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Abstract 
 
We analyze the effects of better algorithmic demand forecasting on collusive profits. We show 
that the comparative statics crucially depend on the whether actions are observable. Thus, the 
optimal antitrust policy needs to take into account the institutional settings of the industry in 
question. Moreover, our analysis reveals a dual role of improving forecasting ability when actions 
are not observable. Deviations become more tempting, reducing profits, but also uncertainty 
concerning deviations is increasingly eliminated. This results in a u-shaped relationship between 
profits and prediction ability. When prediction ability is perfect, the ‘observable actions’ case 
emerges. 
JEL-Codes: L410, L130, D430. 
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1 Introduction

The digitization of the economy in recent years has led to an ever-growing massive accu-

mulation of data and the development of tools to analyze big data. Today firms’ decision-

making is often based on autonomous algorithms, or supported by machine learning and

artificial intelligence. The use of such digitally advanced tools has raised the suspicion of

antitrust and competition authorities all over the world because it may give rise to anti-

competitive conduct (see, for example, OECD, 2017). One of the key concerns is that

firms can make use of algorithms, artificial intelligence, and machine learning to facilitate

collusion, leading to a substantial loss in customer welfare (Calvano et al., 2019, Calvano

et al., 2021, Calvano et al., 2020a, Assad et al., 2020, Assad et al., 2021, Miklós-Thal and

Tucker, 2019, Johnson et al., 2020).1

We contribute to the ongoing and intensifying debate on this topic by setting up a

theoretical model that focuses on one essential aspect of the use of algorithms: more pre-

cise demand forecasting through better data analysis to improve pricing. Indeed, Ferreira

et al. (2016) stress the importance of machine-learning techniques to estimate histori-

cal lost sales and predict future demand of new products to optimize pricing decisions.

This idea is mirrored by recent developments in the industry (Chase, 2013, Feng and

Shanthikumar, 2018).

We use these observations as a starting point to investigate how improvements in fore-

casting technologies impact firms’ ability to tacitly coordinate their pricing in an infinitely

repeated game. While Miklós-Thal and Tucker (2019) and O’Connor and Wilson (2021)

have already investigated similar questions in frameworks with observable and unobserv-

able actions this is the first paper that provides a unified framework and, hence, allows to

analyze the interactive effect of prediction ability and action observability. Unobserved

price-setting is relevant in many important and large markets.

We build on the model by Baye and Morgan (2001) to extend and reinterpret their

set-up by introducing two states of the world and prediction ability as in Miklós-Thal

and Tucker (2019). In each period, there are two states of the world in which two firms

potentially face high demand or low (zero) demand. Algorithms allow firms to forecast

more accurately whether demand will be high or low. Firms receive an imperfect common

signal about the state of the world. If demand is high, a share of the customers are loyal

to one firm, whereas the remaining share are flexible; flexible customers buy from the

cheapest firm they know of. To inform flexible customers, firms can promote their prices

after learning about the state of the world. Possible interpretations of promotions include

building up a sales force and advertising. It is assumed that firms cannot engage in price

1An example in real-life markets is the US v. Topkins case. Allegedly, sellers of posters and similar
wall décor used pricing algorithms to coordinate their price-setting on the Amazon Marketplace (see
Mehra, 2016 for an in-depth account of this case).
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discrimination.2 Because promotions are costly, firms face a trade-off between attracting a

small loyal customer base at high prices and also appealing to flexible customers at lower

prices and spending resources on promotional activities. The latter is more attractive

when a favorable signal about the state was received, and the more so the more precise

the signal is. Promotions can expand a given firms’ demand, but only at the expense of

the demand of the other firm; total demand is assumed to be fixed throughout.

In efficient collusive arrangements, the firms seek to sustain an equilibrium in which no

resources are wasted on promotions, and monopoly prices are charged. When actions are

observable, such collusive arrangements can be supported by grim-trigger strategies when

firms are sufficiently patient. We present the simplest possible model in which prediction

ability has no effect when actions are observable.

The crucial role of imperfect monitoring, that is, whether actions are publicly observ-

able or not, has been recognised at least since the seminal work of Green and Porter

(1984). Ceteris paribus, imperfect monitoring makes collusion harder to sustain because

firms can no longer respond to deviations immediately. Instead, they need to infer possi-

ble deviations from own sales, which is an imperfect signal, that is, firms face a difficult

signal extraction problem.

Starting from these basic building blocks, we show that there are novel interactive

effects. In particular, we show that in a situation in which collusion can be sustained

under both observable and unobservable actions, collusive profits with observable actions

are always higher (and do not change in signal precision in our setting). By contrast,

collusive profits under unobservable actions follow a u-shaped pattern as signal precision

increases. Colluding firms always fully extract customers’ valuation and never promote

their products. The u-shaped pattern under unobservability can then be explained by

the relative strength of two opposing effects. First, there is a poaching effect: As signal

precision gets better, deviating to a lower price and promoting it becomes more profitable.

As a result, it tends to be more difficult to sustain collusion. Second, there is a monitoring

effect: As the signal becomes more precise, entering an uncalled-for punishment phase

becomes less likely. As a consequence, collusion becomes more profitable, and collusion

tends to be facilitated. For a less precise signal, the first effect dominates, and collusive

profits decrease with higher precision levels; otherwise, collusive profits increase.

Moreover, we find that higher prediction accuracy can lead to higher customer sur-

plus. More precisely, there is an inverse u-shaped relationship between signal precision

and customer surplus. This puts some of the aforementioned concerns of competition

authorities about algorithms into question. Moreover, our model provides an explana-

tion for why we see considerable firm investments into better machine learning tools in

certain industries, but less so in other industries. Additionally, our model delivers novel

2The idea is that even online, capabilities for targeted advertising are still limited, and a rationale for
a fixed, uniform investment remains.
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predictions about the frequency and trigger of price wars (see Green and Porter, 1984,

Rotemberg and Saloner, 1986, Ellison, 1994).

Related literature

We contribute to the literature as follows. We add to the emerging literature that analyzes

the relationship between collusion and the use of algorithms. One strand of this literature

has mainly addressed the question how prices develop in an experimental setting when

simple learning algorithms are used (Calvano et al., 2020b, Klein, 2021, Normann and

Sternberg, 2021, Johnson et al., 2020). These studies find that although supra-competitive

prices can sometimes be sustained, algorithms may take very long to learn to coordinate.

Moreover, as demonstrated by Asker et al. (2021), outcomes crucially depend on the

learning protocol used. Calvano et al. (2021) consider the case of imperfect monitoring.3

The paper most closely related to our paper is Miklós-Thal and Tucker (2019). In con-

trast to our paper, Miklós-Thal and Tucker (2019) build on the classic set-up of Rotemberg

and Saloner (1986) with perfect monitoring. They analyze the impact of better demand

predictions on the sustainability of collusion in a situation in which rivals’ price-setting

can be observed. Their findings are less skeptical than the experimental results in Calvano

et al. (2020b) and Klein (2021): In the model by Miklós-Thal and Tucker (2019), better

predictive power can lead to higher customers surplus. In some cases, better predictive

power can also lead to lower profits. We complement Miklós-Thal and Tucker (2019) by

considering the role of unobserved actions, and show that in that case, lower profits as a

result of better algorithms arise. Additionally, our model delivers novel predictions about

the occurrence and length of price wars. Martin and Schmal (2021) extend the model of

Miklós-Thal and Tucker (2019) by allowing for different collusive compensation schemes

and analyzing the interactive effect with prediction ability. They find that higher predic-

tion ability can make collusive agreements without side payments more attractive, calling

for novel regulative measures.

