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Abstract 
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activities, unbiased by their reporting choices. In this paper, we collect a novel dataset on the light 
that factories emit at night for a large sample of car manufacturing plants. We show that nightlight 
data can measure activity at such a granular level, using annual firm financial data and high-
frequency data related to Covid-19 pandemic production shocks. We use this data to quantify the 
extent of misreported global operations of these car manufacturing firms and examine differences 
between sources of nightlight. 
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1 Introduction

In recent decades, the use of remote sensing data to monitor human activity has dramatically

increased. The advantage of this data is that it is consistently available on a global scale

and, as a result, allows for studying human activity in areas where no reliable statistical

data exists. With the development of satellites and technological progress, the question is

whether this data also allows us to study the economic activity of small spatial units, such as

neighborhoods or firms. This would allow us to analyze firm activities outside of developed

countries, where the data is harder to obtain, and would help create datasets free of biases

coming from different data reporting standards and firm reporting choices.

In this paper, we hand collect a novel dataset of car manufacturing plants that belong to

the 18 largest car manufacturers in the world. We match the information on their footprints

with nightlight and firm financial data to study the global distribution of their activities from

space.2

In the first part of the paper, we focus on understanding whether we can use nightlight

data to proxy for such granular firm-level activities. We do so in two steps. First, we analyze

the effects of the Covid-19 pandemic closures of all car manufacturing businesses announced

in spring 2020 around the world. For each car manufacturing plant, we collect daily data on

nightlight emitted by those factories 4 weeks before and after the Covid-19 pandemic closure

dates. These firms constitute our treated group. To control for differences in light emitted

at each latitude and longitude at each time of the year, we use as a control group these same

factories on those same dates, but in 2019. We find that a complete factory closure results

in up to a 14% reduction in nightlight emitted by these factories. These results suggest that

light emission is causally linked with production activities, such as the use of labor, but a

far larger part of factory light emission comes from fixed infrastructure.

Second, we match our remote sensing data with annual firm financial data for the years

2013- 2018. We show strong positive correlations between firm turnover, assets, employment,

reported profits, and nightlight data, in both a cross-section and across time. Nightlight

data explains a large, 70%, variation in firm activities across factories, and a much smaller

variation across time. The magnitude of the estimated coefficients suggests that a 1% change

in nightlight emitted by a factory is correlated with a 0.29% change in firm turnover. We

conclude that nightlight is a good predictor of firm activity, especially proxying for fixed

2The focus on manufacturing firms allows us to pin down the fixed geographical location of each produc-
tion site and measure nightlight emissions and output related to that particular site. This is not possible for
service firms with more mobile capital, such as Google or Amazon.
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infrastructure.

In the second part of the paper, we turn to applying our dataset in two contexts. First, we

use it to measure the scale of misalignment between activities predicted using nightlight data

and those reported by our car manufacturers across all locations where they produce cars. To

do so, we use the total aggregated nightlight data together with consolidated manufacturing

turnover data to apportion firm activity to each factory using the proportion of nightlight

that each factory emits. We then compare the predicted and actual turnover to calculate the

scale of misallocated and misreported turnover. We find that around 50% of firm activities

are not reported in places where that activity occurs and for almost 38% of turnover, we do

not actually know where the real activity occurs when looking at financial data. In that,

we contribute to the literature that estimates the role of tax havens in distorting financial

flows (Coppola et al.; 2021) and profit reporting (Gumpert et al.; 2016; Hines and Rice; 1994;

Tørsløv et al.; 2020).

We find no correlation between the size of misallocation and corporate tax rates at the

country level, but we show that missing financial information is positively correlated with

corporate tax rates of countries in which activities are not reported, even after controlling

for firm size using our nightlight data. This suggests that firms would rather not report

any activity than report a biased number in high-tax rate countries. As such, tax arbitrage

opportunities, such as profit-shifting, may play an important role in how transparent firms

decide to be about reporting their financial information (Bilicka; 2019; Bilicka et al.; 2021;

Desai et al.; 2006; Suárez Serrato; 2018). This novel data can help us gain a better under-

standing of the global operations of large multinationals, that are not biased by reporting

rules and strategic decisions.

The second application is more technical in nature. We explore sources of changes in

nightlight emissions to reconcile differences in the predictive ability of nightlight data between

urban and rural areas (Gibson et al.; 2021). Conceptually, there are two possible sources

of changes in light: changes in the area occupied by a factory or the intensity of light

production. Our data allows studying both effects separately for the first time. As such,

this paper also offers a technical contribution to the nightlight data literature in explaining

where and how the nightlight is generated and whether this matters for how we interpret the

nightlight measures (Henderson et al.; 2012, p. 999). We split the total light emitted into the

factory area and the intensity of light emitted by that area to show that area is a relatively

stronger predictor of changes in firm activities over time. In contrast, the literature on

growth within urban agglomerations finds nightlight intensity to be a good proxy for changes

in urban productivity. We reconcile these findings by using a dataset that classifies land use in
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Europe into residential and non-residential matched with nightlight emitted by those regions

and regional GDP data. Similar to firm-level data findings, we show that light emitted by

industrial production carries little additional information beyond overall land use. At the

same time, light emitted by non-industrial areas carries a similar level of information to land

use. Hence, if areas systematically differ in industry presence, we would expect nightlight

intensity to have a differential predictive power between the two.

Broadly, we contribute to a large literature on the links between nightlight data and

economic activity, by providing novel evidence on how these links work using small spatial

units. While the nightlight is linked to economic activity at the national (Henderson et al.;

2012) and sub-national level (Bluhm and Krause; 2018; Lessmann and Seidel; 2017), there

is little evidence on how this data performs at the firm level. Studies that utilize the newest

generation of nightlight data obtained from the Infrared Imaging Suite (VIIRS) Day-Night

Band (DNB), still focus on regional applications (Gibson; 2020; Gibson et al.; 2021). A

sub-set of this literature uses nightlight data to specifically study economic shocks due to,

for example, war (Li et al.; 2017), natural catastrophes (Fabian et al.; 2019; Mohan and

Strobl; 2017), power grid failures (Elvidge, Hsu, Zhizhin, Ghosh, Taneja and Bazilian; 2020)

or the Covid-19 pandemic (Bustamante-Calabria et al.; 2021; Elvidge, Ghosh, Hsu, Zhizhin

and Bazilian; 2020; Ghosh et al.; 2020; Liu et al.; 2020; Straka et al.; 2021). However, these

studies still focus on fairly large spatial aggregate units of economic activity like sub-national

regions, cities, or larger neighborhoods.3

2 Remote sensing datasets

In this section, we describe the remote sensing datasets that we use in this paper. We focus

on the two key datasets related to the firm-level activity that we use throughout the paper.

