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Impacts of Droughts and Floods on 
Agricultural Productivity in New Zealand 

as Measured from Space 
 
 

Abstract 
 
This study estimates the impact of excess precipitation (or the absence of rainfall) on productivity 
of agricultural land parcels in New Zealand. This type of post-disaster damage assessments aims 
to allow for quantification of disaster damage when on-the-ground assessment of damage is too 
costly or too difficult to conduct. It can also serve as a retroactive data collection tool for disaster 
loss databases where data collection did not happen at the time of the event. To this end, we use 
satellite-derived observations of terrestrial vegetation (the Enhanced Vegetation Index – EVI) 
over the growing season. We pair this data at the land parcel level identifying five land use types 
(three types of pasture, and annual and perennial crops) with precipitation records, which we use 
to identify both excessively dry and excessively wet episodes. Using regression analyses, we then 
examine whether these episodes of excess precipitation had any observable impact on agricultural 
productivity. Overall, we find statistically significant declines in agricultural productivity that is 
associated with both floods and droughts. The average impact of these events, averaged over the 
affected parcels, however, is not very large; usually less than 1%, but quite different across years 
and across regions. This average hides a heterogeneity of impacts, with some parcels experiencing 
a much more significant decline in the EVI. 
JEL-Codes: Q150, Q540, C230. 
Keywords: satellite-derived data, crop productivity, drought, flood. 
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1. Introduction 

In the last few decades, satellite-based observations of terrestrial phenomena have been increasingly 
used for post-disaster damage assessments. Emergency responders, disaster risk managers, and 
scientists can use these data to obtain reliable information that can inform public policy.1 This progress 
has been driven by technological advances in remote sensing that have led to a massive increase in 
temporal, spatial and spectral resolutions of satellite imagery and in the processing methods and 
computing power that are required to effectively interpret them.2 

Satellite data are currently used for post-disaster damage assessment of various types of disasters 
caused by natural hazards, such as tropical cyclones, floods, earthquakes, landslides, and tsunamis. 
Most use daylight optical satellite data for post-disaster damage assessment, but some studies, such 
as,3–5 utilized night-time light data to estimate hazard-induced electric power outages. For 
investigations of the impact of hazards on agriculture – the focus of this paper – only daylight imagery 
can be used.  

Most optical satellite sensors gather surface reflectance data from the visible electromagnetic 
spectrum as well as emissivity data from the infrared wavelengths to produce images. Optical imagery 
is relatively easy to interpret as the resulting imagery typically appears as standard coloured or black 
and white photograph. The combination of visible and infrared wavelengths is particularly useful for 
the detection of water surfaces and vegetation-covered areas, and is therefore well suited for flood 
mapping or estimating storm- or flood-induced impacts on vegetation and agriculture. Vegetation 
“greenness” is typically estimated using various spectral indices such as the Normalized Difference 
Vegetation Index (NDVI), or the Enhanced Vegetation Index (EVI).6 This last index is used in this study. 

The applicability of optical satellite data for storm and flood damage assessment is partially limited 
due to its reliance on relatively cloud-free weather conditions for gathering the data and the fact that 
high precipitation is typically correlated with heavy cloud cover during the days surrounding the event. 
This constraint is especially relevant in tropical areas, where cloud cover is more common. While most 
of the previous research has focused on lower-income countries in the tropics where alternative data 
sources are rarely available, our focus is on a temperate country, New Zealand, where such issues are 
not as prevalent. 

While New Zealand has institutions in place that could, in principle, collect ground data on disaster 
impacts, this is rarely done. Unlike in some other high-income countries, most agricultural production 
is not insured, so there is little reason for insurance companies (private or state-owned) to collect such 
data, and the state itself does not do so, either. Even in other temperate high-income countries, 
however, it is rare for insurance companies to share their data with the research community, so 
assessments of disaster damage and high spatial resolution are uncommon.  

Remote sensing assessment is therefore a useful tool that should be added to the toolkit of post 
disaster assessments, not only in lower-income countries where they may be the only available option, 
but also for high-income countries, where the remote sensing data can be paired with other spatial 
data in order to improve the estimations of disaster damages. This coupling is often necessary because 
of various challenges in interpreting the remote imagery. Thus, combining the post-disaster remote 
sensing imagery with ancillary data such as satellite-derived Digital Elevation Models, static land use 
maps, and other datasets can be used to derive relevant information. 
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This is what we do in this paper. Our aim is to identify the impact of excess precipitation events (or its 
lack thereof) on productivity of agricultural land parcels. In a largely agricultural exporting country 
such as New Zealand, these extreme events (floods and droughts) may have quite a significant 
economic effect, which we aim to quantify. We do this by analysing the changes in the Enhanced 
Vegetation Index (EVI) over the growing season, and its correlation with episodes of excessive rainfall 
and its absence. We first identify, for each land parcel in the country, its growing season. We then 
calculate the peak EVI for each growing season for each land parcel as a measurement of agricultural 
productivity. We identify each land parcel by the crops growing on it using static agricultural census 
maps available from Land Information New Zealand (LINZ). We pair this data with the precipitation 
weather records, which we use to identify both excessively dry and excessively wet episodes during 
the growing cycle in each parcel. Using regression analysis, we then examine whether these episodes 
had any observable impact on agricultural productivity (as measured by the change in the EVI during 
the growing season). 

Flood and storm damage assessments based on satellite imagery vary in their use of specific remote 
sensing sources and the corresponding spatial and temporal resolutions of the required imagery. High 
spatial, temporal, and spectral resolution imagery would often provide the most precise information, 
but it may not always be available. With respect to the spatial resolution, damage assessments are 
conducted on a range of available resolutions from low (>100 m/px) to moderate (5-100 m/px) and 
even high (<5 m/px) resolutions. For example, a study by Hoque et al.7 used moderate resolution 
SPOT-5 imagery to analyse impacts of the 2007 Tropical Cyclone Sidr in Bangladesh.  Phiri et al.8 
estimated the damages from the 2019 Cyclone Idai in Mozambique using moderate resolution 
Sentinel-2 images, Barnes et al.9 used high resolution IKONOS imagery to estimate local damages of 
the 2005 Hurricane Katrina, and Mas et al.10 studied the 2013 Typhoon Haiyan in the Philippines using 
images with similar resolution from Google Earth. For post-flood analysis, the publicly available 
Landsat images were utilized in damage assessments by Ma et al.11, Li et al.12, Hutanu et al.13, and 
Sivanpillai et al.14. In some flood assessments, and as we do here, researchers combine satellite 
imagery with some ancillary data such as Digital Elevation Model maps15–19. MODIS data were used to 
estimate tropical storm damages to forests20,21 and coastal vegetation22. Researchers also utilized 
moderate resolution Landsat or Sentinel-2 imagery to assess tropical storm impacts on coastal 
vegetation23,24, forests25, and mangroves26,27.  

