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Abstract 
 
We develop novel forecasting methods for panel data with heterogeneous parameters and examine 
them together with existing approaches. We conduct a systematic comparison of their predictive 
accuracy in settings with different cross-sectional (N) and time (T) dimensions and varying 
degrees of parameter heterogeneity. We investigate conditions under which panel forecasting 
methods can perform better than forecasts based on individual estimates and demonstrate how 
gains in predictive accuracy depend on the degree of parameter heterogeneity, whether 
heterogeneity is correlated with the regressors, the goodness of fit of the model, and, particularly, 
the time dimension of the data set. We propose optimal combination weights for forecasts based 
on pooled and individual estimates and develop a novel forecast poolability test that can be used 
as a pretesting tool. Through a set of Monte Carlo simulations and three empirical applications to 
house prices, CPI inflation, and stock returns, we show that no single forecasting approach 
dominates uniformly. However, forecast combination and shrinkage methods provide better 
overall forecasting performance and offer more attractive risk profiles compared to individual, 
pooled, and random effects methods. 
JEL-Codes: C330, C530. 
Keywords: forecasting, panel data, heterogeneity, forecast evaluation, forecast combination, 
shrinkage, pooling. 
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1 Introduction

Panel data are widely available at the level of individuals, firms and indus-
tries, as well as at country and regional granularities and have been exten-
sively used for estimation and inference. Yet, panel data methods have had
little impact on common practices in economic forecasting, which remain
dominated by single-equation forecasting models or low-dimensional multi-
variate models such as vector autoregressions. The relative shortage of panel
applications in the economic forecasting literature is, in part, a result of the
paucity of studies on forecasting techniques for panel data and the absence
of guidelines on which methods work well in different settings.

In this paper, we examine existing approaches and develop novel fore-
casting methods for panel data with heterogeneous parameters and conduct
a systematic comparison of their predictive accuracy in settings with dif-
ferent cross-sectional (N) and time (T ) dimensions and varying degrees of
parameter heterogeneity. Our analysis provides a deeper understanding of
the determinants of the performance of these methods in different settings.
This includes the important choice of whether to use pooled versus individ-
ual estimates, with a focus on forecasting rather than parameter estimation
and inference.

We begin by exploring the bias-variance trade-off between individual
and pooled estimation when the target variables of interest are individ-
ual forecasts. We then develop a novel test that compares forecasts based
on individual versus pooled estimation using a mean squared forecast error
(MSFE) loss function. Our test does not address whether parameter hetero-
geneity is significant but instead examines whether forecasts from a model
with pooled parameters are expected to be significantly more accurate than
forecasts from individual estimation. The proposed test of forecast poola-
bility accounts for the effect of predictor and parameter heterogeneity on
forecast errors.

The literature on pre-testing stresses that combining forecasts can be a
valid alternative to pre-testing. We therefore also consider combining fore-
casts based on pooled and individual estimates and develop a novel bias-
adjusted combination scheme that minimizes the expected square forecast
error. Our combination weights are related to shrinkage forecasts along the
lines of Lee and Griffith (1979) and Maddala et al. (1997). Unlike the shrink-
age forecasts, however, our combination forecasts do not rely on iteratively
estimated parameters, which makes them computationally considerably less
burdensome.

We apply the alternative panel forecasting methods to three empirical
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applications selected to represent varying degrees of heterogeneity and pre-
dictive power of the underlying forecasting models. We characterize the
center of the cross-sectional loss distribution of the forecasts through the
median of the ratio of their MSFE values divided by the MSFE of the unit-
specific benchmark. We also study the tail features of the loss distributions
through the proportion of units for which the predictive accuracy of each
approach is either best or worst.

Our first application considers predictability of house prices across 362
US metropolitan statistical areas (MSAs). The forecasting models for this
application have a high R2 value above 0.8. Forecasts based on pooled es-
timates succeed in reducing the median MSFE value by up to 3% relative
to the forecasts based on individual estimates. Combination forecasts work
even better in this application, beating forecasts based on individual esti-
mates for more than 90% of MSAs. Overall, shrinkage forecasts produce
the most accurate forecasts, reducing the median MSFE value by up to 5%
relative to the forecasts based on individual estimates. Among the shrinkage
forecasts, a Bayesian scheme works particularly well.

Our second application considers forecasts for a panel containing 202
subcategories of CPI inflation. Our forecasting models for this application
have a substantially lower R2 in the range of 0.1 to 0.3. In this application,
based on individual estimates are more accurate than those based on pooled
estimates. Combination forecasts are, however, even more accurate than ei-
ther of these methods and beat the benchmark forecasts based on individual
estimates for up to 96% of the series. They produce the largest MSFE for at
most 0.5% of the series and have the smallest MSFE for up to 32% of series.
The shrinkage forecasts also perform quite well, with a Bayes method never
producing the largest MSFE for any of the variables while generating the
most accurate forecasts for up to 14% of the price categories.

Finally, we examine forecasts of monthly stock returns on more than
23,000 individual firms. Stock returns are well known to be very difficult to
forecast, so this application represents an environment with an extremely
low predictive R2, less than 0.01 for many stocks. Given this low predictive
power, forecast bias is of secondary importance compared to estimation error
variance and so it is not surprising that forecasts based on pooled estimates
are more accurate than forecasts based on individual estimates. Pre-test
forecasts, Bayesian and empirical Bayes shrinkage forecasts are among the
small set of models capable of producing lower average MSFE values for a
majority of stocks than a simple prevailing mean forecast for these series.

Overall, forecasts that use only the information on a given unit tend to
have loss distributions with wide dispersions across units. Their associated
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forecasts are therefore often the best but also often the worst, and their
MSFE values are often shifted to the right, implying slightly larger losses
on average. Shrinkage forecasts tend to have much narrower MSFE distri-
butions across units, often shifted to the left as they are centered around
a smaller average loss. Combination methods produce MSFE distributions
that are narrower still and rarely produce the largest squared forecast error
among all methods that we consider. Finally, forecasts based on pooled es-
timates often fall in the middle as their loss distributions are narrower than
the forecasts based on individual estimates, but wider than those from the
combination forecasts.

The literature on forecasting with panel data has mainly focused on panel
data models developed for inference rather than forecasting, but there are
some exceptions. Most notably, the review articles by Baltagi (2008, 2013)
consider the forecasting performance of the best linear unbiased predictor
(BLUP) of Goldberger (1962) in models with either fixed effects or random
effects. The BLUP estimator gives rise to a generalized least squares (GLS)
predictor which Baltagi compares to models that allow for autoregressive-
moving average (ARMA) dynamics in innovations as well as models with
spatial dependencies in the errors. In our empirical applications, we also
consider the random effects BLUP and find that the combination, pre-test,
and shrinkage forecasts provide more precise forecasts.

Trapani and Urga (2009) use Monte Carlo simulations to assess the fore-
casting performance of pooled, individual, and shrinkage estimators and find
that the degree of heterogeneity is the most important determinant of the
accuracy of different forecasts. Brückner and Siliverstovs (2006) have as-
sessed a similar group of methods for the prediction of migration, where
fixed effects and shrinkage estimators perform best.

Wang et al. (2019) also propose forecast combination methods. How-
ever, their combination weights are determined from in-sample test statis-
tics rather than the expected out-of-sample performance that we propose. In
this sense, our test is closer related to the forecast based test for a structural
break of Boot and Pick (2020), where the target is also significant improve-
ments in forecast accuracy rather than a significant change in parameters.

Liu, Moon and Schorfheide (2020) consider forecasting in dynamic panel
data models with very short time dimension, so individual parameters can-
not be estimated for each individual separately. Like Lee and Griffith (1979),
they adopt a Bayesian approach to shrink the heterogeneous parameters to
their mean. Their approach is complementary to ours as we assume that
enough observations are available per unit to allow the individual parameters
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to be estimated.1

The outline of the rest of the paper is as follows. Section 2 introduces
the model setup and presents theoretical results that compare the predictive
accuracy of individual and pooled estimation along with that of forecast
combination, pre-test and shrinkage methods. Section 3 presents a set of
Monte Carlo experiments designed to shed light on the determinants of the
(relative) forecasting performance of the methods introduced in Section 2.
Section 4 presents the results for our three empirical applications, while
Section 5 concludes. Technical details are provided in appendices at the end
of the paper.

Notation: We denote the largest and smallest eigenvalues of the N×N
matrix A = (aij) by λmax (A) and λmin (A) , respectively, its trace by

tr (A) =
∑N

i=1 aii, its spectral radius by ρ (A) = |λmax (A)|, and its spec-

tral norm by ‖A‖ = λ
1/2
max (A′A). Furthermore,

p→ denotes convergence in

probability,
d→ convergence in distribution, and

a∼ asymptotic equivalence
in distribution. O (.) and o (.) denote the Big O and Little o notations,
respectively. If {fN}∞N=1 is any real sequence and {gN}∞N=1 is a sequence
of positive real numbers, then fN = O(gN ) if there exists a positive finite
constant C such that |fN | /gN ≤ C for all N . fN = o(gN ) if fN/gN → 0 as
N → ∞. Op(.) and op(.) are the equivalent orders in probability. C and c
will be used to denote, respectively, finite large and non-zero small positive
numbers that do not depend on N and T .

2 Theoretical results

We begin our analysis by describing the panel regression setup used in our
analysis and by characterizing theoretically the trade-offs for some popular
panel regression techniques. We then introduce the forecasting methods
considered in the paper.

2.1 Setup and assumptions

We consider the following linear panel regression model:

yit = β′ixit + εit, (1)

1Our theoretical analysis focuses on the case with finite T and N → ∞ and does not
consider dynamic panel models whose analysis typically requires that

√
N/T → 0 as N

and T → ∞, jointly.
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where i = 1, 2, . . . , N refers to the individual units and t = 1, 2, . . . , T refers
to the time period, yit is the outcome of individual i at time t, xit is a
K × 1 vector of regressors—or predictors—used to forecast yit, βi, is the
associated vector of regression coefficients, and εit is the disturbances of
unit i in period t.2 Stacking the time series of outcomes, regressors and dis-
turbances, define yi = (yi1, yi2, . . . , yiT )′, Xi = (x′i1,x

′
i2, . . . ,x

′
iT )′, and εi =

(εi1, εi2, . . . , εiT )′. Further, let y = (y′1,y
′
2, . . . ,y

′
N )′,X = (X ′1,X

′
2, . . . ,X

′
N )′,

and ε = (ε′1, ε
′
2, . . . , ε

′
N )′

Our theoretical analysis makes the following standard assumptions about
the underlying data generating process.

Assumption 1. εi ∼ iid(0, σ2
i IT ), with 0 < σ2

i < ∞, and E(εiε
′
j) = 0, ∀

i 6= j.

Assumption 2. E(X ′jεi) = 0, ∀i, j.

Assumption 3. The sample covariance matrices, QiT = T−1X ′iXi =
Op(1), QNT = T−1N−1X ′X = Op(1), and there exists a T0 such that for
all T > T0, QiT and QNT are positive definite for all i, N , and T , and

0 < c < infi [λmin (QiT )] < supiλmax (QiT ) < C <∞,

for some positive constants c < C.

Assumption 4. βi = β + ηi with ‖β‖ < C, E (ηi) = 0 and Var (ηi) =
Ωii = Ωη, ∀i.

Assumption 5. ηi is distributed independently of Xj and εj , ∀i, j.

Assumption 6. ηi and ηj are weakly correlated such that supi
∑N

j=1 ‖Ωij‖ <
C, where E

(
ηiη

′
j

)
= Ωij .

This list of assumptions provides a set of sufficient conditions for estab-
lishing the results we present below. In fact, many of the assumptions can be
relaxed at the cost of adding more complexity to the analysis. Assumption 1
rules out error serial correlation and imposes error cross-sectional indepen-
dence. Assumption 2 requires all regressors to be strictly exogenous with
respect to ε. This assumption is used for forecasts based on pooled estimates
and is not required when forecasts are based on the individual estimates.

2Note that xit is assumed to be known at the point in time where the forecast of yit
is generated. To keep notations simple, we do not explicitly specify the forecast horizon.
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Assumption 3 is an identification assumption that allows consistent estima-
tion of individual slope coefficients, βi, and pooled estimators of E (βi) = β.
For pooled estimation of β , the conditions on QiT can be relaxed and it is
only required that QNT is positive definite, and supi E

∥∥Q−1
NTQiT

∥∥ < C.
Assumption 4 does not rule out correlated heterogeneity and allows for

non-zero values of E (X ′iXiηi). Correlated heterogeneity is ruled out under
Assumption 5. As we shall see later, optimality of forecasts based on pooled
estimates of β requires Assumption 5, but this assumption is not needed for
the optimality of forecasts based on the individual estimates of βi. Assump-
tion 6 allows βi to be cross-sectionally weakly correlated, which represents
a useful generalization of the random coefficient model where it is routinely
assumed that βi are independent draws from the same distribution. This
relaxation of the random coefficient model is relevant to pooled estimation
but does not bear on individual estimates of βi, where β̂i − βi does not
depend on ηi. Note that Ωη is not required to be invertible, thus allowing
for a subset of parameters to be homogeneous across i. Fixed effects can
also be included in (1) by setting the first element of xit to unity.

On a final note, our theoretical analysis uses a setup in which T is fixed
and N tends to infinity. We choose this setup because we believe it is the
most relevant representation of many economic panel data sets. However,
since there are no extant results allowing us to evaluate mean squared errors
for dynamic panels in this setting, this also means that our theoretical anal-
ysis rules out this class of models. To establish results for dynamic panels,
typically it is required that

√
N/T → 0, and we conjecture that our results

will hold for dynamic panels under this condition.