In O’Connor and Wilson (2021), actions are unobservable. There are four states of

the world. Better prediction ability only improves the signal precision in one dimension,

and the other dimension is assumed to be entirely orthogonal. Similar to our findings,

they show that better prediction ability can have ambiguous effects on collusive prices. In

contrast to our setting in which we allow for arbitrary degrees of prediction ability, they

only consider the extreme cases of no or perfect ability in one dimension. Additionally, our

framework is more tractable, and we obtain closed-form expressions throughout, whereas

some of their results can only be derived by means of numerical examples. In addition,

we focus on the contrasting effects under observability within a unified framework.

3Gautier et al. (2020) discuss the technical challenges with regard to tacit collusion (and price dis-
crimination). Harrington (2018), Schwalbe (2018), and Ezrachi and Stucke (2020), among others, focus
on legal aspects and issues with regard to a change in competition policy.
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The capacity constraints in the collusion model of Compte et al. (2002) play a role

to the market expansion due to promotional activities in our model. We endogenize

the decision to promote and embed it in a framework with prediction ability and action

(un-)observability. In contrast to Harrington (2022), we do not, however, endogenize the

decision to use algorithms for demand forecasting. In our environment, there is always a

unilateral incentive to use better algorithms.

Similar to our finding, also in Peiseler et al. (2021), the firms’ ability to collude de-

creases once algorithms are sufficiently precise. However, in contrast to our paper, in

their model, better algorithms facilitate third-degree price discrimination. In our model,

the discrimination aspect is absent, and prediction accuracy is about the entire industry

environment. In Liu and Serfes (2007), collusion becomes harder to sustain when firms

become better in segmenting markets.

A quickly emerging strand of the literature also establishes the empirical relevance of

algorithmic collusion (see, for example, Brown and MacKay, 2020, Assad et al., 2020, and

Wieting and Sapi, 2021).

The remainder of the paper is structured as follows. We present our model in Section

2. We analyze the stage game and the infinitely repeated game with tacit collusion in

Sections 3 and 4. Section 5 concludes.

2 Model

We set up an infinitely repeated game based on Baye and Morgan (2001). We extend

and reinterpret their model for our application by introducing two states of the world and

prediction ability as in Miklós-Thal and Tucker (2019).4 There are two firms that have a

common discount factor δ. In each period of the infinitely repeated game, there are two

states of the world, denoted by H and L; both states are ex ante equally likely. Before

taking actions, both firms receive a common signal s ∈ {h, l} with precision ρ ∈ [1/2, 1]

about the state of the world. Thus, the posterior is also given by Pr(H|h) = Pr(L|l) = ρ.

In state L, there is no demand at all, irrespective of the prices (there are no customers,

or, equivalently, all customers have a valuation of 0). In state H, there is a total mass 1 of

customers. A fraction λ of customers are flexible, which means that they have valuation

v for both products. The customers are potentially attracted by promotional activities

of the firms and purchase from the cheapest firm they are aware of. If no prices are

promoted, they visit a firm randomly and purchase as long as the price does not exceed

v. The remaining 1− λ customers are loyal to one firm, split equally, and have valuation

v for this firm only. All customers are short-lived and leave the market after one period.

After receiving the common signal s about the state of the world, firms simultane-

4Simpler versions of the model are discussed in a handbook chapter in Baye et al. (2006) and in the
textbook by Belleflamme and Peitz (2015).
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ously set their prices ps and also decide whether to promote their prices at fixed cost

F .5 Firms cannot identify customer segments ex ante; hence, firms can neither target

their promotional efforts nor charge discriminatory prices. Throughout, we assume that

marginal costs are zero.

As a benchmark, note that a monopolist would simply always set a price v and never

promote its price. Promotional activities in this setting are socially inefficient. When

firms compete, they face the following trade-off. First, they need to consider whether

promotional activities at cost F pay off. This is more likely to be the case when the

good signal h was received. Second, conditional on promoting, the pricing decision entails

a trade-off between charging high prices and appropriating high rents from the loyal

customer segment, and charging low prices that potentially also attract flexible customers.

We make the following assumptions:

Assumption 1.
λv

4
≤ F ≤ λv

2

and

ρ ≥ ρ̄ :=
2F

λv
.

As the subsequent analysis will make clear, F ≥ λv/4 implies that in case the signal

is entirely uninformative (ρ = 1/2), firms never promote and simply set the monopoly

price v after both signals in the static Nash equilibrium. F ≤ λv/2 implies that when

the signal is fully informative (ρ = 1), firms have an incentive to promote and potentially

attract flexible customers. These conditions imply that prediction ability plays a relevant

and interesting role. If this condition failed, fixed costs F for promotional activities could

not even be recovered when firms are certain that demand conditions are favorable, so

prediction ability would never play any role.

From these considerations it follows that there exists a cutoff point ρ̄ such that pro-

moting becomes attractive once ρ > ρ̄. Note that the first part of Assumption 1 implies

that ρ̄ ∈ (1/2, 1).

This completes the description of the stage game. For the infinitely repeated version

of the model, we first consider tacit collusion with observable actions (perfect monitor-

ing). We are interested in the most profitable outcome sustainable in a subgame-perfect

equilibrium supported by grim-trigger strategies.6 Additionally, we consider the case with

5Note that simultaneity refers to the informational status of the competing firm and of customers.
The firm can condition its own price on its own promotional choice when the promotional choice is in
mixed strategies.

6We could easily incorporate optimal punishments in the setting with perfect monitoring, but such an
adjustment is less straightforward under imperfect monitoring. Thus, we present our main results using
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unobservable actions (imperfect monitoring) that entails finite-duration punishment on

the equilibrium path as in Green and Porter (1984) or in the secret price-cutting version

by Tirole (1988).

Model discussion

A few comments with regard to the interpretation of the model are in order. In the

original setting of Baye and Morgan (2001), promotional activities take place on a central

‘clearinghouse’, accessible by a fraction of ‘shopping’ customers. In our environment with

tacit collusion under imperfect monitoring, we prefer the interpretation that advertising

does not take place through a central institution but is rather towards customers directly.

Thus, we use the term ‘promotion’ throughout, with the implicit understanding that

this subsumes all activities related to increasing sales. This could, for example, include

approaching customers directly, targeted coupons and advertising (which are particularly

relevant in online environments), building up a stronger local sales force, or investing into

the logistic network. We thereby preserve the incentive to secretly deviate from a possible

collusive agreement while leaving the key mechanics of the model unchanged.

