the model for different values of α. Recall that a lower

α means that losses are more slowly recognized. Lower values of α reflect accounting rules that

make it easier for banks to hide losses. In the model, lowering α changes the distribution of z and

λ: on the one hand it leads to more zombie loans (higher average z) and on the other hand it

increases banks’ fundamental leverage, λ. Indeed, lower values of α provide banks with more slack

to circumvent regulatory constraints and this manifests in a higher fundamental leverage and a

greater discrepancy between the fundamental value and the book value of loans.

Figure 15a reports cross-sectional means of z and λ, as we vary α keeping all other parameters

unchanged. The negative relationship between z and λ is evident from the figure. Strikingly,

although the fundamental leverage ratio λ differs for different accounting rules, average book

leverage is basically identical in each of these equilibria: it goes from 11.36 with α = 3% to 11.35

with α = 10%. According to the model, all of these economies will look the same to a regulator

that uses book leverage to gauge the health of the financial system even though the fundamental

leverage of banks and therefore risk differs significantly. This feature highlights one side of the

trade-off: a more delayed loan loss recognition process can lead to greater potential losses.

The other side of the trade-off is that the slower recognition of loan losses allows banks to

recover more quickly from default events and to sustain higher levels of lending. To see this,

consider how a large default event affects economies with different loan loss recognition speeds α.

We study how aggregate lending responds to a negative default shock, given different values of α.
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The shock is a 50 fold increase in the arrival rate σ of the default event for one quarter, leading

to an increase of the average loan default rate from 0.12% to 6.39% in the quarter of the shock.

Figure 15b presents the results. Two effects are at play. Since a lower α means that banks are

more fundamentally levered, the shock pushes more banks closer to the liquidation boundary. The

decline in capitalization forces these banks to sell more loans on impact. This is consistent with

Figure 15a: the impact of the default shock is stronger in economies with a low α that feature

more financially fragile banks.40

Figure 14: Counterfactual Exercise
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Notes: The figures show the results from our counterfactual exercise. Each dot in the top figure is a pair of cross-sectional means of λ

and z in the stationary allocation, for a given value of α as well as for the case of immediate loan loss recognition p = 0 (black dote).

The gray area represents the regulatory liquidation set. The bottom panel shows the path for aggregate loans measured as percentage

deviation from trend after an unanticipated increase in the default arrival rate σ to 6.56 for one quarter, for various values of α as well

as p = 0 (in dashed black). The values of α in Figure (15b) match the colors of Figure (15a).

In the first quarter after the shock, aggregate lending falls by 38% in the low α economy with

α = 3% and by 24% in the high α economy with α = 10%. At the same time, the low α economies

also feature faster recoveries and higher equilibrium lending levels after the initial negative default

event. After 20 quarters, the α = 3% economy increased aggregate lending by 12 percentage

points, while α = 10% economy decreased lending by 16 percentage points relative to each path’s

pre-trend.41 The difference in these two recovery trajectories is because of two effects. First, low

α economies allow banks to sustain higher fundamental leverage ratios, which allows them to lend

more profitably and recapitalize.42 Second, low α economies provide banks with more flexibility

to move along the shadow frontier (i.e., sell or make loans).43 Hence, while the initial impact of

the shock is more severe, the low α economies lead to higher lending and faster recoveries. This is

40See Eq. 3 where a lower α leads to a higher λ increasing JW .
41Note that our model is stationary in growth rates, not levels.
42Lending growth ι is increasing in leverage λ from Eqs. (13) and (3).
43Lending growth ι is decreasing in α from Eq. (13).
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the other side of the trade-off.

Discussion: more market-based accounting rules? The trade-off result connects our model

with the debate on whether accounting rules should incorporate more market based information

to improve macro-prudential regulation. Fact 2 shows that market values incorporate information

on losses much faster than book values. Incorporating market values into regulatory constraints

would therefore increase α. This literature describes the trade-off from including more market

information as follows. On the one hand, it would exacerbate fire sale dynamics (Laux and Leuz,

2010; Ellul et al., 2011; Shleifer and Vishny, 2011). If market values are mainly driven by risk

premia, regulation should mostly ignore valuation changes that are not germane to the health

of the banking industry. On the other hand, the discretion in accounting rules opens the door

to evergreening that contributes to the creation of zombie loans and lowers economic efficiency

Caballero, Hoshi and Kashyap (2008); Huizinga and Laeven (2012); Blattner, Farinha and Rebelo

(Forthcoming). While a welfare analysis of this additional trade-off is beyond the scope of this

paper, we identified the race between the size and smoothing out of equity losses discussed above

as another trade-off to be considered for policy discussions.

Discussion: role of accounting rules for macro-prudential policies Our analysis suggests

that regulators should consider exploiting the loan-loss recognition mechanism as an additional

policy tool to countercyclical capital buffers. Stricter accounting rules (i.e., faster loan loss recog-

nition) could achieve lower financial fragility and thus mitigate the impact of shocks. Counter-

cyclical capital buffers achieve the same by relaxing the capital requirement during the bad state

of the world. Yet, countercyclical buffers require constant monitoring by regulators of the entire

banking system. Suppose only half of the banking system is affected by a shock. In that case,

regulators would face a trade off between relaxing constraints for banks affected by shocks against

allowing greater leverage for healthier banks. By contrast, delayed accounting provides an au-

tomatic countercyclical regulation. It automatically helps banks that are affected by the shock.

The issue is that delayed accounting does induce greater fundamental leverage (i.e., risk) of the

banking system. We hence suggest studying countercyclical buffers and delayed accounting in a

comprehensive framework, an important analysis we leave to future work. A general equilibrium

extension of the model could be used to evaluate this important tradeoff.

Another matter of discussion should be regulatory forbearance. An application of the model

could treat α as a policy parameter that is a function of aggregate conditions. This exercise could

be useful to evaluate the tradeoff between the benefit of more relaxed accounting after an aggregate

default event against the costs of greater risk-taking prior to an aggregate default event.
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4.3 Discussion: Alternative Adjustment Cost Model

As we described in the introduction, banking models operate with different constraints on leverage.

By incorporating loan adjustment costs, these models can also generate variation in Tobin’s Q

and the slow adjustment of bank variables. However, there will not be a distinction between

fundamental equity and book equity because loss accounting is immediate. For that reason, Tobin’s

Q would not predict future loan losses (fact 2). To give models with adjustment costs the best shot

at reproducing our four facts without our mechanism, we augment them with delayed accounting

without a regulatory constraint. Then book valuations become irrelevant for bank decisions. With

loan adjustment costs, leverage becomes a state variable and wealth evolves as:

dW =
[(
rL − rD

)
λ+ rD − c− γ

2
(ι)2 λ

]
Wdt− ελW · dN,

where ι is the loan issuance rate and γ is the adjustment cost parameter—see Appendix C.6 for a

description of the model with adjustment costs. With Ξ > 1/ε accounting becomes irrelevant for

bank decisions because the regulatory liquidation never happens.

To provide an appropriate comparison, we estimate γ, the adjustment cost parameter, by

targeting the impulse response function of liabilities to a 1% net-worth shock in the data. We match

fact 4 with an adjustment cost parameter of 15. This strikes us as an unreasonably large number.

To see that, consider an example where the bank sells 6% of its loans to decrease its leverage from

16 to 15. A value γ = 15 then means that the bank would loose more than 40% of its equity as the

loan adjustment cost implies that equity declines by = −15
2
× 6%2 × 15 ≈ −40%. However, with

this high loan adjustment cost parameter, the model explains facts 1-3 and by construction fact

4. It produces leverage dispersion because loan adjustment costs make leverage adjustments very

costly as the back on the envelope calculation highlights. With a market leverage distribution in

place, a shock to net-worth increases market leverage dispersion further. Given that we assumed

delayed accounting (but without capital requirement and hence without economic bite), the shock

will only slowly dissipate to book values and therefore generate the increase in the cross-sectional

dispersion of Tobin’s Q during banking crises.

In sum, economically large adjustment costs in conjunction with delayed accounting deliver

our four facts. Our model rationalizes the same facts without any adjustment costs. It requires

just two primitives: a regulatory capital requirement and delayed accounting. Further, while γ is

difficult to interpret and outside the purview of a regulator, α and p are policy parameters.

5 Conclusion

This paper presents four empirical facts about banks’ Tobin’s Q. Motivated by these facts, the

paper presents a heterogeneous-bank model that distinguishes between accounting, fundamental,
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and market values. In our model, all three measures of equity matter for banking decisions. The

novel feature of our theory is that banks delay the recognition of loan losses on their books. This

allows the model to reproduce the four facts.

We also demonstrate that regulatory reforms designed to accelerate loss recognition introduce a

trade-off between the scale of equity losses and subsequent lending and financing choices of banks.

As part of the continuous fine-tuning process of banking models, future work can use our model as

a building block to study the macroeconomic effects of delayed accounting and policies designed

to change the speed of loan-loss recognition in general equilibrium.

