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Abstract 
 
This paper proposes a linear categorical random coefficient model, in which the random 
coefficients follow parametric categorical distributions. The distributional parameters are 
identified based on a linear recurrence structure of moments of the random coefficients. A 
Generalized Method of Moments estimator is proposed, and its finite sample properties are 
examined using Monte Carlo simulations. The utility of the proposed method is illustrated by 
estimating the distribution of returns to education in the U.S. by gender and educational levels. 
We find that rising heterogeneity between educational groups is mainly due to the increasing 
returns to education for those with postsecondary education, whereas within group heterogeneity 
has been rising mostly in the case of individuals with high school or less education. 
JEL-Codes: C010, C210, C130, C460, J300. 
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1 Introduction

Random coefficient models have been used extensively in time series, cross-section and panel re-

gressions. Nicholls and Pagan (1985) consider the estimation of first and second moments of the

random coefficient βi and the error term ui, in a linear regression model. In the seminal work,

Beran and Hall (1992) establish the conditions of identifying and estimating the distribution of

βi and ui non-parametrically. The baseline linear univariate regression in Beran and Hall (1992)

has been extended in non-parametric framework by Beran (1993); Beran and Millar (1994); Beran,

Feuerverger, and Hall (1996); Hoderlein, Klemelä, and Mammen (2010); Hoderlein, Holzmann, and

Meister (2017) and Breunig and Hoderlein (2018), to just name a few. Hsiao and Pesaran (2008)

survey random coefficient models in linear panel data models.

In some econometric applications, Hausman (1981); Hausman and Newey (1995); Foster and

Hahn (2000) for examples, the main interest is to estimate the consumer surplus distribution based

on a linear demand system where the coefficient associated with the price is random. In such

settings, the distribution of the random coefficients is needed when computing the consumer surplus

function, and the non-parametric estimation is more general, flexible and suitable for the purpose.

On the other hand, parametric models may be favored in applications in which the implied economic

meaning of the distribution of the random coefficients is of interests. Examples include estimation

of the return to education (Lemieux, 2006b,c) and the labor supply equation (Bick, Blandin, and

Rogerson, 2022).

In this paper, we consider a linear regression model with a random coefficient βi that is assumed

to follow a categorical distribution, i.e. βi has a discrete support {b1, b2, · · · , bK}, and βi = bk with

probability πk. The discretization of the support of the random coefficient βi naturally corresponds

to the interpretation that each individual belongs to a certain category, or group, k with probability

πk. Compared to a non-parametric distribution with continuous support, assuming a categorical

distribution allows us not only to model the heterogeneous responses across individuals but also

to interpret the results with sharper economic meaning. As we will illustrate in the empirical

application in Section 6, it is hard to clearly interpret the distribution of returns to education

without imposing some form of parametric restrictions.

In addition, with the categorical distribution imposed, the identification and estimation of the

distribution of βi do not rely on identically distributed error terms ui and regressors wi, as shown

in Section 2 and 3. Heterogeneously generated errors can be allowed, which is important in many

empirical applications. To the best of our knowledge, this is the first identification result in linear

random coefficient model without a strict IID setting.

The identification of the distribution of βi is established in this paper based on the identification

of the moments of βi, which coincides with the identification condition in Beran and Hall (1992) that

the distribution of βi is uniquely determined by its moments, assumed to exist up to an arbitrary

order. Since under our setup the distribution of βi is parametrically specified, the moments of βi

exist and can be derived explicitly. The parameters of the assumed categorical distribution can

then be uniquely determined by a system of equations in terms of the moments, as in Theorem 2.
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The parameters of the categorical distribution are then estimated consistently by the generalized

method of moments (GMM).

The proposed method is illustrated by providing estimates of the distribution of returns to

education in the U.S. by gender and educational levels, using the May and outgoing Rotation

Group (ORG) supplements of the Current Population Survey (CPS) data. Comparing the estimates

obtained over the sub-periods 1973-75 and 2001-03, we find that rising between group heterogeneity

is largely due to rising returns to education in the case of individuals with postsecondary education,

whilst within group heterogeneity has been rising in the case of individuals with high school or less

education.

Related Literature: This paper draws mainly upon the literature of random coefficient mod-

els. As already mentioned, the main body of the recent literature is focused on non-parametric

identification and estimation. Following Beran and Hall (1992), Beran (1993) and Beran and Millar

(1994) extend the model to a linear semi-parametric model with a multivariate setup and propose

a minimum distance estimator for the unknown distribution. Foster and Hahn (2000) extend the

identification results in Beran and Hall (1992) and apply the minimum distance estimator to a

gasoline consumption data to estimate the consumer surplus function. Beran, Feuerverger, and

Hall (1996) and Hoderlein, Klemelä, and Mammen (2010) propose kernel density estimators based

on the Radon inverse transformation in linear models.

In addition to linear models, Ichimura and Thompson (1998) and Gautier and Kitamura (2013)

incorporate the random coefficients in binary choice models. Gautier and Hoderlein (2015) and

Hoderlein, Holzmann, and Meister (2017) consider triangular models with random coefficients al-

lowing for causal inference. Matzkin (2012) and Masten (2018) discuss the identification of random

coefficients in simultaneous equation models. Breunig and Hoderlein (2018) propose a general spec-

ification test in a variety of random coefficient models. Random coefficients are also widely studied

in panel data models, for example Hsiao and Pesaran (2008) and Arellano and Bonhomme (2012)

The rest of the paper is organized as follows: Section 2 establishes the main identification

results. The GMM estimation procedure is proposed and discussed in Section 3. An extension to a

multivariate setting is considered in Section 4. Small sample properties of the proposed estimator

are investigated in Section 5, using Monte Carlo techniques under different regressor and error

distributions. Section 6 presents and discusses our empirical application to return to education.

Section 7 provides some concluding remarks and suggestions for future work. Technical proofs are

given in Appendix A.1.

Notations: Largest and smallest eigenvalues of the p × p matrix A = (aij) are denoted by

λmax (A) and λmin (A) , respectively, its spectral norm by ‖A‖ = λ
1/2
max (A′A), A � 0 means that

A is positive definite, vech (A) denotes the vectorization of distinct elements of A, 0 denotes zero

matrix (or vector). For a ∈ Rp, diag (a) represents the diagonal matrix with diagonal elements of

a1, a2, · · · , ap. For random variables (or vectors) u and v, u ⊥ v represents u is independent of v. We

use c (C) to denote some small (large) positive constants. For a differentiable real-valued function

f (θ), ∇θf (θ) denotes the gradient vector. Operator →p denotes convergence in probability, and
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→d convergence in distribution. The symbols O(1), and Op(1) denote asymptotically bounded

deterministic and random sequences, respectively.

2 Categorical random coefficient model

We suppose the single cross-section observations, {yi, xi, zi}ni=1, follow the categorical random co-

efficient model

yi = xiβi + z′iγ + ui, (2.1)

where yi, xi ∈ R, zi ∈ Rpz , and βi ∈ {b1, b2, · · · , bK} admits the following K-categorical distribution,

βi =



b1, w.p. π1,

b2, w.p. π2,
...

...

bK , w.p. πK ,

(2.2)

w.p. denotes ”with probability”, πk ∈ (0, 1),
∑K

k=1 πk = 1, b1 < b2 < · · · < bK , γ ∈ Rpz is

homogeneous and zi could include an intercept term as its first element. It is assumed that βi ⊥
wi = (xi, z

′
i)
′, and the idiosyncratic errors ui are independently distributed with mean 0.

Remark 1 The model can be extended to allow xi,βi ∈ Rp, with βi following a multivariate cate-

gorical distribution, though with more complicated notations. We will consider possible extensions

in Section 4.

Remark 2 The number of categories K is assumed to be fixed and known. Conditions
∑K

k=1 πk = 1,

b1 < b2 < · · · < bK , and πk ∈ (0, 1) together are sufficient for the existence of K categories. For

example, if bk = bk′, then we can merge categories k and k′, and the number of categories reduces to

K−1. Similarly, if πk = 0 for some k, then category k can be deleted, and the number of categories

is again reduced to K − 1. Information criteria can be used to determine K, but this will not be

pursued in this paper. Model specification tests could also be considered. See, for examples, Andrews

(2001) and Breunig and Hoderlein (2018).

In the rest of this section, we focus on the model (2.1) and establish the conditions under which

the distribution of βi is identified.

2.1 Identifying the moments of βi

Assumption 1 (a) (i) ui is distributed independently of wi = (xi, z
′
i)
′ and βi. (ii) supi E (|uri |) <

C, r = 1, 2, · · · , 2K − 1. (iii) n−1
∑n

i=1 u
4
i = Op(1).
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(b) (i) Let Qn,ww = n−1
∑n

i=1 wiw
′
i, and qn,wy = n−1

∑n
i=1 wiyi. Then ‖E (Qn,ww)‖ < C < ∞,

and ‖E (qn,wy)‖ < C <∞, and there exists n0 ∈ N such that for all n ≥ n0,

0 < c < λmin (Qn,ww) < λmax (Qn,ww) < C <∞.

(ii) supi E (‖wi‖r) < C <∞, r = 1, 2, · · · , 4K − 2.

(iii) n−1
∑n

i=1 ‖wi‖4 = Op(1).

(c) ‖Qn,ww − E (Qn,ww)‖ = Op
(
n−1/2

)
, ‖qn,wy − E (qn,wy)‖ = Op

(
n−1/2

)
, and

E (Qn,ww) = n−1
n∑
i=1

E
(
wiw

′
i

)
� 0.

(d) ‖E (Qn,ww)−Qww‖ = O
(
n−1/2

)
, ‖E (qn,wy)− qwy‖ = O

(
n−1/2

)
, and Qww � 0.

Remark 3 Part (a) of Assumption 1 relaxes the assumption that ui is identically distributed, and

allows for heterogeneously generated errors. For identification of the distribution of βi, we require ui

to be distributed independently of wi and βi, which rules out conditional heteroskedasticity. However,

estimation and inference involving E (βi) and γ can be carried out in presence of conditionally error

heteroskedastic, as shown in Theorem 3. Parts (c) and (d) of Assumption 1 relax the condition that

wi is identically distributed across i. As we proceed, only βi, whose distribution is of interest, is

assumed to be IID across i, and it is not required for wi and ui to be identically distributed over i.

Remark 4 The high level conditions in Assumption 1, concerning the convergence in probability of

averages such as Qn,ww = n−1
∑n

i=1 wiw
′
i, can be verified under weak cross-sectional dependence.

Let fi = f (wi, βi, ui) be a generic function of wi, βi and ui.
1 Assume that supi E

(
f2
i

)
< C, and

supj
∑n

i=1 |cov (fi, fj)| < C, for some fixed C <∞. Then,

var

(
1

n

n∑
i=1

fi

)
≤ 1

n2

n∑
i=1

n∑
j=1

|cov (fi, fj)| ≤
1

n
sup
j

n∑
i=1

|cov (fi, fj)| ≤
C

n
.

By Chebyshev’s inequality, for any ε > 0, we have Mε >
√
C/ε such that

Pr

(
√
n

∣∣∣∣∣ 1n
n∑
i=1

[fi − E (fi)]

∣∣∣∣∣ > Mε

)
≤
nvar

(
n−1

∑n
i=1 fi

)
C

ε ≤ ε,

i.e. n−1
∑n

i=1 [fi − E (fi)] = Op
(
n−1/2

)
.

Denote φi = (βi,γ
′)′ and φ = E (φi) = (E (βi) ,γ

′)′. Consider the moment condition,

E (wiyi) = E
(
wiw

′
i

)
φ, (2.3)

1ωi is assumed to be a scalar, and we can apply the analysis element-by-element to a matrix, for example wiw
′
i.
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and sum (2.3) over i

1

n

n∑
i=1

E (wiyi) =

[
1

n

n∑
i=1

E
(
wiw

′
i

)]
φ. (2.4)

Let n→∞, then φ is identified by

φ = Q−1
wwqwy, (2.5)

under Assumption 1.

Assumption 2 Let ỹi = yi − z′iγ.

(a)
∣∣n−1

∑n
i=1 E (ỹri x

s
i )− ρr,s

∣∣ = O
(
n−1/2

)
, and

∣∣ρr,s∣∣ <∞, for r, s = 0, 1, · · · , 2K − 1.

(b)
∣∣n−1

∑n
i=1 E (uri )− σr

∣∣ = O
(
n−1/2

)
, and |σr| <∞, for r = 2, 3, · · · , 2K − 1.

(c) n−1
∑n

i=1

[
var(xri )−

(
ρ0,2r − ρ2

0,r

)]
= O

(
n−1/2

)
where ρ0,2r−ρ2

0,r > 0, for r = 2, 3, · · · , 2K−1.

Theorem 1 Under Assumptions 1 and 2, E (βri ) and σr, r = 2, 3, · · · , 2K − 1 are identified.

Proof. For r = 2, · · · , 2K − 1,

E (ỹri ) = E (xri ) E (βri ) + E (uri ) +
r−1∑
q=2

(
r

q

)
E
(
xr−qi

)
E (uqi ) E

(
βr−qi

)
, (2.6)

E (ỹri x
r
i ) = E

(
x2r
i

)
E (βri ) + E (xri ) E (uri ) +

r−1∑
q=2

(
r

q

)
E
(
x2r−q
i

)
E (uqi ) E

(
βr−qi

)
. (2.7)

where
(
r
q

)
= r!

q!(r−q)! are binomial coefficients, for non-negative integers q ≤ r, denotes the binomial

coefficients.

