
  

9592 
2022 
February 2022 

 

Fare Evasion and Monopoly 
Regulation 
Martin Besfamille, Nicolás Figueroa, León Guzmán 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 9592 
 
 
 

Fare Evasion and Monopoly Regulation 
 
 

Abstract 
 
We consider the regulation of a monopoly facing consumers that may evade payments, an 
important issue in public utilities. To maximize total surplus, the regulator sets the price and 
socially costly transfers, ensuring that the monopoly breaks-even. With costly effort, the firm can 
deter evasion. Under unit demand and fixed quality, price is independent of marginal cost, but 
increasing in the marginal cost of public funds. When quality is endogenous, we find sufficient 
conditions that imply a non-monotonic relation between price and marginal cost of public funds. 
We extend the model to consider non-unit demand and moral hazard. 
JEL-Codes: D420, H200, L430, L510. 
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1 Introduction

How to finance a natural monopoly that provides a public service, like electricity
distribution or transport? This is a classical regulatory problem, whose solution has
been discussed under two different institutional settings. In the Ramsey-Boiteux tradition
under full information (see Boiteux 1956, Baumol and Bradford 1970), the monopoly must
break-even as an exogenous constraint prevents the regulator to subsidize it. Laffont
and Tirole (1986, 1993) analyzed optimal regulation under asymmetric information, when
transfers to the firm are authorized but are socially costly because they are funded with
distortionary taxation. In any case, the optimal regulation is a second-best one: by
setting properly the price above the marginal cost, the firm’s deficit is financed inducing
a minimal loss in consumer surplus. Moreover, the lower the deficit allowed to be run by
the firm or the higher the marginal cost of public funds (mcpf),1 the higher the optimal
price should be. In particular, when the mcpf goes to infinity, the regulated price should
converge to the monopoly price.2

However, fare evasion is a real-world issue that may qualify these conclusions, in
particular in transport systems. Albeit this consumer misbehavior is difficult to measure,3

many investigations demonstrate that fare evasion is a widespread problem. According
to Bonfanti and Wagenknecht (2010), a review of 31 transport systems in 18 countries
revealed that 4.2% of passengers were fare evaders. More recent studies show that
estimations of fare evasion rates are very heterogeneous, varying from 1.3% in London
(UK), 15% in Bogotá (Colombia) to 43% in Reggio Emilia (Italy).4

Although different factors influence the individual decision to pay the due price,5

Troncoso and de Grange (2017) and Porath and Galilea (2020) established that evasion
crucially depends upon the level of fares. Hence, when designing the optimal regulation
of a transport system, regulators should recognize that the relevance of prices as
feasible instruments to mitigate firms’ financial deficits is attenuated by the existence
and extension of fare evasion. In fact, we conjecture that evasion does more than that;
It really dampens their use to fund transport systems. This assertion is consistent with

1The mcpf is the money measure of the welfare cost of raising an additional dollar of tax revenues. See
Dahlby (2008) for theoretical considerations and applications of this concept.

2These results also hold in a model with individuals that differ in their willingness to pay for the public
service.

3Currie and Delbosc (2013) assert that “(. . . ) in 2012 the officially recorded fare avasion rate in Melbourne was
9.3%, yet a survey that same year found that 21% of Melbourne’s population (and 34% of public transport users)
admitted to fare evading at least once in the past year.”

4Smith (2004) provided similar estimations for electricity theft.
5Barabino et al. (2020) review the recent literature that deals with fare evasion in transport systems.
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the following piece of evidence. Figure 1 illustrates the correlation between the price of
public transport in an unbalanced panel of 77 cities between 1979 and 2018 (adjusted to
acknowledge differences in their respective living costs) and estimated values of the mcpf
for the respective countries where these cities are located.6
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Figure 1: Correlation between marginal cost of public funds and prices of transport
systems across the world, 1979-2018. Sources: Union des Banques Suisses (UBS) data
and own estimations based on Barrios et al. (2013).

The best fit curve (in red) depicts a hump-shape between the mcpf and adjusted
public transport prices, with the peak at 2.29.7 One could argue that the form of this
curve cannot be taken as a proof that the conclusions of the traditional regulation theory

6In the Online Appendix, we provide details about the data and the methodology used to build this
figure.

7To better grasp the quantitative implications of this exercise, we calculate the elasticity of the adjusted
price with respect to the mcpf at some cities along the fitted curve. For example, Sao Paulo presents a mcpf
of 1.58 (adjacent to the mean of the mcpf, across all years and cities) and an elasticity of 0.47. On the other
hand, when the mcpf equals the mean plus 1 standard deviation (close to 1.97), Kiev has an elasticity equal
to 0.25. Finally, at the maximum value of the mcpf, 2.52, which is above the peak of the fitted line, Stockholm
presents a negative elasticity equal to -0.22.
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do not hold in our data, because as the mcpf increases prices may be converging to the
monopoly price. This claim is questionable, for the following two reasons. First, the peak
is reached for estimated values of the mcpf that are plausible, and clearly far from infinity.
Second, according to EMTA (2020), prices of public transport in cities with a mcpf close
to the peak of the curve (such as Copenhagen, Helsinki, Oslo, and Stockholm) are heavily
subsidized, and so are undoubtedly lower than the corresponding monopoly price.

Naturally, regulators also have other instruments to address fare evasion, like
enforcement (Killias et al. 2009), technological or institutional innovations to facilitate
payments (Currie and Reynolds 2016), appeals to intrinsic motivations (Ayal et al. 2021),
and quality of service improvements (Guarda et al. 2016), among others. Many papers,
like Barabino and Salis (2019), presented optimization models that incorporate one or
only some of them. But, to the very best of our knowledge, there is no contribution to
the literature that characterizes the optimal regulation of a natural monopoly under the
threat of evasion, combining the use of prices and these abovementioned instruments in
a setting with a distorted tax system.8 The goal of this paper is precisely to fill this gap.

We consider a model featuring a unit mass of risk-neutral individuals that earn
identical income and consume two goods. One of these goods is provided by a monopolist
(hereinafter, we refer to it as ’the good’), while the other is the numeraire and is produced
in a perfectly competitive market. Individuals choose whether to consume a unit of
the good formally or informally (i.e., without paying its price), or not consuming it at
all. Individuals are heterogeneous concerning the subjective cost incurred when they are
detected evading, and they trade-off the monetary payment and the expected subjective
cost. In our model formal buyers never coexist with individuals that spend all their
income in the numeraire. However, this is not true regarding the other margin of decision:
individuals with relatively low subjective cost evade, while the others consume formally.
As expected, when the price increases the mass of evaders also grows.

The monopolist produces the good with a commonly known decreasing average cost
technology, for any given level of quality. Crucially, the production cost depends upon
total demand, which includes consumption by evaders. To deal with this issue, the firm
exerts a costly effort that increases the likelihood of a high level of detection, deterring in
this way informal consumption. The monopoly’s earnings come from formal consumers
and public transfers that depend upon the realized level of evasion.

8Focusing on urban transport systems, Basso and Silva (2014) characterized the efficiency between
different congestion management policies (which include prices), and their relation to the mcpf. But they
do not incorporate fare evasion to their analysis. Informal consumption is not even mentioned in Sherman
(1989), one of the main books about the conventional theory of monopoly’s regulation, or in more recent
surveys that present the advances of the incentive theory of regulation, like Laffont (1994) and Armstrong
and Sappington (2007).
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Initially, a regulator decides whether the firm will provide the good. If so, it
then chooses the price and the level of effort to maximize the expected social welfare,
net of transfers to the firm. These transfers are costly because they are financed with
distortionary taxation, and thus society bears a mcpf greater than one. In any case, the
regulator must induce the monopoly to remain active, because there are very high losses
if the latter withdraws from the market after initiating its activities.

We first characterize the optimal regulation when the quality of the good is
exogenous. When choosing a higher price, the regulator trades off the extra revenues
the firm receives (which are socially valuable because they save on transfers) against the
rise in evasion caused by such a price increase. In our setup, there exists a hard bound on
prices, above which there are no formal consumers (they either evade or they do not buy
the good at all). As long as the price is lower than this bound, production costs are sunk,
since they must be incurred whether consumers pay or evade. In particular, the regulator
does not deal with the typical Ramsey-Boiteux concerns. Instead, it sets the price to choose
optimally the expected marginal formal consumer. We show that the optimal price and
effort are both increasing in the mcpf, up to the point where the former cannot rise any
more. Further increases in the mcpf lead to higher enforcement, until a level where the
firm should be shut down.

We then assume that the quality of the good is endogenous, and thus becomes another
regulatory instrument. Increasing quality is obviously costly, but it enables to raise the
maximum price that can be charged by the firm. When the price is below this cap, an
increase in the mcpf leads to higher prices and effort levels, but to a lower quality. We
present sufficient conditions ensuring that when the maximum price is reached, however,
the optimal mechanism involves even lower prices, accompanied by a deterioration of
the quality. The regulator chooses to save money on quality, even if this leads to lower
prices, since the latter is at least mitigated by lower evasion. Therefore, under these
circumstances, we recover a hump-shape between the mcpf and the optimal price, as
depicted in Figure 1. To verify the robustness of these analytical results, we present
numerical simulations of the model.

Finally, keeping the quality exogenous, we generalize the model in two directions.
First, we relax the assumption of unit demand, and we derive the optimal pricing rule,
establishing its relation to the Ramsey-Boiteux formula. Here, the classical distortion
introduced by higher prices, through inefficiently low consumption, only applies to
formal consumers. On the other hand, some agents become evaders and consume an
inefficient amount of the good, which enlarges the firm’s deficit and thus forces the
regulator to increase the costly transfers to the firm. We find that the pricing rule formula
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combines two terms: a term reflecting the Ramsey-Boiteux concern, and a new one, related
to the financing of the extra costs caused by informal consumption. Notably, the mcpf
does not appear explicitly in the second term. Second, we assume that effort is non
observable. In this case, besides the fact that the optimal regulation incorporates the
informational rent to let to the firm when evasion is low, the results are similar to those
previously obtained. In particular, the pricing rule is not distorted by the presence of
moral hazard, which is reminiscent to the “dichotomy property” exposed by Laffont and
Tirole (1990). By comparing our finding to their, we explain why in the context of our
model this result is unexpected.

1.1 Related Literature

Our paper connects with different strands of the literature. First, it is related to the
theoretical work focusing on regulatory problems in developing countries. As Estache and
Wren-Lewis (2009) claim, in those countries ”There is a clear concern that public institutions
are unable to collect adequate revenue to allow direct subsidies when the ability of consumers to pay
for services is limited.” Our paper contributes to the study of this issue in at least two ways.
We explicitly take into account that weak institutional settings allow consumers to choose
whether to pay or not for the service. Then, by highlighting fare evasion as an important
matter for regulators, we complement the analysis made by Laffont (2005) on the optimal
way to solve the tension mentioned in the previous citation. Moreover, we bring this topic
to the forefront of the regulatory discussion, since this tension is becoming relevant also
in more advanced economies.

The two closest contributions to our paper, both from the methodology they use and
the results obtained, are Silva and Kahn (1993) and Buehler et al. (2017). The former
present a model with a firm that provides public transportation. Individuals decide to
consume formally or informally, or not consuming it at all. In the last section of their
paper, they consider heterogeneous individuals in terms of their preferred number of
rides. To deter evaders, the firm can exert a costly monitoring effort. As in our model, the
detection probability depends upon effort, but also on the individual and total number
of travels. The firm chooses an individually-rational, incentive-compatible mechanism
comprising the number of formal consumers and service quality, as well as the monitoring
level and fare (not the fine, which is fixed by law). As in our paper, the optimal mechanism
depends upon the gains and costs of increasing the mass of subscribers, and thus involves
free riding for low users and selling formally the service to the others. Moreover, the firm
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underprovides transportation with respect to the first best case (i.e., when monitoring
evaders is costless) and shares equally the total cost among users. In particular, the
authors claimed that the subscription fee is higher than under the first best.9 Besides some
differences in the formalization of the production costs, the IO approach of this article
contrasts with our regulatory framework. As the authors recognized in the concluding
remarks, their solution is not equivalent to a social planner’s outcome. Moreover, they do
not examine the possibility of an equilibrium with evaders and non-subscribers, situation
that in our paper generates a cap on the maximum price to charge. Finally, as subsidies
are not allowed, the firm has to break even and price according to its average total cost.

