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Abstract 
 
In a model inspired by neuroscience, we show that constrained optimal perception encodes lottery 
rewards using an S-shaped encoding function and over-samples low-probability events. The 
implications of this perception strategy for behavior depend on the decision-maker’s 
understanding of the risk. The strategy does not distort choice in the limit as perception frictions 
vanish when the decision-maker fully understands the decision problem. If, however, the decision-
maker underrates the complexity of the decision problem, then risk attitudes reflect properties of 
the perception strategy even for vanishing perception frictions. The model explains adaptive risk 
attitudes and probability weighting as in prospect theory and, additionally, predicts that risk 
attitudes are strengthened by time pressure and attenuated by anticipation of large risks. 
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1 Introduction

Although economists usually take preferences as exogenous and fixed, there is compelling

evidence that these change with the context. For choices over gambles, we know at least

since Kahneman and Tversky (1979) that risk attitudes are not fixed: the steep part of

the S-shaped utility function in prospect theory adapts to the status quo. Rabin’s (2000)

paradox provides another challenge for stable risk attitudes: choices over small and large

risks are best represented by distinct Bernoulli utility functions. Risk attitudes are further

modulated by external factors such as time pressure or framing (e.g., Kahneman, 2011).

An additional, well-known anomaly involves the overweighting of small objective probability

events relative to more likely events (Kahneman and Tversky, 1979).

In this paper, we explain these anomalies in a unifying way. In our model, endogenous risk

attitudes and probability weighting are the consequence of constrained optimal perception

of lotteries, combined with a possible misspecification of the structure of the risk.

Our procedural choice model is inspired by the literature on optimal coding from neuro-

science. A risk-neutral decision-maker (DM) chooses between a lottery and a safe option.

For illustration, consider the vivid example from Savage (1954) in which choosing the lottery

represents purchase of a convertible car, the enjoyment of which depends on the random

weather conditions. The DM knows the probabilities of the possible states of the world

(the different weather conditions), observes the value of the safe option (the price of the

car), but faces a friction in processing the rewards of the lottery in the different states (the

weather-dependent enjoyments). She learns about the reward vector by sampling signals.

Each signal is a reward of the lottery in a respective state encoded via a non-linear encoding

function that maps rewards to their mental representations (e.g. neural firing rates), then

perturbed by additive Gaussian noise. Noisy mental representations is what the DM (or

her brain) collects when extracting information from the description of the lottery, when

retrieving experiences from memory, or when processing the experiences provided by others

(e.g. the car dealer). After she has observed a collection of signals, the DM forms a maximum-

likelihood or Bayesian estimate of the value of the lottery and takes the optimal decision.

The DM optimizes the perception strategy – the encoding function and the sampling

frequencies of all states – for a given distribution of decision problems. Choice of the per-

ception strategy is a specific form of an attention allocation problem. Our DM is akin to

an engineer who measures a physical input by reading off the position of a needle on a me-

ter. The engineer can choose the measurement function that maps the physical input to

the needle position. If the needle position has a stochastic component, then the engineer

can increase the precision of her measurement for a specific range of inputs by making the
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measurement function steep in this range. Our DM can increase the precision of her reward

perception for a specific range of rewards by making the encoding function steep in this

range. Since the range of possible mental representations is finite, the encoding function

cannot be steep everywhere. Further, our DM can allocate attention to a specific state of

the world by sampling it frequently, but this comes at the cost of sampling other states less

frequently.

The model explains adaptive S-shaped encoding of rewards and over-sampling of low-

probability states as jointly optimal. The implications of the perception strategy for behavior

are subtle. As the perception data become rich and approximate full information, behavior

becomes risk-neutral whenever the DM understands the structure of the risk she faces, and

hence learns about it in a correctly specified model. However, the perception strategy induces

non-trivial risk attitudes when the DM applies a simplifying model to the encountered risk.

In that case, the encoding function takes on the role of a Bernoulli utility function and

over-sampling of small probability states translates into overweighting of small probabilities,

generating risk attitudes akin to those from prospect theory.

We analyze the limit of rich perception data, motivated by two considerations. First,

while human perception is inherently noisy, imprecisions can be partially mitigated by col-

lecting more data, in particular when the stakes are large. Our limiting results are a useful

approximation when noise is small relative to the stakes of the decision problem. Second,

the limit is tractable. We prove that the expected loss from misperception, relative to choice

under complete information, is approximately the mean squared error in perception of the

lottery value, integrated over all decision problems in which the lottery value ties with the

safe option. The conditioning on ties arises endogenously. Accuracy of perception has in-

strumental value for choice, and choice is trivial except where the values of two options are

nearly equal, given that information is nearly complete.

We then derive the perception strategy for which the mean squared error over ties goes

to zero most quickly as perception data become rich. This problem has a unique solution

which is characterized by intuitive optimality conditions. For the plausible case of unimodal

symmetric reward densities, we show that an S-shaped encoding function and over-sampling

of low-probability states are jointly optimal. The DM chooses the encoding function to

be steep near the modal rewards and flatter towards the tails of the reward distribution.

She thus perceives the reward values typical for her environment relatively precisely, at the

expense of precision at the tail rewards. Conditioning on ties induces a statistical association

between tail rewards and low-probability states, because tail rewards in high-probability

states typically result in very attractive or unattractive lotteries rather than in ties. Thus,

tail rewards arise relatively often in the low-probability states at ties. Hence, the DM
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with an S-shaped encoding function relatively often struggles to estimate the rewards from

low-probability states. It is optimal to compensate for this by over-sampling such states.

To illustrate, consider the decision whether to take a flight. The DM may struggle to

comprehend a possible aviation accident since her apprehension is not well adapted to such

extreme events. Such extreme events have only small probabilities in lotteries involved

in non-trivial comparisons – otherwise choice would be trivial. Paying disproportionate

attention to the contingency of the aviation accident then optimally compensates for the

struggle of its apprehension.

We then turn to the behavioral consequences of the perception strategy. If the DM learns

in a correctly specified model, then the perception strategy affects precision of perception

rather than risk attitudes. For instance, a locally steep encoding function translates into

locally precise decoding of the reward values rather than into high marginal utility. Similarly,

oversampling of a state translates for a well-specified DM into increased precision of the

state’s perceived reward rather than in an increased subjective probability of the state. We

thus obtain the prediction that the choices of a well-specified DM become undistorted in

the limit as the number of signals grows. For example, the decisions of a financial expert

with access to rich data in her domain of expertise will not be influenced by her perception

strategy.

On the other hand, if the DM interprets the perception data in a naturally misspecified

model, then a tight connection between the perception strategy and risk attitudes arises. To

illustrate the main idea, consider again the engineer who observes the needle position on her

meter and knows that the position is a non-linear function of the measured input. But now

assume that the needle trembles due to stochasticity of the input. If the engineer correctly

understands that the input is stochastic, then she inverts each observed needle position to

obtain the corresponding input value, thus eventually learning the true input distribution.

But what if the engineer incorrectly anticipates a deterministic input and attributes the

tremble of the needle to zero-mean measurement noise? Such an engineer must conclude

that the deterministic input generates the average needle position. Her input estimate is the

certainty equivalent of the input distribution under a Bernoulli utility function equal to the

meter’s non-linear measurement function.

Our results on the behavioral implications of the perception strategy are analogous to the

plight of the misspecified engineer. For simplicity, consider a DM who incorrectly anticipates

a riskless lottery that pays the same reward in all states. Like the engineer who incorrectly

anticipates a deterministic input, this DM estimates a single reward value, the perturbed

encoding of which supposedly generated her perception data. The maximum-likelihood es-

timate of the encoded value of this single reward is the average of all the observed signals.
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As the sample size diverges, the estimate converges to a convex combination of the encoded

values of the states’ true rewards, where the weight on each state is its sampling frequency.

Hence, the DM’s estimate of the lottery value converges to the certainty equivalent of the lot-

tery evaluated with a Bernoulli utility function equal to the encoding function and subjective

probabilities equal to the sampling frequencies.

We provide two extensions that bridge the gap between the extreme cases of a correctly

specified DM who anticipates all possible risk and a misspecified DM who anticipates no

risk at all. In our first approach, the DM is aware that she may face risk but uses a coarse

partitional model of the true state space, much like Savage’s (1954) decision-maker employing

a small-world model of the grand world. The finest partition corresponds to the correctly

specified DM, while the coarsest partition corresponds to the DM who anticipates no risk.

There are various reasons why a DM might employ a coarse model. She might have evolved in

a simple environment and the complexity of the environment might have increased, making

previously payoff-irrelevant contingencies relevant, without the DM adapting to the change.

For instance, the financial expert when analysing a new asset may initially estimate its

expected performance in a coarse model that fails to include all economic contingencies that

are relevant to that asset. Alternatively, the DM might have been framed to believe that

the decision problem involves less risk than it does (by a car dealer, for example).

We find that, in the limit of nearly complete information, the coarse DM makes risk-

neutral choices whenever she faces risk that is measurable with respect to her partition.

But, whenever she faces a lottery that is not measurable with respect to her partition, she

makes a biased choice even as her perception data become rich. She treats the lottery as if

she had risk-attitudes implied by her perception strategy towards those elements of the risk

that she does not comprehend, and is risk-neutral with respect to those elements of the risk

that she does comprehend.

In our second approach, the DM anticipates some risk but finds large risks unlikely.

We formalize this by taking a joint limit in which perception data become rich and the

prior reward distribution gradually concentrates on the set of riskless lotteries. Perception

distortions therefore remain large relative to the level of perceptual discrimination required

in typical decision problems. We find risk attitudes akin to those of the DM who does not

anticipate any risk at all. We then study comparative statics of these risk attitudes by

varying the relative speed at which the two limits are taken. Within the parametrization we

examine, choice becomes more risk-neutral when the DM anticipates larger risk a priori. In

the context of Rabin’s (2000) paradox, this implies that framing a decision problem as one

which features high risk attenuates the DM’s risk preferences. The DM also becomes more

risk-neutral when she collects more data. Thus, the model predicts that risk attitudes are
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induced under time pressure, mirroring the observation of Kahneman (2011) that prospect

theory applies to fast instinctive decisions rather than to slow deliberative choices.

2 Related Literature

We build on a rich literature in neuroscience and economics. To our knowledge, our paper

is the first to make two distinct contributions. First, we jointly optimize both encoding of

the lottery rewards and their sampling frequencies. Second, we clarify the essential role of

misspecification for behavioral consequences of any perception strategy when stakes are large

relative to perception frictions.

Our work derives ultimately from psychophysics, a field that originated in Fechner’s

(1860) study of stochastic perceptual comparisons based on Weber’s data.1 A large liter-

ature in brain sciences and psychology views perception as information processing via a

limited channel and studies the optimal encoding of stimuli for a given channel capacity.

Laughlin (1981) derives and tests the hypothesis that optimal neural encoding under an

information-theoretic objective encodes random stimuli with neural activities proportional

to their cumulative distribution values. This implies S-shaped encoding for unimodal stim-

ulus densities.2

Neuroscience studies encoding adaptations under various optimization objectives such as

maximization of mutual information between the stimulus and its perception, maximization

of Fisher information, or minimization of the mean squared error of perception.3 Economics

can help here by providing microfoundations for the most appropriate optimization objec-

tive for perceptions related to choice. Robson (2001) has studied encoding of rewards that

minimizes the probability of making a wrong choice and has shown that, in the limit of

vanishing perception frictions, the optimal encoding function likewise coincides with the cu-

mulative distribution function of rewards in the decision environment. Netzer (2009) has

studied maximization of the expected chosen reward, an objective rooted in the instrumen-

tal approach of economics to information. The optimal encoding function still tracks the

cumulative distribution function but is straightened. Schaffner et al. (2021) report that the

optimal encoding function as in Netzer provides a better fit to neural data than do encodings

derived under competing objectives.