2.2 Forecasts based on individual and pooled estimates

Suppose we are interested in forecasting yi,T+1 conditional on information
known at time T , which we denote by xi,T+1 to clarify the correspondence
to yi,T+1. We first consider two forecasts generated from individual and
pooled estimators of βi. Forecasts based on the individual estimators take
the form

ŷi,T+1 = β̂
′
ixi,T+1, (2)

where

β̂i = (X ′iXi)
−1X ′iyi. (3)

Similarly, forecasts based on the pooled estimator are given by

ỹi,T+1 = β̃
′
xi,T+1, (4)
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where

β̃ = (X ′X)−1X ′y, (5)

with X and y as defined above.3

Forecast errors from the two approaches are given by

êi,T+1 = yiT+1 − ŷi,T+1 = εi,T+1 − (β̂i − βi)′xi,T+1, (6)

ẽi,T+1 = yiT+1 − ỹi,T+1 = εi,T+1 − (β̃ − βi)′xi,T+1, (7)

Both forecasts are unbiased under Assumptions 1–6, so the mean squared
forecast error (MSFE) equals the variance of each forecast. This allows us
to establish the following proposition, which is established in Appendix A.1:

Proposition 1. (i) Under Assumptions 1–4, the MSFE resulting from individual-
specific estimation of the parameters is

Var(êi,T+1|Xi,xi,T+1) = σ2
i + T−1σ2

i x
′
i,T+1Q

−1
iT xi,T+1

= σ2
i +Op

(
T−1

)
,

(8)

where QiT = T−1X ′iXi.
(ii) Under Assumptions 1–6, the MSFE resulting from pooled estimation of
the parameters is

Var(ẽi,T+1|Xi,xi,T+1) = σ2
i + x′i,T+1Ωηxi,T+1 +Op

(
N−1

)
. (9)

The following list of remarks helps interpret these results:

Remark 1 For typical panel data sets, T is not large. In practice, the pa-
rameter estimation uncertainty captured by the Op

(
T−1

)
term in (8)

can therefore be important. Parameter heterogeneity, in contrast, does
not affect the accuracy of the forecast in (8).

Remark 2 A comparison of (8) and (9) suggests that for large T , forecasts
based on individual estimation will have a lower MSFE than forecasts
based on pooled estimation.

3One could also consider fixed and random effects estimators by separating the intercept
terms from the slope coefficients and assuming that the slopes are homogeneous. This
would be an example of sub-set homogeneity. Here, we do not consider such sub-set
homogeneity to simplify the derivations but we do consider random effects estimators in
our Monte Carlo analysis and applications.
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Remark 3 Since estimates of βi are not the focus of our analysis, the
inverse of X ′iXi can be replaced by a generalized inverse whenever
some of the eigenvalues of X ′iXi are close to zero.

Remark 4 Forecasts based on individual estimates have large T optimality
properties even if one or more of the predictors in xit are weakly
exogenous. In contrast, forecasts based on pooled regressions require
the stronger assumption of strict exogeneity, even for T sufficiently
large. See Pesaran and Smith (1995) who show that, in the presence
of heterogeneity, FE estimates of dynamic panel are inconsistent even
if N and T →∞.

Remark 5 Individual estimates of βi are not affected by parameter het-
erogeneity even if such heterogeneity is correlated with the predictors,

xit, and under Assumptions 1-3 we have E
(
β̂i − βi

)
= 0. However,

the same is not true of the pooled estimates. Using (5), we have that

β̃−β =

(
N−1

N∑
i=1

X ′iXi

)−1

N−1
N∑
i=1

X ′iXiηi+(N−1X ′X)−1N−1X ′ε,

and under Assumptions 1–4, we have

plim
N→∞

(
β̃ − β

)
= Ψ−1b, (10)

where

Ψ = lim
N→∞

N−1
N∑
i=1

E
(
X ′iXi

)
, b = lim

N→∞
N−1

N∑
i=1

E
(
X ′iXiηi

)
.

This result holds for any fixed T so long as Ψ is non-singular. For
the pooled estimator to be unbiased, Assumptions 4–6 are also needed
to ensure that E (X ′iXiηi) = 0. Therefore, parameter heterogeneity
could be particularly problematic if ηi = βi − E(βi) and X ′iXi are
correlated; see also Pesaran (2015, Section 28.3). Further, (8) holds
even if X ′iXi and ηi are correlated, but the result in (9) requires that
Xi and ηi are distributed independently, thus ruling out correlated
heterogeneity as well as weak regressor exogeneity.

Remark 6 From (8) and (9) it is clear that larger values of ‖Ωη‖, corre-
sponding to a greater degree of heterogeneity in regression parameters,
are associated with a relative deterioration of the expected accuracy
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of forecasts based on pooled estimation. However, forecast accuracy
over the cross-section units depends on x′i,T+1Ωηxi,T+1 and therefore
also on the magnitude and the dispersion of the predictors across the
units and forecast periods.

2.3 Optimal forecast combinations

Given the MSFE trade-off associated with the forecasts in (2) and (4), com-
bining the forecasts based on the individual and pooled estimates, ŷi,T+1

and ỹi,T+1, may be desirable. As noted in the forecast combination litera-
ture (e.g., Timmermann, 2006), forecast combinations tend to perform par-
ticularly well if the correlation between individual forecast errors is weak.
Correlations between forecast errors based on the individual and pooled
estimation schemes decrease with (i) a lower variance of the common un-
predictable component (σ2

i ), (ii) a greater difference in the estimates of βi
resulting from larger estimation errors (small T and N) or greater hetero-
geneity (large Ωη), and (iii) estimation bias of the pooled estimator due to
correlated heterogeneity.

In contrast, if the level of heterogeneity is either very large or very
small, either the individual or pooled estimation approach will be dominant,
thereby reducing the potential gains from forecast combination. Similarly,
if T is very small but N is large and there is little parameter heterogene-
ity, we would expect pooled estimation to dominate individual estimation
by a sufficiently large margin that forecast combination offers small, if any,
gains. Conversely, if T is very large and N is relatively small, forecasts us-
ing individual estimates will dominate forecasts using pooled estimates by
a sufficient margin that renders forecast combination less attractive.

Building on these observations, consider the combined forecast

y∗i,T+1 = ωiŷi,T+1 + (1− ωi)ỹi,T+1, (11)

with associated forecast error

e∗i,T+1 = ωiêi,T+1 + (1− ωi)ẽi,T+1. (12)

The error variance of the combined forecast is

Var(e∗i,T+1) = ω2
i Var(êi,T+1) + (1− ωi)2Var(ẽi,T+1)

+ 2ωi(1− ωi)Cov(êi,T+1, ẽi,T+1),

and the optimal ω∗i , chosen to minimize the MSFE, is given by

ω∗i =
Var(ẽi,T+1)− Cov(êi,T+1, ẽi,T+1)

Var(êi,T+1) + Var(ẽi,T+1)− 2Cov(êi,T+1, ẽi,T+1)
. (13)
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The optimal combination weights therefore depend on the variances of the
underlying forecast errors as well as the covariances between forecast errors.
Using (13) and our earlier expressions for the forecast errors, we have the
following result:

Proposition 2. For fixed T > T0 such that Assumptions 1–6 hold, the
optimal combination weights that minimize the MSFE conditional on Xi

and xi,T+1, Ωη and σ2
i are given by

ω∗i =
x′i,T+1Ωηxi,T+1

x′i,T+1

[
T−1σ2

iQ
−1
iT + Ωη

]
xi,T+1

+Op

(
1

N

)
, (14)

for i = 1, 2, . . . , N .

The proof is in Appendix A.2.
Note that for T →∞ the weights tend to 1 as any parameter heterogene-

ity will outweigh the vanishing uncertainty of the individual estimation. For
a finite T , however, the optimal weights in (14) depend on the unknown pop-
ulation parameters Ωη and σ2

i . In practice, we can replace these parameters

with estimates, Ω̂η and σ̂2
i , to obtain

ω̂∗i =
x′i,T+1Ω̂ηxi,T+1

x′i,T+1

[
1
T σ̂

2
iQ
−1
iT + Ω̂η

]
xi,T+1

, (15)

where

Ω̂η =
1

N − 1

N∑
i=1

(
β̂i −

¯̂
β
)(
β̂i −

¯̂
β
)′
,

¯̂
β = N−1

N∑
i=1

β̂i,

σ̂2
i = (T − k)−1(yi −Xiβ̂i)

′(yi −Xiβ̂i).

Under Assumptions 1–6, E(Ω̂η) = Ωη + 1
NT

∑N
i=1 σ

2
iQ
−1
iT , and an unbiased

estimator of Ωη is given by

Ω̃η = Ω̂η −
1

NT

N∑
i=1

σ̂2
iQ
−1
iT , (16)

which yields the following estimate of ω∗i :

ω̃∗i =
x′i,T+1

[
Ω̂η − 1

NT

∑N
i=1 σ̂

2
iQ
−1
iT

]
xi,T+1

x′i,T+1

[
1
T σ̂

2
iQ
−1
iT + Ω̂η − 1

NT

∑N
i=1 σ̂

2
iQ
−1
iT

]
xi,T+1

, (17)
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which we will refer to as bias-corrected weights.
A downside to using the bias-corrected weights in (17) is that estimates

of the covariance matrix of the parameters (16) are not guaranteed to be
positive definite and the weights can be negative or exceed one. Moreover,
if the denominator is close to zero, the weights may take on extreme values
which can adversely affect forecasting performance. To avoid such scenarios,
we propose to restrict the weights in (17) to values between zero and one
and we will do so in the Monte Carlo experiments in Section 3 and in the
applications in Section 4.

The second input in (15) are the individual error variances. The standard

unbiased estimator of σ2
i , σ̂

2
i = (T −K)−1

∑T
t=1(yit − β̂

′
ixit)

2, tends to be
poorly estimated for small T . In Section 2.4, we introduce an alternative
estimator of σ2

i based on a mean group estimator of β , which is not adversely
affected by individual outlier estimates, β̂i.

To compare the above forecasting schemes, Figure 1 plots the risk func-
tions, that is, the expected MSFE values of the forecasts based on (i) the
individual estimates; (ii) the pooled estimator; and (iii) the optimal combi-
nation using the weights in (15). The plot, obtained using simulations for
K = 1 with details given in Appendix B, maps risk as a function of the
degree of heterogeneity measured in terms of σ2

η, a scalar version of Ωη.
For low levels of parameter heterogeneity, the forecast based on the

pooled estimator has a distinctly lower risk as compared to the forecasts
based on individual estimates, with the forecast combination falling be-
tween these two. Differences between the pooled and combination fore-
casting schemes are due to the estimation error in the covariance matrix
and the error variance. The combination forecast is, however, a clear im-
provement over the forecasts based on individual estimates. As the degree
of heterogeneity increases, the risk of the forecast based on the pooled es-
timator rises above that of the individual approach (which has a constant
risk) with the forecast combination now having a lower risk than either of
the other two forecasts. Overall, the combination forecast has an attractive
risk profile as it avoids producing high levels of risk regardless of the degree
of heterogeneity.

2.4 Forecast-based tests for pooled estimation

Figure 1 shows that there are regions in the parameter variance space where
the forecast based on the pooled estimator is more precise than the forecasts
based on individual estimates and vice versa. A possible strategy is then to
apply a pre-test to determine which of these cases applies to a given data
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Figure 1: Risk versus parameter heterogeneity
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Note: The plot displays the expected MSFE of forecasts based on

pooled and individual estimates and combination forecasts. The hori-

zontal axis measures the degree of parameter heterogeneity in the sim-

ple panel regression model. Details of the construction of the plot is

provided in Appendix B.

set. One obvious approach would be to directly test the null of parameter
homogeneity, namely βi = β, for all i. There are a number of such tests

in the literature that focus on the dispersion of β̂i around
¯̂
β, proposed by

Swamy (1970) and developed further by Pesaran and Yamagata (2008). For
a recent survey see Hsiao (2022, Ch. 13). However, forecast errors depend

on x′i,T+1(β̂i−
¯̂
β) rather than on (β̂i−

¯̂
β) and a more appropriate criterion

would be the difference between the MSFE based on individual and pooled
estimates, namely MSFE(ŷi,T+1)−MSFE(ỹi,T+1).

Under Assumptions 1–6 and given the expressions for the MSFE of the
forecasts based on the individual and pooled estimates in (8) and (9), we
have

MSFE(ŷi,T+1)−MSFE(ỹi,T+1)

= T−1σ2
i x
′
i,T+1Q

−1
iT xi,T+1 − x′i,T+1Ωηxi,T+1 +Op

(
N−1

)
. (18)

The first term on the right hand side represents the small T estimation
error of the individual approach while the second term captures increased
variance of the pooled method due to the parameter heterogeneity. The
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pooled approach will dominate forecasts based on individual estimates if,
on average, the estimation error is larger than the parameter heterogeneity.
Importantly, however, the estimation error and the parameter heterogeneity
are weighted by the regressors in the forecast period, and as such it makes

more sense to consider the average dispersion of zi,NT = x′i,T+1(β̂i −
¯̂
β)

rather than (β̂i −
¯̂
β). Accordingly, we propose a test based on z2

i,NT , as set
out in the following proposition.

Proposition 3. Suppose that Assumptions 1–6 hold, ηi and εi are normally
distributed, and ηi are cross-sectionally independent. Then, under the null
of equal forecast accuracy defined by

H0,PF : T−1σ2
i x
′
i,T+1Q

−1
iT xi,T+1 = x′i,T+1Ωηxi,T+1, ∀i, (19)

there exists a finite T0 such that for all T > T0 and as N →∞

PFNT =
1√
N

N∑
i=1

(
ω2
i,NT − 1
√

2

)
d→ N(0, 1), (20)

where

ω2
i,NT =

z2
i,NT

2x′i,T+1Ωηxi,T+1
=
T
[
x′i,T+1(β̂i −

¯̂
β)
]2

2σ2
i x
′
i,T+1Q

−1
iT xi,T+1

. (21)

The proof is provided in Appendix A.3.

If the PFNT test statistic exceeds the critical value for a given signifi-
cance level, forecasts based on individual estimates should be more precise.
Therefore, the PFNT test in (20) should be applied as a one-sided test.
The assumption of Gaussianity is needed for deriving the variance of z2

i,NT .
The assumption of error cross-sectional independence can be relaxed but
involves technical challenges. When K = 1, the PFNT test becomes equiv-

alent to slope homogeneity tests. In this case ω2
i,NT = 1

2

(
x′ixi
σ2
i

)
(β̂i −

¯̂
β)2

which no longer depends on xi,T+1, and corresponds to si in Pesaran and
Yamagata (2008, p.56).

