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Abstract 
 
Inspired by empirical evidence from the oil market, we build a model of an oligopoly facing a 
fringe as well as competition from renewable resources. We explore different subclasses of HARA 
utility functions (Cobb-Douglas, power and quadratic utility) to check the robustness of results 
found in the previous literature. For isoelastic demand, we characterize the equilibrium extraction 
rates of the fringe and the oligopolists. There always exists a phase of simultaneous supply of the 
oligopolists and the fringe, implying an inefficient order of use of resources since the oligopolists 
have smaller unit extraction costs and carbon emissions than the fringe. We calibrate our model 
to the oil market to quantify this sequence effect. In our benchmark calibration, we find for the 
three HARA subclasses that the sequence effect is responsible for almost all of the welfare loss 
compared to the first-best. It becomes smaller as market power decreases. Furthermore, we show 
that climate damage and Green Paradox effects depend non-monotonically on the degree of 
market power. 
JEL-Codes: Q310, Q420, Q540, Q580. 
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1 Introduction

In this paper, we setup an oligopoly-fringe model of a non-renewable resource market

to assess the implications of imperfect competition in markets for fossil fuel on (i)

welfare and climate damages and (ii) the occurrence of the so-called Green Paradox.

We build upon Benchekroun et al. (2019, 2020) in which we have developed a dy-

namic game of the oil market. The main ingredients are the following. Demand is met

by OPEC, an entity which market power can be that of a cohesive cartel (Benchekroun

et al., 2020), or can be proxied by the outcome of an oligopoly (Benchekroun et al.,

2019). In addition there is a competitive fringe and there are producers of a per-

fect renewable substitute, also supplied competitively. It is shown for linear demand

schedules that in the open-loop Nash equilibrium, where players choose extraction

paths, there is always a phase with simultaneous supply of oil by the fringe and the

oligopolists. If the marginal costs of extraction (including climate damages from carbon

emissions) by these two types of suppliers differ, as assumed, this feature gives rise to

an inefficiency since an expensive resource is exploited before the cheaper resource

is depleted (Herfindahl, 1967). This is in addition to the two well-known sources

of inefficiency stemming from undersupply due to market power and oversupply due

to the climate externality. A calibrated version of the model with a cohesive cartel

(Benchekroun et al., 2020) revealed that the former source of inefficiency, called the

sequence effect, dwarfs the combined effect of the latter two to a large degree. This

is an important result that has repercussions on the type of policies that should be

considered when dealing with fossil fuels and the role they play in climate change.

The aim of the present paper is to investigate the robustness of this conclusion with

respect to the specification of demand. In particular, we will characterize qualitatively

the equilibrium for isoelastic demand and examine quantitatively the inefficiencies for

different subclasses of HARA (Hyperbolic Absolute Risk Aversion) utility functions. We

also check that the sequence effect and its relative importance are due to market power

by allowing for OPEC’s degree of market power to vary. Empirical work has shown that

OPEC does not act cohesively but rather as a group of oligopolists (Almoguera et al.,

2011, p. 144).

Our main findings are threefold. First, it appears that the equilibrium with isoelastic

demand qualitatively closely resembles the linear demand case. Second, we find that
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there might be substantial quantitative differences between the different subclasses of

demand functions when it comes to inefficiencies, but what is preserved from the earlier

studies is the prevalence of the sequence effect as a cause of the inefficiency. Third,

although the sequence effect is robust with respect to changes in the utility function,

it depends negatively on the degree of market power and it vanishes if the number of

oligopolists becomes large.

The numerical analysis also indicates that the effect of market power on climate

damage may be non-monotonic, due to the counteracting sequence effect (causing

front-loading of dirty extraction) and conservation effect (causing undersupply of the

non-renewable resource) of imperfect competition. Furthermore, we numerically ex-

amine Green Paradox effects of an increase in the subsidy on renewable energy. A

Green Paradox is said to occur if (announced) climate policies lead to an increase

in current carbon emissions (e.g. Sinn, 2008; Gerlagh, 2011; Van der Werf and Di

Maria, 2012; Van der Ploeg and Withagen, 2015, 2012). Under perfect competition

with constant unit extraction cost, constant unit production cost of renewables and

perfect substitution between the resource and renewables, a subsidy on renewable

energy typically causes a Green Paradox. On the contrary, under similar conditions such

a subsidy may cause a decrease in initial extraction under monopolistic resource supply

(e.g. Van der Meijden and Withagen, 2019). In terms of market power, the situation

in our model is somewhere in between these extreme cases of perfect competition and

monopoly. In our benchmark calibration, we find a modest Green Paradox effect. The

relationship between the strength of this Green Paradox effect and the degree of market

power is U-shaped.

This paper contributes to the literature on the extraction of non-renewable resources

under imperfect competition (cf. Long, 2010, 2011) and in particular the dominant

firm framework (cf. Withagen, 2013, for a detailed coverage). Like Groot et al. (2003),

Benchekroun et al. (2009), Benchekroun et al. (2010) and Benchekroun and With-

agen (2012) we build on the seminal framework of Salant (1976). We incorporate

an important feature of the oil market and energy sector in general: The existence

of renewables that provide perfect substitutes for oil and that can be produced in

unlimited amounts. This implies that an equilibrium may include a phase of limit-

pricing by oil cartel members (see, e.g., Van der Meijden et al. (2018), Andrade de Sá

2



and Daubanes (2016) and Van der Meijden and Withagen (2019) for recent work and

Hoel (1978), Salant (1979) and Gilbert and Goldman (1978) for early contributions),

where the price is maintained at a level that precludes entry of suppliers using the

backstop technology.

Our model has shortcomings. First, there is no uncertainty, with regard to extrac-

tion cost nor with regard to climate change. Second, we opt for the open-loop Nash

equilibrium, whereas feedback Nash would be an option as well. Third, we assume

a constant technology, with linear constant marginal extraction cost. Fourth, energy

types are perfect substitutes. Fifth, we abstract from geopolitical motives. Finally, we

assume that agents maximize profits over an infinite horizon discounting the future at a

constant interest rate. These restrictions also limit the policy relevance of our findings.

However, we think we still make a useful contribution. The framework we consider is

particularly relevant for the oil market. Indeed, in practice oil is supplied by a large

number of small producers, such as the UK, Norway and Canada, and by a group

of large suppliers, think of OPEC members. Moreover, there exist close substitutes

like solar and wind energy and biofuels that are produced in a competitive way. The

equilibrium we characterize therefore constitutes a useful framework to examine the

important market failures associated with the oil market: Imperfect competition and a

significant contribution to carbon emissions and therefore to climate change.