Sum over i, then by parts (a) and (b) of Assumption 2,

ρ0,rE (βri ) + σr = ρr,0 −
r−1∑
q=2

(
r

q

)
ρ0,r−qσqE

(
βr−qi

)
, (2.8)

ρ0,2rE (βri ) + ρ0,rσr = ρr,r −
r−1∑
q=2

(
r

q

)
ρ0,2r−qσqE

(
βr−qi

)
. (2.9)

Derivation details are relegated to Appendix A.1. By part (c) of 2, the matrix

(
ρ0,r 1

ρ0,2r ρ0,r

)
is

invertible for r = 2, 3, · · · , 2K − 1. As a result, we can sequentially solve (2.8) and (2.9) for E (βri )

and σr, for r = 2, 3, · · · , 2K − 1.

2.2 Identifying the distribution of βi

Beran and Hall (1992, Theorem 2.1, pp. 1972) prove the identification of the distribution of the

random coefficient, βi, in a canonical model without covariates, zi, under the condition that the
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distribution of βi is uniquely determined by its moments. We show the identification of moments

of βi holds more generally when xi and ui are not identically distributed and the distribution of βi

is identified if it follows a categorical distribution. Note that under (2.2),

E (βri ) =
K∑
k=1

πkb
r
k, r = 0, 1, 2, · · · , 2K − 1, (2.10)

with E (βri ) identified under Assumption 1. To identify π = (π1, π2, ..., πK)′ and b = (b1, b2, ..., bK)′,

we need to verify that the system of 2K equations in (2.10) has a unique solution if b1 < b2 < · · · <
bK , and πk ∈ (0, 1). In the proof, we construct a linear recurrence relation and make use of the

corresponding characteristic polynomial.

Theorem 2 Consider the random coefficient regression model (2.1), suppose that Assumptions 1

and 2 hold. Then θ = (π′,b′)′ is identified subject to b1 < b2 < · · · < bK and πk ∈ (0, 1), for all

k = 1, 2, · · · ,K.

Proof. We motivate the key idea of the proof in the special case where K = 2, and relegate the

proof of the general case to the Appendix A.1. Let b1 = βL, b2 = βH , π1 = π and π2 = 1− π. Note

that

E (βi) = πβL + (1− π)βH , (2.11)

E
(
β2
i

)
= πβ2

L + (1− π)β2
H , (2.12)

E
(
β3
i

)
= πβ3

L + (1− π)β3
H , (2.13)

and E
(
βki
)
, k = 1, 2, 3 are identified. (π, βL, βH) can be identified if the system of equations (2.11)

to (2.13), has a unique solution. By (2.11),

π =
βH − E (βi)

βH − βL
, and 1− π =

E (βi)− βL
βH − βL

. (2.14)

Plug (2.14) into (2.12) and (2.13),

E (βi) (βL + βH)− βLβH = E
(
β2
i

)
, (2.15)

E
(
β2
i

)
(βL + βH)− E (βi)βLβH = E

(
β3
i

)
. (2.16)

Denote βL+H = βL + βH and βLH = βLβH , and write (2.15) and (2.16) in matrix form,

MDb∗ = m, (2.17)

where

M =

(
1 E (βi)

E (βi) E
(
β2
i

)) , D =

(
−1 0

0 1

)
, b∗ =

(
βLH

βL+H

)
, and m =

(
E
(
β2
i

)
E
(
β3
i

)) .
6



Under the conditions 0 < π < 1 and βH > βL,

det (M) = var (βi) = E
(
β2
i

)
− E (βi)

2 = π (1− π) (βH − βL)2 > 0.

As a result, we can solve (2.17) for βL+H and βLH as

βL+H =
E
(
β3
i

)
− E (βi) E

(
β2
i

)
var (βi)

, (2.18)

βLH =
E (βi) E

(
β3
i

)
− E

(
β2
i

)2
var (βi)

. (2.19)

βL and βH are solutions to the quadratic equation,

β2 − βL+Hβ + βLH = 0. (2.20)

We can verify that ∆ = β2
L+H−4βLH > 0 by direct calculation using (2.18) and (2.19). Simplifying

∆ in terms of E
(
βki
)

and then plugging in (2.11), (2.12) and (2.13),

∆ =

[
E
(
β3
i

)
− E (βi) E

(
β2
i

)]2 − 4var (βi)
[
E (βi) E

(
β3
i

)
− E

(
β2
i

)2]
[var (βi)]

2

= (βH − βL)2 > 0.

Then, we obtain the unique solutions,

βL =
1

2

(
βL+H −

√
β2
L+H − 4βLH

)
, (2.21)

βH =
1

2

(
βL+H +

√
β2
L+H − 4βLH

)
, (2.22)

and π can be determined by (2.14) correspondingly.

Remark 5 The key identifying assumption in (2) is the assumed existence of the strict ordinal

relation b1 < b2 < · · · < bK so that bk and bk′ are not symmetric for k 6= k′, and 0 < πk < 1 so that

the distribution of βi does not degenerate. When K = 2, the conditions b1 < b2 < · · · < bK , and

πk ∈ (0, 1), are equivalent to var (βi) = π1 (1− π1) (b2 − b1)2 > 0. In other words, not surprisingly,

the categorical distribution of βi are identified only if var (βi) > 0.

In practice, a test for H0 : var (βi) = 0 is possible, by noting that var (βi) = 0 is equivalent to

κ2 =
E (βi)

2

E
(
β2
i

) = 1,

where κ2 is well-defined as long as βi 6≡ 0. One important advantage of basing the test of slope

homogeneity on κ2 rather than on var(βi) = 0, is that κ2 is scale-invariant. E (βi) and E
(
β2
i

)
are

identified as in Section 2.1, whose consistent estimation does not require var (βi) > 0. Consequently,

7



in principle it is possible to test slope homogeneity by testing H0 : κ2 = 1. However, the problem

becomes much more complicated when there are more than two categories and/or there are more

than one regressor under consideration. A full treatment of testing slope homogeneity in such general

settings is beyond the scope of the present paper.

Remark 6 Note that in the special case of the proof of Theorem 2 where K = 2, βL+H = βL + βH

and βLH = βLβH corresponds to the b∗1 and b∗2 and (2.17) is the same as (A.1.6) when K = 2. The

special case illustrates the procedure of identification: identify (b∗k)
K
k=1 by the moments of βi, then

solve for (bk)
K
k=1 and finally identify (πk)

K
k=1.

3 Estimation

In this section, we propose a generalized method of moments estimator for the distributional pa-

rameters of βi. To reduce the complexity of the moment equations, we first obtain a
√
n-consistent

estimator of γ and consider the estimation of the distribution of βi by replacing γ by γ̂.

3.1 Estimation of γ

Let φ = (E (βi) ,γ
′)′, vi = βi−E (βi) and using the notation in Assumption 1, (2.1) can be written

as

yi = w′iφ+ ξi, (3.1)

where ξi = ui + xivi. Then φ can be estimated consistently by φ̂ = Q−1
n,wwqn,wy where Qn,ww and

qn,wy are defined in Assumption 1.

Assumption 3
∥∥n−1

∑n
i=1 E

(
wiw

′
iξ

2
i

)
−Vwξ

∥∥ = O
(
n−1/2

)
, Vwξ � 0, and∥∥∥∥∥ 1

n

n∑
i=1

wiw
′
iξ

2
i −

1

n

n∑
i=1

E
(
wiw

′
iξ

2
i

)∥∥∥∥∥ = Op

(
n−1/2

)
. (3.2)

Remark 7 As in the case of Assumption 1, the high level condition (3.2) can be shown to hold under

weak cross-sectional dependence, assuming that elements of wiw
′
iξ

2
i are cross-sectionally weakly

correlated over i. See Remark 4.

Theorem 3 Under Assumption 1, φ̂ is a consistent estimator for φ. In addition, under Assump-

tions 1 and 3, as n→∞,
√
n
(
φ̂− φ

)
→d N (0,Vφ) , (3.3)

where Vφ = Q−1
wwVwξQ

−1
ww. Vφ is consistently estimated by

V̂φ = Q−1
n,wwV̂wξQ

−1
n,ww →p Vφ,

as n→∞, where V̂wξ = n−1
∑n

i=1 wiw
′
iξ̂

2

i , and ξ̂i = yi −w′iφ̂.

The proof of Theorem 3 is provided in Appendix A.1.
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3.2 Estimation of the distribution of βi

Denote the moments of βi on the right-hand side of (2.10) by

mβ = (m1,m2, ...,m2K−1)′ = [E (βri )]
2K−1
r=1 ∈ Θm ⊂

{
mβ ∈ R2K−1 : mr ≥ 0, r is even

}
,

and note that

mβ =


m1

m2

...

m2K−1

 =


b1 b2 · · · bK

b21 b22 · · · b2K
...

...
...

...

b2K−1
1 b2K−1

2 · · · b2K−1
K




π1

π2

...

πK

 , (3.4)

so in general we can write mβ , h (θ) , where θ = (π′,b′)′ ∈ Θ, and θ can be uniquely determined

in terms of mβ by Theorem 2. To estimate θ, we consider moment conditions following a similar

procedure as in Section 2, and propose a generalized method of moments (GMM) estimator.

We consider the following moment conditions

E (ỹri ) =

r∑
q=0

(
r

q

)
E
(
xr−qi

)
E (uqi )mr−q,

and

E (ỹri x
sr
i ) =

r∑
q=0

(
r

q

)
E
(
xr−q+sri

)
E (uqi )mr−q, (3.5)

where E (ui) = 0, ỹi = yi−z′iγ, r = 1, 2, ..., 2K−1, and sr = 0, 1, · · · , S−r, where S is a user-specific

tuning parameter, chosen such that the highest order moments of xi included is at most S, where

S > 2K − 1. 2

Let σ0 = 1 and σ1 = 0 such that σr is well-defined for r = 0, 1, · · · , 2K − 1. Sum (3.5) over i

and rearrange terms,

0 =

r∑
q=0

(
r

q

)[
1

n

n∑
i=1

E
(
xr−q+sri

)
E (uqi )

]
mr−q −

1

n

n∑
i=1

E (ỹri x
sr
i )

=

r∑
q=0

(
r

q

)[
1

n

n∑
i=1

E
(
xr−q+sri

)]
σqmr−q −

1

n

n∑
i=1

E (ỹri x
sr
i ) + δ(r,sr)

n , (3.6)

where

δ(r,sr)
n =

r∑
q=0

(
r

q

)[
1

n

n∑
i=1

E
(
xr−q+sri

)
[E (uqi )− σq]

]
mr−q = O

(
n−1/2

)
,

as shown in the proof of Theorem 1.

2For identification, we require the moments of xi to exist up to order 4K − 2. S can take values between 2K to
4K − 2. In practice, the choice of S affects the trade-off between bias and efficiency.

9



Taking n→∞ in (3.6),

r∑
q=0

(
r

q

)
ρ0,r−q+srσqmr−q − ρr,sr = 0, (3.7)

by Assumption 2. We stack the left-hand side of (3.7) over r = 1, 2, ..., 2K−1, and sr = 0, 1, · · · , S−r
and transform mβ = h (θ) to get g0 (θ,σ,γ).

To implement the GMM estimation we replace ỹi, by ˆ̃yi = yi−z′iγ̂, and ρr,sr by n−1
∑n

i=1
ˆ̃yri x

sr
i .

Noting that mβ = h (θ), denote the sample version of the left-hand side of (3.7) by

ĝ(r,sr)
n (θ,σ, γ̂) =

1

n

n∑
i=1

ĝ
(r,sr)
i (θ,σ, γ̂) , (3.8)

where

ĝ
(r,sr)
i (θ,σ, γ̂) =

r∑
q=0

(
r

q

)
xr−q+sri σq [h (θ)]r−q − ˆ̃yri x

sr
i ,

and σ = (σ2, σ3, · · · , σ2K−1)′. Stack the equations in (3.8), over r = 0, 1, ..., 2K − 1 and sr =

0, 1, · · · , S − r (S > 2K − 1), in vector notations we have

ĝn (θ,σ, γ̂) =
1

n

n∑
i=1

ĝi (θ,σ, γ̂) . (3.9)

Given γ̂, the GMM estimator of
(
θ′,σ′

)′
is now computed as(

θ̂
′
, σ̂′
)′

= arg min
θ∈Θ,σ∈S

Φ̂n (θ,σ, γ̂) ,

where Φ̂n = ĝn (θ,σ, γ̂)′Anĝn (θ,σ, γ̂), and An is a positive definite matrix. We follow the GMM

literature using the following choice of An,

Ân =

[
1

n

n∑
i=1

ĝi

(
θ̃, σ̃, γ̂

)
ĝi

(
θ̃, σ̃, γ̂

)′
− ḡnḡ

′
n

]−1

, (3.10)

where ḡn = 1
n

∑n
i=1 ĝi

(
θ̃, σ̃, γ̂

)
, and θ̃ and σ̃ are preliminary consistent estimators obtained by

implementing the GMM estimator with An equal to the identity matrix.

Assumption 4 Denote the true values of θ, σ and γ by θ0, σ0 and γ0.

(a) Θ and S are compact. θ0 ∈ int (Θ) and σ0 ∈ int (S).

(b) An →p A as n→∞, where A is some positive definite matrix.

(c)

1

n

n∑
i=1

[
ˆ̃yri x

sr
i − E (ỹri x

sr
i )
]

= Op

(
n−1/2

)
,

10



for r = 0, 1, 2, · · · , 2K − 1, sr = 0, 1, · · · , S − r, and S > 2K − 1.