These models study choices over riskless prizes and thus the derived encoding functions

are not directly relevant to choices over gambles. Indeed, encoding functions are often inter-

1Woodford (2020) provides a review of psychophysics from an economics perspective.
2See Attneave (1954) and Barlow (1961) for early contributions and Heng et al. (2020) for recent work.
3See e.g. Bethge et al. (2002) and Wang et al. (2016).
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preted as hedonic anticipatory utilities rather than as Bernoulli utilities in that literature.4

We extend Netzer’s instrumental approach to choices over gambles, finding a connection to

one of the above reduced-form objectives.5 That is, in the limit with rich perception data,

maximization of the expected chosen reward is equivalent to minimization of the expected

mean squared error in the perceived lottery value, where the expectation is over all decision

problems with a tie. This conditioning on ties not only generates the better fit of the optimal

encoding function documented by Schaffner et al. (2021), but is also crucial for the result of

optimal oversampling of low-probability contingencies. Oversampling would not arise under

reduced-form objectives that maximize unconditional measures of precision.6

Some recent papers study risk attitudes stemming from reward encoding in the presence

of noise. Khaw et al. (2018) show theoretically and verify experimentally that exogenous

logarithmic stochastic encoding and Bayesian decoding generates risk attitudes in an effect

akin to reversion to the mean. Vieider (2021) proposes a model in which probabilities are also

encoded in an exogenous logarithmic way and establishes a connection to stochastic prospect

theory. Frydman and Jin (2019) and Juechems et al. (2021) allow for optimal encoding of

the lottery reward and show both theoretically and experimentally that this encoding adapts

to the distribution of the decision problems and that the adaptation affects choice. Relative

to these papers, we analyze optimal encoding of rewards alongside optimal treatment of

probabilities. We also differ in the proposed source of behavioral distortions. The discussed

models assume well-specified learning, and thus they approximate the frictionless benchmark

when noise becomes small. We focus on the limit of small encoding noise right away. This

focus uncovers a novel connection between coding and behavior. While the impact of coding

on behavior must necessarily vanish when the decoding model is well-specified, as in the

previous literature, the implications for behavior remain substantial if the cognitive model

used for decoding oversimplifies the structure of the risk. We connect perception to classical

representations using a Bernoulli utility function and subjective probability weights.

We apply the statistical results of Berk (1966) and White (1982) on asymptotic outcomes

4See also Rayo and Becker (2007). Robson et al. (2021) is a dynamic version of Robson (2001) and
Netzer (2009) that captures low-rationality, real-time adaptation of a hedonic utility function used to make
ultimately deterministic choices. Friedman (1989) is an early approach dealing with gambles.

5Our model differs from Robson (2001) and Netzer (2009) concerning the perception friction. Those
papers model frictions as minimal just noticeable differences, while here we rely on the modeling framework
of Thurstone (1927) who hypothesized that perception is a Gaussian perturbation of an encoded stimulus.
Payzan-LeNestour and Woodford (2021) have shown that the Gaussian approach yields the same limiting
results as in Robson (2001) and Netzer (2009).

6Herold and Netzer (2015) derive probability weighting as the optimal correction for an exogenous dis-
tortive S-shaped value function, and Steiner and Stewart (2016) find probability weighting to be an optimal
correction for naive noisy information processing. Lieder et al. (2017) argue that a contingency should be
oversampled if it has extreme payoff consequences and decisions are based on a small sample. The present
paper derives both S-shaped encoding and low-probability over-sampling in a joint optimization.
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of misspecified Bayesian and maximum-likelihood estimation, respectively. The concept of

Berk-Nash equilibrium in Esponda and Pouzo (2016) is defined as a fixed point of misspec-

ified learning. This has motivated a renewed interest in misspecification across economics.

Heidhues et al. (2018) characterize a vicious circle of overconfident learning, Molavi (2019)

studies the macroeconomic consequences of misspecification, Frick et al. (2021) rank the

short- and long-run costs of various forms of misspecification, and Eliaz and Spiegler (2020)

focus on political-economy consequences of misspecification. We study the interplay of en-

coding and misspecified decoding of rewards. In his discussion of small-world models, Savage

(1954) argues that a coarse representation of the complex grand world does not necessarily

distort behavior. This is true whenever the subjective values assigned to the elements of a

coarse state space partition are correct averages of the true rewards within each element.

Our approach departs from Savage in that we explicitly model the process of learning about

rewards. We argue that the DM is unlikely to learn the correct average rewards for each

element of her partition. If she learns within the small-world model, then, instead of the av-

erage reward, her estimate converges to the certainty equivalent under her encoding function

and subjective probabilities equal to her sampling frequencies.

Salant and Rubinstein (2008) and Bernheim and Rangel (2009) provide a revealed-

preference theory of the behavioral and welfare implications of frames – payoff-irrelevant

aspects of decision problems. We provide an account of how a specific frame – anticipa-

tion of the risk structure – affects choice and welfare. As in Kahneman, Wakker, and Sarin

(1997), our model implies a distinction between decision and welfare utilities. In the case

of the misspecified DM, the gap between the decision utility that she anticipates the lottery

to pay and welfare utility – the true expected lottery reward – may be large. Our model

facilitates an analysis of systematic mistakes in decision making as outlined in Koszegi and

Rabin (2008) and, for the case of framing effects, Benkert and Netzer (2018).

3 Decision Process

There is a fixed set of states of the world i ∈ {1, . . . , I}, I ≥ 1, where each state i has

a fixed positive probability pi. The DM chooses between a safe option of value s and a

lottery that pays a reward ri ∈ [r, r] in each state i, where r < r are arbitrary bounds. The

lottery rewards and the safe option value are generated randomly.7 The DM observes the

value of the safe option but faces frictions in the perception of the lottery rewards. We let

r = (ri)i ∈ [r, r]I denote the vector of rewards and simply refer to it as the lottery. The pair

(r, s) is the decision problem.

7Our results continue to hold when the value of the safe option is held fixed.
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The goal of the DM is to choose the lottery if and only if its expected value r =
∑

i piri

exceeds s. This risk-neutrality with respect to rewards is an implicit assumption on the

units of measurement in which the rewards are expressed. For instance, the rewards might

be an appropriate concave function of monetary prizes if the DM chooses among monetary

lotteries and money has diminishing returns.

The DM estimates the unknown lottery r from a sequence of n signals, where each

signal is a monotone transformation of one of the rewards perturbed with additive noise:

she observes signals xk = (m̂k, ik), k = 1, . . . , n. We refer to the first component, m̂k,

as the perturbed message. The second component, ik, indicates the state the message m̂k

pertains to. Each perturbed message is generated by encoding the reward rik in state ik into

unperturbed message m (rik) and by perturbing it to m̂k = m (rik)+ ε̂k, where the noise term

ε̂k is independently and identically distributed (iid) standard normal.8 The sampled state

ik is one of the states i = 1, . . . , I, iid across k with positive probabilities πi. The function

m : [r, r] −→ [m,m] is strictly increasing and continuously differentiable; we refer to it as

the encoding function. We dub πi as sampling frequencies and refer to (m(·), (πi)i) as the

perception strategy. The size of the sample, n, is exogenous.

After she has observed the n signals, the DM forms an estimate qn of the lottery’s value

and chooses the lottery if and only if qn > s. We consider both maximum-likelihood and

Bayesian estimators, qn = qML
n or qn = qBn . In the first case, the DM is endowed with a

compact set A ⊆ [r, r]I of lotteries she anticipates and concludes that she has encountered

the lottery

qML
n ∈ arg max

r′∈A

n∏
k=1

ϕ
(
m̂k −m

(
r′ik
))

that maximizes the likelihood of the observed signals, where ϕ is the standard normal density.

Finally, she sets qML
n =

∑
i piq

ML
in .9 In the second case, the DM is endowed with a prior belief

over A and sets qBn = E [
∑

i piri | (xk)nk=1] as the posterior expected lottery value. Both these

specifications will lead to same conclusions as n diverges since the impact of the DM’s prior

becomes negligible in this limit.

We study decision-makers who may employ simplifying models of risk in the spirit of the

small world of Savage (1954). The DM anticipates, rightly or wrongly, distinctions among

some of the states of the world to be payoff-irrelevant. Let P be a partition of the set of all

the states {1, . . . , I}. The DM anticipates that ri = rj for all pairs of states i, j ∈ J that

8Our results in Section 4 on the limit loss and the optimal perception strategy extend to general noise
distributions. We use the Gaussian assumption in Section 5, where it yields a tractable form of the Kullback-
Leibler divergence and intuitive outcomes of misspecified learning.

9The maximum-likelihood estimate exists since A is compact. It is unique for the specifications below.
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belong to a same element J of the partition P . That is, she anticipates lotteries from a set

AP =
{

r ∈ [r, r]I : ri = ri′ for all i, i′, J such that i, i′ ∈ J , J ∈ P
}
. (1)

For instance, if P = {{1, . . . , I}} is the coarsest partition, then the DM anticipates only

degenerate lotteries that pay a same reward in all states. We refer to such lotteries as

riskless and call other lotteries risky. If, on the other extreme, P = {{1}, . . . , {I}} is the

finest partition, then the DM anticipates that any reward vector is possible and AP = [r, r]I .

4 Optimal Perception

The perception strategy needs to adapt to the prevailing statistical circumstances if it is to

allocate attention efficiently. An increase of the sampling frequency of a state increases the

DM’s attention to its reward, but reduces attention to the rewards in other states. Similarly,

making the encoding function steep in a neighborhood of a reward value reduces noise in

this neighborhood but entails increased noise elsewhere.

We denote the state space partition that the DM employs during the adaptation stage by

J . That is, the DM anticipates lotteries from AJ where each element of partition J specifies

a set of states that the DM deems as payoff-equivalent. Since the distinction between states

within each J ∈ J is redundant, we treat J as an index of a state, refer to the rewards in

states i ∈ J simply as rJ , and model the whole lottery r = (rJ)J∈J as having |J | rewards,

each with probability pJ =
∑

i∈J pi. A perception strategy consists of the increasing encoding

function m(·) and interior sampling frequencies (πJ)J ∈ ∆(J ).10 In Section 5, we will use

this notation to study a DM whose model is a misspecified small-world model of the grand

world, for instance because the world became more complex after adaptation but before

choice.

The DM optimizes her perception strategy ex ante for a given distribution of decision

problems. Specifically, the rewards rJ are iid with a continuous density h, and the safe option

s is drawn from a continuous density hs independently of the lottery rewards; both densities

have supports [r, r].11 We characterize the expected loss for general perception strategies

for diverging n in the next subsection and then solve for the loss minimizing strategy in

Subsection 4.2.

10Assuming interior sampling frequencies (when |J | > 1) is without loss, because in the limit when the
number of signals grows it is optimal to gather at least some information about the rewards in each state.