A clear limitation of the model is that banks are treated in isolation, but there are many

dimensions in which they interact. For starters, banks lend funds to each other, a feature that

creates credit exposure among themselves. Second, we have assumed that the demand for loans is

perfectly elastic. With a finite elasticity, aggregate deleveraging carries additional effects through

fire-sale externalities—if accounting values partially recognize market values. Third, the increase in

lending by a group of banks can increase macroeconomic risks that increase the default likelihood

of other banks. This broader set of interactions have been already studied by the literature, but

the effects of delayed accounting have not been studied in these richer environments. These are

tasks left for the future.
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A Data Appendix

A.1 Sample Selection

We analyze bank holding companies (BHCs), drawing data from multiple sources. We focus on top-tier
bank holding companies that are headquartered in the 50 states or in Washington D.C. In most of our
analyses, we analyze data from 2000 Q1 to 2015 Q4. For the analysis of impulse response functions, we
extend the sample back to 1990 Q3 (this is the first year for which we can identify whether a BHC is
top-tier). For book variables, we use data from the FR Y-9C, downloaded through Wharton Research
Data Services (WRDS). We match this to data on market capitalization and returns from the Center
for Research in Securities Prices (CRSP) using the PERMCO-RSSD links data set provided by the New
York Fed (https://www.newyorkfed.org/research/banking_research/datasets.html). For analyses
that use solely book data, we use data for those BHCs that we find in our sample in the FR Y-9C; for
analyses that use market data, we use only the observations which we observe in both FR Y-9C and
CRSP. In one robustness check, we use information on the dates of, and participants in, bank mergers
and acquistions; we obtain data on bank mergers from the Chicago Fed (https://www.chicagofed.org/
banking/financial-institution-reports/merger-data). In an additional robustness check, we drop
all banks that were ever stress-tested (CCAR and DFAST). We obtain information on whether banks
were ever stress tested from the Federal Reserve (The main website is https://www.federalreserve.

gov/supervisionreg/stress-tests-capital-planning.htm, and the specific data sets can be found
at https://www.federalreserve.gov/supervisionreg/ccar.htm and https://www.federalreserve.

gov/supervisionreg/dfa-stress-tests.htm).

A.2 Evolution of main balance sheet variables

To get a sense of how the crisis affected banks, we report the evolution of key balance sheet components
in Figure 15. This figure shows total assets, liabilities, and loans—not netting out the allowance for loan
losses–for the aggregate banking sector (left panel) and the four largest BHCs in terms of assets. The
banking industry is highly concentrated: the “Big Four” largest BHCs account for roughly 50 percent
of aggregate assets. At the onset of the crisis, the growth of bank assets, loans, and liabilities slowed
down, but never dropping as dramatically as bank equity market valuations (see below). The amount of
outstanding loans, the largest component of bank assets, stagnated during the crisis and eventually fell.
By 2009 Q4, loans net of the allowance for loan losses had fallen by $361 billion, a drop of only 6.84%.44

This number is driven only in part by losses as banks also slowed down the issuances of new loans.

A.3 Difference between Market and Book Data

Difference between market and book data. To get a quantitative sense of how much book
and market equity differed during the crisis, in Table 3 we present the percentage change in bank market
equity valuations (top two rows) and book equity valuations (middle two rows) together with the change
in the S&P 500 stock return index from the beginning of the crisis in 2007 Q3 to the end of each of 2008,
2009, and 2010, respectively. We report simple percentage changes in the real value (columns titled “real
change”) as well as the changes in fitted log-linear trends (columns entitled “log linear”). Between 2007
Q3 and 2008 Q4, the market capitalization of the banking sector dropped by 54% compared to a 42%
drop in the S&P 500. By 2010 Q4, market equity was still down 30% from its value in 2007 Q3. Much of
this rebound followed from new equity issuances. By contrast, book equity did not fall during the crisis
and actually increased substantially post-crisis. In fact, recorded book equity losses were entirely made up

44The allowance for loan losses is an estimate of likely loan losses for the outstanding loans on the balance sheet.
The next subsection provides more detail on how bank accountants calculate this number.
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Figure 15: Balance Sheets of BHCs
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Notes: These figures show data on assets, liabilities, loans, and loans net of ALL for BHCs. Data come from

the FR Y-9C. Loans net of ALL refers to loans minus the allowance for loan losses (this subtracts out “probable

and estimable” future losses on the current stock of loans). All variables converted to 2012 Q1 dollars using the

seasonally-adjusted GDP deflator. The left panel shows aggregate time series, excluding new entrants to the sample

BHC such as Goldman Sachs. The right panel shows the same data for the “Big Four”, i.e., the four largest BHCs.

Note that the spike in the data of Wells Fargo is due to its acquisition of Wachovia. Likewise, JP Morgan took on

Bear Stearns and WaMu, while Bank of America took on Merrill Lynch and what was left of CountryWide.

for by new equity issuance. This large discrepancy implies that banks’ average Tobin’s Q, defined as the
market–to–book equity ratio, drastically declined during the crisis and remained much lower thereafter.

Bank Accounting Practices. The discrepancy between book and market equity reflects bank
accounting practices. Banks can delay acknowledging losses on their books (e.g. Laux and Leuz 2010),
because banks are not required to mark-to-market the majority of their assets. There are many incentives
to delay book losses. In practice, a key metric for measuring success of a bank is the book return on
equity (ROE).45 Given that ROE is a measure of success, manager compensation is linked to book value
performance. Moreover, shareholders and other stakeholders may base their valuations on information
from book data. Finally, banks are required to meet capital standards based on book values.

The flexibility of accounting their accounts is studied extensively in the accounting literature (Bush-
man, 2016 and Acharya and Ryan, 2016 review the literature on this issue, Francis et al., 1996 studies
the same issue for non-financial firms). In practice, banks can record securities on the books using two
methodologies: either amortized historical cost (the security is worth what it cost the bank to buy it
with appropriate amortization) or fair value accounting.46 In addition to mis-pricing securities, another

45For example, JP Morgan’s 2016 annual report states “the Firm will continue to establish internal ROE targets
for its business segments, against which they will be measured” (on page 83 of the report).

46Fair value accounting can be done at three levels: Level 1 accounting uses quoted prices in active markets.
Level 2 uses prices of similar assets as a benchmark to value assets that trade infrequently. Level 3 is based on
models that do not involve market prices (e.g. a discounted cash flow model). Banks are required to use the lowest
level possible for each asset. In practice, most assets are recorded at historical cost. The majority of fair value
measurements are Level 2 (Goh et al. 2015; Laux and Leuz 2010). Recent work has shown that the stock market
values fair value assets less if they are measured using a higher level of fair value accounting. This leaves room to
mis-price assets on books. Particularly during 2008, Level 2 and Level 3 measures of assets were valued substantially
below one (Goh et al. 2015; Kolev 2009; Song et al. 2010). Laux and Leuz (2010) document sizable reclassifications
from Levels 1 and 2 to Level 3 during this period. They highlight the case of Citigroup, which moved $53 billion
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Table 3: Aggregate Descriptive Statistics

Real Change Log-Linear
2008 2009 2010 2008 2009 2010

Market

Equity

-54.08% -39.35% -29.03% -61.21% -49.98% -42.86%

(-$705B) (-$513B) (-$378B) (-$945B) (-$790B) (-$694B)

Book

Equity

11.83% 21.70% 25.97% -3.46% -1.50% -4.41%

($94B) ($172B) ($206B) (-$32B) (-$15B) (-$46B)

S&P 500 -42.08% -28.83% -21.20% -25.55% -7.01% 4.63%

Notes: The columns headed with the “Real Change” label show the percentage change from the raw variables. The

columns headed with the “Log-Linear” label show the cyclical deviations from a log-linear trend in percentage points

since 2007 Q3. Market Equity refers to shares outstanding times share price aggregated across all publicly traded

BHC. Book equity is the book equity of publicly traded BHCs. All variables deflated using the seasonally-adjusted

GDP deflator and converted to 2012 Q1 dollars. The dollar values are obtained by multiplying the cumulative

percentage point deviation by real market capitalization and real book equity at the end of 2007 Q3, respectively.

The last row shows the percentage change in the return on the S&P 500 in the first three columsn, while the last

three columns show the change relative to a linear log-linear trend.

degree of freedom is the extent to which banks can acknowledge impairments: banks have the right to
delay acknowledging impairments on assets held at historical cost, if they deem those impairments as
temporary (i.e. they believe the asset will return to its previous price). This gives banks substantial
leeway, and led banks to overvalue assets on the books during the crisis. Huizinga and Laeven (2012)
find that banks used discretion to hold real-estate related assets at values higher than their market value.
(Laux and Leuz, 2010) note some notable cases of inflated books during the crisis: Merrill Lynch sold
$30.6 billion dollars of CDOs for 22 cents on the dollar while the book value was 65 percent higher than
its sale price. Similarly, Lehman Brothers wrote down its portfolio of commercial MBS by only three
percent, even when an index of commercial MBS was falling by ten percent in the first quarter of 2008.
Laux and Leuz (2010) also document substantial underestimation of loan losses in comparison to external
estimates.

This shows up in our own analysis as well: Figure 2 shows that provisions for loan losses and net
charge-offs only reached their peak in 2009 and 2010 respectively, and remained quite elevated at least
through 2011, well after the recession had ended. The decomposition of net charge-offs shows that these
losses were heavily driven by real estate, suggesting they were associated with the housing crisis.47 Banks’
books were only acknowledging in 2011 losses that the market had already predicted when the crisis hit.

Harris et al. (2013) construct an index, based on information available in the given time period, that
predicts future losses substantially better than the allowance for loan losses.48 This implies that the

into Level 3 between the fourth quarter of 2007 and the first quarter of 2008 and reclassified $60 billion in securities
as held-to-maturity which enabled Citi to use historical costs.

47When a bank has a loss that is estimable and probable, it first provisions for loan losses, which shows up as PLL.
Later when the loss occurs, the asset is charged off and thus taken off the books, which shows up as charge-offs,
although occasionally the bank can recover the asset later. Net charge-offs is charge-offs minus recoveries. We show
a decomposition by category for net charge-offs but not for PLL because the FR Y-9C does not provide information
on PLL by loan category.

48The ALL is the stock variable corresponding to the PLL.
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allowance for loan losses is not capturing all of the available information to estimate losses. This may
in part be strategic manipulation, but there may also be a required delay in acknowledging loan losses.
Under the “incurred loss model” that was the regulatory standard during the crisis, banks are only allowed
to provision for loan losses when a loss is “estimable and probable” (Harris et al., 2013). Thus, even if
banks know that many of their loans will eventually suffer losses, they were not supposed to update their
books until the loss was imminent.

