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Abstract 
 
I develop a model of endogenous production network formation between spatially distant firms. 
Unlike other such models, it is tractable even for very large numbers of firms, that is, it delivers 
closed-form predictions for firm-to-firm trade, it can be estimated via maximum likelihood, and 
it can be used for firm-level counterfactual analysis. I exploit novel micro-data on Indian firm-to-
firm production networks for estimation. The estimated model implies that upon market 
integration across Indian states, over half of the variation in changes in firms’ sales to other firms 
can be explained by endogenous changes in network structure. 
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1. Introduction

Heterogeneity in production costs across firms is at the heart of modern
general equilibrium models of firm heterogeneity and trade. Yet differ-
ences in firms’ production costs are typically attributed to differences in
productivity across firms. With firms operating in production networks,
differences in production costs arise not just from differences in productiv-
ity but also from finding the most cost-effective suppliers of intermediate
inputs. General equilibrium theories of trade with firms differing only in
productivity do not grapple with microscopic heterogeneity in the exten-
sive and intensive margins of firm-to-firm trade in intermediate inputs —
who buys from whom and how much? How does endogenous formation of
customer-supplier linkages between firms and the resultant network archi-
tecture drive differences in firms’ overall sales, ability to sell across multiple
destinations, and aggregate patterns of trade? How do we evaluate the im-
pact of market integration, technology improvements, and improvements in
allocative efficiency on aggregate outcomes when the production network
of firms reorganizes in response to these shocks?

In this paper, I present a novel rich yet tractable empirical model of
endogenous network formation between spatially distant firms to evaluate
the aggregate and firm-level consequences of shocks. The contribution is
four-part. First, I use novel micro-data to document empirical regulari-
ties arising from a new decomposition of firms’ sales that underscores the
salience of endogenous network formation between firms and motivates the
theory. Second, I develop a theory of trade between multiple locations
featuring endogenous formation of firm-to-firm production networks that
not only rationalizes micro-data on firm-to-firm sales but is also consistent
with structural gravity at the aggregate level. Third, I devise a procedure to
structurally estimate the model that circumvents computational difficulties
pervasive in estimation of network formation models with large numbers of
firms. Fourth, I propose a procedure to evaluate counterfactual outcomes
that accounts for randomness in network formation without requiring sim-
ulation of large networks which can be computationally burdensome due
to interdependence in link formation.

Firms operating in production networks are vastly heterogeneous in size.
Why do some appear to be selling so much more inputs than others? Per-
haps they are attractive input suppliers or happen to have large customers
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that demand higher volumes. Using data on 103 million firm-to-firm re-
lationships assembled from administrative VAT records spanning across 5
years and pertaining to around 2.5 million Indian firms located across 141
districts, I conduct a new decomposition for firms’ sales to other firms to
delineate these channels.1 I find that firms with higher sales to other firms
tend to be used more intensively by other firms and tend to sell to larger
customers. The first margin explains 81% of the variation whereas the
remaining 19% is explained by the second margin.

The attractiveness of a firm, that is, its ability to supply at a lower price
either due its own productivity or because it sources inputs cheaply from
efficient suppliers influences how intensively it is used by other firms. The
outsized importance of the first margin suggests that endogenous formation
of firm-to-firm linkages arising from attractiveness of firms is pertinent to
understanding the origins of firm heterogeneity.

I develop a new Ricardian model of trade between multiple locations with
geographic barriers and imperfect competition (as in Eaton and Kortum
(2002) and Bernard et al. (2003)) that accommodates heterogeneous con-
sumer preferences, heterogeneous technological requirements by firms, and
arbitrary production network formation between firms.2 Firms’ production
processes consist of multiple input requirements. Potential suppliers dif-
fer in the suitability of their goods for each of these requirements. Firms
randomly encounter potential suppliers and select the most cost-effective
suppliers for their production requirements. Firms are more likely to select
a potential supplier for a larger proportion of their requirements if it is able
to sell at a lower price and produces a good that is more suitable for its
production requirements.

The ability of a potential supplier to sell at a lower price than another is
regulated by (a) its idiosyncratic productivity, (b) the efficiency with which
its own suppliers were able to produce thus affording the firm a lower price

1Notably, Huneeus (2020) and Bernard et al. (2021) decompose firms’ sales to other firms
into number of customers and sales per customer whereas the decomposition proposed
here is into intensity of use by other firms and average customer size. Unlike the former,
the latter decomposition is suitable for separating the aforementioned channels of firm
heterogeneity in input sales.
2While Caliendo and Parro (2014) allow for sectoral heterogeneity and inter-sectoral
linkages in a Ricardian model of trade, they do not allow for arbitrary production
networks between firms and are unable to accommodate the vast heterogeneity in input
sourcing patterns at the firm-level observed in data.
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for intermediate inputs, and (c) proximity to location of use thus having to
incur lower geographic costs. Firms with lower production costs thus are
used more intensively in their customers’ production processes. Since these
customers use cheaper inputs, they end up with lower production costs
themselves and become cost-effective suppliers to their customers. In the
cross-section, firms with low production costs end up larger because they
are used more intensively by other firms and also have larger customers.

I leverage the recursive structure of network formation between firms to
estimate the model via the conditional choice probability approach inspired
by Hotz and Miller (1993). Differences in the suitability of potential sup-
pliers’ goods for a firm’s production requirements feature as match-specific
productivities across firm pairs in a manner similar to the discrete choice
framework. This leads to a multinomial logit model of supplier choice for
each of the firm’s production requirements. The estimation equation rec-
ognizes that while there is a positive probability of a firm sourcing inputs
from every other firm, sourcing inputs for only a discrete number of require-
ments can give rise to sparsity in firm-to-firm connections. This sparsity
can be extreme as is observed in the data where the number of firm-to-firm
connections are many orders of magnitude lower than its potential given
the number of firms in the economy.

Predictions for firm-to-firm trade then allow estimation of the model uti-
lizing the full volume of micro-data on firm-to-firm transactions via max-
imum likelihood. Semi-parametric estimation of the model implies that
firms’ fixed effects serve as sufficient statistics for their implied marginal
costs and bilateral inter-district fixed effects as a structural gravity spec-
ification for estimating trade frictions. Such estimation typically entails
a high-dimensional non-linear optimization problem that quickly becomes
cumbersome with large numbers of fixed effects. I show that these fixed ef-
fects can be computed in closed-form thus avoiding the problem altogether.

For counterfactual analysis, I propose a new procedure that departs from
the exact hat algebra approach commonly used in trade models (see Dekle
et al. (2008) and Costinot and Rodríguez-Clare (2014)). In aggregate mod-
els of trade featuring a continuum of agents, the exact hat algebra approach
evaluates the change in aggregate outcomes in response to shocks. In those
models, aggregate data coincides with the expected value of aggregate out-
comes in the initial state. In contrast, my model featuring finitely many
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agents implies that the observed data corresponds to only one of many
possible realizations under the initial state. The data generating process
implied by the model is therefore non-degenerate and hat algebra cannot
be used as is. To evaluate counterfactual outcomes, I first solve the model
in the initial state under a continuum approximation of the finite economy
and then use hat algebra to solve for changes in the model in the counter-
factual state. The model and the procedure are rich enough to speak about
aggregate and firm-level effects of macro- and micro-shocks.

Using the estimated model, I evaluate the impact on production networks
of reducing inter-state border frictions in the context of the recent Goods
and Services Tax reform in India that aimed to mitigate such barriers to
trade. I find that following a 10% decline in border frictions over half of
the variation in changes in firms’ sales to other firms implied by the model
can be explained by endogenous changes in the network structure.

Related Literature. This paper contributes to four strands of literature.
First, this paper is related to the nascent literature on endogenous produc-
tion networks in general equilibrium which can be broadly classified into
two categories. The first (Oberfield (2018); Acemoglu and Azar (2020);
Boehm and Oberfield (2020); Antràs and de Gortari (2020); Miyauchi
(2021); Eaton et al. (2022)) models formation of linkages as the outcome of
selection from a discrete menu of choices whereas the second (Lim (2018);
Taschereau-Dumouchel (2020); Huneeus (2020); Tintelnot et al. (2018);
Bernard et al. (2021); Demir et al. (2021); Arkolakis et al. (2021)) models
formation of linkages between firms as the outcome of “love of variety” in
input sourcing while being subject to relationship costs.3 While network
formation in this paper is outcome of discrete choice as in the former, the
model here uniquely delivers closed-form predictions for firm-to-firm trade
unlike other models of endogenous production networks. This has three ad-
vantages relative to other papers: (a) the model is estimated using the full
volume of data of firm-to-firm sales via maximum likelihood and does not
rely on matching a selection of aggregate moments, (b) the model can be
tractably solved even for very large numbers of firms and does not require
computationally burdensome simulation for estimation or counterfactual

3Other complementary approaches to endogenous production network formation include
Carvalho and Voigtlander (2014) and Chaney (2014, 2018).
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analysis, and (c) counterfactual outcomes can be evaluated across the dis-
tribution of firms and not just for aggregate outcomes such as welfare all
while accounting for endogenous changes in network structure.

Second, this paper is related to a long literature on firm heterogeneity
(for example, Jovanovic (1982); Hopenhayn (1992); Axtell (2001); Melitz
(2003); Klette and Kortum (2004); Luttmer (2007); Arkolakis (2016)) and
in particular the branch that studies the heterogeneity among firms aris-
ing from their engagement in input-output linkages — Oberfield (2018)
and Bernard et al. (2021). The model here houses two sources of firm
heterogeneity — from idiosyncratic productivities and from match-specific
productivities and engagement in input-output linkages. Unlike Oberfield
(2018), the model accommodates heterogeneity in the number of input sup-
pliers across firms as well as in the intensity of use of suppliers across their
customers. The model thus allows for variation in firms’ average inten-
sity of use by their customers. In the data, this margin explains 46% of
the variation in firms’ sales. The modeling approach here is distinct from
Bernard et al. (2021) who use a fixed cost formulation that necessitates use
of simulation-based estimation methods.

Third, the paper also relates to a growing literature on propagation of
shocks and aggregation in distorted production networks including Jones
(2011), Acemoglu et al. (2012), Swiecki (2017), Caliendo et al. (2017b),
Liu (2019), Baqaee and Farhi (2019a,b, 2020), and Bigio and LaO (2020).
Some of these papers allow for non-Cobb–Douglas technologies and thus
endogenize the intensity with which different inputs are used. However,
they do not investigate which combinations of inputs will be used—that is,
the extensive margin of firm-to-firm trade —which features prominently in
this paper.

Finally, this paper is related to the branch of the trade literature that
develops firm-level models of importing for example, Antràs et al. (2017);
Blaum et al. (2018). While these papers consider models where firms choose
the set of locations to source intermediate inputs or the share of interme-
diate inputs that are imported, here I develop a more disaggregated model
where firms choose both the set of suppliers across multiple locations for
intermediate inputs and the share purchased from each of them. The model
also shares features with papers that emphasize the role of granularity in
trade models such as Eaton et al. (2013), Armenter and Koren (2014), and

6



Gaubert and Itskhoki (2021). The approach to counterfactual analysis par-
allels contemporaneous work by Dingel and Tintelnot (2020) who take a
related approach in a granular model of commuting choice.

2. Network Margins of Firm Heterogeneity & Trade

2.1. Sources of Data. The primary dataset for this paper consists of
the universe of firm-to-firm transactions assembled from commercial tax
authorities of five Indian states (viz. Gujarat, Maharashtra, Tamil Nadu,
Odisha, and West Bengal) between 2011-12 and 2015-16.4 These states had
a nominal GDP of $738 billion in 2015-16, accounting for nearly 40% of
GDP. Among these states, the largest (Maharashtra) accounts for roughly
14% of national GDP while the smallest (Odisha) accounts for a little over
2%. It includes transactions between all firms registered under the value-
added tax system in these states. The dataset records 103 million inter-
firm relationships between approximately 2.5 million firms located across
141 districts in these 5 states.

2.2. Empirical Regularities. Indian firms are vastly heterogeneous in
size, a pervasive finding in studies of firm-level data. Using firm sales to
other firms as a measure of size, I find that firms in the top decile are at least
700 times larger than firms in the bottom decile. In production networks,
firm outcomes are shaped not only by their own intrinsic characteristics,
like productivity, but also by the characteristics of the firms – suppliers
and customers – that they connect with. For a pair of firms s and b, the
value of goods purchased by b from s can be written as:

sales(s, b) = π(s, b)× purchases(b),

where purchases(b) denotes the value of goods purchased by b from all other
firms and is calculated as

∑
s sales(s, b); and π(s, b) denotes the share of

purchases of b that are from s.5

A firm could have a high volume of intermediate input sales either be-
cause (a) it is an attractive input supplier (higher π(s, b)), that is, it can
provide output at a lower price (either because it sources inputs cheaply
from efficient suppliers upstream to it or due its own productivity) – an
4For a financial year, say 2015-16, the data pertains to the period between April 1, 2015
and March 31, 2016.
5It is worthwhile to note that π(s, b) ∈ [0, 1] implicitly captures whether s is indeed a
supplier to b depending on whether it is zero or positive.
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upstream margin, or (b) it happens to sell to customers downstream which
are large (higher purchases(b)) and demand higher volumes – a downstream
margin. While the downstream margin is operational in models with ex-
ogenous production networks, the upstream margin requires a model of
endogenous network formation between firms — one where firms choose
their suppliers and the intensity with which they use inputs from those
suppliers.

To shed light on the economic importance of these margins and guide
the main features of the model I will develop in Section 3, I leverage the
rich network structure of the dataset to conduct a simple decomposition of
firms’ sales to other firms into two margins: intensity of use and average
customer size. Formally, sales of firm s can be decomposed into these two
factors according to the following identity.

sales(s) = intensity of use(s)× average customer size(s),(2.1)

where

sales(s) =
∑
b

sales(s, b),

intensity of use(s) =
∑
b

π(s, b), and

average customer size(s) =

∑
b π(s, b)× purchases(b)∑

b π(s, b)
.

Through variation in intensity of use, the first factor captures the attrac-
tiveness of the firm to potential customers deciding who to source inputs
from and how much to source from them. The second factor measures av-
erage size of customers as inferred from a weighted average of their input
purchases. The first factor constitutes the upstream margin and captures
the direct importance of the firm in the production network since it cap-
tures how cost-effective the firm is irrespective of the characteristics of the
customers it sells to.6 The second factor constitutes the downstream mar-
gin and captures the indirect importance of the firm in the production
network through the importance of its customers, its customers’ customers
and so on.
6The upstream margin is sometimes referred to as the firm’s weighted out-degree. In
recent work, Acemoglu et al. (2012) coin this term for similar statistics at the industry
level.
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I compute the share of variance of firms’ sales that is explained by each
of these factors.7 Column (1) in Table 2.1 reports the results of the de-
composition. Four-fifths of the variance in firms’ sales can be attributed to
the upstream margin leaving the rest for the downstream margin. It im-
plies that larger firms are likely to be used more intensively by other firms
(explains 81% of the variance), and have larger customers (19%). Both fac-
tors covary positively with sales and contribute a non-trivial share to the
variance. The positive covariance of the downstream margin can be ratio-
nalized as follows. Firms with higher demand for their own goods produce
larger quantities and to do so they purchase higher quantities of inputs from
their suppliers. In turn, their suppliers end up with higher demand and
they source larger quantities from their own suppliers and so on. Therefore,
in the cross-section one observes that larger firms have larger customers on
average. This points to the importance of supply chain linkages between
firms even when the network structure is exogenously fixed.

However, it is the outsized contribution of the upstream margin that
highlights the importance of endogenous network formation through two
potential channels. First, when firms choose to source from more cost-
effective suppliers, they are likely to inherit lower marginal costs from their
suppliers. This makes them attractive to their own customers who become
larger in turn. Therefore, in the cross-section one would observe a positive
correlation between firms’ sales and number of customers. Second, when
suppliers’ goods are substitutable in a firms’ input demand system, more
cost-effective firms will account for a larger share of material costs of their
customers. Since those customers source cheaper inputs intensively, they
are likely to inherit lower marginal costs from their suppliers. This makes
them attractive to their own customers and they become larger themselves.
Therefore, in the cross-section one would observe a positive correlation
between firms’ sales and average intensity of use by customers. Putting
together both these margins - who to buy from and how much – one would
observe a positive correlation between firms’ sales and intensity of use. This

7In short, if a variable X can be decomposed into two factors, X1and X2 such that
X = X1 · X2, then the share of variance of X that can be attributed to any factor
Xr is Cov(lnX,lnXr)

V ar[lnX] . While these shares sum to unity by additivity of the covariance
operator, they are not constrained to be positive individually. For example, see Klenow
and Rodríguez-Clare (1997) for use in growth accounting and Eaton et al. (2011) for
regression-based decomposition of margins of trade.
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suggests that endogeneity of production networks is important both along
the extensive and intensive margins of firm-to-firm trade.