The remainder of the paper is structured as follows. Section 2 describes the model

and defines the Nash-Cournot equilibrium of the game. Section 3 provides an analytical

characterization of the Nash-Cournot equilibrium in the case of isoelastic demand.

Section 4 contains a welfare analysis for varying degrees of market power and different

subclasses of HARA utility functions. Section 5 discusses Green Paradox effects. Finally,

Section 6 concludes.

2 The model

We consider a market for renewable and non-renewable resources. Both resources

are assumed to be perfect substitutes in generating energy. Renewable energy can

be produced at unit cost b. The non-renewable resource is supplied by a price-taking

fringe and a group of n < ∞ suppliers with market power, referred to as oligopolists.
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The superscripts o and f indicate the oligopolists and the fringe, respectively. The fringe

owns an aggregate initial stock Sf0 and extracts at constant per unit extraction cost kf .

All oligopolists have identical initial stocks So0i = So0/n = ∑n
j=1 S

o
0j/n. The per unit

extraction cost of each oligopolist is constant as well and denoted by ko. We assume

throughout that ko < kf < b. This is the empirically most relevant case. Extraction

rates at time t ≥ 0 for the fringe and oligopolist i are qf (t) and qoi (t), respectively. We

write aggregate supply by the oligopolists as qo(t) ≡ ∑
i q
o
i (t). Consumer demand for

energy follows from a HARA utility function

U(q) = 1 − φ

φ

(
ψq

1 − φ
+ χ

)φ
.

Demand reads1

q = 1 − φ

ψ

( p
ψ

) 1
φ−1

− χ

 .
If p < b then only non-renewables are used, because producing renewables yields

negative profits. Quadratic utility yielding linear demand as in Benchekroun et al.

(2019, 2020) corresponds with φ = 2 and positive ψ and χ. In the analytical part of

this paper we shall deal with Cobb-Douglas utility, yielding isoelastic demand: φ < 1

and χ = 0. When we compare equilibria numerically, attention will also be paid to the

so-called power utility function defined by φ < 1, χ > 0 and ψ = 1 − φ (see Kagan

et al., 2015).

We will show that the characteristics of the equilibrium depend on the market power

of the oligopolists, as measured by the so-called Lerner index. The Lerner index is

defined as the negative inverse of the price elasticity of demand perceived by individual

oligopolists.

Without supply from the fringe, the Lerner index for the isolastic demand case is

given by Λ = 1−φ
n

.2 Marginal revenue of the oligopolists in case the fringe does not

1Note that HARA utility functions are characterized by a non-negative super-elasticity of demand
dε
dq

q
ε , where ε is the price elasticity of demand. This implies that in the CFE the growth rate of p − kc is

smaller than r. Hence, the growth rate of the oil price does not exceed the rate of interest. This prevents
arbitrators from purchasing oil, hoarding it, and making capital gains (cf. Dasgupta and Heal, 1979, pp.
327-331).

2For the other HARA subclasses, the Lerner index is endogenous, as it depends on the level of resource
demand.
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supply can be written as

d(p(qo)qo)
dqo

= p
(

1 − 1 − φ

n

)
. (1)

Hence, given the price, marginal revenue depends negatively on the Lerner index. We

will make a distinction between cases with strong, intermediate and weak market power.

Strong market power corresponds with the case in which marginal revenue at p = b

is lower than marginal extraction cost, i.e. b
(
1 − 1−φ

n

)
< ko. In the absence of supply

by the fringe, the oligopolists will then always set the limit price. Intermediate market

power corresponds to the case were marginal revenue exceeds marginal extraction cost

at the limit price, but falls short of marginal costs at p = kf , i.e. b
(
1 − 1−φ

n

)
> ko >

kf
(
1 − 1−φ

n

)
. In the absence of supply by the fringe, the oligopolists set p ∈ (kf , b].

Weak market power corresponds to the case were marginal revenue exceeds marginal

cost at p = kf , i.e. kf
(
1 − 1−φ

n

)
> ko. In the absence of supply by the fringe, the

oligopolists may set a price below kf (as long as the scarcity rent on their resource is

small enough).

By defining Λb ≡ 1 − ko

b
and Λf ≡ 1 − ko

kf we get

b
(

1 − 1 − φ

n

)
< ko ⇔ Λ > Λb,

b
(

1 − 1 − φ

n

)
> ko > kf

(
1 − 1 − φ

n

)
⇔ Λf < Λ < Λb,

kf
(

1 − 1 − φ

n

)
> ko ⇔ Λ < Λf .

Hence, the cases with strong, intermediate and weak market power correspond to Λ >

Λb,Λf < Λ < Λb and Λ < Λf , respectively.

In the rest of this section we define the game that is played among the agents, we

define the equilibrium and discuss its associated necessary conditions for the players,

who maximize their objective functions subject to constraints. We also characterize the

equilibrium for specific knife-edge cases that will be instrumental to describe the full

equilibrium of the game, which will be provided in Section 3.
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2.1 Definition of the equilibrium

For the convenience of the reader we here reproduce the objectives of the players, the

definition of the equilibrium of the game and the corresponding necessary conditions

as used in Benchekroun et al. (2019). In an equilibrium the fringe maximizes its

discounted profits, taking the price path and the constant interest rate r as given:

∫ ∞

0
e−rt(p(t) − kf )qf (t)dt,

subject to its resource constraint

Ṡf (t) = −qf (t), qf (t) ≥ 0, Sf (t) ≥ 0 for all t ≥ 0, and Sf (0) = Sf0 .

This constraint describes the time path of the fringe’s resource stock and requires the

stock and the extraction rate to be non-negative.

For the oligopolists we consider an open-loop Nash equilibrium where each oligopolist

i takes the time paths of qf and qoj (j ̸= i) as given and maximizes

∫ ∞

0
e−rt

p
qf (t) +

n∑
j=1

qoj (t)
− ko

 qoi (t)dt, (2)

subject to the following constraints

Ṡoi (t) = −qoi (t), qoi (t) ≥ 0, Soi (t) ≥ 0 for all t ≥ 0, and Soi (0) = So0i,

p

qf (t) +
n∑
j=1

qoj (t)
 ≤ b. (3)

The former constraint describes the evolution of the resource stocks. The latter one

states that oligopolist i must make sure that the price is never higher than b because

otherwise non-renewable resource supply would be (infinitely) higher than demand.

An equilibrium of the dynamic game is defined as follows.