11Since s can have a distinct density from that of rJ , the safe option may, for example, capture in reduced
form the choice of an alternative lottery with each of its rewards drawn from h.
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4.1 Objective

We take the number n of signals to be large and abstract from uncertainty over the number of

perturbed messages sampled for each state and from divisibility issues. That is, we suppose

the number of messages sampled for each state J ∈ J is precisely πJn. We let mJ,n be the

average of the perturbed messages sampled for state J . Then, mJ,n − m(rJ) is normally

distributed with mean 0 and variance 1/(nπJ), for each given value of rJ . Since the signal

errors are Gaussian, the vector of average perturbed messages, mn = (mJ,n)J , is a sufficient

statistic for the lottery rewards.

For z ∈ {B,ML}, let qzn be the Bayesian and maximum-likelihood estimator of the lottery

value and let

Lz(n) = E
[
max{r, s} − 1qzn>sr − 1qzn≤ss

]
be its ex ante expected loss relative to choice under complete information; the expectation

is over r, s and qzn.

Proposition 1. Assume the encoding function m is continuously differentiable, the reward

density h is continuous, and the density of the safe option hs is continuously differentiable.

Then, the Bayesian and maximum-likelihood estimators generate the same asymptotic loss

lim
n→∞

nLz(n) =
1

2
E

[
hs(r)

∑
J∈J

p2J
πJ m′2(rJ)

]
for z ∈ {B,ML}. (2)

See Appendix A for the proof. The difference between the Bayesian and maximum-

likelihood estimators asymptotically vanishes because the prior information has negligible

impact on the Bayesian DM who receives many signals. The limit loss characterization in

(2) has an intuitive interpretation. It is the mean squared error (MSE) in the perception of

the lottery value (multiplied by n/2) integrated over all decision problems in which the true

lottery value r ties with s. The conditioning on the tie arises because the likelihood of large

perception errors vanishes with increasing n, and small perception errors distort choice only

in decision problems in which an approximate tie arises. In the limit, the set of decision

problems in which perception errors have nontrivial behavioral consequences approaches the

set of problems with exact ties.

To understand the relevance of the MSE for loss, fix the true and perceived lottery values

to be r and qzn, respectively. The perception error distorts choice and causes loss if and only

if the safe option s attains a value between r and qzn. When n is large, and hence the error

is small, this occurs with approximate probability hs(r)|qzn − r|. Conditional on the choice

being distorted like this, the expected loss is approximately |qzn−r|/2 since s is approximately
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uniformly distributed between r and qzn. Hence the overall loss over all s is approximately

hs(r) (qzn − r)
2 /2. Taking the expectation of (qzn − r)

2 with respect to qzn yields the MSE of

the value estimate for a given lottery, and taking the expectation with respect to the lottery

gives an average over all decision problems with a tie, s = r.

To understand the expression in (2) in detail, consider the maximum-likelihood estimator;

the Bayesian estimator differs only by a negligible term. The maximum-likelihood estimate

of the reward rJ is

qML
J,n = m−1 (mJ,n) , (3)

and, since mJ,n ∼ N (m(rJ), 1/ (nπJ)), the MSE of qML
J,n is approximately 1/(nπJm

′2(rJ)).12

The MSE of the value estimate is then approximately

1

n

∑
J∈J

p2J
πJm′2 (rJ)

.

The MSE and hence the loss go to zero as n→∞, for any perception strategy. However,

the perception strategy influences how fast the loss vanishes. Motivated by the characteri-

zation from (2), we define the information-processing problem as follows.

min
m′(·)>0,(πJ )J>0

E

[∑
J∈J

p2J
πJm′2(rJ)

| r = s

]
(4)

s.t.:

∫ r

r

m′(r̃)dr̃ ≤ m−m (5)

∑
J∈J

πJ = 1. (6)

The objective in (4) equals the asymptotic loss characterized in (2), up to a factor that

is independent of the perception strategy.13 We let the DM control the derivative m′(·)
and restrict it to be positive – this restricts the encoding function to be increasing and

differentiable. Constraint (5) is implied by the finite range of the encoding function – the

encoding function cannot be steep everywhere. Constraint (6) together with the restriction

to positive sampling frequencies requires (πJ)J to be a probability distribution over J – the

12Equation (3) holds if mJ,n ∈ [m,m]. If mJ,n < m or mJ,n > m, then the maximum-likelihood estimate
of rJ is r or r, respectively. Note, that P (mJ,n ∈ [m,m])→ 1 as n diverges for all rJ ∈ (r, r).

13This factor is two divided by the ex ante likelihood of a tie. A special case in which conditioning on
ties can be ignored is when s is uniformly distributed on [r, r], because conditional MSE and unconditional
MSE are then identical up to a constant factor. In that case, our information-processing problem implies
the minimization of the unconditional MSE, an objective assumed for example by Woodford (2012).
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DM must also treat sampling frequencies as a scarce resource.

4.2 Optimization

We say that the perception strategy (m(·), (πJ)J) is optimal if (m′(·), (πJ)J) solves the

information-processing problem. To describe the optimal strategy, we denote by

hJ (r̃) = h(r̃)
E[hs(r)|rJ = r̃]

E[hs(r)]

the density of reward rJ in state J conditional on a tie between the lottery value and the

safe option (the expectations are over r). Observe that each hJ is continuous if both h and

hs are continuous,14 which we assume in the following.

Proposition 2. There is a unique optimal perception strategy. It has the properties:

1. The optimal encoding function satisfies, for all r̃ ∈ [r, r],

m′(r̃) ∝

(∑
J∈J

p2J
πJ
hJ (r̃)

) 1
3

. (7)

2. The optimal sampling frequencies satisfy, for all J, J ′ ∈ J ,(
pJ
πJ

)2

E

[
1

m′2(rJ)
| r = s

]
=

(
pJ ′

πJ ′

)2

E

[
1

m′2(rJ ′)
| r = s

]
. (8)

The proof of Proposition 2 in Appendix B follows from first-order conditions. The first-

order condition for the slope m′(r̃) of the encoding function is

2
∑
J∈J

p2J
πJm′3(r̃)

hJ (r̃) = λ (9)

for each reward value r̃, where λ is the shadow price of constraint (5). The left-hand side

of (9) is the marginal benefit of an increase in the slope m′(r̃) at the reward value r̃. Such

an increase reduces the DM’s MSE in her perception of the lottery value if the reward rJ

attains the value r̃ for one of the states J ∈ J . This marginal reduction affects her choice

if the value of the lottery r ties with s. Each summand on the left-hand side is proportional

to the marginal reduction of the MSE multiplied by the likelihood that rJ = r̃ and that

14Since hs is continuous on a compact interval, it is uniformly continuous, and thus the function r̃ 7→
E [hs(r) | rJ = r̃] is continuous. Thus, hJ is continuous.
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r = s. The constraint (5) implies that, at the optimum, the marginal benefit of a slope

increase is equal across all reward values r̃. Expressing m′(r̃) from (9) gives the explicit

solution (7) in the proposition. This solution generalizes Netzer (2009). When |J | = 1,

then our DM chooses between two riskless rewards r and s. Both Netzer and we find that

when r and s are independently drawn from a same density h, then the slope of the optimal

encoding function is proportional to h2/3(r). To see this in our framework, note that the

reward density conditional on a tie is proportional to h2(r) for |J | = 1 and the result then

follows from (7).

Property (8) reflects that, at the optimum, the marginal benefit of increasing the sam-

pling frequency must be equal across all states J , because of constraint (6). This is, broadly

speaking, achieved by matching the probability pJ of each state with its sampling frequency

πJ , because more precise information is more valuable for states which arise with higher

probability and hence are more relevant for the lottery value. Relative to the true proba-

bilities, however, the DM wishes to over-sample states about whose rewards she expects to

be poorly informed. Recall that the DM measures reward rJ relatively poorly if the slope

m′ (rJ) is low. According to (8), the DM therefore chooses her (squared) sampling frequen-

cies to match (squared) modified probabilities, where the modifying factor is the expectation

of 1/m′2(rJ) and reflects how poorly the DM expects to be informed about the reward in

state J . The expectation is again conditional on a tie because a marginal change of the

sampling frequency affects choice only at ties.

A density f(x) on [r, r] is unimodal and symmetric around the mode rm = (r + r)/2 if

it is strictly decreasing on (rm, r] and f (rm + x) = f (rm − x) for all x. Symmetry implies

that unimodality is preserved by summation. We obtain the following proposition for the

case of unimodal and symmetric reward densities.15

Proposition 3. If the densities h and hs are unimodal and symmetric, then the optimal

perception strategy has the properties:

1. The optimal encoding function is S-shaped. It is convex below and concave above rm.

2. The DM over-samples low-probability states. For any two states J , J ′ ∈ J such that

pJ < pJ ′, it holds that πJ
pJ
>

πJ′
pJ′

. In particular, when there are two states, then πJ > pJ

for the state with probability pJ < 1/2 and vice versa for the high-probability state.

We show in Appendix B.2 that the density of the reward conditional on a tie is, for

each state, unimodal with the same mode as the unconditional reward density. The solution

15If the safe option is the value of an alternative lottery with rewards drawn from h, as discussed in
footnote 11, then unimodality and symmetry of h naturally implies unimodality and symmetry of hs.
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(7) thus implies that the optimal slope is proportional to a monotone transformation of a

sum of unimodal functions that all have their maxima at the unconditional reward mode,

establishing the first claim of the proposition.

While rewards are iid across the states unconditionally, conditional on a tie they are no

longer identically distributed. The tie condition
∑

J pJrJ = s is relatively uninformative

about rewards in low-probability states, and hence the conditional reward distributions for

the low-probability states are more spread-out compared to the high-probability states (see

Appendix B.2). Because the optimal m is relatively flat at tail rewards, if the DM sampled

in proportion with the states’ probabilities then she would in expectation end up poorly

informed about the spread-out rewards of low-probability states, and hence the marginal

benefit of an additional signal would be larger for those than for the other states. She

optimally compensates by over-sampling the low-probability states relative to proportional

sampling.16 Optimal over-sampling thus arises from our microfoundation of objective (4).

Had the DM minimized the unconditional MSE, the effect would not arise. By taking the

instrumental perspective that focuses on the payoff consequences of perception errors in

choice problems, we obtain an objective that conditions on ties and induces over-sampling

as the optimal adaptation.

4.3 Extension

So far we have treated the partition J as fixed and known at the stage of optimization. Hence

the optimal perception strategy depends on the partition. Furthermore, optimal sampling

frequencies are only determined for the elements of the partition but not separately for

each of the states within an element. In Appendix B.3, we provide an extension of the

model in which optimization of the encoding function m and sampling frequencies πi for

all states i = 1, . . . , I takes place before the partition is realized. This is relevant when

evolutionary forces select the perception strategy at a slow pace and can condition only

on coarse information about the partition, while the DM obtains more information before

sampling takes place. We generalize the optimality conditions from Proposition 2 and show

that, under the assumptions of Proposition 3, an S-shaped encoding function is still optimal.

The qualitative intuition for the optimal sampling frequencies is also still valid: it is optimal

to over-sample states of the world that are typically included in low-probability events.