Furthermore, trade across space is costly and economic activity across
space exhibits large dispersion. How does the relative position of firms
across space affect their outcomes? How does geography affect the afore-
mentioned margins of firm heterogeneity? To investigate this, I construct a
similar decomposition at a more disaggregated level for firms’ destination-
specific sales and at a more aggregated level for trade flows between dis-
tricts.8 Column (2) in Table 2.1 reports results of variance decomposition of
firm’s destination-specific sales while controlling for firm-level fixed effects.
This is done to capture the variation in individual firms’ sales across mul-
tiple destinations. The upstream margin accounts for 93% of the variation
leaving 7% for the downstream margin. Column (3) in Table 2.1 reports
results of variance decomposition of aggregate trade flows between districts
while controlling for origin fixed effects. The upstream margin accounts for
83% of the variation leaving 17% for the downstream margin. Since the
upstream margin explains the lion’s share of the variation in both cases,
these results underscore the salience of geography in endogenous network
formation between firms.

Taking stock, I find that firms that are larger also tend to be used more
intensively by other firms and tend to have larger customers. Of course,
these decompositions capture equilibrium relationships and are not causal;
nevertheless, they make clear that understanding the characteristics of
firms’ network is key to understanding origins of firm heterogeneity. While
the economic intuition behind these results is straightforward, the decom-
position results are new to the literature. With this in mind, I develop
a model of endogenous production network formation in the next section
that expressly takes these findings into account and leads to a multinomial
logit model of supplier choice for estimation.

Discussion. In modeling frameworks inspired by Melitz (2003) (for exam-
ple, Lim (2018); Huneeus (2020); Bernard et al. (2021)), firms’ ability to
cover fixed costs (potentially heterogeneous) determine the extensive mar-
gin (number of customers) while attractiveness of firms through variable
productivity determines the intensive margin (sales per customer). When
customer size is homogeneous, variation in average market share across
8Further details are provided in Appendix A.
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Table 2.1. Network Margins of Firm Heterogeneity
& Trade

(1) (2) (3)

Intensity of Use 81% 93% 83%
Average Customer Size 19% 7% 17%

Fixed Effects:
Seller×Year — X —
Origin×Year — — X

Data Level:
Seller×Year • — —
Seller×Destination×Year — • —
Origin×Destination×Year — — •

# observations 5.6×106 18.2×106 58,390

Note. Column (1) reports the contribution of intensity of use and aver-
age customer size to the variance of firms’ sales (as per equation (2.1)).
Column (2) reports the contribution of those factors to the variance of
firms’ destination-specific sales (as per equation (A.2)). Column (3) re-
ports the same for trade flows between districts (as per equation (A.3)).
See Appendix A for details and alternative specifications.

customers is identical to that in sales per customer. As a result, sales
per customer is a good measure to infer attractiveness of firms. When
customer size is heterogeneous as is the case here, variation in sales per
customer reflects variation in both attractiveness of firms and average size
of customers. Therefore, to infer attractiveness of firms through variable
productivity one needs to look at average market share among customers
and not sales per customer. In both cases, number of customers is a good
measure to infer firms’ ability to cover fixed costs. Together, number of
customers and average market share among customers constitute intensity
of use. Intensity of use is therefore a good measure to infer attractiveness of
firms either from ability to cover fixed costs or variable productivity. The
model described in the following section features no fixed costs. However,
variation in both number of customers and average market share (together,
intensity of use) arise from attractiveness of firms through variable produc-
tivity. Consequently, when we move to estimation, intensity of use turns
out to be sufficient statistic for attractiveness of firms.
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3. An Empirical Model of Endogenous Spatial Production
Networks

In this section, I describe a model of trade between multiple locations
that accommodates heterogeneity in consumer preferences, heterogeneity
in technological requirements of firms and arbitrary production networks.
The model economy consists of many firms and households at many lo-
cations. Firms produce using local labor and intermediate inputs sourced
from suppliers potentially spread across multiple locations. Trade between
locations is subject to iceberg trade costs , that is, a firm producing at o
needs to ship τod units of a good for one unit of good to arrive at d.

Throughout, the paper, a firm is indexed by s when it is a seller of
intermediate inputs or goods for final consumption and by b when it is a
buyer of intermediate inputs. A location is indexed by o when it is the
origin of a trade flow and typically where firm s is located. Similarly, it is
indexed by d when it is the destination of a trade flow and typically where
firm b is located. The set of all locations is denoted by J . The set of all
firms is denoted byM and the subset located at o is denoted byMo. The
number of elements in these sets are denoted as M = |M| and Mo = |Mo|.

3.1. Technology and Market Structure. Firms’ production processes
involve combining labor and accomplishing a set of tasks by sourcing in-
termediate inputs from other firms. In particular, the production function
for any firm b at location d is defined over labor and a discrete number of
tasks (indexed by k ∈ K ≡ {1, · · · , K}) as:

yd(b) = zd(b)

(
ld(b)

1− αd

)1−αd
(∏

k∈Kmd(b, k)1/K

αd

)αd

,

md(b, k) =
∑

s∈Sd(b)

mod(s, b, k),

where ld(b) is the amount of labor input used by firm b, md(b, k) is the
quantity of materials utilized to accomplish task k, zd(b) is the idiosyncratic
Hicks-neutral productivity with which firm b produces, andK is the number
of tasks in the production function.9

9The number of tasks is common across all firms in the economy for simplicity. It is
straightforward to allow for heterogeneity in numbers of tasks but that would not affect
the main results of the paper.
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Among all the firms in the economy, firm b encounters only a few and
can source intermediate inputs to accomplish tasks only from those firms.
In particular, it encounters any potential supplier with probability λ

M
via

independent Bernoulli trials. The restricted set of potential suppliers, de-
noted by Sd(b), is therefore completely determined as the outcome of these
Bernoulli trials for meeting each firm and is common for all tasks. While
outputs of potential suppliers are perfectly substitutable for accomplishing
any task, they differ in their suitability for the task in question, captured
by their respective match-specific productivities. For each of its tasks, firm
b selects the supplier that offers the lowest effective price. Importantly,
firm b may choose the same supplier for more than one tasks. Since firms
only encounter a few suppliers when sourcing intermediate inputs, I assume
that firms face limit pricing behavior when sourcing inputs.10

3.2. Cost Minimization and Input Sourcing. I now turn to firms’ cost
minimization problem. Selecting the cost-minimizing input bundle consists
of choosing not only who to source inputs from but also how much to buy
from each of them. For any task k in firm b’s production function, the
cost-effectiveness of a supplier s from location o in Sd(b) depends on four
factors: (a) the marginal cost of s, denoted co(s); (b) the trade cost faced
by s of shipping goods to d, τod; (c) the match-specific productivity when b
utilizes the output of s to accomplish the task, denoted by aod (s, b, k), and
(d) the markup charged by s when it sells its output to b for accomplishing
the task, denoted m̄od (s, b, k). In particular, firm b chooses the supplier
that offers the cheapest price, that is,

s∗d(b, k) = arg min
s∈Sd(b)

{
m̄od (s, b, k) co(s)τod

aod(s, b, k)

}
.(3.1)

With limit pricing, the markup is determined by how much lower the
effective cost faced by the best supplier is relative to the second best. Now,
taking wage wd and effective prices {pd(b, k) : k ∈ K} (defined below) as

10Markups are variable and endogenously determined through Bertrand competition.
Dhyne et al. (2022) and Huang et al. (2022) also propose models of firm-to-firm trade
featuring endogenous and variable markups through oligopolistic competition. Dhyne
et al. (2022) propose a model where firm-to-firm trade in endogenous only on the in-
tensive margin while Huang et al. (2022) propose a two-sided model where each firm
is either a supplier or a buyer of intermediate inputs but not both. Here, firm-to-firm
trade is endogenous also on the extensive margin and any firm can simultaneously be a
buyer and a supplier of intermediate inputs.
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given, the firm’s unit cost function is given by:

(3.2) cd (b) =
w1−αd
d

(∏
k∈K pd(b, k)1/K

)αd
zd(b)

,

where pd(b, k) is determined according the following equation:

pd(b, k) = min
s∈Sd(b)

{
m̄od (s, b, k) co(s)τod

aod(s, b, k)

}
.(3.3)

Discussion. Firms spend equal shares of costs across tasks. Although the
elasticity of substitution between tasks is equal to unity, this formulation
captures richer patterns of substitution across outputs of other firms that
are used to accomplish tasks. This is because a potential supplier charging
a lower price is likely to be selected for a higher number of tasks by any
firm and hence is likely to account for a higher cost share of the firm.
The extensive margin of firms’ input sourcing is determined by whether
a potential supplier is chosen for at least one of the tasks whereas the
intensive margin is determined by how many tasks the potential supplier
gets selected for. Both these margins of firm-to-firm trade – who buys from
whom and how much? – are determined endogenously in equilibrium.

It is worthwhile noting that forces that generate the extensive and inten-
sive margins of firm-to-firm trade here differ from other models of network
formation. In Miyauchi (2021); Arkolakis et al. (2021); Eaton et al. (2022),
heterogeneous search frictions and labor productivity differences regulate
the extensive margin while attractiveness of potential suppliers regulates
the intensive margin. In Lim (2018); Huneeus (2020); Bernard et al. (2021);
Demir et al. (2021), fixed costs of relationship formation regulate the ex-
tensive margin while attractiveness of potential suppliers regulates the in-
tensive margin. The model here does not feature heterogeneous search
frictions, labor productivity differences or fixed costs of relationship for-
mation. Despite this parsimony, the model generates variation in both the
extensive and intensive margins of firm-to-firm trade.

3.3. Closing the Model.

Household Preferences. Households are modeled analogously with tasks in
their utility function. They encounter potential suppliers and select the
most cost-effective suppliers for each task similar to firms sourcing inputs.
Each household supplies one unit of labor inelastically to local firms and
receives labor income. Firms rebate any profits to local households.
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Equilibrium Definition. Let σ ≡ {z, τ ,S,a} denote the aggregate state of
the economy. Here z denotes the vector of idiosyncratic productivities of
firms, τ denotes the vector of trade costs across all pairs of locations, S
denotes the sets of potential suppliers of all firms and households, and a
denotes the vector of all match-specific productivities. All of these objects
are exogenous. An equilibrium in this economy is an allocation and a
price system such that (a) households and firms select suppliers for tasks;
(b) firms set prices for other firms and households under limit pricing;
(c) households maximize utility; (d) firms minimize costs; and (e) market
clears for each firm’s goods and for labor at each location. This completes
description of the economic environment in the model.11

Moving ahead, the aggregate state can be divided into two parts. The
first comprises of firms’ productivities and trade costs; this is denoted by
σ0 ≡ {z, τ}. The second part comprises of sets of potential suppliers for
firms and households and match-specific productivities and taste shocks;
this is denoted by σ1 ≡ {S,a}. While σ0 narrows down the set of networks
that could be realized as an outcome of the network formation process, σ1

pinpoints the exact network of firms that is realized.

4. Taking Model to Data

To map the model to micro-data on firm-to-firm sales for estimation, I
proceed in four steps. First, I utilize the recursive representation of net-
work formation between firms to cast it as a quasi- dynamic programming
problem. Second, I show that the model delivers closed-form character-
ization of conditional choice probabilities in this quasi- dynamic discrete
choice setting. Third, I describe how these conditional choice probabilities
coupled with multiple discrete choice across tasks lead to a multinomial
logit model of supplier choice. Finally, I tackle the computational burden
imposed by the high-dimensionality of the non-linear estimation problem
by exploiting special features of the multinomial likelihood specification.
The resulting estimation framework is scalable and circumvents computa-
tional difficulties pervasive in estimation of network formation models with
large numbers of firms.

4.1. A Recursive Representation of Network Formation. I begin by
casting network formation between firms as a quasi-dynamic programming
11A detailed description is provided in Appendix B
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problem. In particular, combining equations (3.2) and (3.3), I find that
marginal cost of any firm b admits the following recursive representation.

cd(b) =
w1−αd
d

zd(b)
×

K∏
k=1

min
s∈Sd(b)

{
m̄od(s, b, k)τod
aod(s, b, k)

× co(s)
}αd

K

(4.1)

This representation is akin to a setting with dynamic discrete choice
(albeit with multiple discrete choice). The estimands in this estimation
problem are trade costs {τod : (o, d) ∈ J 2} which are exogenous and firms’
marginal costs {co(s) : s ∈M} which are endogenously determined, unob-
served in the data and run into millions. As a result, full solution methods
for estimation of dynamic discrete choice models (such as Rust (1987)) are
infeasible and simulation-based approaches are computationally burden-
some due to rich interactions between a large number of firms. Therefore,
I utilize the conditional choice probability approach to estimate the model
following Hotz and Miller (1993). In this context, conditional choice prob-
abilities are the probabilities with which any given supplier s is chosen for
any one of the buyer b’s tasks conditional on its marginal cost being co(s).
I proceed to show next that the model delivers closed-form predictions for
these probabilities.

Discussion. Antràs and de Gortari (2020) and Menzel (2022) also suggest
use of methods proposed for dynamic discrete choice to estimate models of
supply chain formation and pairwise stable network formation respectively.
The adaptation here is different in two ways. First, the dimensionality of
the estimation problem in their cases is much smaller while here it is dic-
tated by the millions of firms in the model. Therefore, I proceed with
estimation via the conditional choice probability approach instead of using
the constrained optimization approach which they do. Second, the model
here features multiple discrete choice by many firms that lead to transpar-
ent estimating equations for cost shares at the firm-to-firm level whereas
their models are of single discrete choice by many firms or agents and do
not lead to the same characterization.

4.2. Conditional Choice Probabilities & Firm-to-Firm Trade. I
turn to expressions for conditional choice probabilities and hence predic-
tions for firm-to-firm trade. I assume that match-specific productivities
are drawn independently for all potential suppliers for each of the tasks
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in firms’ production functions from a Pareto distribution as stated in the
following assumption.

Assumption 1. Match-specific productivities are drawn independently ac-
cording to the following Pareto distribution:

Fa(a) = 1− (a/a0)
−ζ .

In a sufficiently large economy such that 0 < λ/M � 1, |λaζ0−1| < ε1, and
|a0| < ε2 for arbitrarily small values of ε1 and ε2 one can obtain closed-form
expressions for conditional choice probabilities. Recall from equation (3.1)
that firms choose suppliers for tasks based on suppliers’ marginal costs,
trade costs faced by them, and match-specific productivities associated with
the task under consideration. While trade costs τ constitute σ0, match-
specific productivities are unknown and suppliers’ marginal costs co(s) are
determined endogenously. I therefore characterize conditional choice prob-
abilities for supplier choice, i.e., probabilities for choice of supplier condi-
tional on its marginal cost but in expectation over match-specific produc-
tivities that are yet to be realized. Let π0

od(s, b) denote the probability with
which firm b selects firm s for any one of its tasks. Prior to encountering
and realizing match-specific productivities for each task, the probability of
firm s getting selected for any one of the tasks by firm b is common across
all tasks. That is, π0

od (s, b) = π0
od(s, b, k) = E{σ1} [1 {s = s∗d(b, k) | σ0, σ1}]

where the expectation operator is over all realizations of σ1. The fol-
lowing proposition provides expressions for conditional choice probabilities
π0
od (s, b).

Proposition 1. For any realization of σ0, conditional on firm s’s marginal
cost being co(s), the probability with which any firm b located in d selects
firm s located in o for any given task is

(4.2) π0
od(s, b) =

co(s)
−ζτ−ζod∑

s′∈M co′(s′)−ζτ
−ζ
o′d

.

Proof. See Appendix C.1. �

The above proposition is key to understanding what drives network for-
mation among firms in the model and how it enables the model to match
empirical regularities described in Section 2. Equation (4.2) highlights the
factors that influence the likelihood of a supplier s from o getting selected
by a buyer at d for any one of its tasks. Firms with lower marginal costs,
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denoted by co(s), are more likely to get selected for more tasks. Firms that
are located nearer to the buyers and face lower trade costs, denoted by
τod, are more likely to get selected for more tasks. Moreover, the elastic-
ity of the likelihood of getting selected with respect to marginal costs or
trade costs is decreasing in ζ. That is, ∂ lnπ0

od(s,b)

∂ ln co(s)
=

∂ lnπ0
od(s,b)

∂ ln τod
= −ζ. With

lower ζ, Assumption 1 implies that high match-specific productivities are
more likely and the choice of supplier is less sensitive to other factors, i.e.,
its marginal cost and the trade cost faced by it. The shape parameter ζ
regulates the thickness of the right tails of the match-specific productivity
distribution. The lower ζ is, the higher is the likelihood of particularly
high draws of match-specific productivities. With higher likelihood of high
draws, the choice of supplier (according to equation (3.1)) is less sensitive
to marginal cost of the supplier, markup or trade costs.

In summary, this proposition channels the role of the upstream margin
— at any location d, firms with lower marginal costs are likely to be used
intensively by customers. The role of geography in the upstream margin
comes from the dependence of these probabilities on trade costs — firms
from o are less likely to be successful across potential customers at d if
o is farther, i.e., τod is higher. The tractable expressions for firm-to-firm
trade in Proposition 1 give rise to transparent estimating equations for the
model, to which I turn next.