3 Stage game

In this section, we present an analysis of the Nash equilibrium of the stage game, which

also serves to illustrate the main forces of the model.

As a starting point, consider symmetric candidate equilibrium prices ps = v after

signal s, s ∈ {h, l}, assuming that neither firm pays the promotion costs F .7 The signal

structure induces a posterior Pr(H|s). If these prices constitute an equilibrium, then

both loyal and flexible customers split equally across firms, resulting in expected per-firm

profits

Pr(H|s)
(

1− λ
2

+
λ

2

)
v = Pr(H|s)v

2
.

Given this behaviour of the other firm, the most profitable deviation is to promote and

charge a slightly lower price that attracts all the flexible customers. Such a deviation is

not profitable as long as the following inequality holds:

Pr(H|s)
(

1− λ
2

+
λ

2

)
v ≥ Pr(H|s)

(
1− λ

2
+ λ

)
v − F. (1)

Our assumptions on v and F imply that such a deviation is never profitable when signal

grim-trigger strategies for better comparability of different observability environments.
7As pointed out by Baye and Morgan (2001), there are no asymmetric equilibria in the two-firm model.
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s = l was received because we can simplify expression (1) as

(1− ρ)

(
1− λ

2
+
λ

2

)
v ≥ (1− ρ)

(
1− λ

2
+ λ

)
v − F

⇔ F ≥ (1− ρ)λ

2
v,

which holds for all admissible ρ. Thus, pl = v is sustainable in a Nash equilibrium.

After signal h, however, condition (1) becomes

ρ

(
1− λ

2
+
λ

2

)
v ≥ ρ

(
1− λ

2
+ λ

)
v − F

⇔ F ≥ λρ

2
v,

which fails for all ρ ≥ ρ̄.8 Thus, ph = v is not sustainable in a Nash equilibrium.

Moreover, any other pure-strategy candidate price p′h < v without promotion cannot

be an equilibrium. If this was an equilibrium, only loyal customers would purchase from

each firm. But since these customers have a willingness to pay of v, there would be

profitable upward deviation to charging a price ph = v instead of p′h. Thus, there is no

pure-strategy equilibrium after signal h. Instead, the Nash equilibrium that is played

after signal h was received entails mixing, both in the choice of prices and the promotion

activity.

The exact characterization of the Nash equilibrium and Nash equilibrium profits is

presented in the following proposition:

Proposition 1. The equilibrium prices depend on the signal received:

(i) If firms receive signal l, they set pl = v.

(ii) If firms receive signal h, there is mixing in prices and promotion: Firms promote

with probability αN = 1− 2F/λρv. When firms promote, they draw prices ph from a

continuous and atomless price distribution G(p) with upper bound v; otherwise, they

set a deterministic price ph = v.

The resulting per-firm profit is given by

πN =
(1− λρ)v + 2F

4
,

which decreases in prediction ability ρ.

8The condition holds for all ρ < ρ̄. Thus, in that case, pl = ph = v represents a Nash equilibrium,
implying that prediction ability does matter at all. We, hence, focus on the more interesting case in
which ρ ≥ ρ̄, and prediction ability matters.
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Proof. (i) Conditional on signal l, prices are pl = v, and expected profits are given by

(1− ρ)v/2. Given Assumption 1, there is no profitable deviation.

(ii) The analysis after signal h is similar to the proof in Baye and Morgan (2001),

adjusted for state uncertainty. As the above considerations show, there is no pure-strategy

equilibrium after signal h. When firms mix, they must be indifferent between charging

v and not promoting on the one hand, and charging v but promoting on the other hand

(Baye and Morgan, 2001). We obtain the equilibrium promotion probability α through

the indifference condition

ρ

(
1− λ

2
+
λ

2
(1− α)︸ ︷︷ ︸

other firm does not promote

)
v = ρ

(
1− λ

2
+ λ(1− α)

)
v − F

which yields

αN = 1− 2F

λρv
.

We can plug this α into the equilibrium profits and obtain that conditional on signal h,

expected profits are given by

ρ

(
1− λ

2
+
λ

2
(1− α)

)
v =

1− λ
2

ρv + F.

Since ex-ante both signals are equally likely, we obtain that

πN =
(1−ρ)v

2
+ (1−λ)ρv

2
+ F

2
=

(1− λρ)v + 2F

4
.

Furthermore, it must hold that firms obtain the same profit for all prices on the equilibrium

support if they promote. We can readily solve for the equilibrium price distribution G(p)

as the solution to:

ρ

(
1− λ

2
+ λ(1− α)

)
v − F︸ ︷︷ ︸

promote and charge v

= ρ

(
1− λ

2
+ λ(1−

other firm promotes and charges p′≤p︷ ︸︸ ︷
αG(p))

)
p− F︸ ︷︷ ︸

promote and charge p≤v

so we obtain

G(p) =
2αλv − (1− λ)(v − p)

2αλp
. (2)

Setting G(p) = 0, we obtain the lower bound of the price distribution p as the solution to

G(p) = 0
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which yields

p =
1 + λ(1− 2α)

1 + λ
v =

ρv(1− λ) + 4F

ρ(1 + λ)
.

The argument that the price distribution G is continuous and atomless follows directly

from Baye and Morgan (2001) and, hence, is not repeated.

Note that Nash equilibrium profits πN decrease in prediction ability ρ. The incentive

to engage in promotional activities after signal h increases in ρ because favorable market

conditions become increasingly likely. Thus, firms increasingly invest in promotions, and

when they do, they price more aggressively. Thus, equilibrium profits are reduced.

Given equilibrium pricing, we can also compute customer surplus and total welfare,

defined as the sum of total profits and customer surplus. Customer surplus is 0 whenever

the state is L, irrespective of firm pricing. In state H, all customers purchase. If firms

additionally received signal h, which happens with probability ρ, firms promote with prob-

ability α > 0 and set a stochastic price p ≤ v. In that case, flexible customers purchase at

the expected minimum price of these two stochastic prices (denoted by Emix
min(p)), whereas

loyal customers purchase at the expected price from one firm (denoted by Emix(p)).

We are now ready to characterize customer surplus and total welfare in the following

proposition:

Proposition 2. In Nash equilibrium, surplus of flexible and loyal customers given by

CSflexible = ρ
2α(1− α)(v − Emix(p)) + α2(v − Emix

min(p))

2
and

CSloyal = ρ
α(v − Emix(p))

2
,

respectively, resulting in total customer surplus

CSN =
(ρλv − 2F )2

2ρλv

and total welfare

TSN =
v − 2F

2
+

2F 2

ρλv
.

Customer surplus increases in prediction ability ρ, but total surplus decreases in prediction

ability ρ due to socially wasteful promotions.