Definition 1 A vector of functions (qo1, ..., qon, qf ) is an Open-Loop Oligopoly-Fringe Equi-

librium (OL-OFE) if

(i) each element of (qo1, ..., qon, qf ) satisfies the corresponding resource constraint,
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(ii) for all i = 1, 2, ..., n

∫ ∞

0
e−rs

p
qf (s) +

∑
j ̸=i

qoj (s) + qoi (s)
− ko

 qoi (s)ds
≥
∫ ∞

0
e−rs

p
qf (s) +

∑
j ̸=i

qoj (s) + q̂oi (s)
− ko

 q̂oi (s)ds,
for all q̂oi satisfying the resource constraint, and

(iii)

∫ ∞

0
e−rs

[
p (s) − kf

]
qf (s)ds ≥

∫ ∞

0
e−rs

[
p (s) − kf

]
q̂f (s)ds,

where p (s) = p
(
qf (s) +∑n

j=1 q
o
j (s)

)
, for all q̂f satisfying the resource constraint.

2.2 Necessary conditions

The Hamiltonian associated with the fringe’s problem reads

Hf = e−rt(p(t) − kf )qf + λf [−qf ],

with λf the co-state of its resource stock. We omit the time argument where there is no

danger of confusion. The necessary conditions then include

p− kf ≤ λfert, qf ≥ 0, c.s., (4)

λ̇f = 0. (5)

Here complementary slackness (c.s.) means that qf = 0 if the first inequality is strict.

We observe that in an equilibrium with positive supply of the fringe, the net price,

p−kf , increases over time at a rate equal to the rate of interest. This is Hotelling’s rule.

The Hamiltonian and the Lagrangian associated with oligopolist i read, respectively,

Ho
i = e−rt(p

qf +
n∑
j=1

qoj

− ko)qoi + λoi [−qoi ],

Lo
i = Ho

i + µoi

b− p

qf +
n∑
j=1

qoj

 .
7



Here λoi is the co-state of the resource stock of oligopolist i, and µoi is the Lagrange

multiplier corresponding with the price constraint. When taking account of the fact

that the oligopolists are identical (so that in an equilibrium we may write qoi = qo/n =∑n
j=1 q

o
j/n, λoi = λo, µoi = µo) the necessary conditions read

p′(qf + qo)q
o

n
+ p(qf + qo) − ko ≤ λoert + µop′(qf + qo)ert, qoi ≥ 0, c.s., (6)

b− p

qf +
n∑
j=1

qoj

 ≥ 0, µo ≥ 0, c.s., (7)

λ̇o = 0, (8)(
p(T ) − ko − λoerT

)
qoi (T ) = 0. (9)

The final condition is associated with a free choice of the time horizon T , i.e., the

moment of depletion of the stock by an oligopolist: In a symmetric equilibrium the

Hamiltonian associated with each oligopolist’s problem vanishes at that same date.

3 Equilibrium of the game

In the OL-OFE, different phases of resource extraction and sequences thereof exist. By

F , O, S and L we denote phases with only the fringe supplying, only the oligopolists

supplying at a consumer price strictly below b, simultaneous supply, and supply by the

oligopolists at a consumer price b (i.e., limit pricing), respectively. The moments T F ,

TO, T S and TL indicate at which instants of time each of these phases comes to an end.

For a variable x we write x(t+) = limτ↓t x(τ) and x(t−) = limτ↑t x(τ).

We first prove a lemma on the impossibility of certain transitions from one regime

to another. The lemma is proved in Benchekroun et al. (2019), for the case of linear

demand. Here we show that the lemma holds true for isoelastic demand. It even holds

for a more general class as we do not exploit the specific HARA properties.

Lemma 1

(i) L can only prevail in a final stage of resource extraction.

(ii) F can only prevail in a final stage of resource extraction.

(iii) A transition from O to F is excluded.
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(iv) O cannot prevail in a final stage of resource extraction unless n = ∞.

Proof. (i). Along L the price equals b. Along all other phases the price is smaller than

b. Along S, F and O the price is increasing. For S and F this is immediate. For O this

follows from differentiating the necessary condition

p′(qo)q
o

n
+ p(qo) − ko = λoert, (10)

with respect to time and taking into account that (p(qo) − ko)qoi must be concave to

have a maximum. Moreover, at a direct transition, if any, the price is continuous. This

implies that L cannot be followed immediately by S or F or O, because this would

require a downward price jump at the moment of the transition.

(ii). If F would be followed by S or O at T F , then it follows from price continuity

that

p′
(
q(T F+)

) q(T F+)
n

+ kf + λferT
F = ko + λoerT

F

. (11)

But kf +λferT
F
< ko +λoerT

F . Indeed, along F we have p < b so that µo = 0 and qo = 0

so that (6) and p′ < 0 yield this inequality. Hence, we obtain a contradiction. If F would

be followed by L then at the transition date T F we would still have kf + λF erT
F = b <

ko + λoerT
F , which violates the transversality condition (9).

(iii). At a transition time TO from O to F we have

p′
(
q(TO−)

) q(TO−)
n

+ kf + λferT
O = ko + λoerT

O

, (12)

so that kf +λferT
O
> ko+λoerT

O . This contradicts that kf +λfert < ko+λoert for t ∈ F .

(iv). If O would be a final phase then at the transition date TO to renewables we

would have p(TO) = b. Because of transversality (9) we also have b = ko+λoerT
O . That

would imply p′(q(TO−)) q(T
O−)
n

= 0, which cannot be an equilibrium if n < ∞ because

there is demand at TO−. □

3.1 Special cases

It is our intention to sketch the equilibrium outcomes in (Sf0 , So0)−space and to also

highlight the impact of other relevant parameters. Therefore, we first consider the loci
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of initial stocks that give rise to three particular regimes: Only F , which corresponds

to the case where So0 = 0; only O → L, which correspond to the case where So0 = 0;

and, finally, only S. Although those loci represent knife-edge combinations of resource

stocks, they are nevertheless instrumental to determine the equilibrium sequences over

the whole state space.

3.1.1 Only F

For any initial endowment on the Sf0 −axis regime F prevails. Since b > kf by assump-

tion, the fringe′s stock will be fully depleted. The price follows the Hotelling rule: The

growth rate of the net price, p− kf , is equal to the rate of interest.

3.1.2 Only O → L

Suppose the initial endowment is on the So0−axis. Since O cannot be a final stage of

resource extraction unless n = ∞, the typical equilibrium is O → L with O possibly

degenerate. Because of discounting we have p(qo(t)) = b for all TO ≤ t ≤ TL. Hence,

the oligopolists keep the producers of renewables from the market. Moreover, due to

(6) and (9) it holds that

b
(

1 − 1 − φ

n

)
= ko + (b− ko)erTO−rTL

if 0 < TO < TL. (13)

To have an O−phase the initial stock must be large enough in order not to deplete the

stock along the L−phase:

1 − φ

ψ

(
b

ψ

) 1
φ−1

(TL − TO) < So0 . (14)

The following lemma sketches the equilibrium.