Discussion. In other models of network formation (such as Lim (2018);
Huneeus (2020); Miyauchi (2021); Arkolakis et al. (2021); Bernard et al.
(2021); Eaton et al. (2022)), forces that regulate the extensive and intensive
margins of firm-to-firm trade are distinct. Consequently, those models
are not able to deliver a closed-form prediction for firm-to-firm trade that
uniquely features here. Both the extensive and intensive margins of firm-
to-firm trade are determined by attractiveness of suppliers. The extensive
margin then arises naturally as an outcome of discreteness of the number
of tasks in production. In other words, even with a positive probability of
supplying any one task, there is a positive probability of not being able to
supply any of the tasks because there are only a discrete number of tasks
to supply for.

4.3. A Multinomial Logit Model of Supplier Choice. I reformu-
late the economic model developed so far as a multinomial logit model
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of supplier choice for tasks of each of the firms and estimate it semi-
parametrically. Firm’s marginal costs are estimated as firm fixed effects and
bilateral origin-destination fixed effects correspond to a structural gravity
specification for estimating trade frictions. Trade frictions are then esti-
mated by projecting bilateral fixed effects on observables such as distance
and borders etc.

The econometric model can be motivated using the balls and bins prob-
lem. Consider the multinomial random variable characterized by a firm b

located at d throwing K balls (one for each of its tasks) into M bins. Each
of these bins corresponds to a potential supplier, denoted by s. The prob-
ability with which any of these balls falls into the bin indexed s is given by
the expression for π0

od(s, b) from Proposition 1. A realization of this random
variable consists of the proportion of balls that landed in each of the bins.
Since tasks are symmetric and the production function of firm b takes the
Cobb-Douglas functional form, the model counterpart of this realization is
the vector of cost shares of firm b across all suppliers in the economy. In
other words, the cost share of firm b that can be attributed to firm s stands
in for the relative frequency of firm s’s successes in getting selected across
firm b’s tasks. Since there are a discrete number of tasks, π0

od(s, b) is only
the expected share of tasks for which firm b uses the output of firm s. Any
given realization may deviate from this expected value for particularly high
or low realizations of match-specific productivities and from randomness in
buyer-seller encounters between firms.Therefore, making use of Proposition
1, the estimating equation can be expressed as a multinomial logit function:

E [πod(s, b)] =
co(s)

−ζτ−ζod∑
s′∈M co′(s′)−ζτ

−ζ
o′d

(4.3)

Formally, the estimation problem is as follows:

∆∗ = arg max
∆

1

M

∑
b∈M

ln fMNL (D | ∆) ,(4.4)

fMNL (D | ∆) ∝
∏
s∈M

(
co(s)

−ζτ−ζod∑
s′∈M co′(s′)−ζτ

−ζ
o′d

)πod(s,b)

,

where

∆ ≡
{{
co(s)

−ζ : s ∈M
}
,
{
τ−ζod : (o, d) ∈ J 2

}}
and
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D ≡
{
πod(s, b) : (s, b) ∈M2

}
.

The above specification with fixed effects however presents a problem of
perfect multicollinearity in regressors. Note that dummy variables associ-
ated with

{
co(s)

−ζ : s ∈Mo

}
and

{
τ−ζod : d ∈ J

}
are collinear for all such

locations o. Hence, I make the following normalizations so that these fixed
effects are identified up to scale. For all s ∈Mo, o ∈ J , let co(s) = coc̃o(s)

such that (∑
s∈Mo

c̃o(s)
−ζ

)−1/ζ

= 1.

This normalizes the power average of firms’ marginal costs relative to
their location average to unity. It separates within and between location
heterogeneity in firms’ marginal costs. The within location component is
captured by differences in c̃o(s) while the between location component is
captured by differences in co across locations.12

Discussion. One could draw an analogy by reinterpreting the Eaton and
Kortum (2002) model of trade between countries as the representative agent
in the destination country throwing infinitely many balls (one for each
commodity arranged on a continuum) into a finite number of bins (one for
each origin country). Since the bins are finite in number while balls are
infinitely many, sourcing probabilities coincide with aggregate trade shares
deterministically. In contrast, the model here is of trade between firms
where the customer firm throws a finite number of balls (one for each task)
into finitely many bins (one for every firm in the economy). Since both the
bins and balls are finitely many in number, conditional choice probabilities
do not determine firm-to-firm trade shares deterministically.

In related work, Eaton et al. (2013) also specify a multinomial likelihood
function for international trade between countries derived from a different
economic model and conduct estimation using pseudo-maximum likelihood
estimation à la Gourieroux et al. (1984). The dimensionality of their esti-
mation program is determined by the number of countries which is a much

12The between location component captures both differences in average marginal cost
between locations and also differences arising from having a higher number of firms at
one location than another. To see this clearly, note that if marginal costs are identical
across firms at location o, i.e., co(s) = c̄o . Then, co = M

−1/ζ
o c̄o, which depends on both

the number of firms and the average marginal cost.
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smaller number compared to the specification here where the dimensional-
ity is determined by the number of firms that runs into millions.

4.4. Estimating High-Dimensional Multinomial Logit Model. The
multinomial logit specification is problematic because of two reasons. On
one hand, firms’ marginal costs are endogenously determined and unob-
served. They are estimated semiparametrically as firm fixed effects. Since
there are a large number of firms in the economy, estimation of the would
typically require high-dimensional non-linear optimization over a very large
number of parameters to solve for the estimates. This can be computation-
ally infeasible using standard Newton methods when the number of fixed
effects runs into millions. On the other hand, estimation of a generalized
linear model with millions of fixed effects leads to incidental parameters
bias in the lower-dimensional estimands.

However, these issues are taken care of by appealing to several special
features of the multinomial likelihood function. First, estimates can be
obtained using the Poisson likelihood function with additional fixed effects
(see Baker (1994); Taddy (2015)). Second, Poisson likelihood estimation
automatically satisfies adding up constraints implied by the model (see
Fally (2015)). Third, Poisson likelihood specification allows solving for fixed
effects in closed-form (for example, see Hausman et al. (1984)). Finally,
subsequent estimation of trade frictions using bilateral fixed effects does not
suffer from the incidental parameters problem and hence can be conducted
through the conditional maximum likelihood approach.

4.4.1. Marginal Costs and Structural Gravity. The first order conditions
implied by the likelihood maximization problem in equation (4.4) can be
solved to obtain closed-form estimators for fixed effects as described in the
proposition below.

Proposition 2. The estimates from equation (4.4) are given by:

(
c̃o(s)

−ζ)∗ =

∑
b∈M πod(s, b)∑

s′∈Mo

∑
b∈M πod(s′, b)

∀s ∈M,(4.5) (
c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

)∗
=

1

Md

∑
b∈Md

πod (•, b) ∀(o, d) ∈ J 2(4.6)

where πod (•, b) ≡
∑

s∈Mo
πod (s, b).
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Proof. See Appendix C.2. �

The estimators for firm fixed effects in equation (4.5) neatly bridge the-
oretical predictions on firm-to-firm trade in equation (4.2) and empirical
regularities arising from the decomposition in equation (2.1). The decom-
position in equation (2.1) suggested that larger firms also tend to have
higher intensity of use. Conditional choice probabilities in equation (4.2)
predict that firms with low marginal costs are likely to have higher inten-
sity of use. Equation (4.5) shows that firms’ intensity of use is a sufficient
statistic for its marginal costs, albeit scaled with an elasticity ζ. In addi-
tion, the theoretical expression for bilateral origin-destination fixed effects
in equation (4.6) corresponds to a structural gravity specification. For any
pair of locations (o, d), the estimator for this specification is the simple av-
erage of the cost share across firms at d that can be attributed to purchase
of goods from firms in o. This is the empirical counterpart of sourcing
probabilities in equation (5.2).

4.4.2. Trade Frictions and Conditional Choice Probabilities. With firm fixed
effects out of the way, thanks to equation (4.5), trade frictions can now be
estimated by projecting bilateral origin-destination fixed effects (from equa-
tion (4.6)) on bilateral observables such as distance, borders etc., similar
to gravity regressions, with the following estimating equation:

E

[(
c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

)∗]
=

exp
(
ln
(
c−ζo
)

+X ′odβ
)∑

o′ exp
(

ln
(
c−ζo′
)

+X ′o′dβ
) .(4.7)

This delivers estimates of origin fixed effects
(
c−ζo
)∗ and trade frictions(

τ−ζod

)∗
= exp (X ′odβ

∗). The manner in which trade frictions are estimated
here differs from the standard approach of projecting aggregate trade flows
on distance and border dummies (for example, see Agnosteva et al. (2019)).
The dependent variable implied by the model is not aggregate trade flows
(for example, Santos Silva and Tenreyro (2006)) or aggregate trade shares
(as in Eaton et al. (2013)) but average trade share across buyers at the
destination. More specifically, the dependent variable 1

Md

∑
b∈Md

πod (•, b)
is an unweighted average of the sourcing share from o across all buyers
at a destination. While this is not comparable to aggregate trade flows, it
closely related to aggregate trade shares. In contrast to average trade shares
which is a simple average of sourcing shares across firms, the aggregate
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trade share is a weighted average of individual sourcing probabilities where
each individual buyer is weighted by its size. Note that measured aggregate
trade share can be expressed as

πod =
1

Md

∑
b∈Md

πod (•, b) +
Cov (πod(•, b), purchasesd(b))

1
Md

∑
b′∈Md

purchasesd(b′)
.(4.8)

To the extent that size of buyers is correlated with their sourcing from an
origin, aggregate trade shares bias the estimates of the trade frictions faced
by individual firms for the purposes of estimation here. Trade frictions are
estimated using gravity regressions. Table 4.1 reports estimated coefficients
for distance and border dummies in column (3) and compares them to
common methods in the trade literature in columns (1)-(2). Column (1) is
an atheoretical specification (as in Santos Silva and Tenreyro (2006)) that
is consistent with handling zeros in the data . Column (3) is a model-based
specification (as in Eaton et al. (2013)) and accommodates zeros in the
data. Column (3) is the specification that is implied by the model here.
Comparing (1) or (2) to (3) shows that using aggregate trade flows or shares
underestimates trade frictions for estimation of the model here.

Estimates of conditional choice probabilities are then obtained from firm
fixed effects and fitted shares from the gravity regressions. Formally, the
estimates of conditional choice probabilities are given by

π∗od(s, b) =
(
c̃o(s)

−ζ)∗ · π∗od(•, b),(4.9)

π∗od(•, b) =

(
c−ζo
)∗ (

τ−ζod

)∗
∑

o′∈J

(
c−ζo′
)∗ (

τ−ζo′d

)∗ .(4.10)

4.4.3. Trade Elasticity and Materials Share. Since the model satisfies struc-
tural gravity at the aggregate level (see Equation (5.2)) and the dispersion
of match-specific productivities ζ coincides with the elasticity of trade with
respect to trade costs, I calibrate the value of this parameter to 5 from me-
dian of the estimates of price elasticity in structural gravity equations (see
Head and Mayer (2014)). Materials shares α ≡ {αd : d ∈ J } are calibrated
using district-level production statistics (further details in Appendix C.3).
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Table 4.1. Gravity Regressions

salesod salesod
(

c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

)∗
(1): PPML (2): MPML (3): PPML

log(distance) -0.219 -0.712 -0.962
(0.042) (0.045) (0.045)

1{inter-state} -1.971 -2.125 -2.337
(0.105) (0.090) (0.088)

1{inter-district} -1.484 -1.852 -2.241
(0.117) (0.077) (0.068)

1{neighbor} 0.562 0.251 0.512
(0.053) (0.052) (0.048)

Fixed Effects:
Origin × Year X X X
Destination × Year X X X

Pseudo R2 0.945 0.435 0.488
Squared Correlation 0.953 0.793 0.898
# observations 1412 × 5 1412 × 5 1412 × 5

Note. Standard errors in parentheses, two-way clustered by origin–
year and destination–year. Observations pertain to all bilateral pairs
between 141 districts for 5 years. The distance between district pairs is
calculated as the distance between their centroids. A district’s distance
to itself is calculated as the radius of the circle with the same area as
the district. Column (1) is estimated using a Poisson PML specification
with aggregate trade flows as the dependent variable as in Santos Silva
and Tenreyro (2006). Column (2) is estimated using a multinomial PML
specification with aggregate trade shares as the dependent variable as
in Eaton et al. (2013). Column (3) is estimated using a multinomial
PML specification from equation (4.7). Two-way clustering is done as
in Cameron et al. (2011). Pseudo R2 is calculated as in McFadden
(1974).

5. Aggregation and Counterfactual Analysis for Large
Network Economies

In this section, I address nuances of aggregation in a large network econ-
omy and propose a procedure to analyze effects of policy changes through
the lens of the model. While finite economies have aggregate uncertainty,
continuum approximations of finite economies inform us about the expected
values of aggregate objects of interest. If the economy were indeed a con-
tinuum, these expected values would coincide with observed aggregate ob-
jects. The model economy that generates the data is not a continuum one
and hence aggregate data does not coincide with their expected values.
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Even so, these expected values are informative about the distribution of
aggregate objects that come from a finite economy model and especially
when these distributions do not have a closed-form characterization and
simulation-based approximations can be computationally infeasible.13 The
model in this paper features rich network interactions between a finite num-
ber of firms. Interdependent decisions on input sourcing made by this finite
number of firms leads to non-degeneracy of the distribution of aggregate
outcomes. Nonetheless, to be able to solve for expected values, I consider a
limiting economy which serves as a continuum approximation of the finite
economy.

In particular, I adopt the large economy model due to Al-Najjar (2004)
which is characterized by a sequence of finite but increasingly large economies
{Et : t ∈ N} that progressively discretizes the unit continuum.14 Along the
sequence as the economy becomes more discretized, I make additional as-
sumptions so that the model has a well-defined limit. The probability of
meeting potential suppliers increases, i.e., limt→∞ λt = ∞, but at a rate
slower than that at which the economy is discretized, i.e., limt→∞

λt
Mt

= 0.
At the same time, match-specific productivities are drawn from stochasti-
cally worse distributions as limt→∞ a0,t = 0. While the number of potential
suppliers grows arbitrarily large and the match-specific productivity asso-
ciated with any single supplier is drawn from a stochastically worse distri-
bution, the limit is well behaved because the probability of encountering
a supplier with match-specific productivity greater than value a does not
change in the limiting economy, i.e., limt→∞ λta

ζ
0,t = 1. Furthermore, the

economy becomes discretized in a manner such that the proportion of firms
and households at every location is non-zero and finite.15

I now proceed to characterize effective prices p (σ) and wages w (σ) in
equilibrium in the limiting economy, i.e., limt→∞ Et.

13A similar principle is adopted in recent granular models of exporter entry in Eaton
et al. (2013), of multinational entry in Head and Mayer (2019), and of commuting
choice in Dingel and Tintelnot (2020). I show later in this section that this approach
is theoretically consistent even with complex network interactions between firms which
features in the model here.
14In Appendix D.1, Definition 4 provides a formal description of such a sequence of
economies.
15In Appendix D.1, Assumption 2 states this formally. This kind of assumption was
shown to have a well-defined limit by Kortum (1997) and put to use for a similar purpose
by Oberfield (2018).
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5.1. Market Access & Distributions of Effective Prices. With limit
pricing, the distribution of effective prices faced by a firm for any of its
tasks is characterized by the distribution of the offer with the second low-
est effective cost to the supplier. The following proposition provides the
distribution of effective prices in the limiting economy.

Proposition 3. For any realization of σ0, the effective prices of materials
used by firm b to accomplish any task, pd(b, k) converge to the following
distribution as t→∞:

Fpd (p) = 1− e−Adpζ − Adpζe−Adp
ζ

,

where A ≡ {Ad : d ∈ J } is the unique positive solution to the following
fixed point problem:

Ad =
∑
o∈J

τ−ζod z
ζ
oµow

−ζ(1−αo)
o Γ

(
2− αo

K

)K
Aαoo ,(5.1)

where µo denotes the proportion of firms at o and zζo = E
[
zo (s)ζ

]
.16

Proof. See Appendix D.2. �

While the effective price faced by individual firms varies across realiza-
tions of σ1, the cross-sectional distribution in the limit economy does not.
These distributions are parametrized by a scale parameter Ad and a shape
parameter ζ. Market access, given by Ad, is a key object of interest be-
cause it summarizes the probabilistic access of firms at d to inputs from
all locations. The functional form suggests that firms at a location with
higher market access face stochastically lower effective prices. Specifically,
if Ad > Ad′ , the distribution Fpd′ (·) first-order stochastically dominates
Fpd (·).

Focussing on equation (5.1), market access Ad is a trade friction (τ−ζod )
weighted sum of the attractiveness of all locations o ∈ J , i.e., nearer loca-
tions receive higher weights because of lower trade costs τod and vice versa.
The attractiveness of a location o for sourcing inputs is determined by four
factors: (a) density of firms µo; (b) average productivity among firms zζo ;
(c) its own market access Ao; and (d) wages wo. Locations with higher
density, higher average productivity, higher market access or lower wages
are more attractive. In addition, the attractiveness of a location o is more

16The gamma function Γ (·) is defined as Γ(x) =
∫∞
0
e−xmx−1dm.
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sensitive to its market access Ao and less so to wages wo if materials share
of costs αo is higher at o and vice versa.