Most of these studies focus on a particular disaster event, but Mandal and Hosaka28 follow a different 
approach and assess long-run (29 years) impacts of cyclones on mangrove forests of India and 
Bangladesh based on Landsat and Google Earth imagery. Lu et al.22 use MODIS data to estimate 
typhoon-induced vegetation damages in the southeast coastal region of China over a period of 18 
years. Generally, these vegetation impact studies are estimated using spectral indices such as the 
NDVI, or the vegetation condition index (VCI). 

Another subset of studies focuses on estimating storm and flood impacts on agriculture. Satellite-
based flood crop loss assessments are typically conducted based on flood intensity, crop condition or 
a combination of these two methods29. Within this approach, crop damages are mostly estimated 
using stage-damage modelled damage curves based on satellite-derived criteria such as flood extent, 
duration, and timing. For tropical storm crop damage assessments, researchers used MODIS30–32, 
Landsat33 and SPOT-534. 

Blanc and Strobl35 used a combination of MODIS-derived data and typhoon-intensity measures 
generated from wind-field models to develop an algorithm for rice paddy typhoon damage 
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assessment. Omori et al.31 similarly estimated cyclone damages to paddies also using MODIS data. 
Chejarla et al.36 and Elodie et al. estimated cyclone economic loss for crops comparing vegetation 
biomass before and after the event. Moderate resolution SPOT-5 data are used by Chen and Lin34 to 
assess typhoon impacts on agricultural lands and attempt to distinguish between damage caused by 
the wind and the heavy rainfall.  

The studies mentioned above were mostly aimed at a general damage assessment for storm- or flood-
affected areas. Several other studies focus specifically on analysing and quantifying damages to certain 
features of interest such as vegetation, forests, agricultural production, or buildings and 
infrastructure. Since our interest here is in rural floods and droughts, which generally do not have a 
very significant impact on buildings (at least in New Zealand), we limit the discussion here to damage 
to vegetation and consequently to agricultural production.  

All these studies rely on detecting changes in the satellite images. This change detection is an 
automated algorithm aimed at detecting differences in images between two discrete points in time. 
Lu et al.37 provides a review of 31 change detection approaches for remote sensing data such as image 
differencing (our approach), principal component analysis, post-classification comparison, 
unsupervised change detection and artificial neural networks. 

Several studies analyse the efficacy of different change detection methods for tropical storm damage 
assessments. Several of these use a combination of object-based image analysis and a post-
classification change detection method to estimate tropical storm impacts8,38. New change detection 
methods are being continuously developed to improve upon current approaches and enhance the 
efficiency of change detection for disaster damage assessment. Significant advances in machine 
learning algorithms suggest this field can still develop further (Zhu et al.39). 

Overall, our study contributes in several ways: This is the first study that attempts to implement these 
approaches in the New Zealand context, with its rich land-use data at a very small scale (parcel level). 
We also use the long weather time-series that are available for New Zealand, these enable better 
identification of weather extremes (both excessive rainfall and drought). This availability of long time-
series of weather data also enables us to focus on a longer time period, and not on single events as 
the vast majority of papers cited above do. Furthermore, the details available on land-use enable us 
to separately estimate the impact of droughts and floods on five different land use categories. This is 
important, as it is very likely, and as we indeed show, land use is important in determining the impact 
of flooding and droughts. 

We note that our definition of flood events is based on identifying excess rainfall, as distinct  from 
“the temporary covering of the soil surface by flowing water from any source including streams 
overflowing their banks, runoff from surrounding slopes and inflow from high tides” 40. Ultimately, we 
estimate the effect of excess precipitation (flood) or its lack (drought), empirically, using a panel of 
the remotely obtained vegetation index data at the parcel boundary level. 

2. Results 
 
In the following subsections, we describe the impact of droughts and floods on crops (annual and 
perennial), and pasture (low yielding, with woody biomass, and high producing). For each, we present 
the regression results (equation 5), box plots that describe the impacts of floods and droughts over 
time (the annual growing seasons) and in each geographical region, and a series of maps that allows 
us to summarise these findings spatially.  
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Regression results are presented in Table 5 for annual crop and Table 6 for perennial crops, and for 
pasture in Tables 7-9 (for low-producing pastures, pastures with woody biomass, and high-producing 
pastures, respectively). The first two columns in each table present results including moderate or 
above droughts and floods (with and without control for whether the parcels are flood-prone). The 
next two columns provide the same for severe events (or above), and the last two for extreme events. 
In all regressions reported in tables 5-9, maximum and minimum temperatures are also included in 
their quadratic form. 

In tables 5 and 6, floods and droughts have a negative impact on the productivity of both annual and 
perennial crops (as measured by the seasonal maximum of the EVI). The results for the temperature 
variables show, consistently for crops, that as minimum temperatures increase, crop productivity 
increases with a strengthening effect as the squared term is also positive and significant (though the 
linear term is non-significant in the case of perennial crops in table 6). For mean daily maximum 
temperatures, the effect is concave and always statistically significant, with the beneficial effect of 
higher temperatures tapering off as average maximum temperature increases.  

In column (1), for both Tables 5 and 6, the flood and drought variables are both statistically significant 
and of comparable magnitude, except for floods for annual crops. For those, in Table 5, the coefficient 
is larger (3x), implying that floods damage annual crops more than they do perennial crops. Column 
(2) shows similar results to column (1), but with flood impacts distinguished between non-flood-prone 
areas and areas with a higher potential for flooding (i.e., flood return interval <60 years). For both 
types of crops, the effect of excess water is not necessarily larger in flood prone areas than in those 
with less flood risk when considering moderate and stronger events (statistically insignificant), but it 
is for severe and stronger event (statistically significant; see column (4)).  

Overall, the main conclusions from Tables 5 and 6 are that indeed both floods and droughts damage 
annual and perennial crop productivity, and that this damage can be quantified using remote sensing 
data. For perennial crops (Table 6), the impact of flood-proness is more pronounced, but otherwise 
the results are quite similar.  

Table 4 [Here] 

Table 5 [Here] 

The impacts of droughts and floods are presented in figure 5 and 6, for perennial and annual crops, 
respectively. These are presented by the specific extreme event effect, estimated using the coefficient 
estimates from column (1) of the regressions tables 5 and 6. These impacts are calculated as a 
proportion (in percentage term) of the long term average maximum EVI within a given plot. The box 
plots present the range of the plot level impacts of floods and droughts between the 25th and 75th 
percentiles across all regions by year in the top panel and across all years by region in the bottom 
graph. The lines inside the boxes represent the median values. The whiskers represent upper and 
lower adjacent values (i.e., 1.5 times the inter quartile range). Any values outside of the whiskers are 
omitted from the graphs. 