We need suitable estimates of σ2
i for the test to be applicable when

N is large relative to T . The time series estimator of σ2
i , namely σ̂2

i =
(T − k)−1(yi −Xiβ̂i)

′(yi −Xiβ̂i), is unbiased but requires large T to be
consistent. To reduce the dependence of the estimator of σ2

i on individual
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estimates of βi, we propose the following alternative estimator based on the

mean group estimator,
¯̂
β = N−1

∑N
i=1 β̂i,

σ̃2
i,NT =

(yi −Xi
¯̂
β)′(yi −Xi

¯̂
β)

T + E
(
x′i,T+1Q

−1
iT xi,T+1

) . (22)

Under the null of equal forecast accuracy, (19), and assuming that

T−1
T∑
t=1

E
(
xitx

′
it

)
= E

(
xi,T+1x

′
i,T+1

)
, (23)

which holds, for example, if xit is stationary. It then follows that

E
(
σ̃2
i,NT

)
= σ2

i +O
(
N−1

)
. (24)

See Appendix A.4 for a proof. Using this result in (20) now yields

P̃FNT =
1√
N

N∑
i=1

(
ω̃2
i,NT − 1
√

2

)
,

where

ω̃2
i,NT =

T
[
x′i,T+1(β̂i −

¯̂
β)
]2

2σ̃2
i,NTx

′
i,T+1Q

−1
iT xi,T+1

. (25)

Finally, we propose to approximate E
(
x′i,T+1Q

−1
iT xi,T+1

)
, which appears

in the denominator of σ̃2
i,NT , by

Ê
(
x′i,T+1Q

−1
iT xi,T+1

)
≈ N−1

N∑
i=1

x′i,T+1Q
−1
iT xi,T+1,

which holds when xit are random draws from a common distribution. Due to

the sampling errors involved in using σ̃2
i,NT for σ2

i , and Ê
(
x′i,T+1Q

−1
iT xi,T+1

)
for E

(
x′i,T+1Q

−1
iT xi,T+1

)
, the use of P̃FNT is asymptotically justified only

if N and T are relatively large.
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2.5 Shrinkage forecasts

Maddala et al. (1997) consider three iterative shrinkage estimators for im-
proving estimation in panels with heterogeneous parameters, namely the
prior likelihood, Bayesian, and empirical Bayes initially introduced by Lee
and Griffiths (1979). They do not focus on forecasting, yet it is straight-
forward to use their estimators for this purpose.4 The estimators take the
same basic form:

β̂
∗
i =

(
1

σ̂2
i

X ′iXi + Ω̂
∗−1
)−1( 1

σ̂2
i

X ′iXiβ̂i + Ω̂
∗−1
β̄
∗
)
, (26)

where β̄
∗

= N−1
∑N

i=1 β̂
∗
i is the average of the respective estimators across

individual units. The three estimators differ in the choices of σ̂2
i and Ω̂

∗
.

Specifically, the prior likelihood estimator uses

σ̂2
i =

1

T

(
yi −Xiβ̂

∗
i

)(
yi −Xiβ̂

∗
i

)′
, (27)

and

Ω̂
∗

=
1

N

N∑
i=1

(β̂
∗
i − β̄

∗
)(β̂
∗
i − β̄

∗
)′. (28)

The Bayesian estimator sets

σ̂2
i =

1

T + 2

(
yi −Xiβ̂

∗
i

)(
yi −Xiβ̂

∗
i

)′
, (29)

and

Ω̂
∗

=
1

N − k − 1

[
R+

N∑
i=1

(β̂
∗
i − β̄

∗
)(β̂
∗
i − β̄

∗
)′

]
, (30)

where R is the priors for Ω. Maddala et al. (1997) choose a relatively unin-
formative prior, setting R to a diagonal matrix with small positive entries
on the diagonal as they note that the choice of R can have implications
for the convergence of the maximization to obtain the parameter estimates.
Finally, the empirical Bayes estimator uses

σ̂2
i =

1

T − k

(
yi −Xiβ̂

∗
i

)(
yi −Xiβ̂

∗
i

)′
, (31)

4Maddala et al. (1997) also discuss a Stein-type estimator. In our applications, this
estimator is far less accurate so, for brevity, we omit this estimator.
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and

Ω̂
∗

=
1

N − 1

[
R+

N∑
i=1

(β̂
∗
i − β̄

∗
)(β̂
∗
i − β̄

∗
)′

]
. (32)

None of these three estimators have closed form solutions and require an
iterative approach for estimation.

The resulting forecasts from each of these estimators is then

ŷi,T+1 = β̂
∗′
i xi,T+1.

3 Monte Carlo experiments

In this section, we use Monte Carlo simulations to explore the finite-sample
performance of a number of panel forecasting methods including those listed
above.

3.1 Design

We adopt a fairly general design which allows for dynamics, parameter het-
erogeneity, and correlations between the regressors and coefficients. We also
consider the nature of the trade-off between heterogeneity and estimation
uncertainty under different degrees of fit of the underlying panel regressions.
In particular, we consider the following data generating process (DGP):

yi,t+1 = αi + ρiyit + γixit + κσiεi,t+1, (33)

where εi,t+1 ∼ iidN(0, 1), σ2
i ∼ iid

(
1 + χ2

1

)
/2,

xit = µxi + ξit, µxi = (z2
i − 1)/

√
2, zi ∼ iidN (0, 1) ,

ξit = ρxiξi,t−1 + σxi
(
1− ρ2

xi

)1/2
νit, νit ∼ iidN (0, 1) ,

and σ2
xi ∼ iid

(
1 + χ2

1

)
/2, for individual units i = 1, 2, . . . , N , and ob-

servation periods t = −100,−99, . . . ,−1, 0, 1, . . . , T , where the draws for
t = −100,−99, . . . ,−1, are discarded. The following panel modes are fitted
to compute forecasts of yi,T+1:

yi = Xiβi + κσiεi,

where yi = (yi1, yi2, yi3, . . . , yiT )′, Xi = (ιT ,yi,−1,xi,−1), ιT is a T × 1
vector of ones, yi,−1 = (yi0, yi1, . . . , yi,T−1)′, xi,−1 = (xi0, xi1, . . . , xi,T−1)′,
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εi = (εi1, εi2, . . . , εiT )′, and βi = (αi, ρi, γi)
′. Given our focus on large N

panels, we set N = 500 and consider different time dimensions, namely
T = {20, 30, 50, 100}.

The autocorrelations of xit are generated as ρxi ∼ iid Uniform(0, 0.95),
thus allowing for a high degree of dynamic heterogeneity in the regressors.
The coefficients of lagged dependent variables, yi,t−1, are generated as ρi ∼
iid Uniform(0, ρ̄), where we vary ρ̄ to capture different degrees of dynamic
heterogeneity. The static panel arises as a special case with ρ̄ = 0. The
value of ρ̄ depends on the chosen R2, which is discussed below.

Unlike previous research, we also consider cases where the regressors and
the coefficients are correlated. Specifically, we set

αi = φµxi + σηηi, and γi = 1 + θµxi + σζζi,

where ηi, ζi ∼ iidN(0, 1). Importantly, such non-zero correlations need not
bias the pooled estimates. As noted in Remark 5, what matters is the corre-
lation between X ′iX and (βi−β). This has implications for the distribution
of µxi, which drives the correlation. A symmetric distribution, such as the
normal distribution, of µxi would imply that the correlation between re-
gressors and coefficients is non-zero but, due to the symmetry of the normal
distribution, we still have that E[(γi−γ)x2

it] = 0. To avoid such an outcome,
we draw µxi from a chi-square distribution as detailed above.

To determine the magnitude of the correlation, consider taking expecta-
tions with respect to both i and t,

E (γi) = 1, Var(γi) = θ2 + σ2
ζ ,

E (xit) = E (µxi + ξit) = 0, Var (xit) = E (xit − µxi)2 = σ2
xi,

and E [Var (xit)] = E
(
1 + χ2

1

)
/2 = 1. Also, since νit is distributed indepen-

dently of ηj and ζj for all t, i and j, Cov (γi, xit) = θ and Corr (γi, xit) =

θ
(
σ2
ζ + θ2

)−1/2
. To achieve a given level of Corr(γi, xit) = rγx, we set

θ =
rγxσζ(

1− r2
γx

)1/2 . (34)

Similarly, to achieve Corr(αi, xit) = rαx, we set

φ =
rαxση

(1− r2
αx)1/2

. (35)

Defining σ2
γ = Var(γi) = θ2 + σ2

ζ , we can use (34) to see that θ = rγxσγ . An

equivalent result emerges for φ where, for σ2
α = Var(αi), we have φ = rµxσα.
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We thus use the parameters σ2
α, σ2

γ , and ρ̄ to vary the degree of parameter
heterogeneity in αi, γi and ρi, respectively.

We show in Appendix D that the value of the pooled R2 of the indi-
vidual regressions, PR2, limits the maximum value that ρi can take. Ac-
cordingly, we set ρ̄ depending on the value of PR2. For each value of T , we
set ρβx = ραx ∈ {0, 0.5}, and for each of these we run simulations for four
combinations of {ρ̄, σ2

η, σ
2
ζ}: For PR2 = 0.2, we use {0, 0, 0}, {0.2, 0.1, 0.1},

{0.4, 0.25, 0.25}, and {0.6, 0.5, 0.5}, and for PR2 = 0.6, we use {0, 0, 0},
{0.5, 0.1, 0.1}, {0.725, 0.25, 0.25}, and {0.95, 0.5, 0.5}.

Finally, we set κ2 to achieve a desired level of average fit as measured by
the pooled R2 of the individual regressions. Details of how κ2 is determined
can be found in Appendix D. The resulting parameter values are reported
in Table 7 in Appendix D.

We hold the parameters constant across replications but redraw the er-
rors, εit and νit and generate data for different values of the average PR2

for the individual estimation.
To provide a more comprehensive comparison of forecasting performance

across different models, we add to our list two widely used methods, namely
random effects estimation and median group estimation.

In summary, forecasts based on the following estimators are considered:

• Individual estimation;

• Pooled estimation;

• Random effects estimator of Goldberger (1962);

• Median Group estimator;

• Forecast combination with weights (15) and (17) using the variance
introduced in Section 2.4 assuming serially independent data;

• Forecasts based on the pre-test discussed in Section 2.4, using the
variance introduced in that section assuming serially independent data;

• Forecasts based on the three shrinkage estimators used by Maddala et
al. (1997) and discussed in Section 2.5: prior likelihood, Bayesian, and
empirical Bayes.

Further details of these estimators are provided in Appendix C.
Heterogeneity across units can lead to misleading results when calculat-

ing MSFE ratios that are averaged across all units. To obtain a more robust
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measure, we report the median MSFE ratio computed across all units for
each method:

median MSFE(j) = mediani∈(1,N)

 R−1
∑R

r=1

(
yi,T+1 − ŷ(j)

i,T+1

)2

R−1
∑R

r=1

(
yi,T+1 − ŷ(bench)

i,T+1

)2

 , (36)

where ŷ
(r)
i,j,T+1 denotes the forecast of method j and ŷ

(r)
i,bench,T+1 is the bench-

mark forecast, both for unit i in the rth simulation for r = 1, 2, . . . ,R, where
the number of replications is set to R = 10, 000.

3.2 Simulation results

Tables 1 and 2 report results for PR2 = 0.2 and PR2 = 0.6, respectively.
Across rows we vary the correlation between the regressors and the coef-
ficients (rγx) and the variance of the coefficients (σ2

γ) which controls the
degree of heterogeneity. The time-series dimension, T , varies across the
columns. We keep N fixed at 500 as initial results suggest that variation
in N has a much smaller influence on the results compared to variations in
T . The MSFE ratios are computed using the forecasts from the individ-
ual forecasts as the benchmark with values below unity suggesting that the
respective method produces more accurate forecasts than this benchmark,
while values above unity suggest the reverse.

Panels in the top row display the results for the pooled estimation, the
BLUP random effects estimation, and the median group estimator. Panels
in the middle row show results for the combination forecasts and the pre-
test forecasts. The bottom row contains the forecast results for the three
shrinkage estimators of Maddala et al. (1997).

We summarize our observations from these simulations as follows:

• The forecast based on the pooled estimator is most precise under pa-
rameter homogeneity. Additionally, in the low PR2 environment and
with T = 20, pooling provides fairly competitive forecasts even when
parameters are heterogeneous. For larger T , forecasts based on indi-
vidual estimates are more precise. In contrast, in the high PR2 en-
vironment, forecasts from individual estimation tend to be relatively
more precise for all T when parameters are heterogeneous. In all set-
tings, the forecast based on pooled estimation is also relatively more
adversely affected by a positive correlation between the slope parame-
ter and the regressor than the forecasts based on individual estimates.
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Table 1: Monte Carlo results: relative MSFE, average PR2 = 0.2

rγ,x σ2
γ\T 20 50 100 20 50 100 20 50 100

Pooled Random effects Median Group
0 0 0.841 0.938 0.969 0.884 0.957 0.979 0.844 0.939 0.970
0 0.1 0.899 0.993 1.025 0.907 0.978 1.003 0.913 0.999 1.029
0 0.25 0.939 1.035 1.066 0.929 1.002 1.026 0.971 1.051 1.077
0 0.5 0.952 1.040 1.064 0.943 1.017 1.037 1.002 1.061 1.076
0.5 0 0.841 0.938 0.970 0.884 0.957 0.979 0.844 0.939 0.970
0.5 0.1 0.924 1.014 1.047 0.908 0.980 1.003 0.928 1.006 1.037
0.5 0.25 0.977 1.070 1.095 0.929 1.002 1.023 0.992 1.061 1.082
0.5 0.5 0.987 1.072 1.099 0.942 1.018 1.038 1.018 1.073 1.089

Combination, Ω̂η Combination, Ω̃η PF test
0 0 0.908 0.963 0.982 0.852 0.940 0.971 0.841 0.938 0.969
0 0.1 0.914 0.971 0.989 0.892 0.969 0.988 0.899 0.996 1.000
0 0.25 0.919 0.976 0.992 0.922 0.981 0.993 0.941 1.000 1.000
0 0.5 0.921 0.976 0.992 0.935 0.982 0.993 0.955 1.000 1.000
0.5 0 0.908 0.963 0.982 0.852 0.940 0.971 0.841 0.938 0.970
0.5 0.1 0.918 0.973 0.991 0.969 0.993 1.003 0.923 1.000 1.000
0.5 0.25 0.925 0.979 0.993 0.989 1.005 1.009 0.975 1.000 1.000
0.5 0.5 0.927 0.979 0.993 0.994 1.007 1.010 0.985 1.000 1.000

Prior likelihood Bayes Empirical Bayes
0 0 0.844 0.939 0.970 0.842 0.939 0.969 0.843 0.939 0.969
0 0.1 0.914 0.997 0.995 0.907 0.992 0.994 0.908 0.995 0.995
0 0.25 0.973 0.992 1.010 0.953 0.988 1.010 0.956 0.995 1.013
0 0.5 1.005 1.000 1.000 0.965 1.001 1.001 0.972 1.020 1.005
0.5 0 0.844 0.939 0.970 0.842 0.939 0.969 0.842 0.939 0.969
0.5 0.1 0.923 0.972 0.994 0.914 0.972 0.993 0.914 0.976 0.994
0.5 0.25 0.927 0.988 1.010 0.929 0.985 1.009 0.962 0.986 1.009
0.5 0.5 0.945 0.994 1.003 0.955 0.993 1.002 0.972 1.000 1.008