Although the effective price is characterized by the distribution of the
offer with the second lowest effective cost to the supplier, it is still the
supplier with the lowest effective cost that is selected. The distribution
of markups faced by the firm is characterized by that of the ratio of the
second lowest to the lowest effective costs incurred by the second best and
the best suppliers respectively. In addition, every firm encounters at least
two potential suppliers with probability approaching one in the limiting
econony and this ensures that markups are well-behaved.17

5.2. Relative Wages in Trade Equilibrium. To define relative wages
in trade equilibrium, I begin by characterizing sourcing probabilities, that
is, the probability with which any buyer sources inputs from location o

for any one its tasks. Conditional choice probabilities of supplier choice
naturally aggregate to sourcing probabilities, that is, sourcing probabilities
can be obtained as the sum of conditional choice probabilities associated
with all the suppliers located at o. Conditional choice probabilities from
Proposition 1 together with properties of the cross-sectional distributions
of effective prices from Proposition 3 lead to the next proposition. This
proposition characterizes sourcing probabilities across origins by firm b,
denoted by π0

od (•, b).

Proposition 4. For any realization of σ0, the probability with which any
firm b located in d selects a supplier from o for any given task is

(5.2) π0
od(•, b) =

µow
−ζ(1−αo)
o zζoΓ

(
2− αo

K

)K
Aαoo τ

−ζ
od

Ad
.

Proof. See Appendix D.4. �

Sourcing probabilities in equation (5.2) hark back to market access de-
fined in equation (5.1). Recall that market access is a weighted sum of
attractiveness of all locations for a particular destination. Equation (5.2)
suggests the probability with which a buyer from d sources intermediate
inputs from o for any one of its tasks is given by the contribution of location
o towards market access of firms at d. Firms at d are more likely to source

17For any firm b, P (|Sd(b)| < 2) =
(

1− λt
Mt

)Mt

+
(
Mt

1

) (
λt
Mt

)(
1− λt

Mt

)Mt−1
. It then

follows from Assumption 2 that limt→∞ P (|Sd(b)| < 2) = 0.
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inputs from o if there are a larger number of firms at o (higher µo), wage wo
is lower, average productivity zζo is higher or firms at o have better market
access (higher Ao).

These sourcing probabilities are independent of the identity of the buyer
at the destination and therefore can be written as π0

od(•,−). In the limit-
ing economy, the average sourcing share across all buyers in the limiting
economy coincides with the expected value given by equation (5.2). This
however does not mean that the sourcing shares across individual buyers
are identical either in the finite economy or the limiting economy. Buyers
at a destination may very well differ in their sourcing shares whether in the
finite economy or the limiting economy. Formally, the law of large numbers
implies that in the limiting economy,

(5.3)
1

Md

∑
b∈Md

πod(•, b)
t→∞−−−→ π0

od(•,−).

I now turn to characterizing relative wages in the trade equilibrium in
the limiting economy. The following proposition shows that relative wages
in the limiting economy can be obtained as a solution to the system of
equations (5.4).

Proposition 5. For any realization of σ ≡ {σ0, σ1}, w ≡ {wd : d ∈ J }
solves the following system of equations:

woLo
1− αo

=
∑
d∈J

π0
od (•,−)

wdLd
1− αd

.(5.4)

Further, for any σ and σ′ such that σ0 = σ′0 and σ1 6= σ′1:

(5.5) w = w′.

Proof. See Appendix D.5. �

The above proposition also shows that, for any given realization of σ0,
relative wages are invariant across all networks realized for all values of σ1.
This concludes the characterization of equilibrium wages and brings us to
the definition of the trade equilibrium below.18

18Dingel and Tintelnot (2020) propose a granular model of commuting choice where
non-degeneracy of counterfactual outcomes arises from a finite number of individuals
making residential and workplace decisions. A similar problem of indeterminacy of the
trade equilibrium across locations arises in their setting.
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Definition 1. For any given σ0, the trade equilibrium in the limiting econ-
omy is defined as the vector of wages w such that (a) market access at
each location satisfies equation (5.1); (b) trade shares coincide with sourc-
ing probabilities in equation (5.2) and (c) the market clearing condition in
equation (5.4) holds.

Discussion. It is worthwhile to note that zero trade flows have different
interpretations in the continuum economy versus the finite economy. In
the continuum economy, zero trade flows between locations are rationalized
by infinite trade costs. It then follows that locations that do not trade in
the initial state, would not trade in any counterfactual scenario. In the
finite economy, zero trade flows are an outcome of granularity and do not
imply infinite trade costs (finite number of trials of low probability events
imply a positive probability of zero successes). Therefore, observing zero
trade flows in the initial state does not preclude location pairs from trading
in counterfactual scenarios. Out of 1412 location pairs in the data, around
40% do not trade. The finite economy approach does not impose zero trade
flows for these location pairs in counterfactual scenarios.

Furthermore, trade is driven by comparative advantage as in Ricardian
trade models (Eaton and Kortum (2002); Bernard et al. (2003)). However,
the model accommodates heterogeneity in consumer preferences and tech-
nological requirements across firms, comparative advantage is determined
by each consumer and firm demanding inputs rather than at the level of
each market. This allows the model to rationalize patterns of firm partic-
ipation in international trade within the Ricardian framework which are
typically relegated to new trade theory models such as Melitz (2003) and
Eaton et al. (2011). For example, Eaton et al. (2011) state that the Ricar-
dian framework with a fixed range of commodities used in Bernard et al.
(2003) does not deliver the feature that a larger market attracts more firms
as observed in French data.

In this context, two facts are worth noting about sourcing probabilities in
equation (5.2). First, the elasticity with respect to trade costs comes from
the shape parameter of match-specific productivities ζ. This unlinks the
dispersion in idiosyncratic productivities from the trade elasticity. Second,
they are increasing in the density of firms at the origin µo. This feature
introduces a probabilistic notion of “love of variety” within the Ricardian
framework. It also implies that zeros in firms’ sales to destinations are an
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outcome of granularity and do not reflect more productive firms’ ability to
sell at a destination after incurring fixed costs.

5.3. Goodness of Fit of the Continuum Approximation. I now turn
to assess the fit of the limiting economy which serves as a continuum ap-
proximation of the finite economy. In particular, I evaluate the approxi-
mation based on it ability to replicate empirical regularities documented
in Section 2. I start by computing equilibrium wages in the limiting econ-
omy using equation (5.4). To do so requires the knowledge of true values of
sourcing probabilities π0

od (•,−). In their absence, we can leverage equation
(5.3) to obtain a consistent estimate of these probabilities from equation
(4.7). Fitted shares from gravity regressions obtained in equation (4.10)
could be used for computing equilibrium wages as per equation (5.4).

A key finding in Proposition 2 is that the fixed effect estimate for a
firm s with the multinomial likelihood specification is in fact its measured
intensity of use,

∑
b∈M πod(s, b). Fixed effect for firm s is the product of

the within location component c̃o(s)−ζ and the between location compo-
nent c−ζo . Equation (4.5) provides a estimator for the former. The latter is
estimated in column (3) in Table 4.1 using a multinomial likelihood speci-
fication. By properties of the multinomial likelihood, this estimate is given
by
∑

s∈Mo

∑
b∈M πod (s, b). Together, they imply that the fixed effect esti-

mate for firm s can be expressed as
(
co(s)

−ζ)∗ =
∑

b∈M πod(s, b). According
to the model (in equation (4.2)), this fixed effect is related marginal costs
as co(s)−ζ . This directly features in equation (4.9) and plays a vital role
in enabling the model to reproduce the empirical regularities. Apart from
this, goodness of fit is governed by two factors. First, imperfect correlation
between data and fitted values in Table 4.1, Column (3) causes differences
in πod(•,−) and π∗od(•,−). Second, estimating equation (4.3) is parsimo-
niously specified as it does not allow heterogeneity in trade frictions faced
by firms. While the data is at the firm-to-firm level, fixed effects are only at
the firm and origin–destination level. Third, equilibrium wages computed
for the limiting economy differ from data. These differences capture the
granularity of data which are assumed away in the limiting economy. Fi-
nally, estimates of material share of costs α and dispersion in match-specific
productivities ζ also affect predicted values.

Table 5.1 reports how the estimated model performs in comparison to
the empirical regularities documented in Section 2. Table 5.1 shows that
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Table 5.1. Model Fit: Margins of Firms’ Sales

(1) (2) (3)

Data:
Intensity of Use 81% 93% 83%
Average Customer Size 19% 7% 17%

Model:
Intensity of Use 75% 65% 68%
Average Customer Size 25% 35% 32%

Fixed Effects:
Seller×Year — X —
Origin×Year — — X

Data Level:
Seller×Year • — —
Seller×Destination×Year — • —
Origin×Destination×Year — — •

# observations 5.6×106 18.2×106 58,390

Note. Column (1) reports the contribution of factors: intensity of
use and average customer size, to the variance of firms’ sales (as per
equation (2.1)) in the data (top panel) and in the model (bottom panel).
Column (3) reports the contribution of those factors to the variance
of firms’ destination-specific sales (as per equation (A.2)). Column
(5) reports the same for trade flows between districts (as per equation
(A.3)).

the intensity of use margin explains a vast majority of the variation in
firms’ sales in the estimated model as is the case in the data. This is true
across all columns in the data qualitatively. Quantitatively, all columns
except (3) provide a reasonably good fit. In column (3), the loss of fit can
be attributed to the second factor.

5.4. Computation of Counterfactual Outcomes. I operationalize Propo-
sitions 3, 4, and 5 for counterfactual analysis by expressing them in changes.
The following definition states that and motivates the algorithm for eval-
uating counterfactual outcomes in response to shocks that derive from a
change in the aggregate state σ0 to σ′0.

Definition 2. For any change in aggregate state σ0 to σ′0, equilibrium
change in wages ŵ ≡ {ŵd : d ∈ J } and welfare V̂ ≡

{
V̂d : d ∈ J

}
are

characterized the following system of equations for all realizations of σ1 or
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σ′1:
19

Âd =
∑
o

π0
od (•,−) δ̂odŵ

−ζ(1−αo)
o Âαoo

̂π0
od (•,−) =

δ̂odŵ
−ζ(1−αo)
o Âαoo

Âd
ŵowoLo
1− αo

=
∑
d

̂π0
od (•,−)π0

od (•,−)
ŵdwdLd
1− αd

V̂d = ŵdÂ
1/ζ
d

where δ̂ ≡
{
δ̂od : (o, d) ∈ J 2

}
is function of shocks that capture the resul-

tant effect of change from σ0 to σ′0.

With this definition of the equilibrium in changes in the limiting economy,
aggregate and firm-level counterfactual outcomes in the limiting economy
are computed in three steps. First, I evaluate aggregate and firm-level
outcomes such as intensity of use and sales in the limiting economy in the
initial state. Second, I evaluate changes in aggregate outcomes when going
from the initial state to the counterfactual state. This is done using a tâ-
tonnement algorithm similar to Alvarez and Lucas (2007) and Dekle et al.
(2008). Finally, I evaluate aggregate and firm-level outcomes in the limiting
economy in the counterfactual state. Details of the procedure are stated in
Appendix D.7. The counterfactual outcomes thus computed for the lim-
iting economy correspond to the expected value of outcomes for the finite
economy in the counterfactual state since the limiting economy is a contin-
uum approximation of the finite economy. Having set out the procedure to
compute counterfactual outcomes, I turn next to evaluating the impact of
the 2017 GST reform on Indian firm-to-firm production networks.20

6. The Impact of 2017 GST Reform on Indian Firm-to-Firm
Production Networks

When India adopted the VAT in the early 2000s, its implementation
was uneven. India has a federal system of government — one that divides
19The expression for welfare changes is derived in Appendix D.6.
20Appendix E illustrates how the model can be used to assess the consequences of micro-
and macro- shocks to the spatial economy through two other quantitative applications:
one considering uniform decline in cost of trading outside own district and the other
studying improvements in allocative efficiency following neutralization of firm-level dis-
tortions.
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the powers of government between the national and the state governments.
Commercial taxation being overseen by the state government, individual
states implemented their own respective VAT systems. This resulted in
over 30 such systems coming into place across India. While this increased
formality and tax compliance, it had the unintended consequence of re-
gional segregation in organization of production, for three reasons.

First, VAT increases formality because firms prefer to source inputs from
other firms within the system to be able to collect tax credits on input
purchases. Consequently, individual firms preferred to source inputs from
firms within their own state’s VAT system as opposed to one in a different
state or VAT system. Second, the national government levied a sales tax
on firm-to-firm transactions across state borders which made more efficient
suppliers of intermediate inputs relatively more expensive if they were in
a different state. Third, there were cumbersome inspections, especially
at state borders that caused logistical delays. In July 2017, the federal
government in India abolished all state VAT systems and introduced the
Goods and Services Tax to serve as a single national VAT system. This
eliminated sales taxes on inter-state movement of goods and harmonized
the VAT structure across states in an attempt to reduce such barriers to
intra-national trade.

In this context, I consider the impact of a 10% decline in trade costs
between district pairs crossing state borders to understand the potential
impact of the GST reform on production networks in intra-national trade
through the lens of the model. Changes in firms’ sales to other firms can be
decomposed into changes in its intensity of use and changes in its average
customer size as follows:

∆Sales
Sales

=

∆% Upstream Margin︷ ︸︸ ︷
∆Intensity of Use
Intensity of Use

+
∆Average Customer Size
Average Customer Size︸ ︷︷ ︸

∆% Downstream Margin

+
∆Intensity of Use
Intensity of Use

× ∆Average Customer Size
Average Customer Size︸ ︷︷ ︸

Second Order Term

To determine the relative contribution of the upstream and downstream
margins to the dispersion in changes in firms’ sales, I apply a Shapley
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decomposition (see Shorrocks (2013)). The Shapley decomposition deter-
mines the expected marginal contribution of each of these margins and the
interaction term to the total variation in changes in firms’ input sales; in-
tuitively, it assigns the fraction of the R2 of a regression that is due to each
set of explanatory variables. Columns (1) and (4) in Table 6.1 report the
results of this decomposition. The top row suggests that over half of the
variation in changes in firms’ sales can be attributed to endogenous changes
in the network or the upstream margin while a third can be attributed to
the downstream margin. When considering variation among firms within
each state, the upstream margin accounts for over a third of the variation.
The lower contribution is because the incidence of the shock is at the state
borders, so the contribution of the upstream margin is not as high as that
seen in the top row.

A similar decomposition can also be made at a more disaggregated level
for firms’ destination-specific sales and at a more aggregated level for trade
flows between districts. Columns (2) and (5) report the results of the de-
composition for changes in firms’ destination-specific sales. Around three-
fifths of the variation in changes in firms’ destination-specific sales can be
attributed to the endogenous changes in network structure while the down-
stream margin accounts for under one-third of the variation. Columns (3)
and (6) report the results of the decomposition for changes in trade flows
between districts. Around two-thirds of the variation in changes in trade
flows can be attributed to the endogenous changes in network structure
while the downstream margin accounts for a fifth of the variation. Figure
6.1 depicts the relative contribution of changes in the upstream margin
with respect to changes in the downstream margin towards changes in
destination-specific sales of firms across districts.

A few points are in order. First, this decomposition is of sales to other
firms and so would not exist in models without input-output linkages.
Second, in models with exogenous production networks, i.e., with Cobb-
Douglas technologies between firms, intensity of use does not respond to
shocks. The large variation in the upstream margin would therefore be
missing. Finally, in models with non-Cobb–Douglas technologies that en-
dogenize the intensity with which existing suppliers are used but where
the extensive margin of firm-to-firm trade does not respond to shocks, the
explanatory power of the upstream margin would be understated. This
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Table 6.1. Margins of Changes in Firms’ Sales

∆% Upstream Margin ∆% Downstream Margin

(1) (2) (3) (4) (5) (6)

Overall 57.3% 60.4% 65.7% 33.2% 32.1% 20.1%

Gujarat 36.9% 48.9% 60.9% 44.9% 42.8% 23.9%
Maharashtra 40.9% 62.5% 60.4% 29.5% 30.9% 24.2%
Odisha 36.7% 56.9% 70.4% 45.5% 29.8% 15.5%
Tamil Nadu 40.0% 61.5% 60.2% 33.9% 33.0% 24.3%
West Bengal 40.0% 61.0% 61.5% 30.9% 30.1% 23.7%

Data Level:
Seller×Year • — — • — —
Seller×Destination×Year — • — — • —
Origin×Destination×Year — — • — — •

Note. This table reports the contribution of changes in upstream and
downstream margins to the variation in changes in firms’ sales (columns
(1) and (4)), firms’ destination-specific sales (columns (2) and (5)), and
trade flows (columns (3) and (6)). These are calculated using a Shapley
decomposition overall (top row) and when firm-year observations are
split by state.

is because changes in intensity of use accrue not only from changes in in-
tensity of use by existing customers but also from changes in the number
of customers. By allowing for substitution across both existing suppliers
and new potential suppliers, the model is not only more general but also
more tractable since it does not require calibrating the extensive margin of
firm-to-firm trade to observed data.