Figure 5 [Here] 

Figure 6 [Here] 

The results in figure 5 show how some years have been worse, in terms of flood impacts on annual 
crops (e.g., 2008, 2011, and 2017) and some regions were, on average, more negatively affected by 
flooding events (e.g., Gisborne). These spatial and temporal patterns are repeated for perennial crops, 
but the impact seems to have been smaller (as measured by the EVI). For droughts, more adverse 
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years (as measured by declines in EVI) seems to have been 2015 and 2016 (for both perennial and 
annual crops). The variation across regions, especially with respect to the impacts of floods and 
droughts on perennial crops, appears to be less pronounced than it is for annual crops. 

The maps in Figure 7 summarise the impact of each event type that is presented in Figure 5  and Figure 
6 (drought/flood), averaged over the time period covered (2001-2017), and aggregated to the regional 
level. The patterns are quite different for droughts when compared to floods, and quite similar when 
comparing annual crops to perennial ones. For droughts, it is the eastern part of the South Island, and 
Taranaki and Northland in the North Island that had the steepest declines in the EVI as a consequence 
of droughts. For floods, the most impacted regions are Tasman in the South Island, and the eastern 
part of the North Island that are most vulnerable.  

Figure 7 [Here] 

Results for low-producing pastureland and the consequences of droughts and floods are presented 
using the same format as for crops in Table 7. Droughts and excess water are both detrimental to 
pasture growth. Pastureland in flood prone zones is additionally affected by excess rain. The effect is 
significantly stronger for all types of pasture when considering the effect in non-floodable areas (flood 
return period >60) and the flood prone zones. The only exception is for low producing pastures when 
considering extreme events only. In this specific case, the effect of excess rain is not significant in 
regions with no risk of flooding. As was the case for crops, we find little evidence that the set of more 
intense events (severe and extreme) is more damaging to pasture (as measured by the EVI) than the 
more moderate floods and droughts. It appears that most of the damage associated with these events 
is already incurred with the moderate flood and droughts events, so there does not seem to be much 
more incremental damage that is incurred when more intense extremes happen.  

The effect of mean temperature on low-producing pasture differs somewhat from those observed for 
crops. For this type of pasture, the effects of both minimum and maximum temperature is concave, 
with the linear term always positive and significant, and the squared term always negative and 
significant.   

Table 6 [Here] 

The box plots representing the results in Table 6 are presented in Figure 8. Again, we see the 
expected variation over time, with some years experiencing a bigger adverse impact associated with 
floods and droughts (for example, 2015 for droughts and 2011 for floods). The bottom panel of 
Figure 8, and the map in Figure 11 presents the spatial distribution of the impact of floods and 
droughts on low-producing pasture. The spatial pattern is quite similar to the one we described for 
crops, with the eastern part of the South Island most vulnerable to droughts, and the eastern part of 
the North Island most vulnerable to floods, in terms of their impact on low-producing pasture. 

Figure 8 [Here] 

For pasture with woody biomass, we again observe similarly concave functions for both the minimum 
and maximum temperature. The results for the flood and drought indicators, in whatever severity 
they are measured, are also qualitatively identical to the ones we obtained when analysing low-
productivity pasture. Both floods and droughts are damaging for agricultural productivity, as 
measured by the EVI, and for floods that impact is stronger in plots that are flood-prone (generally 
about twice as large). While there are some differences in the spatial distribution of impacts of floods 
and droughts on pasture with woody biomass, when compared to low-productivity pasture, these 
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differences are not very pronounced, and the general pattern (e.g., more flood impact in the eastern 
part of the North Island) still holds very clearly. 

The results for high-producing pasture parcels, presented in Table 9 and Figure 10, are also quite 
similar to the other types of pasture (low-producing and with woody biomass). Even though these are 
sets of completely different pasture parcels, the results for the temperature variables are also 
quantitatively quite similar. However, in terms of the impact of the drought and flood variables, high-
producing pasture seems to be more vulnerable to flood events than the other types of pasture, and 
the decline in the EVI observed there for the growing seasons with flood events is significantly larger 
(by a factor of 3-4). High-producing pasture, which is found in about twice as many parcels as low-
producing pasture and pasture with woody biomass combined, is more vulnerable to floods. It is this 
type of pasture that is associated with the most significant decline in productivity as a result of flood 
events; it does not, however, seem to be more vulnerable to droughts than the other types of pasture 
(possibly because quite a lot of it is likely to be irrigated). The spatial distribution of these flood impacts 
(although of higher magnitude) is not dissimilar to what we find for the other types of pasture. Again, 
it is the eastern part of the North Island that is most vulnerable to flood events. 

Table 7 [Here] 

Table 8 [Here] 

Figure 9 [Here] 

Figure 10 [Here] 

Figure 11 [Here] 

3. Discussion 

In the analysis presented here, we used satellite-based observations of terrestrial vegetation (the 
Enhanced Vegetation Index – EVI) in order to assess the impacts of floods and droughts. This is a type 
of post-disaster damage assessments which aims to allow for quantification of disaster damage when 
on-the-ground assessment of damage is too costly or too difficult to conduct, or needs to be 
conducted retroactively.  

Satellite data have previously been used for post-disaster damage assessment of various types of 
disasters caused by natural hazards, such as tropical cyclones, floods, earthquakes, landslides, and 
tsunamis. Most use daylight optical satellite data (such as the MODIS images we use), but others have 
used night-time light data as well. The use of daylight optical satellite data for storm and flood damage 
assessment is often limited due to its reliance on relatively cloud-free weather conditions. This 
constraint is, however, especially relevant in tropical areas, and our focus is on a temperate country, 
New Zealand. Our second contribution to the literature relies on the availability of ancillary data that 
we use in conjunction with the remote sensing imagery. These are primarily high-resolution land use 
maps, detailed weather records (both temperature and precipitation), and data on irrigation.  

Overall, we find statistically significant declines in agricultural productivity that is associated with both 
floods and droughts, and identified in all the five types of land uses we examine – three types of 
pasture, and annual and perennial crops. However, the average impact of these events, averaged over 
the affected parcels, is not very large; usually less than 1%, but it is quite different across years and 
across regions. This average hides a heterogeneity of impacts, with some parcels experiencing a much 
more significant decline in the EVI.  
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These declines we identified, however, may not imply financial losses to farm businesses. Pourzand et 
al.68, for example, has shown that droughts have not caused a dramatic decrease in the profitability 
of dairy farms over the past two decades in New Zealand. This is likely the case because, as we 
document here, agricultural production in New Zealand seems to be, still, quite resilient to these 
shocks. It is also most likely caused because droughts and floods may change market prices in ways 
that ameliorate their impact on farm revenue and profitability (given the negative supply shock, prices 
rise). As such, market changes may be obscuring some of the adverse wellbeing impact that are caused 
by these climatic events, as the purchasing power of the consumers of these agricultural products are 
the ones bearing the burden of these events’ impacts. 