Buehler et al. (2017) develop a model where a profit-maximizing firm chooses the
price paid by formal consumers, as well as the fine collected from detected evaders. Risk
neutral individuals consume one unit of the good and differ in their willingness to pay.
Individuals take the same three decisions than in the previous paper and have identical
moral costs. The firm engages in price discrimination. Indeed, formal consumers pay
more because, although some individuals evade when they face a price increase, the
firm anticipates that some income will be recovered from their fines. When the authors
consider a welfare maximizing firm, price discrimination vanishes, and thus marginal cost
pricing emerges at the optimum. Although financial losses can occur, Buehler et al. (2017)
did not formalize the funding of such deficits, neither did incorporate shutdown into their
analysis. These two crucial features of our model explain why we find contrasting results.

We also build on the literature that analyzes individual fare evasion. Boyd et al. (1989)
consider heterogeneous risk-neutral individuals that, based on the perceived detection
probability, decide to evade payments. A firm (or the government) chooses the inspection
level, that ultimately yields the actual rate of evasion detection. Taking prices and fines
as given, they find the optimal level of inspection. In a similar vein, Kooreman (1993)
considers risk-averse individuals that decide whether to evade the payment of a farecard.
Individuals differ in their risk aversion. He derives a lower bound on the inspection rate
that pushes individuals to evade. He then tests some of its comparative statics results.
Concerning the formalization of evasion, our paper differs from these contributions by
not incorporating fines into our model, and in turn assuming that individuals differ with
respect to their subjective cost borne if caught.

More recent research investigates empirically the factors that affect fare evasion.
Killias et al. (2009) analyze how increasing detection modifies the incentives to evade by
studying a field experiment in Zurich, in which ticket inspections were reintroduced to

9Fraser (1996) showed that the derivation of this last result had a drawback, and presented necessary
and sufficient conditions to ensure it.
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the public transportation system. They find that evasion levels dropped, even in hours
of the day when no new inspections took place, but that the fare evasion rate did not
respond to increasing fines. Using a preferences survey applied to apprehended evaders
of Transmilenio in Bogotá, Guzman et al. (2021) highlight the importance of incorporating
observable and latent variables to understand fare dodging. In particular, they obtained
that this misbehavior is negatively related to the satisfaction of the transport system, but
that norm’s nonconformity moderates this result. Although our approach is theoretical
and has a normative perspective, we adopt many assumptions that can be justified by
these empirical findings.

The layout of the remainder of the paper is as follows. Section 2 describes the
model, and discusses some assumptions. Section 3 analyzes optimal regulation when
quality is exogenous. Section 4 incorporates quality as a regulatory instrument. Section 5
extends the basic model, and considers non unit demand for the regulated good. Section
6 concludes. All proofs and the case with moral hazard are relegated to the Appendix. An
Online Appendix contains further details about Figure 1.

2 The Model

We consider an economy with a unit mass of individuals. Two goods are produced.
The good x is provided by a monopolist, while the numeraire m is produced in a perfectly
competitive market.

2.1 Individuals

All individuals earn income y, and have unit demand for good x. Let b(q) be the
benefit that each individual derives from consuming a unit of good x, where q denotes the
quality with which this good is provided. The strictly increasing and concave function b(.)
satisfies Inada conditions. We further assume that individuals have quasilinear utilities on
good m.

Individuals can consume good x in two ways: formal and informal. Formal
consumption is done at price p,10 while informal consumption does not. Informal
consumption leads to an expected loss γz, where γ is the probability of being detected

10We assume that income y is sufficiently high, so that all individuals can afford good x.
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evading the payment of p, and z is the money measure of the subjective cost faced in this
circumstance, which may be caused by a reputation loss, waste of time or social stigma.
From now on, we call z the “reputation cost”, which is heterogeneous across individuals.
Formally, z is distributed according to a strictly positive, continuous, and bounded density
function f on [0, z], with cumulative distribution F. An individual might also decide not
to consume good x and spend his entire income on m. In this case, we say that such an
individual “leaves the market” for good x.11

Utilities of formal and informal consumers are denoted by UF and U I , respectively.
Let UO be the utility of an individual that leaves the market. These utilities are given by

UF ≡ b(q) + y− p, U I ≡ b(q) + y− γz, UO ≡ y. (1)

We denote the individuals’ indirect utility function by Uγ(p, q, z). We assume that, when
they are indifferent between consuming or not good x, individuals choose to consume it.
Similarly, when they are indifferent between consuming good x formally or informally,
individuals choose to purchase it.

Comparing expressions (1), it is straightforward to show that if p ≤ b(q), no
individual leaves the market for good x. Otherwise, no individual consumes the good
formally. In other words, formal buyers never coexist with individuals that spend their
whole income in the other good m. Moreover, let ẑγ(p) ≡ p

γ be the value of the reputation
cost that makes an individual being indifferent between consuming good x formally and
informally. As expected, individuals with relatively high reputation costs, z ≥ ẑγ(p),
consume good x formally.12

Figure 2 summarizes the previous discussion. Panel (a) depicts, in the (p, q) plane,
the regions where different ways of consuming good x coincide. Informal consumption is
feasible on both sides of the red boundary b(q). But, for a given quality, demanding good
x formally dominates leaving the market whenever p < b(q). The opposite holds to the
left of b(q). At any point in the region F-I (like, for example, in A), panel (b) illustrates
evasion decisions over the reputation cost line.

11We will hereinafter characterize individuals based on how they decide to purchase (or not) the good x.
12We further assume that z > b(q)/γ`, which implies that there are always individuals that consume

good x formally.
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Figure 2: Individuals’ decisions

2.2 The Firm

The monopolist produces good x using a decreasing average cost technology, for any
given quality q. Specifically, the production cost is given by

C(X, q) = K + c1
(
XF + X I)+ c2q, (2)

where K is a fixed cost, c1 is the (constant) marginal production cost, c2 is the (constant)
marginal cost of quality, and XF, X I denote formal and informal aggregate consumption
of good x, respectively. Therefore, the production cost depends upon total demand
X = XF + X I , which includes consumption by evaders. To simplify notation, we only
write C(X) until quality becomes another regulatory instrument in Section 5. We assume
that fixed and marginal costs are common knowledge.

For institutional reasons, the firm is unable to levy fines directly. However, it can
deter informal consumption through a detection technology. The probability of catching
evaders γ can adopt two values, γ` and γh, with 0 < γ` < γh < 1. By exerting a costly
effort e, the firm affects the probability that γ = γh, ρ(e).13 The strictly increasing and

13For example, effort e can represent the number of inspectors the monopolist hires to catch evaders. The
probability γ illustrates the fact that the effective rate of detection also depends upon other factors, out of
the firm’s complete control.
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concave function ρ : [0, ∞)→ [0, 1) is such that ρ(0) = 0.
From (1), we can see that the realization of γ has an impact on the individuals’

decisions regarding consumption of x, and thus on the number of formal and informal
consumers. We then write XF

γ, X I
γ and Xγ.

The firm’s earnings come from formal consumers and transfers from the regulator,
which can depend upon the realized level of evasion. As it is equivalent, and for the sake
of simplicity, we make transfers contingent on the current probability of detection γ. For
a given realization of γ, the firm’s ex-post utility is given by

Vγ(p, e) ≡ pXF
γ − C(XF

γ + X I
γ) + Tγ − θe, (3)

where Tγ stands for transfers received from the regulator, and θe is the effort cost. We
assume that the firm can leave the market at any time, and we normalize its outside option
to zero.

2.3 The Regulator

First, the regulator decides if good x will be provided, by letting the firm operate or
shutting it down. If the market is active, the regulator chooses a price p, and contingent,
non-negative transfers Tγ.14 As in Laffont and Tirole (1986, 1993), the regulator maximizes
the expected value of the social welfare

Wγ(p, e) ≡ CSγ(p) + Vγ(p, e)− (1 + λ)Tγ, (4)

where
CSγ(p) ≡

∫
[0,z]
Uγ(p, q, z)dF(z),

stands for net consumer surplus. In order to raise Tγ, the government taxes other
(non-modelled) sectors of the economy in a distortionary way. Let λ > 0 represent the
deadweight loss of taxation, and 1 + λ, the marginal cost of public funds. Solving for T in
(3), and replacing in (4), we rewrite Wγ(p, e) as

Wγ(p, e) = Sγ + λpXF
γ
− (1 + λ)[C(Xγ) + θe]− λVγ(p, e), (5)

14Since the regulator always chooses a price below the determined by an unregulated monopoly, in this
context fixing the price is formally equivalent to price-cap regulation.
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where Sγ is the gross consumer surplus. The regulator values positively income from
sales to formal consumers (because they decrease the need to make transfers), but dislikes
leaving rents to the firm (because they are socially costly).

We assume that society bears very high costs if the firm withdraws after being
allowed to operate.15 Therefore, in order to induce it to stay active under any
circumstance, the regulator must satisfy the firm’s ex-post voluntary participation
constraints Vγ(p, e) ≥ 0.

2.4 Timing

At t = 0, Nature draws z from the distribution F. Then, at t = 1, the regulator decides
whether the firm will provide or not good x. If so, at t = 2, the regulator sets the price
p and contingent transfers Tγ. At t = 3, after observing the regulator’s decision, the firm
chooses the level of effort e. At t = 4, individuals learn about the realization of γ and
decide either to consume or not good x, and if they consume, whether to do it formally
or informally.16 Finally, production takes places as to meet total consumption, and all
payoffs are realized. Figure (3) summarizes the timing.

Nature draws 
𝑧 from 𝐹(𝑧)

Regulator 
chooses

𝑝, 𝑇ℓ and 𝑇ℎ𝒕 = 𝟎 𝒕 = 𝟏

Firm
selects 𝑒

𝒕 = 𝟐

Individuals
learn 𝛾

𝒕 = 𝟑 𝒕 = 𝟒
𝐼

𝑋𝐼

Regulator
decides

Active 
market

Shutdown
Utility: 𝑈𝑂

𝒕 = 𝟓
𝐹

𝑂

𝑋𝐹

0

Incomes:  𝑝𝑋𝐹

Costs:  𝐹 + 𝑐1𝑋 + 𝑐2𝑞 + 𝜃𝑒

Transfers: 𝑇ℓ, 𝑇ℎ

Utilities: 𝑈𝐹 , 𝑈𝐼 , 𝑈𝑂

Figure 3: Timing of the model

15If good x represents public transport, many long term decisions depend upon its normal operation.
Consider for example urban design or the localization of firms. In case of a collapse of this public service,
the regulator may face social discontent, bankruptcies, etc.

16The fact that we assume that individuals observe the detection probability is consistent with Bucciol
et al. (2013), who found that passengers’ beliefs on ticket inspection frequency were very close to the actual
figures.
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2.5 Discussion

Some features of the model deserve some comments. First, we assume that
individuals have unit demand for good x. For some public services, this normalization
seems reasonable, since individual demand is almost constant, conditional on purchase.
To illustrate this assertion, Table 1 shows the average weekday number of rides in New
York subway, for the last 6 years.17

Table 1: Subway ridership in New York

Year 2013 2014 2015 2016 2017 2018

Population 19,624,447 19,651,049 19,654,666 19,633,428 19,589,572 19,530,351

Average weekday
rides

5,465,034 5,597,551 5,650,610 5,655,755 5,580,845 5,437,587

Average weekday
rides, per capita

0.278 0.285 0.287 0.288 0.285 0.278

Source: : Metropolitan Transportation Agency, http://web.mta.info/nyct/facts/ridership/;
United States Census Bureau.

Similar figures can be obtained for different transport modes, in other cities. But there
are other public services where evasion is also an issue and their demand is not constant,
like electricity. Therefore, we relax this assumption, and consider that individuals have an
elastic demand for good x in Section 6.