7. Conclusion

This paper developed a new framework for analyzing aggregate and firm-
level consequences of shocks to the spatial economy when customer-supplier
linkages between firms evolve endogenously. I documented that Indian
firms with higher sales to other firms tend to be used more intensively
by other firms and tend to have larger customers. Firms’ intensity of use
explains a vast majority of variation in their sales to other firms. The model
explains this through a single dimension of firm heterogeneity: production
costs. Firms with low production costs are used more intensively by other
firms and since their customers use cheaper inputs intensively, they lower
production costs and become larger themselves. Furthermore, firms differ
not only in their relative position in the production network, but also across
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Figure 6.1. Margins of Changes in Firms’
Destination-Specific Sales

Maharashtra

Gujarat

Tamil Nadu

Odisha
West Bengal

Note. Districts are shaded by contribution of changes in upstream
margin relative to that of downstream margin in destination-specific
sales of firms in them. Darker shades reflect lower values. For the me-
dian district in Maharashtra, the relative contribution of the upstream
margin is 1.85 times that of the downstream margin, in Gujarat it is
1.44 times, in Tamil Nadu 1.5, in Odisha 2.18 and in West Bengal 1.4.
The data pertains to 2015-2016. Relative areal extent of states is not
up to scale.
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space thereby facing different wages when hiring labor as well as different
trade costs when sourcing inputs from potentially multiple locations.

Interdependence of link formation between firms in general equilibrium
models of network formation typically restrains the use of simulation-based
estimation to a realistic setting with very large numbers of firms. On the
contrary, the procedure developed here makes estimation and counterfac-
tual analysis both scalable and tractable. Firms’ intensity of use was shown
to be a sufficient statistic for their production costs — a key endogenous
object of interest. As a result, estimation did not necessitate full solution of
the model to obtain the distribution of production costs. Besides, counter-
factual analysis did not require large-scale simulation either and was done
under a large economy approximation to resolve aggregate uncertainty. In
an empirical application motivated by the 2017 GST reform in India, I
show that following a 10% decline in inter-state border frictions over half
of the model-implied variation in changes in firms’ sales to other firms can
be explained by endogenous changes in the network structure.

The framework developed here can be directly applied to answer ques-
tions that could be broadly classified as market integration, technology
improvements, and improvement in allocative efficiency; nevertheless, it
can serve as a fertile baseline model to answer a wider variety of questions
where changes in the production network across firms can lead to aggre-
gate consequences. In pursuit of parsimonious parametrization, the model
abstracts from several realistic features of the network economy such as sec-
toral heterogeneity in technological requirements, supply chain dynamics,
industry dynamics of entry and exit, heterogeneous search frictions, and
richer bargaining environment between buyers and suppliers all of which
are potential avenues for future research.

Acemoglu, D. and P. D. Azar (2020): “Endogenous Production Networks,” Econo-
metrica, 88, 33–82.

Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi (2012):
“The Network Origins of Aggregate Fluctuations,” Econometrica, 80, 1977–2016.

Agnosteva, D. E., J. E. Anderson, and Y. V. Yotov (2019): “Intra-national
Trade Costs: Assaying Regional Frictions,” European Economic Review, 112, 32 – 50.

Al-Najjar, N. I. (2004): “Aggregation and the Law of Large Numbers in Large
Economies,” Games and Economic Behavior, 47, 1 – 35.

Allen, T., C. Arkolakis, and X. Li (2020): “On the Equilibrium Properties of
Network Models with Heterogeneous Agents,” Working Paper 27837, National Bureau
of Economic Research.

Alvarez, F. and R. E. Lucas (2007): “General Equilibrium Analysis of the Eaton-
Kortum model of International Trade,” Journal of Monetary Economics, 54, 1726 –
1768.

37



Antràs, P. and A. de Gortari (2020): “On the Geography of Global Value Chains,”
Econometrica, 88, 1553–1598.

Antràs, P., T. C. Fort, and F. Tintelnot (2017): “The Margins of Global Sourc-
ing: Theory and Evidence from U.S. Firms,” American Economic Review, 107, 2514–
64.

Arkolakis, C. (2016): “ A Unified Theory of Firm Selection and Growth,” The Quar-
terly Journal of Economics, 131, 89–155.

Arkolakis, C., F. Huneeus, and Y. Miyauchi (2021): “Spatial Production Net-
works,” Working Paper, Yale University.

Armenter, R. and M. Koren (2014): “A Balls-and-Bins Model of Trade,” American
Economic Review, 104, 2127–51.

Atkin, D. and A. K. Khandelwal (2020): “How Distortions Alter the Impacts of
International Trade in Developing Countries,” Annual Review of Economics, 12, 213–
238.

Axtell, R. L. (2001): “Zipf Distribution of U.S. Firm Sizes,” Science, 293, 1818–1820.
Baker, S. G. (1994): “The Multinomial-Poisson Transformation,” Journal of the Royal

Statistical Society. Series D (The Statistician), 43, 495–504.
Baqaee, D. R. and E. Farhi (2019a): “The Macroeconomic Impact of Microeconomic

Shocks: Beyond Hulten’s Theorem,” Econometrica, 87, 1155–1203.
——— (2019b): “Networks, Barriers, and Trade,” Working Paper 26108, National Bu-

reau of Economic Research.
——— (2020): “Productivity and Misallocation in General Equilibrium,” The Quarterly

Journal of Economics, 135, 105–163.
Bernard, A., E. Dhyne, G. Magerman, K. Manova, and A. Moxnes (2021):

“The Origins of Firm Heterogeneity: A Production Network Approach,” Working
Paper, Universite Libre de Bruxelles.

Bernard, A. B., J. Eaton, J. B. Jensen, and S. Kortum (2003): “Plants and
Productivity in International Trade,” American Economic Review, 93, 1268–1290.

Bigio, S. and J. LaO (2020): “Distortions in Production Networks,” The Quarterly
Journal of Economics, 135, 2187–2253.

Blaum, J., C. Lelarge, and M. Peters (2018): “The Gains from Input Trade
with Heterogeneous Importers,” American Economic Journal: Macroeconomics, 10,
77–127.

Boehm, J. and E. Oberfield (2020): “Misallocation in the Market for Inputs: En-
forcement and the Organization of Production,” The Quarterly Journal of Economics,
135, 2007–2058.

Caliendo, L. and F. Parro (2014): “Estimates of the Trade and Welfare Effects of
NAFTA,” The Review of Economic Studies, 82, 1–44.

Caliendo, L., F. Parro, and A. Tsyvinski (2017b): “Distortions and the Struc-
ture of the World Economy,” Working Paper 23332, National Bureau of Economic
Research.

Cameron, A. C., J. B. Gelbach, and D. L. Miller (2011): “Robust Inference With
Multiway Clustering,” Journal of Business and Economic Statistics, 29, 238–249.

Carvalho, V. M. and N. Voigtlander (2014): “Input Diffusion and the Evolution of
Production Networks,” Working Paper 20025, National Bureau of Economic Research.

Chaney, T. (2014): “The Network Structure of International Trade,” American Eco-
nomic Review, 104, 3600–3634.

——— (2018): “The Gravity Equation in International Trade: An Explanation,” Journal
of Political Economy, 126, 150–177.

Costinot, A. and A. Rodríguez-Clare (2014): Trade Theory with Numbers: Quan-
tifying the Consequences of Globalization, Elsevier, vol. 4 of Handbook of International
Economics, 197–261.

38



Dekle, R., J. Eaton, and S. Kortum (2008): “Global Rebalancing with Gravity:
Measuring the Burden of Adjustment,” IMF Staff Papers, 55, 511–540.

Demir, B., A. C. Fieler, D. Xu, and K. K. Yang (2021): “O-Ring Production
Networks,” Working Paper 28433, National Bureau of Economic Research.

Dhyne, E., A. K. Kikkawa, and G. Magerman (2022): “Imperfect Competition in
Firm-to-Firm Trade,” Journal of the European Economic Association.

Dingel, J. I. and F. Tintelnot (2020): “Spatial Economics for Granular Settings,”
Working Paper 27287, National Bureau of Economic Research.

Donaldson, D. (2015): “The Gains from Market Integration,” Annual Review of Eco-
nomics, 7, 619–647.

Eaton, J. and S. Kortum (2002): “Technology, Geography, and Trade,” Economet-
rica, 70, 1741–1779.

Eaton, J., S. Kortum, and F. Kramarz (2011): “An Anatomy of International
Trade: Evidence From French Firms,” Econometrica, 79, 1453–1498.

——— (2022): “Firm-to-Firm Trade: Imports, Exports, and the Labor Market,” Work-
ing Paper 29685, National Bureau of Economic Research.

Eaton, J., S. Kortum, and S. Sotelo (2013): International Trade: Linking Micro
and Macro, Cambridge University Press, vol. 2 of Econometric Society Monographs,
329–370.

Fally, T. (2015): “Structural Gravity and Fixed Effects,” Journal of International
Economics, 97, 76 – 85.

Fernandes, A. M., P. J. Klenow, S. Meleshchuk, D. Pierola, and
A. Rodríguez-Clare (2018): “The Intensive Margin in Trade,” Working Paper
25195, National Bureau of Economic Research.

Gaubert, C. and O. Itskhoki (2021): “Granular Comparative Advantage,” Journal
of Political Economy, 129, 871–939.

Gourieroux, C., A. Monfort, and A. Trognon (1984): “Pseudo Maximum Like-
lihood Methods: Theory,” Econometrica, 52, 681–700.

Hausman, J., B. H. Hall, and Z. Griliches (1984): “Econometric Models for Count
Data with an Application to the Patents-R & D Relationship,” Econometrica, 52,
909–938.

Head, K. and T. Mayer (2014): “Gravity Equations: Workhorse,Toolkit, and Cook-
book,” in Handbook of International Economics, ed. by G. Gopinath, E. Helpman,
and K. Rogoff, Elsevier, vol. 4 of Handbook of International Economics, 131 – 195.

——— (2019): “Brands in Motion: How Frictions Shape Multinational Production,”
American Economic Review, 109, 3073–3124.

Hopenhayn, H. A. (1992): “Entry, Exit, and firm Dynamics in Long Run Equilibrium,”
Econometrica, 60, 1127–1150.

Hotz, V. J. and R. A. Miller (1993): “Conditional Choice Probabilities and the
Estimation of Dynamic Models,” The Review of Economic Studies, 60, 497–529.

Hsieh, C.-T. and P. J. Klenow (2009): “Misallocation and Manufacturing TFP in
China and India,” The Quarterly Journal of Economics, 124, 1403–1448.

Huang, H., K. Manova, O. Perelló, and F. Pisch (2022): “Firm Heterogeneity
and Imperfect Competition in Global Production Networks,” Working Paper, Uni-
versity College London.

Huneeus, F. (2020): “Production Network Dynamics and the Propagation of Shocks,”
Working Paper, Central Bank of Chile.

Jones, C. I. (2011): “Intermediate Goods and Weak Links in the Theory of Economic
Development,” American Economic Journal: Macroeconomics, 3, 1–28.

——— (2013): Misallocation, Economic Growth, and Input–Output Economics, Cam-
bridge University Press, vol. 2 of Econometric Society Monographs, 419–456.

39



Jovanovic, B. (1982): “Selection and the Evolution of Industry,” Econometrica, 50,
649–670.

Klenow, P. and A. Rodríguez-Clare (1997): “The Neoclassical Revival in Growth
Economics: Has It Gone Too Far?” in NBER Macroeconomics Annual 1997, Volume
12, National Bureau of Economic Research, Inc, NBER Chapters, 73–114.

Klette, T. J. and S. Kortum (2004): “Innovating Firms and Aggregate Innovation,”
Journal of Political Economy, 112, 986–1018.

Kortum, S. (1997): “Research, Patenting, and Technological Change,” Econometrica,
65, 1389–1419.

Lim, K. (2018): “Endogenous Production Networks and the Business Cycle,” Working
Paper, University of Toronto.

Liu, E. (2019): “Industrial Policies in Production Networks,” The Quarterly Journal of
Economics, 134, 1883–1948.

Luttmer, E. G. J. (2007): “Selection, Growth, and the Size Distribution of Firms,”
The Quarterly Journal of Economics, 122, 1103–1144.

McFadden, D. (1974): “Conditional Logit Analysis of Qualitative Choice Behavior,”
Frontiers in Econometrics, 105–142.

Melitz, M. J. (2003): “The Impact of Trade on Intra-Industry Reallocations and
Aggregate Industry Productivity,” Econometrica, 71, 1695–1725.

Menzel, K. (2022): “Strategic Network Formation with Many Agents,” Working Pa-
pers, New York University.

Miyauchi, Y. (2021): “Matching and Agglomeration: Theory and Evidence from Japan-
ese Firm-to-Firm Trade,” Working Paper, Boston University.

Oberfield, E. (2018): “A Theory of Input-Output Architecture,” Econometrica, 86,
559–589.

Restuccia, D. and R. Rogerson (2008): “Policy Distortions and Aggregate Produc-
tivity with Heterogeneous Establishments,” Review of Economic Dynamics, 11, 707
– 720.

Rust, J. (1987): “Optimal Replacement of GMC Bus Engines: An Empirical Model of
Harold Zurcher,” Econometrica, 55, 999–1033.

Santos Silva, J. and S. Tenreyro (2006): “The Log of Gravity,” The Review of
Economics and statistics, 88, 641–658.

Shorrocks, A. F. (2013): “Decomposition Procedures for Distributional Analysis: A
Unified Framework Based on the Shapley Value,” The Journal of Economic Inequality,
11, 99–126.

Swiecki, T. (2017): “Intersectoral Distortions and the Welfare Gains from Trade,”
Journal of International Economics, 104, 138 – 156.

Taddy, M. (2015): “Distributed Multinomial Regression,” The Annals of Applied Sta-
tistics, 9, 1394–1414.

Taschereau-Dumouchel, M. (2020): “Cascades and Fluctuations in an Economy
with an Endogenous Production Network,” Working Paper, Cornell University.

Tintelnot, F., A. K. Kikkawa, M. Mogstad, and E. Dhyne (2018): “Trade and
Domestic Production Networks,” Working Paper 25120, National Bureau of Economic
Research.

40



Online Appendix

Appendix A. Network Margins of Firm Heterogeneity and
Trade

A.1. Margins of Firms’ Sales. The sales of a firm s located at o to other
firms can be decomposed into three factors as follows:

saleso(s) =

upstream margin︷ ︸︸ ︷
No(s)×

∑
b∈M πod(s, b)

No(s)
×
∑

b∈M πod(s, b)× purchasesd(b)∑
b∈M πod(s, b)︸ ︷︷ ︸

downstream margin

,

(A.1)

where saleso(s) denotes sales of firm s to other firms, No(s) denotes the
number of customers of s, purchasesd(b) denotes the purchases of firm b

from other firms, and πod(s, b) denotes the share of purchases of firm b

that are from s. The first two factors constitute the upstream margin and
capture the intensity of use of s by all other firms. Specifically,

intensity of useo(s) = No(s)×
∑

b∈M πod(s, b)

No(s)
=
∑
b∈M

πod(s, b).

The third factor constitutes the downstream margin and measures average
size of customers that s sells to.

average customer sizeo(s) =

∑
b∈M πod(s, b)× purchasesd(b)∑

b∈M πod(s, b)
.

Relative to the main text, the terms here are subscripted by o and d which
denote locations where s and b are, respectively. This is to maintain uni-
formity of notation as I construct similar decompositions of sales specific
to locations, at a disaggregate level for sales of s to all firms at a destina-
tion d and at an aggregate level for sales of all firms from an origin o to
a destination d. I construct a decomposition of firms’ destination-specific
sales into three factors as:

salesod(s) =

upstream margin︷ ︸︸ ︷
Nod(s)×

∑
b∈Md

πod(s, b)

Nod(s)
(A.2)
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×
∑

b∈Md
πod(s, b)× input costsd(b)∑

b∈Md
πod(s, b)︸ ︷︷ ︸

downstream margin

,

where salesod(s) denotes input sales of firm s to customers at d and Nod(s)

denotes the number of customers of s who are located at d. Table A.1
provides results of the decompositions in equations (A.1) and (A.2).

A.2. Margins of Intranational Trade. Trade flows between locations
are aggregated from sales of all firms from an origin to all firms at a desti-
nation. In the data, among all possible pairs of locations(districts), around
40% do not trade at all. For location pairs that trade with each other, I
construct the following decomposition of trade flows into four factors:

salesod =

upstream margin︷ ︸︸ ︷
Nod ×

∑
s∈Mo

Nod(s)

Nod

×
∑

s∈Mo

∑
b∈Md

πod(s, b)∑
s∈Mo

Nod(s)
(A.3)

×
∑

s∈Mo

∑
b∈Md

πod(s, b)× purchasesd(b)∑
s∈Mo

∑
b∈Md

πod(s, b)︸ ︷︷ ︸
downstream margin

,

where salesod =
∑

s∈Mo

∑
b∈Md

salesod(s, b), Nod denotes the sellers from
o that sell at d. In this decomposition, the first three margins capture
the role of the upstream margin whereas the third margin captures the
role of the downstream margin in driving differences in aggregate trade
flows. In considering this decomposition, I depart from the trade literature
where these margins are regrouped such that the first margin is called the
extensive margin of trade defined as the number of firms from o that sell at
d and the remaining three margins are together called the intensive margin
of trade average sales across the firms from o that enter d. 21 This is so as
to emphasize the role of endogenous network formation and cross-border
supply chains in determining aggregate trade flows. Table A.2 reports the
results from this decomposition.