Overall, we argue that remote sensing assessment is a useful tool that should be added to the toolkit 
of post disaster assessments and the construction and collection of disaster loss databases. 
Furthermore, combining post-disaster remote sensing imagery with ancillary data can provide 
information about disaster impacts that is not otherwise available and can serve to inform policy that 
aims to mitigate or ameliorate the impact of these events.  
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4. Methods 
4.1. Data 

The dataset used to estimate the impact of flood on land productivity is constructed at the parcel level 
and provides information on the land use type, vegetation, growing seasons, and weather. 

4.1.1. Parcels boundaries 

To determine plot boundaries, we use NZ primary parcels polygons available from Land Information 
New Zealand (LINZ). This data is publicly available for download at 
https://data.linz.govt.nz/layer/50772-nz-primary-parcels/. LINZ defines a primary parcel as “a portion 
of land that is intended to be: owned by the Crown, except moveable marginal strips; Held in fee 
simple (predominately private ownership); Maori freehold land or Maori customary land; Public 
foreshore and seabed; The bed of a lake or river; Road or Railway; Vested in a local authority.” The 
layer has a nominal accuracy of 0.1 to 1m in urban areas and 1 to 100m in rural areas. For the purpose 
of this study, we excluded parcels classified as ‘public foreshore and seabed’, ‘bed of a lake or river’, 
and ‘road or railway’. 

4.1.2. Land use 

To determine land use within each parcel, we used information from the Land Use Carbon Analysis 
(LUCAS) land use map (v. 008) developed by the New Zealand Ministry for the Environment. Available 
for download at https://data.mfe.govt.nz/layer/52375-lucas-nz-land-use-map-1990-2008-2012-2016-
v008/. The LUCAS land use map use a range of remote sensing, environmental and land use data 
sources to distinguish 12 land use classes over New Zealand, including three forest classes (Pre-1990 
natural forest, Pre-1990 planted forest, and Post-1989 forest), two classes of grassland (high-
producing and low-producing woody biomass), and two classes of cropland (perennial and annual). 
For some of these classes, subclasses are also defined (e.g. for high and low producing cropland, five 
sub-classes are distinguished: unknown, winter forage, grazed – dairy, grazed - non-dairy, and 
ungrazed). We do not use these sub-classifications when producing our empirical estimates. 

We remove from our dataset all parcels with non-agricultural uses (wetland, settlement and others), 
as defined in the LUCAS land use maps, and keep only forests, grassland and cropland. Land use 
information is available for 1 January 1990, 1 January 2008, 31 December 2012 and 31 December 
2016. We consider that for a given year, the land use type corresponds to 2008 land use for the years 
up to 2010, the 2012 land use for the period from 2011 to 2013, and the 2016 land use for the period 
2014 and after. Each of these land use types is associated with a primary parcel. If a parcel has multiple 
land uses, the parcel will be sub-divided into as many parts as there is land use classes. 

https://data.linz.govt.nz/layer/50772-nz-primary-parcels/
https://data.mfe.govt.nz/layer/52375-lucas-nz-land-use-map-1990-2008-2012-2016-v008/
https://data.mfe.govt.nz/layer/52375-lucas-nz-land-use-map-1990-2008-2012-2016-v008/
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Figure 1 [Here] 

4.1.3. Vegetation indices 

To represent vegetation growth, we extracted satellite derived imagery of vegetation indices. We use 
the images from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 
(MOD13Q1) Version 6, which is provided every 16 days at a 250m resolution (these data are available 
for download at https://lpdaac.usgs.gov/products/mod13q1v006/). Two indices are available: the 
Normalized Difference Vegetation Index (NDVI), and the Enhanced Vegetation Index (EVI), which has 
improved sensitivity over high biomass regions. Cloudy and low-quality pixels are masked. NDVI is 
calculated using the near-infrared (NIR) and red spectral bands reflectance ρ: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟

      (1) 

EVI reduces residual atmospheric contamination and variable soil back-ground reflectance by 
adjusting the reflectance in the red band as a function of the reflectance in the blue band. It is often 
also used where the leaf area index is high in order to improve the accuracy of the NDVI: 

𝐸𝐸𝐸𝐸𝐸𝐸 = 2.5 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+6𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟−7.5𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+1

     (2) 

Figure 2 [Here] 

4.1.4. Growing season 

To determine the growing season, we use the MODIS Global Land Cover Dynamics Product (MCD12Q2) 
Version 6 (these data are available for download at 
https://lpdaac.usgs.gov/products/mcd12q2v006/). This product records annually since 2001 at a 
500m resolution vegetation phenology metrics such as greenness increase and peak, senescence, and 
dormancy, which characterizes vegetation growth cycles. An algorithm is used to determine the timing 
of phenometrics which are derived from time series of MODIS adjusted surface reflectances EVI 
(NBAR-EVI2). The start of the growing season is characterized by the greenup onset (when EVI2 first 
crossed 15% of the segment EVI2 amplitude), and the end by the onset of dormancy (when EVI2 last 
crossed 15% of the segment EVI2 amplitude). Up to two vegetation cycles are detected to account for 
multi-cropping. 

For the purpose of this study, which spans from 2000 to 2015, we have calculated the average growing 
season for each property and land use, and associated this average growing seasons also to the first 
year of the sample, for which MCD12Q2 data were not available. 

4.1.5. Climate 

To calculate the incidence of droughts and floods on vegetation, we first consider the Standardised 
Precipitation Index (SPI). This measure is commonly used to represent the effect of precipitation over 
regions characterised by multiple climatic zones as it represents a standardized departure from the 
mean of a long-term trend 41. The SPI is calculated by first fitting a gamma probability density function 
to the frequency distribution of rainfall over a reference period (of at least 30 years), which is then 
used to determine the cumulative probability of a particular precipitation level for a chosen time scale 
and finally transformed into a normal distribution ~N(0,1)42. SPI values are therefore expressed in 
terms of standard deviations from the median. Negative values imply below normal precipitations, 
while positive values indicate above normal rainfall. Using the SPI, it is possible to identify periods of 
drought (McKee et al., 1993) and floods 43. A moderate drought starts when the SPI falls below 0 and 
ends when the index returns to a positive value after reaching a value of –1. Floods are calculated 

https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mcd12q2v006/
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similarly with a threshold of +1. The thresholds for severe and extreme droughts or floods are 
identified with thresholds of +/-1.5 and +/-2, respectively. Time scales of 1 to 48 months can be used 
to calculate the SPI depending on the responsivity of the sector considered (meteorologic, agricultural, 
hydrologic, and socio-economic). For instance, longer scales are more suitable for water resources 
management (e.g., for reservoirs), while shorter time scales are better suited at detecting drought 
events affecting agriculture, especially for areas that are not irrigated44. Statistical analyses of the 
impact of droughts on crops have used scales from 3 to 12 months12,30,45–47. In this study, SPI is 
calculated on a 2-, 3- and 6-months’ time scales, using 1972-2005 as a reference period. 