Lemma 2

(i) Suppose Λ < Λb and (14) holds. Then the equilibrium is O → L with the transition

times satisfying (13). If Λ < Λb and (14) does not hold, then the interval O is

degenerate.

(ii) If Λ > Λb then the equilibrium reads L.
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3.1.3 Only S

Consider the possibility of S throughout, meaning regime S holding from time zero till

some T S, where T S is the moment at which all non-renewable resources are exhausted.

Along S we have p − kf = λfert, µo = 0 and qoi > 0 so that (6) turns into an

equality. Also, from price continuity at the final instant of time T S and the transversality

condition (9):

p(T S) = b = kf + λferT
S = ko + λoerT

S

.

Using these conditions we can write

qo(t) + qf (t) = 1 − φ

ψ

[
kf + (b− kf )ert−rTS

ψ

] 1
φ−1

, (15)

ψ2
[
kf + (b− kf )ert−rTS

ψ

]φ−2
φ−1 1

n
qo(t) = (kf − ko)(1 − ert−rT

S ). (16)

Solving for qf gives

qf (t) = n

ψ

[
kf + (b− kf )ert−rTS

ψ

] 1
φ−1

[
1 − φ

n
− (kf − ko)(1 − ert−rT

S )
kf + (b− kf )ert−rTS

]
. (17)

Profit maximization for an oligopolist requires that qo(t) ≥ 0 for all t ≤ T S. This

condition is satisfied because it is assumed that kf > ko. Moreover, qo(T S) = 0. Fringe

supply is positive before T S if and only if it is positive at time zero. So, we consider

t = 0. The sign of qf (0) equals the sign of

[
ko − kf

(
1 − 1 − φ

n

)]
(1 − e−rTS ) + 1 − φ

n
be−rTS

.

So, we see that qf (0) > 0 for any T S if Λ > Λf and φ < 1, as assumed. This gives the

following lemma.

Lemma 3 There exists an increasing g(Sf0 )−curve in the space of initial endowments,

starting at the origin, such that if the actual initial endowments are on the curve, the

equilibrium consists of S throughout. If Λ < Λf , then the curve has a finite endpoint

defined by (SfM , SoM). If Λ > Λf , then the curve extends to infinity.
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3.2 Full characterization

We now build on the results derived in the preceding subsection to construct the OL-

OFE. We proceed by examining where in the state space some given sequences arise as

part of an equilibrium.

3.2.1 S → F and O → S → F

Assume the equilibrium regime is of the type S → F with transition times T S and T F .

The price is p(t) = kf + λfert until T F and b = kf + λferT
F so that

p(t) = ψ

(
ψ

1 − φ
q(t)

)φ−1

= kf + (b− kf )ert−rTF

.

Continuity requires qo(T S) = 0. Hence from (9) we have kf + λferT
S = ko + λoerT

S , so

that λo = (kf − ko)e−rTS + (b− kf )e−rTF . We now use these findings in (6) to arrive at:

(kf − ko)(1 − ert−rT
S ) = ψ2

[
kf + (b− kf )ert−rTF

ψ

]φ−2
φ−1 1

n
qo(t) for 0 ≤ t ≤ T S.

Also,

qo(t) + qf (t) = 1 − φ

ψ

[
kf + (b− kf )ert−rTF

ψ

] 1
φ−1

for 0 ≤ t ≤ T F .

Hence, after some straightforward calculations:

qf (t) = n

ψ

[
kf + (b− kf )ert−rTF

ψ

] 1
φ−1

[
1 − φ

n
− (kf − ko)(1 − ert−rT

S )
kf + (b− kf )ert−rTF

]
for 0 ≤ t ≤ T S.

(18)

The expression

1 − φ

n
− (kf − ko)(1 − ert−rT

S )
kf + (b− kf )ert−rTF

is increasing in t. The sign of qf (0) equals the sign of

[
ko − kf (1 − 1 − φ

n
)
] (

1 − e−rTS
)

+ 1 − φ

n

[
kfe−rTS + (b− kf )e−rTF

]
. (19)
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For Λ > Λf and φ < 1 initial extraction by the fringe is positive. This condition also

guarantees that the S−curve extends to infinity, as shown before. Hence, if Λ > Λf the

equilibrium sequence reads S → F for all initial stocks below the S−curve.

A more complicated situation occurs if Λ < Λf . We show that there is a curve, l2,

defined by the initial endowments in the space of stocks, starting at the point (SfM , SoM),

such that if the initial endowments are on the curve the equilibrium sequence is S → F

and qf (0) = 0. By construction the point (SfM , SoM) is on the curve l2 because there

qf (0) = 0. Let Sf0 be increased to, say, SfM + δ with δ > 0, and keep So0 constant

at SoM . Assume the new equilibrium reads S → F with qf (0) = 0. This gives a

new T F as well as a new T S following from (19) put equal to zero. This then gives

S̃o0 to achieve the new equilibrium. It would be a coincidence if S̃o0 = SoM . Hence,

the curve is typically not a constant. The curve is either monotonically increasing

or monotonically decreasing starting from (SfM , SoM). In the next section we provide

numerical examples where the curve is monotonically increasing and another one

where it is monotonically decreasing. The intuition is as follows. An increase in the cost

advantage of the oligopolists enlarges the regions of stocks where an O phase precedes

the S−F regime. On the one hand, if the cost advantage of the oligopolists is substantial

enough (i.e., ko < kf (1− 1−φ
n

)), then, starting on the l2−curve and increasing Sf0 results

in the oligopolists increasing their initial extraction and delaying the supply from the

fringe: The increase in Sf0 leads to an O → S → F regime, and the curve l2 is then

monotonically decreasing. On the other hand, if the cost advantage of the oligopolists,

ko − kf (1 − 1−φ
n

), is small enough then starting on the l2−curve, where qf (0) = 0,

and increasing Sf0 results in the fringe increasing its output, hence qf (0) > 0: The

increase in Sf0 leads to the interior of the S → F regime (where initial extraction rates

of the oligopolists and the fringe are positive), and the curve l2 is then monotonically

increasing.

It is also clear now that if we start from (SfM , SoM) and increase So0 , the new equilib-

rium should be O → S. Above the locus S → F with qf (0) = 0 the equilibrium reads

O → S → F .

The results are summarized in

Lemma 4

(i) Suppose Λ > Λf . Then to the right of the S−curve the equilibrium reads S → F .
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(ii) Suppose Λ < Λf . Then there exists a curve l2(Sf0 ) starting in (SfM , SoM) such that on

and below the curve the equilibrium reads S → F . To the north-east of (SfM , SoM) the

equilibrium reads O → S → F with qf (0) = 0 at the start of S.

3.2.2 S → L, S → O → L̂ and O → S → L

Three cases with different degrees of market power are to be considered.