Second, we assume that the monopoly cannot impose fines to individuals that are
caught evading. Indeed, in some countries, firms that provide public services are either
not allowed to fine evaders directly or they have to rely upon a costly and uncertain
judicial procedure to do so.18 Also, fines do not seem to have a big impact over the evasion
decision, as found by Killias et al. (2009). More importantly, they are seldom an important
source of income, either for providers of public services or for the government, and even
less if judicial costs are considered. Therefore, as our focus is the relation between the
firm’s pricing and the extent of evasion, not incorporating fines does not seem to be too
restrictive.

Individuals face an idiosyncratic cost z if they are caught evading. As we have

17To obtain the per capita ridership, we divide the total number of rides by the yearly estimated
population of the State of New York.

18For example, in Chile, to fine evaders, inspectors from private providers need to be accompanied by
the police. And even if caught, evaders might not be penalized after all. Calvo (2015) shows that, in
all comunas of Santiago, the ratio of sanctions to inspections is less than 9 percent. But this incapacity to
fine fare evaders is not a distinctive feature of developing countries, as the study of Bijleveld (2007) in the
Netherlands revealed.
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already mentioned, this cost represents the social stigma and reputation loss due to being
detected,19 and the waste of time and disutility from subsequent prosecution. All these
act as deterrents for evasion. It has been documented that moral costs or social sanctions
do matter for individuals that evade the payment for public services (see, among others,
Sterner and Sheng 2013, Dai et al. 2019 and Ayal et al. 2021). Moreover, with the goal to
affect the reputation of a particular individual, enforcement authorities have sometimes
exposed evaders in the social networks.20

3 Regulation with exogenous quality

In this section, we characterize the optimal regulatory scheme, when the quality of
good x is exogenous. We assume that effort e is observable and contractible, and thus that
the regulator can impose its level to the firm.21

We first analyze the case of an active market, and then we incorporate the option of
shutting down the firm. Conditional on delivering good x, the regulator chooses the price,
the effort and the firm’s rents to maximize the expected social welfare, while inducing the
firm’s ex-post voluntary participation. Formally, the problem faced by the regulator is

max
p,e,V`,Vh

EW ≡ ρ(e)Wh(p, e) + (1− ρ(e))W`(p, e) (6)

s.t. Vh(p, e) ≥ 0, (VPh)

V`(p, e) ≥ 0 (VP`).

To simplify notation, we let Wi(p, e) = Wγi(p, e) and Vi(p, e) = Vγi(p, e), for i ∈ {h, `}.

Both the net consumer surplus and the firm’s utilities depend directly on the price
and the effort chosen by the regulator, and also indirectly, through the individuals’ evasion

19In some cases, individuals even feel harassed by inspectors. See
https://www.theage.com.au/national/victoria/fare-evasion-on-melbourne-public-transport-at-lowest-
recorded-level-20150102-12gty3.html

20In Argentina, the electricity company Edenor published in January 2019 on Twitter
that one of their inspections found an illegal electricity installation in a franchise of
Maru Botana, a well known baker and TV presenter. After a couple of months,
Maru Botana decides to settle out of court and pay the corresponding fine. See
https://www.clarin.com/sociedad/edenor-escracho-maru-botana-colgarse-luz-locales 0 thDI9lXJ .html.

21In Appendix B, we relax this assumption and we consider the case of non-observable effort. Now the
regulator has to provide incentives to induce the firm to exert effort, which becomes more expensive because
of informational rents.
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decisions.22 Let’s denote by pE, eE, VE
h and VE

` the solutions to (6). The following lemma
outlines some of their properties.

Lemma 1 Optimal regulation requires VE
` = VE

h = 0 and pE ≤ b(q).

Since transfers, and therefore rents to the firm, are costly, the regulator designs a
scheme which grants no rents to the former regardless of the realization of γ. Furthermore,
optimal regulation never involves p > b(q). Such a situation would be dominated by
setting p = b(q), which leaves total consumer surplus constant, but reduces the firm’s
financial needs by bringing individuals out of the market into formal consumption. Note
that quality, even if it does not affect evasion decisions, plays an important role in the
optimal regulatory scheme. The fact that nobody purchases the good when p > b(q)
gives rise to an endogenous price cap.

As pE ≤ b(q), all individuals consume good x. These results allow us to rewrite (6) as

max
p,e

EW = y + b(q)︸ ︷︷ ︸
(a)

− E

∫ ẑγ(p)

0
γzdF(z)︸ ︷︷ ︸

(b)

+ λpE
[
1− F(ẑγ(p))

]︸ ︷︷ ︸
(c)

− (1 + λ)
(
C(1) + θe

)︸ ︷︷ ︸
(d)

(7)

s.t. p ≤ b(q),

where expectations are taken with respect to γ, whose distribution is determined by e.
Block (a) captures the fact that all individuals receive a benefit y + b(q) from consumption
of the numeraire and good x, regardless of their behavior. Hence, all trades-off that the
regulator faces are captured by (b)-(d). Block (b) corresponds to the expected aggregate
welfare loss from reputational costs borne by evaders. Block (c) represents the expected
social value of revenues from formal sales, stemming from a reduction of costly transfers.
Finally, (d) corresponds to the social value of production and effort costs. Since everyone
consumes good x, this part of the problem is independent of p.

In order to characterize the optimal regulation, we need to understand how
reputational costs and revenues (blocks (b) and (c) in (7)) change with e. Effort pushes the
latter upwards, since it increases the likelihood of the detection probability γh, reducing
the number of evaders, and thus increasing formal revenues. The impact of e on block (b)
is more nuanced. By differentiating the aggregate reputational cost with respect to effort

22We do not restrict transfers to be positive. Since this is the relevant case to consider, we impose (when
necessary) sufficient conditions to ensure that this holds in the optimal regulatory scheme.
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we obtain ρ′(e)Ω(p), where Ω(p) is given by

Ω(p) ≡ γ`

∫ ẑγ`
(p)

0
zdF(z)−γh

∫ ẑγh (p)

0
zdF(z) = (γ` − γh)

∫ ẑγh (p)

0
zdF(z)︸ ︷︷ ︸

Inframarginal effect

+ γ`

∫ ẑγ`
(p)

ẑγh (p)
zdF(z)︸ ︷︷ ︸

Marginal effect

,

and represents the impact of a higher likelihood of γh on the expected reputational costs
borne by evaders. On the one hand, there is an inframarginal effect: consumers that
always evade experience the reputational cost with higher probability. On the other
hand, there is a marginal effect: for individuals that only evade when γ = γ`, a higher
likelihood of γh discourages them from being informal, and thus they avoid suffering the
reputational cost. We make assumptions on the primitives of the model so that effort
decreases reputational costs. Moreover this effect, on its own, is not big enough to justify
exerting effort.

Assumption 1 The density function f is log-concave, with z̄ f ′(z̄)
f (z̄) > −1.

Assumption 2 The function ρ(e) satisfies ρ′(0) < θ/Ω(b(q)).

These assumptions enable us to prove the following lemma.

Lemma 2 The reputational impact of effort on the expected social welfare satisfies the following
inequalities: 0 < ρ′(e)Ω(p) < θ.

This lemma is consistent with our intention of modelling effort as an instrument
that helps to finance the firm’s deficit. Ceteris paribus, increasing effort has a positive
reputational effect on social welfare, in the sense that the above mentioned marginal
effect always dominates.23 However, this reputational benefit is not sufficient, on its own,
to induce the firm to exert a positive amount of effort, because of its marginal cost θ.
Therefore, the financial role of effort, through evasion deterrence, is the driving force of
its utilization.

The following proposition characterizes the optimal interior price-effort scheme.

Proposition 1 When pE < b(q), the price pE and the effort eE are characterized by

E

[
f (ẑγ(pE))ẑ ′γ(pE)(1 + λ)pE

]
= λE

[ ∫ z

ẑγ(pE)
dF(z)

]
(8)

23In other words, even if the regulator is utilitarian and puts equal social weights on formal and informal
consumers, he prefers to face less evaders.
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ρ′(eE)

(
Ω(pE) + λpE

∫ ẑγ`
(pE)

ẑγh (pE)
dF(z)

)
≤ (1 + λ)θ, with equality if eE > 0. (9)

Equation (8) highlights the marginal benefits and costs of an increase in p. The
right-hand side corresponds to the marginal benefit, which is the extra revenue coming
from inframarginal consumers. These resources are valued at λ, since increasing revenues
allow for a reduction in transfers. The left hand side corresponds to the marginal cost.
There is a mass f (ẑγ(pE))ẑ ′γ(pE) of new evaders, each one causing a direct financial loss
of λpE. Moreover, these individuals bear a reputational cost of γẑ(pE), which is equal
to pE for the marginal evader (who is indifferent between facing the reputational cost and
paying for formal consumption).

Examining (8), we can assert that, to attenuate the use of socially costly transfers to
finance the firm, the optimal price pE is always strictly positive. But this policy has a cost:
it exacerbates evasion. Indeed, unlike standard monopoly regulation, individuals do not
stop buying when they face a price increase: they just stop paying. Since at any price
total consumption X = 1, the marginal cost of production c1 plays no role; all production
costs are fixed. Therefore, neither average cost pricing nor Ramsey-Boiteux-Laffont-Tirole
regulation are optimal.24 Instead, the logic of the regulator consists in fixing the price to
choose optimally the expected marginal formal buyer.

To determine the optimal level of effort, in (9) the regulator balances the marginal
increase in the likelihood of additional revenues accruing from less evasion, net of the
change in reputation costs faced by evaders, and its social marginal cost.

The following proposition presents the main comparative statics results of an interior
optimal regulatory scheme.

Proposition 2 Assume that pE < b(q). When eE > 0, the price pE and effort eE decrease with
θ, and increase with γh and λ. Moreover, the expected optimal transfers ETE

γ increase with θ, and
decrease with γh and λ.

At the optimum, when eE > 0, price and effort are complements. Indeed, as pE goes up,
more individuals consume informally, and thus the marginal benefit of increasing effort
to deter evasion increases. The comparative statics with respect to θ and γh result from
this complementarity. When the marginal cost of effort θ increases, eE should optimally

24If individuals could not evade, it is straightforward to show that, at the optimum, the regulator makes
no transfer to the firm and charges average cost pricing.
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decrease, pushing the expected number of evaders up. To attenuate this rise in evasion,
it is optimal to decrease pE as well. On the other hand, when γh increases, the marginal
benefit of effort goes up, pushing eE upwards. As a consequence, the expected number of
evaders decreases, price becomes a less costly way to finance the firm, and thus it should
be raised. This contradicts the assertion, often made in administrative and political circles,
that an improvement in the detection technology and the resulting decline in evasion
could foster a fare reduction in public transport.25

Finally, as λ goes up, the social cost of transfers increases, making more attractive
the use of higher prices to finance the firm. The same happens with effort, which deters
evasion. The aforementioned complementarity between price and effort reinforces these
effects, pushing both regulatory instruments further upwards.

The proposition also shows that, as increasing λ affects the marginal value of prices
and effort as regulatory tools, their changes must be compensated through transfers,
whose expected value decreases but whose social cost grows.

Unlike the optimal price, the regulator does not always set a strictly positive level of
effort, as the next corollary states.

Corollary 1 There exists a threshold λ1 > 0 such that, if λ > λ1, eE > 0. Otherwise, eE = 0.

For sufficiently low values of λ, the raising social cost of transfers is not so important.
Therefore, the marginal benefit of effort is lower than its social cost, and thus eE = 0. As
the marginal cost of public funds increases, additional revenues are more valuable, and
thus effort becomes positive.

Next, we characterize non-interior optimal regulatory schemes and we present their
main comparative statics properties.

Proposition 3 If pE = b(q), the optimal level of effort eE is given by the first-order condition
(9), and, when it is strictly positive, it increases with λ. On the other hand, the expected optimal
transfers ETE

γ decrease with λ.

As λ rises, the optimal response to mitigate the growing social cost of transfers is
to increase effort eE, since the price pE cannot escalate further. Although this pushes the
cost of the firm up, increment that must be financed with additional transfers (for any

25“Reducing the number of people who travel without a ticket is not only in our interest as the operator, but also in
the interest of our fare-paying customers. Few of us want to pay more for our tickets because some people avoid paying
(...)” See https://www.northernrailway.co.uk/legal/penalty-fares.
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realization of γ), it also limits the extent of evasion, implying an increase in the firm’s
revenues. This in turn decreases the above mentioned need for extra transfers. Despite
this fact, the expected social cost of the optimal transfers raises with λ.