Proof. We first characterize the expected price and the expected minimum price condi-

tional on mixing.
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The density g associated with the cumulative distribution function G from Proposition

1 is given by

g(p) =
1 + λ(1− 2α)

2αλp2
v =

ρv(1− λ) + 4F

2λρv − 4F

v

p2
,

where we use α = 1− 2F/λρv from Proposition 1. Then we can compute

Emix(p) =

∫ v

p

pg(p)dp = v
ρv(1− λ) + 4F

2λρv − 4F

∫ v

p

1

p
dp

= v
ρv(1− λ) + 4F

2λρv − 4F

(
log(p)

∣∣∣v
p

)
= v

ρv(1− λ) + 4F

2λρv − 4F

(
log(v)− log

(
4F + ρv(1− λ)

ρ(1 + λ)

))
.

The density of the expected minimum price by gmin(p) = 2(1 − G(p))g(p) since

Gmin(p) = 1− (1−G(p))2. Evaluating these expressions leads to

Emix
min(p) =

∫ v

p

pgmin(p)dp

= v
((λ− 1)ρv − 4F )

(
(4F − (λ− 1)ρv)

(
log(v)− log

(
4F+ρv(1−λ)
ρ(1+λ)

))
+ 4F − 2λρv

)
2(λρv − 2F )2

.

For all customer segments, positive surplus is only possible whenever the state is H,

and signal h was received at the same time, which happens with ex ante probability ρ/2.

Flexible customers purchase from the cheapest of the two firms in case they promoted

their products, whereas loyal customers always buy from one firm at random. Thus,

customer surplus for flexible and loyal customers is given by

CSflexible = ρ
(1− α)2 · 0 + 2α(1− α)(v − Emix(p)) + α2(v − Emix

min(p))

2
and

CSloyal = ρ
α(v − Emix(p)) + (1− α) · 0

2
.

As a result, customer surplus in the equilibrium amounts to

CSN = λCSflexible + (1− λ)CSloyal =
(ρλv − 2F )2

2ρλv
.
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Customer surplus increases in ρ because

∂CSN
∂ρ

=
2λv(ρλv − 2F )(2ρλv)− 2λv(ρλv − 2F )2

(2ρλv)2

=
(ρλv − 2F )(2ρλv)− (ρλv − 2F )2

2ρ2λv

= (ρλv − 2F )
2ρλv − ρλv + 2F

2ρ2λv

= (ρλv − 2F )
ρλv + 2F

2ρ2λv

which is always positive since the fraction is strictly positive and ρ ≥ ρ̄ implies that

ρλv − 2F ≥ ρ̄λv − 2F = 0.

Total surplus as the sum of firms’ profits and customer surplus is equal to

TSN = 2πN + CSN =
v − 2F

2
+

2F 2

ρλv
, (3)

which decreases in ρ.

Proposition 2 shows that in the Nash equilibrium of the stage game, customers gain

from higher prediction ability, whereas total surplus decreases. The gain in customer

surplus follows from both the firms’ more aggressive promotional activities and pricing.

Total surplus, however, decreases, that is, customers do not benefit as much as firms

lose. Although price reductions benefit customers directly, promotional activities do not

because they entail additional fixed costs F . These costs are purely wasteful from a total

welfare point of view. Thus, despite the fact that customers in our model have unit

demand, and, hence, there is no deadweight loss of higher prices, higher prediction ability

has negative welfare consequences in the static model.

We illustrate these results by making use of a numerical example that we will use

throughout the paper.

Example 1. We fix the following parameter values. Let v = 1, λ = 1/2 and F = 1/5

(note that for these values of v and λ, Assumption 1 requires that 1/4 ≥ F ≥ 1/8). Then

we have that ρ̄ = 2F/λv = 4/5 = 0.8. In the following figures, we use this parametrization.

In the left panel of Figure 1, we show the promotion probability α in Nash equilibrium,

as a function of prediction ability ρ. As ρ increases, the incentive to promote becomes

stronger after signal h was received, resulting in more frequent promotions. Similarly,

firms price more aggressively whenever they promote, resulting in lower expected prices

and expected minimum prices when ρ increases.

In Figure 2, we depict profits, customer surplus, and total welfare (left panel), as well

as customer surplus per customer group (right panel), for the Nash equilibrium described

12
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Figure 1: Promotion and pricing in the competitive equilibrium.

in Proposition 1, as a function of prediction ability ρ. As ρ increases, more aggressive

pricing reduces profits and increases customer surplus (left panel). Because promotions

also get more frequent, which is socially inefficient, total welfare decreases in ρ. The right

panel shows that customer surplus of flexible customers is always higher than that of loyal

customers because they get the possibility to purchase from the lower priced firm in case

of promotions.

4 Tacit collusion

We now turn to the question whether tacit collusion can be sustained as a subgame-perfect

equilibrium, and if so, what are the highest possible collusive profits. We distinguish

between two scenarios: (i) observable actions or perfect monitoring, where firms can

observe the price set by the other firm in the previous periods, and (ii) unobservable

actions or imperfect monitoring, where firms cannot observe prices.

4.1 Observable actions

In this section, we investigate the most profitable equilibrium that can be supported in

the infinitely repeated game with observable actions (perfect monitoring) in a subgame-

perfect equilibrium with grim trigger strategies.9 Deviations from an implicit collusive

agreement are deterred through the threat of grim trigger strategies, that is, once any

player deviates, both players revert to static Nash equilibrium play forever (Friedman,

1971).

9As discussed above, we do not consider optimal punishments for better comparability with the un-
observable actions setting.
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Figure 2: Outcomes in the competitive equilibrium.

On the equilibrium path, both players set a common price ps after signal s was received,

and never promote their product because this is wasteful from a joint profit maximization

point of view. Thus, an equilibrium consists of a pair (pl, ph) and the threat of Nash

reversion. As we discussed in Section 3, there is never an incentive to deviate from prices

pl = v after signal l was received. When signal h was received and ρ ≥ ρ̄, there is an

incentive to deviate to promoting and undercutting the competitor. These possible devi-

ations are deterred by the threat of Nash reversion when players are sufficiently patient.

We characterize the precise conditions in the following proposition.

Proposition 3. When actions are observable and δ ≥ δobs = 2/3, then prices ph = pl = v

and no promotions can be sustained for all ρ. The net present value of equilibrium profits

is given by

Vobs =
v

4(1− δ)
. (4)

Otherwise, no collusion can be sustained at all; especially, setting a lower price ph < v or

opting for promotions does not help to sustain collusion.

Proof. We focus on the equilibrium candidate with (pl, ph) = (v, ph) and without pro-

motions because we already established that there is never an incentive to deviate after

signal l. Then, the net present value of equilibrium profits is given by

Vobs =
E(π|h; ph) + E(π|l)

2 · 2(1− δ)
=

[ρph + (1− ρ) · 0] + [(1− ρ)pl + ρ · 0]

2 · 2(1− δ)
=
ρph + (1− ρ)v

4(1− δ)
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because ex ante both signals are equally likely, profits are shared equally in each-period,

and the states are identically and independently distributed over an infinite horizon and

are discounted with δ. Conditional on signal h, the most profitable deviation is promoting

and slightly undercutting the competitor, which entails fixed cost F , but possibly attracts

the entire demand of flexible customers if the state is H. This deviation is not profitable

as long as the following incentive compatibility constraint holds:10

ρ
ph
2

+ δVobs ≥ ρph

(
1− λ

2
+ λ

)
− F +

δ

1− δ
πN (5)

which we can write as

ρph
λ

2
− F︸ ︷︷ ︸

gains from deviation

≤ δ

(
Vobs −

πN
1− δ

)
︸ ︷︷ ︸

loss from deviation

.