We provide details of the cleaning and tagging process in Appendix A.

To identify the factory footprints, we predominately rely on daylight satellite images

provided by Google maps, which we supplement with information from OpenStreetMaps

and aerial shots of factories from firm websites. For each factory area, we also collect data

3The older generations of nightlight data have been applied in various economic contexts, such as, for
instance, origins of urbanization (Henderson et al.; 2017) or its consequences (Bluhm and Krause; 2018), the
origins of ethnic inequality (Alesina et al.; 2016), the growth effects of human capital formation (Gennaioli
et al.; 2013), rescue conflicts (Berman et al.; 2017) favoritism (Hodler and Raschky; 2014), trade (Hirte et al.;
2020), institutions (Michalopoulos and Papaioannou; 2013, 2014) or growth of dictatorships (Martinez; 2019).
For a detailed review on the use of nightlight data see Donaldson and Storeygard (2016), or more recently
Levin et al. (2020).
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on nightlight emitted by those areas using the Visible and Infrared Imaging Suite (VIIRS)

Day-Night Band (DNB). We collect daily data from the raw Nightly DNB Mosaic and Cloud

imagery and the annual data from the Annual VNL V2. For both sources, the resolution of

the data is 15 arc seconds, which corresponds to an area of approximately 500m x 500m at

the Equator. Given the small spatial units that we analyze, we take great care in cleaning

this data to avoid any potential problems coming from neighboring blooming effects and the

volatility of this data with respect to daily changes in cloud coverage.

3 Is nightlight a good proxy for firm-level activity?

To understand whether nightlight data is a good measure of firm-level activity, we need

to test whether nightlight can proxy for such a granular level of operations. We do so in

two steps. First, we use the exogenous shock to short-run firm activities that the Covid-19

pandemic generated. Second, we use correlations with detailed unconsolidated financial data

to uncover relationships between nightlight and reported operations of firms.

3.1 Is nightlight causally linked with firm activities?

In Spring 2020 almost all of the car manufacturers around the globe closed their factories to

prevent the spread of Covid-19. This shock offers a perfect laboratory to examine the effects

of short-term changes in activity in, and around, these factories on the emission of nightlight.

These factory closures should not have any immediate effect on the production capacities of

these firms. Hence, any change in the light emitted by factories around these events is likely

related to changes in short-run production activities, such as running machines, employees

coming to work, or transporting final and intermediate products. We use this shock to

measure how a complete shutdown of a factory affects the amount of light emitted by that

factory.

Sample and estimation approach We hand collect the dates when car manufacturing

factories first closed due to Covid-19 from marklines.com and just-auto.com. We summarize

these in Figure A2. Note that majority of car manufacturing factories in Europe and the US

closed around March 17th - 20th. Later closure dates come mainly from Asian countries that

closed due to part shortages from European and US factories, while January closure dates
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refer to factories in China.4 We provide descriptive statistics for this sample in Table A1.

We use the difference-in-differences (DID) approach to investigate the causal effect of

Covid-19 factory closures on nightlight emitted by those factories. We compare nightlight 4

weeks prior and post the factory closures. We do not have traditional control and treated

groups as almost all factories around the world closed due to Covid-19 at some point during

2020. Instead, we construct our control group using the same factory on the same day in

2019. This approach controls for the fact that light is different at each latitude and longitude

at each time of the year, i.e. for the systematic influence of so-called “stray lights”. As such,

in our estimations, we compare the effects of factory closure on light emitted in 2020 relative

to light emitted by the same factory on the same day in 2019.

We further account for the potential blooming lights effect coming from the nearby neigh-

borhood areas and other local omitted factors. In our context, the most important of those

other factors is the effect of the general lockdown measures that countries have introduced in

response to Covid-19. Because we are dealing with very small units of observations relative

to previous literature, the concern we have is that lights emitted by our factories may be

contaminated by the effect of the blooming lights coming from the nearby neighborhood ar-

eas. To make sure that we pick up the effect of factory closure, rather than nearby lockdown

and stay-at-home orders, we control for the average nightlight emission within a 5km radius

around each production site excluding the factory itself.

Our identification strategy relies on the assumption that in the absence of Covid-19

closure, the amount of light emitted by factories would evolve in the same way in 2020

as in 2019 during non-cloudy nights. Consequently, to test this assumption and to estimate

the dynamic effect of closure on nightlight emitted by these factories, we use an event study

design. We use a week before Covid closure as a benchmark and normalize all coefficients to

zero in that week. Hence, we estimate the following equation:

ln(light sumi,w) =α +
4∑

κ=−4

γw1[w = κ] +
4∑

κ=−4

δwtreatedi × 1[w = κ]

+ δ ×X
′

iw + ψi + µj + ϵi,w

(1)

where, i is a factory, w is weeks. ln(light sumi,w) is light emitted by a factory in each week;

4We also collected the official dates when factories announced that they restarted their car production.
However, some factories, especially in the US and Europe, reopened earlier, producing face masks or venti-
lators. We do not have information on when these partial activities have restarted.
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∑4
κ=−4 1[w = κ] is a series of week dummies that equal one in each of the κ weeks away

from the closure date, with the dummy variable corresponding to κ = −1 as the omitted

category. treatedi is a dummy variable that equals 1 in 2020 and zero in 2019. X
′
iw is a set

of factory-level control variables, such as general weather conditions around the factory; ψi

is the factory-specific fixed effect, µj are weekend fixed effects and ϵi,w is the error term. We

control for weekend fixed effects, because the light emitted by factories may be related to

weekday operation schedules. We restrict our sample to observations with no cloud coverage

within a 5km radius. We estimate the model using 4 weeks before and after each factory

closure, and consequently, we bin coefficients at those endpoints and do not plot them. The

coefficients of interest are the δw, which measure the average difference in lights in each week

relative to the week before Covid closure in 2020.