This proposition implicitly assumes that there are values of the deadweight loss λ

such that the market of good x is active and the optimal price pE = b(q). But such
existence is not guaranteed a priori: it could be the case that the regulator consistently
(i.e., for any set of primitives of the model) prefers to shut down the firm before the price
reaches the cap.

In fact, this is not true. In the Appendix we show that we can find parameter
conditions such that, for high values of λ, i.e., λ ≥ λ̂q, the regulator lets the firm to operate
and sets its price at the boundary. But why would the regulator charge a price that cancels
the net consumer surplus of good x of formal buyers? Because their expenditures finance
a large fraction of the costs and enables the firm to deliver the good to all individuals, in
particular to evaders, whose strictly positive surplus has social value.

Finally, we incorporate into our analysis the option that good x may not be provided.
The next corollary naturally follows from the previous proposition.

Corollary 2 There exists a threshold λq such that, when λ > λq, the firm is optimally shut down.

Based on one possible case characterized in the Appendix, we illustrate these last
results. For a given quality, Figure 4 depicts one possible path of the optimal price pE, as
a function of the deadweight loss of taxation. First, it increases if λ < λ̂q. Then it remains
constant when λ ∈ [λ̂q, λq]. Finally, for higher values of λ, the regulator shuts down the
firm.26

26The other possible case of figure is an increasing optimal price, but that never reaches the boundary b(q)
because the firm is shutdown before that happens.
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Figure 4: A feasible path of the optimal price

4 Regulation with endogenous quality

Although the assumption concerning the exogenous and constant quality of good x
seems quite realistic to analyze some public services, in others it is natural to consider
such dimension as endogenous. For example, in public transportation, buses comfort
levels and waiting times at stops can be adjusted. To address this issue, in this section, we
consider that q is chosen by the regulator.27

When operating the market for good x is optimal, the regulator solves

max
p,e,q,V`,Vh

EW ≡ ρ(e)Wh(p, e, q) + (1− ρ(e))W`(p, e, q) (10)

s.t. Vh(p, e, q) ≥ 0, (VPh)

V`(p, e, q) ≥ 0 (VP`).

This problem is formally equivalent to (6), except for the fact that the social welfare and
the firm’s ex-post utility also depend upon q.28

Let’s denote by pE, eE, qE, VE
h and VE

` the solutions to (10). Again, it is straightforward

27In many contexts, the regulator does not select directly the quality of the service. Instead, he sets a
minimum standard q, and the provider complies by choosing q ≥ q. In our setting, this yields the same
outcome. As any optimal scheme would satisfy p ≤ b(q), and quality does not affect the trade-off between
formal and informal consumption, the firm would always pick q = q.

28Now, we make the dependence of W and V on q explicit.
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to verify that VE
l = VE

h = 0 and pE ≤ b(qE). The following proposition characterizes the
optimal regulatory scheme in this new environment.

Proposition 4 When pE < b(qE), the price pE and the effort eE are characterized by the system
of first-order conditions (8) and (9). The optimal quality qE is given by

b′(qE) = (1 + λ)c2. (11)

The equation that determines the optimal level of quality is independent of eE and pE.
This is a consequence of the quasi-linearity of the utility functions, the cost separability
between quantity and quality, and the possibility of informal consumption.29

As a corollary to these observations, the qualitative properties of the optimal price pE

and eE are identical to those presented in the previous section, and qE is always strictly
positive. As an increase in c2 or λ raises its social marginal cost, the individuals’ marginal
benefit of it must raise as well. Since b(·) is concave, qE decreases.

However, the price and the quality are not completely disconnected, since the latter
limits the price the regulator can charge. The main difference with respect to the previous
section is that here the value of this cap is endogenously determined.

When the marginal cost of public funds rises, pE increases while qE decreases. Hence,
we can expect that there exist parameters such that, for a relatively high value of λ, i.e.,
λ = λ̃, these optimal regulatory instruments reach the boundary; i.e., pE = b(qE) in an
active market. In the Appendix, we show that this is indeed correct. Next, we undertake
comparative statics at the boundary. We find that, under plausible conditions, increases
in λ imply lowering the optimal price, a result which is somewhat unexpected.

As we have already mentioned, in an interior solution, increasing λ has only one
direct effect on qE. At the boundary, however, quality has an additional benefit for the
regulator: increasing it allows him to raise the price, while still keeping formal consumers
in the market for good x. An increase in λ, which makes higher prices a more attractive
instrument to finance the firm, also generates an indirect effect, through a countervailing
incentive to push the quality upwards. Therefore, at the boundary, the total effect of
an increase in λ on qE is ambiguous. In the next proposition, we establish a sufficient
condition for the direct effect to dominate, and thus for qE to be decreasing in λ.

29Since all individuals consume good x, either as formal buyers or as evaders, the marginal benefit of
quality affects identically all of them, regardless of the price.
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Proposition 5 If pE = b(qE) and

c2 > b′(qE)

[
1 + R(eE)

(
1 +

1 + λ̃

λ̃
z f (z)

)]
,

the price pE and the quality qE decrease when λ increases.

The left hand side represents the direct effect of increasing λ on the provision of
q, which is given by its marginal cost c2. On the right hand side we have the indirect
effect: b′(q) is the marginal increase in p that becomes feasible after an increase in q. The
magnitude of this indirect effect is amplified by R(e), the inverse of the curvature of the
function ρ(·). The reason for this is the following: the lower the curvature, the larger the
increase in e, as a reaction to a change in λ. This in turn makes price increases even more
attractive for the regulator, due to the complementarity between p and e.30

If the condition displayed in Proposition 5 holds, further increases in λ cannot be
met by price increases at the boundary. To mitigate the resulting fiscal expansion caused
by the use of transfers, the regulator brings down the quality (which decreases costs)
and the price (otherwise there would be no formal consumers), while keeping the market
active. Therefore, there is a non-monotonic relationship between the optimal price and
the marginal cost of public funds. The presence of evaders gives rise to the possibility that
price and quality do not comove, and therefore public services of different qualities may
be equally priced.

Finally, we incorporate into our analysis the option that good x may not be provided.
The next corollary naturally follows from the previous proposition.

Corollary 3 There exists a threshold λ such that, when λ > λ, the firm is optimally shut down.

Despite the opposite interactions between regulatory instruments reported in the
previous proposition, the expected social cost of transfers increase with λ. This implies
that for sufficiently high values of the marginal cost of public funds, the regulator shuts
down the firm, and thus good x is not provided.

Figure 5 illustrates the previous discussion, based again on a possible case
characterized in the Appendix. In Panel (a) we depict one feasible path of the pair (pE, qE)

as a function of the deadweight loss of taxation: decreasing to the right if λ < λ̃, then

30The term multiplying R(e) is an upper bound of the complementarity between price and effort, as
discussed in Section 4.

22



decreasing to the left when λ ∈ [λ̃, λ]. Finally, for higher values of λ, the regulator shuts
down the firm. To visualize it better, Panel (b) shows how the optimal price pE evolves
when λ increases.
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Figure 5: Feasible path of the optimal price-quality pair

To verify the robustness of the analytical results of this section, Figure 6 complements
them with numerical simulations. For the baseline parameterization we assume that
ρ(e) = 10e

1+10e and b(q) =
√

q. We normalize z to 1. We also set γ` = 0.5, γh = 0.55,
θ = 0.001, c1 = 0.04, and c2 = 1.5.31

The figures on the left depict the boundary p = b(q) as a dotted yellow curve and,
in blue, the path of the optimal price-quality pair (pE, qE) as a function of the deadweight
loss of taxation λ. At the center, we show the probability distribution f (z), and the
thresholds ẑh and ẑ` at λ̃, where the price-quality pair reaches the boundary. On the right,
we illustrate how the optimal price pE varies with λ, and indicate λ̃.

First, we observe that the optimal path predicted by the model, and depicted in Figure
5(a), emerges under different probability distributions. The optimal pair (pE, qE) reaches
the boundary at values of λ that are neither too small nor too large, and are indeed close
to some of the estimated values shown in the Introduction. As λ increases, pE and qE

decrease along the boundary, and finally the firm is shut down.

31K is chosen so that the boundary is reached and transfers are positive.
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Figure 6: Numerical simulations
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Second, these simulations help us visualize the channel through which λ impacts pE

and qE. For a marginal change dλ > 0, the intensity of the price adjustment depends on
the value f (ẑ), which determines the mass of marginal evaders. Moreover, for any price
pE < b(q), the thresholds ẑh(pE) and ẑ`(pE) are located to the left of the corresponding
thresholds at the boundary.

When f (z) = Beta(2, 4), the mass of marginal evaders is big, leading to a slow
increase in the optimal price as λ goes up. Moreover, the critical level λ̃ is relatively high,
since the regulator moves very reluctantly toward higher prices. In comparison, when
f (z) = Beta(4, 2), there is a small mass of marginal evaders when p < b(q), leading to
sharp price increases as λ raises. This implies that pE = b(qE) for a relatively low level λ̃.

It is also important to mention that, in both cases, after the boundary p = b(q) has
been reached, prices decrease very slowly with λ. Indeed, the ‘small’ section where the
path (pE, qE) coincides with the boundary in the first column corresponds to a large set of
λs, as can be appreciated in the third column.

Under a uniform distribution, the last simulation is somewhat between the two
previous cases when pE < b(qE). However, it is interesting to note that the price decrease
after reaching the boundary is sharper and bigger in magnitude than under non-uniform
distributions.

5 Non-unit demand

Our assumption of unit demand is based on the fact that many public services (like
transport) are consumed in almost constant quantities, whose value can be normalized to
one without loss of generality. This generates clear-cut results, with interesting intuitions,
in particular those related to the pricing rule. However, other public services that also face
the threat of evasion have non-unit individual demands, like electricity. In this section, we
relax this assumption, and, when quality is exogenous, we derive a pricing rule that can
be easily contrasted with the classic Ramsey-Boiteux-Laffont-Tirole formula.

Formal buyers choose the quantity x to purchase, deriving utility UF = v(x)+ y− px,
where the strictly concave function v(x) represents the individual benefit from consuming
x units, and satisfies v(0) = 0 and v′(0) = ∞.32 Individual demand x∗(p) is implicitly
given by v′(x∗(p)) = p.

For the sake of simplicity, we assume that all evaders get x̂ > 0, and thus obtain a

32Since quality will remain fixed in this section, we drop any explicit mention of q in the benefit function.
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benefit v(x̂).33 As before, their utility is given by U I = v(x̂) + y− γz.
Let ẑγ(p) ≡ v(x̂)−v(x∗(p))+px∗(p)

γ be the reputation cost of an individual that is
indifferent between consuming good x formally and informally. As the benefit function
v(.) is strictly concave, v(x∗) > px∗, and thus no individual leaves the market.

As both participation constraints bind at the optimum, the regulator solves

max
p,e

EWE = y + E

[
F(ẑγ(p))v(x̂) + (1− F(ẑγ(p)))v(x∗(p))

]
−E

∫ ẑγ(p)

0
γzdF(z)

+E

[
λ(1− F(ẑγ(p)))px∗(p)

]
− (1+λ)

(
K+E[F(ẑγ(p))x̂+(1− F(ẑγ(p)))x∗(p)]c1 + θe

)
(12)

This problem is conceptually identical to (7), except that formal buyers and evaders
do not consume the same amount of good x. Moreover, a change in p now affects both the
way individuals consume good x (formal or informal) and the amount purchased in the
former case.

Let η I ≡
f (ẑγ(p)) ∂ẑγ(p)

∂p p
F(ẑγ(p)) > 0 and ηF ≡ −εF − F(ẑγ(p))ηD

I
1−F(ẑγ(p)) < 0 be the price-elasticity of the

aggregate informal and formal consumption, respectively, where εF is the price-elasticity
of the individual formal demand. The following proposition characterizes the optimal
price-effort scheme.