Note: The table reports the median of the MSFE of the respective method as a ratio of the MSFE
based on individual estimates. The DGP is given in Section 3.1, N = 500, and the parameterization to
achieve an pooled R2 of individual regressions, PR2, of 0.2 is in Table 7. Details on the estimators are
in Appendix C. Results are from 10,000 draws of the DGP.
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Table 2: Monte Carlo results: relative MSFE, average PR2 = 0.6

rγ,x σ2
γ\T 20 50 100 20 50 100 20 50 100

Pooled Random effects Median Group
0 0 0.841 0.938 0.969 0.883 0.957 0.979 0.843 0.939 0.970
0 0.1 1.144 1.228 1.249 1.024 1.095 1.114 1.245 1.292 1.304
0 0.25 1.240 1.382 1.420 1.085 1.193 1.223 1.533 1.634 1.649
0 0.5 1.248 1.262 1.332 1.103 1.155 1.205 2.287 1.651 1.729
0.5 0 0.840 0.938 0.969 0.883 0.957 0.979 0.843 0.939 0.970
0.5 0.1 1.181 1.289 1.345 1.011 1.091 1.121 1.245 1.310 1.370
0.5 0.25 1.330 1.439 1.451 1.107 1.189 1.200 1.772 1.706 1.678
0.5 0.5 1.279 1.327 1.377 1.100 1.168 1.199 2.822 2.012 1.913

Combination, Ω̂η Combination, Ω̃η PF test
0 0 0.909 0.964 0.982 0.851 0.940 0.971 0.841 0.938 0.969
0 0.1 0.941 0.987 0.997 1.023 1.018 1.003 1.000 1.000 1.000
0 0.25 0.951 0.993 0.999 1.035 1.050 1.017 1.000 1.000 1.000
0 0.5 0.954 0.987 0.997 1.000 1.027 1.025 1.000 1.000 1.000
0.5 0 0.909 0.964 0.982 0.851 0.940 0.971 0.841 0.938 0.969
0.5 0.1 0.946 0.990 0.999 1.003 1.016 1.021 1.000 1.000 1.000
0.5 0.25 0.960 0.995 0.999 1.001 1.008 1.014 1.000 1.000 1.000
0.5 0.5 0.958 0.990 0.998 1.000 1.000 1.002 1.000 1.000 1.000

Prior likelihood Bayes Empirical Bayes
0 0 0.844 0.940 0.970 0.841 0.938 0.969 0.842 0.938 0.969
0 0.1 0.992 1.000 0.995 0.976 0.996 0.994 0.983 1.006 0.995
0 0.25 1.005 0.985 0.996 1.010 0.985 0.996 1.028 0.986 0.996
0 0.5 1.006 0.994 0.999 0.994 0.994 0.998 1.017 1.015 1.005
0.5 0 0.844 0.940 0.970 0.841 0.938 0.969 0.841 0.938 0.970
0.5 0.1 0.968 1.002 0.995 0.957 1.005 0.995 0.962 1.028 0.995
0.5 0.25 1.027 0.985 0.995 1.015 0.986 0.996 1.021 1.006 0.996
0.5 0.5 1.001 0.993 1.008 0.984 0.992 1.007 0.998 1.004 1.008

Note: See footnote of Table 1.
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• The precision of forecasts based on random effects estimation often
falls between those of the individual and pooled estimations when pa-
rameters are heterogeneous. In the low PR2 environment, forecasts
based on random coefficients estimation can be more precise than ei-
ther. The relative performance of the random effects forecast is not
adversely affected by a positive correlation between the slope param-
eter and the regressor.

• The median group forecast improves over the forecasts based on in-
dividual estimates when T is small but is generally less precise for
larger T values. It is more precise than pooling only for high levels
of heterogeneity and in large samples but can be fairly imprecise in
other settings. This method performs particularly poorly in the high
PR2 setting under high levels of parameter heterogeneity and when
regressors and slope coefficients are correlated.

• The combination method that uses Ω̂η provides the most precise fore-
cast more often than any other methods and, in the remaining cases,
is generally close to the best forecast. This method is uniformly more
precise than forecasts based on individual estimates. When PR2 = 0.2
and parameters are heterogeneous it is the most precise or close to
being the most precise forecast with the only exception of T = 20
and low parameter heterogeneity. Also, the forecast precision of this
method, measured relative to forecasts based on individual estimates,
is robust with regards to any correlation between parameters and re-
gressors. Under PR2 = 0.6 it is the most precise or very close to being
the most precise method whenever parameters are heterogeneous for
all T .

• Using the unbiased estimator of Ω̃η in (16) improves over the Ω̂η-
based forecasts under parameter homogeneity, especially if T is small.
In the low PR2 environment and if parameters and regressors are un-
correlated, this method provides the best or very close to the best
forecast. This forecast does, however, perform notably worse when
parameters and regressors are correlated. In the high PR2 environ-
ment, the correction to the estimate Ω̃η is not as important as the
numerical instability that it introduces and the forecast is less precise
than that based on Ω̂η under parameter heterogeneity.

• The accuracy of the pre-test forecast that tests between the forecasts
based on individual and pooled estimates is very close to the latter

23



when this is better than forecasts based on individual estimates but
equals that of the forecast based on individual estimates when this is
more precise than the forecasts based on pooled estimates. This holds
for both values of PR2 and suggests that the PF test has a high success
rate in identifying whether the forecasts based on pooled or individual
estimates will be most accurate.

• The methods considered by Maddala et al. (1997) generally perform
well under parameter homogeneity, with a forecasting performance
that is close to the forecast based on pooled estimates. However, under
parameter heterogeneity, their performance is mixed. They deliver the
most precise forecast at times but at other times fail to beat forecasts
based on individual estimates, though any under-performance relative
to this benchmark tends to be modest, i.e., almost always less than 3%
in our simulations. Although no uniform ordering emerges among the
three forecasts, the Bayesian forecast tends to perform best overall.

Overall, these simulations demonstrate that the combination forecast us-
ing Ω̂η is the most precise or close to being the most precise method when-
ever parameters are heterogeneous. The pre-test generally tends to choose
the more precise of the forecasts based on pooled or individual estimates
but the resulting forecasts can be beaten by using forecast combination, un-
less the degree of heterogeneity is very small. The remaining methods show
mixed results and their forecasting performance tends to depend more on
the specific setting.

Our simulations also highlight the importance of correlated heterogene-
ity, that is, the nature of the correlation between γi and xit. The forecasts
based on pooled estimates tend to perform poorly when E

[
(γi − γ)x2

it

]
6= 0.

The fit of the model which, in our simulations, is captured through the
PR2 value also matters to the performance of the prediction methods. The
better the fit (higher PR2), the more accurately the individual coefficients
are estimated, and the more costly it becomes to ignore parameter hetero-
geneity.

Adding dynamics to the data generating process favors pooling over other
methods when T is small because it tends to exacerbate estimation error,
which matters particularly when T is small and parameters are imprecisely
estimated.

Individual empirical applications differ in how closely they resemble the
spectrum of DGPs assumed in Tables 1 and 2. To illustrate this point, we
consider three very different applications in the next section.
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4 Empirical Applications

We apply our list of panel forecasting methods to the following three empir-
ical applications: House price inflation in U.S. metropolitan areas, inflation
of CPI sub-indices, and stock returns on U.S. firms. These three applica-
tions have very contrasting in-sample fit: the returns of individual stocks
have a PR2 below 0.01; for the CPI application the PR2 is around 0.2, and
for the house price models it exceeds 0.8.

4.1 Measures of forecasting performance

Forecasts are evaluated using the out-of-sample MSFE of the individual
units

MSFEij =
1

T − T1

T−1∑
t=T1

(yi,t+1 − ŷi,j,t+1|t)
2, (37)

where ŷi,j,t+1|t is the forecast of yi,t+1 using method j, conditional on the
information at time t. We then calculate the ratio of the MSFE of method
j relative to that of the benchmark method (individual estimation), and
report the median ratio. We split the full sample of T observations into
an estimation sample containing observations t = 1, 2, . . . , T1, and a test
sample covering observations T1 + 1, T1 + 2, . . . , T . Details of the size of the
estimation sample are reported with each application.

We also report the proportion of units in the cross-section for which a
given method produces a smaller MSFE than the benchmark

1

N

N∑
i=1

I [MSFEij < MSFEiB] , (38)

where I(·) is the indicator function that equals unity if the expression in-
side the operator is true and zero otherwise, and subscript B denotes the
benchmark forecast. Additionally, we report the proportion of units in the
cross-section for which a given method has the smallest or largest MSFE
value computed as

1

N

N∑
i=1

I

[
MSFEij = min

l
MSFEil

]
,

1

N

N∑
i=1

I

[
MSFEij = max

l
MSFEil

]
. (39)

25



These measures help us better understand the risk of under-performance
and, on the upside, the possibility of superior predictive accuracy. Note that
these proportions can add up to more than one due to ties between fore-
casting methods, for example when the pre-test method selects the forecasts
based on pooled estimation for the entire forecast window for a particular
unit.

Finally, we provide density plots of the individual ratios of MSFEs for se-
lected methods. These plots give more detailed insights into the distribution
of the forecast performance across different units.

4.2 U.S. house prices

Our first application uses quarterly data on real house price inflation in 377
U.S. Metropolitan Statistical Areas (MSAs) from the first quarter of 1975 to
the fourth quarter of 2014—a data set that has previously been analyzed by
Yang (2021). From the Freddie Mac house price index, we calculate annual
house price inflation rates for each MSA which we then deflate by the CPI.
Our forecasts focus on the one-quarter-ahead MSA-level rate of house price
changes. The sample covers a total of 160 quarterly periods which we split
into two halves using the first as the training sample and the second to
evaluate the forecasts. Forecasts start in the first quarter of 1995 and end in
the fourth quarter of 2014, a total of 80 quarterly periods. We use a rolling
window of 60 quarters to estimate the parameters.

Our prediction model for the house price inflation rate in quarter t for
MSA i, yit, takes the form

yit = αi + ρiyi,t−1 + ρ∗i y
∗
i,t−1 + γRiȳ

(R)
i,t−1 + γCiȳ

(C)
t−1 + εit, (40)

where i = 1, 2, . . . , N denotes individual MSAs and t = 1, 2, . . . , T refers to
the time period, y∗it =

∑N
k=1,k 6=i ωikyjt is the spatial effect for a set of spatial

weights ωik, ȳ
(R)
it is the average house price inflation in the region of unit

i, and ȳ
(C)
t is the country-wide average house price inflation. The spatial

weights, ωik, measure the spatial effect of house prices in MSA k on house
prices in MSA i. We construct spatial weights from geographic distance,
that is ωik = vik/

∑N
k=1 vik and vik = 1 if the MSAs are at most 100 miles

apart and zero otherwise. For details of these weights see Yang (2021). Our
analysis excludes MSAs that do not have any neighbors within 100 miles,
which leaves 362 MSAs in our sample.

We consider two forecasting models: the first, denoted SAR, is a spatial
autoregressive model that excludes the regional and country-wide averages,
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i.e., (40) with γRi = γCi = 0. The second, denoted SARX, is the model
in (40) with all coefficients left unrestricted.

Table 3 reports the results. In the columns headed Median MSFE, the
first row shows the median MSFE value for the forecasts based on individual
estimates. Subsequent rows report the median of the MSFE ratios for the
respective methods relative to that of these benchmark forecasts. Values
of unity mean that for half of the MSAs forecasts produced by the method
listed in the row are at least as accurate as those from the benchmark with
the remaining half being equally good or worse. Values below unity im-
ply that the method in that row is more accurate than the benchmark for
more than half of the MSAs, while values above unity suggest the oppo-
site. The next two columns headed ‘freq. beating benchmark’ report the
proportion of MSAs for which the respective methods have a smaller MSFE
than the benchmark, while the columns headed ‘freq. smallest MSFE’ and
‘freq. largest MSFE’ show the proportion of MSAs for which the respective
methods have the smallest or largest mean square forecast error among all
forecasting methods.

A first observation is that the forecasts based on individual estimates
from the SAR model that excludes the regional and national averages tend
to be slightly more accurate, on average, than their counterparts based on
the SARX model but also have a wider spread in forecasting performance.
Forecasts based on individual estimates are most accurate for the SAR model
for only 7.7% of the MSAs but are least accurate for a staggering 45.0% of
MSAs. Similarly, the individual SARX forecasts are most accurate for only
3.6% of the MSAs, but least accurate for 40.1% of MSAs. Some form of
pooling is clearly advantageous for this data set.

Forecasts based on the pooled estimator improve over the benchmark by
reducing the median MSFE by between 1% and 3%, and beating the bench-
mark by up to two-thirds of the MSAs. For the SAR model, the forecasts
based on pooled estimates are most accurate for 3.0% of the MSAs while
they are least accurate for 11.9% of the MSAs. These numbers are some-
what worse for the SARX model, amounting to 1.1% and 20.2%. Forecasts
based on the pooled estimator, therefore, produce the worst performance
for far more MSAs than they produce the best performance, which suggests
that pooled estimation is not optimal for this data set either.