Summary of results We plot the coefficients from the dynamic estimation in Figure 1,

with the corresponding coefficients reported in Table A3 in the Appendix. Blue hollow dia-

monds correspond to coefficient estimates, while vertical lines are 95% confidence intervals.

We find that in the week that factories close due to Covid-19, there is an almost 14% re-

duction in nightlight emitted by those factories. This effect persists in week 1 and gradually

declines. By week 3, a lot of factories in our sample started filling out government orders

for masks or ventilators production and ground activity started picking back up. Further,

we find no difference in the light emitted by the affected factories relative to 2019 before the

Covid closure, which suggests the effect is due to the closure itself.5 The magnitude of the

estimated effect suggests that production activity has a significant, but small effect on the

light emitted by production sites. Note that factory closures were accompanied by an almost

100% reduction in the labor force. Hence, a 14% reduction in nightlight emitted indicates

that lights are mostly related to already existing production facilities, rather than short-run

activities.

3.2 Is nightlight correlated with firm activities?

To quantify the correlations between nightlight and firm-level reported operations, we match

our factory-level data with firm-level annual accounting data. Firm-level data was collected

using Orbis Bureau van Dijk unconsolidated information on total assets, fixed assets, em-

5In Table A3 we report results from the general estimation using daily, rather than weekly, data and all
the observations until the official opening date. We find that after the factory closure, there was, on average,
an 8% reduction in the nightlights emitted by those factories in 2020 relative to 2019 before they officially
reopened.
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ployment, profits and losses, and turnover. We use the hand-collected factory footprints

information from Google maps to manually identify firms in Orbis using firm names. In our

dataset, some subsidiaries own several factories and we aggregate factory areas and the light

they emit at the subsidiary level to be able to compare firm financial information with our

remote sensing data. We test the validity of this aggregation by keeping only the observations

where each factory belongs to one subsidiary and our results remain unchanged. The unit

of observation in this analysis is a reporting subsidiary. We provide descriptive statistics for

this sample in Table A2.

In this part of the analysis, we rely on the cross-sectional and panel variation in the

firm financial data. We create a cross sectional dataset by collapsing the data at the firm

level across all time periods and use averages of all financial and nightlight variables. Both

approaches use the following general specifications:

ln(output)i = α + β × ln(light sumi) + δ ×X
′

i + ϵi (2)

where, ln(output)i is the logarithm of turnover, total assets, fixed assets, profits and losses,

or employment; ln(light sumi) is the logarithm of the total light emitted by a factory; X
′
i

includes a set of control variables. In the cross-sectional analysis that includes parent and

country fixed effects; in the panel analysis, year and firm fixed effects. ϵi,d is the error

term. We present results using both cross-sectional and panel estimates for three reasons.

First, both the variation across firms and across time is informative in our setting, as they

offer different information about the predictive power of the nightlight data. Second, given

that we only have 6 years of financial information available, large changes are likely to be

rare during our analysis period, giving us relatively small time variation for identification

purposes. Third, it is entirely plausible that annual changes in financial data may not reflect

fundamental changes in the economic activity of firms.

Summary of results We summarize the correlation between the remote sensing indicators

for firm activity and output in Table 1. In Panel A, we present results using a cross-sectional

variation, while in Panel B, we use panel-level data. We show that a 1% difference in

nightlight emissions between firms is associated with a 0.8% difference in firm turnover (Panel

A). The results from Panel B column (1) suggest that a 1% increase in light is associated

with a 0.29% increase in firm turnover. Since these estimates rely on the variation in light

across time, we can directly compare them to previous findings; for example, (Henderson

et al.; 2012) finds this correlation to be a similar, 0.28, at the country level.
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Columns (2) - (5) show that nightlight is also positively correlated with other measures of

firm activity, such as total assets, employment, fixed assets, and profits and loss before taxes.

Further, we consider the overall power of our proxies. When looking at the R2 reported in

Panel A Table 1, nightlight explains a large amount of the overall variation in firm activity,

over 70%. However, this predictive power is driven by the ability of light to explain the cross-

sectional variation. In Panel B, comparing the overall and within R2, we find that financial

proxies do poorly in predicting the variation in firm activity over time, explaining 5-14% of

that variation. This is in sharp contrast to the previous literature that promotes nightlight

data primarily as a proxy for growth. In the case of firm-level data, the strength of nightlight

proxies is related to differences between, rather than within, firms, at least in the short panel

that we analyze here. Further, the relatively large standard errors in column (3) in Panel

B suggest that the relationship between employment and nightlight is less precise than that

for total assets and turnover. This is in line with the causal estimates that point towards

stronger explanatory power of infrastructure over labor for firm-level nightlight data.6

4 Economic application: A bird’s-eye view of the global

activities of MNCs

Given the strong correlation between factory activities and nightlight data, we can use our

new dataset to analyze the global activities of MNCs, especially in places where no financial

reporting of those activities exists. We first focus on understanding the scale of unreported

turnover and profits, relative to factory operations as measured by nightlight data. Second,

we consider the scale of misallocated turnover, profits, and assets by comparing the reported

firm activities with the ones predicted using nightlight data. For this analysis, we use the

cross-sectional data given that nightlight is a much better predictor of firm activity in that

context.

4.1 Missing accounting data

We start by considering what determines the extent of missing financial information at the

firm level. To do that, we estimate the following model:

missi = α + β × ln(light sumi) + δ ×X
′

k + ϵi (3)

6When we include a control for potential blooming effect in Table A4 the results remain the same.
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wheremissi is a dummy equal to 1 if a firm never reports any financial information, ln(light sumi)

is the logarithm of the total light emitted by a factory, X
′

k includes all the country level (k)

explanatory variables that may be correlated with firm propensity to report financial infor-

mation and ϵi is an error term. The novelty of this approach is that we can use our nightlight

measure to proxy for firm size directly without having financial information for each firm.