Information content We test whether book equity captures all available information about bank
cash flows using cross-sectional regressions of market equity on book equity and several other profitability
measures. We are motivated by the efficient markets hypothesis that suggests that market values reflect all
available information about future dividends, and, by extension, about banks future profits and net-worth
today: If market equity indeed contains additional information about bank profitability not captured by
their book values, then market equity will be correlated with variables capturing profitability, even after
conditioning on book equity. To help us visualize the additional information content of market values
over and above book values, consider the following cross-sectional regression

log (Market Equityi) = α+ β log (Book Equityi) + f(Xi) + εi,

where f(X) represents polynomials in our variables of interest, and i indexes banks.49 We then construct
the partial residual log (Market Equity)−α−f(X) and plot this on the vertical axis of Figure 16. We plot
the regressor of interest, X, on the horizontal axis. By construction, the polynomial f(X) that best fits
the outcome variable log (Market Equity) will also be the polynomial that best fits the partial residual.
Thus, Figure 16 allows us to plot f(X) and assess the goodness of its fit. We consider a quartic in log
RoE over the past year (controlling for log book equity) and a quartic in log RoE over the next year
(controlling for log book equity and a quartic in log RoE over the past year) as f(X).50 These graphs
confirm that market capitalization, controlling for book equity, is increasing in both RoE over the past
year and in RoE over the next year. Hence even after controlling for book equity, market capitalization
captures information content of net-income from the past and upcoming year. Note that the non-linear
regression specification is important. For example, in the post-crisis period, there is a left tail of banks
with very negative RoE. In this region the marginal effect of RoE on market capitalization is much smaller.

49Appendix Section A.3 shows the partial R2 for this regression for a range of variables capturing profitability
measure such as loan charge offs and ROE over various time horizons.

50For improved visibility, we exclude outliers from the graph window by limiting the graph’s horizontal axis to
values within ±3 standard deviations from the mean.
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Figure 16: Information content in books
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Notes: These figures show results from a cross-sectional regression of log market equity on assorted variables. The top row shows results from a regression

of log market capitalization on log book equity and a quartic in log RoE over the past year. The bottom row shows results from a regression of log market

capitalization on log book equity, a quartic in log RoE over the past year, and a quartic in log RoE over the next year. The horizontal axis shows the

regressor of interest, and the vertical axis shows the outcome minus the effect of the controls (for the top row, the controls are a constant and log book

equity, for the bottom row, the controls are a constant, log book equity, and a quartic in log RoE over the past year). The left column shows results for 2006

Q1, the right column shows results for 2009 Q1. Regressions are run on the cross-section of banks with all variables available, but the horizaontal axis of the

graph window is restricted to ±3 standard deviations from the mean to improve visibility. Data on market capitalization and returns are from CRSP, and

all other data are from the FR Y-9C. Log RoE is defined as log (1 + RoE). RoE over the past year is defined as book net income over the last four quarters

divided by book equity four quarters ago; RoE over the next year is defined as the one year lead of this variable.
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A.4 Equity and Leverage of the four largest Bank Holding Companies

Figure 17 presents the time series of book equity, market equity, and preferred equity. As with the
aggregate data, market equity and book equity are often not aligned. The discontinuities in the individual
bank series reflect mergers and acquisitions, e.g. the acquisition of Wachovia by Wells Fargo during the
crisis. Citigroup is an extreme example of the discrepancy between book and market values: Citigroup
lost 90% of its market capitalization but its book equity remained intact.51

Figure 4 presents the market and book leverage time series for the four largest banks in the US.

51Citigroup suffered heavy losses during the crisis and did not undergo any major mergers or acquisitions, making
it a particularly clean example case.
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Figure 17: Book Equity and Market Equity for the four largest Bank Holding Companies.
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Notes: These figures show data on book equity, market capitalization, and preferred equity for the four largest

BHCs. Book equity and preferred equity data come from the FR Y-9C, and market capitalization data is based on

CRSP data. All variables converted to 2012 Q1 dollars using the seasonally-adjusted GDP deflator. We show the

book equity (Equity), preferred equity, and the aggregate market capitalization, i.e. shares outstanding times the

share price, of Bank of America, Citigroup, J.P. Morgan, and Wells Fargo.

Figure 18: Book and Market Leverage of Bank Holding Companies
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B Additional Impulse Responses

B.1 Risk Adjustment

For our main impulse response results, we wish to use risk-adjusted returns, rather than raw returns.
More formally, we assume that the market returns of bank i at time t are given by

rit︸︷︷︸
Raw Return

− rft︸︷︷︸
Risk-Free Rate

= αi + Xt︸︷︷︸
factors

βi︸︷︷︸
loadings

+ εi,t︸︷︷︸
Idiosyncratic Component

All returns are logged, e.g. rit refers to log (1 + Raw Bank Return). We wish to isolate variation in
the idiosyncratic shocks, εi,t, and use this variation to estimate the impulse responses.

A natural, but naive, approach would be to estimate the above model for each bank i using OLS, and
then use the estimated residuals, ε̂it, as the regressors in the impulse response estimation. The problem
here is that it induces bias: ε̂it is a noisy measure of the true regressor εit, which leads to bias as long as
T is finite (the bias will shrink as T grows large, because ε̂it will converge to the true εit).

Fortunately, there is a simple solution: we estimate ε̂it using OLS, and then we use ε̂it as an instrument
for the unadjusted return. Since our main regressions use contemporaneous returns, twenty lags, and
their interaction with a post-crisis dummy, this means we use contemporaneous ε̂it, twenty lags of ε̂it,
and their interaction with a post-crisis dummy as instruments. Instrumental variables does not suffer
from the same problem of bias under classical measurement error. Instead, to get identification under
the assumed model for returns, we need our instrument to be correlated with the “good variation”,
εit, and uncorrelated with the “bad variation,” αi + Xtβi. This is mechanically what we are doing
when we run OLS at the bank level, and if the assumed model for returns is correct, then we have
E [η̂it (αi +Xtβi)] = αiE [η̂it] + E [η̂itXt]βi = 0 + 0. Thus, our instrumental variables strategy will give
us a consistent estimator of the true impulse response, under the assumption that we have the correct
model of returns. Since the OLS regression estimating ε̂it is conducted at the bank level, we cluster our
standard errors at the bank level (clustering at the bank level is already a good idea).

B.2 Results without factor risk adjustment

While we favor the risk-adjusted results, we also have computed “unadjusted results” for the impulse
responses, which we report here for completeness. The results are qualitatively and quantitatively similar
across the methods. Compared to the risk-adjusted results, howver, the unadjusted results, suggest a
smaller response of liabilities in the pre-crisis period, and thus also suggest a slower pre-crisis adjustment
of leverage.
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Figure 19: Estimated Impulse Responses for Stock Variables (No Risk Adjustment)
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the estimated im-

pulse response to a one unit negative returns shock. Dashed lines denote the 95% confidence interval. Standard

errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization and

returns are from CRSP, and all other data are from the FR Y-9C. The panels display the impulse responses of

log liabilities, log market capitalization, log market leverage, and log book equity. Market leverage is defined

as log(Liabilities/Market Capitalization), so that it represents the difference between the response of log liabili-

ties and log market capitalization (results using log(Liabilities+Market Capitalization)/Market Capitalization) are

extremely similar).
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Figure 20: Idiosyncratic Shock Series of Big Four Bank Holding Companies
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Notes: This figure plots the idiosyncratic shocks (for the Big Four BHCs) used to estimate the impulse response

functions. First, we isolate the idiosyncratic component of returns using the factor model, and then we residualize

this on time fixed effects.

B.3 Robustness and Validity of Identification Strategy

In this section, we conduct various tests to check the validity of our identification strategy and robustness
of our results.

A narrative approach to corroborate the idiosyncratic shocks To provide corroberating
evidence of the validity of our identification strategy, we first show that the estimated return shocks do
indeed look like idiosyncratic shocks for the four largest banks (Bank of America, J.P. Morgan Chase, Wells
Fargo, Citigroup). To construct the idiosyncratic shocks, we regress each bank’s market return on the
Fama-French three-factor returns and regress the residual further on time fixed effects. The residuals from
this regression represent our idiosyncratic shocks.52 Figure 20 presents our estimates of the idiosyncratic
shocks. They indeed look like white noise and do not seem to be substantially autocorrelated. Note that
the time series for Citigroup starts a little later because Citigroup did not exist until 1998 when Traveler’s
merged with Citicorp.

We also provide narrative support for the idiosyncratic nature of our estimated shocks using an
extensive search of newspaper articles for large idiosyncratic shock value estimates.

52We are controlling for the time fixed effects, because they are included in the regression we actually run to get
the impulse response function.

11



Table 4: Narrative Support for Idiosyncratic Shocks

Bank
Name

Year-Qtr idiosyncratic
shock

Bank specific events

Bank of America

2000q4 -0.200 Sunbeam (which BofA lended to) posted $86M loss. BofA said net charge-offs in Q4 will
double. BofA issues warning on $1B uncollectible debt, may miss the December quarter profit
forecast by as much as 27%.

2003q4 -0.218 BofA agrees to pay $47 to buy FIeetBoston Financial ”hefty premium” & ”could dilute earn-
ings.”

2008q3 0.288 BofA to buy Merrill for $50B (Sept 15)
2009q2 0.452 Stress test: BofA needs to address $34B capital shortfall, better than expectation.
2011q4 -0.275 Merrill Lynch has agreed to pay $315 million to end a mortgage-securities lawsuit (Dec 7)
2012q4 0.248 BofA considered better buy after increase in house prices that (given its portfolio composition)

particularly benefited BofA.