21For example, see Eaton et al. (2011) and Fernandes et al. (2018) for such decomposition
of the margins of international trade between countries where it is documented that the
extensive margin accounts for over half the variation in trade flows between countries.
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Table A.1. Margins of Firms’ Sales: Contribution to
Total Variance

Sales Destination-Specific Sales

(1) (2) (3) (4) (5)

Intensity of Use 81% 82% 93% 79% 80%
# Customers 35% 36% 37% 23% 22%
Intensity per Customer 46% 46% 56% 57% 58%

Average Customer Size 19% 18% 7% 21% 20%

Fixed Effects:
Seller×Year — — X — —
Origin×Year — X — — X
Destination×Year — — — — X

Data Level:
Seller×Year • • — — —
Seller×Destination×Year — — • • •

# observations 5.6×106 5.6×106 18.2×106 18.2×106 18.2×106

Note. Columns (1) and (2) report the contribution of factors: #
customers, intensity per customer, and average customer size, to the
variance of firms’ sales as per equation (A.1). Column (3), (4), and
(5) report the contribution of those factors to the variance of firms’
destination-specific sales as per equation (A.2).

Appendix B. An Empirical Model of Endogenous Spatial
Production Networks

The model economy E ≡ {M,L,J } consists of many firms (M) and
households (L) at many locations (J ). Firms produce using local labor
and intermediate inputs sourced from suppliers potentially spread across
multiple locations. Each household supplies one unit of labor inelastically
to local firms. Firms rebate any profits to local households. Trade between
locations is subject to iceberg trade costs denoted by τod ≥ 1.

B.1. Household Preferences. The utility function for any household i

at location d is defined over a discrete number of tasks (also indexed by
k ∈ K ≡ {1, · · · , K}) as:

ud (i) =
∏
k∈K

qd(i, k)
1/K,

qd(i, n) =
∑

s∈Sd(i)

qod(s, i, k),
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Table A.2. Margins of Intranational Trade: Contri-
bution to Total Variance

(1) (2) (3) (4)

Intensity of Use 83% 83% 88% 89%
# Sellers 59% 57% 61% 58%
# Customers per Seller 8% 10% 7% 10%
Intensity per Customer 16% 16% 19% 21%

Average Customer Size 17% 13% 12% 11%

Fixed Effects:
Origin×Year — X — X
Destination×Year — — X X

Data Level:
Origin×Destination×Year • • • •

# observations 58,390 58,390 58,390 58,390
# dropped observations (zeros) 41,015 41,015 41,015 41,015
# district pairs 1412 × 5 1412 × 5 1412 × 5 1412 × 5

Note. This table reports the contribution of factors: # sellers, #
customers per seller, intensity per customer, and average customer size,
to the variance of trade flows between districts, as per equation (A.3).

where qd(i, k) is the quantity of goods consumed to fulfill need k and Sd(i)
is the restricted set of suppliers that i encounters due to search frictions.

For task k, household i chooses the supplier that offers the cheapest price,
that is,

s∗d(i, k) = arg min
s∈Sd(i)

{
m̄od (s, i, k) co(s)τod

aod(s, i, k)

}
,(B.1)

where m̄od(s, i, k) is the markup charged by s for task k. The markup is
determined by how much lower the effective cost faced by the best supplier
is relative to the second best. The effective price faced by i for task k

denoted by pd(i, k) is then given by

(B.2) pd(i, k) = min
s∈Sd(i)\{s∗d(i,k)}

{
co(s)τod
aod(s, i, k)

}
.

Now, taking {pd(i, k) : k ∈ K} as given, the household’s indirect utility
function can be defined as:

Vd(i) = max
{qd(i,k):k∈K}

∏
k∈K

qd(i, k)
1/K(B.3)
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subject to
∑
k∈K

pd(i, k)qd(i, k) = wd + Πd

where Πd =
∑
s∈Md

Πd(b)

Ld
is the per capita profit rebated to households re-

siding at o.

B.2. Technology and Market Structure. The production function for
any firm b at location d is defined over labor and a discrete number of tasks
(indexed by k ∈ K ≡ {1, · · · , K}) as:

yd(b) = zd(b)

(
ld(b)

1− αd

)1−αd
(∏

k∈Kmd(b, k)1/K

αd

)αd

,

md(b, k) =
∑

s∈Sd(b)

mod(s, b, k),

where ld(b) is the amount of labor input used by firm b, md(b, k) is the
quantity of materials utilized to accomplish task k, zd(b) is the idiosyncratic
Hicks-neutral productivity with which firm b produces, and Sd(b) is the
restricted set of suppliers that b encounters due to search frictions.

For task k, firm b chooses the supplier that offers the cheapest price, that
is,

s∗d(b, k) = arg min
s∈Sd(b)

{
m̄od (s, b, k) co(s)τod

aod(s, b, k)

}
.(B.4)

With limit pricing, the markup is determined by how much lower the
effective cost faced by the best supplier is relative to the second best. Hence,
the effective price faced by b for task k, denoted by pd(b, k), is given by

(B.5) pd(b, k) = min
s∈Sd(b)\{s∗d(b,k)}

{
co(s)τod
aod(s, b, k)

}
.

Taking wage wd and effective prices {pd(b, k) : k ∈ K} as given, the firm’s
unit cost function can be defined as:

cd(b) = min
{ld(b),{md(b,k):k∈K}}

wdld(b) +
∑
k∈K

pd (b, k)md (b, k)(B.6)

subject to zd(b)
(
ld(b)

1− αd

)1−αd
(∏

k∈Kmd(b, k)1/K

αd

)αd

= 1
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With the cost function as defined above, the profit of a firm s located at
o can be expressed as

Πo(s) =
∑
b∈M

∑
k∈K

(m̄od (s, b, k)− 1)
co(s)τod
aod(s, b, k)

mod(s, b, k)

+
∑
i∈L

∑
k∈K

(m̄od (s, i, k)− 1)
co(s)τod
aod(s, i, k)

qod(s, i, k),

where mod(s, b, k) denotes the quantity of goods sold by firm s to customer
b for task k and qod(s, i, k) denotes the quantity of goods sold by firm s to
households i for task k. The quantity of goods soldmod(s, b, k) or qod(s, i, k)

is positive if s is the most effective supplier for task k and zero otherwise.

B.3. Equilibrium Definition and Characterization. The aggregate
state of the economy is denoted by σ ≡ {z, τ ,S,a} where

z ≡ {zo(s) : s ∈M} ,

τ ≡
{
τod : (o, d) ∈ J 2

}
,

S ≡ {Sd(i) : i ∈ L ∪M} , and

a ≡ {aod(s, i, k) : (s, i, k) ∈M× (L ∪M)×K}

An allocation in this economy is represented as ξ ≡ {l (σ) ,m (σ) , q (σ) ,y (σ)}
and is defined as a set of functions,

l (σ) ≡ {ld(b;σ) : b ∈M} ,

m (σ) ≡
{
mod(s, b, k;σ) : (s, b, k) ∈M2 ×K

}
,

q (σ) ≡ {qod(s, i, n;σ) : (s, i, k) ∈M×L×K} ,

y (σ) ≡ {yo(s;σ) : s ∈M} ,

that map the realization of the state to intermediate input and labor quan-
tities, quantities consumed and quantities produced. A price system is
represented as % ≡ {c (σ) ,p (σ) ,w (σ)} and is defined as a set of func-
tions,

c (σ) ≡ {co(s;σ) : s ∈M} ,

p (σ) ≡ {pd (i, k;σ) : (i, k) ∈ (L ∪M)×K} ,

w (σ) ≡ {wd (σ) : d ∈ J } ,
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that map the realization of the state to tasks’ prices for firms, needs’ prices
for households, wage at each location and marginal costs of firms. This
leads to the definition of equilibrium in this economy as follows.

Definition 3. For any given state σ, an equilibrium in this economy is
defined as an allocation and price system, (ξ, %) such that (a) households
select suppliers for needs and firms select suppliers for tasks according to
equations (3.1) and (B.1) respectively; (b) firms set prices for other firms
and households according to equations (B.5) and (B.2) respectively; (c)
households maximize utility according to equation (B.3); (d) firms minimize
costs according to equation (B.6); and (e) market clears for each firm’s
goods and for labor at each location as follows.∑

b∈Md

ld(b) = Ld

∑
i∈L

∑
k∈K

τod(s)qd(i, k)

aod(s, i, k)
1 {s = s∗d(i, k)}

+
∑
b∈M

∑
k∈K

τod(s)md(b, k)

aod(s, b, k)
1 {s = s∗d(b, k)} = yo(s)

Appendix C. Taking the Model to Data

C.1. Proof of Proposition 1. Consider a pair of firms s located in o and
b located in d. Now, suppose the marginal cost of firm s from o and it’s cost
of shipping goods to d are co(s) and τod respectively. For any task k and
match-specific productivity aod(s, b, k) = a, the effective cost incurred by s
of delivering its goods for task k by b is co(s)τod

a
. Supplier s is selected by b

for task k if b encounters s with match-specific productivity a and b does
not encounter any other supplier for whom it is effectively less costly to
deliver the good (including the event that b meets s and the match-specific
productivity realized is higher than a). The probability with which b selects
s for any of its tasks with match-specific productivity a is given by:

π0
od(s, b, k | σ0, σ1) =

λ

M
×
∏
s′∈M

(
1− λ

M
P
(

co′(s
′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

))

=
λ

M
× exp

( ∑
s′∈M

ln

(
1− λ

M
P
(

co′(s
′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

))
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Since λ = o(M), considering λ
M
� 1 and using the approximation

ln (1 + x) ≈ x for |x| � 1, the above expression simplifies as:

π0
od(s, b, k | σ0, σ1) =

λ

M
exp

(
− λ

M

∑
s′∈M

P
(

co′(s
′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

)
Taking expectation over all possible realizations of σ1 ≡ {S,a}, we ob-

tain:

π0
od(s, b, k) = E{σ1}

[
π0
od(s, b, k | σ0, σ1)

]
=

λ

M

∫ ∞
0

exp

(
− λ

M

∑
s′∈M

P
(

co′(s
′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

))
dFa(a)

=
λ

M

∫ ∞
a0

exp

(
− λ

M

∑
s′∈M

P
(
ao′d(s

′, b, k) ≥ co′(s
′)τo′d

co(s)τod
a

))
d
(

1− (a/a0)
−ζ
)

=
λaζ0
M

∫ ∞
a0

exp

(
− λaζ0

M

∑
s′∈M

1

(
co′(s

′)τo′d
co(s)τod

a ≥ a0

)(
co′(s

′)τo′d
co(s)τod

a

)−ζ

− λ

M

∑
s′∈M

1

(
co′(s

′)τo′d
co(s)τod

a ≤ a0

))
ζa−ζ−1da

=
1

M

∫ ∞
0

exp

(
− 1

M

∑
s′∈M

(
co′(s

′)τo′d
co(s)τod

)−ζ
a−ζ

)
d
(
−a−ζ

)
=

co(s)
−ζτ−ζod∑

s′∈M co′(s′)−ζτ
−ζ
o′d

Γ(1)

=
co(s)

−ζτ−ζod∑
s′∈M co′(s′)−ζτ

−ζ
o′d

Here, in the fifth line we utilize Assumption 2 which implies that in
sufficiently large economies limt→∞ λta

ζ
0,t → 1 and limt→∞ a0,t → 0 such

that λ
M

∑
s′∈M 1

(
co′ (s

′)τo′d
co(s)τod

a ≤ a0

)
→ 0 for all firms s′. Since πod(s, b, k) is

independent of the identity of the task k, we write π0
od(s, b) = π0

od(s, b, k).
Further, since π0

od(s, b) is independent of the identity of the buyer at any
location d, we can write π0

od(s,−) = π0
od(s, b).

C.2. Proof of Proposition 2. In the context of this paper, the multino-
mial random variable counts the number of successes in each of the M cat-
egories (one for each other supplier s), after K independent trials (one for
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each task associated with b). Let π0
od(s, b) denote the probability of success

and Kod(s, b) denote the number of successes in category s, the probabil-
ity of observing {Kod(s, b) : s ∈Mo, o ∈ J } conditional on the number of
tasks Kd(b) is:

P ({Kod(s, b) : s ∈M}) = K!
∏
s∈M

(π0
od(s, b))

Kod(s,b)

Kod(s, b)!

where
∑

s∈M π0
od(s, b) = 1 and

∑
o∈J

∑
s∈Mo

Kod(s, b) = K.
The likelihood for the complete sample, K ≡ {Kod(s, b) : (s, b) ∈M2}

with probabilities Π0 ≡ {π0
od(s, b) : (s, b) ∈M2} , scaled by a factor K is:

`
(
K | Π0

)
= K!

∏
b∈M

(∏
s∈M

(π0
od(s, b))

Kod(s,b)

Kod(s, b)!

) 1
K

= K!
∏
b∈M

∏
s∈M

(π0
od(s, b))

Kod(s,b)

K

Kod(s, b)!

= K!
∏
b∈M

∏
s∈M

(π0
od(s, b))

∑
k∈K 1{s=s∗d(b,k)} 1

K

Kod(s, b)!

= K!
∏
b∈M

∏
s∈M

(π0
od(s, b))

∑
k∈K 1{s=s∗d(b,k)}purchasesd(b,k)

purchasesd(b)

Kod(s, b)!

= K!
∏
b∈M

∏
s∈M

(π0
od(s, b))

∑
k∈K 1{s=s∗d(b,k)}purchasesd(b,k)

purchasesd(b)

Kod(s, b)!

= K!
∏
b∈M

∏
s∈M

(π0
od(s, b))

salesod(s,b)

purchasesd(b)

Kod(s, b)!

= K!
∏
b∈M

∏
s∈M

(π0
od(s, b))

πod(s,b)

Kod(s, b)!

Therefore, the log-likelihood is proportional to:

L
(
K | Π0

)
∝
∑
s∈M

(∑
b∈M

πod(s, b)

)
ln
(
co(s)

−ζτ−ζod

)
−
∑
d∈J

Md ln

(∑
s′∈M

co′(s
′)−ζτ−ζo′d

)
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Note that co(s) = c̃o(s)co and
∑

s′∈M co′(s
′)−ζτ−ζo′d =

∑
o′ c
−ζ
o′ τ

−ζ
o′d , there-

fore the likelihood equations for c̃o(s) are given by:

∑
d

∑
b∈Md

πod(s, b)

c̃o(s)−ζc
−ζ
o

=
∑
d

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d

τ−ζod

The likelihood equations for τ−ζod are given by:(∑
b∈Md

∑
s∈Mo

πod(s, b)
)

τ−ζod
=

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d

(∑
s∈o

co(s)
−ζ

)

=
Md∑

o′ c
−ζ
o′ τ

−ζ
o′d

c−ζo

=⇒ τ−ζod =

(∑
b∈Md

∑
s∈Mo

πod(s, b)
)

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d
c−ζo

=

(∑
b∈Md

πod(•, b)
)

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d
c−ζo

Substituting the expression for τ−ζod , we obtain an estimator for c̃o(s)−ζ

as:

c̃o(s)
−ζ =

∑
b∈M πod(s, b)∑
b∈M πod(•, b)

=

∑
d πod(s, •)∑

s′∈Mo

∑
d πod(s

′, •)

This then provides us with an estimator for c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

as follows:

τ−ζod =

(∑
b∈Md

∑
s∈Mo

πod(s, b)
)

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d
c−ζo

=⇒ c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

=

∑
b∈Md

∑
s∈Mo

πod(s, b)

Md

=
1

Md

∑
b∈Md

πod(•, b)

C.3. Estimation of Material Shares. The distribution of markups from
Proposition 6 provides expressions for value-added share of gross output
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(V A/GO)o. Using equation (D.1), materials share αo is calibrated as

αo = (1 + 1/ζ) (1− (V A/GO)o) ,

where (V A/GO)o across districts are constructed using aggregate produc-
tion statistics as follows.

I obtain district-level sectoral GDP {V Ajo} from Nielsen Analytics, a
private data firm and industry-level data on value-added share of gross
output at the national level,

{
(V A/GO)j : j ∈ I

}
from the World Input-

Output Database. Using these, I construct a measure of value-added share
of gross output at the district level as

(C.1) (V A/GO)o =

∑
j∈I V A

j
o∑

j∈I
V Ajo

(V A/GO)j

.

I use data pertaining to six industry groups for this calculation. They are
(a) Mining and Quarrying; (b) Construction; (c) Manufacturing; (d) Elec-
tricity, Gas and Water Supply; (e) Transport, Storage and Communication;
and (f) Trade, Hotels and Restaurants.