We summarize our findings in columns (1)-(5) of Table 2, where we show what determines

the likelihood of not reporting financial information. We consider each of the following, in

turn: turnover, assets, profits, fixed assets, and employment. We find no relationship between

firm size (proxied by nightlight) and the propensity to report financial information. Instead,

we find that there is a large and positive correlation between corporate tax rates and the

likelihood of not reporting financial information even after controlling for GDP per capita in

each country. A 1% increase in the corporate tax rate decreases the likelihood of reporting

financial information by approximately 20-30%. If firms want to minimize their tax bill and

engage in tax avoidance practices, higher corporate tax rates may lead to lower publicly

reported profits.

Further, we show that there is no consistent relationship between the level of country

development, proxied by GDP per capita, and the likelihood of not reporting financial in-

formation. If a higher level of economic development provided more capacity to enforce

transparency, we would expect the correlation between GDP per capita and missing financial

data to be negative. In turn, in our data, we find that firms are less likely to report financial

information for factories located in their home countries.7

Note that these results do not measure the amount of profits hidden from tax authorities,

but the amount of profits not publicly reported. Hence, we document the difficulty that tax

authorities face when they want to verify the information provided in tax statements using

external data. As transparent documentation of firm activity is mandatory in almost all

countries for large and publicly listed firms8, we can interpret this lack of transparency for

private subsidiaries, as an indicator of the existence of tax avoidance opportunities.

4.2 The scale of misallocated turnover

In this section, we use the nightlight data to predict firm activities and compare the pre-

dictions with the actual financial data. We use three sources for consolidated financial in-

7We visualize these results at the country level in Figure A3, where we map the share of reported profits
relative to factory area for firms in our sample, aggregated at the country level.

8Most of the firms in our sample are located in countries that have implemented the BEPS Action 13 and
are required to prepare country-by-country reports on the global allocation of their profits. Source: OECD
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formation, (a) hand-collected consolidated turnover data for all car manufacturers for 2019,

(b) manufacturing-related turnover for a subset of those firms, and (c) Orbis consolidated

data for the manufacturing business segment for turnover, profits, and assets. For each sub-

sidiary, we proxy the extent of the true economic activity by the total nightlight that the

factory produces. We assume that the productivity of factory floor space is uniform across

subsidiaries belonging to the same manufacturer.9 We sum up the total nightlight that all

factories belonging to the same car manufacturer produce and calculate the share of the

nightlight of each factory. We multiply that by the consolidated firm turnover to obtain

“predicted turnover”. We also sum up unconsolidated turnover from financial statements

across all subsidiaries that report this information. We summarize the results in Table 3.

First, the sum of reported turnover in the first two columns is higher than that of pre-

dicted turnover, which suggests that subsidiaries tend to overreport turnover. Given that

the missing turnover result suggests firms are more likely to report turnover in lower-tax

countries, this is consistent with the notion of shifting operations to low-tax countries to

reduce the tax burden in high-tax countries. Second, we subtract the sum of all reported

turnover from the consolidated number, to get 577 billion USD of missing turnover. This

may be an underestimate since we know that MNCs may also shift turnover and profits be-

tween subsidiaries. Hence, we use the predicted turnover and subtract it from consolidated

turnover, to find that 680 billion USD turnover has not been apportioned to subsidiaries of

car manufacturing firms globally. This means that 38% of all turnover of car manufactur-

ers is generated in subsidiaries that do not report their economic activity in their financial

statements.

Third, for subsidiaries for which we have both the actual and predicted turnover, we

calculate the aggregate size of the difference between the two to be 991 billion USD. This

suggests that over 56% of the consolidated turnover of those MNCs is misallocated relative

to where the economic activity takes place. These results are qualitatively comparable when

we use the subset of turnover data or turnover from Orbis. For profits, we find a much

larger fraction of naive missings relative to the fraction of those that are apportioned to

any location according to our calculations. We show the opposite for assets. We explain

these results by calculating the reporting bias, which we define as the difference between

predicted and reported turnover, scaled by predicted turnover (or assets or profits). We

9For example, Bloom et al. (2019) show that the largest variation in management practices is attributed
to the differences between firms, rather than across establishments within firms. Similarly, Bilicka and Scur
(2021) demonstrate small, mostly within 0.5 point, variation of management practices within manufacturing
multinationals.
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plot the distribution of this bias across the three measures of firm operations in Figure A4.

Positive bias suggests that subsidiaries in our sample report less than our nightlight data

predict. Negative bias suggests that they report more. We find a large and negative bias

for total assets. Firms have very little physical activity by our measures, but report to have

a large amount of assets. With firms using intangible assets to shift profits, this may be

evidence of profit shifting Dischinger and Riedel (2011).10

We complement these findings by showing correlations between calculated bias and country-

level characteristics. We summarize these results in columns (6)-(8) of Table 2, where we

show little systematic correlation between the calculated bias and country-level characteris-

tics. GDP per capita and tax rates do not determine the size of the bias. Hence, our results

suggest that firms may choose to strategically not report the financial information rather

than report the amounts that are not consistent with their actual operations. We also find

no correlation between home and reporting biases. Again, this means that firms may choose

not to report in their home countries, rather than misreport.

Summary These results shed light on a systematic misreporting of turnover and profits

of subsidiaries that belong to car manufacturing MNCs. We find that firm turnover is not

reported where the economic activity occurs for about 50% of that activity. Combined

with evidence that when faced with higher tax rates, firms tend not to report any financial

information at all, this suggests that we do not know much about where MNC operations

occur when using financial subsidiary-level data.

5 Economic application: Industry nightlights

5.1 Land use or nightlight intensity?

Previous literature has shown that nightlight emitted by regions or countries is a good proxy

for overall regional productivity. Conceptually, there are two possible sources of change in

nightlight emissions. The first is the increase in the intensity of light per pixel; the second

is the increase in the share of pixels with positive light emission in the observed area. Light

is a good proxy for economic activity because both of these sources are good indicators of

economic development. Higher land use (extensive margin) and more intensive land use (in-

tensive margin) are commonly associated with higher productivity. The distinction between

10We do not have consolidated financial information for fixed assets, intangible assets and employment for
manufacturing business segment to be able to distinguish further.
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these two sources is key in understanding what drives changes in GDP and the literature so

far has not been able to separate the two.