Random effects forecasts of house price inflation are more precise than
both the forecasts based on pooled and individual estimation. This method
performs best for the SAR model, where it beats the benchmark for 75.4%
of the MSAs, is the most precise method for 22.1% of the MSAs, and only
produces the least accurate forecasts for 4.1% of the MSAs. For the SARX
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Table 3: House price inflation forecasting results

Median freq. beating freq. smallest freq. largest
Forecast MSFE benchmark MSFE MSFE
methods SAR SARX SAR SARX SAR SARX SAR SARX
Individual 2.536 2.569 – – 0.077 0.036 0.450 0.401

Pooled 0.971 0.989 0.660 0.539 0.030 0.011 0.119 0.202
RE 0.952 0.952 0.754 0.682 0.221 0.091 0.041 0.044
Median group 0.952 0.941 0.727 0.688 0.312 0.318 0.050 0.069

Optimal combination

Naive (Ω̂η) 0.980 0.975 0.876 0.934 0.019 0.047 0.000 0.000

Bias adj. (Ω̃η) 0.974 0.966 0.859 0.914 0.069 0.119 0.006 0.006

Pre-test
PF 0.984 0.974 0.608 0.691 0.102 0.185 0.213 0.091

Shrinkage
Prior lik. 0.970 0.963 0.715 0.622 0.047 0.088 0.105 0.149
Bayes. 0.960 0.948 0.749 0.699 0.058 0.047 0.006 0.003
Emp. Bayes. 0.956 0.954 0.754 0.652 0.064 0.058 0.011 0.036

Note: SAR denotes the spatial autoregressive model and SARX the same model with regional
and nationwide house prices average added. The forecasts use geographic spatial weighting: being
in a 100km neighborhood, and an estimation window of 60 observations. In the column headed
Median MSFE, the first line gives the median level of the MSFE based on individual estimates and
the following lines the median ratios of MSFEs of the respective method relative those based on
individual estimates. The column headed ‘freq. beating benchmark’ gives the proportion of MSAs
where the respective method has a smaller MSFE than the benchmark, the column headed ‘freq.
smallest MSFE’ gives the proportion of MSAs where the respective method has the smallest
MSFE, and the column headed ‘freq. largest MSFE’ gives the proportion of MSAs where the
respective method has the largest MSFE. See Appendix C for further details of the forecasting
methods.

model, it produces the most precise forecasts less often (9.1%) and produces
the worst forecasts at about half of this rate (4.4%). Estimating heteroge-
neous intercepts seems to work well in this application. This is consistent
with substantial heterogeneity in average house price appreciation across the
MSAs in our data.

The median group estimator produces the most accurate forecasts in
this application both on average, across all MSAs, and also in terms of
the frequency at which it is the best forecast at the unit level among all
forecasting methods. It beats the benchmark for 72.7% in the case of the
SAR models and 68.8% in the case of the SARX model and provides the
most precise forecasts for 31.2% and 31.8% of MSAs. In contrast, it provides
the least precise forecast only for 5.0% and 6.9% of MSAs. This suggests
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that the median group estimator successfully adapts to the moderate level
of parameter heterogeneity that is present in this application.

Combination forecasts also improve over the forecasts based on individ-
ual and pooled estimation. The optimal combination forecasts using bias-
corrected weights are more accurate than those from the combination scheme
that uses naive weights and beat the benchmark for 85.9% and 91.4% of
MSAs. The combination forecasts with bias-corrected weights are the most
accurate ones for 6.9% and 11.9% of MSAs but only for 1.9% and 4.7%
when using the naive weights. Remarkably, however, it is extremely rare for
them to produce the worst performance. The combination forecast using
the naive weights never produces the worst forecast and the bias-corrected
weights only does so for 0.6% of the MSAs. This is a feature we will find
again in the other applications.

Pre-tests improve on the individual estimates based forecasts and in the
case of the SARX model also on the forecast based on the pooled estimator.
They beat the benchmark in about two thirds of the MSAs. Interestingly,
while the pre-tests produce the most accurate forecasts at only half the rate
at which they produce the least accurate forecasts (10.2% versus 21.3%) for
the SAR model, this relation flips for the SARX model for which the pre-
tests produce the smallest MSFE (18.5%) at twice the rate at which these
forecasts are worst (9.1%).5

The shrinkage forecasts are also more precise than the forecasts based on
individual or pooled estimation. The Bayesian and empirical Bayes forecasts
tend to be slightly more accurate than the prior likelihood forecasts. The
shrinkage forecasts beat the benchmark in between 62.2% and 75.4% of the
MSAs. They are the most precise forecasts for between 4.7% and 8.8% of
the MSAs and produce the worst forecast for between 0.3% and 14.9% of the
MSAs with the Bayesian forecasts being notably less likely than the other
shrinkage methods to yield the worst forecast for individual MSAs.

Our findings can be summarized by considering Figure 2, which plots
densities fitted to the cross-sectional distribution of MSFE ratios for four of
the forecasting methods. The pooling based forecasts are centered around
0.97 and have a high dispersion relative to the other methods. The MSFE
distribution of the random effect forecasts is shifted to the left and has a
slightly smaller dispersion than the forecasts based on pooled estimates. The
forecast combination and Bayesian approaches have a much lower dispersion
than the other methods and rarely underperform for individual MSAs.

5The median value of the PF test statistic is 1.70 and 2.82 for the SAR and SARX
models, respectively.
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Figure 2: Density of ratios of MSFE: House prices
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Note: The graph shows density plots of the ratios of the MS-
FEs for selected forecasts (pooled, random effects, bias-adjusted
combination, and Bayesian) for the SAR model. The density
estimates use a normal kernel with bandwidth 0.03.

4.3 CPI inflation of sub-indices

Our second application covers inflation rates for 202 sub-indices of the US
consumer price index (CPI). The data is measured at the monthly frequency
and spans the 60-year period from November 1958 to December 2018. We
use rolling estimation windows with 60 observations and require each estima-
tion sample to be balanced, excluding individual units without a complete
set of observations in a given window. After accounting for the necessary
pre-samples, we generate 650 forecasts for each series, with the first forecast
computed for November 1964.

We consider three forecasting models: (i) a purely autoregressive speci-
fication with lags 1, 2, and 12, denoted AR; (ii) the same AR specification
augmented with the lagged value of the first principal component of the data,
denoted AR-PC; and (iii) the AR-PC model augmented with the lagged de-
fault yield and lagged term spread, denoted AR-X.

The first three columns of Table 4 show that, in contrast to the previous
application, forecasts based on individual estimates are now more accurate,
on average, than forecasts based on the pooled, random effects, and, to
a lesser extent, median group estimation schemes. These methods have a
higher median MSFE and beat the benchmark only for about one-third of
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Table 4: CPI inflation forecasting results

Median freq. beating freq. smallest freq. largest
Forecast MSFE benchmark MSFE MSFE
method AR AR-PC AR-X AR AR-PC AR-X AR AR-PC AR-X AR AR-PC AR-X

Individual 1.568 1.573 1.641 – – – 0.059 0.054 0.035 0.064 0.054 0.183

Pooled 1.076 1.077 1.114 0.351 0.347 0.361 0.144 0.153 0.149 0.119 0.124 0.114
RE 1.153 1.155 1.232 0.213 0.218 0.233 0.015 0.015 0.000 0.579 0.564 0.554
Median group 1.038 1.038 1.016 0.337 0.342 0.450 0.030 0.030 0.059 0.124 0.119 0.099

Optimal combination

Naive (Ω̂η) 0.975 0.974 0.951 0.936 0.936 0.950 0.317 0.297 0.243 0.000 0.000 0.000

Bias adj. (Ω̃η) 0.973 0.971 0.964 0.678 0.673 0.688 0.074 0.074 0.045 0.000 0.000 0.005

Pre-test
PF 1.000 1.000 1.003 0.356 0.485 0.465 0.030 0.030 0.000 0.0.03 0.025 0.045

Shrinkage
Prior lik. 0.991 0.989 0.951 0.574 0.554 0.723 0.069 0.059 0.069 0.054 0.020 0.000
Bayes. 0.982 0.980 0.931 0.644 0.683 0.807 0.114 0.104 0.144 0.000 0.000 0.000
Emp. Bayes. 0.994 0.996 0.927 0.584 0.550 0.782 0.173 0.188 0.257 0.035 0.094 0.000

Note: The column denoted ‘AR’ reports the results for a purely autoregressive specification, ‘AR-PC’ adds the first principle
component of the panel of sub-indices, and ‘AR-X’ additionally the default yield and the term spread to the model. The MSFEs
in the first line are multiplied by 105. For further details see the footnote of Table 3.

the indices. Forecasts based on pooled estimates yield the smallest MSFE
(14%) only slightly more often than they yield the largest ones (12%). Ran-
dom effects forecasts, in contrast, rarely have the smallest MSFE and now
generate the largest MSFE values for a majority of indices (55-57%). Median
group forecasts are most accurate for 3-6% of the series but least accurate
for 10-12% of the series, so this approach is not adapting particularly well
to the high degree of heterogeneity observed across the models estimated on
the CPI data–a finding that is consistent with the Monte Carlo simulations.

Forecast combinations produce a more precise median MSFE value than
forecasts based on individual or pooled estimation. They beat the bench-
mark for up to 95% of the indices and are the most precise forecast in up to
31.7% of the cases. Remarkably, forecast combinations based on the naive
weights do not generate the largest MSFE value for any of the price indices.
Overall, the naive weights produce more precise forecasts than the bias-
corrected weights, particularly in terms of their performance at the level of
the individual CPI sub-indices.

For this application, the pre-test forecasts frequently select the forecasts
based on individual estimates, consistent with there being a high level of
heterogeneity in the forecasting models fitted on CPI sub-indices.6 These

6The median values of the PF test statistic for the AR, AR-PC and AR-X models
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forecasts improve on the predictive accuracy of the benchmark for between
35.6% and 48.5% of the price indices and produce the smallest MSFE values
about as often as they generate the largest MSFE (3%) for the AR and AR-
PC models. For the AR-X model, the pre-test approach performs a little
worse, however, failing to generate the most accurate forecast for any of the
sub-indices and generating the worst forecast for 4.5% of the series.

The prior likelihood, Bayesian, and empirical Bayes estimators again de-
liver forecasts with a lower median MSFE than the forecasts based on pooled
or individual estimation. They beat the benchmark for between 57.4% and
80.7% of the price indices, have the lowest MSFE value for between 5.9% and
25.7% of indices and the highest MSFE for between 0 and 9.4% of indices.

Overall, the Bayesian forecasts perform best among these shrinkage ap-
proaches, both in terms of median MSFE, the frequency at which the fore-
casts beat the benchmark, and the ability to produce forecasts with the
lowest MSFE without also increasing the risk of generating the least ac-
curate forecasts. The ordering of the forecasts is not completely uniform,
however. For example, the empirical Bayes approach works very well for the
AR-X model.

Our evidence is summarized in Figure 3 which shows densities of the
MSFE ratios across the different sub-indices as produced by the AR model.
As in the previous application, the forecast combination and Bayesian ap-
proaches have by far the smallest dispersion, consistent with these methods
producing relatively few cases with the best or worst MSFE performance.
Forecasts based on pooled estimates have a thick right tail, indicating severe
underperformance (median MSFE ratios above one) for a large proportion
of price indices. The random effects approach performs even worse in this
application with few MSFE ratios below one and a very thick right tail.

4.4 Individual stock returns

Our final application considers a panel of 23,121 individual US firm-level
stock returns recorded at the monthly frequency. Our data sample runs from
January 1977 through December 2017. We use a rolling estimation window
of 120 observations, so our out-of-sample forecasts span the 31-year period
from January 1987 through December 2017, corresponding to 372 monthly
forecasts per stock. We require the panel for each estimation window to be
balanced. In practice, this means that, in a given period, between 1,116 and
2,726 stocks are included in the panels we use for estimation, the average

(8.29, 7.91, and 3.13) support using the individual estimates for the CPI sub-indices.
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Figure 3: Density of ratios of MSFE: CPI inflation
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Note: The graph shows density plots of the ratios of the MSFE
over the CPI sub-indices for selected forecasts (pooled, random
effects, bias-adjusted combination, and Bayesian) for the AR
model. The density estimates use a normal kernel with band-
width 0.04.

being 2,151 stocks.
Our prediction model is based on univariate regressions of the form

yi,t+1 = αi + βixit + εit+1, (41)

where xit is the 6-month momentum of the particular stock, measured using
cumulative returns up to the previous month. Return momentum is often
identified as being among the best predictors of stock returns. While re-
sults will, of course, vary across predictors, similar findings hold for other
predictors that we examined.

Table 5 reports our results. As in the other applications, the top row
shows results for the model estimated on individual stocks. In the second
row we now present results for the so-called prevailing mean model that
uses the historical average computed on data up to the forecast date, i.e.,
model (41) constrained to set βi = 0. Welch and Goyal (2008) find that this
benchmark is very difficult to outperform in out-of-sample forecasts for the
aggregate stock market, while Gu, Kelly and Xiu (2020) find that a simple
forecast of zero is difficult to improve upon for individual stocks.
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Table 5: Stock market forecasting results

Forecast Median freq. beating freq. beating freq. smallest freq. largest
method R-squared prevail.mean individual MSFE MSFE
Individual -1.399 0.352 – 0.088 0.583

Prevailing mean – – 0.648 0.164 0.089
Pooled 0.232 0.609 0.648 0.106 0.018
RE -0.220 0.439 0.647 0.200 0.206
Median Group 0.302 0.623 0.648 0.151 0.011

Optimal combination

Naive (Ω̂η) −0.244 0.414 0.647 0.049 0.002

Bias adj. (Ω̃η) 0.184 0.577 0.648 0.117 0.026

Pre-test
PF 0.232 0.609 0.648 0.106 0.018

Shrinkage
Prior lik. 0.274 0.602 0.648 0.136 0.074
Bayes. 0.295 0.622 0.648 0.033 0.002
Emp. Bayes. 0.295 0.623 0.648 0.003 0.000

Note: The table reports the median out-of-sample R2, defined as 1 minus the ratio of MSFE of the
respective method over that of the prevailing mean forecast, such that positive values correspond
to MSFE ratios less than one. For further details see the footnote of Table 3.

In line with the empirical finance literature, the first column reports me-
dian out-of-sample R2 values rather than MSFE ratios. The out-of-sample
R2 measure proposed, by Campbell and Thompson (2008), is given by

R2
ij = 1−

(T − T1)−1
∑T−1

t=T1
(yi,t+1 − ŷi,j,t+1|t)

2

(T − T1)−1
∑T−1

t=T1
(yi,t+1 − ȳi,t+1|t)2

= 1− MSFEij
MSFEiB

.

where ȳit+1|t is the prevailing mean (historical average) forecast, i = 1, 2, . . . , N
denotes the stock, and j the forecasting method with corresponding forecast
ŷi,j,t+1|t. As shown after the second equation sign, the out-of-sample R2 mea-
sure is a simple transformation of the MSFE ratio for method j (MSFEij)
measured relative to that of the benchmark (MSFEiB) with positive values
corresponding to MSFE ratios less than one. As R2 values are very small
in this application, we report them in percentage terms so that, e.g., 0.5%
is equivalent to 0.005.