Appendix D. Aggregation and Counterfactual Analysis in
Network Economies

D.1. Continuum Approximation for Large Network Economies.
The following definition formalizes the notion of the limiting economy in
the context of this paper.

Definition 4. Consider a sequence of finite economies {Et : t ∈ N} where
Et ≡ {Mt,Lt,Jt} is such that the tth economy has the formMt = {m1, · · · ,mMt} ⊂
[0, 1] , Lt = {`1, · · · , `Lt} ⊂ [0, 1] and Jt = J . The uniform distribution
on Mt is given by UMt (M0

t ) =
M0
t

Mt
for all M0

t ⊂ Mt. Similarly, the uni-
form distribution on Lt is given by ULt (L0

t ) =
L0
t

Lt
for all L0

t ⊂ Lt. Then,
{Et : t ∈ N} is a discretizing sequence of economies if it satisfies:

(1) Mt ⊂Mt+1 and Lt ⊂ Lt+1 for all t,
(2) limt→∞ UMt (Mt ∩ [al, ah]) = U ([al, ah]),
(3) limt→∞ ULt (Lt ∩ [al, ah]) = U ([al, ah]),

where U (•) denotes the uniform distribution with support over [0, 1] and
[al, ah] ⊂ [0, 1].
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Assumption 2. The discretizing sequence of economies {Et : t ∈ N} satis-
fies the following conditions:22

(1) {λt, a0,t : t ∈ N} is such that λt = o (Mt) and λtaζ0,t = Θ(1)

(2) {Md,t, Ld,t : d ∈ J , t ∈ N} is such that Md,t = Θ (Mt) and Ld,t =

Θ (Lt) for all d ∈ J

D.2. Proof of Proposition 3.

D.2.1. Joint Distribution of the Lowest and the Second Lowest Effective
Costs. We begin by characterizing the joint distribution of the lowest and
second lowest effective cost available to buyer b located at d, F̃pd

(
p(1), p(2)

)
=

P
(
p∗d (b, k) ≤ p(1), pd (b, k) ≥ p(2)

)
. To do so, we evaluate the probability

with which b receives exactly one offer with an effective cost no greater
than p(1) and no other offers less than p(2)(> p(1)). The lowest cost offer
p(1) can be from any one of the locations in J . We evaluate the probability
with which this offer is from any given location o and sum it across all
locations. The probability with which b receives one offer with an effective
cost no greater than p(1) from o and no other offers less than p(2) across all
locations is given by:



(
Mo

1

)
λ
M
P
(

co(s)τod
aod(s,b,k)

≤ p(1)
)

if o 6= d

×
(

1− λ
M
P
(

co(s)τod
aod(s,b,k)

≤ p(2)
))Mo−1

×
(

1− λ
M
P
(

cd(s)τdd
add(s,b,k)

≤ p(2)
))Md−1

×
∏

o′ /∈{o,d}

(
1− λ

M
P
(
co′ (s)τo′d
ao′d(s,b,k)

≤ p(2)
))Mo′

(
Mo−1

1

)
λ
M
P
(

co(s)τod
aod(s,b,k)

≤ p(1)
)

if o = d

×
(

1− λ
M
P
(

co(s)τod
aod(s,b,k)

≤ p(2)
))Mo−2

×
∏

o′ 6=o

(
1− λ

M
P
(
co′ (s)τo′d
ao′d(s,b,k)

≤ p(2)
))Mo′

Under Assumption 2, the probability with which b encounters exactly
one supplier who can deliver at a cost no greater than p(1) and encounters

22For any two functions f(n) and g(n), f(n) = o (g(n)) =⇒ limn→∞
f(n)
g(n) = 0 and

f(n) = Θ(g(n) =⇒ lim supn→∞
|f(n)|
g(n) <∞ and lim supn→∞ |

f(n)
g(n) |> 0.
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no other suppliers with offers less than p(2) across all locations is given by:

F̃pd
(
p(1), p(2)

)
=
∑
o

λµoP
(

co(s)τod
aod(s, b, k)

≤ p(1)

)
exp

(
−
∑
o′

λµo′P
(

co′(s)τo′d
ao′d(s, b, k)

≤ p(2)

))
Using the limit limt→∞ λta

ζ
0,t → 1, this can be further simplified as

Ad
(
p(1)
)ζ

exp
(
−Ad

(
p(2)
)ζ) where Ad =

∑
o µoτ

−ζ
od E

[
co(·)−ζ

]
is obtained

as follows:

Adp
ζ =

∑
o

λµoP
(

co(s)τod
aod(s, b, k)

≤ p

)
=
∑
o

λµoE{co}
[
1− Fa

(
co(s)τod

p

)]

=

(∑
o

µoτ
−ζ
od E

[
co(·)−ζ

])
pζ

=⇒ Ad =
∑
o

µoτ
−ζ
od E

[
co(·)−ζ

]
The density function is then obtained by the negative cross-derivative of

F̃pd
(
p(1), p(2)

)
as follows:

F̃ ′pd
(
p(1), p(2)

)
= −

∂2Fpd
(
p(1), p(2)

)
∂p(1)∂p(2)

= −
∂
(
Ad
(
p(1)
)ζ)

∂p(1)

∂
(

exp
(
−Ad

(
p(2)
)ζ))

∂p(2)

= ζ2A2
d

(
p(1)p(2)

)ζ−1
e−Ad(p

(2))
ζ

D.2.2. Distribution of Effective Prices. We derive an expression for Fpd(p),
that is, the probability with which any firm b located in d faces an effective
price no greater than p for one of its tasks k. Firm b faces an effective price
no greater than p if the second-lowest cost available to it is no less than p.
This is obtained as:

Fpd(p) =

∫ p

0

(∫ p(2)

0

F ′pd
(
p(1), p(2)

)
dp(1)

)
dp(2)

= 1− Adpζ exp
(
−Adpζ

)
− exp

(
−Adpζ

)
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D.2.3. Derivation of Market Access.

co(·) = w1−αo
o

(
K∏
k=1

po(·, k)
1/K

)αo

=⇒ E
[
co(·)−ζ

]
= E


w1−αo

o

(∏K
k=1 po(·, k)1/K

)αo
zo(·)

−ζ


= w−ζ(1−αo)o E

[
K∏
k=1

po(·, k)
−αoζ/K

]
E
[
zo(·)ζ

]
= w−ζ(1−αo)o

K∏
k=1

E
[
po(·, k)

−αoζ/K
]
E
[
zo(·)ζ

]
= w−ζ(1−αo)o Γ

(
2− αo

K

)K
Aαoo z

ζ
o

This implies that {Ad}d∈J solves the following fixed point problem:

Ad =
∑
o

τ−ζod µoz
ζ
ow
−ζ(1−αo)
o Γ

(
2− αo

K

)K
Aαoo

It can be similarly shown that effective prices for needs faced by house-
holds is also given by Fpd (·) The following lemma states that the above
fixed point problem that solves for market access is well-defined in the
sense that it admits a unique positive solution. The proof strategy follows
from Allen et al. (2020).

Lemma. The following system of equations

Ad =
∑
o

RodA
αo
o ,

Rod = τ−ζod µoz
ζ
ow
−ζ(1−αo)
o Γ

(
2− αo

K

)K
Aαoo .

(1) has at least one positive solution
(2) has at most one positive solution (up to scale)
(3) the unique solution can be computed as the limit of a simple iterative

procedure.

Proof. First, I establish existence of positive solution to the system of equa-
tions. Define operator T : RJ

++ → RJ
++ where T (A) = (

∑
oRo1A

αo
o , · · · ,

∑
oRoJA

αo
o )′.

Note that all components of Rod are positive and finite. Then, by con-
struction, for any d, not all Rods are zero. Therefore, for any A � 0,
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∑
oRo1A

αo
o ≥ A > 0. Further, there exists Ā <∞ such that

∑
oRodA

αo
o ≤

Ā. Now consider the operator T : A → A defined by T (A1, · · · , AJ) =

(
∑

oRo1A
αo
o , · · · ,

∑
oRoJA

αo
o )′. SupposeA =

{
A ∈ RJ

++ | A ≤ Ad ≤ Ā∀d
}
.Then,

if A � 0, it follows that T (A) � 0. Note that A is closed and bounded.
Since A ⊂ RJ

++, this implies that A is compact. Further, A is non-empty
and convex, and T is continuous. Then, by Brouwer’s fixed point theorem,
T (•) has a fixed point. This establishes existence of a solution the system
of equations.

To establish uniqueness, let’s suppose by way of contradiction that the
system of equations has two different solutionsA(0),A(1) that are not linear
transformations of each other. Denote ā = maxd

A
(1)
d

A
(0)
d

and a = mind
A

(1)
d

A
(0)
d

.

Notice that ā
a
≥ 1. Thus the system of equations can be expressed as:

A
(1)
d

A
(0)
d

=

∑
oRod

(
A

(1)
d

A
(0)
d

)1−αo (
A

(0)
d

)1−αo

A
(0)
d

Suppose d̄ = arg maxd

(
A

(1)
d

A
(0)
d

)
and α = minαo, then we have:

A
(1)

d̄

A
(0)

d̄

= ā

=⇒

∑
oRod̄

(
A

(1)
o

A
(0)
o

)1−αo (
A

(0)
o

)1−αo

A
(0)

d̄

= ā

=⇒

∑
oRod̄ā

1−α
(
A

(0)
o

)1−αo

A
(0)

d̄

≥M

=⇒

∑
oRod̄

(
A

(0)
o

)1−αo

A
(0)

d̄

ā1−α ≥ ā

=⇒ āα ≤ 1

=⇒ ā ≤ 1

Similarly, we can show that a ≥ 1. This implies that ā
a
≤ 1. But

by construction ā
a
≥ 1. Therefore, it must be the case that a

a
= 1 or

A(0) = A(1). This establishes uniqueness.
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Next, I show that the solution to the system of equations can be obtained
via a simple iterative procedure. Starting from any strictly positive A(0),
we construct a sequence A(t) successively in the following way,

A
(t)
d =

∑
o

Rod

(
A(t−1)
o

)αo
Denote ā(t) = maxd

A
(t)
d

A
(t−1)
d

and a(t) = mind
A

(t)
d

A
(t−1)
d

. Notice that ā(t)

a(t) ≥ 1.

Suppose d̄ = arg maxd

(
A

(t)
d

A
(t−1)
d

)
and α = minαo, then we have:

A
(t)

d̄

A
(t−1)

d̄

= ā(t)

=⇒

∑
oRod̄

(
A

(t−1)
o

A
(t−2)
o

)1−αo (
A

(t−2)
o

)1−αo

A
(t−1)

d̄

= ā(t)

=⇒

∑
oRod̄

(
A

(0)
o

)1−αo

A
(0)

d̄

(
ā(t−1)

)1−α ≥ ā(t)

=⇒ ā(t)

(ā(t−1))
1−α ≤ 1

Similarly, we can show that a(t)

(a(t−1))
1−ᾱ ≥ 1. This implies the following

ā(t)

(ā(t−1))
1−α ≤

a(t)

(a(t−1))
1−ᾱ

=⇒ ā(t)

a(t)
≤
(
ā(t−1)

)1−α

(a(t−1))
1−ᾱ

≤
(
ā(t−1)

)1−α

(a(t−1))
1−α

=⇒ ā(t)

a(t)
≤ ā(t−1)

a(t−1)

Since ā(t)

a(t) ≥ 1∀t, this implies that limt→∞
ā(t)

a(t) = 1. That is, the solution
can be computed as the limit of a simple iterative procedure. �

D.3. Distribution of Markups. The following proposition provides the
distribution of markups.
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Proposition 6. Markups over marginal cost of lowest cost supplier m̄od(·, ·, ·)
are distributed according to the following Pareto distribution:

Fm̄(m̄) =
(
1− m̄−ζ

)
1 {m̄ > 1} .

Proof.

P
(
pd(b, k)

p∗d(b, k)
≤ m̄ | pd(b, k) = p(2)

)
= P

(
p∗d(b, k) ≥ pd(b, k)

m̄
| pd(b, k) = p(2)

)

= 1−
∫ pd(b,k)

m̄

0

F̃ ′pd

(
p(1), pd(b,k)

m̄

)
F ′pd

(
pd(b,k)
m̄

) dp(1)

= 1− m̄−ζ

�

The shape parameter of the distribution of potential markups is ζ, the
same parameter that governs dispersion in match-specific productivities.
With lower ζ, higher markups are more likely since high match-specific
productivities are more likely and hence are larger gaps between costs to
the best and second best suppliers. Moreover, the distribution of markups
is the same in any destination. An aggregate implication that follows from
the distribution of markups is that the share of variable costs in gross
output is given by 1

1+1/ζ
at all locations. This in turn implies that value-

added share of gross output at location o is given by:

(D.1) (V A/GO)o =
1− αo + 1/ζ

1 + 1/ζ
.

D.4. Proof of Proposition 4. The probability with which any firm at d
sources from firms at o for any of its tasks is given by

π0
od (•,−) =

(
lim
t→∞

Mo

M

)(
lim
t→∞

1

Mo

∑
s∈Mo

π0
od(s,−)

)

=

(
lim
t→∞

Mo

M

)(
lim
t→∞

1

Mo

∑
s∈Mo

co(s)
−ζτ−ζod
Ad

)

=
µoE

[
co(·)−ζ

]
τ−ζod

Ad

=
µoz

ζ
ow
−ζ(1−αo)
o Γ

(
2− αo

K

)K
Aαoo τ

−ζ
od

Ad
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D.5. Proof of Proposition 5. For any realization of σ, labor demand by
firm b at d can be expressed as:

ld(b, σ) =
1

wd (σ)
(1− αd) cd(b, σ)yd(b, σ)

Substituting the above expression in the labor market clearing for loca-
tion d, we obtain:

Ld =
∑
b∈Md

ld(b, σ)

=
∑
b∈Md

1

wd (σ)
(1− αd) cd(b, σ)yd(b, σ)

=⇒
∑
b∈Md

cd(b, σ)yd(b, σ) =
wd (σ)Ld

1− αd

Goods market clearing condition for firm s located at o can be simplified
as:

yo(s, σ) =
∑
d

∑
b∈Md

∑
k∈K

τod(s, σ)mod(s, b, k, σ)

aod(s, b, k, σ)

+
∑
d

∑
i∈Ld

∑
k∈K

τod(s, σ)qod(s, i, k, σ)

god(s, i, k, σ)

=⇒ co(s, σ)yo(s, σ) =
∑
d

αd
∑
b∈Md

(
1

K

∑
k∈K

1 {s = s∗d(b, k, σ)}
m̄d(b, k, σ)

)
cd(b, σ)yd(b, σ)

+
∑
d

∑
i∈Ld

(
1

K

∑
k∈K

1 {s = s∗d(i, k, σ)}
m̄d(i, k, σ)

)
(wd(σ) + Πd(σ))

=⇒
∑
s∈Mo

co(s, σ)yo(s, σ)︸ ︷︷ ︸
(1) Supply

=
∑
d

αd
∑
b∈Md

(
1

K

∑
k∈K

1 {s∗d(b, k, σ) ∈Mo}
m̄d(b, k, σ)

)
cd(b, σ)yd(b, σ)︸ ︷︷ ︸

(2) Intermediate Input Demand

+
∑
d

∑
i∈Ld

(
1

K

∑
k∈K

1 {s∗d(i, k, σ) ∈Mo}
m̄d(i, k, σ)

)
(wd(σ) + Πd(σ))︸ ︷︷ ︸

(3) Final Consumption Demand
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We can simplify term (1) by making use of the labor market clearing
condition as:

Supply =
∑
s∈Mo

co(s, σ)yo(s, σ)

=
wo(σ)Lo
1− αo

We can simplify term (2) as follows:

Intermediate Input Demand

=
∑
d

αd
∑
b∈Md

(
1

K

∑
k∈K

1 {s∗d(b, k, σ) ∈Mo}
m̄d(b, k, σ)

)
cd(b, σ)yd(b, σ)

=
∑
d

αd

(A)︷ ︸︸ ︷
1

Md

∑
b∈Md

(
1

K

∑
k∈K

1 {s∗d(b, k, σ) ∈Mo}
m̄d(b, k, σ)

)
cd(b, σ)yd(b, σ)

1

Md

∑
b∈Md

cd(b, σ)yd(b, σ)︸ ︷︷ ︸
(B)

×
∑
b∈Md

cd(b, σ)yd(b, σ)︸ ︷︷ ︸
=
wd(σ)Ld

1−αd

Term (A) can be simplified as follows:

(A) =
1

Md

∑
b∈Md

(
1

K

∑
k∈K

1 {s∗d(b, k, σ) ∈Mo}
m̄d(b, k, σ)

)
cd(b, σ)yd(b, σ)

t→∞−−−→ E

[(
1

K

∑
k∈K

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

)
cd(·, σ)yd(·, σ)

]

= E

[(
1

K

∑
k∈K

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

)]
E [cd(·, σ)yd(·, σ)]

= E

[(
1

K

∑
k∈K

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

)]
E [cd(·, σ)yd(·, σ)]
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=
1

K

∑
k∈K

E
[

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

]
E [cd(·, σ)yd(·, σ)]

= E
[

1 {s∗d(·, ·, σ) ∈Mo}
m̄d(·, ·, σ)

]
E [cd(·, σ)yd(·, σ)]

= E
[

1

m̄d(·, ·, σ)

]
E [1 {s∗d(·, ·, σ) ∈Mo}]E [cd(·, σ)yd(·, σ)]

=
ζ

ζ + 1
πod (•,−, σ0)E [cd(·, σ)yd(·, σ)]

Term (B) can be simplified as follows:

(B) =
1

Md

∑
b∈Md

cd(b, σ)yd(b, σ)

t→∞−−−→ E [cd(·, σ)yd(·, σ)]

Substituting (A) and (B) back in the Intermediate Input Demand,we
obtain:

Intermediate Input Demand =
∑
d

αd
ζ

ζ + 1
πod (•,−, σ0)

wd(σ)Ld
1− αd

We can simplify term (3) as follows:

Final Consumption Demand

=
∑
d

∑
i∈Ld

(
1

K

∑
k∈K

1 {s∗d(i, k, σ) ∈Mo}
m̄d(i, k, σ1)

)
(wd(σ) + Πd(σ))

=
∑
d

(
1

Ld

∑
i∈Ld

(
1

K

∑
k∈K

1 {s∗d(i, k, σ) ∈Mo}
m̄d(i, k, σ1)

))
(wd(σ) + Πd(σ))Ld

t→∞−−−→
∑
d

E

[
1

K

∑
k∈K

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

]
(wd(σ) + Πd(σ))Ld

=
∑
d

1

K

∑
k∈K

E
[

1 {s∗d(·, ·, σ) ∈Mo}
m̄d(·, ·, σ)

]
(wd(σ) + Πd(σ))Ld

=
∑
d

E
[

1 {s∗d(·, ·, σ) ∈Mo}
m̄d(·, ·, σ)

]
(wd(σ) + Πd(σ))Ld

=
∑
d

E
[

1

m̄d(·, ·, σ)

]
E [1 {s∗d(·, ·, σ) ∈Mo}] (wd(σ) + Πd(σ))Ld
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=
∑
d

ζ

ζ + 1
πod (•,−, σ0) (wd(σ) + Πd(σ))Ld

Also, note that Πd(σ)Ld =
(
ζ+1
ζ
− 1
)∑

b∈Md
cd(b, σ)yd(b, σ) = 1

ζ
wd(σ)Ld

1−αd
.