Using our firm-level data, we measure the land occupied by factories and the intensity of

light produced by that given area. Previous literature simply used nightlight intensity within

an area irrespective of whether the land was occupied or not.11 As such, we estimate the

following model, which closely follows equation (2):

ln(output)i = α + β1 × ln(area)i + β2 × ln(light)i + δ ×X
′

i + ϵ (4)

where ln(area)i is the logarithm of the area that a factory occupies and ln(light)i is the

logarithm of the average light emitted by a factory. ln(output)i is the logarithm of firm

turnover. X
′
i is a set of factory-level control variables. We summarize the results in Table 4,

where column (1) reports results using cross-sectional data and column (2) uses panel data.

We find that both land use and land intensity are similarly good predictors of differences in

turnover between firms in a cross section.12 Using panel data, we find that changes in the

area occupied by factories predict changes in turnover to a much larger extent than light

intensity does. The magnitude of the coefficient suggests that a 1% increase in the area

occupied by a factory increases turnover by 0.8%. This is similar in size to both coefficient

estimates from the cross-sectional regression. In turn, we show that a 1% increase in light

intensity increases turnover only by 0.2%.

These findings are in line with our baseline results in which we show that changes in light

are a good predictor of production activities, but explain a small variation in those activities

over time. The major part of light emissions is linked with land that our factories occupy

rather than production activities. Given that the car manufacturing industry is very homo-

geneous, the infrastructure is highly correlated with land use. As such, these results stand

in sharp contrast to the previous literature studying growth within urban agglomerations

(e.g Bluhm and Krause (2018). These studies typically find that nightlight intensity explains

differences in urban productivity extremely well, even when keeping land consumption con-

stant. Our factories belong to a particular type of industry, hence, in the next section, we

use industry-level data, to reconcile our findings.

11Note that the land occupied by a region is typically fixed over time. Consequently, with the traditionally
used log-log estimates and panel data, findings based on nightlight intensity are conceptually identical to
estimates based on the sum of light.

12Note that the standard error for the light coefficient estimate is larger.
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5.2 Are industry lights different?

To generalize our firm-level findings to industrial production, we use Global Human Settle-

ment European Settlement Map. This data classifies the land use in Europe using a 10-by-10

meter resolution for the year 2015. The land is classified into residential or non-residential

buildup. We assume that non-residential buildup is a proxy for industrial production areas

and measure the area and the nightlight emitted by this area for the municipalities (NUTS3

regions) in Europe. We use these two to proxy for land use and the intensity of land use,

similar to the firm-level data. To reduce the noise in the light date we restrict the sample

to regions with their center below a latitude of 60◦ North. To measure regional industry

production, we use regional GDP data from Eurostat.

We follow the same framework as in the firm-level regressions and estimate an equivalent

of equation (4). Now, ln(output)i is the logarithm of the total industry output; ln(light sumi)

is the logarithm of the total light emitted by a regional industry; ln(area)i is the logarithm

of the area that the regional industry occupies and ln(light)i is the logarithm of the average

light emitted by a regional industry divided by the area it occupies.

We summarize the results in columns (3) and (4) of Table 4. First, in column (3) we

show that the sum of light emitted over an area is significantly correlated with the GDP

generated by this area. Specifically, a 1% difference in the sum of light emitted over areas

with non-residential buildup between regions is associated with a 0.5% difference in regional

industry-related GDP. In column (4), we split the total nightlight into light intensity and

land use. Again, we find that area is more strongly correlated with industry output than the

intensity of nightlight is. These findings are consistent with our firm-level findings. When

we consider the residential land use and the intensity of nightlight over residential areas in

columns (5) and (6), we find results consistent with the previous literature: both land use

and intensity of nightlight contribute similarly to explaining the differences in output.

Summary Our findings suggest that light emitted by industrial production mainly carries

information on land use. This might explain differences between the predictive abilities of

nightlight data in urban and rural areas, documented by previous literature. If areas sys-

tematically differ in industry presence, we would expect that light explains regional variation

differently between the two types of regions. As such, industry lights do not contain the same

information as urban lights.
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6 Conclusion

Our results offer a new dataset and a methodology that can be used to track firm-level

activities more consistently, especially in places where information on such activities does not

exist or is not systematically reported. We provide a nuanced perspective on what nightlight

data is able to measure and how we should go about using it to quantify the growth of

smaller geographical units. We leave collecting such data for other industries with a large

ground presence for future research. However, we acknowledge that such data collected on a

larger scale would allow researchers to understand the activities of large firms that operate

across different countries with different reporting standards. Further, this data offers a unique

ability to measure the allocation of profits and assets across firms with international presence

and to quantify the scale of global misreporting. This may be an extremely useful source of

information in the context of understanding the implications of global proposals for minimum

taxes that rely on our ability to measure the scale and location of firm activities accurately.
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Suárez Serrato, J. C. (2018). Unintended Consequences of Eliminating Tax Havens, NBER
Working Papers 24850, National Bureau of Economic Research, Inc.

Tørsløv, T., Wier, L. and Zucman, G. (2020). The Missing Profits of Nations, National
Bureau of Economic Research Working Paper (24071).

17



Figure 1: Dynamic plot: the effect of factory closures on nightlight emitted.

Note: In this figure, we plot the coefficient estimates for the effect of Covid-19 closure on light emitted by
factories using a dynamic specification. Dots represent coefficient estimates, δw, from a regression that
takes the form ln(light sumi,w) = α+

∑4
κ=−4 γw1[w = κ]+

∑5
κ=−5 δwtreatedi×1[w = κ]+δ×X ′

iw+ψi+
µj + ϵi,w, where, i is a factory, w is weeks. ln(light sumi,w) is light emitted by a factory in each week;∑4

κ=−4 1[w = κ] is a series of week dummies that equal one in each of the κ weeks away from the closure
date, with the dummy variable corresponding to κ = −1 as the omitted category. treatedi is a dummy
variable that equals 1 in 2020 and zero in 2019. X

′

iw is a set of factory-level control variables, such as
general weather conditions around the factory; ψi is the factory-specific fixed effect, µj are weekend fixed
effects and ϵi,w is the error term. δw coefficients, plotted as hollow diamonds here, represent the difference
in nightlight emitted in each week relative to the closure week, relative to year 2019. The vertical lines
represent the 95% confidence intervals. Each specification includes factory fixed effects.
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Table 1: Correlations between firm activities and nightlight.