Remark 8 Parts (a) and (b) of Assumption 4 are standard regularity conditions in the GMM

literature. Part (c) together with Assumption 2 are high-level regularity conditions which allow us

to generalize the usual IID assumption and nest the IID data generation process as a special case.

The sample analogue terms in (c) include ˆ̃yi = yi − z′iγ̂, instead of the infeasible ỹi = yi − z′iγ.

The
√
n-consistency of γ̂ shown in Theorem 3 ensures that replacing ỹi by ˆ̃yi does not alter the

convergence rate.

Theorem 4 Let η =
(
θ′,σ′

)′
and η0 =

(
θ′0,σ

′
0

)′
. Under Assumptions 1, 2, and 4, η̂ →p η0 as

n→∞.

The proof of Theorem 4 is provided in Appendix A.1.

Assumption 5 Follow the notations as in Assumption 4 and in addition denote G (θ,σ,γ) =

∇(θ′,σ′)′g0 (θ,σ,γ), G0 = G (θ0,σ0,γ0), Gγ (θ,σ,γ) = ∇γg0 (θ,σ,γ), G0,γ = Gγ (θ0,σ0,γ0).

(a)
√
nĝn (θ0,σ0,γ0)→d ζ ∼ N (0,V) as n→∞.

(b) G′0AG0 � 0.

Remark 9 In Assumption 5, parts (a) is the high level condition required to ensure the asymptotic

normality of ĝn (θ0,σ0,γ0), which can be verified by Lindeberg central limit theorem under low-level

regularity conditions. Part (c) of Assumption 5 represents the full-rank condition on G0, required

for identification of θ0 and σ0.

By Theorem 3, we have
√
n (γ̂ − γ) →d ζγ ∼ N(0, Vγ). The following theorem shows the

asymptotic normality of the GMM estimator η̂.

Theorem 5 Under Assumptions 1, 3, 4 and 5,

√
n (η̂ − η0)→d

(
G′0AG0

)−1
G′0A

(
ζ + G0,γζγ

)
,

as n→∞.

The proof of Theorem 5 is provided in Appendix A.1.

Remark 10 In practice, we estimate the variance of the asymptotic distribution of η̂ by

V̂η =
(
Ĝ′ÂnĜ

)−1
Ĝ′ÂnV̂ζÂ

′
nĜ

(
Ĝ′ÂnĜ

)−1
, (3.11)

where Ĝ = ∇(σ′,θ′)′ ĝn

(
θ̂, σ̂, γ̂

)
, Ân is given by (3.10), and

V̂ζ =
1

n

n∑
i=1

ψn,iψ
′
n,i,

11



where

ψn,i = ĝi

(
θ̂, σ̂, γ̂

)
+∇γ ĝn

(
θ̂, σ̂, γ̂

)
LQn,ww

(
wiξ̂i

)
,

and L =
(
0pz×1 Ipz

)
is the loading matrix that selects γ out of φ.

4 Multiple regressors with random coefficients

One important extension of the regression model (2.1) is to allow for multiple regressors with random

coefficients having categorical distribution. With this in mind consider

yi = x′iβi + z′iγ + ui, (4.1)

where the p× 1 vector of random coefficients, βi ∈ Rp follows the multivariate distribution3

Pr
(
βi1 = b1k1 , βi2 = b2k2 , · · · , βip = bpkp

)
= πk1,k2,··· ,kp , (4.2)

with kj ∈ {1, 2, · · · ,K}, bj1 < bj2 < · · · < bjK , and∑
k1,k2,··· ,kp∈{1,2,··· ,K}

πk1,k2,··· ,kp = 1.

As in Section 2, γ ∈ Rpz , wi = (x′i, z
′
i)
′, βi ⊥ wi, ui ⊥ wi, and ui are independently distributed

over i with mean 0.

Example 1 Consider the simple case with p = 2 and K = 2. For j = 1, 2, denote two categories

as {L,H}. The probabilities of four possible combinations of realized βi is summarized in Table 1,

where πLL + πLH + πHL + πHH = 1.

Table 1: Distribution of βi with p = 2 and K = 2

k2 = L k2 = H

k1 = L πLL = Pr (βi1 = b1L, βi2 = b2L) πLH = Pr (βi1 = b1L, βi2 = b2H)

k1 = H πHL = Pr (βi1 = b1H , βi2 = b2L) πHH = Pr (βi1 = b1H , βi2 = b2H)

We first identify the moments of βi. As in Section 2, φ =
(
E (βi)

′ ,γ ′
)′

is identified by

φ = Q−1
wwqwy, (4.3)

under Assumption 1. We now consider the identification of the higher order moments of βi up to

the finite order 2K − 1.

3We assume the number of categories K is homogeneous across j = 1, 2, · · · , p. This is for notational simplicity,
and can be readily generalized to allow for Kj 6= Kj′ without affecting the main results.
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Since γ is identified as in (4.3), we treat it as known and let ỹri = yi−z′iγ. For r = 2, 3, · · · , 2K−1,

consider the moment conditions

E (ỹri ) = E
[(

x′iβi + ui
)r]

= E
[(

x′iβi
)r]

+ E (uri ) +

r−1∑
s=2

(
r

s

)
E
[(

x′iβi
)r−s]

E (usi ) . (4.4)

Note that x′iβi =
∑p

j=1 βijxij , and

E

 p∑
j=1

βijxij

r =
∑

∑p
j=1 qj=r

(
r

q

)
E

 p∏
j=1

x
qj
ij

E

 p∏
j=1

β
qj
ij

 ,

where
(
r
q

)
= r!

q1!q2!···qp! , for non-negative integers r, q1, · · · , qp with r =
∑p

j=1 qj , denotes the

multinomial coefficients. We stack
∏p
j=1 x

qj
ij with q ∈

{
q ∈ {0, 1, · · · r}p :

∑p
j=1 qj = r

}
in a vector

form by denoting 4

τ r (xi) = [ϕ (xi,q1) , ϕ (xi,q2) , · · · , ϕ (xi,qνr)]
′ ,

where ϕ (xi,q) =
∏p
j=1 x

qj
ij and νr =

(
r+p−1
p−1

)
is the number of distinct monomials of degree r on

the variables xi1, xi2, · · · , xip. Similarly,

τ r (βi) = [ϕ (βi,q1) , ϕ (βi,q2) , · · · , ϕ (βi,qνr)]
′ ,

where ϕ (βi,q) =
∏p
j=1 β

qj
ij .

Example 2 Consider p = 2 and r = 2, we have

τ 2 (xi) =
(
x2
i1, xi1xi2, x

2
i2

)′
,

τ 2 (βi) =
(
β2
i1, βi1βi2, β

2
i2

)′
,

and

E
[
(xi1βi1 + xi2βi2)2

]
= E

(
x2
i1

)
E
(
β2
i1

)
+ 2E (xi1xi2) E (βi1βi2) + E

(
x2
i2

)
E
(
β2
i2

)
=
[
E
(
x2
i1

)
,E (xi1xi2) ,E

(
x2
i2

)]
diag

[
(1, 2, 1)′

] [
E
(
β2
i1

)
,E (βi1βi2) ,E

(
β2
i2

)]′
= E [τ 2 (xi)]

′Λ2E [τ 2 (βi)] ,

where Λ2 = diag
[
(1, 2, 1)′

]
.

4For x ∈ Rp, note that τ 0 (x) = 1, τ 1 (x) = x and τ 2 (x) = vech (xx′).
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Then the moment condition (4.4) can be written as

E (ỹri ) = E [τ r (xi)]
′ΛrE [τ r (βi)] + E (uri )

+
r−1∑
s=2

(
r

s

)
E [τ r−s (xi)]

′Λr−sE [τ r−s (βi)] E (usi ) , (4.5)

where Λr = diag

[[(
r
q

)]∑p
j=1 qj=r

]
is the νr × νr diagonal matrix of multinomial coefficients. We

further consider the moment conditions

E (ỹri τ r (xi)) = E
[
τ r (xi) τ r (xi)

′]ΛrE [τ r (βi)] + E [τ r (xi)] E (uri )

+
r−1∑
s=2

(
r

s

)
E
[
τ r (xi) τ r−s (xi)

′]Λr−sE [τ r−s (βi)] E (usi ) , (4.6)

r = 2, 3, · · · , 2K − 1. (4.5) and (4.6) reduce to (2.6) and (2.7) when p = 1.

Assumption 6

(a)
∥∥n−1

∑n
i=1 E (ỹri τ s (xi))− ρr,s

∥∥ = O
(
n−1/2

)
, and

∥∥ρr,s∥∥ <∞, r, s = 0, 1, · · · , 2K − 1.

(b)
∥∥n−1

∑n
i=1 E

[
τ r (xi) τ s (xi)

′]−Ξr,s

∥∥ = O
(
n−1/2

)
, and ‖Ξr,s‖ <∞, r, s = 0, 1, · · · , 2K − 1.

(c)
∣∣n−1

∑n
i=1 E (uri )− σr

∣∣ = O
(
n−1/2

)
, and |σr| <∞ for r = 2, 3, · · · , 2K − 1.

(d)
∥∥n−1

∑n
i=1

[
var (τ r (xi))−

(
Ξr,r − ρ0,rρ

′
0,r

)]∥∥ = O(n−1/2), where Ξr,r − ρ0,rρ
′
0,r � 0 for r =

2, 3 · · · , 2K − 1.

Theorem 6 For any q ∈
{

q ∈ {0, 1, · · · r}p :
∑p

j=1 qj = r
}

and r = 2, 3, · · · , 2K−1, E
(∏p

j=1 β
qj
ij

)
and σr are identified under Assumptions 1 and 6.

Proof. For r = 2, 3, · · · , 2K − 1, sum (4.5) and (4.6) over i, go through the same steps as in the

proof of Theorem 1, then by Assumptions 6(a) to (c), we have (for n→∞)

ρ′r,0ΛrE [τ r (βi)] + σr = ρr,0 −
r−1∑
s=2

(
r

s

)
ρ0,r−sΛr−sE [τ r−s (βi)]σs, (4.7)

Ξr,rΛrE [τ r (βi)] + ρ0,rσr = ρr,r −
r−1∑
s=2

(
r

s

)
Ξr,r−sΛr−sE [τ r−s (βi)]σs. (4.8)

Note that

Mr =

(
Ξr,r ρ0,r

ρ′0,r 1

)(
Λr 0

0 1

)
,

is invertible since det (Mr) = det
(
Ξr,r − ρ0,rρ

′
0,r

)
det (Λr) > 0, for r = 2, 3, · · · , R, by Assump-

tion 6(d). As a result, we can sequentially solve (4.7) and (4.8) for E [τ r (βi)] and σr, for r =

2, 3, · · · , 2K − 1.
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We now move from the moments of βi to the distribution of βi. We first focus on the identi-

fication of the marginal probabilities obtained from (4.2) by averaging out the effects of the other

coefficients except for βij , namely we initially focus on identification of λjk = Pr
(
βij = bjk

)
, for

k = 1, 2, · · · ,K, and j = 1, 2, · · · , p.

Remark 11 Focusing on the marginal distribution of βi is similar to focusing on estimation of

partial derivatives in the context of non-parametric estimation, where the curse of dimensionality

applies. Consider the estimation of regressing yi on xi = (xi1, xi2, · · · , xip)′,

yi = F (xi1, xi2, · · · .xip) + ui.

Then if F (x1, xi2, · · · , xip) is a homogeneous function (of degree 1/µ), then

yi =

p∑
j=1

(
µ
∂F (·)
∂xij

)
xij + ui,

and under certain conditions we can treat µ∂F (·)
∂xij

≡ βij.

By Theorem 6, E
(
βrij
)

is identified for r = 1, 2, · · · , 2K − 1 under Assumptions 1 and 6. By

(4.2), we have equations

E
(
βrij
)

=
K∑
k=1

λjkb
r
jk, (4.9)

r = 0, 1, · · · , 2K−1, which is of the same form as (2.10) and (3.4). To identify λj = (λj1, λj2, · · · , λjK)′

and bj = (bj1, bj2, · · · , bjK)′, we can verify the system of 2K equations in (4.9) has a unique solution

if bj1 < bj2 < · · · < bjK and λjk ∈ (0, 1). The following corollary is a direct application of Theorem

2.

Corollary 7 Consider the model (4.1) and suppose that Assumptions 1 and 6 hold. Then the

parameters θj =
(
λ′j ,b

′
j

)′
of the marginal distribution of βi with respect to βij is identified subject

to bj1 < bj2 < · · · < bjK and λjk ∈ (0, 1) for j = 1, 2, · · · , p.

The problem of identification and estimation of the joint distribution of βi is subject to the

curse of dimensionality. We have Kp−1 probability weights, πk1,k2,··· ,kp , to be identified in addition

to the pK categorical coefficients bij that are identified by Corollary 7. The number of parameters

increases rapidly with p. Even in the simplest case with K = 2, the total number of unknown

parameters is 2p+ 2p − 1, which grows exponentially.