We can solve this condition for δ and obtain that the constraint holds as long as

δ ≥ δ(ph) =
4F − 2λρph

6F − ρ(ph(1 + 2λ)− v(1− λ))
.

Note that δ(ph) decreases in ph because

∂δ(ph)

∂ph
=

(−2λρ)(6F − ρ(ph(1 + 2λ)− v(1− λ))) + ρ(1 + 2λ)(4F − 2λρph)

(6F − ρ(ph(1 + 2λ)− v(1− λ)))2

= − 2(1− λ)(λρv − 2F )

(6F − ρ(ph(1 + 2λ)− v(1− λ)))2
≤ 0,

where the denominator is always positive, and the numerator is also positive since ρ ≥ ρ̄,

and hence λρv − 2F ≥ λρ̄v − 2F = 0.

Thus, the incentive compatibility constraint (5) is least restrictive for ph = v, and,

hence, sustainability of collusion at ph = v requires

δ ≥ δ(v) =
4F − 2λρv

6F − ρ(v(1 + 2λ)− v(1− λ))

=
4F − 2λρv

6F − 3λρv

=
2(2F − λρv)

3(2F − λρv

=
2

3
= δobs.

10Note that this immediately implies that collusion can never become sustainable if collusion entails
promotions in a situation in which it is not sustainable without promotions. In this case, the left-hand
side of (5) becomes ρph/2−F + δVobs, whereas the right-hand side remains unaffected, which makes the
condition more restrictive.
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Therefore, collusion with pl = ph = v can be sustained when δ ≥ δobs = 2/3; otherwise,

collusion cannot be sustained at all. If collusion can be sustained, then the net present

value of profits is given by

Vobs =
ρph + (1− ρ)v

4(1− δ)
=

v

4(1− δ)
.

Proposition 3 shows that sustainability of the most collusive outcome with monopoly

prices and without promotions is independent of the prediction quality ρ. In contrast to

models in which customer valuations differ across demand states (Rotemberg and Saloner,

1986, Miklós-Thal and Tucker, 2019), equilibrium prices do not adjust to the forecasted

demand. Equilibrium prices are also independent of prediction ability ρ. The reasons for

this are twofold. First, monopoly prices in our model are independent of the state: In

both states, customers have unit demand and willingness to pay v. Second, incentives

to deviate are independent of signal precision ρ. It is true that, as ρ increases, firms

are, ceteris paribus, more inclined to deviate after signal h was received because market

conditions are more likely to be favorable. However, as the analysis in Section 3 indicates,

Nash equilibrium profits decrease in ρ, making the threat of punishment after a deviation

stronger. These two effects exactly cancel out, and, hence, incentives to deviate are

independent of ρ.

For the same reason, distorting equilibrium prices after a good signal does not help

in making collusion more sustainable when monopoly prices cannot be sustained. Thus,

when actions are observable, collusion at monopoly prices can be sustained; or collusion

cannot be sustained at all.

This equilibrium price schedule appropriates all possibles rents from customers because

the same equilibrium price ph = pl = v is charged. Irrespective of whether the signal was

correct or not, customers either pay exactly their willingness to pay or do not purchase

because they do not value the good at all. Thus, customer surplus is always 0. Similarly,

whenever collusion can be sustained, total welfare is independent of signal precision ρ

because no resources are ‘wasted’ on socially inefficient promotions. We summarize these

considerations in the following corollary:

Corollary 1. When actions are observable and δ ≥ δobs = 2/3 holds, then in the most

profitable equilibrium, customer surplus is given by CSobs = 0, and total surplus is given

by

TSobs = Vobs =
4

4(1− δ)
.

Proof. See the equilibrium prices in Proposition 3 and the above considerations.
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4.2 Unobservable actions

In this section, we analyze how sustainability of collusion, prices, and profits change when

we assume that actions are not observable. In this case, adherence to collusion must be

inferred from observed own sales in a given period. Collusion becomes harder to sustain

because firms can no longer distinguish with certainty whether own sales were low due to

a low demand state or a deviating competitor (Green and Porter, 1984, Tirole, 1988).

A well-known ingredient in collusive models of this sort is that occasional ‘price wars’

occur with positive probability on the equilibrium path. For high enough discount factors,

firms repeatedly cycle between a ‘collusive phase’ with higher prices and a ‘punishment

phase’ (price wars). The threat of price wars, induced by low sales, serves to deter

deviations. In contrast to the scenario with observable actions, firms no longer threaten

to revert to Nash equilibrium play forever after a deviation because a deviation cannot be

inferred with certainty. These price wars instead have a length of T periods. Optimally,

the punishment must be as short as possible to maximize profits, but sufficiently long

to deter deviations: Firms understand that if they deviate, they will inflict zero sales on

their competitor, which triggers a price war of length T . As in Tirole (1988), common

knowledge of zero sales for at least one player triggers the punishment phase. In our

setting, only zero sales after signal h trigger a punishment phase. After signal l, firms

understand that there was no incentive to start with, and hence also no punishments are

required.

Intuitively, after signal l, there is never an incentive to deviate, so a price pl = v

and no promotions are always sustainable. After signal h, however, firms might want to

promote their product and marginally undercut their competitor. These considerations

are an immediate consequence from Assumption 1 and the analysis of the stage game.

We define the following net present values of continuing collusion as follows: We

denote by Vs the net present value when firms are currently in the collusive phase, and

signal s ∈ {h, l} was received, by Vp the net present value when firms are currently in

the punishment phase, and by V the net present value from an ex ante point of view.

Throughout, we investigate efficient equilibria, where pl = ph = v and in which no

promotions take place during the collusive phase. As before, the punishment length is

denoted by T .11

We assume that firms start in the collusive phase. Since ex ante both states and,

according to our signal structure, also both signals are equally likely, the ex ante net

11We allow T to be any positive real number and thereby ignore integer constraints. An alternative
interpretation is that firms switch to Nash equilibrium play forever with positive probability, such that
the resulting profits are identical to our construction with finite length-T punishment. This is for com-
putational convenience only. Qualitatively similar results would obtain if we imposed integer punishment
of length T̄ instead, where T̄ = dT e.
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present value of collusion is given by

V =
Vh + Vl

2
. (6)

The continuation value during the collusive phase after signal h is given by

Vh = ρ
(v

2
+ δV

)
︸ ︷︷ ︸

state H

+ (1− ρ)(0 + δ

punishment︷︸︸︷
Vp )︸ ︷︷ ︸

state L

. (7)