Citigroup

1999q1 0.319 Citigroup Profit Fell 53% in 4th period, but still topped analysts’ expectations
1999q3 0.205 Citigroup posts an unexpected increase of 9.3% in net income for second quarter (July 20)
1999q4 0.250 Citigroup’s citibank unit is marketing credit card for the internet to millions
2000q1 0.226 Citi Intelligent Technology Receives Investment; Dividends increase from $1.05 to $1.20
2003q4 -0.215 Citi to repay certain funds $16 mln plus interest; Citigroup Asset Management faces federal

probe.
2009q1 -0.351 Citigroup had $2B in direct gross exposure to LyondellBasell Industries, who filed for

bankruptcy protection last week. Fitch cuts Citi preferred to junk
2009q3 0.199 Citi reports profit after gain from Smith Barney. Citigroup’s mortgage mitigation rises 29% in

second quarter.
2009q4 -0.267 Citi fined in tax crackdown. Abu Dhabi’s sovereign wealth fund is demanding that Citigroup

scraps a deal that would see the fund make a heavy loss on a $7.5 billion investment in the
bank.

2010q2 0.285 Citi reported quarterly earnings of $4.4B exceeding expectations

J.P. Morgan Chase

1997q2 -0.182 J.P. Morgan particularly large exposure to 1997 Asian Financial Crisis.
https://www.imf.org/external/pubs/ft/wp/1999/wp99138.pdf

2000q1 0.169 J.P. Morgan told investors on Monday that January and February had topped performance
levels seen in the fourth quarter. Dividends increase from $0.2733 to $0.3200 on March 21.

2000q3 0.357 Chase buying J.P. Morgan.
2001q2 -0.185 J.P. Morgan Chase disclosed this week that their venture capital portfolios had incurred sig-

nificant losses.
2002q3 -0.322 JPMorgan Partners Reports $165M Operating Loss for Q2. J.P. Morgan sees third-quarter

shortfall.
2004q4 -0.198 JPMorgan Chase profit falls 13%.
2008q3 0.234 J.P. Morgan profit falls 53%, but tops Wall Street target.
2009q1 0.249 J.P. Morgan net falls sharply, but tops Wall Street view. J.P. Morgan to sell Bear Wagner to

Barclays Capital: WSJ
2012q2 -0.207 J.P. Morgan: London Whales $2 Billion Losses. Two Shareholder Suits Filed Against J.P.

Morgan

Wells Fargo

2001q2 -0.161 Wells Fargo disclosed that their venture capital portfolios had incurred significant losses. Wells
Fargo to take $1.1 billion charge

2008q3 0.338 Wells Fargo’s net dropped 21% as it set aside $3 billion for loan losses, better than expected.
Earnings declined but beat estimates.

2009q1 -0.315 Wells Fargo posted a surprise $2.55B Q1 loss, later revised to $2.77B. Wells Fargo added a
pretax $328.4M impairment of perpetual preferred securities to its fourth-quarter loss.

2009q2 0.405 Wells Fargo sees record Q1 profit, projections easily exceed expectations (expects earnings of
$3 billion).
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Table 4 shows that large absolute idiosyncratic shock values are consistent with good or bad bank
specific events, such as “Wells Fargo sees record Q1 profit, projections easily exceed expectations,“ or
“Citi fined in tax crackdown.” The table shows that large positive or negative idiosyncratic shocks
can be corroborated with specific events that appear bank specific, which supports the validity of our
identification strategy.

Placebo Tests To test the validity of our identification strategy, we conduct placebo tests where we
include ten leads of returns (in addition to the contemporary value and twenty lags as before). If the
returns really are unanticipated shocks, then the leading values should not affect current behavior. This is
similar to testing for pre-trends. We are testing whether the banks that will experience higher returns in
the future are already acting differently today. Overall, the placebo test are encouraging, and suggest that
our results are not driven by prior differences in the behavior of banks which experience return shocks.

Identification robustness We provide a few additional pieces of evidence that corroborate the
validity and robustness of our identification strategy.

First, we verify that our results are robust to excluding the crisis years 2008 and 2009 from our
sample. The idea is to rule out a lot of stories related to specific events during the crisis (e.g. the
realization that the government might not guarantee that a bank wouldn’t fail, or that this was somehow
about exposure to Lehman). The results are below (for our main outcomes: Liabilities, Market Cap, and
Market Leverage). It makes no noticeable difference to the results.

Second, we check whether bank mergers drive the results. To this end, we drop the quarter of the
merger as well as the quarter before and after the merger. The results for our main outcomes: liabilities,
market equity, and market leverage are in Figure 23. Again, it makes no noticeable difference to the
results.

Similarly, we check whether the results are driven by the stress tests performed by banks: these
stress tests were implemented after the onset of the crisis, and encouraged or mandated that banks raise
additional capital. To show that the stress tests do not drive the results, we drop all banks that ever
participated in a stress test (e.g. Bank of America participated in the stress tests, and so we drop Bank
of America from our sample in all periods). The results for our main outcomes are in Figure 24. Again,
it makes no noticeable difference to the results.

Another potential concern is that the return shocks could be picking up shocks to future investment
opportunities, rather than default shocks. To test this concern, we check the response of the liquid assets
ratio: if negative return shocks indeed predict lower future investment opportunities rather than current
cash flows, we would expect banks to respond to these shocks by moving their portfolio into liquid assets.
The results, shown in Figure 25, show no statistically significant response of liquid assets pre-crisis, and
a small temporary response post crisis that is reversed within a few quarters. We take this as evidence
against the hypothesis that return shocks reflect shocks to investment opportunities.

Am alternative, broader version of the liquidity ratio test calculates the liquidity ratio as the ratio
of (Cash + Federal Funds Sold + Securities Purchased Under Agreement to Resell + Securities)/Total
Assets. We display the impulse response function for this version of the liquidity ratio in Figure 26. The
impulse response function has no significant response pre-crisis, and a significant but quantitatively small
response post-crisis.

To put the size of the post-crisis response in perspective, the graph is saying that if there is a 10%
negative shock to market returns, then the liquid asset ratio would rise by 0.02 over the course of two
years. This is off of a base of 0.25-0.30, depending on whether we are taking the mean of log(1+ratio) or
of the raw liquid assets ratio.
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Figure 21: Estimated Impulse Responses for Stock Variables (Risk-Adjusted, with Placebo)
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the estimated im-

pulse response to a one unit negative returns shock. Dashed lines denote the 95% confidence interval. Standard

errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization and

returns are from CRSP, and all other data are from the FR Y-9C. The panels display the impulse responses of

log liabilities, log market capitalization, log market leverage, and log book equity. Market leverage is defined

as log(Liabilities/Market Capitalization), so that it represents the difference between the response of log liabili-

ties and log market capitalization (results using log(Liabilities+Market Capitalization)/Market Capitalization) are

extremely similar).
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Figure 22: Estimated Impulse Responses: Dropping 2007 and 2008
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Notes: These figures show estimated impulse response functions for BHCs, dropping observations from the years

2007 and 2008. The figures show the estimated impulse response to a one unit negative returns shock. Dashed

lines denote the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period begins

in 2007 Q4. Data on market capitalization and returns are from CRSP, and all other data are from the FR Y-9C.

The panels display the impulse responses of log liabilities, log market capitalization, log market leverage, and log

book equity. Market leverage is defined as log(Liabilities/Market Capitalization), so that it represents the difference

between the response of log liabilities and log market capitalization.
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Figure 23: Estimated Impulse Responses: Excluding Mergers
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Notes: These figures show estimated impulse response functions for BHCs, dropping observations from quarters

in which the bank is recorded as taking part in a merger, as well as dropping the quarter before and the quarter

after. The figures show the estimated impulse response to a one unit negative returns shock. Dashed lines denote

the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4.

Data on market capitalization and returns are from CRSP, and all other data are from the FR Y-9C. The panels

display the impulse responses of log liabilities, log market capitalization, log market leverage, and log book equity.

Market leverage is defined as log(Liabilities/Market Capitalization), so that it represents the difference between the

response of log liabilities and log market capitalization.
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Figure 24: Estimated Impulse Responses: Excluding Mergers
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Notes: These figures show estimated impulse response functions for BHCs, dropping observations from quarters

in which the bank is recorded as taking part in a merger, as well as dropping the quarter before and the quarter

after. The figures show the estimated impulse response to a one unit negative returns shock. Dashed lines denote

the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4.

Data on market capitalization and returns are from CRSP, and all other data are from the FR Y-9C. The panels

display the impulse responses of log liabilities, log market capitalization, log market leverage, and log book equity.

Market leverage is defined as log(Liabilities/Market Capitalization), so that it represents the difference between the

response of log liabilities and log market capitalization.
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Figure 25: Estimated Impulse Responses of the Liquidity Ratio
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Notes: This figure shows the estimated impulse response function for BHCs to a 1% negative return shock. Dashed lines denote

the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on mar-

ket capitalization and returns are from CRSP, and all other data are from the FR Y-9C. The liquid assets ratio is defined as

log((Cash + Treasury Bills) /Total Assets). Within the regression sample, the average liquid assets ratio is 0.057.

Figure 26: Estimated Impulse Responses of Liquidity Ratios (Alternative Formula)
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Notes: This figure shows estimated impulse response functions for BHCs. The figure shows the estimated im-

pulse response to a one unit negative returns shock. Dashed lines denote the 95% confidence interval. Stan-

dard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization

and returns are from CRSP, and all other data are from the FR Y-9C. The liquid assets ratio is defined as

log((Cash + Fed Funds Sold + Securities Purchased Under Agreement to Resell + Securities) /Total Assets).
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B.4 Heterogeneity

We explore heterogeneity in impulse response functions by dividing banks into two groups based on a
variable, and estimating impulse responses separately for each group. We divide banks by size (total
assets), by trading assets ratio (trading assets as a share of total assets), by the risk-weighted asset ratio
(risk-weighted assets as a share of total assets), and by the mortgage ratio (real estate loans as a share of
total assets). We use the value of the variable in 2000 Q1 to sort banks into two groups: above-median
and below-median. We report the results in this section. Broadly, we do not find strong evidence of
differential responses, but we lack statistical power to rule out some meaningful differences.