Note that the marginal probabilities λjk are related to the joint distribution by

λjk =
∑

k1,··· ,kj−1,kj+1,··· ,kp∈{1,2,··· ,K}

πk1,k2,··· ,kj−1,k,kj+1,··· ,kp , (4.10)

k = 1, 2, · · · ,K and j = 1, 2, · · · , p. The number of linearly independent equations in (4.10) is

pK − (p− 1).
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Example 3 Consider the same setup as in Example 1 with p = 2 and K = 2. The marginal

probabilities are obtained by

λ1L = Pr (βi1 = b1L) = πLL + πLH , λ1H = Pr (βi1 = b1H) = 1− λ1L = πHL + πHH ,

λ2L = Pr (βi2 = b2L) = πLL + πHL, λ2H = Pr (βi2 = b2H) = 1− λ2L = πLH + πHH . (4.11)

Note that any equation in (4.11) can be expressed as a linear combination of other three equations,

for example λ2H = λ1L + λ1H − λ2L.

The equations corresponding to the cross-moments, E
(∏p

j=1 β
qj
ij

)
, are

E

 p∏
j=1

β
qj
ij

 =
∑

k1,k2,··· ,kp∈{1,2,··· ,K}

 p∏
j=1

b
qj
jkj

πk1,k2,··· ,kp , (4.12)

for q ∈
{

q ∈ {0, 1, · · · r − 1}p :
∑p

j=1 qj = r
}

, r = 2, · · · , 2K − 1. The linear system (4.12) has

2K−1∑
r=1

(
r + p− 1

p− 1

)
− p(2K − 1)

equations. Then the total number of equations in (4.10) and (4.12) that can be utilized to iden-

tify joint probabilities is Cr =
∑2K−1

r=1

(
r+p−1
p−1

)
− pK, which is smaller than the number of joint

probabilities Kp − 1 for large p. When K = 2, Cr < Kp − 1 for p ≥ 7.

Identification and estimation of the joint distribution of βi in the general setting will not be

pursued in this paper due to the curse of dimensionality. Instead, we consider special cases, that are

empirically relevant, in which identification of the joint distribution of βi can be readily established.

We first consider small p and K, in particular p = 2 and K = 2 as in Example 1.

Example 4 Consider the same setup as in Example 1 with p = 2 and K = 2. In addition to (4.11),

consider the cross-moment,

E (βi1βi2) = b1Lb2LπLL + b1Lb2HπLH + b1Hb2LπHL + b1Hb2HπHH . (4.13)

Writing (4.11) and (4.13) in matrix form, we have

Bπ = λ,

where

B =


1 1 0 0

0 0 1 1

1 0 1 0

b1Lb2L b1Lb2H b1Hb2L b1Hb2H

 , π =


πLL

πLH

πHL

πHH

 , λ =


λ1L

λ1H

λ2L

E (βi1βi2)

 .
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Note that E (βi1βi2) is identified by Theorem 6, and bjkj and λjkj are identified by Corollary 7, and

matrix B is invertible given that b1L < b1H and b2L < b2H . (See Appendix A.1). As a result, the

joint probabilities, π, are identified.

Remark 12 The argument in Example 4 is applicable for identification of the joint distribution of(
βij , βi,j′

)′
for j 6= j′ when p > 2 and K = 2.

5 Finite sample properties using Monte Carlo experiments

We examine the finite sample performance of the categorical coefficient estimator proposed in Sec-

tion 3 by Monte Carlo experiments.

5.1 Data generating processes

We generate yi as

yi = α+ xiβi + zi1γ1 + zi2γ2 + ui, for i = 1, 2, ..., n, (5.1)

with βi distributed as in (2.2) with K = 2, and the parameters π, βL and βH .

We draw βi for each individual i independently by setting βi = βL with probability π and

βi = βH with probability 1− π, through a sequence of independent Bernoulli draws. We consider

two sets of parameters in all DGPs, denoted as high variance and low variance parametrization,

respectively,

(π, βL, βH ,E (βi) , var (βi)) =

(0.5, 1, 2, 1.5, 0.25) (high variance)

(0.3, 0.5, 1.345, 1.0915, 0.15) (low variance)
. (5.2)

βH/βL = 2 for the high variance parametrization, and βH/βL = 2.69, for the low variance

parametrization, which is motivated by the estimates in our empirical illustration in Section 6.5

The values of E(βi) and var (βi) are obtained noting that E(βi) = πβL + (1− π)βH , and var (βi) =

π(1− π)(βH − βL)2. The remaining parameters are set as α = 0.25, and γ = (1, 1)′ , across DGPs.

We generate the regressors and the error terms as follows.

DGP 1 (Baseline) We first generate x̃i ∼ IIDχ2(2), and then set xi = (x̃i − 2)/2 so that xi

has 0 mean and unit variance. The additional regressors, zij , for j = 1, 2 with homogeneous slopes

are generated as

zi1 = xi + vi1 and zi2 = zi1 + vi2,

with vij ∼ IID N (0, 1), for j = 1, 2. This ensures that the regressors are sufficiently correlated.

The error term, ui, is generated as ui = σiεi, where σ2
i are generated as 0.5(1 + IIDχ2(1)), and

εi ∼ IIDN(0, 1). Note that εi and σ2
i are generated independently, and E(u2

i ) = 1.

5The estimates for βH/βL in our empirical analysis range from 1.66 to 2.73.
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DGP 2 (Categorical x) This setup deviates from the baseline DGP, and allows the distribution

of xi to differ across i. Accordingly, we generate xi = (x̃1i − 2) /2 where x̃1i ∼ IIDχ2 (2) for

i = 1, 2, · · · , bn/2c, and xi = (x̃2i − 2) /4 where x̃2i ∼ IIDχ2 (4), for i = bn/2c + 1, · · · , n. The

additional regressors, zij , for j = 1, 2 with homogeneous slopes are generated as

zi1 = xi + vi1 and zi2 = zi1 + vi2,

with vij ∼ IID N (0, 1), for j = 1, 2. The error term ui is generated the same as in DGP 1.

DGP 3 (Categorical u) We generate xi and zi the same as in DGP 1, but allow the error

term ui to have a heterogeneous distribution over i. For i = 1, 2, · · · , bn/2c, we set ui = σiεi, where

σ2
i ∼ IIDχ2 (2) and εi ∼ IIDN(0, 1), and for i = bn/2c + 1, · · · , n, we set ui = (ũi − 2) /2, where

ũi ∼ IIDχ2 (2).

We investigate the finite sample performance of the estimator proposed in Section 3 across DGP

1 to 3 with low variance and high variance scenarios.6

5.2 Summary of the MC results

For each sample size n = 500, 1, 000, 2, 000, 5, 000, 10, 000 and 100, 000 we run 5, 000 replications

of experiments for DGP 1 (baseline), DGP 2 (categorical x) and DGP 3 (categorical u) with high

variance and low variance parametrization, as set out in (5.2).

We first investigate the finite sample performance of φ̂, as an estimator of φ = (E (βi) ,γ
′)′.

Bias, root mean squared errors (RMSE) for estimation of E (βi), γ1 and γ2, as well as size of testing

of the null values at the 5 per cent nominal value are reported in Table 2. In addition, we plot

the associated empirical power functions in Figure 1 and 2, for cases of high and low var(βi). The

results show that φ̂ has very good small sample properties with small bias and RMSEs, with size

very close to the nominal value of 5 per cent across all DGPs and parametrization, even when

sample size is relatively small. The power of the test increases steadily as the sample size increases.

Then, we turn to the GMM estimator for the distributional parameters of βi proposed in Section

3.2. The bias, RMSE, and the test size based on the asymptotic distribution given in Theorem 5,

for π, βL and βH , are reported in Table 3. The empirical power functions are reported in Figure 3

and 4. The reported results are based on S = 4, where S (> 2K − 1 = 3) denotes the highest order

of moments of xi included in estimation.7

The upper panel of this table reports the results of the high variance and the lower panel for

the low variance parametrization, as set out in (5.2). For all parameters and under all DGPs, the

6We can consider a DGP with conditional heteroskedasticity, in which we follow the baseline DGP and generate
the error term as ui = xiεi, where εi ∼ N(0, 1). The least square estimator for φ is valid in this setup in terms of
estimation and inference, whereas the GMM estimator for the distributional parameters θ breaks down, which is to
be expected since we can only identify the first moment of βi under conditional heteroskedasticity. The results are
available on request.

7We also tried estimation based on a larger number of moments (using S = 5 and S = 6). In the case of current
Monte Carlo results, adding more moments does not seem to add much to the precision of the estimates and could
be counter-productive when n is not sufficiently large. The results are available on request.
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Table 2: Bias, RMSE and size of the least square estimator φ̂

DGP Baseline Categorical x Categorical u
Sample size n Bias RMSE Size Bias RMSE Size Bias RMSE Size

high variance: var (βi) = 0.25

E
(β

i)
=

1.
5 500 0.0001 0.0932 0.0628 -0.0010 0.0936 0.0626 -0.0007 0.1052 0.0624

1,000 0.0009 0.0668 0.0600 0.0011 0.0670 0.0592 -0.0002 0.0736 0.0558
2,000 0.0004 0.0478 0.0566 0.0001 0.0470 0.0516 0.0000 0.0519 0.0510
5,000 -0.0012 0.0298 0.0510 -0.0003 0.0301 0.0594 -0.0019 0.0332 0.0496

10,000 0.0000 0.0213 0.0516 0.0000 0.0209 0.0492 -0.0002 0.0236 0.0486
100,000 0.0000 0.0068 0.0534 0.0001 0.0069 0.0556 -0.0001 0.0074 0.0518

γ
1

=
1

500 0.0007 0.0708 0.0512 -0.0003 0.0695 0.0488 -0.0015 0.0848 0.0582
1,000 -0.0009 0.0501 0.0514 -0.0015 0.0487 0.0468 0.0010 0.0588 0.0508
2,000 0.0005 0.0354 0.0556 -0.0003 0.0354 0.0526 0.0004 0.0420 0.0494
5,000 0.0002 0.0222 0.0472 -0.0005 0.0222 0.0508 0.0005 0.0268 0.0490

10,000 0.0004 0.0158 0.0496 0.0000 0.0158 0.0536 0.0001 0.0189 0.0518
100,000 -0.0001 0.0050 0.0456 0.0000 0.0050 0.0522 0.0000 0.0060 0.0498

γ
2

=
1

500 -0.0003 0.0502 0.0554 0.0004 0.0492 0.0494 0.0008 0.0598 0.0554
1,000 0.0006 0.0357 0.0554 0.0011 0.0347 0.0540 -0.0003 0.0417 0.0546
2,000 -0.0002 0.0250 0.0556 0.0000 0.0249 0.0516 -0.0001 0.0299 0.0544
5,000 0.0000 0.0155 0.0480 0.0004 0.0159 0.0546 0.0003 0.0187 0.0506

10,000 0.0000 0.0111 0.0504 0.0000 0.0111 0.0518 0.0003 0.0134 0.0506
100,000 0.0001 0.0035 0.0462 0.0000 0.0035 0.0498 0.0000 0.0042 0.0538

low variance: var (βi) = 0.15

E
(β

i)
=

1.
09

15 500 0.0011 0.0829 0.0592 -0.0006 0.0840 0.0580 0.0003 0.0948 0.0604
1,000 0.0015 0.0590 0.0560 0.0015 0.0603 0.0552 0.0003 0.0670 0.0524
2,000 -0.0002 0.0419 0.0546 -0.0003 0.0422 0.0486 -0.0006 0.0472 0.0498
5,000 -0.0006 0.0262 0.0518 0.0002 0.0268 0.0530 -0.0013 0.0300 0.0498

10,000 -0.0002 0.0187 0.0514 0.0000 0.0188 0.0490 -0.0004 0.0213 0.0514
100,000 0.0001 0.0059 0.0516 0.0001 0.0061 0.0520 -0.0001 0.0065 0.0442

γ
1

=
1

500 0.0007 0.0679 0.0538 -0.0004 0.0669 0.0506 -0.0015 0.0819 0.0538
1,000 -0.0006 0.0484 0.0518 -0.0016 0.0472 0.0498 0.0013 0.0572 0.0504
2,000 0.0004 0.0339 0.0494 -0.0002 0.0339 0.0558 0.0003 0.0407 0.0518
5,000 0.0002 0.0214 0.0470 -0.0004 0.0214 0.0504 0.0004 0.0259 0.0498

10,000 0.0003 0.0152 0.0490 0.0001 0.0151 0.0570 0.0001 0.0184 0.0548
100,000 -0.0001 0.0048 0.0470 -0.0001 0.0048 0.0542 0.0000 0.0058 0.0528

γ
2

=
1

500 -0.0001 0.0481 0.0542 0.0005 0.0479 0.0512 0.0010 0.0579 0.0546
1,000 0.0003 0.0344 0.0546 0.0010 0.0335 0.0536 -0.0006 0.0405 0.0506
2,000 -0.0003 0.0240 0.0506 0.0001 0.0239 0.0524 -0.0002 0.0290 0.0524
5,000 -0.0001 0.0150 0.0490 0.0003 0.0154 0.0552 0.0002 0.0182 0.0506

10,000 0.0000 0.0108 0.0532 -0.0001 0.0107 0.0506 0.0003 0.0131 0.0544
100,000 0.0001 0.0034 0.0508 0.0000 0.0034 0.0522 0.0000 0.0041 0.0514

Notes: The data generating process is (5.1). high variance and low variance parametrization are described in (5.2).