16This argument relies on the rewards for all states being encoded with the same encoding function. The
property of S-shaped encoding would still hold with state-dependent encoding functions, but the optimal
sampling frequencies would be more difficult to derive. They would, for example, depend on whether the
range constraint (5) applies to each state separately or across states, i.e., on whether slope can be transferred
across states or not.
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5 Behavior

The implications of the perception strategy for behavior depend on the DM’s degree of

understanding of the risk. Consider the example from Savage (1954) mentioned earlier. The

DM is contemplating the purchase of a convertible car for price s. The payoff from the

purchase depends on the random weather; it is r1 if the car is driven in rainy conditions and

r2 for sunny conditions. The upcoming weather is unknown, making the purchase a binary

lottery. Let the probabilities of either weather type be one half.

The DM learns the values of r1 and r2 by sampling n signals. For each k = 1, . . . , n,

she observes the weather ik ∈ {1, 2} and a message m̂k = m (rik) + ε̂k where m is the

encoding function and the ε̂k are iid standard normal. The sampling frequency of each

weather condition is for now assumed to be one half, thus matching the actual probabilities.

Each signal might derive from the DM’s own experience with a convertible, the experience

of her peers, information provided by the car dealer, etc.

Consider two varieties of DM – fine and coarse – who differ in their anticipation of the risk

structure. The fine DM knows that the weather is payoff-relevant and hence anticipates that

the purchase will lead to one of two possibly distinct reward values (r1, r2). The coarse DM

employs a small-world model: she anticipates, as in Savage’s example, that the convertible

will lead to “definite and sure enjoyments”, so she anticipates a degenerate lottery (r, r).

Their distinct models of risk lead the two DMs to distinct conclusions even when they

employ the same perception strategy and observe identical data. The fine DM asymptotically

learns m(ri) for i = 1, 2 from the empirical distribution of the perturbed messages, inverts

the encoding function and learns the true reward pair. Her estimate of the expected reward

thus converges to the true expected reward and she makes the risk-neutral choice. See the

left-hand graph in Figure 1.

The coarse DM observes the same empirical signal distribution but, since she omits

the weather from her model of risk, she seeks a single message which best accounts for

all the observed signals. For Gaussian additive errors, the single message that maximizes

the likelihood of the observed data is the empirical average message, which almost surely

converges to (m (r1) +m (r2)) /2. Hence, the DM’s asymptotic estimate of the reward from

driving the convertible is the certainty equivalent of the risky reward under the Bernoulli

utility u(·) = m(·) and equal probabilities. See the right-hand graph in Figure 1.

There are various paths that could have led the fine and the coarse DMs to their respective

decision procedures. They could have evolved in a simple environment in which all the

lotteries were measurable with respect to the coarsest partition J = {{1, 2}} of the set of

states. Afterwards, their environments became more complex so they currently encounter
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Figure 1: Asymptotic estimated lottery value q of the fine (left) and the coarse (right) DMs.

lotteries with r1 6= r2. The fine DM has refined her anticipation and understands that she may

now face a risky lottery. In contrast, the coarse DM has not made such an adjustment and

continues to anticipate riskless lotteries only. It is plausible that real-world decision-makers

are sometimes not aware of all contingencies that affect their payoffs. Below we will provide

an example of a financial investor who omits a relevant variable from her econometric model

of the return of an asset. Alternatively, both DMs may have evolved in a risky environment

with partition J = {{1}, {2}} or in which this partition was at least possible with positive

probability. Afterwards, the coarse DM was (incorrectly) assured that her next lottery will

be riskless (possibly by a strategically interested party), while the fine DM was not told this.

Finally, both DM’s may know that they encounter a risky lottery but the coarse DM has

chosen the coarse estimation procedure due to its simplicity. The coarse procedure consists

of applying the inverse encoding function to the average of all perturbed messages, whereas

the procedure of the fine DM requires applying the coarse procedure to each state of the

world separately and then computing the lottery value.

This section takes the DM’s perception strategy as given; it could have been optimized

as in Section 4 or established by any different process. Subsection 5.1 extends the present

binary example to arbitrary lotteries and sampling frequencies. A further generalization in

Subsection 5.2 considers a DM who employs an arbitrary partitional model of risk; such a

DM has some but only partial awareness of the risk she faces. Subsection 5.3 then focuses

on a DM who anticipates risk but believes that large differences between rewards across the

states of the world are a priori unlikely. As in the case of the DM who anticipates no risk,

this generates non-trivial risk attitudes.
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5.1 Surprising Risk

We characterize here the behavior of a DM who has not anticipated any risk. She anticipates

a lottery from the set

A =
{
r ∈ [r, r]I : ri = rj for all states i, j

}
.

After she encounters a lottery, she observes data generated by her perception strategy, forms

the maximum-likelihood or Bayesian estimate of the encountered lottery from A, and chooses

the lottery if and only if its estimated value exceeds s. The DM learns in a misspecified model

– she may encounter an unanticipated risky lottery.

To describe her behavior, we say that the DM’s choice is represented by a Bernoulli utility

u(·) and probabilities (ρi)
I
i=1 if in each decision problem (r, s) such that

I∑
i=1

ρiu (ri) > [<]u(s),

the probability that the DM chooses the lottery r converges to 1 [0] as n→∞.17

Proposition 4. Let the DM form the maximum-likelihood or Bayesian estimate of the lot-

tery. When she anticipates a riskless lottery, the DM’s choice is represented by a Bernoulli

utility equal to the encoding function, u(·) = m(·), and probabilities given by the sampling

frequencies, ρi = πi for i = 1, . . . , I.

The proposition is a special case of Proposition 5 which we prove in Appendix C. It

follows from the result on misspecified maximum-likelihood estimation by White (1982) and

from Berk (1966) for the Bayesian DM. These authors let an agent observe n iid signals from

a signal density and form the estimate from a set of hypothesized signal densities that may

fail to include the true density. They prove that the estimate almost surely converges to the

minimizer of the Kullback-Leibler divergence from the true signal density as n diverges (if

the minimizer is unique).

To apply White’s and Berk’s results in our setting, consider a DM who encounters a

lottery r. She observes the empirical distribution of approximately πin signals drawn iid

from N (m(ri), 1) for each state i. Since the DM has anticipated a riskless lottery, she forms

an estimate of a single unperturbed message mn, a perturbation of which has generated

the observed data. White’s and Berk’s results imply that m∗ = limn→∞mn almost surely

minimizes the Kullback-Leibler divergence from the true signal density. For Gaussian errors,

17The probability is evaluated with respect to the stochastic signal sequence (m̂k, ik)
n
k=1.
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this implies m∗ =
∑

i πim(ri) almost surely. Thus, the DM’s estimate of the lottery value

almost surely converges to the “certainty equivalent” m−1
(∑I

i=1 πim(ri)
)

.

The behavior of the DM who anticipates a riskless lottery is governed by the sampling

frequencies rather than by the true probabilities. Indeed, this DM believes that the true

probabilities are payoff-irrelevant. In contrast, the sampling frequencies govern the propor-

tions of her data generated for each state and hence her estimate of the encoded riskless

reward she thinks she has encountered.

Example (estimating financial returns): An investor chooses between a safe asset with

return s and a risky asset with return ρ(x,y) that depends on vectors of variables x and

y. She employs a misspecified model: she neglects the role of variables y, believing that

the return is ρ̃(x) where ρ̃(·) is a simplified function she estimates. For example, she knows

that the profit of a firm depends on prices and interest rate (x) but is not aware of the

firms’ entire trade exposure and neglects the role of some exchange rates (y). Given x, let

y have conditional probability g(y | x). Thus, for each fixed value of x the financial asset is

a lottery where each state represents a particular value of y and is assigned a return ρ(x,y)

and a probability g(y | x). However, the investor attributes the variation of the return

for fixed x to noise and estimates ρ̃(x) from signals m (ρ (x,yk)) + ε̂k, k = 1, . . . , n. The

conditional probability g̃(y | x) of observing a signal about the return for yk = y depends

on the investor’s sampling; if her sampling is representative, then g̃ = g. By Proposition 4,

when the number of signals diverges, the investor treats the asset for each x as if she were

an expected-utility maximizer with Bernoulli utility u(·) = m(·) and probability g̃(y | x)

assigned to each value of y.

5.2 Coarse Decision-Maker

Next, we study a DM who considers distinctions among some but not all states of the world

payoff-relevant. She anticipates that all states in each element of a partition K of the set of

states pay the same reward. That is, she anticipates encountering a lottery from the set AK
of lotteries measurable with respect to K.

We say that the DM’s choice has a mixed representation with Bernoulli utility u(·),
probabilities (ρi)

I
i=1 and partition K if the probability that she chooses lottery r over the

safe option s converges to 1 [0] in each decision problem (r, s) such that∑
J∈K

ρJr
∗
J > [<] s,
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where ρJ =
∑

i∈J ρi and r∗J is the certainty equivalent defined by

u (r∗J) =
∑
i∈J

ρi
ρJ
u (ri)

for each J ∈ K.

Let J(i) be the element of partition K that contains state i. Let pJ =
∑

i∈J pi be the

overall probability of the states i ∈ J , and let πJ =
∑

i∈J πi be the overall sampling frequency

for J .

Proposition 5. The choice of the coarse DM who forms a maximum-likelihood or Bayesian

estimate has a mixed representation with Bernoulli utility u(·) = m(·) and probabilities ρi =

pJ(i)
πi
πJ(i)

for i = 1, . . . , I.

See Appendix C for the proof. In the limit, the DM chooses as if she was treating the

lottery r as a compound lottery in which each element J of the partition K constitutes a sub-

lottery and these sub-lotteries have probabilities pJ . She behaves as if she first reduced each

sub-lottery to its certainty equivalent under the Bernoulli utility u(·) = m(·) and subjective

probabilities equal to the normalized sampling frequencies. After the reduction, she evaluates

the overall lottery in a risk-neutral manner using the true probabilities of each J .

Example (estimating financial returns continued): Unlike in the previous version of this

example, the investor does not observe x (or y) at the moment of choice. Instead, she

observes a signal z. Conditional on the observed value of z, the asset is a lottery in which

each state represents a realization of (x,y) with associated return ρ(x,y) and probability

g(x,y | z). Since the investor is unaware of y’s influence on the return, she forms a coarse

counterpart of this lottery in which each state represents a value of x, paying ρ̃(x) with

probability g(x | z) =
∑

y g(x,y | z). For each value of x, the investor forms the estimate of

the return ρ̃(x) given the data points m(ρ(x,yk)) + ε̂k, where yk is drawn from g̃(yk | x, z).

Again, g̃(y | x, z) captures sampling. If sampling is untargeted, then g̃ = g. After she forms

the maximum-likelihood estimate ρ̂n(x) for each value x, she assigns the expected value

E [ρ̂n(x) | z] to the asset, where the expectation is with respect to the conditional density

g(x | z). By Proposition 5, for each z this investor values the asset as if she computed

the certainty equivalent over ρ(x,y) | (x, z) for each (x, z) under Bernoulli utility m(·) and

subjective probabilities g̃(y | x, z), and then computed the risk-neutral value of the reduced

lottery under the objective probabilities g(x | z). That is, the investor is risk-neutral with

respect to the risk induced by stochastic x | z that she comprehends but behaves as if she

had non-trivial risk-attitudes with respect to the risk induced by stochastic y | (x, z) that

she does not comprehend.
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If the DM actually encounters a lottery r ∈ AK that she has anticipated, she learns in

a correctly specified model. The asymptotic results for correctly specified learning of Wald

(1949) for maximum-likelihood estimation and of Le Cam (1953) for Bayesian estimation

imply that she correctly learns the encountered lottery as the number of signals diverges.