Following McKee et al.42, we also calculate the magnitude of a drought (DM), which is: 

𝐷𝐷𝐷𝐷 =
−(∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑥𝑥

𝑗𝑗=𝑚𝑚 )

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ
      (3) 

where m is the starting month of the drought and x is the end of the drought. For the purpose of this 
study, x corresponds to either the end of the drought or the end of the growing season, whichever 
occurs first within the same growing season. To account for the effect of the growing season duration, 
the magnitude is taken as ratio of GSlentgh. Similarly, the magnitude of a flood (FM) is calculated as: 

𝐹𝐹𝐹𝐹 =
(∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑥𝑥

𝑗𝑗=𝑚𝑚 )

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ
      (4) 

Precipitation data used to calculate the flood occurrences, are extracted from the Virtual Climate 
station Network (VCSN) database available from the National Institute of Water and Atmospheric 
Research (NIWA). Those data are available daily at a 5km resolution. Daily minimum and maximum 
diurnal temperatures are also obtained from the VCSN, and based on these, we also calculate the 
mean daily temperature as: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)/2. 

Figure 3 [Here] 

4.1.6. Flood return interval 

The SPI measures precipitation rather than physical flooding. Therefore, information on soil physical 
attributes is necessary to estimate the effect of excess precipitation on plant productivity. To this end, 
we use the flood return interval from the New Zealand Fundamental Soil Layer which represents the 
probability of flooding (this data is available for download at https://lris.scinfo.org.nz/layer/48106-fsl-
flood-return-interval/). This delineation of land at risk of flooding provides a proxy for physical 
attributes such as slope, catchment area, surface permeability, etc, which play a role in how excessive 
rainfall would affect plants. However, as a full hydrological modelling of flooding throughout New 
Zealand is beyond the scope of this project, the flood return interval are characterized by six classes 
described in Webb & Wilson40 (for built property and infrastructure, those risk classes are quite 
moderate. In many places, a ‘flood prone’ house is defined as one that is exposed to a 1 in 100 years 
flooding event). 

A map of the flood return interval in NZ is provided in Figure 4 and shows that most of the land in NZ 
is not regularly affected by floods. To match flooding risk at the parcel level, we attribute the flood 
return interval class the most common to each plot. 

Figure 4 [Here] 

4.1.7. Sample description and summary statistics 

The short name and description of the variables used in the analysis are described in Table 1. Summary 
statistics for those variables are provided in Table 3 for crops and Table 4 for pasture. 

https://lris.scinfo.org.nz/layer/48106-fsl-flood-return-interval/
https://lris.scinfo.org.nz/layer/48106-fsl-flood-return-interval/
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Table 1 [Here] 

By construction, as a severe event is included in the ‘moderate and above’ category, a ‘moderate and 
above’ has a higher magnitude than the ‘severe and stronger’ category. 

Table 2 [Here] 

Table 3 [Here] 

4.2. Methods 

As a measure of crop yields, one can use a vegetation index. Vegetation indices, such as the 
Normalized Difference Vegetation Index (NDVI), have been used in the past two decades to proxy 
crop productivity. They provide a consistent spatial and temporal representation of vegetation 
conditions. Numerous studies have demonstrated that NDVI values are significantly correlated with 
yields of crop such as wheat48–54, sorghum 55, corn 56,57, rice 54,58,59, soybean 57, barley 60, millet 61 and 
tomato 62. 

The Enhanced Vegetation Index (EVI) has been used more recently, as it is more responsive to 
variation in vegetation canopy structures compared to NDVI 63. Studies have shown a significant 
correlation between the EVI and the yield of corn 64 and rice 65. Previous research, considering an 
ensemble of ten globally significant crops, and found that the EVI shows better correlation with crop 
yields overall, than the NDVI 66.  We therefore focused on the EVI only and considered its maximum 
value within the growing season to be representative of crop productivity within that season. See 
Shammi and Meng 67, for example, for the use of the season’s peak reading of EVI as a good 
indicator of crop yields.   

The base regression specification was formulated as follows:    

𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼 + 𝛽𝛽1𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽2(𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)2 + 𝛽𝛽3𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽4(𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)2 + 𝛽𝛽5𝐷𝐷𝑝𝑝𝑝𝑝 + 𝛽𝛽6𝐹𝐹𝑝𝑝𝑝𝑝 + 𝜇𝜇𝑝𝑝 + 𝜀𝜀𝑝𝑝𝑝𝑝 (5) 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum observed peak EVI during the growing season in plot (p) and growing 
season year (t), 𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 are the average minimum and maximum diurnal temperature over 
the growing season in the same plot/year combination; and their square terms are also included. D is 
the drought binary indicator (as described above), F is the flood indictor. µ is a plot fixed-effect to 
account for plot-specific time-invariant differences in plant productivity, and ε is the error term.  

The droughts and flood indicators are calculated using different thresholds that represent either 
moderate, severe, or extreme events. To separate the effect of excess water on crops located in flood 
prone area (versus land that is not prone to periodic flooding), we also added to these specifications 
an interaction term between flood variables and the rf2345 flood-zone variable that is described 
above. 

We also considered the effect of irrigation and the expected lessening of the effect of drought on 
productivity that irrigation may generate. However, data on irrigation are only available at the parcel 
level for the years 2017 and 2020. These data are available for download 
athttps://data.mfe.govt.nz/layer/90838-irrigated-land-area-2017/ for 2017 and 
https://data.mfe.govt.nz/layer/105407-irrigated-land-area-raw-2020-update/ for 2020.  They are 
available at the subregional level for 2002 and 2017. These data are available for download at 
https://data.mfe.govt.nz/layer/99907-irrigated-land-area-grid-aps-2002/ for 2002 and 
https://data.mfe.govt.nz/layer/99908-irrigated-land-area-grid-aps-2017/ for 2017. None of these 

https://data.mfe.govt.nz/layer/90838-irrigated-land-area-2017/
https://data.mfe.govt.nz/layer/105407-irrigated-land-area-raw-2020-update/
https://data.mfe.govt.nz/layer/99907-irrigated-land-area-grid-aps-2002/
https://data.mfe.govt.nz/layer/99908-irrigated-land-area-grid-aps-2017/
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irrigation data provided reasonable results, most likely due to the sparse time and spatial coverage of 
the data and the significant changes in irrigation systems in the last two decades. 