“Baseline”, “Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Section 5.1. Generically, bias, RMSE and

size are calculated by R−1∑R
r=1

(
θ̂
(r)
− θ0

)
,

√
R−1

∑R
r=1

(
θ̂
(r)
− θ0

)2
, and R−1∑R

r=1 1
[∣∣∣θ̂(r) − θ0∣∣∣ /σ̂(r)

θ̂
> cv0.05

]
,

respectively, for true parameter θ0, its estimate θ̂
(r)

, the estimated standard error of θ̂
(r)

, σ̂
(r)

θ̂
, and the critical value

cv0.05 = Φ−1 (0.975) across R = 5, 000 replications, where Φ (·) is the cumulative distribution function of standard

normal distribution.
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Figure 1: Empirical power functions for the least square estimator φ̂ with the high variance
parametrization (var (βi) = 0.25)

(a) Baseline

(b) Categorical x

(c) Categorical u

Notes: The data generating process is (5.1) with high variance parametrization that is described in (5.2). “Baseline”,

“Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Section 5.1. Generically, power is calculated by

R−1∑R
r=1 1

[∣∣∣θ̂(r) − θδ∣∣∣ /σ̂(r)

θ̂
> cv0.05

]
, for θδ in a symmetric neighborhood of the true parameter θ0, the estimate

θ̂
(r)

, the estimated standard error of θ̂
(r)

, σ̂
(r)

θ̂
, and the critical value cv0.05 = Φ−1 (0.975) acrossR = 5, 000 replications,

where Φ (·) is the cumulative distribution function of standard normal distribution.
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Figure 2: Empirical power functions for the least square estimator φ̂ with the low variance
parametrization (var (βi) = 0.15)

(a) Baseline

(b) Categorical x

(c) Categorical u

Notes: The data generating process is (5.1) with low variance parametrization that is described in (5.2). “Baseline”,

“Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Section 5.1. Generically, power is calculated by

R−1∑R
r=1 1

[∣∣∣θ̂(r) − θδ∣∣∣ /σ̂(r)

θ̂
> cv0.05

]
, for θδ in a symmetric neighborhood of the true parameter θ0, the estimate

θ̂
(r)

, the estimated standard error of θ̂
(r)

, σ̂
(r)

θ̂
, and the critical value cv0.05 = Φ−1 (0.975) acrossR = 5, 000 replications,

where Φ (·) is the cumulative distribution function of standard normal distribution.
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Table 3: Bias, RMSE and size of the GMM estimator for distributional parameters of β

DGP Baseline Categorical x Categorical u
Sample size n Bias RMSE Size Bias RMSE Size Bias RMSE Size

high variance: var (βi) = 0.25

π
=

0.
5

500 -0.0180 0.2317 0.3741 -0.0234 0.2384 0.3678 -0.0503 0.2778 0.4193
1,000 -0.0111 0.1688 0.2948 -0.0185 0.1769 0.2981 -0.0383 0.2160 0.3233
2,000 -0.0033 0.1170 0.2536 -0.0069 0.1233 0.2376 -0.0215 0.1544 0.2353
5,000 -0.0009 0.0570 0.1434 -0.0029 0.0677 0.1586 -0.0103 0.0924 0.1506

10,000 -0.0013 0.0334 0.1004 -0.0010 0.0414 0.1112 -0.0068 0.0625 0.1050
100,000 0.0000 0.0096 0.0560 0.0001 0.0114 0.0610 -0.0007 0.0191 0.0506

β
L

=
1

500 -0.0801 0.6132 0.3487 -0.0882 0.6297 0.3217 -0.2159 0.7586 0.2806
1,000 -0.0320 0.3980 0.2976 -0.0362 0.4285 0.2767 -0.0967 0.4372 0.2355
2,000 -0.0123 0.2213 0.2504 -0.0151 0.2274 0.2370 -0.0399 0.2490 0.1993
5,000 0.0008 0.0834 0.1426 -0.0020 0.0988 0.1504 -0.0113 0.1152 0.1242

10,000 0.0011 0.0419 0.1058 0.0008 0.0535 0.1060 -0.0048 0.0708 0.0908
100,000 0.0007 0.0114 0.0568 0.0006 0.0135 0.0666 -0.0003 0.0202 0.0526

β
H

=
2

500 -0.0150 0.4973 0.2212 -0.0216 0.5816 0.2186 -0.0766 0.7697 0.2509
1,000 -0.0128 0.2149 0.2049 -0.0198 0.3216 0.2083 -0.0298 0.4376 0.2214
2,000 -0.0076 0.1352 0.1941 -0.0123 0.1574 0.1828 -0.0255 0.2427 0.1801
5,000 -0.0059 0.0661 0.1322 -0.0060 0.0735 0.1434 -0.0137 0.1104 0.1380

10,000 -0.0044 0.0382 0.1036 -0.0032 0.0463 0.1050 -0.0094 0.0747 0.1066
100,000 -0.0005 0.0114 0.0538 -0.0003 0.0135 0.0620 -0.0013 0.0234 0.0594

low variance: var (βi) = 0.15

π
=

0.
3

500 0.0192 0.2553 0.3758 0.0368 0.2763 0.3865 0.0686 0.3249 0.4867
1,000 -0.0051 0.1863 0.2835 0.0023 0.2070 0.3094 0.0225 0.2742 0.4136
2,000 -0.0080 0.1229 0.2149 -0.0074 0.1437 0.2305 -0.0067 0.2043 0.3109
5,000 -0.0064 0.0658 0.1388 -0.0079 0.0806 0.1527 -0.0095 0.1316 0.1881

10,000 -0.0041 0.0439 0.1046 -0.0029 0.0537 0.1088 -0.0080 0.0938 0.1374
100,000 -0.0004 0.0128 0.0538 -0.0003 0.0161 0.0662 -0.0021 0.0301 0.0662

β
L

=
0.

5

500 -0.1045 0.6164 0.3074 -0.1252 0.7517 0.2888 -0.2593 1.1597 0.2791
1,000 -0.0727 0.3800 0.2415 -0.0779 0.4447 0.2352 -0.2177 0.8076 0.2254
2,000 -0.0270 0.2208 0.2125 -0.0412 0.2308 0.1934 -0.1243 0.4530 0.1730
5,000 -0.0045 0.1366 0.1330 -0.0133 0.1237 0.1303 -0.0451 0.2113 0.1170

10,000 -0.0026 0.0616 0.0974 -0.0037 0.0785 0.0994 -0.0235 0.1398 0.0902
100,000 0.0004 0.0182 0.0610 0.0004 0.0228 0.0634 -0.0034 0.0405 0.0520

β
H

=
1.

34
5

500 0.0450 0.6491 0.1800 0.0758 0.7301 0.1847 0.0819 1.1904 0.2171
1,000 0.0059 0.3481 0.1715 0.0135 0.3602 0.1781 0.0165 0.6553 0.2369
2,000 -0.0087 0.1567 0.1555 -0.0042 0.1899 0.1589 -0.0073 0.2811 0.2105
5,000 -0.0074 0.0537 0.1114 -0.0079 0.0628 0.1247 -0.0098 0.1104 0.1527

10,000 -0.0050 0.0359 0.0980 -0.0039 0.0410 0.0908 -0.0076 0.0730 0.1180
100,000 -0.0006 0.0105 0.0580 -0.0006 0.0126 0.0590 -0.0020 0.0228 0.0634

Notes: The data generating process is (5.1). high variance and low variance parametrization are described in (5.2).

“Baseline”, “Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Section 5.1. Generically, bias, RMSE and

size are calculated by R−1∑R
r=1

(
θ̂
(r)
− θ0

)
,

√
R−1

∑R
r=1

(
θ̂
(r)
− θ0

)2
, and R−1∑R

r=1 1
[∣∣∣θ̂(r) − θ0∣∣∣ /σ̂(r)

θ̂
> cv0.05

]
,

respectively, for true parameter θ0, its estimate θ̂
(r)

, the estimated standard error of θ̂
(r)

, σ̂
(r)

θ̂
, and the critical value

cv0.05 = Φ−1 (0.975) across R = 5, 000 replications, where Φ (·) is the cumulative distribution function of standard

normal distribution.
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Figure 3: Empirical power functions for the GMM estimator of distributional parameters of β with
the high variance parametrization(var (βi) = 0.25)

(a) Baseline

(b) Categorical x

(c) Categorical u

Notes: The data generating process is (5.1) with high variance parametrization that is described in (5.2). “Base-

line”, “Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Section 5.1. The model is estimated

with S = 4, the highest order of moments of xi used in estimation. Generically, power is calculated by

R−1∑R
r=1 1

[∣∣∣θ̂(r) − θδ∣∣∣ /σ̂(r)

θ̂
> cv0.05

]
, for θδ in a symmetric neighborhood of the true parameter θ0, the estimate θ̂

(r)
,

the estimated standard error of θ̂
(r)

, σ̂
(r)

θ̂
, and the critical value cv0.05 = Φ−1 (0.975) across R = 5, 000 replications,

where Φ (·) is the cumulative distribution function of standard normal distribution.
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Figure 4: Empirical power functions for the GMM estimator of distributional parameters of β with
the low variance parametrization (var (βi) = 0.15)

(a) Baseline

(b) Categorical x

(c) Categorical u

Notes: The data generating process is (5.1) with low variance parametrization that is described in (5.2). “Base-

line”, “Categorical x” and “Categorical u” refer to DGP 1 to 3 as in Section 5.1. The model is estimated

with S = 4, the highest order of moments of xi used in estimation. Generically, power is calculated by

R−1∑R
r=1 1

[∣∣∣θ̂(r) − θδ∣∣∣ /σ̂(r)

θ̂
> cv0.05

]
, for θδ in a symmetric neighborhood of the true parameter θ0, the estimate θ̂

(r)
,

the estimated standard error of θ̂
(r)

, σ̂
(r)

θ̂
, and the critical value cv0.05 = Φ−1 (0.975) across R = 5, 000 replications,

where Φ (·) is the cumulative distribution function of standard normal distribution.
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bias and RMSE decline steadily with the sample size as predicted by Theorem 4, and confirm the

robustness of the GMM estimates to the heterogeneity in the regressor and the error processes.

But for a given sample size, the relative precision of the estimates depends on the variability of βi,

as characterized by the true value of var(βi). The precision of the estimates with high variance

parametrization is relatively higher than that with low variance parametrization. This is to be

expected since, unlike E(βi), the distributional parameters are only identified if var(βi) > 0. As

shown in (2.18) and (2.19) for the current case of K = 2, var(βi) is in the denominator when we

recover the distributional parameters from the moments of βi. When var(βi) is small, estimation

errors in the moments of βi can be amplified in the estimation of π, βL and βH . On the other

hand, the larger the variance the more precisely π, βH and βL can be estimated for a given n. The

size and power also depends on the parametrization. With both high variance and low variance

parametrization, we can achieve correct size and reasonable power when n is quite large (n =

100, 000). We plot the empirical power functions for n ≥ 5, 000 for π, βH and βL since the size

is far above 5 per cent for smaller values of n, and power comparisons are not meaningful in such

cases.

6 Heterogeneous return to education: An empirical application

Since the pioneering work by Becker (1962, 1964) on the effects of investments in human capital,

estimating returns to education has been one of the focal points of labor economics research. In his

pioneering contribution Mincer (1974) models the logarithm of earnings as a function of years of

education and years of potential labor market experience (age minus years of education minus six),

which can be written in a generic form:

log wagei = αi + βiedui + φ (zi) + εi, (6.1)

as in Heckman, Humphries, and Veramendi (2018, Equation (1)), where zi includes the labor

market experience and other relevant control variables. The above wage equation, also known as

the “Mincer equation”, has become of the workhorse of the empirical works on estimating the return

to education. In the most widely used specification of the Mincer equation (6.1),

φ (zi) = ρ1experi + ρ2exper2
i + z̃′iγ̃,

where z̃i is the vector of control variables other than potential labor market experience.

Along with the advancement of empirical research on this topic, there has been a growing aware-

ness of the importance of heterogeneity in individual cognitive and non-cognitive abilities (Heckman,

2001) and their significance for explaining the observed heterogeneity in return to education. Ac-

cordingly, it is important to allow the parameters of the wage equation to differ across individuals.

In equation (6.1) we allow αi and βi to differ across individuals, but assume that φ (zi) can be

approximated as non-linear functions of experience and other control variables with homogeneous
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coefficients.

Specifically, following Lemieux (2006b,c) we also allow for time variations in the parameters of

the wage equation and consider the following categorical coefficient model over a given cross-section

sample indexed by t:8

log wageit = αit + βiteduit + ρ1texperit + ρ2texper2
it + z̃′itγ̃t + εit, (6.2)

where the return to education follows the categorical distribution,

βit =

btL w.p. πt,

btH w.p. 1− πt,

and z̃it includes gender, martial status and race. αit = αt + δit where δit is mean 0 random variable

assumed to be distributed independently of eduit and zit =
(
experit, exper2

it, z̃′t
)′

. Let uit = εit+δit,

and write (6.2) as

log wageit = αt + βiteduit + ρ1texperit + ρ2texper2
it + z̃′itγ̃t + uit. (6.3)

The correlation between αit and eduit in (6.1) is the source of “ability bias” (Griliches, 1977).