Case 1: Strong market power, Λ > Λb. On the So0−axis, an O phase (with p (qo) < b)

does not exist, since it would imply that marginal revenue of an oligopolist is smaller

than its marginal cost. Hence, we only have L on the So0−axis. Also, there cannot be

a phase O off the So0−axis. Moreover, if Λ > Λb we have Λ > Λf , which implies, from

Lemma 3, that the S−curve extends to infinity. Hence, for points to the left of the

S−curve the equilibrium reads S → L.

Case 2: Intermediate market power, Λb > Λ > Λf . Now, the S−curve still extends

to infinity, and for So0 larger (smaller) than some threshold Ŝo0 , the equilibrium on the

So0−axis is of the type O → L̂ (L), where L̂ denotes a limit pricing phase of a specific

duration TL − TS, corresponding with qo(T S) = q̂ ≡ 1−φ
ψ

( b
ψ

)
1

1−φ . From (6) and (9), this

duration is given by

TL − TS = 1
r

ln
 b− ko

b
(
1 − 1−φ

n

)
− ko

 .

This yields T S as a function of TL. We address the question when S → L̂ is the equi-

librium. We show that in the space of initial stocks (Sf0 , So0), there exists an increasing

curve h(Sf0 ) such that if the initial stocks are on the curve, the equilibrium consists of

an S−phase for an initial interval of time and ends in that interval at (0, Ŝo0). Let TL

be given for the moment. We must end up in (0, Ŝo0) at T S. During the L̂−phase we

have p(t) = b, hence qo(t) = q(t) = q̂ and
∫ TL

TS qo(t)dt = Ŝo0 . This yields Ŝo0 . We also have

p(t) = kf + λfert for 0 ≤ t ≤ T S with kf + λferT
S = b. This gives p (t) as a function of

TL for 0 ≤ t ≤ T s. Moreover, due to transversality, λo = (b− ko)erTL, the condition

p′(q)qo
n

+ p(qo) − ko = λoert, (20)
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for 0 ≤ t ≤ T S, yields qo (t) as a function of TL. So, TL uniquely follows from the

resource constraint
∫ TL

0 qo(t)dt = So0 . Consequently, to the initial resource stock of the

oligopolists corresponds a unique initial stock of the fringe such that the equilibrium

reads S → L̂ with the L̂−phase starting at the vector of stocks (0, Ŝo0). The curve h(Sf0 )

is indeed upward sloping: observe that any equilibrium is unique, given the initial

vector of stocks. If the curve were backward bending, then from a point with the same

initial stock of the oligopolists and a higher initial stock of the fringe we would never

end up in Ŝo0 .

Between the h−curve and the S−curve in the (Sf0 , So0)−space, the equilibrium is

S → L, with qo(T S) < q̂ and a duration of the L−phase below the duration of L̂. Above

the h−curve the equilibrium is S → O → L̂, with an intermediate O−phase, as O

cannot occur before the stock of the fringe is depleted.

Finally, note that at T S, the moment of the transition to L from the S−phase, the

Hamiltonian is not continuous if the initial stocks are located in the region between

between the h−curve and the S−curve, where qo(T S) < q̂ (and hence qf (T S) > 0).

The reason is that the oligopolists’ perceived demand functions for fossil fuel increase

discontinuously as the fringe’s resource stock becomes depleted and its extraction rate

jumps to zero. Hence, the integrand of the oligopolists’ maximization problem (2)

is dicontinuous in the time at T S. This discontinuity implies that continuity of the

Hamiltonian of the oligopolists cannot be invoked as a necessary condition at such a

phase transition.

Case 3: Weak market power, Λ < Λf . Now, the S−curve ends at (SfM , S
o
M), and for

So0 larger (smaller) than some threshold Ŝo0 , the equilibrium on the So0−axis is of the

type O → L (L). We construct a new curve, denoted by l1, such that if we start on the

curve, the equilibrium sequence reads S → Lwith qf (0) = 0. Both (0, Ŝo0) and (SfM , S
o
M)

are on the curve since for both points qf (0) = 0, they represent the endpoints of the

curve. Like before p(t) = kf + λfert for 0 ≤ t ≤ T S with kf + λferT
S = b. Moreover, due

to transversality, λo = (b− ko)erTL. Finally,

p′(q)qo
n

+ p(qo) − ko = λoert, (21)
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for 0 ≤ t ≤ T S, with q(0) = qo(0). Straightforward but tedious calculations lead to the

following expression:

sign qf (0) = sign
[
ko + (b− ko)e−rTL

kf + (b− kf )e−rTS −
(

1 − 1 − φ

n

)]
.

This condition is key to obtain the l1−curve. It establishes a unique relationship be-

tween TL and T S such that the equilibrium reads S → L with qf (0) = 0. Exploiting the

conditions on cumulative extraction and the maximum principle conditions along with

the transversality conditions allows us to generate the l1−curve. Above the l1−curve

the equilibrium reads O → S → L.

The results are summarized in

Lemma 5

(i) Suppose Λ > Λb. Then S → L is the equilibrium for all initial stocks above the

S−curve.

(ii) Suppose Λb > Λ > Λf . Then S → L is the equilibrium for all initial stocks in the

region between the S−curve and the h−curve. The equilibruim for all initial stocks

in the region above the h−curve is S → O → L̂.

(iii) Suppose Λb > Λf > Λ. Then S → L is the equilibrium for all initial stocks in the

region between the S−curve and the l1−curve. The equilibrium for all initial stocks

in the region above the l1−curve reads O → S → L.

3.3 Graphical illustration

Figures 1 and 2 show the possible extraction sequences in (Sf0 , Sc0)−space for various

values of the Lerner index Λ. The figures are based on numerical simulations with

parameter values in accordance with Benchekroun et al. (2020), who calibrate their

model to the global oil market. Specifically, we set the interest rate r = 0.028, marginal

extraction cost by the oligopolists ko = 18 US$/bbl, marginal extraction cost of the

fringe kf = 62.5 US$/bbl, and the cost of producing renewables b = 102.5 US$/BOE.