Columns two and three report the frequency with which a given forecast-
ing method produces lower MSFE values than the prevailing mean (column
2) or the forecasts based on individual estimates (column 3), while columns
four and five report the proportion of stocks for which a method produces
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the lowest or highest MSFE values, respectively.
Table 5 shows that forecasts based on the pooled, median group, bias-

corrected optimal combination, pre-testing, and three shrinkage schemes
generate median R2 values between 0.184% and 0.302%. These forecasts
also beat the prevailing mean forecasts for between 57.7% and 62.3% of
the stocks and further beat the forecasts based on individual estimates for
nearly 65% of the stocks. Conversely, the individual, random effects and
naive combination weights produce negative R2 values.

This application effectively has a very low level of parameter heterogene-
ity due to the extremely low predictive power of the regressor which means
that even large variation in slope coefficients do not translate into very dif-
ferent forecasts. Consistent with this, the pre-test always selects the pooled
over the individual specific method.7

To get a sense of the significance of these results, note that a large liter-
ature in finance finds that univariate regression models such as that in (41)
often produce higher out-of-sample MSFE-values than the prevailing mean
model (Goyal and Welch, 2008, Rapach et al., 2010). This happens because
stock returns are very difficult to predict due to the low signal-to-noise ra-
tio in predictive return regressions and high levels of parameter estimation
error which tends to dominate any predictive signal and so produces neg-
ative R2 values. Campbell and Thompson (2008) indicate that a monthly
out-of-sample R2 value of 0.5% or higher can be exploited for sizeable eco-
nomic gains for mean-variance investors with moderate levels of risk aver-
sion. Their analysis is for aggregate stock market returns, which tend to
be less volatile than individual stock-level returns. Viewed in this context,
many of the panel forecasting approaches perform quite well.

Return forecasts based on individual estimation produce the lowest MSFE
for only 8.8% of the stocks, and produce the highest MSFEs for 58.3% of
the stocks, suggesting that this approach has a very unattractive risk pro-
file across the population of stocks. The traditional benchmark forecasts
from the prevailing mean model perform much better here, producing the
most accurate forecasts for 16.4% of the stocks and the least accurate fore-
casts for only 8.9% of the stocks. Forecasts based on pooled estimates are
more conservative, producing the smallest MSFE for 10.6% of stocks and
the largest value for only 1.8% of cases. The random effect forecasts pro-
duce both the most accurate and the least accurate forecasts for 20% of the
stocks. Similar to the forecasts based on the pooled estimator, the median

7The median value of the PF test statistic is -19.85, strongly favoring pooling for the
stock market application.
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group, combination, and pre-test forecasts generate a substantially higher
proportion of stocks with the smallest MSFE than the proportion of stocks
with the largest MSFE value. Specifically, the median group, bias-corrected
optimal combination and pre-test forecasts produce the best forecasts for
10-15% of the stocks and only generate the worst forecasts for less than 3%
of the stocks.

The shrinkage forecasts produce more accurate forecasts than both the
prevailing mean and individual estimates based forecasts for between 60 and
65% of the stocks. While the prior likelihood approach produces the most
accurate forecasts for 13.6% of the stocks and the worst forecasts for 7.4%
of the stocks, these rates are much lower for the Bayes and empirical Bayes
methods.

Figure 4 shows density plots for the cross-section of R2 values measured
relative to the prevailing mean model. The forecasts based on individual
estimates are centered furthest to the left–recall that this is an undesirable
feature for the R2 measure–and have the highest dispersion followed by the
random effects forecasts. The distributions of the pooled, combination, and
Bayesian forecasts have densities with similar dispersion that are centered
further to the right, indicating larger average R2 values and, thus, better
out-of-sample forecasting performance.

4.5 A decomposition of MSFE values

We, finally, propose a simple decomposition of the MSFE values for a better
understanding of the trade-off offered by the different forecasting methods
in the different empirical applications. To isolate the effects of estimation
uncertainty in the proposed decomposition we use individual-based forecasts
fitted in the out-of-sample test period as the benchmark. However, the
decomposition is completely general and can readily be used with alternative
benchmarks.

Let βi be the estimate of βi from the individual regressions fitted on the
out-of-sample period, t = T1 + 1, T1 + 2, . . . , T , and let εit be the associated
(in-sample) residual at time t

yit = β
′
ixit + εit ≡ yit + εit, (42)

such that
∑T

t=T1+1 εit = 0, as an intercept is always included in the model.
Fitting the individual model only on the data from the out-of-sample period
accomplishes two things. First, it ensures that the forecasts are unbiased
and the residuals have zero mean. Second, the MSE computed from the
residuals in (42) is an infeasible lower bound against which we can measure
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Figure 4: Density of out-of-sample R2: Stock market returns
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Note: The graph shows density plots of the out-of-sample R2 for
selected forecasts (pooled, random effects, bias-adjusted combi-
nation, and Bayesian). The density estimates use a normal ker-
nel with bandwidth 0.5.

the MSFE performance of other forecasting methods; it is infeasible because
the regression uses information from future observations to estimate βi.

8

To compare the infeasible forecast in (42) to forecasts from the other
methods, let β̂it be the period-t (real-time) estimate of βi from one of the
methods under consideration, based on information up to time t, and ε̂it is
the associated forecast error

yit = β̂
′
itxit + ε̂it ≡ ŷit + ε̂it, t = T1 + 1, T1 + 2, . . . , T. (43)

Taking the difference between (42) and (43), we have

ε̂it = yit − ŷit + εit ≡ ∆ŷit + εit,

where we defined ∆ŷit = yit − ŷit. This yields the following decomposition:

1

T − T1

T∑
t=T1+1

ε̂2
it =

1

T − T1

T∑
t=T1+1

∆ŷ2
it +

1

T − T1

T∑
t=T1+1

ε2
it (44)

+
2

T − T1

T∑
t=T1+1

∆ŷitεit.

8Note also that the sample estimate of the individual model’s MSFE over the period
t = T1 + 1, T1 + 2, . . . , T is biased downwards relative to the population MSFE value.
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Subtracting the MSFE of the benchmark model from both sides of (44),
we have

1

T − T1

T∑
t=T1+1

ε̂2
it −

1

T − T1

T∑
t=T1+1

ε2
it

=
1

T − T1

T∑
t=T1+1

∆ŷ2
it +

2

T − T1

T∑
t=T1+1

∆ŷitεit

=
1

T − T1

T∑
t=T1+1

(
∆ŷit − µ̂ŷi

)2
+ µ̂2

ŷi
+

2

T − T1

T∑
t=T1+1

∆ŷitεit, (45)

where µ̂ŷi = (T − T1)−1
∑T

t=T1+1 ∆ŷit, is the estimated bias of ŷit relative
to that of yit in the test sample. By construction, yit has zero bias in
the test sample so µ̂ŷi is also equal to the test-sample bias of ŷit. Moreover,

(T−T1)−1
∑T

t=T1+1

(
∆ŷit − µ̂ŷi

)2
can loosely be interpreted as variance orig-

inating from estimation error.
Estimates of the out-of-sample MSFE measured relative to the MSFE of

the forecasts based on individual estimates (with parameters estimated on
the out-of-sample period) can therefore be decomposed into the variance of
the forecast differential (relative to the benchmark) plus the squared sample
bias of the forecasting method plus two times the covariance between the
forecast differential and the baseline model’s forecast error.

Note that (45) will be positive because the yit forecasts are computed
using a model whose parameters are optimized on the test sample t = T1 +
1, T1 +2, . . . , T . Across different forecasting methods, the relative size of the
variance component depends on whether estimation uncertainty (which, for
example, is Op(N

−1) under pooling) outweighs parameter heterogeneity or
if the opposite holds.

Table 6 shows the outcome of this decomposition for our three empirical
applications in the form of median (across units) values of the three compo-
nents of (45).9 The layout of this table is similar to that of the earlier tables,
except that the top row (individual) now decomposes the MSFE performance
of the individual based forecasts with recursively estimated parameters rel-
ative to the individual based forecasts whose parameters are estimated on
the test sample and so, by construction, produce smaller MSFE values.

Starting with the house price application (lower left quadrant), forecasts
based on individual estimates and pre-tests generate by far the highest me-

9Because medians are computed separately for each of the three components, the re-
ported values cannot be added up to get the total MSFE ratio of the median unit.
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Table 6: Decompositions of the forecasts

Application CPI data
AR AR-PC AR-X
Var 2Cov E2 Var 2Cov E2 Var 2Cov E2

Individual 0.283 −0.137 0.000 0.285 −0.083 0.001 0.417 −0.080 0.002

Pooled 0.306 −0.122 0.016 0.280 −0.077 0.015 0.392 −0.057 0.019
RE 0.268 −0.068 0.202 0.274 −0.053 0.193 0.500 −0.036 0.175
Median group 0.235 −0.148 0.048 0.220 −0.106 0.046 0.252 −0.096 0.044

Optimal combination

Naive (Ω̂η) 0.208 −0.158 0.001 0.210 −0.105 0.001 0.283 −0.097 0.002

Bias adj. (Ω̃η) 0.220 −0.143 0.002 0.218 −0.109 0.002 0.319 −0.106 0.003

Pre-test
PF 0.282 −0.122 0.001 0.279 −0.080 0.001 0.386 −0.079 0.002

Shrinkage
Prior lik 0.203 −0.103 0.002 0.194 −0.065 0.003 0.267 −0.074 0.005
Bayes 0.186 −0.121 0.003 0.182 −0.072 0.003 0.241 −0.080 0.005
Emp Bayes 0.184 −0.094 0.003 0.192 −0.058 0.004 0.243 −0.080 0.005
Application House price data Stock prices

SAR SARX
Var 2Cov E2 Var 2Cov E2 Var 2Cov E2

Individual 0.274 0.083 0.008 0.579 0.074 0.018 0.933 2.018 0.130

Pooled 0.241 0.003 0.002 0.577 -0.022 0.011 0.429 0.171 0.332
RE 0.201 0.009 0.001 0.506 -0.001 0.002 0.450 0.246 0.947
Median group 0.182 0.007 0.006 0.437 -0.032 0.006 0.425 0.142 0.356

Optimal combination

Naive (Ω̂η) 0.239 0.057 0.006 0.522 0.047 0.013 0.449 1.005 0.157

Bias adj. (Ω̃η) 0.236 0.042 0.005 0.514 0.034 0.011 0.467 0.260 0.279

Pre-test
PF 0.292 0.027 0.005 0.630 -0.059 0.013 0.429 0.171 0.332

Shrinkage
Prior lik 0.185 0.045 0.006 0.513 0.001 0.015 0.437 0.159 0.348
Bayes 0.195 0.019 0.004 0.475 0.004 0.008 0.426 0.151 0.340
Emp Bayes 0.191 0.019 0.005 0.462 0.014 0.007 0.426 0.151 0.340

Note: The table reports the variance, twice the covariance, and squared expectated bias given in (45)
estimated in the respective forecast samples. The results for the CPI and stock market data are scaled
up by 105 and 104 for readability.

dian variance component, while the median group estimator, optimal com-
bination and shrinkage forecasts are at the opposite end of the spectrum,
producing far lower variance terms.
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The individual estimation method also produces a far higher positive
covariance term than the other approaches. Among the remaining methods,
the forecast combinations generate quite high covariances, while the pooled,
random effect, median group and Bayesian shrinkage approaches produce
very low covariance values. Finally, the squared bias term is small for all
approaches in this application.

These results show that the individual based forecast estimation scheme
performs relatively poorly in the housing application due to the twin effects
of estimation errors that have high variance and are strongly correlated with
the forecast errors. Conversely, the median group estimator, combinations,
and shrinkage approaches produce relatively accurate forecasts as a result
of their small variance and covariance terms.

Turning to the CPI inflation forecasts (top panel), the variance compo-
nent is notably smaller for the median group, combination and shrinkage
methods compared to especially the individual, pooled and pre-test meth-
ods. The optimal combinations, along with the median group estimator,
also tend to have slightly larger negative covariance terms which helps to
reduce their MSFE values.

The random effects approach achieves a substantially smaller reduction
in MSFE performance from the covariance term than the other methods.
Moreover, the random effects forecasts stand out as being highly biased,
which helps explain their very poor performance for the CPI application.

Conversely, the good CPI forecasting performance of the median group,
combination and shrinkage approaches reflects both their small variance and
larger negative covariance components.

Finally, in the stock price application, the variance and covariance com-
ponents for the individual based forecasting method are both very large –
twice as large as those of the second-highest method. While the individual
estimation method generates a much smaller squared bias than the other
approaches, this term is generally quite small and so gets dominated by the
larger variance and covariance terms. The exception to this pattern is the
random effects forecasts whose very large bias explains their poor perfor-
mance for stock returns.

The median group, pooling, bias-corrected combination and shrinkage
approaches all perform quite well in this application because they manage
to keep all three MSFE components relatively small.

These results suggest that the accuracy of different panel forecasting
methods generally hinges on how high the variance of their estimation errors
is and how strongly they correlate with forecast errors. The only method
for which the squared bias term seems to matter a great deal is the random
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effects estimator which in some settings produces strongly biased forecasts.

5 Conclusion

We provide a comprehensive examination of the out-of-sample predictive
accuracy of a large set of novel and existing panel forecasting methods, in-
cluding individual estimation, pooled estimation, random effects, median
group, optimal combination, pre-test, and (Bayesian) shrinkage. Our analy-
sis characterizes analytically the determinants of squared error performance
as it relates to (squared) bias and estimation error variance components.
We show how parameter heterogeneity, predictive power, and sample sizes
regulate the bias-variance trade-off that determines predictive accuracy. To
illustrate these theoretical points, we consider three empirical applications
to house prices, CPI inflation, and stock market returns.

Our main findings can be summarized in three points. First, we generally
find that a number of panel approaches perform systematically better than
forecasts based on individual estimates. Our empirical applications to three
very different data sets demonstrate sizeable gains from exploiting panel
information to obtain forecasts that are more accurate both on average,
across units, and also for the majority of individual units.

Second, our analytical results and Monte Carlo simulations show that one
should not expect a single forecasting approach to be uniformly dominant
across applications that differ in terms of the cross-sectional and time-series
dimensions, strength of predictive power, and, most importantly, degree of
heterogeneity in intercept and slope coefficients.

This point is demonstrated by our empirical analysis. Forecasts based
on pooled estimates are notably better than forecasts based on individual
estimates in the house price application, while conversely forecasts based on
individual estimates perform much better in the CPI inflation application.
For both panels, we find that the combined forecasts and (Bayesian) shrink-
age forecasts are more precise than forecasts based on pooled or individual
estimates, sometimes by a substantial margin. A novel pre-test method
that chooses between pooled and individual estimation generally produces
forecasts that are more precise than either of the underlying forecasting
methods.