In this case, our result implies that her perception strategy is irrelevant for her limit choice

and she chooses in a risk neutral way.

Our predictions of the DM’s risk attitudes more generally depend on the combination

of the adaptation experienced, as in Section 4, and her misapprehension of the lottery at

the moment of choice. Recall that J denotes the partition that the DM has employed dur-

ing adaptation and partition K specifies the DM’s anticipation of lotteries at the moment

of choice; J and K may differ. The optimal encoding function is S-shaped regardless of

the adaptation partition J . Hence, we predict risk aversion (loving) for upper (lower) tail

rewards with respect to the unanticipated risk under K. We also predict relative sampling

frequencies for states within the same element of partition K whenever the distinction be-

tween these states was recognized during adaptation. If the DM was distinguishing these

states under adaptation partition J , or if adaptation occurred under sufficient uncertainty

about the relevant partition (as in our extension in Subsection 4.3), we predict overweighting

of low-probability events. For example, a DM who has adapted to a world in which weather

condition is sometimes payoff-relevant, but was framed by a car dealer to ignore the role

of the weather in the specific decision to purchase a convertible, may overweight the rather

small probability of weather conditions suitable for driving open.18

5.3 Somewhat Surprising Risk

As a last extension of our model, we analyze a DM who deems risk a priori possible but

unlikely. Her perception frictions are comparable in size to the risk that she typically expects

to encounter. To this end, we study a limit in which the prior shrinks to the set of riskless

lotteries as the amount of perception data diverges. We find perception distortions that

are qualitatively similar to those from Subsection 5.1. Additionally, the approach makes

predictions about the impact of framing and time pressure on risk-taking. Risk attitudes are

attenuated by the anticipation of high risk or by rich perception data.

18If the DM has ignored distinction between two states already at the stage of adaptation, our results
of Section 4 do not predict relative sampling frequencies. If sampling is representative, then the sampling
frequencies coincide with their states’ objective probabilities. Any targeted sampling, for instance over-
sampling salient contingencies, results in choice that assigns disproportional subjective probabilities to the
over-sampled states. Starmer and Sugden (1993) report that a payoff-irrelevant split of an event increases the
weight that lab subjects assign to this event. This effect arises for our coarse DM if splitting a contingency
leads to it having a larger overall sampling frequency.
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The DM of this subsection is Bayesian. Her prior density indexed by n is

%n(r) = %0n exp
(
− n

2∆
σ2(r)

)
(10)

with support [r, r]I , where σ2(r) =
∑I

i=1 pi(ri − r)2 is the variance of the states’ rewards

and r =
∑

i piri is the true lottery value as usual; %0n is the normalization factor. This

prior is mostly concentrated on low-risk lotteries. For any fixed n, ∆ > 0 parameterizes the

level of a priori anticipated risk. The index n has two roles. As n increases, risky lotteries

become a priori less likely, approximating then the anticipation of the DM from Subsection

5.1. In addition to risk becoming less likely, the DM observes more data as n increases. She

observes, for each state i, a sequence of aπin messages equal to m (ri) perturbed with iid

additive standard normal noise, where (πi)
I
i=1 continues to denote the sampling frequencies.

The parameter a > 0 captures attention span; the larger a is, the more signals the DM

observes for each fixed n. The DM chooses the lottery r over the safe option s if and only if

the Bayesian posterior expected lottery value exceeds s.

To formulate the next result, we define a function q∗ : [r, r]I −→ [r, r]I as follows:

q∗(r) = arg min
r′∈[r,r]I

{
σ2(r′)

a∆
+

I∑
i=1

πi (m (r′i)−m(ri))
2

}
. (11)

We impose the regularity condition that the minimizer is unique. We refer to the posterior

expectation E [r |mn] ∈ [r, r]I that the DM forms given the vector of the average perturbed

messages mn as the Bayesian estimate of the lottery.

Proposition 6. Suppose the DM has encountered lottery r. The Bayesian estimate of the

lottery converges to q∗(r) in probability as n→∞.

See Appendix D for the proofs for this subsection. The asymptotic estimate q∗(r) of

the lottery r is a compromise lottery that is not too risky and does not generate messages

too far from the true messages. When a∆ is small, then the DM anticipates relatively

little risk and/or collects little perception data. Her best explanation of her perception

data is a lottery that involves little risk. In the limit as a∆ → 0, the solution to (11)

minimizes Kullback-Leibler divergence from the true lottery among the riskless lotteries, as

in Subsection 5.1. When a∆ is large, then the DM anticipates relatively large risk and/or

collects a lot of perception data. Then, her best explanation of the data minimizes Kullback-

Leibler divergence from the true lottery among all lotteries, which yields the correct estimate.

Let q∗(r) =
∑I

i=1 piq
∗
i (r) be the value of the lottery q∗(r). Proposition 6 implies:
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Corollary 1. Consider a decision problem (r, s) such that q∗(r) > [<] s. Then, the proba-

bility that the DM chooses the lottery [the safe option] approaches 1 as n→∞.

To focus on the effect of the curvature of the encoding function, we set the sampling

frequencies equal to the actual probabilities and compare the asymptotic estimated lottery

value q∗(r) with the true value r of the lottery r.19

Proposition 7. Let the encoding function m be twice differentiable. Let πi = pi, and r be a

fixed lottery. The value of its Bayesian estimate almost surely converges to

r +
1

2

m′′(r)

m′(r)
· 1 + 4z(r)

(1 + z(r))2
· σ2(r) + o(σ2(r)), (12)

as n → ∞, where z(r) = a∆m′2(r). The factor 1+4z(r)
(1+z(r))2

attains values in (0, 4/3] and

approaches 1 and 0 as a∆→ 0 and a∆→∞, respectively.

To interpret the result, recall that the risk premium of an expected-utility maximizer

with Bernoulli utility u for a lottery r with small risk is approximately 1
2
u′′(r)
u′(r)

σ2(r). The

approximate risk premium of our DM is the same for u(·) = m(·) but scaled by the positive

factor 1+4z(r)
(1+z(r))2

. The DM’s bias in the valuation of the lottery relative to r arises because the

DM deems risk a priori unlikely and therefore concludes that her perceived data are generated

by a lottery with a smaller reward variance than the true variance. The underestimation of

the variance leads to a mismatch to the perception data and this mismatch leads to a bias

in the estimated mean of the lottery.

The dependence of the risk premium on the parameters ∆ and a sheds light on two

apparent instabilities of risk preferences pointed out by Rabin (2000) and Kahneman (2011).

Kahnemann distinguishes between fast and slow modes of decision-making, where the fast

mode favours the risk-attitudes found in prospect theory whereas the slow mode favours

risk-neutrality.20 If the amount of perception data collected by the DM increases with the

time available for the decision, then time pressure is captured in our example by a low value

of parameter a. In accord with Kahnemann, we find encoding-based risk attitudes when

a → 0. When our DM, who has anticipated little risk, encounters a risky lottery under

time pressure, the relatively few data points that she has collected are best explained by

19We say that function f(r) is o(g(r)) if f(rk)/g(rk) → 0 for any sequence rk such that σ(rk) → 0.
Specifically, a function is o(σ2) if it is negligible relative to σ2 for lotteries with small σ. The expression o(·)
stands for “term of smaller order than”.

20Kirchler et al. (2017) show experimentally that time pressure increases risk aversion for gains and risk
loving for losses. Relatedly, Porcelli and Delgado (2009) and Cahĺıková and Cingl (2017) find that stress
accentuates risk attitudes in lab choices. But see also Kocher, Pahlke, and Trautmann (2013) who do not
find an increase of risk aversion due to time pressure in their design.
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an a priori likely low-risk lottery. Which such low-risk lottery is the best fit to the DM’s

data depends on the encoding function, thus the curvature of m determines the DM’s risk

attitudes. At the other extreme, in the absence of time pressure, when a → ∞, the DM

collects enough data for her prior to be irrelevant. She then learns the lottery and makes

the risk-neutral choice.

Rabin (2000) points out that the risk-averse choices observed for small risks imply im-

plausibly high risk aversion for large risks under a stable Bernoulli utility function. In our

model, risk attitudes depend on the level of a priori anticipated risk. The anticipation of

low risk – captured by small ∆ here – induces risk attitudes since it makes risky lotteries

surprising, and this leads to distortion of the posteriors when a risky lottery is encountered.

If, however, the DM anticipates high-risk lotteries – if parameter ∆ is large – then the DM’s

risk attitudes are attenuated. Risky lotteries become unsurprising and the DM’s posterior

expectation approaches the lottery’s true expected value.

6 Summary

We develop a model of constrained optimal perception of gambles in which psychophysical

adaptation affects choices. The impact of the perceptual strategy vanishes for rich perception

data if the DM encounters a lottery that she has anticipated, but perception-induced risk

attitudes arise for risk that the DM has not anticipated. In the latter case, we provide

a unified explanation for various well-documented patterns in risky choice: adaptive risk

attitudes, S-shaped reward valuation, probability weighting, and the role of stakes and time

pressure.

The model makes several novel predictions. For example, explaining the structure of

risk to the DM should attenuate her risk attitudes, while increasing the complexity of the

environment should strengthen perception-driven behavior. These predictions are broadly

in line with the recent experimental findings of Enke and Graeber (2021), who show that

probability weighting is more pronounced for subjects who state a higher level of cognitive

uncertainty about the correct action. Other predictions relate to the effect of framing. For

example, a DM who is framed to perceive a risky lottery as riskless will rely on sampling

frequencies rather than objective probabilities to evaluate the lottery. Manipulation of the

sampling frequencies then has a strong impact on choice. A seller offering a risky prospect

can make it more attractive if the presentation of the prospect leads to over-sampling of the

upside risk. An additional prediction is that risk attitudes become more pronounced if the

DM samples less perceptual data, which the seller of an insurance contract could exploit by

putting the DM under time pressure.
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A Asymptotic Loss Characterization

Let 0 < h ≤ h < +∞ and 0 < m′ ≤ m′ < +∞ be bounds on the functions h and m′. These

bounds exist since the two functions are continuous on a compact interval.