After signal h, positive sales materialize with probability ρ, and firms remain in the

collusive phase; with the complementary probability 1 − ρ, the state is low, and the

punishment phase is triggered. Similarly to the case with observable actions, promotions

during the collusive phase only reduce collusive profits without reducing the incentive to

deviate; hence, promotions can never be used to help to sustain collusion. After signal l,

there is no incentive to deviate according to Assumption 1 and hence also no necessity to

trigger punishment. Thus, the continuation value during the collusive phase after signal

l is given by

Vl = Pr(H|l)v
2

+ δV = (1− ρ)
v

2
+ δV. (8)

After signal h was received, the most profitable deviation entails promoting the prod-

uct and marginally undercutting the competitor to attract all flexible customers. The

drawback is that this triggers the punishment phase with probability one. Thus, the

following incentive compatibility constraint has to hold

Vh = ρ
(v

2
+ δV

)
+ (1− ρ)δVp ≥ ρ

(
1− λ

2
+ λ

)
v − F + δVp (9)

which can be written as

ρv
λ

2
− F︸ ︷︷ ︸

gains from deviation

≤ δρ(V − Vp)︸ ︷︷ ︸
loss from deviation

Inspection of the incentive compatibility constraint illustrates the two main channels

through with prediction ability ρ affects collusive outcomes when actions are unobservable.

First, there is the direct effect that concerns immediate gains of deviation. This attempt

to attract some of the customers otherwise captive to the competitor is reminiscent of

poaching (Fudenberg and Tirole, 2000, Taylor, 2004, Shaffer and Zhang, 2002), so we call

this the poaching effect. Because (1−λ)/2+λ = (1+λ)/2 > 1/2, the incentives to deviate

increase in prediction ability ρ. Thus, the poaching effect makes collusion less sustainable

and, hence, leads to lower collusive prices and profits.
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Additionally, there is also a monitoring effect. When actions are unobservable, firms

face the risk that even on the equilibrium path, they enter the punishment phase with

positive probability. In expression (9), this is the following term: (1 − ρ)δVp. As pre-

diction ability ρ increases, uncertainty is increasingly eliminated, so that staying on the

equilibrium path becomes more profitable and, hence, less severe punishment suffices to

deter deviations. As ρ goes to 1, we are back in the case with observable actions. Thus,

the monitoring effect facilitates collusion and, hence, leads to higher collusive prices and

profits.

Taken together, in an environment with unobservable actions, prediction ability affects

two countervailing forces, that is, the competitive poaching effect and the anti-competitive

monitoring effect. The following proposition specifies how exactly those two forces oper-

ate, and which equilibrium prices result when δ is sufficiently high. We separately analyze

what happens then δ falls below the threshold in Section 4.2.1. We have:

Proposition 4. Suppose actions are not observable, and δ ≥ δunobs = 2λv/(λv + 4F ) ≥
2/3. Then, collusion is sustainable for all ρ ≥ ρ̄. In the most collusive equilibrium, firms

start in the collusive phase in which they set ph = pl = v and never promote. On the

equilibrium path, there are finite duration punishment phases in which firms play according

to the static Nash equilibrium from Proposition 1. The net present value of equilibrium

profits is given by

Vunobs =
2F (1− ρ) + ρ(1− λ(1− ρ))v

4ρ(1− δ)
. (10)

Proof. We start by determining the net present value of the punishment phase Vp, during

which firms play the Nash equilibrium for T periods. Afterwards they continue with

another collusive phase. Thus, Vp is given by

Vp =
T∑
t=1

δt−1πN + δTV

=
1− δT

1− δ
πN + δTV.

Introducing the substitution δT = δ̂, we can rewrite this value as

Vp =
1− δ̂
1− δ

πN + δ̂V. (11)

Finally, we must ensure that in equilibrium, the incentive compatibility constraint (9)

holds; moreover, profit maximization requires that the incentive compatibility constraint
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is binding. As a result, we obtain

Vh = ρ
(v

2
+ δV

)
+ (1− ρ)δVp = ρv

(
1− λ

2
+ λ

)
− F + δVp. (12)

Combining the definitions of net present values V , Vh, Vl and Vp in (6), (7), (8), and

(11) with the binding incentive compatibility constraint in (12), we obtain a system of five

linear equations with five unknowns (V , Vh, Vl, Vp, and δ̂), which can readily be solved.

We obtain:

V =
2F (1− ρ) + ρv(1− λ(1− ρ))

4ρ(1− δ)
,

Vh =
ρv(δ(λ+ 2), ρ− δ(λ+ 1)− 2(λ+ 1)ρ+ 2λ)− 2(δ − 2)F (ρ− 1)

4(δ − 1)ρ
,

Vl =
ρv(δ(λ+ 2)ρ− δ(λ+ 1)− 2(λ+ 1)ρ+ 2λ)− 2(δ − 2)F (ρ− 1)

4(δ − 1)ρ
,

Vp =
2F (δρ+ δ − 2)− δρv(λρ+ λ+ 1) + 2λρv

4(δ − 1)δρ
,

δ̂ = 1 +
2(1− δ)
δ(1− 2ρ)

.

As a consequence, the net present value of equilibrium profits is V = 2F (1−ρ)+ρv(1−λ(1−ρ))
4ρ(1−δ) ,

which is exactly Vunobs stated in the proposition text.

Because we used the substitution δT = δ̂ to get linear equations, we can now solve for

T and obtain

T =
log
(

1 + 2(1−δ)
δ(1−2ρ)

)
log(δ)

.

To make collusion with unobservable actions sustainable, we need that T is a real number.

This requires that

1 +
2(1− δ)
δ(1− 2ρ)

≥ 0

δ(2ρ− 1) ≥ 2(1− δ)

δ ≥ 2

1 + 2ρ

which needs to hold for all ρ. (In Proposition 7 in Section 4.2.1 we analyze separately the

situation where this condition fails.) This condition is binding for ρ = ρ̄, so we need that

δ ≥ δunobs =
2λv

4F + λv
≥ 2

3

where the last inequality follows right away from Assumption 1.
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A few remarks concerning Proposition 4 are in order. When actions are not observ-

able, the sustainability condition δ ≥ δunobs = 2λv/(λv + 4F ) depends on the structural

parameters of the model, which is in contrast to the constant condition for the model

with observable actions. δunobs decreases in F , so collusion is harder to sustain when F is

small. This is intuitive because if F is small, deviations in the form of poaching become

very attractive for firms. Note that for all admissible values of F (as given by Assumption

1), we have that δunobs ≥ δobs = 2/3, which means that – as usual – collusion is harder to

sustain when actions are not observable.

We would like to point out here already that profits non-monotonically depend on

prediction ability ρ when actions are not observable, which again is in contrast to the

model with observable actions. This results from the non-linear interaction of the poaching

and monitoring effects whose relative strengths depend on ρ. We elaborate on this non-

monotonicity in detail in Proposition 5 below.

Finally, note that the punishment duration T decreases in prediction ability ρ. On the

equilibrium path, the punishment phase is initiated whenever the bad state L materialized

after the signal h was received, which happens with probability 1 − ρ. From the firms’

point of view, this is a pure mistake they would rather avoid; punishment was initiated for

the sole purpose of deterring deviations. As ρ increases, this is less often the case, which

makes adhering to collusion more appealing. Thus, as ρ increases, even the threat of less

severe punishment suffices to deter deviations, and, hence, the length of the punishment

period decreases.