For the application to stock market returns where forecasts based on
pooled estimation is very hard to beat, the pre-test nearly always correctly
chooses pooling. Moreover, median group, bias adjusted combination, and
shrinkage forecasts also deliver relatively accurate forecasts. These methods
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all beat prevailing mean and forecasts based on individual estimates for the
majority of stocks.

Third, while it is not possible to pinpoint a single universally dominant
approach to panel forecasting, the methods clearly differ in terms of their risk
profiles, particularly their ability to reduce the probability of generating very
poor forecasts for individual units in a cross-section. While the individual,
pooled, random effect, and median group estimation methods perform very
poorly in at least one of our empirical applications, forecast combination
and Bayesian shrinkage methods typically have a very small chance of being
the worst method for individual units, while at the same time retaining some
probability of being the best method.

In a nutshell, our simulations and empirical applications suggest that
forecast combinations and shrinkage methods offer insurance against poor
performance. Forecast combinations, in particular, perform well across the
board, while the performance of shrinkage methods tends to vary a bit
more across applications. Compared to the alternative forecasting meth-
ods we consider, this better “risk-return” trade-off makes the combination
and shrinkage methods attractive in forecast applications with panel data.
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Online Appendix

Appendix A Mathematical derivations

Note that for simplicity we drop the fact that we condition on X and xi,T+1

from the notation. However, all mathematical expectations derived are con-
ditional, which is justified given Assumptions 1–6.

A.1 MSFE values for pooled and individual estimation

Using (3), under (1) we have

β̂i − βi =
(
X ′iXi

)−1
X ′iεi,

and the first result in Proposition 1 follows since under Assumptions 1-3
E (εi) = 0, and Var (X ′iεi) = σ2

i (X ′iXi).
To prove the second part of Proposition 1, using (5) we note that

β̃ − βi = bi,NT + ξNT , (46)

where

bi,NT = N−1
N∑
j=1

Sj,NT ηj − ηi, and ξNT = (X ′X)−1
N∑
j=1

X ′jεj , (47)

and

Sj,NT =

(
X ′X

NT

)−1(X ′jXj

T

)
.

By Assumption 5, εi and ηj are distributed independently for all i and j,
so

Var(ỹi,T+1) = σ2
i + x′i,T+1 [Var(bi,NT ) + Var(ξNT )]xi,T+1. (48)

Also, under Assumption 4 and 5, E (bi,NT ) = 0, and Var(bi,NT ) = E
(
bi,NTb

′
i,NT

)
and we have

Var(bi,NT ) = E

N−1
N∑
j=1

Sj,NTηj − ηi

(N−1
N∑
l=1

Sl,NTηl − ηi

)′ .
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Since, conditional on X, Sj,NT is given,

Var(bi,NT ) = E
(
ηiη

′
i

)
+N−2

N∑
j=1

N∑
j′=1

Sj,NTE
(
ηjη

′
j′
)
S′j′,NT

−N−1
N∑
j=1

Sj,NTE
(
η′jηi

)
−N−1

N∑
j=1

E
(
ηiη

′
j

)
Sj,NT .

Let E
(
ηiη

′
j

)
= Ωij , and note that E (ηiη

′
i) = Ωη, Ω′ij = Ωji, and

‖ Ωij‖ = ‖Ωji‖. Then

Var(bi,NT ) = Ωη +N−2
N∑
j=1

N∑
j′=1

Sj,NT Ωjj′S
′
j′,NT

−N−1
N∑
j=1

Sj,NTΩji −N−1
N∑
j=1

ΩijSj,NT ,

which can be written more compactly as

Var(bi,NT ) = Ωη +N−1
(
ANT +BNT +B′NT

)
, (49)

where

‖ANT ‖ =

∥∥∥∥∥∥N−1
N∑
j=1

N∑
j′=1

Sj,NT Ωjj′S
′
j′,NT

∥∥∥∥∥∥
≤ N−1

N∑
j=1

N∑
j′=1

‖Sj,NT ‖
∥∥Sj′,NT∥∥∥∥Ωjj′

∥∥
≤

(
sup
j
‖Sj,NT ‖

)(
sup
j′

∥∥Sj′,NT∥∥
)N−1

N∑
j=1

N∑
j′=1

∥∥Ωjj′
∥∥

≤

(
sup
j
‖Sj,NT ‖

)2

sup
j

 N∑
j′=1

∥∥Ωjj′
∥∥ .

Further,

sup
j
‖Sj,NT ‖ ≤

∥∥∥∥∥
(
X ′X

NT

)−1
∥∥∥∥∥ sup

j

∥∥∥∥X ′jXj

T

∥∥∥∥ ,
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and, under Assumptions 3 and 6,∥∥∥∥∥
(
X ′X

NT

)−1
∥∥∥∥∥ = Op(1), sup

j

∥∥∥∥X ′jXj

T

∥∥∥∥ = Op(1), sup
j

 N∑
j′=1

∥∥Ωjj′
∥∥ < C.

Hence, ‖ANT ‖ = Op(1). Similarly,

∥∥BNT +B′NT
∥∥ < 2 ‖BNT ‖ ≤ 2

N∑
j=1

‖Sj,NTΩji‖

≤ 2 sup
j
‖Sj,NT ‖ sup

i

 N∑
j=1

‖Ωji‖

 ,

and we also have ‖BNT +B′NT ‖ = Op(1). Using these results in (49) yields

Var(bi,NT ) = Ωη +Op

(
1

N

)
. (50)

Finally, under Assumptions 1–3, E (ξNT ) = 0, and E
(
εjε
′
j′

)
= 0 for

j 6= j′ and E
(
εj ε

′
j

)
= σ2

j <∞, and we have

Var(ξNT ) =
(
X′X
NT

)−1
1
N2

∑N
j=1

∑N
j′=1

X′jE
(
εjε
′
j′

)
Xj′

T 2

(
X′X
NT

)−1

= 1
N

(
X′X
NT

)−1 (
1
N

∑N
j=1 σ

2
j

X′jXj

T

)(
X′X
NT

)−1
= Op

(
1
N

)
.

(51)

The result in the second part of Proposition 1 now follows by using (50)
and (51) in (48).

A.2 Combination weights

Consider ω∗i given by (13) which we reproduce here for convenience:

ω∗i =
Var(ẽi,T+1)− Cov(êi,T+1, ẽi,T+1)

Var(êi,T+1) + Var(ẽi,T+1)− 2Cov(êi,T+1, ẽi,T+1)
. (52)

Using (8) and (9), we have

Var(êi,T+1) + Var(ẽi,T+1) = 2σ2
i + T−1σ2

i x
′
i,T+1Q

−1
iT xi,T+1

+x′i,T+1 Ωηxi,T+1 +Op
(
N−1

)
,

(53)
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where QiT = T−1X ′iXi. Also, using (6) and (7) we have

Cov(êi,T+1, ẽi,T+1) = Cov
[
εi,T+1 − (β̂i − βi)′xi,T+1, εi,T+1 − (β̃i − βi)′xi,T+1

]
= σ2

i + x′i,T+1E
[
( β̂i − βi)(β̃ − βi)′

]
xi,T+1,

and, under Assumptions 1–3,

E
[
(β̂i − βi)(β̃ − βi)′

]
= E

[(
X ′iXi

)−1
X ′iεi (bi,NT + ξNT )′

]
=
(
X ′iXi

)−1
X ′iE

(
εiξ
′
NT

)
=
(
X ′iXi

)−1
X ′iE

εi N∑
j=1

ε′jXj(X
′X)−1


= σ2

i

(
X ′iXi

)−1
X ′iXi(X

′X)−1 = N−1T−1σ2
i

(
X ′X

TN

)−1

= Op(N
−1).

Hence

Cov(êi,T+1, ẽi,T+1) = σ2
i +Op(N

−1). (54)

Using this result together with (53) we now have the following expression
for the denominator of (52)

Var(êi,T+1) + Var(ẽi,T+1)− 2Cov(êi,T+1, ẽi,T+1) (55)

= T−1σ2
i x
′
i,T+1Q

−1
iT xi,T+1 + x′i,T+1 Ωηxi,T+1 +Op(N

−1).

Similarly, using (48) and (54) the numerator of (52) is given by

Var(ẽi,T+1)− Cov(êi,T+1, ẽi,T+1) = x′i,T+1Ωηxi,T+1 +Op(N
−1). (56)

The result in Proposition 2 now follows by using (55) and (56) in (52).

A.3 Proof of Proposition 3

We first note that

β̂i −
¯̂
β = ηi − η̄N + ξiT − ξ̄NT , (57)

where

η̄N = N−1
N∑
i=1

ηi, ξiT = (X ′iXi)X
′
iεi, ξ̄NT = N−1

N∑
i=1

ξiT , (58)
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and

zi,NT = x′i,T+1 (ηi − η̄N ) + x′i,T+1

(
ξiT − ξ̄NT

)
.

Under the assumptions of the proposition and conditional on xi,T+1 and Xi,
x′i,T+1 (ηi − η̄N ) and x′i,T+1

(
ξiT − ξ̄NT

)
are distributed independently with

zero means and variances N−1
N

(
x′i,T+1Ωηxi,T+1

)
and N−1

NT σ
2
i

(
x′i,T+1Q

−1
i,Txi,T+1

)
,

respectively. From the assumption that ηi and ξiT are normally distributed,
we have that[

E
(
z2
i,NT

)]−1/2
zi,NT ∼ N (0, 1) , for i = 1, 2, . . . , N, (59)

where

E
(
z2
i,NT

)
= (1−N−1)

[
x′i,T+1Ωηxi,T+1 + T−1σ2

i

(
x′i,T+1Q

−1
i,Txi,T+1

)]
.

Then under the null hypothesis (19), we have

E
(
z2
i,NT

)
= 2(1−N−1)T−1σ2

i

(
x′i,T+1Q

−1
i,Txi,T+1

)
.

Using (59), it now follows that
[
E
(
z2
i,NT

)]−1
z2
i,NT is distributed as χ2

1 and,

hence, Var

([
E
(
z2
i,NT

)]−1
z2
i,NT

)
= 2, and under the null hypothesis

Var
(
z2
i,NT

)
= 2

[
E
(
z2
i,NT

)]2
= 2(1−N−1)2

[
2T−1σ2

i

(
x′i,T+1Q

−1
i,Txi,T+1

)]2
,

as required. The result in (20) now follows from application of standard cen-

tral limit theorems, since
[
Var(z2

i,NT )
]−1/2 [

z2
i,NT − E(z2

i,NT )
]
, i = 1, 2, . . . , N,

are standardized random variables distributed independently over i.
Note also that for large N

z2
i,NT − E(z2

i,NT )[
Var(z2

i,NT )
]1/2

=
z2
i,NT − 2T−1σ2

i

(
x′i,T+1Q

−1
i,Txi,T+1

)
√

2
[
2T−1σ2

i

(
x′i,T+1Q

−1
i,Txi,T+1

)]
=

ω2
i,NT − 1
√

2
,

where ω2
i,NT is given by (21), as required.
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A.4 Large N probability order of σ̃2
i,NT

Consider the numerator of (22) and note that, again conditional on Xi,

E
(
σ̃2
i,NT

)
=

E
[
(yi −Xi

¯̂
β)′(yi −Xi

¯̂
β)
]

T + E
(
x′i,T+1 Q

−1
iT xi,T+1

) . (60)

But

S̃SRi = (yi −Xi
¯̂
β)′(yi −Xi

¯̂
β)

= [εi +Xi(βi −
¯̂
β)]′[εi +Xi(βi −

¯̂
β)]

= ε′iεi + 2ε′iXi(βi −
¯̂
β) + (βi −

¯̂
β)′X ′iXi(βi −

¯̂
β).

Using (57) and β̂i = βi + ξ̄iT , then βi −
¯̂
β = ηi − η̄N − ξ̄NT and we have

S̃SRi = ε′iεi + 2ε′iXi

(
ηi − η̄N − ξ̄NT

)
+
(
ηi − η̄N − ξ̄NT

)′ (
X ′iXi

) (
ηi − η̄N − ξ̄NT

)′
,

and, under Assumptions 1–6, it follows that

E
(

S̃SRi

)
= Tσ2

i + E(η′iX
′
iXiηi) +O

(
1

N

)
= Tσ2

i + E

(
T∑
t=1

x′itΩηxit

)
+O

(
1

N

)
.

Using this result in (60), we have

E
(
σ̃2
i,NT

)
− σ2

i =
Tσ2

i + E
(∑T

t=1 x
′
it Ωηxit

)
+O

(
1
N

)
T + E

(
x′i,T+1Q

−1
iT xi,T+1

) − σ2
i

=
E
(
T−1

∑T
t=1 x

′
itΩηxit

)
− T−1σ2

i E
(
x′i,T+1Q

−1
iT xi,T+1

)
1 + T−1E

(
x′i,T+1Q

−1
iT xi,T+1

) +O

(
1

N

)
.

UnderH0,PF defined by (19), T−1σ2
i E
(
x′i,T+1Q

−1
iT xi,T+1

)
= E

(
x′i,T+1Ωηxi,T+1

)
,

so

E
(
σ̃2
i,NT

)
= σ2

i +
E
(
T−1

∑T
t=1 x

′
itΩηxit

)
− E

(
x′i,T+1Ωηxi,T+1

)
1 + T−1E

(
x′i,T+1Q

−1
iT xi,T+1

) +O

(
1

N

)
,
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and the desired result (24) follows if

E

(
T−1

T∑
t=1

x′it Ωηxit

)
= E

(
x′i,T+1Ωηxi,T+1

)
,

This condition can be written equivalently as

tr

{
Ωη

[
T−1

T∑
t=1

E
(
xitx

′
it

)
− E

(
xi,T+1x

′
i,T+1

)]}
= 0.

which is satisfied under (23).

Appendix B Details of the risk plots

The risk for each forecast is the average MSFE for the respective forecasting
procedures. The data are generated as

yit = βixit + σiεit,

where xit = µxi + σxivit, σ
2
i ∼ iid

(
1 + χ2

1

)
/2, σ2

xi ∼ iid
(
1 + χ2

1

)
/2, βi =

1 + σηηi, εit ∼ iidN (0, 1) , vit ∼ iidN (0, 1) , ηi ∼ iidN (0, 1), and µxi ∼
iidN (0, 1). We repeat the forecasts 10,000 times to obtain the average MSFE
for each forecasting method and value of σ2

η.
In order to make the risk plots readable while keeping the computa-

tional cost feasible, we run the resulting risks functions through a filter for
smoothing. In particular, the average MSFE for each forecasting method is
smoothed using the Kalman filter and smoother for a local linear model

zt = µt + νt

µt = µt−1 + ξt

where the variances are set to σ2
ν = 0.3 and σ2

ξ = 0.2. For the individual
based forecasts, we simply use the mean.