Lemma 1. Suppose that the encoding function is continuously differentiable and the reward

density h is continuous. Let r∗J ∈ (r, r) be a realization of the reward, and qBJ,n = E[rJ | mJ,n]

and qML
J,n = m−1(mJ,n) its Bayesian and ML estimators. Then,

(i)
√
n
(
qBJ,n − qML

J,n

)
→ 0 as n→∞ (a.s.),

(ii) nVar[rJ | mJ,n]→ 1
πJm′2(r

∗
J )

as n→∞ (a.s.),

(iii) The MSE of the maximum-likelihood estimate (rescaled by n) is uniformly bounded:

nE
[ (
rJ − qML

J,n

)2 | mJ,n

]
≤ h

h
· m′
m′3

1
πJ

.
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Proof. Consider sufficiently large n so that mJ,n ∈ [m,m]. We introduce the rescaled er-

ror ε̂J,n :=
√
πJn(rJ − qJ,n) and derive its conditional density given mJ,n. Since mJ,n ∼

N (m (r∗J) , 1/(πJn)), the pdf of rJ | mJ,n is proportional to

h(r̃)ϕ
(√

πJn
(
m(r̃)−mJ,n

))
for any r̃ ∈ [r, r] and 0 otherwise; recall that ϕ is the standard normal density. Thus, the

pdf of ε̂J,n conditioned on mJ,n = m(qML
J,n ) is

hJ,n(ε̃) = h0J,n · h
(
qML
J,n + ε̃√

πJn

)
ϕ

(
√
πJn

(
m
(
qML
J,n + ε̃√

πJn

)
−m(qML

J,n )

))

for any ε̃ ∈
[√
πJn(r − qML

J,n ),
√
πJn(r − qML

J,n )
]

and 0 otherwise; h0J,n is the normalization

factor. It follows that hJ,n(ε̃)/h0J,n is dominated by the integrable function h · ϕ(m′ · ε̃).
Since

∣∣qML
J,n − r∗J

∣∣ = |m−1 (mJ,n)− r∗J | ≤ 1
m′
|mJ,n −m(r∗J)| andmJ,n ∼ N (m (r∗J) , 1/(πJn)),

we have that qML
J,n → r∗J (a.s.). Using this, the Mean Value Theorem, and continuity of m′,

we get
√
πJn

(
m
(
qML
J,n + ε̃√

πJn

)
−m(qML

J,n )

)
→ m′(r∗J) ε̃ as n→∞ (a.s.),

and thus, using the continuity of h, for any ε̃,

hJ,n(ε̃)

h0J,n
→ h(r∗J) ϕ

(
m′(r∗J) ε̃

)
as n→∞ (a.s.).

Next, we characterize the limit of the normalization factors. By the Dominated Conver-

gence Theorem,∫
R

hJ,n(ε̃)

h0J,n
dε̃→ 1

h0J
as n→∞ (a.s.), where h0J :=

[∫
R
h(r∗J) ϕ

(
m′(r∗J) ε̃

)
dε̃

]−1
.

Since
∫
R hJ,n(ε̃) dε̃ = 1 for all n, it follows that h0J,n → h0J > 0 (a.s.). In particular, h0J,n is

bounded. Then, the posterior errors ε̂J,n | mJ,n converge in distribution to N
(
0, 1/m′2(r∗J)

)
(a.s.).

Applying the Dominated Convergence Theorem to the functions ε̃hJ,n(ε̃) and ε̃2hJ,n(ε̃),

we conclude that E[ε̂J,n | mJ,n]→ 0 and Var[ε̂J,n | mJ,n]→ 1/m′2(r∗J) as n→ 0 (a.s.). Claims

(i) and (ii) follow from deriving rJ from ε̂J,n =
√
πJn(rJ − qML

J,n ).

For Claim (iii), recall that hJ,n(ε̃)/h0J,n is dominated by the integrable function h ·ϕ(m′ · ε̃)
that equals, up to a multiplicative constant, the pdf of N (0, 1/m′2). Consider a random

variable ε̂′J,n with pdf proportional to hJ,n(ε̃)/h0J,n on the domain of ε̂J,n, and h ϕ(m′ · ε̃)
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outside of the domain. We can establish the following upper bound on the normalization

constant h′0J,n of the pdf of the variable ε̂′J,n,

h′0J,n ≤
[∫

R
h ϕ(m′ · ε̃) dε̃

]−1
=

h

h
· m

′

m′
·
[∫

R
h ϕ(m′ · ε̃) dε̃

]−1
.

Then,

nE
[ (
rJ − qML

J,n

)2 | mJ,n

]
≤ 1

πJ
E
[
ε̂′ 2J,n | mJ,n

]
≤ 1

πJ
h′0J,n

∫
R
ε̃ 2 · h ϕ(m′ε̃) dε̃ =

h

h
· m

′

m′3
1

πJ
.

Corollary 2. Conditional on a realization of r∗ ∈ (r, r)|J |,

(i)
√
n
(
qBn − qML

n

)
→ 0 as n→∞ (a.s.),

(ii) nVar[r |mn]→
∑

J∈J
p2J

πJm′2(r
∗
J )

as n→∞ (a.s.).

(iii) nE
[ (
r − qML

n

)2 | mn

]
≤ h

h
· m′
m′3
·
∑

J∈J
p2J
πJ

.

For the following two lemmas, we abstract from the specific structure of the messages

mn, let the DM receive a vector of messages m = (mJ)J and then form the estimate q(m)

of r as a function of m. Let

` := max{r, s} − 1q>sr − 1q≤ss

denote the loss from using the estimate q.

We assume that the pdf hs is continuously differentiable, thus hs and h′s are bounded

from above; let hs and h
′
s be the respective bounds. We say that O(·) has uniform bound h

′
s

if | O(x)/x |≤ h
′
s for all x and any value of r and m.21

Lemma 2. The expected loss of the estimate q conditioned on m and r is

E[` | r,m] = 1
2
hs(q)(r − q)2 +O

(
(r − q)3

)
,

where the expectation is over s and O(·) has the uniform bound h
′
s.

Proof. Consider a fixed realization of r and m. The loss is ` = |r − s| if the DM makes the

suboptimal choice, which happens if and only if s is between the true lottery value r and its

21The term O(·) stands for the “term of the order of”.
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estimate q. Taking the expectation over the safe option yields (for both r < q and r > q)

E[` | r,m] =

∫ q

r

(s̃− r)hs(s̃) ds̃.

The lemma follows from the approximation hs(s̃) = hs(q) +O(s̃− q), in which O(·) has the

uniform bound h
′
s,∫ q

r

(s̃− r)hs(s̃) ds̃ = hs(q)

∫ q

r

(s̃− r) ds̃+

∫ q

r

(s̃− r)O(s̃− q) ds̃

=
1

2
hs(q)(r − q)2 +O

(
(r − q)3

)
.

Lemma 3. The expected loss of the estimate q conditioned on m is

E[` |m] = 1
2
hs(q)σ

2 +O(σ3), where σ2 := Var[r |m] +
(
qB − q

)2
,

where O(·) has the uniform bound h
′
s and qB = E[r |m].

Proof. This follows from Lemma 2 by taking the expectation over r:

E[` |m] = E
[

E[` | r,m] |m
]

= E
[
1
2
hs(q)(r − q)2 +O

(
(r − q)3

)
|m
]
,

where O(·) has the uniform bound h
′
s. Since | O

(
(r − q)3

)
|≤ h

′
s | r − q |3,∣∣∣∣E [O((r − q)3) |m]∣∣∣∣ ≤ E

[
h
′
s

(
(r − q)2

)3/2
|m
]
≤ h

′
s E
[
(r − q)2 |m

]3/2
,

where we have used Jensen’s inequality in the second step.

We conclude with

E
[
(r − q)2 |m

]
= E

[(
(r − qB) + (qB − q)

)2
|m
]

= E

[(
r − qB

)2
+ 2(r − qB)(qB − q) + (qB − q)2 |m

]
= Var[r |m] +

(
qB − q

)2
= σ2.

Proof of Proposition 1. Let `zn = max{r, s} − 1qzn>sr − 1qzn≤ss be the loss of the estimator

31



qzn, z ∈ {B,ML}. For a given realization of the lottery r∗ with value r∗, we prove that the

expected loss conditioned on mn satisfies

nE[`zn |mn]→ 1
2
hs(r

∗)
∑
J∈J

p2J
πJm′2(r∗J)

as n→∞ (a.s.), (13)

where the expectation is over s and qzn is a function of mn.

Lemma 3 applied to mn and qzn implies

nE[`zn |mn] = 1
2
hs(q

z
n)nσ2

n(z) + nO(σ3
n(z)), where σ2

n(z) := Var[r |mn] +
(
qBn − qzn

)2
. (14)

Corollary 2 implies that n
(
qBn − qzn

)2 → 0 (a.s.) (this holds trivially for the Bayesian

estimator). Further, Claim (ii) of Corollary 2 implies

nσ2
n(z)→

∑
J∈J

p2J
πJm′2(r∗J)

as n→∞ (a.s.).

Thus, σn(z)→ 0 as n→∞ (a.s.); and so | nO(σ3
n(z)) |≤ nh

′
s σ

3
n(z) = h

′
s ·nσ2

n(z) ·σn(z)→ 0

as n→∞ (a.s.). Substituting back into (14) and taking into account that qzn → r∗ as n→∞
(a.s.), we obtain (13).

The proposition follows from taking expectation over r and applying the Dominated

Convergence Theorem. In particular, (14) implies that nE[`zn |mn] has an integrable bound:

∣∣nE[`zn |mn]
∣∣ ≤ 1

2
hs · nσ2

n(ML) + h
′
s · nσ2

n(ML) · σn(ML) ≤ 1
2
hsΣ + h

′
sΣ ·max{Σ, 1},

where Σ = h
h
· m′
m′3
·
∑

J∈J
p2J
πJ

is the uniform bound from Claim (iii) of Corollary 2.

B Optimal Perception

B.1 Proof of Proposition 2

Proof of Proposition 2. The objective of the information-processing problem is a functional

L
(
m′(·), (πJ)J∈J

)
= E

[∑
J∈J

p2J
πJm′2(rJ)

| r = s

]
.

Since
p2J

πJm′2(rJ )
is convex with respect to (m′ (rJ) , πJ), the functional L is convex. Thus,

the first-order conditions are sufficient for a global minimum of the information-processing
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problem.

Since the objective (4) is strictly decreasing in both m′(·) and πJ , the constraints (5) and

(6) are binding at the optimum. The Lagrangian of the constrained optimization problem

(4)-(6) is

E

[∑
J∈J

p2J
πJm′2(rJ)

| r = s

]
+ λ

(∫ r

r

m′(r̃)dr̃ − (m−m)

)
+ µ

(∑
J∈J

πJ − 1

)
=

∑
J∈J

∫ r

r

p2J
πJm′2(r̃J)

hJ(r̃J)dr̃J + λ

(∫ r

r

m′(r̃)dr̃ − (m−m)

)
+ µ

(∑
J∈J

πJ − 1

)
,

where λ and µ are the Lagrange multipliers for (5) and (6), respectively. The first-order

condition (9) then follows by summing the derivatives w.r.t. m′(r̃), r̃ ∈ [r, r], of all the

integrands in the last inline expression. This first-order condition must hold for almost all r̃,

so the optimal encoding function m satisfies the condition for all r̃. Expressing m′(r̃) from

(9) gives (7). Further, m′ is continuous since each hJ is continuous.

The first-order condition of the information-processing problem with respect to πJ is, for

each J ∈ J , (
pJ
πJ

)2

E

[
1

m′2(rJ)
| r = s

]
= µ.

This implies (8).

B.2 Proof of Proposition 3

Definition 1. A continuous random variable is unimodal and symmetric around 0 if its

density function h(x) is strictly decreasing on the positive part of its domain and h(x) =

h(−x) for all x ∈ R.

This property is preserved by summation: the sum of unimodal and symmetric random

variables is unimodal and symmetric, see e.g. Purkayastha (1998).

Definition 2 (Birnbaum (1948)). Let X and Y be two unimodal random variables symmetric

around 0. We say that X is more peaked than Y if P (|X| < α) > P (|Y | < α) (unless the

right-hand side is 1) for all α > 0.

Equivalently, for two unimodal symmetric random variables, X is more peaked than Y

whenever the cdf of X is greater than the cdf of Y at any α > 0 from the support of Y .