We characterize the impact of ρ on collusive profits in the following proposition. To

this end, we define

ρ̂ :=

√
2F

λv
=
√
ρ̄.

Proposition 5. When actions are not observable and δ ≥ δunobs, collusive profits Vunobs

decrease in ρ for ρ ∈ [ρ̄, ρ̂], but increase in ρ for ρ ∈ (ρ̂, 1]. For the boundary cases in

which ρ goes to ρ̄ or to 1, profits are the same with or without observability, that is, Vunobs

goes to Vobs.

Proof. We first rewrite Vunobs as

Vunobs =
2F (1− ρ) + ρv(1− λ(1− ρ))

4ρ(1− δ)

=
2F
(

1
ρ
− 1
)

+ v(1− λ(1− ρ))

4(1− δ)
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and then take the derivative of Vunobs with respect to ρ. We obtain

∂Vunobs(ρ)

∂ρ
=

1

4(1− δ)

(
−2F

ρ2
+ λv

)
.

Evaluating the derivative at ρ = ρ̄ = 2F
λv

gives

∂Vunobs(ρ)

∂ρ

∣∣∣
ρ=ρ̄

=
1

4(1− δ)

(
− 2F

(2F )2
(λv)2 + λv

)
=

1

4(1− δ)

(
−(λv)2

2F
+ λv

)
≤ 1

4(1− δ)

(
−(λv)2

2λv
2

+ λv

)
= 0,

where we used the maximal admissible F according to Assumption 1. Thus, Vunobs de-

creases in ρ around ρ = ρ̄. Similarly, we evaluate the derivative at ρ = 1 and obtain

∂Vunobs(ρ)

∂ρ

∣∣∣
ρ=1

=
1

4(1− δ)
(−2F + λv)

≥ 1

4(1− δ)

(
−2

λv

2
+ λv

)
= 0

where we used the maximum admissible F according to Assumption 1. Thus, Vunobs

increases in ρ around ρ = 1.

Because the derivative is negative at the lower bound ρ = ρ̄, positive at the upper

bound ρ = 1 and monotone in ρ, there has to be a unique root ρ̂ in between, which is

obtained as the solution to

∂Vunobs(ρ)

∂ρ

∣∣∣
ρ=ρ̂

= 0

1

4(1− δ)

(
−2F

ρ̂2
+ λv

)
= 0

ρ̂ =

√
2F

λρ
=
√
ρ̄.

Our assumptions imply that 1/2 < ρ̄ < ρ̂ < 1. Therefore, collusive profits Vunobs decrease

in ρ for ρ ∈ [ρ̄, ρ̂], but increase in ρ for ρ ∈ (ρ̂, 1].

The convergence result is obtained as follows. We evaluate Vunobs at ρ = ρ̄ = 2F
λv

and
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obtain

Vunobs(ρ̄) =
2F (1− 2F

λv
) + 2F

λv
v(1− λ(1− 2F

λv
))

42F
λv

(1− δ)

=
2F ( λv

2F
− 1) + v(1− λ(1− 2F

λv
))

4(1− δ)

=
λv − 2F + v − vλ+ vλ2F

λv

4(1− δ)

=
λv − 2F + v − vλ+ 2F

4(1− δ)
=

v

4(1− δ)
= Vobs.

Similarly, we evaluate Vunobs at ρ = 1 and obtain

Vunobs(1) =
2F (1− 1) + 1 · v(1− λ(1− 1))

4 · 1(1− δ)
=

v

4(1− δ)
= Vobs.

Proposition 5 shows that profits are u-shaped in prediction ability ρ when actions are

not observable. When ρ is close to ρ̄, the pro-competitive poaching effect is relatively

weak because the expected gains from poaching are small. Conditional on the good state

H, the wrong signal l is also obtained frequently, which ensures that no firms wants to

deviate and, hence, never triggers a punishment phase either. Thus, profits similar to the

observability case emerge.

Similarly, when ρ is close to 1, all uncertainty with regard to adherence to collusion is

eliminated. Whenever a firm obtains zero demand when the good signal h was received,

it is almost certain that this is due to a deviation, which, in turn, makes it easier to deter

deviations. Thus, again, profits are similar to the observability case.

For intermediate values of ρ, profits initially decrease and then increase in ρ. When ρ

increases when it is initially small (ρ̄ < ρ < ρ̂), the poaching effect dominates the monitor-

ing effect, leading to lower profits. Poaching is relatively attractive because punishment is

very likely due to an imprecise signal. Precisely due to poor signal quality, the distinction

between low demand and deviations is difficult, that is, monitoring is very weak.

Conversely, when ρ increases when it is already high (ρ̂ < ρ < 1), then the poaching

effect is dominated by the monitoring effect.

Finally, we are interested in customer surplus and total welfare that result from tacit

collusion with unobservable actions. We characterize them in the following proposition.
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Proposition 6. When actions are not observable, then in the most profitable collusive

equilibrium, total customer surplus is given by

CSunobs =
(1− ρ)(λρv − 2F )2

2(1− δ)λρ3v
, (13)

and total surplus is given by

TSunobs =
4F 2(1− ρ)− 2Fλ(2− ρ)(1− ρ)ρv + λρ2v2 (λ(1− ρ)2 + ρ)

2(1− δ)λρ3v
. (14)

Proof. To compute customer surplus, we proceed in a similar way as for the derivation of

profits in Proposition 4. We introduce the quantities CS, CSh, CSl, and CSp to denote ex

ante customer surplus, customer surplus conditional on signal h and l during the collusive

phase, and customer surplus in the punishment phase. Note that during the collusive

phase when prices ph = pl = v are set, customers never derive positive surplus. During

the punishment phase of length T , however, customers derive surplus as in the static Nash

equilibrium. Using the substitution δ̂ = δT as introduced in the proof of Proposition 4,

we get a system of four linear equations in four unknowns:

CS =
CSh + CSl

2
,

CSh = ρ(0 + δCS) + (1− ρ)δCSp,

CSl = (1− ρ)0 + δCS,

CSp =
1− δ̂
1− δ

CSN + δ̂CS.

Solving this system gives

CSunobs = CS =
(1− ρ)(λρv − 2F )2

2(1− δ)λρ3v
.

Total welfare TSunobs follows right away as

TSunobs = 2Vunobs + CSunobs =
4F 2(1− ρ)− 2Fλ(2− ρ)(1− ρ)ρv + λρ2v2 (λ(1− ρ)2 + ρ)

2(1− δ)λρ3v
.

We now illustrate the tacit collusion results, allowing for both observable and unob-

servable actions, using the example introduced in Section 3.