The HARA parameters for the quadratic utility case are chosen to replicate the linear

demand function in Benchekroun et al. (2020) in the followings sense. For the Cobb-

Douglas and power utility subclasses, we choose the parameters φ and ψ such that the
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demand function runs through p = 80 US$ and q = 34 billion barrels, with an initial

price elasticity of demand equal to 0.56 in the case of Cobb-Douglas utility and 0.55

in the case of power utility (as in Benchekroun et al. (2020)). Table 1 provides an

overview of the parameters of the utility function for the three considered subclasses.3

Table 1: The HARA utility subclasses

Parameters Description Value

Cobb-Dougas utility (φ < 1, χ = 0)
φ curvature parameter -0.8
χ shift parameter 0
ψ scale parameter 5.62 · 10−6

Quadratic utility (φ = 2, χ > 0, χψ > p)
φ curvature parameter 2
χ shift parameter 109.00
ψ scale parameter 2.07

Power utility (φ < 1, χ > 0, ψ = 1 − φ)
φ curvature parameter -1.66
χ shift parameter 15.82
ψ scale parameter 2.66

Figure 1 depicts the case of a relatively high Λ. In panel (a), marginal profits are

negative at the limit price. Hence, the oligopolists will opt for limit pricing as soon as

the stock of the fringe is depleted. Apart from only S along the g-locus that extends to

infinity, the possible extraction sequences are S → L (if the initial aggregate stock of

the oligopolists is large, compared to the fringe) and S → F (if the initial aggregate

stock of the oligopolists is relatively small), as indicated above and below the g−locus.

In panel (b), marginal profits are positive at the limit price, implying that anO−phase

with a price below the limit price may occur after the fringe’s stock is depleted, if the

initial stock of the oligopolists is large enough. This gives rise to an additional region

with extraction sequence S → O → L̂ above the h−locus, along which the extraction

sequence reads S → L̂. Still, marginal profits are negative at a price equal to the unit

extraction cost of the fringe kf . Hence, the oligopolists will never choose to extract so

much as to drive the resource price below the marginal extraction cost of the fringe. As

a result, there will be simultaneous use unless the stocks of the oligopolists or the stock

3For numerical reasons, in the case of power utility we multiply all prices by a factor 10−6, so that the
demand function runs through (p(0), q(0)) = (80 · 10−6, 34).
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Figure 1: The OL-OFE with Λ > Λf

Panel (a): Case (i): Λ > Λb
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Panel (b): Case (ii): Λb > Λ > Λf

଴
௙

଴
௙

଴
௙

଴
௢

Notes: Cobb-Douglas utility (giving rise to CES demand) is imposed with χ = 0. In both panels, we have used n = 1. In panel (a)

we set φ = −0.8 and ψ = 5.62 · 10−6; in Panel (b) we set φ = 0.2 and ψ = 1.07 · 1016. The remaining parameter values are set at

their benchmark values. The parameter values imply Λb = 0.82 and Λf = 0.71. Panel (a) shows the case with Λ = 1.8 and panel

(b) with Λ = 0.8.
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Figure 2: The OL-OFE with Λ < Λf

Panel (a): φ = 0.4 and n = 1 (Λ = 0.6)
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Panel (b): φ = 0.9 and n = 1 (Λ = 0.1)
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Panel (c): φ = −2 and n = 10 (Λ = 0.3)
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Notes: Cobb-Douglas utility (giving rise to CES demand) is imposed, requiring χ = 0. In Panels (a), (b) and (c), we set ψ =

2.44 · 107, ψ = 248.78 and ψ = 0.0029, respectively. Parameter values imply Λb = 0.82 and Λf = 0.71.
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of the cartel is depleted. The extraction sequences below the h−locus are comparable

to those in panel (a).

Figure 2 shows the case of a relatively low Λ. As the oligopolists’ marginal profits

are positive at a price equal to the unit extraction cost of the fringe kf , it may be

profitable to choose a high level of extraction that drives down the resource price below

the marginal extraction cost of the fringe. As a result, an initial O−phase may occur,

during which the oligopolists are the sole suppliers and the fringe keeps its stock in the

ground. Intuitively, a low Lerner index implies that this case comes relatively close to

the perfectly competitive equilibrium characterized by the extraction sequence O → F .

Above, we have introduced the curves l1 and l2, both characterized by zero initial

extraction of the fringe and sequences S → L for l1 and S → F for l2. The different

panels of Figure 2 show different curvatures of l1 and l2. The l1−curve can either be

inverted-U-shaped (see panels (a) and (c)) or monotonically increasing (see panel (b)).

The l2−curve is either monotonically increasing (panels (a) and (b)) or monotonically

declining (panel (c)).

When moving from panel (a) to either panel (b) or panel (c), the Lerner index goes

down. A comparison of the three panels indicates that less market power results in a

smaller combined surface below the l1 and l2−curves. Note that if the initial stocks are

such that the equilibrium is located within the S → L region near a downward sloping

part of one of the l−curves, an increase in the initial stock of the fringe may result

in a decrease in its initial extraction, as such an increases may change the extraction

sequence from S → L to O → S → L.

Note that panels (a) and (b) of Figure 1 and panel (a) of Figure 2 closely resemble

Figures 1-3 in Benchekroun et al. (2019). They also look at different cases based upon

the degree of market power, but use linear instead of isoelastic demand. Besides the

quantitative differences, however, there is also a qualitative difference between the two

cases. With linear demand, the l2−curve is increasing, whereas with isoelastic demand,

it can be decreasing as well, as shown in panel (c) of Figure 2.
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4 Welfare analysis

In this section, we perform a welfare analysis. Our parameter values are taken from

Benchekroun et al. (2020). Accordingly, we set the initial stocks equal to Sf0 = 1212 and

Sf0 = 619.5 (billion barrels). Furthermore, we impose φ = −0.8, which yields a price

elasticity of resource demand of 0.56 in the case of a cohesive cartel. The remaining

parameter values are set at their benchmark values, as described in Section 3.3. An

overview is provided in Table 2.

Table 2: Benchmark parameter values

Parameters Description Value Unit

b renewables price 102.5 US$/BOE
ko marginal extraction cost cartel 18 US$/bbl
kf marginal extraction cost fringe 62.5 US$/bbl
r interest rate 0.028 perunage
Sc0 initial stock cartel 1212 billion bbl
Sf0 initial stock fringe 619.5 billion bbl

We define welfare as the sum of consumer surplus and producer surplus minus the

damages caused by the accumulation of pollution associated with resource use. We

closely follow Benchekroun et al. (2020), including notation. More precisely, let WG

denote ‘grey’ welfare, that is the discounted sum of consumer surplus and producer

surplus:

WG ≡
∫ T

0
e−rt

[
U(qo + qf ) − koqo − kfqf

]
dt+ e−rT

r
[U(x) − bx] ,

where T denotes the moment at which all non-renewable resources are depleted, and

x is the permanent use of renewables after T , following from p(x) = b. To simplify

the analysis, we assume that climate damages are linear in cumulative emissions. The

discounted value of climate damage, denoted by D, can then be written as:

D(t) =
∫ ∞

t
e−r(s−t)ζE(s)ds,

where ζ > 0 denotes the constant marginal damage of carbon and E denotes cumula-
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tive emissions, which evolve according to

Ė(t) = ωoqo(t) + ωfqf (t),

where ωo and ωf denote the emission factor of the cartel and the fringe, respectively.