For the next two lemmas, let X0, X1, . . . , XI be independent real-valued continuous ran-

dom variables that are unimodal and symmetric around 0, where X1, . . . , XI are identically
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distributed and the distribution of X0 may be distinct from that of Xi, i > 0. Denote

by h the pdf of each of the iid variables X1, . . . , XI . Let (p1, . . . , pI) ∈ ∆({1, . . . , I}), and

X :=
∑I

i=1 piXi.

Lemma 4. The random variable Xi | (X = X0), i = 1, . . . , I, is unimodal and symmetric

around 0.

Proof. Since unimodality together with symmetry is preserved by affine combinations, the

variable X−i := 1
pi

(X0 −
∑

k 6=i pkXk) is unimodal and symmetric around 0. Denote by h−i

the pdf of X−i. Then Xi | (X = X0) is identical to Xi | (Xi = X−i), and so its pdf is, up to

a normalization constant, h(xi)h−i(xi), which is unimodal and symmetric around 0, as those

properties are preserved when taking product of pdfs.

Lemma 5. The random variable Xi | (X = X0) is more peaked than Xj | (X = X0) if and

only if pi > pj.

Proof. Without loss of generality, assume {i, j} = {1, 2} (that is, either i = 1 and j = 2 or

i = 2 and j = 1). Define X−12 := X0 −
∑I

k=3 pkXk (if I = 2, then X−12 = X0) and let h−12

be its pdf. This is a unimodal random variable symmetric around 0. The random variable

Xi | (X = X0) is identical to Xi | (piXi + pjXj = X−12) and so its pdf equals

hi(xi) =

∫
R h−12(p1x1 + p2x2)h(x1)h(x2)dxj

E[h−12(p1X1 + p2X2)]
,

where the expectation, which is with respect to X1 and X2, is independent of i. Thus, for

any α > 0,

P (|X1| < α | X = X0) =

∫∫
(−α,α)×R h−12(p1x1 + p2x2)h(x1)h(x2)dx1dx2

E[h−12(p1X1 + p2X2)]

P (|X2| < α | X = X0) =

∫∫
(−α,α)×R h−12(p1x2 + p2x1)h(x1)h(x2)dx1dx2

E[h−12(p1X1 + p2X2)]
,

where we used that P (|X1| < α | X = X0) and P (|X2| < α | X = X0) are both (up to

the same normalization constant) integrals of the same function (x1, x2) 7→ h−12(p1x1 +

p2x2)h(x1)h(x2), but the first is over the region [−α, α]×R, and the second is over R×[−α, α].

This is equivalent to integrating both over the same region but switching the roles of x1 and

x2. Then,

(P (|X1| < α | X = X0)− P (|X2| < α | X = X0)) · E[h−12(p1X1 + p2X2)] =
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∫∫
(−α,α)×R

(
h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)

)
h(x1)h(x2)dx1dx2 =

∫∫
(−α,α)×

(
R\(−α,α)

) (h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)
)
h(x1)h(x2)dx1dx2 =

2

∫∫
(−α,α)×[α,+∞)

(
h−12(p1x1 + p2x2)− h−12(p1x2 + p2x1)

)
h(x1)h(x2)dx1dx2,

where we used that both integrals cancel each other out on the region (−α, α) × (−α, α),

and that h and h−12 are symmetric around 0.

Suppose that p2 > p1, and consider any (x1, x2) ∈ (−α, α)× [α,+∞). It follows from the

identity

p1x1 + p2x2 = (p1x2 + p2x1) + (p2 − p1)(x2 − x1)

that

p1x1 + p2x2 > p1x2 + p2x1,

where the left-hand side (LHS) is always positive. The right-hand side (RHS) is either

positive or negative, but smaller in absolute value than the LHS. Indeed, if the RHS is

negative, then x1 < 0, and

|p1x2 + p2x1| = −p1x2 + p2|x1| = −p1|x1|+ p2x2 − (p1 + p2)(x2 − |x1|) < −p1|x1|+ p2x2.

Thus,

|p1x1 + p2x2| > |p1x2 + p2x1|,

and due to the symmetry and unimodality of h−12,

h−12(p1x1 + p2x2) < h−12(p1x2 + p2x1),

unless both are zero. It follows that X2 | (X = X0) is more peaked than X1 | (X = X0), as

needed.

Lemma 6. Let the function f be continuous, symmetric around 0 and increasing on R+,

and let X1, X2 be unimodal continuous random variables that are symmetric around 0 and

have bounded support. Then E[f(X1)] < E[f(X2)] whenever X1 is more peaked than X2.

Proof. Denote by hi(x) and Hi(x) the pdf and cdf of Xi, i = 1, 2. Then,

1
2

E[f(Xi)] =

∫ ∞
0

f(x)hi(x)dx
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=
[
f(x)(Hi(x)− 1)

]+∞
0
−
∫ ∞
0

(Hi(x)− 1)df(x)

= 1
2
f(0) +

∫ ∞
0

(1−Hi(x))df(x),

where we have used integration by parts for the Stieltjes integral, see e.g. Ok (2011). If X1

is more peaked than X2, then 1 −H1(x) < 1−H2(x) unless both are zero for all x > 0. It

follows that E[f(X1)] < E[f(X2)].

Proof of Proposition 3. Statement 1 follows from (7) because by Lemma 4 each hJ is uni-

modal with the same mode as the unconditional reward density h. Additionally, m′ is

symmetric around rm since each hJ is symmetric around rm.

Now consider Statement 2. Suppose pJ < pJ ′ . By (8) it suffices to show that

E

[
1

m′2(rJ)
| r = s

]
> E

[
1

m′2(rJ ′)
| r = s

]
. (15)

This indeed holds since, by Lemma 5, rJ ′ | (r = s) is more peaked than rJ | (r = s) and

the inequality (15) follows from Lemma 6 and from the fact that 1/m′2(r) is continuous and

symmetric around rm and increasing above rm.

B.3 Extension

We discuss here an extension of Proposition 2 and Proposition 3 to a setting in which the

DM does not know the payoff-relevant partition of states J at the point of optimization

of the perception strategy, but knows the distribution of possible partitions. The timing is

as follows: first, the DM chooses her perception strategy, i.e., the encoding function m and

sampling frequencies πi for all states i = 1, . . . , I. Afterwards, J is realized and observed

by the DM. The DM then samples the realized vector r ∈ AJ according to her perception

strategy. As in Section 4, the rewards are iid from a density h and the safe option s is

independently drawn from a density hs (both independent of J ). The DM observes s, forms

an estimate of the lottery value r using her knowledge of the partition J , and makes the

optimal choice.

Proposition 1 applies for each realization of the partition. Hence, the limit loss (rescaled

by 2n) equals

1

2
E

[
hs(r)

∑
J∈J

p2J
πJm′2(rJ)

]
, (16)

where the expectation is with respect to the partition J and the reward vector r. The objec-
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tive probabilities and effective sampling frequencies for each element J of a given partition

J are pJ =
∑

i∈J pi and πJ =
∑

i∈J πi, respectively. The information-processing problem for

this setting is to minimize (16) subject to constraint (5) from the main text and
∑I

i=1 πi = 1,

which replaces the constraint (6).

The first-order condition for the slope m′(r̃) of the encoding function is

E

[
2
∑
J∈J

p2J
πJm′3(r̃)

hJ (r̃)

]
= λ

for each r̃, where λ is the shadow price of the constraint (5) and the expectation is with

respect to the partition. From this we obtain

m′(r̃) ∝ E

[∑
J∈J

p2J
πJ
hJ (r̃)

] 1
3

,

which generalizes Statement 1 of Proposition 2. If the densities h and hs are symmetric

and unimodal with a same mode, then each conditional reward density hJ for each possible

partition is symmetric and unimodal. Thus, the optimal encoding function is again S-shaped,

which generalizes Statement 1 of Proposition 3.

The first-order condition with respect to πi is, for each i = 1, . . . , I,

E

[
p2J(i)

π2
J(i)m

′2(rJ(i))
| r = s

]
= µ,

where the expectation is with respect to the partition and the reward vector, J(i) is the

element of the realized partition that contains i, and µ is the shadow price of the sampling

constraint
∑I

i=1 πi = 1. Hence, for all i, i′ = 1, . . . , I,

E

[
p2J(i)

π2
J(i)m

′2(rJ(i))
| r = s

]
= E

[
p2J(i′)

π2
J(i′)m

′2(rJ(i′))
| r = s

]
, (17)

which generalizes Statement 2 of Proposition 2.

If m was linear, the solution of the first-order condition would be proportional sampling

πi = pi. If m is S-shaped, qualitatively, states i which are often included in low-probability

events should be oversampled, because high-probability events have more peaked reward

distributions conditional on ties, and the S-shaped encoding function thus measures low-

probability rewards less precisely in expectation. This intuition generalizes Statement 2 of

Proposition 3. For illustration, assume that only two partitions arise with positive proba-
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bility, the coarsest one J = {{1, . . . , I}} and the finest one J ′ = {{1}, . . . , {I}}. Then (17)

reduces to (8) for the finest partition, and we obtain oversampling of low-probability states

exactly like in Proposition 3.

C Proofs of Propositions 4 and 5

Proposition 4 follows from Proposition 5 for K = {{1, . . . , I}}.

Proof of Proposition 5. Let fr(x) be the signal density conditional on the encountered lottery

r. That is, for signal x = (m̂, i), fr(x) = πiϕ (m̂−m(ri)) where ϕ is the standard normal

density. Kullback-Leibler divergence of the signal densities for any two lotteries r, r′ is

DKL (fr ‖ fr′) =

∫
R×{1,...,I}

fr(x) ln
fr(x)

fr′(x)
dx

=
I∑
i=1

∫
R
πiϕ (m̂−m (ri)) ln

πiϕ (m̂−m (ri))

πiϕ (m̂−m (r′i))
dm̂

=
I∑
i=1

πi

∫
R
ϕ (m̂−m (ri)) ln

ϕ (m̂−m (ri))

ϕ (m̂−m (r′i))
dm̂

=
I∑
i=1

πiDKL

(
ϕm(ri) ‖ ϕm(r′i)

)

=
1

2

I∑
i=1

πi (m (ri)−m (r′i))
2
.

where ϕm(m̂) = ϕ(m̂ − m) is the density of the perturbed message m̂ conditional on the

unperturbed message m. The last equality follows from the fact that the Kullback-Leibler di-

vergence of two Gaussian densities with means µ1, µ2 and variances equal to 1 is (µ1 − µ2)
2 /2

(see e.g. Johnson and Orsak, 1993).

Let

q = arg min
r′∈AK

DKL (fr ‖ fr′) = arg min
r′∈AK

I∑
i=1

πi (m (ri)−m (r′i))
2
.

This minimizer q = (qi)i is unique and satisfies for each state i = 1, . . . , I,

m (qi) = arg min
m∈[m,m]

∑
j∈J(i)

πj (m (rj)−m)2
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=
∑
j∈J(i)

πj
πJ(i)

m (rj) ,

where J(i) is the element of the partition K that contains i.

The estimated lottery value qzn, z ∈ {ML,B}, almost surely converges to
∑I

i=1 piqi. For

the maximum-likelihood estimate, this follows from White (1982) who proves that it almost

surely converges to the minimizer of the Kullback-Leibler divergence (provided the minimizer

is unique). For the Bayesian estimate, the result follows from Berk (1966) who proves that

the posterior belief almost surely converges in probability to an atom on the minimizer of

the Kullback-Leibler divergence (again, provided the minimizer is unique).