We also estimated specifications representing non-linear effects of temperature using fractional 
polynomial, but results were very similar to the reported quadratic specifications, so the more 
parsimonious quadratic approach was preferred. 
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Figures  
Figure 1. Examples of land use for primary parcels (Waimakariri and Selwyn districts, Canterbury) 

 

Figure 2. Example of EVI and primary parcels (02/02/2010; Waimakariri and Selwyn districts, Canterbury) 
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Figure 3. Illustration of the drought and flood duration and magnitude 
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Figure 4. Flood return interval 
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Figure 5. Box plot of impacts (excluding outsiders) on annual crops 
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Figure 6. Box plot of impacts (excluding outsiders) on perennial crops 

 



23 
 

Figure 7. Average impact (2001-2017) on annual crops  
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Figure 8. Box plot of impacts (excluding outsiders) on low-producing pasture 
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Figure 9. Box plot of impacts (excluding outsiders) on pasture with woody biomass 

 

Figure 10. Box plot of impacts (excluding outsiders) on high-producing pasture 

 



26 
 

Figure 11. Average impact (2001-2017) on pasture
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Tables 

Table 1. Variable descriptions 

Variable Description 
Tmin Minimum diurnal temperature 
Tmax Maximum diurnal temperature 
GSL Growing season length 
modD+ M Moderate or stronger drought magnitude 
modF+ M Moderate or stronger flood magnitude 
sevD+ M Severe or stronger drought magnitude 
sevF+ M Severe or stronger flood magnitude 
extD+ M Extreme or stronger drought magnitude 
extF+ M Extreme or stronger flood magnitude 
 rf2345 Zone with flood return interval of category 2, 3,4 or 5 
 rf1 Zone with flood return interval of category 1 (Nil) 

 

 

Table 2. Descriptive statistics for crops 

 Variables  Mean  Std. Dev.  Min  Max 

An
nu

al
 (7

48
,4

13
 o

bs
) 

 maxEVI .608 .098 .007 .997 
 Tmin 8.131 2.651 -2.93 16.795 
 Tmax 18.013 2.216 6.284 25.768 
 GSL 190.142 55.568 43 362 
 mod+D M .029 .044 0 1.283 
 mod+F M .021 .033 0 .479 
 sev+D M .023 .044 0 1.283 
 sev+F M .015 .032 0 .479 
 ext+D M .016 .042 0 1.283 
 ext+F M .009 .029 0 .479 
 rf2345 .329 .47 0 1 
 rf1 .653 .476 0 1 

Pe
re

nn
ia

l (
52

2,
48

3 
ob

s)
 

maxEVI .601 .088 -.073 .99 
 Tmin 9.411 2.36 -1.941 16.933 
 Tmax 19.012 1.875 8.119 25.768 
 GSL 214.873 61.863 48 357 
 mod+D M .024 .037 0 1.331 
 mod+F M .023 .032 0 .51 
 sev+D M .02 .037 0 1.331 
 sev+F M .019 .033 0 .51 
 ext+D M .013 .034 0 1.331 
 ext+F M .01 .028 0 .51 
 rf2345 .272 .445 0 1 
 rf1 .717 .45 0 1 
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Table 3. Descriptive statistics for pasture 

  Variables  Mean  Std. Dev.  Min  Max 

Lo
w

 p
ro

du
ci

ng
 p

as
tu

re
  

(2
,7

70
,2

11
 o

bs
) 

maxEVI .571 .114 -.113 .999 
 Tmin 7.044 2.506 -5.876 17.753 
 Tmax 17.001 2.125 -.227 25.327 
 GSL 220.051 53.235 40 366 
 mod+D M .027 .039 0 1.372 
 mod+F M .019 .03 0 .936 
 sev+D M .022 .04 0 1.372 
 sev+F M .015 .03 0 .936 
 ext+D M .014 .037 0 1.372 
 ext+F M .008 .027 0 .936 
 rf2345 .132 .338 0 1 
 rf1 .727 .446 0 1 

Pa
st

ur
e 

w
ith

 w
oo

dy
 b

io
m

as
s 

(2
,8

17
,5

77
 o

bs
) 

maxEVI .602 .102 -.068 .999 
 Tmin 7.374 2.547 -4.41 17.755 
 Tmax 17.162 2.085 1.401 25.289 
 GSL 215.867 55.048 42 362 
 mod+D M .027 .039 0 1.388 
 mod+F M .02 .031 0 .603 
 sev+D M .022 .04 0 1.388 
 sev+F M .015 .031 0 .603 
 ext+D M .014 .038 0 1.388 
 ext+F M .009 .027 0 .603 
 rf2345 .166 .372 0 1 
 rf1 .786 .41 0 1 

Hi
gh

 p
ro

du
ci

ng
 p

as
tu

re
  

(9
,8

38
,8

44
 o

bs
)  

maxEVI .644 .085 -.115 1 
 Tmin 7.854 2.445 -3.952 17.759 
 Tmax 17.451 2.056 2.052 25.332 
 GSL 206.806 57.075 40 362 
 mod+D M .027 .04 0 1.372 
 mod+F M .021 .033 0 .631 
 sev+D M .023 .04 0 1.372 
 sev+F M .016 .033 0 .631 
 ext+D M .015 .038 0 1.372 
 ext+F M .009 .03 0 .631 
 rf2345 .253 .435 0 1 
 rf1 .735 .441 0 1 
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Table 4. Regression results for annual crops 

 (1) (2) (3) (4) (5) (6) 

Variables Moderate Moderate,  
flood zones Severe Severe,  

flood zones Extreme Extreme,  
flood zones 

 
      

Tmin 0.00191*** 0.00190*** 0.00149*** 0.00143*** 0.000780 0.000780 
Tmin2 0.000561*** 0.000561*** 0.000570*** 0.000573*** 0.000606*** 0.000606*** 
Tmax 0.0644*** 0.0644*** 0.0654*** 0.0655*** 0.0673*** 0.0673*** 
Tmax2 -0.00194*** -0.00195*** -0.00197*** -0.00197*** -0.00202*** -0.00202*** 
mod+D M -0.0539*** -0.0538*** 