Proposition 6 The price pE and the effort eE are characterized by

pE − c1

pE = − λ

1 + λ

E[1− F(ẑγ(pE))]

E[(1− F(ẑγ(pE)))ηF]︸ ︷︷ ︸
(a)

+
E[∂X I

γ/∂p]
E[∂XF

γ/∂p]
c1

pE︸ ︷︷ ︸
(b)

(13)

ρ′(eE)

[(
v(x∗(pE))− v(x̂)− (1 + λ)(x∗(pE)− x̂)c1 + λpEx∗(pE)

)
[F(ẑγl(pE))− F(ẑγh(pE))]

+ Ω(pE)

]
≤ (1 + λ)θ, with equality if eE > 0. (14)

33For the sake of simplicity, this version of our model does not consider the possibility to evade by paying
only a fraction of the due price. For example, this type of misbehavior may emerge in transport systems
with fares increasing with the distance to travel. Evaders pay an amount that entitles them to ride up
to a given place, but in fact they go further. Although incorporating this type of evasion could be more
realistic, we believe that it will also complicate unnecessarily the analysis of the problem without modifying
substantially the results.
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Expression (13) defines the optimal pricing rule with non-unit demands.34 On the
left-hand side, we have the Lerner index, which evaluates the markup on sold quantities.
The right-hand side is formed by the sum of two terms. The first one, (a), captures the
Ramsey-Boiteux-Laffont-Tirole rationale for financing a natural monopoly with prices
and costly transfers, where the marginal cost of public funds and the price-elasticity of
demand play a crucial role. The mathematical expression of (a) differs with respect to
the conventional formula, as it appears in Baumol and Bradford (1970), in two aspects.
First, in the denominator, the price elasticity corresponds to that of the formal demand,
which incorporates not only the effect of a price change on the individual demand of a
formal buyer, but also on their number. Clearly, the presence of evaders pushes the value
of the price elasticity upwards, which ceteris paribus implies a lower mark-up. Second, the
regulator takes into account the random nature of enforcement, and thus considers the
expected value of the formal demand.

The second term (b) captures the fact that the regulator faces another effect induced
by an increase in the price, which is absent in models without informal consumers: the
variable cost of serving a higher number of evaders will increase. This second effect is
measured with respect to the loss of income generated by the price increase, and thus is
negative, reinforcing the above mentioned decrease in the optimal markup. Note that this
second term does not depend directly upon the marginal cost of public funds. Thus, the
optimal pricing rule separates the Ramsey-Boiteux rationale and the financial concern for
the extra deficit caused by evaders.

The term (a) is positive, while (b) is negative. Therefore, contrary to the traditional
natural-monopoly regulation, there is no clear-cut prediction concerning the comparison
between the price and the marginal cost. For example, if the cost of serving more evaders
were relatively high, the second expression may dominate, and thus the price pE must be
optimally set below c1.35 By explicitly focusing on the funding of the firm’s deficit without
fines, our results contrast those found by Buehler et al. (2017). In particular, the expression
(13) yields marginal cost pricing provided very particular conditions hold, whereas these
authors always obtain such a sharp result.

The following figures illustrate these considerations.

34Expression (14) has the same intuition than (9); it just incorporates the fact that formal and informal
consumption are not equivalent. Therefore, in the remainder of this section, we do not discuss about the
optimal level of effort.

35We are not the first to obtain such result. For example, in the context of a natural monopoly financed by
a two-part tariff, Ng and Weisser (1974) showed that if the demand of the marginal individual (i.e., the one
that is indifferent between consuming or not the good produced by the firm) is above the average demand
of inframarginal consumers, the regulator optimally sets the variable price below the marginal cost.
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Figure 7: Optimal pricing with non-unit demands

In Panel (a), we draw the demand for good x when there is no evasion, D (in blue),
the marginal cost c1, and the optimal Ramsey-Boiteux price p∗. Then, we let evasion to
emerge; but we keep the price constant. The red curve depicts the demand of formal
buyers, DF, and thus XF(p∗) is the total quantity purchased. Finally, we also show
total informal consumption X I(p∗), and total consumption X(p∗). In Panel (b), we let
the regulator to react optimally to the presence of evaders, and we depict the optimal
price and quantities (in green). When deciding whether and how much to modify the
price, the regulator has to take into account i) the Ramsey-Boiteux-Laffont-Tirole concern
about financing the firm’s deficit with price and costly transfers, and ii) the financial
consideration of the extra deficit caused by evaders’ consumption. As we have already
mentioned, pE ≤ p∗. So, when it decreases the price optimally, the regulator balances the
social values of the net change in the firm’s income and the increasing consumer surplus
(in yellow) and the decrease in the cost of serving evaders (striped area).

6 Conclusions

Most contributions studying the provision of public services under the threat of
evasion focus on deterrence, and do not incorporate the use of prices as a feasible
instrument to deal with this pervasive problem. Even among those studies that consider
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them, they analyze a profit-maximizing firm instead of a regulated monopoly, without
formalizing how financial losses are covered. In this paper, we provide a normative
model in which regulation of a natural monopoly is the focus, and in particular, the
tension between assuring the firm’s participation via socially costly transfers or by other
mechanism, such as prices and enforcement. We highlight the main channels through
which we believe fare evasion alters the received theory of natural monopoly regulation,
stressing the relation between prices, quality, and the marginal cost of public funds.

Our results generate some important policy implications. First, when the service is
consumed in fixed quantities, the existence of evasion should prevent the regulator to
consider marginal costs as a pertinent variable in its optimization. Second, regulatory
authorities should try to improve their understanding of the propensity to evade (i.e., the
distribution of subjective costs) in the population. Finally, the technological characteristics
of a transport system and the design of the pricing/transfer schemes cannot be decoupled.
Indeed, the quality provided to consumers limits the price the firm can charge.

We conclude by emphasizing some limitations of our analysis and present some
possible extensions. We have assumed that individuals have quasi-linear utilities. This
implies that income effects play no role in terms of the decision between consuming the
good formally or as an evader. Although this assumption seems plausible in general,
one can argue that low-income individuals, for which the expenditure in public services
represents a non-negligible fraction of their income, can face income effects when prices
increase. Also, we have ignored that firms may have different efficiency levels to detect
evaders. Incorporating this adverse selection feature into the model obviously modifies
our results. But, more importantly, it could enable us to go one step ahead, and study the
regulator’s decision of granting the monopoly when it faces a pool of diverse potential
entrants in a context of pervasive fare evasion. This analysis can help regulators to
improve the design of bidding mechanisms for the provision of public transport when
such misbehavior is an institutional concern.
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Appendix A

Proof of Lemma 1

i) Assume (wlog) that VPh does not bind at the optimum. If so, we can always decrease VE
h by a

small ε > 0 such that VPh still holds. This change leads to an increase in expected welfare EW,
which is a contradiction. A similar argument can be used to prove that VP` also binds at the
optimum.
ii) Assume that running the market for good x is efficient, i.e., b(q) > C(1, q) = K + c1 + c2q.
Let z̃γ(b(q)) ≡ b(q)

γ be the value of the reputation cost that makes an individual indifferent
between consuming good x informally or leaving the market. Moreover, assume that the regulator
optimally sets pE > b(q) and eE. This implies that z̃γ(b(q)) < ẑγ(pE). Hence, individuals
characterized by z ≤ z̃γ(b(q)) decide to consume informally, whereas those with a higher
reputation cost leave the market for good x. Under these circumstances, the expected welfare
associated to the regulatory scheme (pE, eE) is given by

y + E

[ ∫ z̃γ(b(q))

0
(b(q)− γz) dF(z)

]
− (1 + λ)

(
K + E

[
c1

∫ z̃γ(b(q))

0
dF(z)

]
+ c2q + θeE

)
. (15)

Suppose now that the regulator offers a new scheme (p′, e′), with p′ = b(q) and e′ = eE.
This new scheme leads to an expected welfare given by

y + E

[ ∫ z̃γ(b(q))

0
b(q)dF(z)

]
︸ ︷︷ ︸

(a)

−E

[ ∫ z̃γ(b(q))

0
γzdF(z)

]
︸ ︷︷ ︸

(b)

+(1 + λ)E

[ ∫ z

z̃γ(b(q))
b(q)dF(z)

]
︸ ︷︷ ︸

(c)

−(1 + λ)

(
C(1, q) + θeE

)
︸ ︷︷ ︸

(d)

,
(16)

where we use ẑγ(p′) = z̃γ(b(q)) and the fact that individuals with high reputation costs
consume formally when p′ = b(q).
The difference in welfare terms between both regulatory schemes is given by

(16)− (15) = (1 + λ)(b(q)− c1)E

[ ∫ z

z̃γ(b(q))
dF(z)

]
.

As b(q) > c1, this difference is strictly positive, implying that the proposed deviation is
welfare improving. This contradicts the optimal nature of the initial regulatory scheme.
If good x has to be provided, it is always optimal to set p ≤ b(q), and thus to induce all
individuals to choose between consuming good x formally or informally.
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Proof of Lemma 2

The reputational impact of increasing effort marginally on the expected social welfare
is equal to ρ′(e)Ω(p). To obtain the sign of Ω(p), we define the function

Φ(γ) ≡ γ
∫ p

γ

0
zdF(z),

and we compute
dΦ(γ)

dγ
=
∫ p

γ

0
zdF(z)−

(
p
γ

)2

f
(

p
γ

)
.

For the sake of simplicity, let t = p
γ . As f is bounded, limt→0

dΦ(γ)
dγ = 0 and

d
dt

(
dΦ(γ)

dγ

)
= −t f (t)

[
1 + t

f ′(t)
f (t)

]
. (17)

Since f is log-concave, f ′(t)
f (t) decreases with t, reaching the minimal value f ′(z)/ f (z) when

t = z.
If f ′(z)/ f (z) ≥ 0, f ′(z)/ f (z) ≥ 0 for all z. Hence, (17) is negative. Otherwise, if
f ′(z)/ f (z) < 0, we need to consider the following two sub-cases:

• f ′(z)
f (z) ≤

f ′(t)
f (t) < 0, which yields z f ′(z)

f (z) ≤ t f ′(t)
f (t) , and thus by Assumption 1, (17) is

negative.

• f ′(z)
f (z) < 0 < f ′(t)

f (t) , which also implies that (17) is negative.

As (17) is negative, dΦ(γ)
dγ < 0 (except when t = 0), and thus Φ(γ`) > Φ(γh). Therefore,

Ω(p) > 0, and so ρ′(e)Ω(p) > 0.

In order to prove the second inequality of the lemma, we show first that Ω(p)
increases with p.
Let Ψ(γh) ≡

dΩ(p)
dp = p

γ`
f ( p

γ`
)− p

γh
f ( p

γh
). Clearly, limγh→γ`

Ψ(γh) = 0 and

dΨ(γh)

dγh
=

ẑγh

γh
f (ẑγh)

[
1 + ẑγh

f ′(ẑγh)

f (ẑγh)

]
> 0.

So Ψ(γh) is always positive, implying that Ω(p) increases with p. The proof concludes
using Assumption 2 and the fact that ρ(e) is strictly concave.
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Proof of Proposition 1

The result follows from direct differentiation of the objective function (7) with respect
to p and e.

Proof of Proposition 2

(i). First, we study the comparative statics of pE and eE with respect to λ. Using a standard
approach, we only need to prove that ∂2EW

∂p∂λ , ∂2EW
∂e∂λ , and ∂2EW

∂p∂e are all strictly positive. We
can show that

∂EW
∂p

= − ∂

∂p

(
E

∫ ẑγ(p)

0
γzdF(z)

)
+ λ

∂2EW
∂p∂λ

∂EW
∂e

=

[
− ∂

∂e

(
E

∫ ẑγ(p)

0
γzdF(z)

)
− θ

]
+ λ

∂2EW
∂e∂λ

∂2EW
∂e∂p

= ρ′(e)
∂

∂p

(
Wh(p, e)−W`(p, e)

)
.

Let’s consider an interior solution, where ∂EW
∂p = 0. Therefore, as ∂

∂p

(
E
∫ ẑγ(p)

0 γzdF(z)
)
>

0, ∂2EW
∂p∂λ > 0. Moreover, Lemma 2 guarantees that the bracketed term in the second

equation is negative. Using an analogous argument allows us to conclude that ∂2EW
∂e∂λ > 0.