Given the pure cross-sectional nature of our analysis, we do not allow for the endogeneity from

“ability bias” or dynamics. To allow for non-zero correlations between αit, eduit and zit, a panel

data approach is required, which has its own challenges, as education and experience variables tend

to very slow moving (if at all) for many individuals in the panel. Time delays between changes

in education and experience, and the wage outcomes also further complicate the interpretation of

the mean estimates of βit which we shall be reporting. To partially address the possible dynamic

spillover effects, we provide estimates of the distribution of βit using cross-sectional data from two

different sample periods, and investigate the extent to which the distribution of return to education

has changed over time, by gender and the level of educational achievements.9

We estimate the categorical distribution of the return to education in (6.3) using the May and

Outgoing Rotation Group (ORG) supplements of the Current Population Survey (CPS) data, as

in Lemieux (2006b,c).10 We pool observations from 1973 to 1975 for the first sample period, t =

{1973− 1975} and observations from 2001 to 2003 for the second sample period, t = {2001− 2003}.
Following Lemieux (2006b), we consider sub-samples of those with less than 12 years of education,

“high school or less”, and those with more than 12 years of education, “postsecondary education”,

as well as the combined sample. We also present results by gender. The summary statistics are

reported in Table 4. As to be expected, the mean log wages are higher for those with postsecondary

8Some investigators have suggested including higher powers of the experience variable in the wage equation.
Lemieux (2006a), for example, proposes using a quartic rather than a quadratic function. As a robustness check we
also provide estimation results with quartic experience specification in Appendix A.2.

9Time variations in return to education has also been investigated in the literature as a possible explanation of
increasing wage inequality in the U.S. See, for example, the papers by Lemieux (2006b,c).

10The data is retrieved from https://www.openicpsr.org/openicpsr/project/116216/version/V1/view.
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education (for male and female), with the number of years of schooling and experience rising by

about one year across the two sub-period samples. There are also important differences across male

and female, and the two educational groupings, which we hope to capture in our estimation.

We treat the cross-section observations in the two sample periods, t = {1973− 1975} and

{2001− 2003}, as repeated cross-sections, rather than a panel data since the data in these two

periods do not cover the same individuals, and represent random samples from the population of

wage earners in two periods. It should also be noted that sample sizes (nt), although quite large,

are much larger during {2001− 2003}, which could be a factor when we come to compare estimates

from the two sample periods. For example, for both male and female n73−75 = 111, 632 as compared

to n01−03 = 511, 819, a difference which becomes more pronounced when we consider the number

observations in postsecondary/female category - which rises from 12, 882 for the first period to

100, 007 in the second period.

We report mean and standard deviations of the return to education (βit) (denoted by s.d.(β̂it)),

as well as estimates of πt, βL,t and βH,t for t = {1973− 1975} and {2001− 2003}. For a given

πt, the ratio βH,t/βL,t provides a measure of within group heterogeneity and allows us to augment

information on changes in mean with changes in the distribution of return of education. The

estimates for the distribution of the return to education (βit) are summarized in Table 5, with

the estimation results for control variables (such as experience, experienced squared, and other

individual specific characteristic) reported in Table A.1 of Appendix A.2.

As can be seen from Table 5, s.d. (βit) > 0 for all sub-samples over the two sample periods,

except for the high school or less group during the first period. As our theoretical analysis show, in

such cases βL,t = βH,t, and πt are not identified. These entries are shown by n/a. The estimates

of s.d. (βit) are all strictly positive for other samples, and allows us to estimate the ratio βH,t/βL,t,

which measures the within group heterogeneity of return to education. The estimates of βH,t/βL,t,

lie between 1.66 to 2.73, with the high estimate obtained for females with high school of less

education during {2001− 03}, and the low estimate is obtained for females with postsecondary

education during {2001− 03}.
As our theory suggests the mean estimates of return to education, E (βit), are very precisely

estimated and inferences involving them tend to be robust to conditional error heteroskedasticity.

The results in Table 5 show that estimates of E (βit) have increased over the two sample periods t =

{1973− 75} to t = {2001− 03}, regardless of gender or educational grouping. The postsecondary

educational group show larger increases in the estimates of E (βit) as compared to those with high

school or less. Estimates of E (βit) increases by 35 per cent for the postsecondary group while the

estimates of mean return to education rises only by around 5 per cent in the case of those with

high school or less. This result holds for both gender. Comparing the mean returns across the

two educational groups, we find that mean return to education of individuals with postsecondary

education is 43 per cent higher than those with high school or less in the {1973 − 75} period, but

this gap increases to 84 per cent in the second period, {2001− 03}. Similar patterns are observed

in the sub-samples by gender. The estimates suggest rising between group heterogeneity, which is
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Table 4: Summary Statistics of the May and Outgoing Rotation Group (ORG) supplements of the
Current Population Survey (CPS) data across two periods, 1973 - 75 and 2001 - 03, by years of
education and gender

1973 - 75 2001 - 03
High School Postsecondary

All
High School Postsecondary

All
or Less Education or Less Education

Both male and female

log wage 1.59 1.94 1.69 1.47 1.88 1.71
(0.50) (0.53) (0.53) (0.47) (0.57) (0.57)

edu. 10.64 15.21 12.02 11.29 14.96 13.41
(2.11) (1.65) (2.89) (1.68) (1.82) (2.53)

expr. 20.10 13.69 18.17 20.67 18.91 19.65
(14.44) (11.41) (13.91) (12.95) (11.17) (11.98)

marriage 0.67 0.70 0.68 0.52 0.60 0.57
(0.47) (0.46) (0.47) (0.50) (0.49) (0.50)

nonwhite 0.11 0.08 0.10 0.15 0.14 0.15
(0.32) (0.27) (0.30) (0.36) (0.35) (0.35)

n 77,899 33,733 111,632 216,136 295,683 511,819

Male

log wage 1.76 2.07 1.86 1.57 2.00 1.81
(0.48) (0.53) (0.52) (0.48) (0.58) (0.58)

edu. 10.44 15.29 12.00 11.19 15.02 13.31
(2.26) (1.69) (3.08) (1.82) (1.84) (2.64)

expr. 20.35 14.00 18.32 20.02 19.22 19.58
(14.49) (11.06) (13.81) (12.75) (11.08) (11.86)

marriage 0.73 0.76 0.74 0.53 0.64 0.59
(0.44) (0.43) (0.44) (0.50) (0.48) (0.49)

nonwhite 0.10 0.06 0.09 0.14 0.13 0.13
(0.30) (0.24) (0.29) (0.34) (0.33) (0.34)

n 44,299 20,851 65,150 116,129 144,138 260,267

Female

log wage 1.35 1.71 1.45 1.77 1.36 1.61
(0.41) (0.47) (0.46) (0.54) (0.43) (0.54)

edu. 10.89 15.08 12.05 14.90 11.42 13.52
(1.87) (1.59) (2.60) (1.79) (1.49) (2.40)

expr. 19.78 13.19 17.96 18.61 21.41 19.73
(14.36) (11.94) (14.04) (11.24) (13.13) (12.11)

marriage 0.60 0.60 0.60 0.56 0.51 0.54
(0.49) (0.49) (0.49) (0.50) (0.50) (0.50)

nonwhite 0.13 0.10 0.12 0.15 0.17 0.16
(0.33) (0.30) (0.33) (0.36) (0.38) (0.37)

n 33,600 12,882 46,482 151,545 100,007 251,552

Notes: “Postsecondary Education” stands for the sub-sample with years of education higher than 12 and “High

School or Less” stands for sub-sample with years of education less than or equal to 12). edu. and exper. are in

years. marriage and nonwhite are dummy variables. n is the sample size. We report mean and standard deviation

(in parentheses) of each variable. The data is from the May and Outgoing Rotation Group (ORG) supplements of

the Current Population Survey (CPS) data retrived from https://www.openicpsr.org/openicpsr/project/116216/

version/V1/view. 28



Table 5: Estimates of the distribution of the return to education across two periods, 1973 - 75 and
2001 - 03, by years of education and gender

High School or Less Postsecondary Edu. All
1973 - 75 2001 - 03 1973 - 75 2001 - 03 1973 - 75 2001 - 03

Both Male and Female

π n/a 0.5585 0.2632 0.1927 0.2836 0.2842
βL 0.0614 0.0402 0.0490 0.0690 0.0461 0.0590
βH 0.0614 0.0957 0.1019 0.1311 0.0869 0.1217

βH/βL 1.0000 2.3800 2.0775 1.9003 1.8870 2.0629
E (βi) 0.0614 0.0647 0.0880 0.1191 0.0754 0.1039

s.d. (βi) 0.0000 0.0276 0.0233 0.0245 0.0184 0.0283
n 77,899 216,136 33,733 295,683 111,632 511,819

Male

π n/a 0.4364 0.3011 0.1864 0.2689 0.2934
βL 0.0637 0.0373 0.0408 0.0573 0.0435 0.0516
βH 0.0637 0.0877 0.0912 0.1244 0.0806 0.1162

βH/βL 1.0000 2.3540 2.2337 2.1701 1.8532 2.2497
E (βi) 0.0637 0.0657 0.0761 0.1119 0.0707 0.0972

s.d. (βi) 0.0000 0.0250 0.0231 0.0261 0.0165 0.0294
n 44,299 116,129 20,851 144,138 65,150 260,267

Female

π 0.2919 0.5904 0.2360 0.2268 0.2034 0.2779
βL 0.0367 0.0380 0.0662 0.0830 0.0473 0.0685
βH 0.0668 0.1039 0.1201 0.1376 0.0929 0.1282

βH/βL 1.8211 2.7326 1.8159 1.6564 1.9633 1.8707
E (βi) 0.0580 0.0650 0.1074 0.1252 0.0837 0.1116

s.d. (βi) 0.0137 0.0324 0.0229 0.0228 0.0184 0.0267
n 33,600 100,007 12,882 151,545 46,482 251,552

Notes: This table reports the estimates of the distribution of βi with the quadratic in experience specification (6.2),

using S = 4 order moments of edui. “Postsecondary Edu.” stands for the sub-sample with years of education higher

than 12 and “High School or Less” stands for those with years of education less than or equal to 12. s.d. (βi)

corresponds to the square root of estimated var (βi). n is the sample size. “n/a” is inserted when the estimates show

homogeneity of βi and π is not identified and cannot be estimated.

mainly due to the increasing returns to education for the postsecondary group.

Turning to within group heterogeneity, we focus on the estimates of βH,t/βL,t and first note

that over the two periods, within group heterogeneity has been rising mainly in the case of those

with high school or less, for both male and female. For the combined male and female samples

and the male sub-sample, there is little evidence of within group heterogeneity for the first period

{1973− 75}. However, for the second period {2001− 03} we find a sizeable degree of within group

heterogeneity where βH,t/βL,t is estimated to be around 2.4, with s.d. (βit) ≈ 0.03. For the female

sub-sample with high school or less, estimates of βH,t/βL,t increases from 1.82 for the first sample

period to 2.73 for the second sample period, that corresponds to a commensurate rise in s.d. (βi)
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from 0.014 to 0.032. The pattern of within group heterogeneity is very different for those with

postsecondary educational. For this group we in fact observe a slight decline in the estimates of

βH,t/βL,t by gender and over two sample periods.

Overall, our between and within estimates of mean return to education are in line with the

evidence of rising wage inequality documented in the literature (Corak, 2013).

7 Conclusion

In this paper we consider random coefficient models for repeated cross-sections in which the ran-

dom coefficients follow categorical distributions. Identification is established using moments of the

random coefficients in terms of the moments of the underlying observations. We propose two-step

generalized method of moments to estimate the parameters of the categorical distributions. The

consistency and asymptotic normality of the GMM estimators are established without the IID as-

sumption typically assumed in the literature. Small sample properties of the proposed estimator

are investigated by means of Monte Carlo experiments and shown to be robust to heterogeneously

generated regressors and errors. In the empirical application, we apply the model to study the

evolution of returns to education over two sub-periods, also considered in the literature by Lemieux

(2006b). Our estimates show that mean (ex post) returns to education have risen over the periods

from 1973 - 75 to 2001 - 2003 mainly in the case of individuals with postsecondary education, and

this result is robust by gender. We find evidence of within group heterogeneity in the case of high

school or less educational group as compared to those with postsecondary education.

In our model specification, the number of categories, K, is treated as a tuning parameter and

assumed to be known. An information criterion, as in Bonhomme and Manresa (2015) and Su,

Shi, and Phillips (2016), to determine K could be considered. Further investigation of models with

multiple regressors subject to parameter heterogeneity is also required. These and other related

issues are topics for future research.
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Appendix

A.1 Proofs

We include proofs and technical details in this section.

Proof of Theorem 1. Sum (2.6) over i and rearrange terms,

(
1

n

n∑
i=1

E (xri )

)
E (βri ) +

1

n

n∑
i=1

E (uri )

=
1

n

n∑
i=1

E (ỹri )−
r−1∑
q=2

(
r

q

)(
1

n

n∑
i=1

E
(
xr−qi

)
E (uqi )

)
E
(
βr−qi

)
. (A.1.1)

Note that

1

n

n∑
i=1

E
(
xr−qi

)
E (uqi ) =

(
1

n

n∑
i=1

E
(
xr−qi

))
σq +

1

n

n∑
i=1

E
(
xr−qi

)
(E (uqi )− σr) ,

and ∣∣∣∣∣ 1n
n∑
i=1

E
(
xr−qi

)
(E (uqi )− σr)

∣∣∣∣∣ ≤ sup
i

∣∣∣E(xr−qi

)∣∣∣ ∣∣∣∣∣ 1n
n∑
i=1

(E (uqi )− σr)

∣∣∣∣∣ = O(n−1/2),

by Assumption 1(b) and 2(b), then by taking n → ∞ on both sides of (A.1.1), we have (2.8).

Similar steps for (2.7) give (2.9).

Proof of Theorem 2.

Let mr = E (βri ), r = 1, 2, · · · , 2K − 1, which are taken as known. We show that

mr =
K∑
k=1

πkb
r
k, (A.1.2)

r = 0, 1, 2, · · · , 2K − 1, has a unique solution θ = (π′,b′)′, with b1 < b2 < · · · < bK and πk ∈ (0, 1)

imposed.