Since bank size is among the most important differences across different banks, we begin by discussing
the results for heterogeneity by size. The results are shown in Figures 27 and 28. Visually, these impulse
responses look remarkably similar to each other. However, the standard errors are sufficiently large that
we cannot rule out meaningful differences in the impulse responses.

We summarize the results of these impulse responses, as well as of the other potential groupings (by
trading assets ratio, risk-weighted assets ratio, and mortgage ratio) in Tables 5, 6, 7, and 8 below. For
each grouping, we report the cumulative impulse response for the high and low groups after 10 quarters
and after 20 quarters, and we also report the p-value of a test of equality between the impulse responses
of the two groups. In a table of 64 tests, only one of the tests rejects the null at the 5% level. As before,
we take this to suggest that there is not strong evidence in favor of sizable heterogeneity, but we caution
that the standard errors are too large to rule out meaningful heterogeneity.
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Figure 27: Impulse Responses for Small Banks
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the estimated im-

pulse response to a one unit negative returns shock. Dashed lines denote the 95% confidence interval. Standard

errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization and

returns are from CRSP, and all other data are from the FR Y-9C. The panels display the impulse responses of

log liabilities, log market capitalization, log market leverage, and log book equity. Market leverage is defined

as log(Liabilities/Market Capitalization), so that it represents the difference between the response of log liabili-

ties and log market capitalization (results using log(Liabilities+Market Capitalization)/Market Capitalization) are

extremely similar).
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Figure 28: Impulse Responses for Large Banks
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the estimated im-

pulse response to a one unit negative returns shock. Dashed lines denote the 95% confidence interval. Standard

errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization and

returns are from CRSP, and all other data are from the FR Y-9C. The panels display the impulse responses of

log liabilities, log market capitalization, log market leverage, and log book equity. Market leverage is defined

as log(Liabilities/Market Capitalization), so that it represents the difference between the response of log liabili-

ties and log market capitalization (results using log(Liabilities+Market Capitalization)/Market Capitalization) are

extremely similar).
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Table 5: Heterogeneity in Impulse Responses: Small vs. Large Banks

Response After 10 Quarters Response After 20 Quarters
Small Large p-value on Equality Small Large p-value on Equality

Market

Equity

Pre-
Crisis

-1.13 -1.09 0.75 -1.22 -1.14 0.61

(0.08) (0.07) (0.12) (0.11)

Post-
Crisis

-0.71 -0.76 0.71 -0.58 -0.61 0.84

(0.14) (0.06) (0.14) (0.07)

Liabilities

Pre-
Crisis

-0.42 -0.33 0.39 -0.65 -0.54 0.52

(0.07) (0.07) (0.13) (0.10)

Post-
Crisis

-0.13 -0.15 0.49 -0.23 -0.25 0.67

(0.02) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.71 0.76 0.59 0.57 0.60 0.87

(0.08) (0.05) (0.11) (0.09)

Post-
Crisis

0.58 0.61 0.81 0.35 0.35 0.95

(0.13) (0.06) (0.11) (0.06)

Book

Equity

Pre-
Crisis

-0.25 -0.31 0.68 -0.29 -0.49 0.44

(0.12) (0.08) (0.23) (0.13)

Post-
Crisis

-0.78 -0.44 0.04 -0.73 -0.50 0.32

(0.15) (0.09) (0.20) (0.12)

Notes: The table compares impulse responses of small vs. large BHCs. BHCs are categorized into the small vs.

large group based on their total assets in 2000 Q1, relative to the median for all banks in the IRF sample. The

first column shows the cumulative impulse response after 10 quarters of each variable, pre-crisis and post-crisis, to

a one unit negative return shock, for small banks. The second column shows the same results, but for large banks.

Standard errors, clustered at the bank level, are in parentheses. The third column shows the p-value of a test of

equality between the impulse response for small banks vs. large banks. The fourth through sixth columns mirror

the first three columns, but examining the cumulative impulse response after 20 quarters.
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Table 6: Heterogeneity in Impulse Responses: Low vs. High Trading Asset Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.10 -1.20 0.60 -1.15 -1.32 0.54

(0.05) (0.19) (0.07) (0.28)

Post-
Crisis

-0.76 -0.57 0.11 -0.60 -0.47 0.33

(0.09) (0.08) (0.10) (0.09)

Liabilities

Pre-
Crisis

-0.36 -0.36 0.99 -0.56 -0.63 0.78

(0.05) (0.14) (0.08) (0.22)

Post-
Crisis

-0.14 -0.15 0.73 -0.24 -0.25 0.91

(0.02) (0.04) (0.03) (0.05)

Market

Leverage

Pre-
Crisis

0.74 0.84 0.35 0.59 0.70 0.50

(0.05) (0.10) (0.07) (0.14)

Post-
Crisis

0.63 0.42 0.08 0.37 0.22 0.25

(0.08) (0.09) (0.08) (0.09)

Book

Equity

Pre-
Crisis

-0.25 -0.42 0.35 -0.28 -0.75 0.17

(0.07) (0.17) (0.13) (0.32)

Post-
Crisis

-0.62 -0.45 0.39 -0.66 -0.54 0.64

(0.10) (0.16) (0.13) (0.20)

Notes: The table compares impulse responses of low vs. high trading asset ratio BHCs. BHCs are categorized into

the low vs. high group based on their trading assets as a share of total assets in 2000 Q1, relative to the median

for all banks in the IRF sample. The first column shows the cumulative impulse response after 10 quarters of each

variable, pre-crisis and post-crisis, to a one unit negative return shock, for low banks. The second column shows the

same results, but for high banks. Standard errors, clustered at the bank level, are in parentheses. The third column

shows the p-value of a test of equality between the impulse response for low vs. high banks. The fourth through

sixth columns mirror the first three columns, but examining the cumulative impulse response after 20 quarters.
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Table 7: Heterogeneity in Impulse Responses: Low vs. High Risk-Weighted Asset Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.09 -1.15 0.59 -1.10 -1.22 0.43

(0.07) (0.08) (0.11) (0.12)

Post-
Crisis

-0.72 -0.79 0.64 -0.52 -0.66 0.44

(0.12) (0.09) (0.14) (0.11)

Liabilities

Pre-
Crisis

-0.29 -0.41 0.21 -0.47 -0.66 0.20

(0.06) (0.07) (0.10) (0.11)

Post-
Crisis

-0.13 -0.17 0.17 -0.25 -0.25 0.97

(0.03) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.80 0.73 0.47 0.63 0.56 0.59

(0.07) (0.06) (0.09) (0.10)

Post-
Crisis

0.59 0.62 0.82 0.27 0.41 0.31

(0.11) (0.09) (0.11) (0.09)

Book

Equity

Pre-
Crisis

-0.19 -0.35 0.23 -0.24 -0.45 0.40

(0.10) (0.09) (0.16) (0.18)

Post-
Crisis

-0.49 -0.74 0.17 -0.51 -0.81 0.23

(0.09) (0.16) (0.11) (0.23)

Notes: The table compares impulse responses of low vs. high risk-weighted asset ratio BHCs. BHCs are categorized

into the low vs. high group based on their risk-weighted assets as a share of total assets in 2000 Q1, relative to the

median for all banks in the IRF sample. The first column shows the cumulative impulse response after 10 quarters

of each variable, pre-crisis and post-crisis, to a one unit negative return shock, for low banks. The second column

shows the same results, but for high banks. Standard errors, clustered at the bank level, are in parentheses. The

third column shows the p-value of a test of equality between the impulse response for low vs. high banks. The

fourth through sixth columns mirror the first three columns, but examining the cumulative impulse response after

20 quarters.
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Table 8: Heterogeneity in Impulse Responses: Low vs. High Mortgage Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.04 -1.21 0.17 -1.07 -1.27 0.26

(0.05) (0.11) (0.07) (0.17)

Post-
Crisis

-0.75 -0.75 0.98 -0.61 -0.56 0.79

(0.13) (0.08) (0.17) (0.09)

Liabilities

Pre-
Crisis

-0.28 -0.46 0.11 -0.45 -0.73 0.09

(0.05) (0.10) (0.08) (0.15)

Post-
Crisis

-0.17 -0.11 0.09 -0.28 -0.19 0.13

(0.02) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.76 0.75 0.92 0.62 0.54 0.55

(0.06) (0.07) (0.08) (0.11)

Post-
Crisis

0.59 0.64 0.72 0.34 0.37 0.81

(0.11) (0.09) (0.13) (0.07)

Book

Equity

Pre-
Crisis

-0.20 -0.36 0.32 -0.27 -0.42 0.63

(0.07) (0.15) (0.09) (0.30)

Post-
Crisis

-0.66 -0.56 0.57 -0.70 -0.59 0.65

(0.10) (0.14) (0.13) (0.19)

Notes: The table compares impulse responses of low vs. high mortgage ratio BHCs. BHCs are categorized into the

low vs. high group based on their real estate loans as a share of total assets in 2000 Q1, relative to the median

for all banks in the IRF sample. The first column shows the cumulative impulse response after 10 quarters of each

variable, pre-crisis and post-crisis, to a one unit negative return shock, for low banks. The second column shows the

same results, but for high banks. Standard errors, clustered at the bank level, are in parentheses. The third column

shows the p-value of a test of equality between the impulse response for low vs. high banks. The fourth through

sixth columns mirror the first three columns, but examining the cumulative impulse response after 20 quarters.
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Figure 29: Example: Timing Assumption

C Model Appendix

C.1 Additional Model discussion

Timing. To clarify the assumption, Figure 29 plots a sample path of dN and the right panel plots a
path of λ. Assume that the bank decides to set leverage to a constant, prior and after a default, and that
it starts with z = 0. The Figure depicts a hypothetical scenario of a recognized default event that occurs
at time t∗. On the right panel, the solid line depicts the continuous path of λ, but the discountinuity point
represents the leverage ratio after the jump. In this example, λ + Jλ > Ξ, so the bank is immediately
liquidated even though it could have sold loans to return back to a constant leverage path. Hence, even
though the violation is for an infinitesimal period of time, the bank is intervened.53

Figure 30: Model Stationary Distribution of Banks Across the z and λ State Space

Notes: This figure presents a two dimensional histogram of the stationary distribution of banks across the (λ, z) space along with the

regulatory liquidation region in gray.