Following Benchekroun et al. (2020) we set the emission factors equal to ωo = 0.11083

and ωf = 0.1525 (both in tC/bbl). Furthermore, we choose ζ to get a value for the

social cost of carbon (SCC = ζ
r
) equal to 250 US$/tC. Social welfare W is defined as

the difference between grey welfare and climate damage: W ≡ WG −D.

We will first look at the effect of market power for the Cobb-Douglas subclass of

HARA utility functions. Because of their assumption of a cohesive cartel, Benchekroun

et al. (2020) were not able to examine this effect. Subsequently, we will allow for

quadratic and power utility to check the robustness of the results.

4.1 Effect of market power

We want to identify the relative importance of the welfare loss due to the inefficient

order of resource use. We compare the outcome of the OL-OFE with the outcomes of

two alternative scenarios: The socially optimal extraction of reserves also referred to as

the first-best (FB) and a fictitious scenario that we call the ‘Herfindahl scenario’. In the

latter scenario, total extraction mimics the time path of the extraction in the OL-OFE,

but we impose the efficient order of resource use, prescribed by the Herfindahl rule,

namely that extraction from the fringe’s stock does not start before the oligopolists’

stock is depleted. Typically the Herfindahl scenario is not an equilibrium of the game.

But the concept allows us to decompose the inefficiency attributable to output at the

industry level and the inefficiency associated with the composition of the sources of the

output. We decompose the effect in the ‘conservation effect’ (i.e., the deviation of the

Herfindahl scenario from the first-best) and the ‘sequence effect’ (i.e., the deviation of

the OL-OFE from the Herfindahl scenario). We are particularly interested in comparing

the results for the nonlinear HARA demand cases to those corresponding with linear

demand.

Figure 3 depicts the effect of market power on climate damage (panel (a)), grey

welfare (panel (b)) and social welfare (panel (c)), measured as a percentage deviation
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Figure 3: Effect of market power on welfare and climate damage

Panel (a): Climate damage (percentage deviation from first-best),
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Panel (b): Grey welfare (percentage deviation from first-best),
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Panel (c): Social welfare (percentage deviation from first-best),
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Notes: The figure shows the effect of the number of oligopolists (which is negatively related to the Lerner index of market power)

on the percentage devations of climate damage (panel (a)), grey welfare (panel (b)) and social welfare (panel (c)) from their

values in the first-best. The black (grey) lines correspond to the OL-OFE equilibrium (Herfindahl scenario). Cobb-Douglas utility

(giving rise to CES demand) is imposed, with the parameter values shown in Table 1. The remaining parameters are set at their

benchmark values.
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from the first-best. The black lines correspond to the oligopoly-fringe equilibrium and

the grey lines to the Herfindahl scenario. The number of oligopolists is on the horizontal

axes. When increasing the number of oligopolists, we keep the aggregate resource

stock of the oligopolists unchanged. Hence, moving to the right in these figures can be

interpreted as decreasing the Lerner index and, hence, decreasing market power.

Panel (a) shows that, in our calibrated model, the effect of market power on climate

damage is non-monotonic. Starting from a cohesive cartel, increasing the number of

oligopolists while maintaining the total stock of the oligopolists fixed, at first lowers

climate damage. However, increasing the number of oligopolists beyond 4 leads to

higher climate damages. The intuition behind this U-shaped relationship is that in-

creasing competition on the one hand reduces the sequence effect and hence delays

the extraction of relatively carbon-intensive fossil fuel. On the other hand, increasing

competition also decreases the ‘conservation effect’ and hence increases the industry-

level extraction. The former effect dominates if market power is still strong, whereas

the latter becomes dominant at lower levels of market power. The sequence effect is not

present in the Herfindahl scenario, which explains the monotonically increasing grey

line.

Panel (b) confirms that grey welfare increases monotonically in the number of

oligopolists. Social welfare, however, depends non-monotonically on the number of

oligopolists. It first increases with this number (as grey welfare goes up and climate

damage goes down), but starts to decline if the number of oligopolists increases beyond

8, when the increase in climate damage as a result of more competition dominates the

decrease in distortions from market power. When there are 8 oligopolists, the welfare

loss compared to the first-best shrinks to only 0.5 percent, 22 percent of which is due

to the inefficient order of extraction.

4.2 Quadratic and power utility

In this section we examine the robustness of our results with respect to different sub-

classes of HARA utility functions. In addition to Cobb-Douglas utility, we will present

results for the quadratic utility case (yielding linear demand, as in Benchekroun et al.

(2020)) and power utility (yielding ‘shifted CES demand’). The parameter values of

the utility function are given in Table 1. Figure 4 shows the percentage welfare loss
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Figure 4: Welfare effects of market power and of the interest rate

Panel (a) - Climate damages vs. n Panel (b) - Climate damages vs. r
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Panel (c) - Grey welfare vs. n Panel (d) - Grey welfare vs. r
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Panel (e) - Social welfare vs. n Panel (f) - Social welfare vs. r
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Notes: The figure shows the effect of the number of oligopolists, which is negatively related to the Lerner index of market power

(panels (a), (c) and (e)) and of the interest rate (panels (b), (d) and (f)) on the percentage devations of climate damage (panels

(a) and (b)), grey welfare (panels (c) and (d)) and social welfare (panel (e) and (f)) from their values in the first-best. The

solid, dashed and dotted lines correspond to the cases of CES, linear and shifted CES demand, respectively. The corresponding

parameter values of the utility function are shown in Table 1. The remaining parameters are set at their benchmark values.
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(compared to the first-best) for the number of oligopolists varying from 1 to 10 (panels

(a), (c) and (e)) and interest rates varying from 0.01 to 0.05 (panels (b), (d) and

(f)). The interest rate affects the welfare consequences of the timing of extraction and

hence of the sequence effect. The benchmark interest rate of 0.028 is indicated by the

dashed-dotted vertical line in the panels on the right. Panels (a) and (b) depict climate

damage, panels (c) and (d) grey welfare and panels (e) and (f) social welfare.

Panel (a) shows that climate change depends non-monotonically on the number of

oligopolists for the three HARA subclasses, due to the interaction of the conservation

and the sequence effect. Grey welfare is monotonically increasing, whereas social

welfare is first increasing and then slightly decreasing in the number of oligopolists. The

three panels on the right show that climate damage and welfare loss (both compared to

the first-best) depend positively on the rate of interest. Intuitively, a higher interest rate

implies that timing becomes more important. Hence the welfare loss from the sequence

effect will be more pronounced.