Let

q (λ) =
K∏
k=1

(λ− bk) = λK + (−1)1 b∗1λ
K−1 + · · ·+ (−1)K b∗K , (A.1.3)

be the polynomial with K distinct roots b1, b2, · · · , bK . Note that for each k, (brk)
2K−1
r=0 satisfies the

linear homogeneous recurrence relation,

bK+r
k = b∗1b

K+r−1
k + (−1)1 b∗2b

K+r−2
k + · · ·+ (−1)K−1 b∗Kb

r
k, (A.1.4)

for r = 0, 1, · · ·K − 1, since q is the characteristic polynomial of the linear recurrence relation
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(A.1.4) and bk is a root of q (Rosen, 2006, Chapter 5.2). (mr)
2K−1
r=0 is a linear combination of

(br1)2K−1
r=0 , (br2)2K−1

r=0 , · · · , (brK)2K−1
r=0 by (A.1.2), then (mr)

2K−1
r=0 also satisfies the linear recurrence

relation (A.1.4), i.e.,

mK+r = b∗1mK+r−1 + (−1)1 b∗2mK+r−2 + · · ·+ (−1)K−1 b∗Kmr, (A.1.5)

for r = 0, 1, · · · ,K − 1. (A.1.5) is a linear system of K equations in terms of (b∗k)
K
k=1. In matrix

form,

MDb∗ = m, (A.1.6)

where

M =


1 m1 · · · mK−1

m1 m2 · · · mK

...
...

. . .
...

mK−1 mK · · · m2K−2

 ,

D = diag
(

(−1)K−1 , (−1)K−2 , · · · , 1
)

, b∗ =
(
b∗K , b

∗
K−1, · · · , b∗1

)′
, and m = (mK ,mK+1, · · · ,m2K−1)′.

Denote ψk =
(

1, bk, b
2
k · · · , b

K−1
k

)′
and Ψ = (ψ1,ψ2, · · · ,ψK). Then

Mk =


1 bk · · · bK−1

k

bk b2k · · · bKk
...

...
. . .

...

bK−1
k bKk · · · b2K−2

k

 = ψkψ
′
k,

and M =
∑K

k=1 πkMk = Ψdiag (π) Ψ′. Note that Ψ′ is a Vandermonde matrix then det (Ψ) =∏
1≤k<k′≤K (bk′ − bk) > 0 since b1 < b2 < · · · < bK .

det (MD) = det
(
Ψdiag (π) Ψ′

)
det (D)

=

 ∏
1≤k<k′≤K

(bk′ − bk)

2(
K∏
k=1

πk

)(
(−1)

1
2
K(K−1)

)
6= 0,

since πk ∈ (0, 1) for any k. Then we can identify (b∗k)
K
k=1 by (mr)

2K−1
r=0 in (A.1.6), and hence the

characteristic polynomial is determined, and we can identify (bk)
K
k=1 by (A.1.3).

Since both (bk)
K
k=1 and (mr)

2K−1
r=1 are identified, the first K equations of (A.1.2) is

Ψ′π = (1,m1,m2, · · · ,mK−1)′ ,

and π is identified by inverting the Vandermonde matrix Ψ′, which completes the proof.
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Proof of Theorem 3. From (3.1), we have

1

n

n∑
i=1

wiyi =
1

n

n∑
i=1

wiw
′
iφ+

1

n

n∑
i=1

wiξi,

where ξi = ui + xivi, which can be written equivalently as

qn,wy = Qn,wwφ+
1

n

n∑
i=1

wiξi.

Taking expectations of both sides and rearrange terms, we have

φ = E (Qn,ww)−1 E (qn,wy) .

Consider

φ̂− φ = Q−1
n,wwqn,wy − E (Qn,ww)−1 E (qn,wy)

=
[
Q−1
n,ww − E (Qn,ww)−1 + E (Qn,ww)−1

]
[qn,wy − E (qn,wy) + E (qn,wy)]− E (Qn,ww)−1 E (qn,wy)

=
[
Q−1
n,ww − E (Qn,ww)−1

]
[qn,wy − E (qn,wy)] +

[
Q−1
n,ww − E (Qn,ww)−1

]
E (qn,wy)

+ E (Qn,ww)−1 [qn,wy − E (qn,wy)] .

Then,∥∥∥φ̂− φ∥∥∥ ≤ ∥∥∥Q−1
n,ww − E (Qn,ww)−1

∥∥∥ ‖qn,wy − E (qn,wy)‖+
∥∥∥Q−1

n,ww − E (Qn,ww)−1
∥∥∥ ‖E (qn,wy)‖

+
∥∥∥E (Qn,ww)−1

∥∥∥ ‖qn,wy − E (qn,wy)‖ .

By Assumption 1(c), we have
∥∥∥Q−1

n,ww − E (Qn,ww)−1
∥∥∥ = Op

(
n−1/2

)
, ‖qn,wy − E (qn,wy)‖ = Op

(
n−1/2

)
,

and by Assumption 1(b), ‖E (qn,wy)‖ and
∥∥∥E (Qn,ww)−1

∥∥∥ are bounded. Thus,

∥∥∥φ̂− φ∥∥∥ = Op

(
n−1/2

)
.

To establish the asymptotic distribution of φ̂, we first note that

√
n
(
φ̂− φ

)
= Q−1

n,ww

(
n−1/2

n∑
i=1

wiξi

)
.

By Assumption 3, we have

var

(
n−1/2

n∑
i=1

wiξi

)
=

1

n

n∑
i=1

var (wiξi) =
1

n

n∑
i=1

E
(
wiw

′
iξ

2
i

)
→ Vwξ � 0.
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Note that ξi = ui + xivi, and wi is distributed independently of ui and vi. Then

wiξi = wi (ui + xivi) = wiui + (wixi) vi,

and by Minkowski’s inequality, for r = 2 + δ with 0 < δ < 1,

[E ‖wiξi‖
r]1/r ≤ [E ‖wiui‖r]1/r + [E ‖(wixi) vi‖r]1/r .

Due to the independence of ui and vi from wi, we have

E (‖wiui‖r) ≤ E ‖wi‖r E ‖ui‖r , and E
∥∥(wix

′
i

)
vi
∥∥r ≤ E ‖wixi‖r E ‖vi‖r .

Also, E ‖wixi‖r ≤ E
∥∥∥(x2

i , xiz
′
i

)′∥∥∥r ≤ E ‖wiw
′
i‖
r ≤ E ‖wi‖2r, where 2 < r < 3, and hence

2r < 6. By Assumptions 1(a.ii) and 1(b.ii), we have supi E
(
‖wi‖6

)
< C, supi E

(
‖ui‖3

)
< C,

and E
(
‖vi‖3

)
≤ max1≤k≤K |bk − E (βi)|

3 < C. Then, we verified that supi E (‖wiui‖r) < C,

and E ‖(wix
′
i) vi‖

r < C, and hence the Lyapunov condition that supi E (‖wiξi‖
r) < C, where

r = 2 + δ ∈ (2, 3). By the central limit theorem for independent but not necessarily identically

distributed random vectors (see Pesaran (2015, Theorem 18) or Hansen (2022, Theorem 6.5)), we

have
1√
n

n∑
i=1

wiξi →d N(0,Vwξ),

as n→∞, and by Assumption 1 and continuous mapping theorem,

√
n(φ̂− φ)→d N

(
0,Q−1

wwVwξQ
−1
ww

)
.

We then turn to the consistent estimation of the variance matrix. By Assumption 3, we have

∥∥∥V̂wξ −Vwξ

∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

wiw
′
iξ̂

2

i −
1

n

n∑
i=1

E
(
wiwiξ

2
i

)
+

1

n

n∑
i=1

E
(
wiwiξ

2
i

)
−Vwξ

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n

n∑
i=1

wiw
′
iξ

2
i −

1

n

n∑
i=1

E
(
wiwiξ

2
i

)∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
i=1

E
(
wiwiξ

2
i

)
−Vwξ

∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

wiw
′
i

(
ξ̂

2

i − ξ2
i

)∥∥∥∥∥
≤ 1

n

n∑
i=1

‖wi‖2
∣∣∣ξ̂2

i − ξ2
i

∣∣∣+Op(n
−1/2). (A.1.7)
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Note that ξ̂i = ξi −
(
φ̂− φ

)′
wi, then

∣∣∣ξ̂2

i − ξ2
i

∣∣∣ ≤ 2
∣∣∣ξiw′i (φ̂− φ)∣∣∣+

(
φ̂− φ

)′ (
wiw

′
i

) (
φ̂− φ

)
≤ 2 |ξi| ‖wi‖

∥∥∥φ̂− φ∥∥∥+ ‖wi‖2
∥∥∥φ̂− φ∥∥∥2

. (A.1.8)

Combine (A.1.7) and (A.1.8), we have

∥∥∥V̂wξ −Vwξ

∥∥∥ ≤ 2

(
1

n

n∑
i=1

‖wi‖3 |ξi|

)∥∥∥φ̂− φ∥∥∥+

(
1

n

n∑
i=1

‖wi‖4
)∥∥∥φ̂− φ∥∥∥2

. (A.1.9)

We showed that
∥∥∥φ̂− φ∥∥∥ = Op

(
n−1/2

)
. By Hölder’s inequality,

1

n

n∑
i=1

‖wi‖3 |ξi| ≤

(
1

n

n∑
i=1

‖wi‖4
)3/4(

1

n

n∑
i=1

ξ4
i

)1/4

. (A.1.10)

By Assumption 1(b.iii), n−1
∑n

i=1 ‖wi‖4 = Op(1). By Minkowski inequality,

(
1

n

n∑
i=1

ξ4
i

)1/4

=

(
1

n

n∑
i=1

(ui + xivi)
4

)1/4

≤

(
1

n

n∑
i=1

u4
i

)1/4

+

(
1

n

n∑
i=1

x4
i v

4
i

)1/4

≤

(
1

n

n∑
i=1

u4
i

)1/4

+ max
k
{|bk − E (βi)|}

(
1

n

n∑
i=1

x4
i

)1/4

≤ Op(1),

where the last inequality is from Assumptions 1(a.iii) and (b.iii) that n−1
∑n

i=1 u
4
i = Op (1), and

n−1
∑n

i=1 x
4
i ≤ n−1

∑n
i=1 ‖wi‖4 = Op(1). Then we verified in (A.1.10) that

1

n

n∑
i=1

‖wi‖3 |ξi| ≤ Op(1).

Then by (A.1.9) we have ∥∥∥V̂wξ −Vwξ

∥∥∥ = Op

(
n−1/2

)
.

Proof of Theorem 4. Denote

Φ0 (θ,σ,γ) = g0 (θ,σ,γ)′Ag0 (θ,σ,γ) ,

where we stack the left-hand side of (3.7) and transform mβ = h (θ) to get g0 (θ,σ,γ). We suppress

and the argument γ̂ and denote η =
(
θ′,σ′

)′
for notation simplicity and proceed by verifying the

conditions of Newey and McFadden (1994, Theorem 2.1). Theorem 2 provides the identification
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results which together with the positive definiteness of A verifies that Φ0 (η,γ) is uniquely minimized

to 0 at η0. The compactness of the parameter space holds by Assumption 4(a). Note that g0 (η,γ)

is a polynomial in η, which is continuous in η. g0 (η,γ) is bounded on Θ × S. We proceed by

verify the uniform convergence condition. The additive terms in ĝn (η, γ̂)−g0 (η,γ) are of the form

Hn,1h
(r,q) (η) or Hn,2, where

|Hn,1| =

∣∣∣∣∣ 1n
n∑
i=1

xr−q+sri − ρ0,r−q+sr

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

xr−q+sri − 1

n

n∑
i=1

E
(
xr−q+sri

)∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

E
(
xr−q+sri

)
− ρ0,r−q+sr

∣∣∣∣∣
= Op

(
n−1/2

)
,

h(r,q}) (η) is a polynomial in η, and

|Hn,2| =

∣∣∣∣∣ 1n
n∑
i=1

ˆ̃yri x
sr
i − ρr,sr

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

ˆ̃yri x
sr
i −

1

n

n∑
i=1

E (ỹri x
sr
i )

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

E (ỹri x
sr
i )− ρr,sr

∣∣∣∣∣
= Op

(
n−1/2

)
.

Hn,1 = Op
(
n−1/2

)
and Hn,2 = Op

(
n−1/2

)
are due to Assumption 2(a) and 4(c).

By the compactness of Θ × S, supη∈Θ×S h
(r,q) (η) < C < ∞ for some positive constant C. By

triangle inequality, we have

sup
η∈Θ×S

‖ĝn (η, γ̂)− g0 (η,γ)‖ →p 0, (A.1.11)

as n→∞. Following the proof of Newey and McFadden (1994, Theorem 2.1),∣∣∣Φ̂n (η, γ̂)− Φ0 (η,γ)
∣∣∣

≤
∣∣[ĝn (η, γ̂)− g0 (η, γ)]′An [ĝn (η, γ̂)− g0 (η,γ)]

∣∣+
∣∣g0 (η,γ)′

(
An + A′n

)
[ĝn (η, γ̂)− g0 (η,γ)]

∣∣
+
∣∣g0 (η, γ)′ (An −A) g0 (η,γ)

∣∣
≤‖ĝn (η, γ̂)− g0 (η,γ)‖2 ‖An‖+ 2 ‖g0 (η,γ)‖ ‖ĝn (η, γ̂)− g0 (η, γ)‖ ‖An‖+ ‖g0 (η,γ)‖2 ‖An −A‖ .