Model Stationary distribution. The distribution of the state variable z and fundamental leverage
λ is reported in Figure 30. This figure shows how the cross-sectional distribution of {λ, z} traces out a
shadow boundary. The grey area of the figure represents the liquidation region.

53This assumption is equivalent to the discrete time assumption that the shock occurs between periods. It can
also be obtained as a limit process, where we have adjustment costs to selling loans that are taken to zero.
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The Role of the IES for the Quantitative Fit. In Section 4.1 of the main text, we argue that
the delayed loan loss recognition mechanism is driving the slow adjustment of banks to net-worth shocks.
Since the bankers’ preference imply an intertemporal smoothing incentive whenever θ > 0, one might
worry that instead what drives the slow adjustment is θ. Hence, we investigate the role of the IES (1/θ)
for the quantitative results in two ways. First, we solve the model for the same parameter configuration as
in the baseline model (see Section 4), except setting θ = 1,and reestimate the IRF on the model generated
data. This calibration implies significantly lower intertemporal smoothing incentives. Second, we solve
the model with the benchmark calibration but shut down the delayed loan loss recognition by setting
p = 0. The results are in Figure 31.

The blue line presents the impulse response functions of the model for the case when θ = 1. Relative
to Figure 13, the IRF still shows substantially slow adjustment to a negative net-worth shock. The red
line presents the impulse response functions in the case of immediate loan loss recognition, p = 0, and
all parameters as in the benchmark calibration, hence θ = 1.98. Clearly, the IRFs feature immediate
adjustment in market equity and liabilities. Tobin’s Q and market leverage do not respond at all. This
version of the model shows that it is the delayed loan loss recognition mechanism and not θ that drives
the impulse response functions of the model.

Figure 31: Data IRFs versus Model IRFs from two Versions (θ = 1 and p = 0)

a) Tobin’s Q b) Liabilities
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C.2 Derivations and Proofs

Summary Table. The summary table of the drift and jump terms as functions of the ratios {λ, z, q}
is the following:

Table 9: Drifts and Jumps of Variables

Definition Variable x Drift µx Jump Jx

Fundamental Equity W
[
rLλ− rD (λ− 1)− c

]
W −ελW

Loans L ιλW −ελW
Deposits D

[
rD (λ− 1)− rLλ+ ιλ+ c

]
W 0

Book Loans L̄ (ι− αz)λW −τε1
q

(λ+ 1)W

Zombie Loans Z −αZ −ελW
Leverage λ

(
ι− µW

)
λ ελ

1−ελ (λ− 1)

Zombie Loans
Fundamental Equity

z −z
(
α + µW

) −ελq z
1−ελ+z

if recognized

ελ
(
z+1
1−ελ

)
if unrecognized

Fundamental Equity
Book Equity

q αz
(1+z)2

−ελq z
1−ελ+z

if recognized

−ελq if unrecognized

Notation and Definitions. We begin by presenting some definitions and deriving the laws of motion
of the state variables. We use µx and Jx to refer to the drift and jump components of the path of a variable
x scaled by wealth W , respectively. Along a continuous path, the net investment rate of the bank is:

ι ≡ I/L− δ

and we express the dividend-to-equity ratio as:

c ≡ C/W.

Note that the following identities allow us to recover the original state variables
{
L, L̄,D

}
from the

triplet {λ, z,W}:

L = λ ·W (14)

D = (λ− 1) ·W (15)

L̄ = λW + zW. (16)

W̄ = W + zW. (17)

We present some observations that aid the proof of the proposition.

Observation 1: homogeneity in W of constraints. We want to express the regulatory capital
requirement in terms of the end-of-period choices (λ, z). The regulatory constraint is

L̄ ≤ Ξ · W̄ ⇔ λ̄ ≤ Ξ, (18)

as we noted in the main body of the text, where

λ̄ ≡ L̄

W̄
=
λW + Z

W + Z
. (19)
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Dividing both sides by W, we obtain that:

λ̄ =
λ+ z

1 + z
.

Therefore, combining (19) with (18), we obtain:

λ+ z

1 + z
≤ Ξ⇒ λ ≤ Ξ + (Ξ− 1) z.

Next, consider the market based constraint:

W − εL ≥ 0 (20)

which can be written as:

λ ≤ 1

ε
. (21)

Hence, we summarize the set of states where the bank is not liquidated by:

λ ≤ Γ (z) = min

{
1

ε
,Ξ + (Ξ− 1) z

}
. (22)

Observation 2: derivations of laws of motion. Here, we provide an explicit derivation of the
law of motion of bank equity, starting from a discrete time formulation. With probability σ over interval
∆, the bank receives deterministic default shock ε < 1. Let:

dN =

{
0 with prob 1− σdt
1 with prob σdt

denote a default event process. Recall that dN is a Poisson process.
Now consider a time interval of length ∆. The law of motion for fundamental loans satisfies:

Lt+∆ = (1− δ∆)Lt + It∆− εLt (Nt+∆ −Nt) ,

with the interpretation that the first term is the non-maturing fraction of loans, the second are loan
issuances, and the third are losses in a time interval. Taking ∆ → 0, we obtain the following law of
motion:

dL = (I − δL) dt− εLdN.

We express this law of motion in terms of net-worth, replacing (14), to obtain:

dL = ιλWdt− ελWdN. (23)

To ease the notation, we define the growth rate of fundamental loans and the jump relative to net-worth:

µL ≡ ιλ and JL ≡ −ελ.

Similarly, for deposits we have that:

Dt+∆ =
(
1 + rD∆

)
Dt −

(
rL∆ + δ∆

)
Lt + It∆ + Ct∆

with the interpretation that the first term is the increase in deposits that results from paying interest
with deposits; the second term is the reduction in deposits by the interest and principal payments on
outstanding loans; the third term is the increase in deposits as a result of loan issuances; and the final
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term is dividend payments, all paid with deposits. Taking ∆→ 0, we obtain the following law of motion:

dD =
[
rDD −

(
rL + δ

)
L+ I + C

]
dt.

We express this law of motion in terms of wealth, by using (15), to obtain:

dD =
[
rD (λ− 1)− rLλ+ ιλ+ c

]
Wdt. (24)

We define the growth rate of deposits relative to net-worth:

µD ≡ rD (λ− 1)− rLλ+ ιλ+ c and JD = 0.

Observation 3: growth independence. Next, we present the evolution of fundamental equity:

dW = dL− dD
=

[
µL − µD

]
Wdt+ JLdN (25)

=

rLλ− rD (λ− 1)︸ ︷︷ ︸
levered returns

− c︸︷︷︸
dividend rate

Wdt− ε · λ︸︷︷︸
loss rate

WdN. (26)

where the second line uses the laws of motion in (23) and (24). The interpretation of this expression is
natural: the terms multiplying rates represent the net interest margin on the bank, which are the banks
levered return; the second term are the capital gains that are accounted immediately as the bank creates
an asset that can be worth more or less than a liability; the third term is the banks’ dividend rate; and
the final term is the loss rate, which scales with leverage.

Define the drift of the growth rate of bank equity as:

µW ≡ rLλ− rD (λ− 1)− c

and denote the jump component of wealth as:

JW ≡ −ελW = JLW.

Also, note that:
µW = dZ = −αZdt− εLdN z = −αzWdt− ελWdN z.µL − µD.

Observation 4: book and zombie loans. A default event increases the stock of zombie loans for
with probability (1− p)σ over interval ∆, the bank receives deterministic default shock ε < 1. Let:

dN z =

{
0 with prob 1− σdt
1 with prob (1− p)σdt

denote a default event process. Recall that dN z is a Poisson process for the unrecognized loan default
events with Pr (dN z = 1, dN = 1) = (1− p)Pr (dN = 1) and Pr (dN z = 0, dN = 0) = 1.

The law of motion for zombie loans satisfies:

dZ = −α∆Z − εLt
(
N z
t+∆ −N z

t

)
Taking ∆→ 0, we obtain the following law of motion:

dZ = −αZdt− εLdN z = −αzWdt− ελWdN z. (27)
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Thus,
µZ ≡ −αZ and JZ ≡ −ελW = JLW.

Observation 5: law of motion for leverage. Next, we derive the law of motion for leverage λ
given any choice of ι and c, along the continuous path variables. Employing the formula for the differential
of a ratio we get:

µλ = λ

(
µLW

L
− µWW

W

)
(28)

= λ

(
ιλW

L
− µWW

W

)
= λ

(
ι− µW

)
.

Upon a default shock, the discontinuous jump in leverage is given by:

Jλ =
L− ελW
W − ελW

− L

W
=

(
(1− ε) · λ

1− ελ
− λ
)

= ελ · λ− 1

1− ελ
.

Therefore, combining the drift and jump portions of the law of motion, we obtain:

dλ =
(
ι− µW

)
λdt− ελ · λ− 1

1− ελ
dN. (29)

The interpretation of this law of motion is that leverage increases with the issuance rate, falls as loans
mature and falls as the bank makes earns income on its current portfolio, µW . We thus have:

µλ =
(
ι− µW

)
λ,

and for the jump term, we obtain

Jλ = ελ · λ− 1

1− ελ
= −JW λ− 1

1− ελ
.

Naturally, leverage jumps with defaults, and more so the more levered the bank is.

Observation 6: law of motion of zombie ratio. Employing the formula for the differential of a
ratio we get:

µz = z

(
µZW

Z
− µWW

W

)
(30)

= z

(
−αzW
Z

− µWW

W

)
= −z

(
α+ µW

)
.