Finally, to prove that the third derivative is positive, we compute

∂W(p, γ)

∂γ∂p
=

∂

∂γ

[
λ
∫ z

ẑγ(p)
dF(z)− ∂ẑγ(p)

∂p
(1 + λ)p f (ẑγ(p))

]
= −∂ẑγ(p)

∂γ

[
(1 + 2λ) f (ẑγ(p)) + (1 + λ)ẑγ(p) f ′(ẑγ(p))

]
.

(18)

In the proof of Lemma 2 we have shown that, for all z, z f ′(z)
f (z) > −1. Therefore,

(1 + λ)ẑγ(p) f ′(ẑγ(p)) > −(1 + λ) f (ẑγ(p)),

and thus (18) is strictly positive. Using the local supermodularity derived above and
applying the Implicit Function Theorem, we obtain that pE and eE increase with λ.

Consider now the comparative statics with respect to θ. It is immediate that ∂EW
∂e∂θ = −(1+

λ) and ∂EW
∂p∂θ = 0. Given that ∂2EW

∂e∂p > 0 around the optimal policy, we can conclude that
EW is supermodular in (−θ, p, e) at the solution. It follows that pE and eE weakly decrease
as functions of θ.

Finally, we analyze the comparative statics with respect to γh. We already established that
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∂2EW
∂e∂p > 0 holds. Moreover, the same assumptions and lemmas allow us to prove that

∂2EW
∂p∂γh

= ρ(e) ∂2W(p,γh)
∂p∂γh

> 0 at an interior solution. Noting that ∂2EW
∂e∂γh

= ρ
′
(e) ∂W(p,γ)

∂γ > 0, we
conclude that pE and eE increase with γh.

(ii). The response of the expected optimal transfers

E
[
TE

γ

]
= C(1, q) + θe−E[pXF

γ] (19)

to changes in θ, γh, and λ, are the following

dE
[
TE

γ

]
dθ

=
∂E
[
TE

γ

]
∂e

deE

dθ
+

∂E
[
TE

γ

]
∂p

dpE

dθ

dE
[
TE

γ

]
dγh

=
∂E
[
TE

γ

]
∂e

deE

dγh
+

∂E
[
TE

γ

]
∂p

dpE

dγh

dE
[
TE

γ

]
dλ

=
∂E
[
TE

γ

]
∂e

deE

dλ
+

∂E
[
TE

γ

]
∂p

dpE

dλ

(20)

Differentiating (19) with respect to p and e, and using the first-order conditions (8) and (9)
yields

∂E
[
TE

γ

]
∂p

= −E

[
XF

γ + pE ∂XF
γ

∂p

]
< 0

∂E
[
TE

γ

]
∂e

= θ − ρ′(eE)pE[XF
γh
− XF

γ`

]
< 0.

(21)

As we know that dpE

dθ , deE

dθ < 0 and dpE

dγh
, deE

dγh
, dpE

dλ , deE

dλ > 0, the results mentioned in the
proposition follow from combining all these signs.

Proof of Corollary 1

Assumption 2 and a continuity argument implies that eE = 0 when λ ≈ 0. Moreover,
the existence of λ1 is direct from the previous proposition, since eE is increasing in λ. Note
that it is possible to obtain λ1 = ∞, for example if θ is very high.

Proof of Proposition 3

As

∂2EW
∂p2 = −(1 + λ)E

[
f (ẑγ(p))

γ

(
1 + ẑγ(p)

f ′(ẑγ(p))
f (ẑγ(p))

)]
− λE

[
f (ẑγ(p))

γ

]
< 0,

the expected welfare is concave in the price. Hence, once the boundary p = b(q) is
reached, the best thing the regulator can do is to just keep the price constant, as λ increases.
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After this, the problem depends only upon the effort. The proof of the proposition is
omitted because it is a direct application of previous results.

Existence of parameters supporting optimal regulatory schemes at the
boundary p = b(q), when quality is exogenous

Proposition 7 Assume that z is uniformly distributed and that 2γ` > γh. Under some parameter
conditions, there exist λ̂q < ∞ such that, when λ ≥ λ̂q, the optimal price is pE = b(q) and the
optimal level of effort is given by the first-order condition (9).

Proof. We follow a constructive approach to prove this proposition. First, we find
sufficient conditions that ensure the existence of an interval for the quality q under which
the results hold. Then, we find the lowest value of λ such that the optimal price is on
the frontier. Finally, we identify parameters such that the market for good x is active and
transfers are positive under these circumstances.

Let pE
lim and eE

lim be the limit values of pE and eE given by the first-order conditions
(8) and (9) when λ → ∞. From (8) and using the fact that z is distributed uniformly, we
obtain

pE
lim =

z
2
[
ρ(eE

lim)
1

γh
+ (1− ρ(eE

lim))
1

γ`

] , (22)

.

Thus, for any δ < 1,

pE
lim > p ≡ δ

zγ`

2
. (23)

Let q̃ be implicitly defined by b(q̃) = p. From now on, we only consider quality levels
q ≤ q̃.

Now, we find λ̂q, the smallest value of λ such that pE = b(q). Since pE is increasing
in λ, the first-order condition (8) implies that this happens when

b(q)(1 + 2λ̂q)E

[
1
γ

]
= λ̂qz. (24)

Rearranging (24) allows us to obtain

1 + 2λ̂q

1 + λ̂q
=

z
z−E

[
ẑγ(b(q))

] . (25)

If operating the market for good x is optimal when λ = λ̂q, the expected welfare under
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the optimal regulatory scheme is higher than under shutdown,

b(q)−E

[ ∫ ẑγ(b(q))

0
γzdF(z)

]
+ λ̂qb(q)

∫ z

ẑγ(b(q))
dF(z)− (1 + λ̂q)

(
K + c1 + c2q + θeE) > 0,

which can be rewritten as,

Σ(q) ≡ b(q)
(

1−
E
[
ẑγ(b(q))

]
z

( 1
2 + λ̂q

1 + λ̂q

))
>
(
K + c1 + c2q + θeE) = C(q). (26)

Moreover, if under the above mentioned optimal regulatory scheme, transfers are positive,

C(q) > b(q)
∫ z

ẑγ(b(q))
dF(z) = b(q)

(
1− ẑγ(b(q))

z

)
≡ g(q), γ ∈ {γh, γ`}. (27)

Combining (26) and (27), the results of the proposition would follow if Σ(q) > C(q) >
g(q).
A necessary condition is that Σ(q) > g(q). The following lemma shows that this condition
can be satisfied for a wide range of parameters.

Lemma 3 If 2γ` > γh, Σ(q) > g(q) for any quality q < q̃.

Proof. Using (25), condition Σ(q) > g(q) can be written, for the most restrictive case, as
follows

1−
E
[
ẑγ(b(q))

]
2z

(
z

z−E
[
ẑγ(b(q))

]) > 1−
ẑγh(b(q))

z
. (28)

Rearranging, we can rewrite (28) as

E

[
1
γ

](
1 +

2ẑγ`
(b(q))
z

)
<

2
γh

, (29)

which is implied by
γh
γ`

(
1 +

2
z

b(q)
γ`

)
< 2. (30)

If q < q̃, the left-hand side of (30) satisfies

γh
γ`

(
1 +

2
z

b(q)
γ`

)
<

γh
γ`

(1 + δ). (31)

If 2γ` > γh, then inequality (30) holds for some δ > 0.

From (9) evaluated at λ̂q, we know that, if q = 0, eE = 0. The following lemma shows
how eE evolves with q.
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Lemma 4 When λ = λ̂q, if eE > 0 then it increases with q.

Proof. We differentiate totally the system of first-order conditions (8) and (9), evaluated
at λ = λ̂q, when eE > 0. We apply the Implicit Function Theorem and obtain

deE

dq
=

−2b′(q)θzγhγ`(
b(q))2(1 + 2λ̂q)∆(γh − γ`)

(
E

[
1
γ

]
+

2(1 + λ̂q)z
b(q)

)
> 0, (32)

where

∆ =
z

1 + 2λ̂q

[
−2ρ′(eE)θ

b(q)(1 + 2λ̂q)
+ ρ′′(eE)

]
< 0

is the determinant of the Hessian matrix, evaluated at the optimum.

As eE increases with q, let’s denote by ẽ the value that eE adopts when q = q̃ and
pE = b(q̃).36 Consider the following geometric argument. Since Σ(0) = g(0) = 0, Inada
conditions for b(q) imply that both curves increase sharply, in a neighborhood of q = 0.
Now, let’s define C(q) = K + c1 + c2q + θẽ and C(q) = K + c1 + c2q. We can always find
parameters K, c1, c2 and θ such that there exists an interval [q1, q2] where Σ(q) > C(q) and
C(q) > g(q). Hence, as

C(q) ≤ C(q) ≤ C(q),

we have shown the existence of parameters such that, when q < q̃, Σ(q) > C(q) > g(q)
holds. Figure 6 provides an illustration of this reasoning, for an arbitrary C(q).

Σ(𝑞)

𝑔(𝑞)

𝑞
𝑞

𝐶(𝑞)

𝐶(𝑞)

𝐶(𝑞)

Figure 8: Possibility that g(q) < C(q) < Σ(q)

36We impose sufficient conditions to ensure that λ1 < λ̂q. For example, we can assume that the marginal
cost of effort θ is sufficiently low.
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Proof of Corollary 2

We present a proof that applies when the conditions that enable the optimal price to
reach the boundary b(q) with an active firm are satisfied.

Recall that, as the expected welfare EW is concave in the price, setting pE < b(q)
is never optimal when λ > λ̂q. Under these circumstances, again pE = b(q) and
eE is implicitly given by the first-order condition (9). Let ∆EW ≡ EW − y be the
difference between the expected welfare when the market for good x is active and
optimally regulated and when the regulator initially shuts down the firm. Applying
an envelope argument, the expected welfare EW decreases with λ and diverges to −∞.
Hence, Bolzano’s Theorem ensures that there exists a threshold λq > λ̂q such that, when
λ̂q < λ ≤ λq, the market for good x should be active. Otherwise, the firm’s shutdown is
optimal.

A similar argument can be used to show that, if the conditions that enable the optimal
price to reach the cap b(q) are not satisfied, then there exists a threshold λq such that, when
λ > λq, the regulator optimally shuts down the firm.

Proof of Proposition 4

Notice from (7) and (10) that q and (p, e) enter the objective function in an additive
separable manner. As a consequence, the optimal price and effort are given by (8) and
(9). The optimal quality follows from direct differentiation of the objective function with
respect to q. The shape of the benefit function b(·) leads to the qualitative properties of qE.

Existence of parameters supporting non-interior optimal regulatory
schemes when quality is endogenous

Proposition 8 Assume that z is uniformly distributed and that 2γ` > γh. Under some parameter
conditions, there exist λ̃ < ∞ such that, when λ ≥ λ̃, the optimal price-quality schedule satisfies
pE = b(qE) and the optimal level of effort is given by the first-order condition (9).

Proof. Consider the relaxed problem

max
p,e,q,V`,Vh

EW. (33)

Let p(λ), e(λ), q(λ), V`(λ) and Vh(λ) be the solutions to (33), as functions of λ. In
particular, with a slight abuse of notation, let’s denote by q0 ≡ limλ→0 q(λ) the optimal
quality that is implicitly given by b′(q0) = c2. Also, limλ→∞ q(λ) = 0.

Now let Π(λ) be the locus of points (p(λ), q(λ)), in the (p, q) plane. From
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Propositions 2, 4 and the fact that qE decreases with λ, we know that, for a given 4-tuple
of parameters Γ = (K, c1, c2, θ), Π(λ) is graphically characterized by a negative relation
between p and q. Figure 9 depicts Π(λ) and the boundary b(q).

𝑝

𝑞

𝑏(𝑞)
𝑞0

𝑚

𝑝𝑚

Π(𝜆)

⋅𝑞𝑚

𝑝𝑙𝑖𝑚
𝐸

Figure 9: The locus Π(λ) and the boundary b(q)

Due to the properties of both objects, we know that b(q) crosses Π(λ) only once. Let m
be this geometric intersection, and let’s denote by pm and qm its abscissa and its ordinate,
respectively. From point m we infer the existence of a value λm, implicitly defined by
p(λm) = b(q(λm)).