Putting these together we can further simplify the goods market clearing
condition to obtain the desired result as follows:

wo(σ)Lo
1− αo

=
ζ

ζ + 1

∑
d

πod(•,−, σ0)

(
αd

1− αd
+ 1 +

1

ζ(1− αd)

)
wd(σ)Ld

=
∑
d

πod(•,−, σ0)
wd(σ)Ld
1− αd

=⇒ wo(σ)Lo
1− αo

=
∑
d

πod(•,−, σ0)
wd(σ)Ld
1− αd

Since {wd(σ)}d solves the above system of equations for a given realiza-
tion of σ0, irrespective of the realization of σ1, we conclude that wd(σ) =

wd (σ0). That is, {wd : d ∈ J } solves the following system of equations for
given realization of σ0, irrespective to realization of σ1.

woLo
1− αo

=
∑
d

πod(•,−)
wdLd

1− αd

D.6. Expected Utility & Welfare Changes. Households residing at
location d are heterogeneous in their match-specific taste shocks of using
different suppliers’ goods to fulfill their needs. Welfare at any location
is then calculated in expectation. That is, Vd = E [Vd (·)]. With Cobb-
Douglas utilities across needs, indirect utility of household i residing at d
is given by:

Vd(i) =
wd (1 + 1/ζ(1−αo))∏K

k=1 pd(i, k)1/K

Expected indirect utility of households at location d can then be derived
as:

Vd = E [Vd (·)]

= E

[
wd (1 + 1/ζ(1−αo))

K∏
k=1

pd(·, k)−
1/K

]
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= wd (1 + 1/ζ(1−αo))
K∏
k=1

E
[
pd(·, ·)−1/K

]
= (1 + 1/ζ(1−αo)) Γ

(
2− 1

ζK

)K
wdA

1
ζ

d

Welfare changes, i.e., changes in expected indirect utility at location d

in response to shocks can be calculated as:

V̂d = ŵdÂ
1/ζ
d ,

where ŵd denotes the change in wage and Âd denotes change in market
access at d.

D.7. Procedure for Computing Counterfactual Outcomes. Coun-
terfactual analysis is conducted in three steps. First, I evaluate the ex-
pected value of aggregate and firm-level outcomes in the initial state. Sec-
ond, I compute changes in aggregate outcomes that result from the coun-
terfactual shock. Finally, I evaluate the expected value of aggregate and
firm-level outcomes in the counterfactual state

Step 1: Compute expected value of aggregate and firm-level outcomes in
initial state. In the initial state, wL ≡ {wdLd : d ∈ J } is obtained as the
solution to the following system of equations:

wdLd
1− αd

=
∑
d

π∗od(•,−)
woLo

1− αo
,

where π∗od (•,−) is calculated as in equation (4.10). Using the solution to
these equations, value-added and gross output for each district are respec-
tively calculated as:

V Ad = wdLd

(
(V A/GO)d

(V A/GO)d − 1/ζ+1

)
,

GOd = wdLd

(
1

(V A/GO)d − 1/ζ+1

)
,

where (V A/GO)d for district d is calculated in equation (C.1). Total value-
added across all districts is chosen as the numeraire, i.e.,

∑
d V Ad = 1. At

the firm-level, input sales, total sales, intensity of use, and average customer
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size are respectively calculated as:

input saleso(s) =
∑
d

π∗od(s,−) (GOd − V Ad) ,

total saleso(s) =
∑
d

π∗od(s,−)GOd,

intensity of useo(s) =
∑
d

π∗od(s,−)Md,

average customer sizeo(s) =
input saleso(s)

intensity of useo(s)
,

where π∗od(s,−) is calculated as in equation (4.9).

Step 2: Evaluate change in aggregate outcomes from initial to counterfac-
tual state. For any change in σ0, δ̂ ≡

{
δ̂od : (o, d) ∈ J × J

}
, one can solve

for change in wages ŵ ≡ {ŵd : d ∈ J } with the following tâtonnement
algorithm for some positive constant µ and tolerance value tol:

(1) Start with a guess for the vector of change in wages, ŵ(0)

(2) For the vector of wage changes, in the tth iteration ŵ(t), compute
change in market access as the solution to the following system of
equations:

Â
(t)
d =

∑
o

πod(•,−)δ̂od
(
ŵ(t)
o

)−ζ(1−αo) (
Â(t)
o

)αo
(3) Compute counterfactual sourcing probabilities as:

(
π

(t)
od (•,−)

)′
= πod(•,−)

δ̂od

(
ŵ

(t)
o

)−ζ(1−αo) (
Â

(t)
o

)αo
Â

(t)
d

(4) Compute excess demand for labor Z
(
ŵ(t)

)
≡
{
Zo

(
ŵ(t)

)
: o ∈ J

}
as:

Zo

(
ŵ(t)

)
=

1− αo
woLo

∑
d

(
π

(t)
od (•,−)

)′
ŵ

(t)
d

wdLd
1− αd

− ŵo

(5) Update the vector of change in wages as ŵ(t+1) ← ŵ(t)+µZ
(
ŵ(t)

)
.

(6) If ‖ŵ(t+1) − ŵ(t)‖ > tol, go back to (2), else end.

Welfare changes can then be computed as V̂d = ŵ
(∞)
d

(
Â

(∞)
d

) 1
ζ .

Step 3: Compute expected value of aggregate and firm-level outcomes in
counterfactual state. As in the initial state, here again V A′d and GO′d are
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computed for each district using (wL)′ instead of wL.

V A′d = ŵ
(∞)
d wdLd

(
(V A/GO)d

(V A/GO)d − 1/ζ+1

)
,

GO′d = ŵ
(∞)
d wdLd

(
1

(V A/GO)d − 1/ζ+1

)
.

Firm-level outcomes are then calculated by using π(∞)
od (•,−) instead of

π∗od (•,−) as follows:

(input saleso(s))
′ =
∑
d

π
(∞)
od (s,−) (GO′d − V A′d) ,

(total saleso(s))
′ =
∑
d

π
(∞)
od (s,−)GO′d,

(intensity of useo(s))
′ =

(∑
d

π
(∞)
od (s,−)Md

)
,

(average customer sizeo(s))
′ =

(input saleso(s))
′

(intensity of useo(s))
′ ,

where π(∞)
od (s,−) =

(c̃o(s)−ζ)
∗
δ̂od(s)∑

s′∈Mo(c̃o(s′)−ζ)
∗
δ̂od(s′)

π
(∞)
od (•,−) and δ̂od(s) is the firm-

level shock from the change in σ0.

Appendix E. Quantitative Applications

This section illustrates how the model can be used to assess the con-
sequences of micro- and macro- shocks to the spatial economy. First, I
discuss how the production network of firms changes in response to an ag-
gregate shock that uniformly reduces external trade frictions. Second, I
examine the implications of neutralizing firm-level distortions when they
are either positively or negatively correlated with firm size on aggregate
and firm-level outcomes.

E.1. Market Integration. A large body of recent literature studies bar-
riers that impede trade between regions within a country and the gains
that accrue from a reduction in those barriers (for a review, see Donaldson
(2015)). I study the firm-level implications of a decline in relative costs of
trading with firms in other districts. This experiment conceptually cap-
tures improvements in transportation infrastructure as well as any other
policy changes that affect trade outside an agent’s own location relative
to within its own location. I consider the counterfactual scenario where
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Figure E.1. Decline in Trade Frictions: Change in
Firms’ Sales and its Margins
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Note. For each year, firms are grouped into 1000 bins according to
their sales in the initial equilibrium. Each bin consists of around 1000
firms. For firms in each of these bins, the top left panel plots the average
percent change in intensity of use when trade frictions decline, the top
right panel does the same for average customer size, and the bottom
panel for sales to other firms.
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external trade frictions decline by 10%.23 With a decline in external trade
costs, a large majority of firms are subject to opposing forces along the
upstream and downstream margins.

Figure E.1 depicts the effect of these margins of firms’ sales to other
firms. To understand this, it is useful to look at firms in four groups: (a)
those in the top 5% in terms of sales; (b) those in the top 10% but not in
the top 5%; (c) those in the top 25% but not in the top 10%; and (d) those
in the bottom 75%. First, consider firms in group (a). Starting with the
top left panel, these firms gain the most in intensity of use. At the same
time, they are more likely to have had customers who are large, i.e., in the
top 5% and whose sales declined. This implies that the average customer
size of these firms declines as shown in the top right panel. These firms
are subject to opposing forces on the upstream and downstream margins.
While they gain in intensity of use, the lose sufficiently in average customer
size that their sales decline. Second, consider firms in group (b). These
firms still gain above 4% in intensity of use but are also likely to have
had customers in the top 5% (whose sales declined). These firms are also
subject to opposing forces on the upstream and downstream margins such
that their sales increase. Third, consider firms in group (c). These firms
gain less than 4% in intensity of use, are less likely to have had customers
in the top 5% and so their average customer size increases. These firms are
also subject to reinforcing forces on the upstream and downstream margins
such that their sales increase. Finally, consider the large majority of firms
in group (d). These firms lose in intensity of use, but are also much less
likely to have had customers in the top 5%, so their average customer
size increases. These firms are subject to opposing forces on the upstream
and downstream margins. While they lose in intensity of use, the gain
sufficiently in average customer size that their sales increase.

Taking stock, as trade frictions decline, firms with low production costs
become more successful at farther or less remote destinations in getting
selected for customers’ tasks. This comes at the expense of firms with

23Counterfactual outcomes are evaluated using the procedure described in Appendix
D.7 with aggregate shocks given by:

δ̂od =

{
1

1.1−ζ
o 6= d

1 o = d

There is no heterogeneity in shocks at the firm-level in this counterfactual experiment.
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higher production costs who are now less successful in getting selected for
tasks both locally and elsewhere. While intensity of use of firms in the
bottom three quartiles decreases by as much as 8%, intensity of use for
firms in the top quartile increases by as much as 4%. At the same time,
firms in the top decile are more likely to have customers in the top 5% those
for whom sales has declined. Those customers produce less and source fewer
inputs from firms in the top decile. Average customer size for firms in the
top decile and quantity demanded from them declines. On the contrary,
firms in the bottom nine deciles are less likely to have customers in the
top 5% for whom sales has declined. For these firms, average customer
size has increased. The net outcome of these margins acting on firms at all
quantiles is that large firms’ sales to other firms shrink where as those of a
large majority of firms in the lower quantiles expands.

E.2. Size-Dependent Distortions & Improvements in Allocative
Efficiency. A substantial literature has documented the presence of firm-
level distortions in developing economies (for a review, see Atkin and Khan-
delwal (2020)). In this counterfactual experiment, I study the implications
of neutralizing positively versus negatively size-dependent distortions af-
fecting firms’ labor input choice. The notion for such gains is similar in
spirit to that in the closed economy model with labor wedges as in Hsieh and
Klenow (2009), multiplier effects from inter-sectoral linkages as in Jones
(2013), and trade as in Swiecki (2017). Unlike these papers, I consider
the effect of removing firm-level distortions through the lens of a model
of trade where production networks between firms respond endogenously.
The experiment I consider homogenizes labor market distortions. That is, it
eliminates dispersion in those firm-specific labor market “taxes” and hence
consists of shocks at the firm level. In conducting this analysis, I assume
that all tax revenue is rebated equally to local households both in the initial
state and the counterfactual state and hence the level of the homogeneous
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Figure E.2. Elimination of Size-Dependent Distor-
tions: Direct & Indirect Effects
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Note. The left panel plots direct and terms of trade effects when distor-
tions are positively size-dependent and the right panel when distortions
are negatively size-dependent. Points are shaded by state in both pan-
els, darker shades indicate richer states. For each district, direct effects
are calculated as the increase the total factor productivity if each dis-
trict were a closed economy. Terms-of-trade effects are calculated as
the difference between the welfare change from the experiment and the
direct effects.

tax rate in the counterfactual scenario does not affect welfare calculations.24

Figure E.2 shows that terms of trade effects are negative in a large number
of districts when removing negatively size-dependent distortions while they
are largely positive when removing positively size-dependent distortions.

The result of removing distortions at the firm-level is that firms that
faced higher tax rates and were too small, now expand, with labor being
24Size-dependent distortions are generated as:

1 + to(s) =

{
(1− q)−

1
η if distortions are positively size-dependent

q−
1
η if distortions are negatively size-dependent

,

where q denotes the quantile of the firm for sales to other firms and η denotes the
shape parameter of Pareto distributed distortions drawn from the following cumulative
distribution function:P (1 + to(s) ≤ 1 + t) =

(
1− (1 + t)

−η
)
1 {t ≥ 0} . For generating

distortions, η was calibrated to 5. Counterfactual outcomes are evaluated using the
procedure described in Appendix D.7 with firm-level and aggregate shocks respectively
given by:

δ̂od(s) = 1/(1+to(s))−ζ(1−αo),

δ̂od = 1/E{to}[(1+to)
−ζ(1−αo)].
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reallocated to them as in models of misallocation such as Restuccia and
Rogerson (2008) and Hsieh and Klenow (2009). While this captures direct
effects, the analysis here also takes into account indirect effects through
input-output linkages between firms and the endogenous response of the
network structure to these shocks. To examine how this experiment affects
the production network between firms, I consider the decomposition of
changes in firms’ sales to other firms into changes in its intensity of use
and changes in its average customer size. Table E.1 reports the results of a
Shapley decomposition of margins of sales. I find that changes in intensity
of use explain majority of variation in changes in firms’ sales — around 80%
with positively size-dependent distortions and 75% with negatively size-
dependent distortions. The downstream margin is however less important
in the case of negatively size-dependent distortions than in the case of
positively size-dependent distortions. This is because firms with lower sales
and facing larger distortions are likely to have had higher production costs.
Since their customers sourced inputs from relatively expensive suppliers,
they likely had higher production costs themselves and therefore change
relatively less in size when such distortions are neutralized.
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Table E.1. Elimination of Size-Dependent Distor-
tions: Margins of Changes in Firms’ Sales

∆% Upstream ∆% Downstream
Margin Margin
(1) (2)

Positively Size-Dependent:
Distortions:
Maharashtra 73.87% 11.81%
Tamil Nadu 82.02% 8.23%
Gujarat 82.52% 6.75%
West Bengal 80.47% 9.89%

Odisha 74.82% 12.00%

Overall 81.16% 8.34%

Negatively Size-Dependent:
Distortions:
Maharashtra 66.57% 1.34%
Tamil Nadu 73.23% 1.40%
Gujarat 80.73% 1.57%
West Bengal 78.01% 3.11%
Odisha 71.25% 1.11%

Overall 75.08% 1.58%

Note. This table reports the contribution of changes in firm’s margins
to the variation in changes in firms’ sales calculated using a Shapley
decomposition when firm-year observations are split by state.
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