Panel A: Cross sectional data

(1) (2) (3) (4) (5)
ln(turnover) ln(assets) ln(employment) ln(fixed assets) log(plbt)

ln(light sumi) 0.796*** 0.708*** 0.643*** 0.742*** 0.745***
(0.085) (0.052) (0.069) (0.127) (0.087)

Observations 316 267 276 271 204
R2 0.720 0.783 0.743 0.720 0.722

Panel B: Panel data

ln(light sumi,t) 0.284** 0.169*** 0.290* 0.162** 0.310*
(0.143) (0.064) (0.162) (0.071) (0.166)

Observations 1389 1314 941 1309 987
R2 0.955 0.984 0.950 0.973 0.900
R2 within 0.0866 0.139 0.0627 0.0473 0.0527

Note: The table presents the correlation between firm activities and nightlight emissions. In Panel A, we
show results for collapsed cross-sectional averages for 2013-2018 and include country and parent fixed
effects. In Panel B, we show results using annual data for 2013-2018 and include year and firm fixed
effects. The dependent variable is the logarithm of turnover in column (1), the logarithm of total assets
in column (2), the logarithm of the number of employees in column (3), the logarithm of fixed assets
in column (4) and the logarithm of profit and loss before taxes in column (5). ln(light sumi) is the
logarithm of the total light emitted by a factory. These estimates are robust to keeping the sample size
constant between specifications, Table A5. Robust standard errors are clustered at the ultimate owner
and country level in Panel A and the firm level in Panel B. ***, **, * denote significance at the 1%, 5%,
and 10% levels, respectively. R2 within refers to the within-firm variation in Panel B.
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Table 3: Summary of misallocated turnover, profits and assets.

turnover turnover turnover profits assets
hand collected subset Orbis

total 1.77 1.46 2.96 0.172 0.877
sum of reported 1.19 0.896 0.922 0.0432 0.775
sum of predicted 1.09 0.837 1.63 0.0727 0.348

naive missing 0.58 0.564 2.038 0.1288 0.102
(total - reported)
as % 33% 39% 69% 75% 12%

not apportioned 0.68 0.623 1.33 0.0993 0.529
(total - predicted)
as % 38% 43% 45% 58% 60%

total missallocated 0.991 0.735 1.29 0.0764 0.777
(predicted - reported)
as % 56% 50% 44% 44% 89%

Note: This table summarizes the calculations for misallocated and not apportioned turnover. Hand-collected
information comes from 2019. The turnover subset is a subset of the hand-collected data for which we
have information for only manufacturing operations. Turnover, profits, and assets in columns 3-5 come
from Orbis business line items that made specific reference to the automobile or manufacturing industry,
but not to finance or services. These are an average of 2005 - 2020 data. Total is consolidated turnover,
profits, or assets, the sum of reported adds up all unconsolidated reported turnover, while the sum of
predicted adds up all turnover apportioned from consolidated turnover and weighted according to the
nightlight emitted by each factory.
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Table 4: Economic activity: comparison between intensity of nightlight and land use.

(1) (2) (3) (4) (5) (6)
Dep.Var.: ln(turnover) ln(industry GDP) ln(non industry GDP)
Unit of Obs. firms EU NUTS3 regions

Time: means 12-19 panel 12-19 mean 2015

ln(light sum) 0.536*** 0.850***
(0.036) (0.029)

ln(light) 0.796*** 0.195* 0.184* 0.825***
(0.154) (0.114) (0.107) (0.040)

ln(area) 0.811*** 0.777** 0.675*** 0.875***
(0.099) (0.341) (0.036) (0.036)

Country FE ✓ ✓ ✓ ✓ ✓
Parent FE ✓ ✓ ✓ ✓ ✓
Firm FE ✓
Year FE ✓

Observations 316 1402 1409 1409 1414 1414
R2 0.723 0.956 0.702 0.731 0.866 0.866
R2 within 0.694 0.105 0.574 0.616 0.766 0.767

Note: This table shows the correlation between production, land use, and land-use intensity. The dependent
variable in columns (1) and (2) is the log of total turnover at the firm level, in columns (3) and (4)
the industry production, and in columns (5) and (6) the non-industry production of NUTS3 regions in
Europe. The area is defined as a factory area in columns (1) and (2), a regional area with non-residential
buildup in columns (3) and (4), and areas with residential buildup in columns (5) and (6). ln(light sum)
is the total nightlight emitted by these areas and ln(light) is the average light. Column (1) presents
cross-sectional results on the collapsed dataset for 2013-2018. Column (2) presents panel estimates for
2013-2018. Columns (3) - (6) present regional cross-sectional results for 2015. Robust standard errors
clustered at the ultimate owner and country level in column (1), at the firm level in column (2), and at
the regional level in columns (3) - (6) are reported in parentheses. ***, **, * denote significance at the
1%, 5%, and 10% level, respectively. R2 within refers to the within ultimate owner variation in Column
(1), within-firm variation in Column (2), and within NUTS3 region variation in Column (3) - (6).
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Appendices

A Data cleaning and selection procedures

A.1 Factory land consumption

Factory footprints were tagged by research assistants based on a set of predefined rules.

These include, that only buildings were tagged, parking lots and racetracks were excluded

and the fence around the production site was used to mark the factory line. We did not

tag subsidiaries that were on the same site but there were two distinct subsidiaries in Orbis.

This means that we aggregate the financial data for those subsidiaries to match with the light

data. If there was a joint venture, we copied the same polygon for both firms. We apportion

depending on the joint ownership share or drop joint ventures.