In the proof of Proposition 7, we have defined p as a lower bound for pE
lim, and

implicitly characterized q̃ as satisfying b(q̃) = p. So, comparing p and pm, two scenarii
can potentially emerge: either p ≥ pm or p < pm.

1. If p ≥ pm, q̃ ≥ qm. By fixing the values of c2 and θ in the 4-tuple Γ, Π(λ) cannot be
modified when the other two parameters K and c1 change.37 Applying the reasoning
used in the proof of Proposition 7 to the value q = qm, we know that we can always
find values of K and c1 such that there exists a value of λ, denoted by λ̃, for which i)
the market is active, ii) pm and qm solve problem (10), and iii) optimal transfers are
positive.

2. If p < pm, then q̃ < qm. We can always increase c2 in the 4-tuple Γ such that Π(λ)

shifts downwards enough, so that the previous scenario emerges again.
37This is due to the fact that neither pE nor eE depend upon these two parameters.

40



Proof of Proposition 5

The optimal scheme solves

max
q,p,e

EW ≡ y + b(q) +E

[ ∫ ẑγ(p)

0
−γzdF(z) + λp

∫ z

ẑγ(p)
dF(z)

]
− (1+ λ)

(
K + c1 + c2q + θe

)
subject to

p ≤ b(q).

The Lagrangian of this problem is

L = y+ b(q)+E

[ ∫ ẑγ(p)

0
−γzdF(z)+λp

∫ z

ẑγ(p)
dF(z)

]
− (1+λ)

(
K+ c1 + c2q+ θe

)
−Φ[p− b(q)].

(34)

We only analyze the case when the constraint is binding, i.e. Φ > 0. The solution to
this program is characterized by the following system of first-order conditions, yielding
to ΦE, qE, pE and eE,

∂L
∂Φ

= b(q)− p = 0 (35)

∂L
∂q

= (1 + Φ)b′(q)− (1 + λ)c2 = 0 (36)

∂L
∂p

= E

[
λ
∫ z

ẑγ(p)
dF(z)− (1 + λ)ẑγ(p) f (ẑγ(p))

]
−Φ = 0 (37)

∂L
∂e

= ρ′(e)
[

Ω(p) + λp
∫ ẑ`(p)

ẑh(p)
dF(z)

]
− (1 + λ)θ = 0 (38)

To undertake comparative statics with respect to λ, we completely differentiate this
system of first-order conditions. We assume that the second-order conditions for a
maximum hold, so we can apply the Implicit Function Theorem. After some algebra,
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we obtain

dq
dλ

=
ρ′′(e)

[
Ω(p) + λp

[
F(ẑ`(p))− F(ẑh(p))

]]
−|H|

[
c2 + b′(q)

(
−E

[
1− F(ẑγ(p))− ẑγ(p) f (ẑγ(p))

]

−
ρ′(e)

[
λ
[
F(ẑ`(p))− F(ẑh(p))

]
+ (1 + λ)

[
ẑ`(p) f (ẑ`(p))− ẑh(p) f (ẑh(p))

]]
ρ′′(e)

[
Ω(p) + λp

[
F(ẑ`(p))− F(ẑh(p))

]]
.
[
θ − ρ′(e)p

[
F(ẑ`(p))− F(ẑh(p))

]])]
, (39)

where |H| is the determinant of the bordered Hessian matrix of (34). As the fulfilment of
the second order conditions implies that −|H| > 0, the necessary and sufficient condition
that ensures that (39) is negative is

c2 > b′(q)
(

E
[
1− F(ẑγ(p))− ẑγ(p) f (ẑγ(p))

]
+(

− ρ′(e)
ρ′′(e)

)
λ
[
F(ẑ`(p))− F(ẑh(p))

]
+ (1 + λ)

[
ẑ`(p) f (ẑ`(p))− ẑh(p) f (ẑh(p))

]
Ω(p) + λp

[
F(ẑ`(p))− F(ẑh(p))

]
.
[
ρ′(e)p

[
F(ẑ`(p))− F(ẑh(p))

]
− θ
])

To find an upper bound for the expression in parenthesis, we proceed as follows.

• E
[
1− F(ẑγ(p))− ẑγ(p) f (ẑγ(p))

]
< 1.

• As ẑ`(p) > ẑh(p), F(ẑh(p)) < F(ẑ`(p)) ≤ 1. Hence, λ
[
F(ẑ`(p))− F(ẑh(p))

]
< λ.

We can also show that the function z f (z) increases with z (see the proof of Lemma
2). Hence, (1 + λ)

[
ẑ`(p) f (ẑ`(p))− ẑh(p) f (ẑh(p))

]
< (1 + λ)ẑ`(p) f (ẑ`(p)) < (1 +

λ)z f (z).
So, λ

[
F(ẑ`(p)) − F(ẑh(p))

]
+ (1 + λ)

[
ẑ`(p) f (ẑ`(p)) − ẑh(p) f (ẑh(p))

]
< λ + (1 +

λ)z f (z).

• Let’s rewrite the first-order condition (38) as follows

ρ′(e)Ω(p)− θ︸ ︷︷ ︸
A

+λ
(

ρ′(e)p
[
F(ẑ`(p))− F(ẑh(p))

]
− θ
)
= 0.

By Lemma 2, A < 0. Hence, ρ′(e)p
[
F(ẑ`(p))− F(ẑh(p))

]
− θ > 0.

Moreover, ρ′(e)p
[
F(ẑ`(p))− F(ẑh(p))

]
− θ < ρ′(e)p

[
F(ẑ`(p))− F(ẑh(p))

]
.
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• As we have shown in the proof of Lemma 2 that Ω(p) > 0,

Ω(p) + λp
[
F(ẑ`(p))− F(ẑh(p))

]
> λp

[
F(ẑ`(p))− F(ẑh(p))

]
.

With all these results, we have

E
[
1− F(ẑγ(p))− ẑγ(p) f (ẑγ(p))

]
+(

− ρ′(e)
ρ′′(e)

)
λ
[
F(ẑ`(p))− F(ẑh(p))

]
+ (1 + λ)

[
ẑ`(p) f (ẑ`(p))− ẑh(p) f (ẑh(p))

]
Ω(p) + λp

[
F(ẑ`(p))− F(ẑh(p))

]
.
[
ρ′(e)p

[
F(ẑ`(p))− F(ẑh(p))

]
− θ
]

< 1 +

(
− ρ′(e)

ρ′′(e)

)
λ + (1 + λ)z f (z)

λp
[
F(ẑ`(p))− F(ẑh(p))

]ρ′(e)p
[
F(ẑ`(p))− F(ẑh(p))

]
= 1 +

(
− (ρ′(e))2

ρ′′(e)

)(
1 +

1 + λ

λ
z f (z)

)
.

Moreover, as 1+λ
λ decreases with λ, we know that

1 + λ

λ
<

1 + λ̃

λ̃
,

where λ̃ is the lowest value of λ such that p = b(q).
Also, as the function ρ(e) is increasing and concave in e,

− ρ′(e)
ρ′′(e)

<

∣∣∣∣∣∣
(
1 + (ρ′(e))2) 3

2

ρ′′(e)

∣∣∣∣∣∣ ≡ R(e),

where R(e) is the radius of the curvature of the function ρ(e) at the point e.
So finally, if

c2 > b′(qE)

[
1 + R(eE)

(
1 +

1 + λ̃

λ̃
z f (z)

)]
,

then
dqE

dλ
< 0.

we conclude.
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Proof of Corollary 3

We present a proof that applies when the conditions that enable the optimal
price-quality scheme to reach the boundary b(q) are satisfied.

Let ∆EW f ≡ EWE
f − y be the difference between the expected welfare when the

market for good x is active and optimally regulated, with pE = b(qE) and when the
regulator initially shuts down the firm. Applying an envelope argument, the expected
welfare EWE

f decreases with λ and diverges to −∞. Hence, Bolzano’s Theorem ensures

that there exists λ > λ̃ such that, when λ̃ < λ < λ, the market for good x should be active.
Otherwise, the firm’s shutdown is optimal.

A similar argument can be used to show that, if the conditions that enable the optimal
price-quality scheme to reach the boundary b(q) are not satisfied, then there exists a
threshold λ such that, when λ > λ, the regulator optimally shuts down the firm.

Appendix B Regulation with moral hazard

We take the model of Section 4, but we assume that e is not observable. Therefore, the
regulator must adjust V` and Vh to induce the firm to choose a particular level of effort.
The problem to solve is

max
p,e,V`,Vh

EW ≡ ρ(e)Wh(p, e) + (1− ρ(e))W`(p, e) (40)

s.t. Vh(p, e) ≥ 0, (VPh)

V`(p, e, ) ≥ 0, (VP`)

e ∈ argmax
ẽ

E
[
Vi(p, e)

]
(ICMH).

Problem (40) has the same structure than (7), with an additional incentive constraint
(ICMH). In the remainder of this section, we assume that ICMH is completely
characterized by its first-order condition. The following lemma characterizes the ex-post
voluntary participation constraints.

Lemma 5 If eE > 0, VE
h > VE

` = 0.

Proof. Consider that, at the optimum, eE > 0. Assume first that constraints VP` and VPh
are slack. If so, we can always decrease VE

` and VE
h by a small ε > 0 such that both

constraints still hold. Moreover, since the constraint (ICMH) is completely characterized
by its first-order condition

ρ′(e)
(
Vh −V`

)
− θ = 0, (41)
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then the firm’s ex-post utilities in the new regulatory scheme also satisfies (ICMH). These
reductions in ex-post utilities lead to an increase in the expected welfare, which is a
contradiction.

Now assume that VP` and VPh bind. This implies that (41) becomes −θ < 0 and so the
profit maximizing level of effort is eE = 0. This contradicts the initial assumption that
eE > 0.

Finally, assume that constraint VPh binds, while VP` is slack at the optimum. Again, this
implies that (41) becomes −ρ′(e)V` − θ < 0, and so again the profit maximizing level of
effort is eE = 0, which is a contradiction.

The unique alternative that does not lead to a contradiction is the one conjectured in the
lemma.

As is standard in moral hazard problems, optimal regulation implies letting some
informational rents to the firm. Indeed, to induce the monopolist to exert any positive
level of effort, it must have a stake in the low evasion scenario, when γ = γh.

As before, the only relevant regulatory schemes are those for which p ≤ b(q). Using
the previous lemma, problem (40) becomes

max
p,e

EW = EWE − (1 + λ)ρ(e)
θ

ρ′(e)
. (42)

where EWE is given by (7) and the second term corresponds to the expected rents left to
the firm in order to induce it to exert effort. The next proposition characterizes the optimal
price-effort scheme.

Proposition 9 When pE < b(qE), the price pE and the effort eE are characterized by

(1 + λ)E

[
ẑγ(pE) f (ẑγ(pE))

]
= λE

[ ∫ z

ẑγ(pE)
dF(z)

]
(43)

ρ′(eE)

(
Ω(pE) + λpE

∫ ẑγ`
(pE)

ẑγh (pE)
dF(z)

)
≤ (1 + λ)θ

(
2− ρ(eE)

ρ′(eE)

ρ′′(eE))

ρ′(eE)

)
, with equality if eE > 0. (44)

Proof. Differentiating the function EW with respect to p and e, and rearranging, we obtain
the first-order conditions (43) and (44).
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The only difference between this system of first-order conditions and (8)-(9) is the
presence of the informational rent in (44). Moreover, conditional on the optimal level of
effort eE, the pricing rule given by (43) is identical to (8), when effort is observable. In
other words, the pricing rule is not distorted by the presence of moral hazard.