    

mod+F M -0.179*** -0.178*** 
    

mod+F M x rf2345 
 

-0.00402 
    

sev+D M 
  

-0.0476*** -0.0475*** 
  

sev+F M 
  

-0.144*** -0.135*** 
  

sev+F M x rf2345 
   

-0.0235*** 
  

ext+D M 
    

-0.0507*** -0.0507*** 
ext+F M 

    
-0.155*** -0.155*** 

ext+F M x rf2345 
     

0.000195 
Constant 0.0375*** 0.0374*** 0.0272*** 0.0263*** 0.0115 0.0115 

 
      

Observations 748,413 748,413 748,413 748,413 748,413 748,413 
Number of id 40,294 40,294 40,294 40,294 40,294 40,294 
R2 within 0.04012 0.0401 0.03830 0.0383 0.03830 0.0383 
R2 between 0.02799 0.0280 0.02708 0.0273 0.02840 0.0284 
R2 overall 0.00001 9.71e-06 0.00001 1.17e-05 0.00002 2.49e-05 
RMSE 0.06707 0.0671 0.06714 0.0671 0.06714 0.0671 

 Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1;  
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Table 5. Regression results for perennial crops 

 (1) (2) (3) (4) (5) (6) 

Variables Moderate Moderate, 
flood zones Severe Severe,  

flood zones Extreme Extreme, 
flood zones 

       
Tmin 0.000335 0.000306 0.000353 0.000317 0.000951* 0.000954* 
Tmin2 0.000642*** 0.000640*** 0.000637*** 0.000634*** 0.000649*** 0.000650*** 
Tmax 0.0678*** 0.0677*** 0.0678*** 0.0677*** 0.0680*** 0.0680*** 
Tmax2 -0.00202*** -0.00202*** -0.00202*** -0.00202*** -0.00205*** -0.00205*** 
mod+D M -0.0643*** -0.0641*** 

    

mod+F M -0.0524*** -0.0404*** 
    

mod+F M x rf2345 
 

-0.0331*** 
    

sev+D M 
  

-0.0609*** -0.0610*** 
  

sev+F M 
  

-0.0378*** -0.0203*** 
  

sev+F M x rf2345 
   

-0.0484*** 
  

ext+D M 
    

-0.0622*** -0.0621*** 
ext+F M 

    
-0.0868*** -0.0890*** 

ext+F M x rf2345 
     

0.00593 
Constant -0.0108 -0.0102 -0.0123 -0.0116 -0.0144 -0.0145 

 
      

Observations 522,483 522,483 522,483 522,483 522,483 522,483 
Number of id 31,346 31,346 31,346 31,346 31,346 31,346 
R2 within 0.03882 0.0389 0.03863 0.0388 0.04008 0.0401 
R2 between 0.10425 0.106 0.10449 0.107 0.10190 0.102 
R2 overall 0.09316 0.0946 0.09310 0.0951 0.09225 0.0921 
RMSE 0.04923 0.0492 0.04923 0.0492 0.04920 0.0492 
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Table 6. Regression results for low-producing pasture 

 (1) (2) (3) (4) (5) (6) 

Variables Moderate Moderate,  
flood zones Severe Severe,  

flood zones Extreme Extreme,  
flood zones 

       
Tmin 0.00890*** 0.00890*** 0.00886*** 0.00885*** 0.00876*** 0.00875*** 
Tmin2 -0.000115*** -0.000115*** -0.000116*** -0.000116*** -0.000112*** -0.000112*** 
Tmax 0.0205*** 0.0205*** 0.0206*** 0.0206*** 0.0207*** 0.0207*** 
Tmax2 -0.000610*** -0.000610*** -0.000611*** -0.000611*** -0.000614*** -0.000614*** 
mod+D M -0.0523*** -0.0524*** 

    

mod+F M -0.0451*** -0.0379*** 
    

mod+F M x rf2345 
 

-0.0524*** 
    

sev+D M 
  

-0.0465*** -0.0466*** 
  

sev+F M 
  

-0.0317*** -0.0229*** 
  

sev+F M x rf2345 
   

-0.0650*** 
  

ext+D M 
    

-0.0437*** -0.0438*** 
ext+F M 

    
-0.0151*** -0.00181 

ext+F M x rf2345 
     

-0.0958*** 
Constant 0.348*** 0.348*** 0.347*** 0.347*** 0.345*** 0.345*** 

 
      

Observations 2,770,211 2,770,211 2,770,211 2,770,211 2,770,211 2,770,211 
Number of id 146,031 146,031 146,031 146,031 146,031 146,031 
R2 within 0.04281 0.0429 0.04258 0.0427 0.04230 0.0425 
R2 between 0.00627 0.00617 0.00641 0.00629 0.00625 0.00614 
R2 overall 0.03483 0.0348 0.03506 0.0350 0.03479 0.0348 
RMSE 0.05222 0.0522 0.05223 0.0522 0.05224 0.0522 
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Table 7.Regression results for pasture with woody biomass 

 (1) (2) (3) (4) (5) (6) 

Variables Moderate Moderate,  
flood zones Severe Severe,  

flood zones Extreme Extreme,  
flood zones 

       
Tmin 0.00976*** 0.00975*** 0.00964*** 0.00964*** 0.00953*** 0.00954*** 
Tmin2 -0.000158*** -0.000157*** -0.000156*** -0.000156*** -0.000153*** -0.000153*** 
Tmax 0.0209*** 0.0209*** 0.0211*** 0.0211*** 0.0213*** 0.0213*** 
Tmax2 -0.000616*** -0.000616*** -0.000620*** -0.000621*** -0.000625*** -0.000626*** 
mod+D M -0.0457*** -0.0455*** 

    

mod+F M -0.0816*** -0.0701*** 
    

mod+F M x rf2345 
 

-0.0593*** 
    

sev+D M 
  

-0.0340*** -0.0339*** 
  

sev+F M 
  

-0.0588*** -0.0477*** 
  

sev+F M x rf2345 
   

-0.0576*** 
  

ext+D M 
    

-0.0336*** -0.0336*** 
ext+F M 

    
-0.0425*** -0.0315*** 

ext+F M x rf2345 
     

-0.0556*** 
Constant 0.368*** 0.368*** 0.365*** 0.365*** 0.363*** 0.363*** 

 
      

Observations 2,817,577 2,817,577 2,817,577 2,817,577 2,817,577 2,817,577 
Number of id 162,348 162,348 162,348 162,348 162,348 162,348 
R2 within 0.05334 0.0535 0.05237 0.0525 0.05181 0.0519 
R2 between 0.00115 0.000992 0.00133 0.00119 0.00141 0.00134 
R2 overall 0.01954 0.0191 0.01982 0.0195 0.01989 0.0197 
RMSE 0.04782 0.0478 0.04785 0.0478 0.04786 0.0479 
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Table 8. Regression results for high producing pasture 