D Proofs for Subsection 5.3

We use the next lemma in the proof of Proposition 6.

Lemma 7. Let ψn(x) : [r, r]I −→ R be a sequence of continuous functions uniformly con-

verging to a function ψ(x) which has a unique minimizer x∗. Then, the random variable Xn

with pdf equal to αn exp(−nψn(x)), where αn is the normalization factor, converges to x∗ in

probability as n→∞.

Proof. We need to prove that for every δ > 0, the probability P (Xn ∈ Bδ) → 1 as n → ∞,

where Bδ is the open Euclidean δ-ball centered at x∗. Fix δ > 0 and define

d = min
x∈[r,r]I\Bδ

{ψ(x)− ψ(x∗)} .

The minimum exists as ψ is continuous and the set [r, r]I \Bδ is closed. Additionally, d > 0

since x∗ is the unique minimizer of ψ on [r, r]I .

Because the convergence ψn → ψ is uniform, for any d′ > 0 there exists nd′ ∈ N such

that |ψn(x) − ψ(x)| < d′ for all x ∈ [r, r]I and n ≥ nd′ . Consider n ≥ nd/4. Because

ψn(x) ≥ ψ(x)− d
4
≥ ψ(x∗) + 3d

4
for x outside of the ball Bδ, the probability density of Xn is

at most αn exp
(
−nψ(x∗)− 3d

4
n
)
. This implies,

P (Xn /∈ Bδ) ≤ α̃n exp

(
−3d

4
n

)
(r − r)I , where α̃n := αn exp(−nψ(x∗)). (18)

We conclude by establishing an upper bound for α̃n. Given δ > 0, let δ′ > 0 be such that

ψ(x) ≤ ψ(x∗) + d/4 for all x ∈ Bδ′ ∩ [r, r]I . Existence of such δ′ follows from the continuity

of ψ. Then, ψn(x) ≤ ψ(x) + d
4
≤ ψ(x∗) + d

2
for all x ∈ Bδ′ ∩ [r, r]I and n > nd/4. Thus the
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probability density of Xn is at least α̃n exp
(
−d

2
n
)

on this set. It follows that,

1 ≥ P (Xn ∈ Bδ′) ≥ α̃n exp

(
−d

2
n

)
b′,

where b′ > 0 is the volume of the set Bδ′ ∩ [r, r]I . Substituting the implied upper bound on

α̃n into (18) gives

P (Xn /∈ Bδ) ≤ exp

(
−d

4
n

)
(r − r)I

b′
.

Since the right-hand vanishes as n→∞, the claim follows.

Proof of Proposition 6. Let mn = (mi,n)Ii=1 be the vector of the averages of aπn perturbed

messages received for each state i. Since the encoding errors are standard normal, mi,n |
ri ∼ N

(
m(ri),

1
aπin

)
. By Bayes’ Rule, the posterior density of each lottery r′ ∈ [r, r]I , is for

given mn, proportional to

%n (r′)
I∏
i=1

ϕ
((
mi,n −m(r′i)

)√
aπin

)
∝ exp

(
− nψ(r′; mn)

)
,

where ∝ denotes equality modulo normalization and

ψ(r′; m) :=
1

2

I∑
i=1

(
σ(r′)

∆
+ aπi

(
m(r′i)−mi

)2)
.

The first inline equality follows from the specification of the prior %n in (10).

Since mi,n → m(ri) (a.s.), ψ(r′; mn) converges to ψ
(
r′; (m(ri))i

)
, uniformly in r′. Addi-

tionally, ψ
(
r′; (m(ri))i

)
as a function of r′ has the unique minimizer q∗(r) by assumption.

Lemma 7 implies that the posterior formed given mn converges in probability to q∗(r).

Since the support of the rewards is bounded, convergence in probability implies convergence

in expected value, and thus the Bayesian estimate E [r |mn] converges to q∗(r).

Proof of Proposition 7. By Proposition 6, the Bayesian estimate of r converges to q∗(r).

We write q∗ = (q∗i )
I
i=1 as an abbreviation for q∗(r) and let q∗ =

∑
i piq

∗
i . The first-order

condition applied to the minimization in (11) implies,

(q∗i − q∗) + a∆
(
m (q∗i )−m(ri)

)
m′ (q∗i ) = 0, (19)

for all i = 1, . . . , I, where we have used that πi = pi and
∑I

i pi(q
∗
i − q∗) = q∗ − q∗ = 0.

We write σ2 for σ2(r) and σ∗2 :=
∑I

i=1 pi (q
∗
i − q∗) for the variance of q∗. We will prove the

following claims (see Footnote 19 for the definition of the o(·) convention):

40



Claim 1: Any function that is o(ri − r) or o (q∗i − r) is also o(σ).

Claim 2: q∗ = r + o(σ).

Claim 3: σ∗2 = z(r)2

(1+z(r))2
σ2 + o(σ2).

Claim 4: q∗ = r + 1
2
m′′(r)
m′(r)

(
σ2 +

(
2
z(r)
− 1
)
σ∗2
)

+ o(σ2).

To prove Claim 1, we provide a bound on the distance of ri and r′i from r. It follows from

definition of σ2 that (ri − r)2 ≤ σ2/pi, and thus |ri − r| ≤ σ/
√
pi. Therefore, any function

that is o(ri − r) is also o(σ). Bounding |q∗i − r| is complicated by the fact that q∗ is defined

implicitly. We first establish a bound on |q∗ − r|. Define m′ and m′ to be the minimum

and the maximum of m′(·) on [r, r], respectively, and let z = a∆m′2, z = a∆m′2. We have

0 < m′ ≤ m′ < +∞ and 0 < z ≤ z < +∞ since m′(·) is continuous and strictly positive on

the closed interval [r, r].

For fixed values of r and q∗ define zi ∈ R by

a∆m′ (q∗i )
(
m (q∗i )−mi(ri)

)
= (q∗i − ri) zi

whenever q∗i 6= ri, and zi := a∆m′2(ri) otherwise. It follows from its definition that zi ≥ z

for all i. Then, equation (19) can be written as

0 = (q∗i − q∗) + (q∗i − ri)zi = (1 + zi)(q
∗
i − q∗)− (ri − q∗)zi,

and thus,

q∗i − q∗ = zi
1+zi

(ri − q∗) = zi
1+zi

(ri − r) + zi
1+zi

(r − q∗). (20)

Summing up the last equation weighted by pi over i gives

0 =
I∑
i=1

(
pi

zi
1+zi

(ri − r)
)

+ (r − q∗)
I∑
i=1

(
pi

zi
1+zi

)
,

in which 0 < z
1+z
≤ zi

1+zi
< 1. The triangle inequality implies

|q∗ − r| ≤ 1+z
z

I∑
i=1

pi|ri − r| ≤ 1+z
z
σ

I∑
i=1

√
pi ≤ 1+z

z
Iσ.

Returning to equation (20),

|q∗i − r| ≤ zi
1+zi
|ri − r|+ zi

1+zi
|r − q∗|+ |q∗ − r| < |ri − r|+ 2|r − q∗| ≤

(
p
−1/2
i + 21+z

z
I
)
σ.

41



We conclude that |q∗i −r| ≤
(
p
−1/2
i + 21+z

z
I
)
σ for any r ∈ [r, r]I , and thus any function that

is o(q∗i − r) is also o(σ). This establishes Claim 1.

We will prove the remaining claims by taking first- and second-order approximations of

the first-order condition (19) for σ > 0 small. Since m(·) is twice differentiable, the functions

m and m′ can be expressed using first-order Taylor approximations around r:

m(ri) = m(r) +m′(r)(ri − r) + o(σ),

m(q∗i ) = m(r) +m′(r)(q∗i − r) + o(σ),

m′(q∗i ) = m′(r) +m′′(r)(q∗i − r) + o(σ),

where we used Claim 1 to replace o(ri− r) and o(q∗i − r) by o(σ). Equation (19) then implies

0 = (q∗i − q∗) + a∆
(
m′(r)

(
q∗i − ri

)
+ o(σ)

)(
m′(r) +m′′(r)

(
q∗i − r

)
+ o(σ)

)
= (q∗i − q∗) + a∆m′2(r)(q∗i − ri) + o(σ),

where we used that (q∗i − ri)(q∗i − r) = o(σ). The last inline equation can be written as

0 = (q∗i − q∗) + z(r)(q∗i − ri) + o(σ). (21)

Summing up these equations weighted by pi, we get 0 = z(r)(q∗− r) + o(σ). Thus |q∗− r| ≤
1
z
o(σ), as needed for Claim 2.

We rewrite (21) as

(
1 + z(r)

)
(q∗i − q∗) = z(r)(ri − r) + z(r)(r − q∗) + o(σ) = z(r)(ri − r) + o(σ),

where the second equality follows from Claim 2. Squaring both sides of the equation and

summing up the equations weighted by pi, we get

(1 + z(r))2σ∗2 = z2(r)σ2 + o(σ2),

where we used that z(r) ≤ z and thus z(r)(ri − r)o(σ) is o(σ2). Claim 3 follows.

To prove Claim 4, we use the second-order Taylor approximation of m(·) around r:

m(q∗i ) = m(r) +m′(r)(q∗i − r) + 1
2
m′′(r)(q∗i − r)2 + o(σ2)

m(ri) = m(r) +m′(r)(ri − r) + 1
2
m′′(r)(ri − r)2 + o(σ2).
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This implies the second-order approximation of the equation (19),

0 = (q∗i − q∗) + a∆
(
m′(r)

(
q∗i − ri

)
+ 1

2
m′′(r)

(
(q∗i − r)2 − (ri − r)2

)
+ o(σ2)

)
·
(
m′(r) +m′′(r)

(
q∗i − r

)
+ o(σ)

)
,

which we rewrite as

0 = (q∗i−q∗)+z(r)
((
q∗i − ri

)
+ 1

2
m′′(r)
m′(r)

(
(q∗i − r)2 − (ri − r)2

))(
1 + m′′(r)

m′(r)

(
q∗i − r

))
+o(σ2).

Summing up these equations weighted by pi and dividing by z(r), we arrive at

0 = (q∗ − r)− 1
2
m′′(r)
m′(r)

(
σ2 − σ∗2 + 2

I∑
i=1

pi
(
ri − q∗i

)(
q∗i − r

))
+ o(σ2). (22)

Expressing q∗i − ri from (21) allows us to write

I∑
i=1

pi
(
ri − q∗i

)(
q∗i − r

)
= 1

z(r)

I∑
i=1

pi
(
q∗i − r

)2
+ o(σ2) = 1

z(r)
σ∗2 + o(σ2),

where we used that r = q∗+o(σ) for the second equality. Substituting the last inline equation

back into (22) completes the proof of Claim 4.

Finally, substituting for σ∗2 from Claim 3 into the expression from Claim 4 gives

q∗ = r +
1

2

m′′(r)

m′(r)

(
1 +

(
2
z(r)
− 1
) z(r)2

(1 + z(r))2

)
σ2 + o(σ2)

= r +
1

2

m′′(r)

m′(r)

(
1 +

2z(r)− z(r)2

(1 + z(r))2

)
σ2 + o(σ2),

and using 1 + 2z(r)−z(r)2
(1+z(r))2

= 1+4z(r)
(1+z(r))2

, we obtain (12), concluding the proof.
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