Appendix C Details of the estimators in the Monte
Carlo experiments and applications

Individual estimation This is the forecast in (2). This forecast is the
reference forecast and the MSFE of all other methods are reported as
ratios relative to the MSFE of this forecast.
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Pooled estimation This is the forecast in (4).

Goldberger’s random effects BLUP This forecast uses the best linear
unbiased predictor (BLUP) of Goldberger (1962) as reviewed by Bal-
tagi (2013). For the random effects model

yi,T+1 = α+ β′xi,T+1 + ui,T+1,

where ui,T+1 = ηi + εi,T+1, the BLUP forecast is

ŷi,T+1 = α̂GLS + β̂
′
GLSxi,T+1 +

σ̂2
η

T σ̂2
η + σ̂2

ε

(l′i ⊗ ιT )ûGLS,

and li is the ith column of IN , α̂GLS and β̂GLS are estimated by GLS
with covariance matrix

Σ = Tσ2
ηP + σ2

εI,

P = Xµ(X ′µXµ)−1X ′µ, Xµ = IN ⊗ ιT , ιT is a T × 1 vector of ones,

ûGLS = y − α̂ GLS −Xβ̂GLS,

σ̂2
ε =

1

N(T − 1)

N∑
i=1

T∑
t=1

(uit − ūi)2

and σ̂2
η = 1

N

∑N
i=1 η̂

2
i with η̂i obtained from the fixed effects estimation.

Median Group The forecast uses the median group estimator of β,

β̂
(MG)
k = Median

(
{β̂ik}i=1,2,...,N

)
, for k = 1, 2, . . . ,K,

where β̂ik is the k-th element of the individual estimator in (2).

Combination: Naive weights This is the forecast in (11) with weights (15)
where

Ω̂η =
1

N

N∑
i=1

(β̂i −
¯̂
β)( β̂i −

¯̂
β)′ and

¯̂
β =

1

N

N∑
i=1

β̂i,

and σ̃2
i is given in (22).

52



Combination: First-order bias-corrected weights This is the fore-
cast in (11) with weights (15) with Ω̃η replacing Ω̂η where

Ω̃η = Ω̂η −
1

N

N∑
i=1

σ̃2
i (X

′
iXi)

−1,

with σ̃2
i given in (22).

Pre-test Parameter homogeneity is tested using the test statistic ( 20)
using the σ̃2

i in (22). If parameter heterogeneity is rejected the indi-
vidual based forecast is chosen, otherwise the forecast based on pooled
estimates is taken.

Prior likelihood This forecast uses the parameter estimator (26) together
with (27) and (28).

Bayesian This forecast uses the parameter estimator (26 ) together with (29)
and (30).

Empirical Bayes This forecast uses the parameter estimator (26) together
with (31) and (32).

Appendix D Derivation of PR2
N

Consider the panel data model

yit = αi + ρiyi,t−1 + γixit + κσiεit, (61)

xit = µxi + ξit, ξit = ρxiξi,t−1 + σxi

√
1− ρ2

xiνit.

Var(εit) = 1, and Var(νit) = 1 as set out in further detail in Section 3.
In order to simplify the derivations, we treat xit as strictly exogenous (no
feedback from yi,t−1), and assume that yit is stationary and has started a
long time in the past. To deal with the heterogeneity across the different
equations in the panel, we use the following average measure of fit, for a
given N ,

PR2
N = 1−

N−1
∑N

i=1 Var (κσiεit |θi, xit )
N−1

∑N
i=1 Var(yit |θi, xit, )

, (62)

where θi = (αi, ρi, γi, σi)
′. For the numerator we have

Var (κσiεit | θi, xit ) = κ2σ2
i . (63)
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To derive Var(yit |θi, xit ), we note that

Var(yit |θi, xit ) = E [Var(yit |θi, yi,t−1, xit )] + Var [E(yit |θi, yi,t−1, xit )] ,

Var(yit |θi, yi,t−1, xit ) = κ2σ2
i ,

E(yit |θi, yi,t−1, xit ) = αi + ρiyi,t−1 + γixit,

Var [E(yit |θi, yi,t−1, xit )] = ρ2
iVar(yit |θi, xit ) + γ2

i Var (xit) .

Hence

Var(yit |θi, xit ) =
γ2
i Var(ξit) + κ2σ2

i

1− ρ2
i

. (64)

Now using (63) and (64) in (62), we obtain

PR2
N = 1− κ2

 N−1
∑N

i=1 σ
2
i

N−1
∑N

i=1
γ2i σ

2
xi+κ

2σ2
i

1−ρ2i

 ,

where σ2
xi = Var(ξit) and after some simplifications we have

PR2
N =

bN + κ2 (cN − aN )

bN + κ2cN
, (65)

where

aN = N−1
N∑
i=1

σ2
i , bN = N−1

N∑
i=1

γ2
i σ

2
xi

1− ρ2
i

,

cN = N−1
N∑
i=1

σ2
i

1− ρ2
i

.

Then

κ2 =
bN (1− PR2

N )

aN − cN (1− PR2
N )
.

A number of observations follow from this. For κ2 > 0, we must have

aN − cN (1− PR2
N ) > 0,

or PR2
N > 1 − aN/cN . So we can not set PRN too low relative to the

distribution of ρi over i. It is clear that if we fix PR2
N for a given N , then

κ will vary across N, as well. For a given value of PR2
N and for a finite N ,
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one can simulate the values of aN , bN and cN from the N random draws of
σ2
i , σ

2
xi,ρi, and γi.

When these parameters are distributed independently, as N →∞

aN
p→ E(σ2

i ),

bN
p→ E(γ2

i )E(σ2
xi)E

(
1

1− ρ2
i

)
,

cN
p→ E(σ2

i )E

(
1

1− ρ2
i

)
.

Hence, using (65), we note that (as N →∞)

PR2
N → PR2 =

E(γ2
i )E(σ2

xi)E
(

1
1−ρ2i

)
+ κ2

(
E(σ2

i )E
(

1
1−ρ2i

)
− E(σ2

i )
)

E(γ2
i )E(σ2

xi)E
(

1
1−ρ2i

)
+ κ2E(σ2

i )E
(

1
1−ρ2i

) .

Under our design E(σ2
i ) = 1, E(σ2

xi) = 1, and the above expression simplifies
to

PR2 =
E(γ2

i )E
(

1
1−ρ2i

)
+ κ2

[
E
(

1
1−ρ2i

)
− 1
]

E(γ2
i )E

(
1

1−ρ2i

)
+ κ2E

(
1

1−ρ2i

) .

Hence, we have

κ2 =
E(γ2

i )(1− PR2)
1

E

(
1

1−ρ2
i

) − (1− PR2)
.

Since κ2 > 0, we must also have

1

E
(

1
1−ρ2i

) − (1− PR2) > 0 or PR2 > 1− 1

E
(

1
1−ρ2i

) .
Note that E

(
1

1−ρ2i

)
> 0. If ρi is homogeneous, such that ρi = ρ, E

(
1

1−ρ2i

)
=

1/(1−ρ2), and the above condition simplifies to the familiar condition PR2 >
ρ2.

In the general case where σ2
i is not distributed independently of ρi and

N is finite we have

PR2
N > 1− aN/cN

= 1−
N−1

∑N
i=1 σ

2
i

N−1
∑N

i=1
σ2
i

1−ρ2i

.
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In the case where ρi ∼ iidUniform(0, ρ̄), with ρ̄ < 1, we have that

E
(

1
1−ρ2i

)
= 1

ρ̄

∫ ρ̄
0

1
1−x2dx

= 1
2ρ̄

∫ ρ̄
0

[
1

1+x + 1
1−x

]
dx

= 1
2ρ̄ [ln(1 + x)− ln(1− x)]ρ̄0

= 1
2ρ̄ ln

(
1+ρ̄
1−ρ̄

)
.

(66)

and therefore

PR2 > 1− 2ρ̄

ln
(

1+ρ̄
1−ρ̄

) .
In this case, we obtain PR2 > 0.481 if ρ̄ = 0.9 while for ρ̄ = 0.8, we obtain
the condition PR2 > 0.272. In the homogeneous case the equivalent measure
is PR2 > 0.42 = 0.16.

Large N and finite T population pooled R2

In place of using the population moments analyzed above, consider now the
finite sample case, where T is finite but the ARDL processes in (61) have
started from some distance in the past, such that

yit =
αi

1− ρi
+ γizit(ρi) + κσiuit, t = 1, 2, . . . , T,

where

zit(ρi) = ρizi,t−1(ρi) + xit =

∞∑
s=0

ρsixi,t−s,

uit = ρiui,t−1 + εit =
∞∑
s=0

ρsi εi,t−s.

Since the fit is conditional on past observed data, we need to write yit in
terms of εit, namely

yit =
αi

1− ρi
+ γizit(ρi) + κσiρiui,t−1 + κσiεit.

Also

yit − ȳiT = γi [zit(ρi)− z̄iT (ρi)] + κσiρi (ui,t−1 − ūi,−1T ) + κσi (εit − ε̄iT )

= γi [zit(ρi)− z̄iT (ρi)] + κσi (uit − ūiT ) ,
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where

ȳiT = T−1
T∑
t=1

yit, z̄iT = T−1
T∑
t=1

zit(ρi),

ūi,−1,T = T−1
T∑
t=1

ui,t−1, ε̄iT = T−1
T∑
t=1

εit , ūiT = T−1
T∑
t=1

uit.

Then

PR2
N,T = 1−

κ2
N,TT

−1
∑T

t=1N
−1
∑N

i=1 σ
2
i (εit − ε̄iT )2

N−1T−1
∑T

t=1

∑N
i=1 {γi [zit(ρi)− z̄iT (ρi)] + κN,Tσi (uit − ūiT )}2

.

Since σ2
i are drawn independently of εit, and for each i, and εit is distributed

as iid over i, then for each t

N−1
N∑
i=1

σ2
i (εit − ε̄iT )2 p→ lim

N→∞
N−1

N∑
i=1

E
(
σ2
i

)
E (εit − ε̄iT )2 =

T − 1

T
.

As in our design E
(
σ2
i

)
= 1, and E (εit − ε̄iT )2 = 1− T−1. For the denom-

inator of PR2
N,T note that

N−1
N∑
i=1

{γi [zit(ρi)− z̄iT (ρi)] + κN,Tσi (uit − ūiT )}2

= N−1
N∑
i=1

γ2
i [zit(ρi)− z̄iT (ρi)]

2 +N−1
N∑
i=1

σ2
i (uit − ūiT )2

+2N−1
N∑
i=1

σiγi (uit − ūiT ) [zit(ρi)− z̄iT (ρi)] .

Since σi, γi, εit and ξit′ are distributed independently (when xit is strictly
exogenous and γi and xit are independently distributed), then

N−1
N∑
i=1

γ2
i [zit(ρi)− z̄iT (ρi)]

2 p→ lim
N→∞

N−1
N∑
i=1

E
{
γ2
i [zit(ρi)− z̄iT (ρi)]

2
}

N−1
N∑
i=1

σ2
i (uit − ūiT )2 p→ lim

N→∞
N−1

N∑
i=1

E
(
σ2
i

)
E (uit − ūiT )2

E (uit − ūiT )2 =
1

1− ρ2
i

+
1

T

[
1 + 2

T−1∑
h=1

(
1− h

T

)
ρhi

]
− 2

T

T∑
h=1

ρ
|t−h|
i
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Hence

N−1
N∑
i=1

σ2
i (uit − ūiT )2 p→ E

(
1

1− ρ2
i

)
+

1

T

[
1 + 2

T−1∑
h=1

(
1− h

T

)
E
(
ρhi

)]

− 2

T

T∑
h=1

E
(
ρ
|t−h|
i

)
,

and

N−1
N∑
i=1

σiγi (uit − ūiT ) [zit(ρi)− z̄iT (ρi)]
p→ 0.

Hence (as N →∞, κN,T → κT )

PR2
N,T →p PR2

T = 1−
(
1− 1

T

)
κ2
T

AT + κ2
TBT

, (67)

where

AT = T−1
T∑
t=1

[
lim
N→∞

N−1
N∑
i=1

E
(
γ2
i

)
E [zit(ρi)− z̄iT (ρi)]

2

]
,

and

BT = E

(
1

1− ρ2
i

)
+

1

T

[
1 + 2

T−1∑
h=1

(
1− h

T

)
E
(
ρhi

)]

− 2

T

T∑
h=1

T−1
T∑
t=1

E
(
ρ
|t−h|
i

)
.

The expression for E
(

1
1−ρ2i

)
is given by ( 66) and E(ρci ) = ρ̄c/(c + 1), and

AT can be computed by stochastic simulation as:

AT =
1

RNT

R∑
r=1

T∑
t=1

N∑
i=1

γ2
i

[
z

(r)
it (ρi)− z̄(r)

iT (ρi)
]2
,

where z
(r)
it (ρi) is the rth draw from the distribution of z

(r)
it (ρi).

Table 7 reports the numerical values of κ for different values of PR2,
T , σ2

β, and ρβx. The values are obtained from simulations using 10,000
repetitions.
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Table 7: Monte Carlo parameterization

PR2 T σ2
β κ κ

rβx = 0 rβx = 0.5

0.2 20 0 0.8285 0.8261
0.1 2.0211 1.9900
0.25 2.5168 2.4831
0.5 3.6878 3.7017

50 0 0.5932 0.5887
0.1 0.9098 0.9641
0.25 1.2735 1.2025
0.5 2.1259 2.1208

100 0 0.9018 0.8814
0.1 2.1918 2.1950
0.25 2.7212 2.7094
0.5 4.4307 4.3744

0.6 20 0 0.6084 0.5941
0.1 0.9979 1.0197
0.25 1.2847 1.2998
0.5 3.2462 2.9754

50 0 0.8592 0.8845
0.1 2.2343 2.2013
0.25 2.7972 2.8835
0.5 4.8454 4.6805

100 0 0.6189 0.6204
0.1 1.0352 0.9966
0.25 1.2949 1.3723
0.5 3.0190 3.0304

The table contains the estimated κ us-

ing (67) with 10,000 simulations for a range

of parameter values.

59


	9690abstract.pdf
	Abstract