The deviation of climate damages from the first-best does not differ too much among

the three HARA-class functions. However, the losses in grey welfare (and hence in social

welfare) can be significantly affected. Panels (e) and (f) show that in our benchmark

calibration with a constant elasticity of resource demand an interest rate of 2.8 percent

and a cohesive cartel, social welfare is 8.5 percent lower than in the first-best. A

large share, 98 percent, of this welfare loss can be attributed to the inefficient order

of extraction. In the case of power utility (yielding shifted CES demand, see the dotted

curves), the welfare loss compared to the first-best amounts to 4.2 percent, of which

again 98 percent is caused by the inefficient order of extraction. Although the welfare

loss from market failures in our nonlinear HARA demand scenarios is significantly

smaller than the 14.5 percent reported in Benchekroun et al. (2020) for the linear

demand case (see the dashed curves), the share of this welfare loss that is attributable to

the inefficient order of extraction is comparable to the 97 percent found in Benchekroun

et al. (2020).
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5 Green Paradox

In this section we numerically investigate the occurrence of the so-called Green Para-

dox. The extensive literature on the Green Paradox (defined as an increase in current

emissions upon the announcement of climate policies) typically assumes either per-

fectly competitive or monopolistic fossil fuel supply (cf. Sinn, 2008; Van der Meijden

and Withagen, 2019). The issue has not been addressed by Benchekroun et al. (2019)

nor by Benchekroun et al. (2020). We look at the effect of an increase in the subsidy on

renewable energy from 10 to 20 US$ per BOE, thus lowering the unit cost of renewable

energy accordingly.

Figure 5: Green Paradox effects of a subsidy on renewables

Panel (a) - Change in initial extraction Panel (b) - Change in initial emissions
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Notes: The figure shows the effect of an increase in the subsidy of renewables from 10 to 20 US$ per BOE. The solid, dashed and

dotted lines in panel (a) correspond to extraction by the fringe, extraction by the oligopolists, and total extraction, respectively.

Cobb-Douglas utility (giving rise to CES demand) is imposed, with the parameter values shown in Table 1. The remaining

parameters are set at their benchmark values.

Figure 5 shows the effect on initial extraction (panel (a)) and initial emissions

(panel (b)) for isoelastic demand case. As shown by the solid line in panel (a), ex-

traction by the fringe increases by 0.9 GtC in the case of a cohesive cartel, whereas

extraction by the cartel only goes up by 0.1 GtC (dashed). When increasing the number

of oligopolists, the rise in total extraction by all oligopolists together upon the increase

in the renewables subsidy becomes larger, whereas the increase in extraction by the

fringe becomes smaller. Together, in our calibrated model these extraction responses

imply that the effect of the number of oligopolists on the increase in total initial ex-
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traction (dotted line in panel (a)) and total initial carbon emissions (panel (b)) is U-

shaped, with the smallest increase in emissions of 0.06 GtC occurring when there are 3

oligopolists. Hence, a Green Paradox materializes in our model, but the effect is rather

small.

6 Conclusion

To examine the effect of imperfect competition on welfare, climate damages and Green

Paradox effects, we have formulated a dynamic non-renewable resource game between

a group of oligopolists, in the presence of a competitive fringe and producers of a

renewable substitute. We have examined the robustness of existing results in the

literature with respect to the functional form of the demand function by allowing for

a general class of HARA utility functions and by analyzing the effect of changes in the

degree of market power of the oligopolists, as measured by the Lerner index.

We have provided a full analytical characterization of the equilibrium for the HARA

subclass with Cobb-Douglas utility, with particular attention for the different sequences

of extraction phases that can occur. The equilibrium always features a phase with

simultaneous supply by the oligopolists and the fringe. An initial phase in which the

oligopolists are the sole suppliers is possible when the Lerner index of market power is

below a certain threshold and if the oligopolists’ stocks are relatively large. However,

when the resource is relatively scarce, simultaneous extraction occurs at the beginning

of the game. Whether the fringe or the oligopolists exhaust the resource first depends

on their relative stocks. Moreover, when the fringe exhausts its reserves first there

always exists a limit-pricing phase. For intermediate values of the Lerner index there is

a phase where the cartel members extract alone at a price below the limit pricing level.

This phase is between an initial phase of simultaneous supply and a final phase of limit

pricing. If the Lerner index is high, there will be simultaneous supply initially, followed

by limit pricing or sole supply by the fringe, depending on the relative initial stocks.

We use our model to derive three additional main results. First, the occurrence

of a phase with simultaneous supply is shown to be a source of inefficiency, because

the fringe’s stock is assumed to be relatively more costly to extract and to generate

relatively more full-cycle carbon emissions per unit of the resource. Hence, efficiency
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would require depletion of the oligopolists’ stocks before the fringe starts supplying.

We numerically show that the inefficiency due to the extraction sequence effect in the

oligopoly-fringe equilibrium with Cobb-Douglas and power utility is responsible for

almost all (98 percent) of the welfare loss with respect to the first best. This is in line

with the result obtained for a quadratic utility Benchekroun et al. (2020) (97 percent).

However, we also show that this sequence effect depends negatively on the number

of oligopolists and almost vanishes if this number is large enough. Hence, the result

of Benchekroun et al. (2020) is robust with respect to the specification of the demand

function, and is indeed due to market power.

Second, because of the interaction of the sequence effect (front-loading of dirty ex-

traction due to market power) and the conservation effect (higher price due to market

power), the effect of market power on climate damage is non-monotonic. Starting from

a cartel-fringe situation, increasing the number of oligopolists (and hence lowering the

degree of market power) first lowers climate damage because the weakening of the

sequence effect dominates the weakening of the conservation effect. At lower levels of

market power, the weakening of the conservation effect becomes dominant, implying

that increasing the number of oligopolists further leads to higher climate damages.

Third, we look at Green Paradox effects. More specifically, we examine the effect

of a subsidy on renewables on initial carbon emissions. We find that such a subsidy

boosts initial carbon emissions, in line with the literature on the Green Paradox (e.g.

Sinn, 2008). The strength of this Green Paradox effect depends non-monotonically

on the degree of market power. The reason is that a change in market power has

different effects on the initial extraction responses of the oligopolists and the fringe.

Starting from a high degree of market power, increasing the level of competition makes

initial extraction of the oligopolists less responsive to a subsidy on renewables. On

the contrary, initial extraction of the fringe becomes more responsive. Together, these

effects imply that the relationship between market power and the Green Paradox is

U-shaped.

Another potential area of application of the equilibrium that we have characterized,

is the examination of different climate policies, such as a tax on carbon on the extraction

paths of the different players. Interesting other avenues for further research include

the application of different equilibrium concepts (e.g., feedback Nash), allowing for
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stock-dependent extraction costs, a more realistic specification of climate damages, and

introducing convex production costs of renewables.
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