This finding is reminiscent of the “dichotomy property” obtained by Laffont and
Tirole (1990). At first glance, this similarity with their result could seem obvious because
our total cost specification satisfies the separability condition that ensures that property.38

But things are not that simple. In Laffont and Tirole’s model, effort only has an impact
on firm’s costs.39 In our model, effort pushes up the likelihood of a higher level of
enforcement, which leads to more formal purchases. Therefore, effort also affects the
expected formal demand of good x, and thus one may have expected the pricing rule
to be adjusted according to the effort level e. The intuition for this generalization of the
dichotomy property lies on the fact that, to balance the marginal benefits and costs of a
price change, the regulator only needs to set optimally the expected marginal evader. And
effort only affects the identity of this individual through the weights ρ(e) and 1− ρ(e),
which are independent of the price.

The following corollary shows how pE and eE compare their levels found in the
previous sections.

Corollary 4 The price and the level of effort are lower with moral hazard than those when effort is
observable.

Proof. Consider the following fictitious program,

max
p,e
L ≡ α EWE + (1− α) EWE,MH, (45)

where EWE,MH and EWE are the optimal expected welfares, with and without moral
hazard, respectively. Notice that when α = 0 (α = 1), L coincides with EWE,MH (EWE).
So we can conduct comparative statics with respect to α. Given our differentiability
assumptions, we compute the following cross derivatives,

Lαp = 0

Lαe = (1 + λ)θ

(
1− ρ(e)

ρ′(e)
ρ′′(e)
ρ′(e)

)
≥ 0

Lpe = α
∂2EWE

∂p∂e
+ (1− α)

∂2EWE,MH

∂p∂e
≥ 0

(46)

As the function L is supermodular with respect to (p, e, α), Topkis’ Monotonicity Theorem
implies that p and e increase with α, which proves the corollary.

38See Proposition 3 in their paper.
39More precisely, effort decreases the ex-post observable cost.

46



Since moral hazard entails the extra cost of leaving rents to the firm when evasion
is low, the regulator ends up choosing a lower level of effort than when the latter was
observable. As this implies that changing the price has a smaller marginal benefit, the
regulator settles on a lower price as well.
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‡Department of Economics, New York University. Email: lgl266@nyu.edu.

1



In this Online Appendix, we first describe the data and the methodology to construct
our variables. Then, we explain the empirical exercise that enables us to plot Figure 1
presented in the Introduction.

1 The data

Price of public transport systems
To the best of our knowledge, the most comprehensive data of prices in public

transport can be found in the survey “Prices and Earnings A comparison of purchasing
power around the globe”. This survey has been conducted by the bank Union des Banques
Suisses (UBS) on a 3 yearly basis from 1970 to 2018. Its goal has been to construct price
indices to undertake valid comparisons of the cost of living in different places. To do that,
UBS gathers information about prices of a composite basket of more than 150 goods and
services in 85 cities around the world, from their local staff and also from independent
organizations. All prices are converted to US current dollars, applying an average
exchange rate for the data collection period. 1

To construct our main variable, we use the price, f , of a single ticket for the public
transport network (bus, tram or metro) in the corresponding city, for a journey of
approximately 10 kms or at least 10 stops. To approximate the monthly expenditures in
public transport, PT, we consider that an individual makes 40 travels to work and 10
journeys during the weekends. Hence, PT = 50 f .

To make these figures comparable in real terms, we divide these monthly
expenditures in public transport by total monthly expenditures on goods and services,
TE. We use the value of the abovementioned composite basket as a proxy for TE. The
price of the public transport system, as a share of total expenditures in each city, is thus
p = PT/TE.

Density
The areas of the cities considered in the database are taken from the Global Human

Settlement Layer Urban Centres Database (GHS-UCDB R2019A), a project that produces
spatial information for the European Union. In particular, this database measures the area
of “urban centers”, a by now commonly used definition of cities. As the GHS database
has only data for 1975, 1990, 2000 and 2015, we estimate for each city the linear regression

1We thank UBS, that generously shared with us their entire data set.
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of these four values, and take, for each year of the UBS database, the corresponding fitted
value of the city area, Â.

To construct the density of these cities, D, we use data on annual population (Pop)
of urban agglomerations with 300,000 inhabitants or more in 2018, from United Nations
(2018). We write D = Â/Pop.

Gasoline
We use the price of gasoline, g, to have a proxy for the cost of running a transport

system. These figures come from the “Monthly Retail Fuel Price Database”, assembled by
Abdallah, Kpodar and Sears, from the Fiscal Affairs Department at the IMF. The database
includes monthly consumers (tax inclusive) prices from January 1970 to December 2014,
in local currency per liter, for 162 countries.

To make them comparable, we transform all prices in current US dollars, adopting
the same exchange rates than those used by UBS. Then, to take into account USA inflation,
we apply the increase in the Consumer Price Index (as measured by the US Bureau of
Labor Statistics), and we convert all prices in 2018 US dollars.

Marginal cost of public funds
Worldwide cross-country data of the marginal cost of public funds is not available.2

Therefore, we proceed to estimate this parameter, applying some results of Barrios et al.
(2013). Using the computable general equilibrium model GEM-E3 for 24 EU countries,
these authors calculated the mcpf for labor and green taxes. As an application of their
results, they estimated a linear regression between the computed mcpf’s and the ratios of
government tax revenues to GDP, for these European countries.

Using data from the IMF on general government revenues as percent of GDP, and the
slope and intercept of the abovementioned linear regression, we estimate the yearly mcpf
(λ) of the countries where the cities are located.

Coverage of our database
Our unit of observation is a city i in a year t. We keep data on cities with observations

of these variables for at least for two years. This enables us to have observations for the
following 77 cities and years.

2Jones et al. (1990) and Auriol and Warlters (Auriol and Warlters) estimate the mcpf only for few
countries or a group of countries.
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Table 1: Cities and years in the data base

City 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018
Amsterdam × X X X X X X X X X X X X X
Athens X X X X X X X X X X X X X X
Auckland × × × × × × × X X X X X X X
Bangkok X X X X × × X X X X X X X X
Barcelona × × × × × × × X X X X X X X
Beijing × × × × × × × × × X X X X X
Berlin × × × × × × X X X X X X X X
Bogotá X X X X X X X X X X X X X X
Bratislava × × × × × × × × X X X X X X
Brussels X X X X X X X X X X X X X X
Bucharest × × × × × × × × X X X X X X
Budapest × × × × × × X X X X X X X X
Buenos Aires X X X X X X X X X X X X X X
Cairo × × × × × × X X × × X X X X
Caracas X X X X X X X X X X X × × ×
Chicago X X X X X X X X X X X X X X
Copenhagen X X X X X X X X X X X X X X
Doha × × × × × × × × × × X X X X
Dubai × × × × × × × × X X X X X X
Dublin X X X X X X X X X X X X X X
Düsseldorf X X X X X X × × × × × × × ×
Frankfurt × × × X X X X X X X X X X X
Geneva X X X X X X X X X X X X X X
Helsinki X X X X X X X X X X X X X X
Hong Kong × X X X X X X X X X X X X X
Houston × × X X X X X X × × × × × ×
Istanbul × × × × × × × X X X X X X X
Jakarta X X X X X X X X X X X X X X
Johannesburg X X X X X X X X X X X X X X
Kiev × × × × × × × × X X X X X X
Kuala Lumpur × × × × X X X X X X X X X X
Lagos × × × × × × × × X × × × × X
Lima × × × × × × × × X X X X X X
Lisbon × × × X X X X X X X X X X X
Ljubljana × × × × × × × × X X X X X X
London X X X X X X X X X X X X X X
Los Angeles X X X X X X X X X X X X X X
Luxembourg X X X X X X X X X X X X X X
Lyon × × × × × × × × × X X X X X
Madrid × X X X X X X X X X X X X X
Manama × × × × × X X X X X X X X X
Manila × × × × X X X X × X X X X X
Mexico City × X × × X X X X X X X X X X
Miami × × × × × × × × X X X X X X
Milan X X X X X X X X X X X X X X
Montreal X X X X X X X X X X X X X X

A ”X” denotes that the values of p, D and λ are available in city i in year t.
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Table 2: Cities and years in the data base (cont.)

City 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018
Moscow × × × × × × × X X X X X X X
Mumbai × X X X X X X X X X X X X X
Munich × × × × × × × × × X X X X X
Nairobi × × × X X X X X X X X X X X
New Delhi × × × × × × × × × × X X X X
New York X X X X X X X X X X X X X X
Oslo X X X X X X X X X X X X X X
Panama × × × × × X X X × × × × × X
Paris X X X X X X X X X X X X X X
Prague × × × × × × X × X X X X X X
Riga × × × × × × × × X X X X X X
Rio de Janeiro X X X × X X X X X X X X X X
Rome × × × × × × × × X X X X X X
San Francisco X X X X X X X X X X X X X X
Santiago × × × × × × × X X × X X X X
Sao Paulo X X X × X X X X X X X X X X
Seoul X X X X X X X X X X X X X X
Shanghai × × × × × × X X X X X X X X
Sofia × × × × × × × × X × X X X X
Stockholm X X X X X X X X X X X X X X
Sydney X X X X X X X X X X X X X X
Taipei × × × × X X X X X X X X X X
Tallinn × × × × × × × × X X X X X X
Tel Aviv X X X X X X × X X X X X X X
Tokyo X X X X X X X X X X X X X X
Toronto X X X X X X X X X X X X X X
Vienna X X X X X X X X X X X X X X
Vilnius × × × × × × × × X X X X X X
Warsaw × × × × × × × X X X X X X X
Zurich X X X X X X X X X X X X X X

A ”X” denotes that the values of p, D and λ are available in city i in year t.

2 Empirical exercise

With these variables, we estimate the following equation by OLS

pit = α + β1λjt + β2λ2
jt + γDit + δgjt + εit, (1)

where j corresponds to the country where city i is located, and εit is an error term. The
following table presents the results. We would like to stress that we do not account for
endogeneity issues. Hence, this empirical analysis only focuses on exploring statistical
correlations, rather than on identifying causality.
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Table 3: OLS estimation of Equation (1)

(A) (B) (C)

λjt 0.116∗∗∗ 0.117∗∗∗ 0.148∗∗∗

(0.0253) (0.0254) (0.0329)
λ2

jt -0.0209∗∗∗ -0.0212∗∗∗ -0.0323∗∗∗

(0.00784) (0.00786) (0.0102)
Dit -1.09×10−6 -8.06×10−6∗∗∗

(2.98×10−6) (1.57×10−6)

gjt -4.48×10−5∗∗

(2.33×10−5)

Constant -0.0806∗∗∗ -0.0818∗∗∗ -0.103∗∗∗

(0.0193) (0.0194) (0.0254)

Observations 706 705 256
R2 0.245 0.246 0.281

Robust standard errors in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels,

respectively.

The main finding is that, in all specifications, the coefficients of λ and λ2 are
statistically significant and uncover a hump-shape between the mcpf and the price pit.

Then we plot the relationship between the mcpf and the “adjusted” price of transport.
The latter corresponds to the residuals of (1) when regressing pit on all variables except
for λ and λ2. Accordingly, the adjusted measure isolates the effect of the mcpf on the
expenditures in transport. Figure 1 illustrates such relation.
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Figure 1: Relation between marginal cost of public funds and adjusted prices of transport
systems across the world, 1979-2018.

The best fit curve (in red) depicts a hump-shape between the mcpf and adjusted
public transport prices, with the peak at 2.29. To better grasp the quantitative implications
of this exercise, we calculate the elasticity of the adjusted price with respect to the mcpf
at some cities along the fitted curve. For example, Sao Paulo presents a mcpf of 1.58
(adjacent to the mean of the mcpf, across all years and cities) and an elasticity of 0.47.
On the other hand, when the mcpf equals the mean plus 1 standard deviation (close to
1.97), Kiev has an elasticity equal to 0.25. Finally, at the maximum value of the mcpf, 2.52,
which is above the peak of the fitted line, Stockholm presents a negative elasticity equal
to -0.22.
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Databases

World Urbanization Prospects: The 2018 Revision, Online Edition. Population Division,

Department of Economic and Social Affairs, United Nations.

Global Human Settlement Layer Urban Centres Database (GHS-UCDB R2019A), retrieved from

https://ghsl.jrc.ec.europa.eu/ghs stat ucdb2015mt r2019a.php.

Fiscal Monitor (2019), retrieved from https://data.imf.org:443
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