Next, we derive the two possible jumps for z. We have that for a recognized default, the jump is given by:

Ĵz =
Z

W − εL
− z = z

(
1

1− ελ
− 1

)
= ελ

(
z

1− ελ

)
= −JW

(
z

1− ελ

)
.

For an unrecogenized default event, we have that:

J̃z =
Z − εL
W − εL

− z =
z + ελ

1− ελ
− z =

(
zελ+ ελ

1− ελ

)
= ελ

(
z + 1

1− ελ

)
= −JW

(
z + 1

1− ελ

)
.
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Observation 7: law of motion for q. Next, we produce the law of motion for leverage q. Recall
that q = W

W̄
= W

W+Z = 1
1+z .

Thus, the continuous portion of q satisfies:

µq =
1

1 + z

(
− µz

1 + z

)
=

αz

(1 + z)2 . (31)

The jump upon a recognized default event is:

Ĵ1 =
W − εL

W − εL+ Z
− q

=
1− ελ

1− ελ+ z
− q

=
(1− ελ) (1− q)− qz

1− ελ+ z

=
(1− ελ) z/ (1− z)− z/ (1− z)

1− ελ+ z

= −ελq z

1− ελ+ z

= Jwq
z

1− ελ+ z
.

The jump upon an unrecognized default event is:

J̃q =
W − εL

W − εL+ Z + εL
− q =

1− ελ
1 + z

− q = q (1− ελ− 1) = −ελq = Jwq.

Duffie-Epstein. The value function of the Duffie-Epstein satisfies:

Vt = Et

∫ ∞
t

f (Cs, Vs) ds,

where the f is given by:

f (C, V ) ≡ ρ

1− θ

[
C1−θ − {(1− ψ)V + ψ}

1−θ
1−ψ

{(1− ψ)V + ψ}
1−θ
1−ψ−1

]

=
ρ

1− θ
{(1− ψ)V + ψ}

[
C1−θ

{(1− ψ)V + ψ}
1−θ
1−ψ
− 1

]
.

We have some limits of interest. First, the limit as risk-aversion vanishes:

lim
ψ→0

f (C, V ) =
ρ

1− θ
V

[
C1−θ

V 1−θ − 1

]
.

and for the derivative with respect to dividends, we obtain:

lim
ψ→0

fc (C, V ) = ρC−θV θ.
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C.3 Proof of Proposition 2

In this Appendix we prove the following detailed version of Proposition 2:

Proposition 3 [Bank’s Problem] Given {z}, V (Z,W ) = v (z)W, where v is the solution to the following
HJB equation:

0 = max
{c,ι}

f (c, v) + vzµ
z + vµW + σE [Jv] (32)

where E [Jv] is the expected jump in the bank’s value given a default event:

Jv = p

(v (z + Ĵz
) (

1 + JW
)
− v
)

︸ ︷︷ ︸
default jump in wealth

I[λ+Ĵλ≤Γ(z+Ĵz)] + [vo − v]︸ ︷︷ ︸
liquiditation

·I[λ+Ĵλ>Γ(z+Ĵz)]



(1− p)

(v (z + J̃z
) (

1 + JW
)
− v
)

︸ ︷︷ ︸
default jump in wealth

I[λ+J̃λ≤Γ(z+J̃z)] + [vo − v]︸ ︷︷ ︸
liquiditation

·I[λ+J̃λ>Γ(z+J̃z)]

 .

The optimal policies are given by: C (Z,W ) = c (z) ·W and I (Z,W ) = (ι (z) + δ) ·L. The bank’s market
value satisfies S (Z,W ) ≡ s (z) ·W , where s solves:

ρIs = c (z) + szµ
z + sµW + σJs, (33)

where Js is given by:

Js = p

(s (z + Jz)
(
1 + JW

)
− s
)︸ ︷︷ ︸

default jump in wealth

I[λ+Ĵλ≤Γ(z+Ĵz)] + [so − s]︸ ︷︷ ︸
default jump in wealth

·I[λ+Ĵλ>Γ(z+Ĵz)]



(1− p)

(s(z + J̃z
) (

1 + JW
)
− s
)

︸ ︷︷ ︸
default jump in wealth

I[λ+J̃λ≤Γ(z+J̃z)] + [so − s]︸ ︷︷ ︸
default jump in wealth

·I[λ+J̃λ>Γ(z+J̃z)]

 .

Finally, Tobin’s Q is given by:
Q (z) = s (z)× q (z, λ (z)) . (34)

We can re-arrange the terms in the objective and obtain the proposition as shown in the body of the
text. The modified proposition is:

Proposition 4 [Bank’s Problem] Given {z}, V (Z,W ) = v (z) ·W, where v is the solution to the following
HJB equation:

0 = −αzvz + max
{c}

f (c, v)− (v − vzz) c− vzαz + (v − vzz) Ω∗ (35)

where

Ω∗ = rd + max
{λ}

(
rl − rd

)
λ+

Jv

v − vz
.
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Formulation. We next prove Proposition 3. The primitive bank value HJB equation is given by:

0 = max
{C,λ}

f (C, V (Z,W )) +
E [dV (Z,W )]

dt
(36)

subject to the laws of motion (23), (24), (27), and the boundary V = Vo when (18) and (21) are not
satisfied. In the objective, the differential form is:

E [dV (Z,W )]

dt
= VZ (Z,W )µZW + VW (Z,W )µWW + σE

[
JV
]
,

where JV is given by:
E
[
JV
]

= pĴV + (1− p) J̃V ,

where ĴV is the jump in the value after an unrecognized default event,

ĴV =
[
V
(
Z + ĴZ ,W + JW

)
− V (Z,W )

]
Î− V (Z,W )

(
1− Î

)
where

Î =


1 if λ+ Jλ = Γ

(
z + Ĵz

)
0 otherwise

and J̃V the jump in the value after a recognized default event,

J̃V =
[
V
(
Z + J̃Z ,W + JW

)
− V (Z,W )

]
Ĩ− V (Z,W )

(
1− Ĩ

)
where

Ĩ =


1 if λ+ Jλ = Γ

(
z + J̃z

)
0 otherwise.

Conjecture. We conjecture a solution to the value function and verify that it satisfies the HJB equa-
tion. The conjecture is:

V (Z,W ) = v (z)W, (37)

for a suitable candidate v (z). Under this conjecture, we verify that C (Z,W ) = c (z) · W and I =
(ι (z) + δ)λW.
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Factorization. We perform some useful calculations on the guess (37). In particular, we factorize
equity from every term in the HJB equation. Under the conjecture,

f (C, V ) = f (c (z)W, v (z)W )

=
ρ

1− θ
v (z)W

[
c (z)1−θW 1−θ

(v (z)W )1−θ − 1

]

=
ρ

1− θ
v (z)W

[
c (z)1−θ

v (z)1−θ − 1

]
= f (c (z) , v)W. (38)

The change in the value function with respect to zombie loans is:

VZ = ∂ [v (Z/W )W ] /∂Z

= vz.

Finally, the derivative of the value function with respect with respect to W is given by:

VW = ∂ [v (Z/W )W ] /∂W

= −vz
Z

W
+ v (z) . (39)

Next, we collect terms to construct a modified drift for the value function:

VZµ
ZW + VWµ

WW = vz ·
(
−α Z

W

)
W +

(
−vz

Z

W
+ v (z)

)
µWW

= −vz
(
α+ µW

)
zW + v (z) · µWW

=
(
vzµ

z + v (z) · µW
)
W.

Finally, under the conjecture, the jump in the value function after an unrecognized default event is:

ĴV =

[
v

(
Z + ĴZ

W + JW

)(
W + JW

)
− v (z)W

]
Î− v (z)

[
1− Î

]
W

=
[
v
(
z + Ĵz

)
(1− ελ)W − v (z)W

]
Î− v (z)

[
1− Î

]
W

=
([
v
(
z + Ĵz

)
(1− ελ)− v (z)

]
Î− v (z)

[
1− Î

])
W,

=
([
v
(
z + Ĵz

)
(1− ελ)

]
Î− v (z)

)
︸ ︷︷ ︸

≡Ĵv

W,

where the indicator is Î is scale invariant. Likewise, for the recognized jump we obtain:

J̃V =
([
v
(
z + J̃z

)
(1− ελ)

]
Ĩ− v (z)

)
︸ ︷︷ ︸

≡ J̃v

W.
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Verification. We verify that the conjecture satisfies its HJB equation. With the factorization above,
(36) can be written as:

0 = max
{c,λ}

f (c, v)W . . .

+
[
vz (z) v (z)

]
×
[
µz

µW

]
·︸ ︷︷ ︸

≡µv

W . . .

+σ
[
pĴv + (1− p) J̃v

]
︸ ︷︷ ︸

≡Jv

W.

where we used the fact that any choice of C and I, can be expressed as a choice of c (z)W as there is
a one to one map from the {z,W} space to the original space—by change of coordinates. Then, we can
factor wealth from this HJB equation to express it as:v

0 =

[
max
{c,λ}

f (c, v) + µv + Jv
]
·W,

and since the maximization is independent of net-worth, this verifies the conjecture.
Collecting terms the HJB solution to the HJB equation:

αvzz = max
{c}

f (c, v)− (v − vzz) c+ (v − vzz) Ω (z) , (40)

where
Ω (z) = rD + max

λ∈[1,Ξ+(Ξ−1)z]

(
rL − rD

)
λ− σJv.

we verify the conjecture that the formula (37) satisfies the HJB equation (32).

C.4 Policy Functions

We derive the first-order conditions of this problem.