 (1) (2) (3) (4) (5) (6) 

Variables Moderate Moderate,  
flood zones Severe Severe,  

flood zones Extreme Extreme,  
flood zones 

       
Tmin 0.00928*** 0.00928*** 0.00930*** 0.00930*** 0.00931*** 0.00931*** 
Tmin2 -0.000197*** -0.000198*** -0.000204*** -0.000204*** -0.000208*** -0.000208*** 
Tmax 0.0240*** 0.0240*** 0.0242*** 0.0242*** 0.0244*** 0.0245*** 
Tmax2 -0.000709*** -0.000709*** -0.000713*** -0.000713*** -0.000720*** -0.000721*** 
mod+D M -0.0240*** -0.0239*** 

    

mod+F M -0.147*** -0.132*** 
    

mod+F M x rf2345 
 

-0.0573*** 
    

sev+D M 
  

-0.0111*** -0.0111*** 
  

sev+F M 
  

-0.122*** -0.106*** 
  

sev+F M x rf2345 
   

-0.0594*** 
  

ext+D M 
    

-0.0146*** -0.0146*** 
ext+F M 

    
-0.120*** -0.104*** 

ext+F M x rf2345 
     

-0.0570*** 
Constant 0.387*** 0.387*** 0.384*** 0.384*** 0.381*** 0.381*** 

 
      

Observations 9,838,844 9,838,844 9,838,844 9,838,844 9,838,844 9,838,844 
Number of id 480,723 480,723 480,723 480,723 480,723 480,723 
R2 within 0.04269 0.0429 0.04064 0.0409 0.03961 0.0398 
R2 between 0.00827 0.00833 0.00825 0.00829 0.00811 0.00815 
R2 overall 0.00131 0.00131 0.00108 0.00109 0.00100 0.00100 
RMSE 0.05018 0.0502 0.05023 0.0502 0.05026 0.0503 
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Table A1. Variable definitions 

Variable Description 
tmean Mean diurnal temperature 
tmin Minimum diurnal temperature 
tmax Maximum diurnal temperature 
tminFP1 Fractional polynomial term 1 of minimum diurnal temperature 
tminFP2 Fractional polynomial term 2 of minimum diurnal temperature 
tmaxFP1 Fractional polynomial term 1 of maximum diurnal temperature 
tmaxFP2 Fractional polynomial term 2 of maximum diurnal temperature 
modD+ dum Moderate or stronger drought dummy 
modF+ dum Moderate or stronger flood dummy 
sevD+ dum Severe or stronger drought dummy 
sevF+ dum Severe or stronger flood dummy 
extD+ dum Extreme or stronger drought dummy 
extF+ dum Extreme or stronger flood dummy 
modD dum Moderate drought dummy  
modF dum Moderate flood dummy 
sevD dum Severe drought dummy 
sevF dum Severe flood dummy 
extD dum Extreme drought dummy 
extF dum Extreme flood dummy 
modD L Moderate drought length 
modF L Moderate flood length 
sevD L Severe drought length 
sevF L Severe flood length 
extD L Extreme drought length 
extF L Extreme flood length 
modD M Moderate drought magnitude 
modF M Moderate flood magnitude 
sevD M Severe drought magnitude 
sevF M Severe flood magnitude 
extD M Extreme drought magnitude 
extF M Extreme flood magnitude 
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Table A2. Descriptive statistics for crops 

 Variables  Mean  Std. Dev.  Min  Max 

An
nu

al
 (7

48
,4

13
 o

bs
) 

 Tmin 8.131 2.651 -2.93 16.795 
 Tmax 18.013 2.216 6.284 25.768 
 GSL 190.142 55.568 43 362 
 modD M .006 .015 0 .616 
 modF M .005 .014 0 .245 
 sevD M .007 .02 0 .616 
 sevF M .007 .019 0 .314 
 extD M .016 .042 0 1.283 
 extF M .009 .029 0 .479 
 rf2345 .329 .47 0 1 
 rf1 .653 .476 0 1 

Pe
re

nn
ia

l (
52

2,
48

3 
ob

s)
 

 Tmin 9.411 2.36 -1.941 16.933 
 Tmax 19.012 1.875 8.119 25.768 
 GSL 214.873 61.863 48 357 
 modD M .004 .013 0 .269 
 modF M .004 .011 0 .245 
 sevD M .007 .02 0 .432 
 sevF M .009 .021 0 .314 
 extD M .013 .034 0 1.331 
 extF M .01 .028 0 .51 
 rf2345 .272 .445 0 1 
 rf1 .717 .45 0 1 
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Table A3. Descriptive statistics for pasture 

  Variables  Mean  Std. Dev.  Min  Max 

Lo
w

 p
ro

du
ci

ng
 p

as
tu

re
 

(2
,7

70
,2

11
 o

bs
) 

 Tmin 7.044 2.506 -5.876 17.753 
 Tmax 17.001 2.125 -.227 25.327 
 GSL 220.051 53.235 40 366 
 modD M .005 .013 0 .572 
 modF M .004 .011 0 .465 
 sevD M .008 .02 0 .572 
 sevF M .007 .018 0 .465 
 extD M .014 .037 0 1.372 
 extF M .008 .027 0 .936 
 rf2345 .132 .338 0 1 
 rf1 .727 .446 0 1 

Pa
st

ur
e 

w
ith

 w
oo

dy
 b

io
m

as
s 

(2
,8

17
,5

77
 o

bs
) 

 Tmin 7.374 2.547 -4.41 17.755 
 Tmax 17.162 2.085 1.401 25.289 
 GSL 215.867 55.048 42 362 
 modD M .005 .014 0 .651 
 modF M .005 .011 0 .363 
 sevD M .008 .021 0 .763 
 sevF M .007 .018 0 .432 
 extD M .014 .038 0 1.388 
 extF M .009 .027 0 .603 
 rf2345 .166 .372 0 1 
 rf1 .786 .41 0 1 

Hi
gh

 p
ro

du
ci

ng
 p

as
tu

re
 

(9
,8

38
,8

44
 o

bs
)  

 Tmin 7.854 2.445 -3.952 17.759 
 Tmax 17.451 2.056 2.052 25.332 
 GSL 206.806 57.075 40 362 
 modD M .005 .014 0 .681 
 modF M .005 .012 0 .465 
 sevD M .008 .021 0 .856 
 sevF M .007 .018 0 .465 
 extD M .015 .038 0 1.372 
 extF M .009 .03 0 .631 
 rf2345 .253 .435 0 1 
 rf1 .735 .441 0 1 
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