The data were collected in two waves. First, factory footprints were tagged based on

the 2019 images by multiple assistants, and the data was cross-validated using a subset of

data collected by all the researchers. In the second wave, the change in footprints since

2012 was extracted by one research assistant. During this second wave, a second quality

check occurred, where 10% of firms with low-quality tagging were excluded. There were two

main reasons for this sample selection: first, the resolution of daylight images was not high

enough to credibly identify the location of factories; second, we did not find another data

source to cross-validate the information collected. For the latter reason, factories in China

are more likely to be classified as unreliable, as, for example, Google street view and maps

or OpenStreetMaps data were not available or company websites were inaccessible.

A.2 Nightlight data

We collect nightlight data from the Visible and Infrared Imaging Suite (VIIRS) Day-Night

Band (DNB) that sits on board of satellites of the Joint Polar-orbiting Satellite System

provided by the Earth Observation Group (EOG). We collect daily data from the raw Nightly

DNB Mosaic and Cloud imagery and the annual data comes from the Annual VNL V2. For

both sources, the resolution of the data is 15 arc seconds, which corresponds to an area of

approximately 500m x 500m at the Equator. This data measures light emitted by these areas

in watt per steradian per square meter, nW/cm2/sr.

For the annual data, we use the cleaning procedure proposed by Elvidge et al. (2021).

As such, we filter the data to remove sunlit, moonlit, and cloudy pixels. Further, we remove
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outliers to discard biomass burning pixels and isolate the background. For daily data, we have

to rely on the raw data, but using the VIIRS Cloud Mask we identify cloud-free observations.

We calculate light emitted by factories on cloud-free days only and we also exclude days when

the sky was cloudy over the 5km radius around factories. Further, studies have shown that

even the cleaned monthly VIIRS data is relatively volatile. This can occur due to, for

example, cyclically local phenomena such as whether or moonlight (Coesfeld et al.; 2018).

To account for this, we either control for (in cross-sectional estimates), or estimate (in daily

estimates) the difference to the light emitted around a factory.

B Supplementary Tables and Figures

Figure A1: Factory day and nightlight images: example.

Note: This figure summarizes the tagging process. The first image is a daylight image from bing.com (©
2020 Microsoft). The second image shows how each factory is tagged, the last image is the nightlight
produced by that factory that comes from VIIRS monthly average for 2014 in this example.
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Figure A2: Distribution of Covid closing dates.
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Note: This figure plots the distribution of Covid-19 closing dates for 2020. The dataset was hand-collected
using marklines.com portal followed by news updates provided by just-auto.com. We only collected
information for the first Covid-19 related closure, not the subsequent supply-related closures.
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Table A1: Descriptive statistics: plant level data.

variable mean median sd min max

ln(light sum) 3.19 3.31 1.89 -3.38 13.59
ln(light mean) 3.49 3.55 0.87 -1.61 13.09
ln(light 5km ring) 2.45 2.46 1.05 -3.06 13.14
area 0.28 0.14 0.39 0.00 5.95
Cloud cover 0.03 0.00 0.11 0.00 1.72

Note: This table provides summary statistics related to plant-level nightlight data. ln(light sum) is the
logarithm of the total light emitted by a factory. ln(light mean) is the logarithm of the light emitted by
a factory divided by the factory area. ln(light 5km ring) measures the mean light within a 5 km radius
around the production sites excluding factory lights. Cloud cover is the percentage of cloud coverage
within a 10 km radius. Those nightlight-related variables come from the VIIRS dataset. The area is a
factory area in square kilometers, measured by the footprint of the factory buildings.
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Table A2: Descriptive statistics: financial and lights data.

variable mean median sd min max

Panel A: Panel Data

ln(light sum) 3.43 3.58 1.85 -2.03 8.03
ln(light mean) 3.33 3.39 0.73 -1.93 5.13
ln(light 5km ring) 2.16 2.29 1.03 -5.67 4.46
area 0.47 0.21 0.85 0.00 7.33
ln(turnover) 13.33 13.31 2.12 7.91 18.42
ln(total assets) 12.99 12.90 1.96 9.05 18.87
ln(employment) 7.28 7.24 2.00 0 12.11
ln(fixed assets) 12.02 11.89 2.35 6.54 18.73
ln(profit and loss before tax) 10.27 10.13 2.29 4.96 15.85

Panel B: Cross sectional Data

ln(light sum) 3.39 3.60 1.78 -1.10 7.96
ln(light mean) 3.34 3.38 0.69 0.90 4.96
ln(light 5km ring) 2.16 2.29 0.98 -1.22 4.41
area 0.47 0.21 0.84 0.00 7.32
ln(turnover) 12.99 13.04 2.29 6.33 18.04
ln(total assets) 12.92 12.84 1.87 9.10 17.93
ln(employment) 6.99 6.91 1.87 1.10 11.28
ln(fixed assets) 11.88 11.84 2.37 5.70 18.45
ln(profit and loss before tax) 10.09 10.07 2.27 4.93 15.63

Note: This table provides summary statistics related to firm-level data. In Panel A, we show nightlight
and financial data summary for the panel data sample we use and in panel B, we show data summary
for the cross-sectional data sample we use. ln(light sum) is the logarithm of the total light emitted by
a factory. ln(light mean) is the logarithm of the light emitted by a factory divided by the factory area.
ln(light 5km ring) measures the mean light within a 5 km radius around the production sites excluding
factory lights. Those nightlight-related variables come from VIIRS dataset. The area is a factory area in
square kilometers, measured by the footprint of the factory buildings. Financial data related to turnover,
total assets, employment, fixed assets and profit and loss before taxes comes from Orbis Bureau van Dijk.
All these financial variables are reported at the unconsolidated subsidiary level. When a subsidiary has
more than one factory, we aggregate nightlight information for that subsidiary across all factories that it
owns.
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Table A3: Nightlight and firm activity: Covid-19 production shock.