By (A.1.11) and the boundedness of g0, supη∈η

∣∣∣Φ̂n ( η, γ̂)− Φn ( η,γ)
∣∣∣→p 0, which completes the

proof.

Proof of Theorem 5. We denote η =
(
θ′,σ′

)′
for notation simplicity The first-order condition,

∇ηĝn (η̂, γ̂) Anĝn (η̂, γ̂) = 0, holds with probability 1. Denote Ĝ (η,γ) = ∇ηĝn (η,γ) and expand
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ĝn (η̂, γ̂) in the first-order condition around η0, we have

√
n (η̂ − η0) = −

[
Ĝ (η̂, γ̂)′AnĜ (η̄, γ̂)

]−1
Ĝ (η̂, γ̂)′An

(√
nĝn (η0, γ̂)

)
= −

[
Ĝ (η̂, γ̂)′AnĜ (η̄, γ̂)

]−1
Ĝ (η̂, γ̂)′An

[√
nĝn (η0,γ0) +∇γ ĝn (η0, γ̄)

√
n (γ̂ − γ0)

]
,

where η̄ and γ̄ are between η̂ and η0; and γ̂ and γ0, respectively. Note that by term-by-term

convergence, we have Ĝ (η̂, γ̂) , Ĝ (η̄, γ̂) →p G0 and ∇γ ĝn (η0, γ̄) →p ∇γg0

(
η0,γ0

)
= G0,γ . By

Assumption 4(b), An →p A. By Assumption 5(a) and (b) and Slutsky theorem,

√
n (η̂ − η0)→d

(
G′0AG0

)−1
G′0A

(
ζ + G0,γζγ

)
,

which completes the proof.

Further details for Example 4. We need to verify the invertibility of the matrix

B =


1 1 0 0

0 0 1 1

1 0 1 0

b1Lb2L b1Lb2H b1Hb2L b1Hb2H

 .

The span of first three rows of B is

S =
{

(α1 + α3, α1, α2 + α3, α3)′ : α1, α2, α3 ∈ R
}
.

(b1Lb2L, b1Lb2H , b1Hb2L, b1Hb2H)′ /∈ S is equivalent to b1Hb2H − b1Hb2L 6= b1Lb2H − b1Lb2L. This can

be verified by

(b1Hb2H − b1Hb2L)− (b1Lb2H − b1Lb2L) = (b1H − b1L) (b2H − b2L) > 0,

given that b1L < b1H and b2L < b2H hold.

A.2 Additional empirical results

In this section, we provide additional results for the empirical application. In addition to the

quadratic in experience in Section 6, we further consider the following quartic in experience speci-

fication,

log wagei = α+ βiedui + ρ1experi + ρ2exper2
i + ρ3exper3

i + ρ4exper4
i + z̃′iγ̃ + ui, (A.2.1)

where

βi =

bL w.p. π,

bH w.p. 1− π.
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Table A.2 and A.3 report the estimates of the distributional parameters of βi and the estimates of

γ with the specification (A.2.1).

The estimates of parameter of interests with specification (A.2.1) are almost the same as that

with quadratic in experience specification (6.3) reported in Table 5. The qualitative analysis and

conclusion discussed in Section 6 remain robust to adding higher order powers of experi in the

regressions.
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Table A.1: Estimates of γ associated with control variables zi with specification (6.2) across two
periods, 1973 - 75 and 2001 - 03, by years of education and gender, which complements Table 5

High School or Less Postsecondary Edu. All
1973 - 75 2001 - 03 1973 - 75 2001 - 03 1973 - 75 2001 - 03

Both male and female

exper. 0.0305 0.0319 0.0415 0.0354 0.0310 0.0321
(0.0004) (0.0002) (0.0008) (0.0003) (0.0003) (0.0002)

exper.2 (×102) -0.0490 -0.0505 -0.0826 -0.0652 -0.0499 -0.0537
(0.0009) (0.0005) (0.0022) (0.0007) (0.0008) (0.0005)

marriage 0.1120 0.0751 0.0886 0.0770 0.1085 0.0818
(0.0036) (0.0020) (0.0059) (0.0020) (0.0031) (0.0014)

nonwhite -0.0922 -0.0775 -0.0424 -0.0571 -0.0715 -0.0667
(0.0047) (0.0024) (0.0088) (0.0025) (0.0042) (0.0018)

gender 0.4157 0.2298 0.2962 0.2023 0.3892 0.2167
(0.0029) (0.0017) (0.0050) (0.0018) (0.0025) (0.0013)

n 77,899 216,136 33,733 295,683 111,632 511,819

Male

exper. 0.0369 0.0366 0.0516 0.0405 0.0389 0.0371
(0.0005) (0.0003) (0.0011) (0.0005) (0.0005) (0.0003)

exper.2 (×102) -0.0589 -0.0589 -0.1016 -0.0752 -0.0635 -0.0629
(0.0012) (0.0008) (0.0029) (0.0011) (0.0010) (0.0007)

marriage 0.1940 0.1123 0.1497 0.1344 0.1828 0.1316
(0.0053) (0.0028) (0.0085) (0.0031) (0.0045) (0.0021)

nonwhite -0.1241 -0.1165 -0.1172 -0.1010 -0.1178 -0.1093
(0.0065) (0.0035) (0.0127) (0.0039) (0.0058) (0.0027)

n 44,299 116,129 20,851 144,138 65,150 260,267

Female

exper. 0.0223 0.0265 0.0271 0.0313 0.0208 0.0272
(0.0006) (0.0003) (0.0011) (0.0004) (0.0005) (0.0003)

exper.2 (×102) -0.0376 -0.0411 -0.0564 -0.0576 -0.0338 -0.0450
(0.0013) (0.0008) (0.0030) (0.0010) (0.0012) (0.0006)

marriage 0.0115 0.0317 -0.0005 0.0262 0.0118 0.0322
(0.0048) (0.0028) (0.0079) (0.0026) (0.0041) (0.0019)

nonwhite -0.0581 -0.0441 0.0395 -0.0236 -0.0202 -0.0315
(0.0065) (0.0033) (0.0117) (0.0033) (0.0058) (0.0024)

n 33,600 100,007 12,882 151,545 46,482 251,552

Notes: This table reports the estimates of γ in (6.2). “Postsecondary Edu.” stands for the sub-sample with years of

education higher than 12 and “High School or Less” stands for those with years of education less than or equal to

12. The standard error of estimates of coefficients associated with control variables are estimated based on Theorem

3 and reported in parentheses. n is the sample size.
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Table A.2: Estimates of the distribution of the return to education with specification (A.2.1) across
two periods, 1973 - 75 and 2001 - 03, by years of education and gender

High School or Less Postsecondary Edu. All
1973 - 75 2001 - 03 1973 - 75 2001 - 03 1973 - 75 2001 - 03

Both Male and Female

π n/a 0.5766 0.2698 0.1988 0.2928 0.2940
βL 0.0623 0.0421 0.0491 0.0692 0.0481 0.0604
βH 0.0623 0.0978 0.1021 0.1309 0.0874 0.1221

βH/βL 1.0000 2.3265 2.0807 1.8905 1.8170 2.0206
E (βi) 0.0623 0.0657 0.0878 0.1186 0.0759 0.1040

s.d. (βi) 0.0000 0.0276 0.0235 0.0246 0.0179 0.0281
n 77,899 216,136 33,733 295,683 111,632 511,819

Male

π n/a 0.4647 0.3006 0.1938 0.2682 0.2998
βL 0.0650 0.0401 0.0407 0.0580 0.0453 0.0535
βH 0.0650 0.0908 0.0912 0.1245 0.0808 0.1171

βH/βL 1.0000 2.2652 2.2383 2.1453 1.7838 2.1876
E (βi) 0.0650 0.0672 0.0760 0.1116 0.0713 0.0980

s.d. (βi) 0.0000 0.0253 0.0231 0.0263 0.0157 0.0291
n 44,299 116,129 20,851 144,138 65,150 260,267

Female

π 0.2400 0.6061 0.2666 0.2314 0.2206 0.2984
βL 0.0354 0.0389 0.0672 0.0827 0.0502 0.0697
βH 0.0661 0.1049 0.1211 0.1370 0.0936 0.1280

βH/βL 1.8652 2.6943 1.8014 1.6559 1.8639 1.8367
E (βi) 0.0587 0.0649 0.1068 0.1244 0.0840 0.1106

s.d. (βi) 0.0131 0.0322 0.0238 0.0229 0.0180 0.0267
n 33,600 100,007 12,882 151,545 46,482 251,552

Notes: This table reports the estimates of the distribution of βi with the quartic in experience specification (A.2.1),

using S = 4 order moments of edui. “Postsecondary Edu.” stands for the sub-sample with years of education

higher than 12 and “High School or Less” stands for those with years of education less than or equal to 12. s.d. (βi)

corresponds to the square root of estimated var (βi). n is the sample size. “n/a” is inserted when the estimates show

homogeneity of βi and π is not identified and cannot be estimated.
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Table A.3: Estimates of γ associated with control variables zi with specification (A.2.1) across two
periods, 1973 - 75 and 2001 - 03, by years of education and gender, which complements Table A.2

High School or Less Postsecondary Edu. All
1973 - 75 2001 - 03 1973 - 75 2001 - 03 1973 - 75 2001 - 03

Both male and female
exper. 0.0769 0.0526 0.0817 0.0763 0.0757 0.0603

(0.0015) (0.0009) (0.0029) (0.0012) (0.0013) (0.0007)
exper.2 -0.0040 -0.0020 -0.0045 -0.0039 -0.0038 -0.0024

(0.0001) (0.0001) (0.0003) (0.0001) (0.0001) (0.0001)
exper.3 (×105) 9.2470 3.4329 11.2100 8.9370 8.3625 3.6521

(0.4146) (0.2882) (1.2538) (0.4460) (0.3677) (0.2412)
exper.4 (×105) -0.0768 -0.0236 -0.1074 -0.0777 -0.0654 -0.0169

(0.0043) (0.0031) (0.0158) (0.0054) (0.0039) (0.0027)
marriage 0.0819 0.0700 0.0728 0.0674 0.0799 0.0718

(0.0037) (0.0020) (0.0060) (0.0020) (0.0031) (0.0014)
nonwhite -0.1052 -0.0808 -0.0486 -0.0613 -0.0855 -0.0719

(0.0046) (0.0024) (0.0088) (0.0025) (0.0041) (0.0018)
gender 0.4146 0.2272 0.2933 0.2008 0.3854 0.2150

(0.0029) (0.0017) (0.0049) (0.0018) (0.0025) (0.0013)
n 77,899 216,136 33,733 295,683 111,632 511,819

Male
exper. 0.0823 0.0620 0.0859 0.0780 0.0825 0.0664

(0.0020) (0.0012) (0.0040) (0.0018) (0.0017) (0.0010)
exper.2 (×102) -0.0039 -0.0024 -0.0041 -0.0036 -0.0037 -0.0025

(0.0002) (0.0001) (0.0004) (0.0002) (0.0001) (0.0001)
exper.3 (×105) 8.2014 4.3686 9.2747 7.3170 7.4306 3.6749

(0.5321) (0.3864) (1.7422) (0.6709) (0.4700) (0.3241)
exper.4 (×105) -0.0650 -0.0314 -0.0880 -0.0582 -0.0552 -0.0161

(0.0054) (0.0042) (0.0223) (0.0081) (0.0049) (0.0036)
marriage 0.1493 0.1052 0.1310 0.1234 0.1421 0.1192

(0.0056) (0.0029) (0.0088) (0.0031) (0.0048) (0.0021)
nonwhite -0.1362 -0.1191 -0.1214 -0.1040 -0.1309 -0.1136

(0.0064) (0.0035) (0.0126) (0.0039) (0.0057) (0.0027)
n 44,299 116,129 20,851 144,138 65,150 260,267

Female
exper. 0.0713 0.0455 0.0911 0.0782 0.0729 0.0568

(0.0022) (0.0013) (0.0040) (0.0016) (0.0019) (0.0011)
exper.2 (×102) -0.0044 -0.0018 -0.0067 -0.0045 -0.0045 -0.0025

(0.0002) (0.0001) (0.0004) (0.0002) (0.0002) (0.0001)
exper.3 (×105) 11.0325 3.4767 19.6859 11.2858 11.3406 4.4944

(0.6649) (0.4360) (1.7412) (0.5915) (0.6095) (0.3682)
exper.4 (×105) -0.0974 -0.0264 -0.1979 -0.1046 -0.0969 -0.0272

(0.0071) (0.0048) (0.0216) (0.0071) (0.0066) (0.0042)
marriage -0.0078 0.0278 -0.0175 0.0168 -0.0082 0.0234

(0.0048) (0.0028) (0.0080) (0.0026) (0.0041) (0.0020)
nonwhite -0.0714 -0.0479 0.0276 -0.0291 -0.0356 -0.0375

(0.0065) (0.0033) (0.0117) (0.0033) (0.0057) (0.0024)
n 33,600 100,007 12,882 151,545 46,482 251,552

Notes: This table reports the estimates of γ in (A.2.1). “Postsecondary Edu.” stands for the sub-sample with years

of education higher than 12 and “High School or Less” stands for those with years of education less than or equal to

12. The standard error of estimates of coefficients associated with control variables are estimated based on Theorem

3 and reported in parentheses. n is the sample size.
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