Example 1 continued. Given the parameter values, ρ̄ = 4/5 = 0.8. Tacit collusion

with unobservable actions is sustainable when δ ≥ δunobs = 10/13 ≈ 0.77, and tacit
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collusion with observable actions is sustainable when δ ≥ δobs = 2/3. We let δ = 0.9

such that under both observability assumptions, collusion is sustainable. Figure 3b shows

industry profits (2V ) and total welfare (left panel) and customer surplus (right panel) for

observable and unobservable actions as a function of prediction ability ρ. When actions

are observable, profits Vobs are constant in ρ: Firms make monopoly profits, irrespective

of ρ, and, hence, customer surplus CSobs is always 0, and total welfare TSobs equals the

industry profits 2Vobs.

By contrast, when actions are unobservable, profits Vunobs are u-shaped in prediction

ability ρ. For ρ close to ρ̄ or close to 1, profits converge to the same levels as under

observability. When ρ is initially small, the poaching effect dominates which leads to lower

profits, whereas when ρ is initially high, the monitoring effect dominates, which leads to

higher profits. Profits are lowest at ρ̂ =
√
ρ̄ ≈ 0.89. The opposite is true for customer

surplus, which is minimal when ρ is close to ρ̄ or close to 1 because firms appropriate

almost the entire monopoly rent in these cases. Customer surplus reaches a maximum at

interior levels of ρ, denoted by ρ∗CS, which, in general, do not coincide with ρ̂.12 Because

punishment on the equilibrium path entails socially wasteful promotions, also total welfare

is u-shaped in ρ. When ρ is on the boundary, then again, the socially efficient monopoly

outcome without promotions emerges. In between, resources are ‘wasted’ on promotions.

Example 1 illustrates that increasing prediction ability is possibly Pareto-improving.

In the example, ρ∗CS ≈ 0.93. Hence, for ρ ∈ (ρ̂, ρ∗CS), we have that profits, customer

surplus, and, hence, also total welfare increase when ρ increases. Again, wasting resources

on promotions is socially inefficient and occurs less frequently in this parameter range.

4.2.1 Collusion not always stable

In the previous subsection, we analyzed the effect of prediction ability on collusive profits

when firms are sufficiently patient such that collusion is sustainable for all level of predic-

tion ability ρ. As we show in this subsection, higher prediction ability may also serves an

additional role, namely by making collusion with unobservable actions sustainable where

it otherwise is not.

Proposition 7. Suppose actions are not observable and that δ ∈ (δobs, δunobs). Then

collusion is sustainable if and only if ρ ≥ ρ̃(δ) = (2− δ)/2δ, where ρ̃(δ) is always between

1/2 and 1 and decreasing in δ.

Proof. The overall structure of the proof is identical to the proof of Proposition 4 and

hence omitted.

12Note that the customer-surplus-maximizing level of signal precision ρ∗CS may, in general, be above
or below ρ̂. In Example 1, ρ∗CS > ρ̂.
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Figure 3: Impact of signal precision on collusive profits, customer surplus, and total welfare for
δ = 0.9.

However, we now rewrite the sustainability condition (13) from Proposition 4

δ ≥ 2

1 + 2ρ

as a function on ρ and obtain

ρ ≥ ρ̃(δ) =
2− δ

2δ
.

By definition of δobs and δunobs, we have that ρ̃(δ) ∈ [1/2, 1] for all δ ∈ (δobs, δunobs). Note

that we can rewrite this as

ρ̃(δ) =
2− δ

2δ
=

2/δ − 1

2

which clearly decreases in ρ.

Thus, collusion is sustainable if ρ ≥ ρ̃(δ).

Combining the results of Proposition 4 and Proposition 7, we can readily characterize

the effect of prediction ability ρ on profits even if collusion is not sustainable on the entire

domain. To this avail, we define

δ1 =
2

2ρ̂+ 1
,

which is always strictly between δobs and δunobs.
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Figure 4: Impact of signal precision on collusive profits with unobserved actions.

Corollary 2. Let δ ∈ (δobs, δ1). Then profits are decreasing in ρ for ρ ≤ ρ̃(δ) (Nash

equilibrium), but increasing in ρ otherwise (collusion). Conversely, when δ ∈ (δ1, δunobs),

then again profits are decreasing in ρ for ρ ≤ ρ̃(δ) (Nash equilibrium), but strictly above

Nash equilibrium levels and u-shaped in ρ otherwise (collusion).

Proof. In both cases, we have from Proposition 7 that no collusion is sustainable when

ρ < ρ̃(δ), so the Nash equilibrium emerges, where profits are decreasing in ρ according to

Proposition 1.

Now consider δ ∈ (δobs, δ1). By definition of δ1, we have that ρ̃(δ) > ρ̂, so once collusion

becomes sustainable, we are in the range of ρ where profits are increasing according to

Proposition 4 and Proposition 5.

Conversely, for δ ∈ (δ1, δunobs), we have that ρ̃(δ) < ρ̂, so once collusion becomes

sustainable, we are in the range of ρ where profits are u-shaped according to Proposition

4 and Proposition 5.

Example 1 continued. For our parameter values, we have that δ1 ≈ 0.71. So we let

δ′ = 0.69 and δ′′ = 0.73, such that δobs < δ′ < δ1 < δ′′ < δunobs. Then we have ρ̂(δ′) ≈ 0.95

and ρ̂(δ′′) ≈ 0.87, such that ρ̂(δ′′) < ρ̂ < ρ̂(δ′). Consider Figure 4 as an illustration. Both

for δ′ and δ′′, collusion is not sustainable when δ is very small, but becomes sustainable

once ρ is sufficiently high, which induces an upward jump in profits. For δ′, this jump is

into the range of ρ where collusive. profits increase in ρ. For δ′′, however, profits initially

decrease again within the collusive range. Thus, there is a double non-monotonicity in

profits for δ′′.
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5 Conclusion

Algorithms, artificial intelligence, and machine learning have become essential tools for

market analysis, pricing, and other strategic dimensions in many industries. This trend is

very likely to continue in the future. Competition authorities have started to have a closer

look at the implications for collusion when firms make use of these tools. In out set-up,

we focus on firm’s ability to collude when such tools improve demand forecasts. To this

end, we build on classic theoretical models from the industrial organization literature.

We find that the sustainability of collusion is crucially affected by market character-

istics: Whereas better prediction accuracy has no effect when actions (that is, prices)

are observable, there is a u-shaped relationship between prediction quality and collusive

profits.

Our results contribute to a better understanding of how the use of algorithms affects

firms’ incentives and ability to collude. To conclude, we point out a few limitations of

our approach. Our signal structure is very simple, where firms receive an identical signal.

Clearly, in real-life industries, firms can and do invest significant amounts to improve their

demand predictions. As a consequence, firms’ signals might not be identical, but they

may be correlated to a certain degree. On a related note, we have not analyzed firms’

incentives to invest in better prediction ability, but assumed a common industry stan-

dard. Furthermore, whereas we use grim-trigger strategies, other punishment strategies,

such as optimal punishment, can be contemplated as well. The problem with optimal

punishment in the present set-up is that it is unclear what such a punishment looks like

with unobservable actions. We leave these aspects for future research.
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