(1) (2) (3)
log(lights) log(lights) log(lights)

covid close=1 0.006 -0.001
(0.013) (0.008)

year 2020=1 -0.049*** -0.021**
(0.010) (0.008)

covid close=1 × year 2020=1 -0.080*** -0.046***
(0.014) (0.010)

week=-3 -0.035
(0.028)

week=-2 0.007
(0.027)

week=0 -0.138***
(0.025)

week=1 -0.136***
(0.025)

week=2 -0.074***
(0.026)

week=3 -0.034
(0.034)

Cloud cover ✓ ✓ ✓
ln(light 5km ring) ✓ ✓

Observations 57582 57326 11879
R2 0.614 0.837 0.817
R2 within 0.00954 0.584 0.0112

Note: This table reports coefficient estimates from regressions looking at the effects of Covid-19 production
shock on factory nightlight emissions. The unit of observation in all columns is a factory and the dependent
variable is the mean of light emitted by each factory. Columns 1 and 2 show results using covid close
dummy, which is equal to one after a factory closed down due to the Covid pandemic. Column 3 presents
the difference in difference coefficient estimates for each week, as plotted in Figure 1. All estimates include
firm, week, and weekend fixed effects. The sample is restricted to observations with no cloud coverage in
a 5km radius and observations between the first of January and the official time of reopening of factories.
ln(light 5km ring) measures the mean light within a 5 km radius around the production sites excluding
the factory lights. All estimates control for the percentage of cloud coverage within a 10 km radius (Cloud
cover). Robust standard errors clustered at the firm level in parentheses. ***, **, * denote significance
at the 1%, 5%, and 10% level, respectively. R2 within refers to within-firm variation.
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Table A4: Correlations between firm activities and nightlight: controlling for blooming.

Panel A: Cross sectional data

(1) (2) (3) (4) (5)
ln(turnover) ln(assets) ln(employment) ln(fixed assets) log(plbt)

ln(light sumi) 0.792*** 0.712*** 0.644*** 0.741*** 0.752***
(0.098) (0.053) (0.071) (0.123) (0.088)

ln(light 5km ring) 0.044 -0.037 -0.011 0.018 -0.066
(0.131) (0.095) (0.142) (0.162) (0.190)

Observations 316 267 276 271 204
R2 0.720 0.783 0.743 0.720 0.722

Panel B: Panel data

ln(light sumi) 0.341* 0.244*** 0.320 0.256** 0.401
(0.195) (0.091) (0.205) (0.102) (0.246)

ln(light 5km ring) -0.175 -0.233** -0.100 -0.282** -0.244
(0.227) (0.111) (0.242) (0.133) (0.345)

Observations 1389 1314 941 1309 987
R2 0.955 0.984 0.950 0.973 0.901
R2 within 0.0880 0.147 0.0633 0.0526 0.0538

Note: This table presents the correlation between firm activities and nightlight emissions, including the
average nightlight emissions within a 5km radius around the factory production site (ln(light 5km ring))
to control for the blooming effect. In Panel A, we show results for collapsed cross-sectional averages for
2013-2018 and include country and parent fixed effects. In Panel B, we show results using annual data for
2013-2018 and include year and firm fixed effects. The dependent variable is the logarithm of turnover
in column (1), the logarithm of total assets in column (2), the logarithm of the number of employees in
column (3), the logarithm of fixed assets in column (4) and the logarithm of profit and loss before taxes
in column (5). ln(light sumi) is the logarithm of the total light emitted by a factory. Robust standard
errors are clustered at the ultimate owner and country level in Panel A and the firm level in Panel B. ***,
**, * denote significance at the 1%, 5%, and 10% levels, respectively. R2 within refers to the within-firm
variation in Panel B.
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Table A5: Correlations between firm activities and nightlight: sample size robustness.

(1) (2) (3) (4)
ln(assets) ln(employment) ln(assets) ln(employment)

ln(light sumi) 0.227** 0.346* 0.312** 0.404
(0.106) (0.200) (0.139) (0.255

ln(light 5km ring) -0.274* -0.187
(0.160) (0.266)

Observations 847 847 847 847
R2 0.986 0.955 0.987 0.955
R2 within 0.162 0.0725 0.172 0.0748

Note: The table presents the correlation between firm activities and nightlight emissions. The dependent
variable is the logarithm of total assets in columns (1) and (3) and the logarithm of the number of
employees in columns (2) and (4). We only show results using panel data for 2013-2018 and include year
and firm fixed effects. ln(light sumi) is the logarithm of the total light emitted by a factory. In columns
(3) and (4), we also include a control for the average nightlight emissions within a 5km radius around the
factory production site (ln(light 5km ring)). Robust standard errors are clustered at the firm level. ***,
**, * denote significance at the 1%, 5%, and 10% levels, respectively. R2 within refers to the within-firm
variation.

Figure A3: The share of publicly reported profits per km2 of factory area

Note: This figure plots the country-level summary of the coverage of financial data relative to the nightlight
data. Each circle size refers to the total factory area of car manufacturing plants in our sample. The
larger the circle size, the larger the total factory area. In green, we have a fraction of the area for which
we observe profits data in Orbis, in red, we have a fraction for which that information is missing.
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Figure A4: Predicted vs reported turnover.
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Note: This figure plots the distribution of the differences between apportioned and actual financial activities
of firms. Bias is calculated as predicted turnover minus actual turnover divided by predicted turnover,
where predicted turnover has been calculated using consolidated car manufacturing firm turnover appor-
tioned by a proportion of nightlight emitted by each factory in all nightlight emitted by all factories of
that car manufacturer. Similar calculations are done for total assets and profits and loss before taxes.
For consolidated variables, we use the Orbis manufacturing segment turnover data averaged from 2009 to
2019.

31


	Bilicka measuring firm activity.pdf
	Introduction
	Remote sensing datasets
	Is nightlight a good proxy for firm-level activity?
	Is nightlight causally linked with firm activities?
	Is nightlight correlated with firm activities?

	Economic application: A bird's-eye view of the global activities of MNCs
	Missing accounting data
	The scale of misallocated turnover

	Economic application: Industry nightlights
	Land use or nightlight intensity?
	Are industry lights different?

	Conclusion
	Data cleaning and selection procedures
	Factory land consumption
	Nightlight data

	Supplementary Tables and Figures

	9701abstract.pdf
	Abstract