Optimal Dividend. The first-order condition for dividends is given by:

fc (c, v) = v − vzz,

we can solve this to obtain:

c = ρ1/θ

[
v

(v − vzz)1/θ

]
. (41)

Optimal Leverage. Now consider the optimal leverage choice given by:

Ω (z) = rD+ max
λ∈[1,Ξ+(Ξ−1)z]

(
rL − rD

)
λ−σ

p
[
v
(
z + Ĵz

)
(1− ελ)

]
Î + (1− p)

([
v
(
z + J̃z

)
(1− ελ)

]
Ĩ
)
− v (z)

v (z)− vz (z) z


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where Î and Ĩ are given by

Î =


1 if λ+ Jλ = Γ

(
z + Ĵz

)
0 otherwise

and

Ĩ =


1 if λ+ Jλ = Γ

(
z + J̃z

)
0 otherwise.

Next, we construct the shadow boundary to express Î and Ĩ, explicitly in terms of a threshold λ.
In particular, we find the function Λ̃ (z) that satisfies the boundary constraint in the case of a recog-

nized default,

Λ̃ (z) + Jλ
[
Λ̃ (z)

]
= min

{
1/ε,Ξ + (Ξ− 1)

(
z + J̃z [z]

)}
.

The solution to this equation is:

Λ̃ (z) = min

{
1

(2− ε) ε
,
Ξ + (Ξ− 1) z

1− ε+ εΞ

}
.

Likewise, we solve for Λ̂ (z) that satisfies the boundary constraint in the case of a recognized default,

Λ̂ (z) + Jλ
[
Λ̂ (z)

]
= Ξ + (Ξ− 1)

(
z + Ĵz [z]

)
.

The solution is given by:
Λ̂ (z) = Ξ + (Ξ− 1) · z = Γ (z) .

Thus, the shadow boundary of the unrecognized jump coincides with the liquidation boundary. Thus,
only the first boundary is relevant. Hence, we can write the objective as:

rd + max
λ∈[1,Γ(z)]

(
rL − rD

)
λ

+ σ

p v
(
z + Ĵz

)
v (z)− vz (z) z

+ (1− p)
v
(
z + J̃z

)
I[λ≤Λ̃(z)]

v (z)− vz (z) z

 (1− ελ)−

(
p+ (1− p) I[λ≤Λ̃(z)]

)
v (z)

v (z)− vz (z) z


We now investigate the solution to λ. Let λ ≤ Λ̃ (z). The derivative in that region of the state space

is given by:

(
rL − rD

)
− εσ

p v
(
z + Ĵz

)
v (z)− vz (z) z

+ (1− p)
v
(
z + J̃z

)
v (z)− vz (z) z

+

σ

p vz

(
z + Ĵz

)
v (z)− vz (z) z

Ĵzλ + (1− p)
vz

(
z + J̃z

)
v (z)− vz (z) z

 (1− ελ) ,
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and thus: (
rL − rD

)
− σε

(
E [v (z + Jz)]− (1/ε− λ)E [vz (z + Jz) Jzλ]

v (z)− vz (z) z

)
.

Now, let λ > Λ̃ (z). Condition in this case is:

(
rL − rD

)
− σεp

v
(
z + Ĵz

)
− vz

(
z + J̃z

)
(1/ε− λ)

v (z)− vz (z)

 .

Assume that (
rL − rD

)
σε

>
E [v (z + Jz)]− (1/ε− λ)E [vz (z + Jz) Jzλ]

v (z)− vz (z)
,

such that, (
rL − rD

)
σε

> p

v
(
z + Ĵz

)
− vz

(
z + Ĵz

)
(1/ε− λ)

v (z)− vz (z)

 .

We observe that leverage is increasing in this region. Hence the solution must fall in a corner. Either
λ = Λ̃ (z) or λ = Γ (z). The solution falls at the shadow boundary if:

(
rL − rD

)
Λ (z) + σ

(
E [v (z + Jz)] (1− εΛ (z))− v (z)

v (z)− vz (z) z

)
is greater than: (

rL − rD
)

Γ (z) + σ

p · v
(
z + J̃z

)
(1− εΓ (z))− v (z)

v (z)− vz (z) z

 .

Recall that:
E [v (z + Jz)] (1− εΛ (z))

v (z)
< 1.

Then,

σ

(
E [v (z + Jz)] (1− εΛ (z))− v (z)

v (z)− vz (z) z

)
= σ · v (z)

v (z)− vz (z) z
·
(
E [v (z + Jz)] (1− εΛ (z))

v (z)
− 1

)
< 0.
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C.5 Proofs for p = 0 case

Main Result. In this Appendix we prove the following result:

Proposition 5 [Bank’s Problem]The bank’s value function when p = 0 solves

0 = max
{c}

f (c, v∗)− v∗ · c︸ ︷︷ ︸
dividend choice

+v∗ · Ω (42)

where Ω is the expected leveraged bank return,

Ω = rD + max
λ∈[1,Ξ]

(
rL − rD

)︸ ︷︷ ︸
levered return

λ+ σ
{

(1− ελ) I[λ<Λ] − 1
}

︸ ︷︷ ︸
leverage choice

.

Derivation of the Main Result. The solution is obtained as the solution for the case where vz = 0,
and z = 0 always. Thus, 40 solves:

αvzz = max
{c}

f (c, v)− vc+ vΩ (z) , (43)

where
Ω (z) = rD + max

λ∈[1,Ξ]

(
rL − rD

)
λ− σJv.

we verify the conjecture that the formula (37) satisfies the HJB equation (32), for v, a solution to 32.
Thus, (41), is modified to:

c = ρ1/θ v

v1/θ
. (44)

In turn, the optimal leverage condition is given by

rd + max
λ∈[1,Ξ]

(
rL − rD

)
λ+ σ

(
I[λ≤Λ̃(z)] (1− ελ)− 1

)
.

Thus, we solve for λ. Taking first order conditions, we have that if λ ≤ Λ̃ (z), leverage increases the
objective if:

rL − εσ > rD.

If the condition holds, the leverage increases the objective in the region where λ > Λ̃ (z) since:

rL − rD > 0.

Hence, we have two possible solutions. Either λ = Λ = Ξ
1−ε+εΞ or λ = Γ = Ξ.

Then, the shadow boundary is the optimal solution if:(
rL − rD − εσ

) Ξ

1− ε+ εΞ
>
(
rL − rD

)
Ξ− σ.
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C.6 Version with Adjustment Costs

In this section, we derive a version of the model with adjustment costs on loans,

Φ (I, L) = I +
γ

2

(
I

L
− δ
)2

L.

We can factor out L and employing the definition of ι to obtain:

Φ (I, L) =
(
ι+ δ +

γ

2
ι2
)
L

= Φ (ι, 1)L+ δL.

Thus, we can express the funding cost relative to equity as:

Φ (I, L) /W = (Φ (ι, 1) + δ)λ, (45)

which is a function independent of the bank’s size and depends on leverage and the investment rate.

Observation 3: Derivations of Laws of Motion. Now consider a time interval of length ∆. The
law of motion for fundamental loans satisfies:

Lt+∆ = (1− δ∆)Lt + It∆− εLt (Nt+∆ −Nt) ,

with the interpretation that the first term is the non-maturing fraction of loans, the second are loan
issuances, and the third are losses in a time interval. Taking ∆ → 0, we obtain the following law of
motion:

dL = (I − δL) dt− εLdN.

We express this law of motion in terms of net-worth to obtain:

dL = ιλWdt− ελWdN. (46)

To ease the notation, we define the growth rate of fundamental loans and the jump relative to net-worth:

µL ≡ ιλ and JL ≡ −ελ.

Similarly, for deposits we have that:

Dt+∆ =
(
1 + rD∆

)
Dt −

(
rL∆ + δ∆

)
Lt + Φ (It, Lt) ∆ + Ct∆

with the interpretation that the first term is the increase in deposits that results from paying interest
with deposits; the second term is the reduction in deposits by the interest and principal payments on
outstanding loans; the third term is the increase in deposits as a result of loan issuances; and the final
term is dividend payments, all paid with deposits. Taking ∆→ 0, we obtain the following law of motion:

dD =
[
rDD −

(
rL + δ

)
L+ Φ (I, L) + C

]
dt.

We express this law of motion in terms of wealth to obtain:

dD =
[
rD (λ− 1)−

(
rL + δ

)
λ+ (Φ (ι, 1) + δ)λ+ c

]
Wdt. (47)
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We define the growth rate of deposits relative to net-worth:

µD ≡ rD (λ− 1)−
(
rL + δ

)
λ+ (Φ (ι, 1) + δ)λ+ c.

The evolution of Z is identical.

Observation 3: growth independence. Next, we present the evolution of net-worth with adjust-
ment costs:

dW = dL− dD

=

(rL + δ
)
λ− rD (λ− 1)︸ ︷︷ ︸

levered returns

+ (ι− (Φ (ι, 1) + δ))λ︸ ︷︷ ︸
capital loss from adjustment

− c︸︷︷︸
dividend rate

Wdt

= −ελ︸︷︷︸
loss rate

WdN. (48)

where the second line uses the laws of motion in (46) and (47), and employed observation 1.
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D Model Appendix: Numerical Solution

We solve the model using the finite-differences method with an upwind scheme for the choice of forward
or backward differences. Specifically, we compute the numerical derivatives of the value function v(z)
using finite differences and use the first order conditions to solve for policies (c, ι), and iterate on the
HJB equation. A detailed description of this algorithm for a general class of models known as mean-field
games can be found in Achdou et al. (2020).

Our model, which belongs to this class, is simpler to solve because we keep prices constant, but
presents an added complication in that the size of the jump depends on the endogenous state variable.
In particular, starting from a point z, upon receiving a Poisson shock the bank jumps to z + Jz. We use
linear interpolation to get the value function off the grid.

To compute the stationary distribution, we simulate the model for enough periods such that the
mean and standard deviation of λ and z are approximately constant. Finally, to aggregate variables to
a quarterly frequency, we set time steps dt = 1/90 and for every 90 time steps we use the last value for
stocks and the mean for flows.
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