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Abstract 
 
We study formation of international climate coalitions. Countries are farsighted and rationally 
predict the consequences of their membership decisions in climate negotiations. Within the 
context of an integrated assessment model of the economy and the climate, we characterise the 
equilibrium number of coalitions and their number of signatories independent of certain types of 
heterogeneity, and show that the resulting treaties are robust to renegotiation. With a richer 
structure of energies we investigate possible coalition outcomes for a calibrated model. We 
confirm our heterogeneity results and in contrast to earlier approaches based on internal and 
external stability, much larger coalitions can be sustained in equilibrium. 
JEL-Codes: Q540, D700, D500. 
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1 Introduction

The biggest planetary tragedy is the failure of countries to work together to curb anthro-

pogenic greenhouse gases (GHG) emissions and global warming. After three decades of

climate negotiations, there is still no effective and self-enforcing internationally cooper-

ative climate policy. One reason might be the focus on formation of the unlikely grand

climate coalition of all countries concerned and the lack of a more sophisticated approach

regarding countries’ motives to join a coalition.

We explore the idea that allowing for multiple climate coalitions among smaller groups

of more sophisticated countries might result in self-enforcing and overall more ambitious

agreements than what we observe today. We thus consider farsighted countries and their

motives to join a climate treaty and study these in an integrated assessment model of

the economy and the climate (IAM).

Our main contribution is to characterise equilibrium coalition structures in a well-

defined IAM which incorporates the general-equilibrium effects in climate coalition for-

mation with farsighted agents, taking into account certain types of heterogeneity among

countries and the possibility of renegotiation of agreements. In addition to the analytical

characterisation of the equilibrium coalition structure for such an IAM, to the best of our

knowledge, this is the first paper which delivers numerical results on equilibrium coali-

tion formation with farsighted players in a calibrated IAM. We show that with farsighted

countries larger climate coalitions can be sustained, and multiple climate coalitions of

different sizes can be sustained alongside each other.

Most of the literature on international climate coalition formation abstracts from

details of macroeconomic outcomes and their underlying determinants (see the review

in Battaglini and Harstad (2016)). Instead, climate economists have developed multi-

country IAMs which are growth models that allow for examining the effects of the econ-

omy on global warming and vice versa, and are used to analyse different scenarios such

as business-as-usual (BAU), and the global social optimum, (e.g., Hassler and Krusell

(2012)), but they are typically not used to analyse the strategic interactions of countries

seeking climate agreements. We build a bridge between the literature on climate coali-

tion formation and the one on optimal climate policies from IAMs. We thus capture

the broader incentives of policymakers in climate negotiations and analyse international

climate coalition within the context of macroeconomic, multi-country IAMs.

We allow for heterogeneity across countries with respect to the initial stocks of capital,

total factor productivities, and the initial levels of exhaustible fossil fuel reserves. With

such asymmetries one cannot usually use the conventional coalition formation method-

ologies developed for symmetric countries. We offer an approach to decouple the problem

of characterising equilibrium number of coalitions and their number of signatories from

their heterogeneity which relies on the fact that the source of heterogeneity affects the
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payoffs of countries in an additive-separable form. Although this treatment depends on

the payoff structure, it provides a stepping stone in studying heterogeneity in the theory

of coalition formation with farsighted agents.

To keep matters tractable, we use a multi-country IAM of economic growth and

climate dynamics based on Golosov et al. (2014) and van der Ploeg and Rezai (2021)

and integrate it with an analysis of the decision of individual countries to participate

in international climate coalition formation. The optimal SCC is then proportional to

current output and independent of future values of output or consumption, and the model

replicates the properties of the Dynamic Integrated Climate-Economy (DICE) model of

Nordhaus (1993) reasonably well.

We let policy makers of each country be farsighted: negotiating countries rationally

consider all self-enforceable unilateral and multilateral deviations from their membership

decisions, and predict the entire structure of conceivable coalitions. This contrasts with

the most commonly used solution concept of internal and external cartel stability (a

Nash equilibrium), which assumes that countries are myopic and are only concerned

with the immediate gain or losses of their unilateral deviations and do not take account

of reactions of other countries. Ignoring retaliation by other countries after breaking off

climate negotiations increases incentives for free riding. Deviation from a coalition is

then less costly since it is assumed that the rest of the coalition remains intact and the

agreed policy will not deteriorate a lot. Hence, use of cartel stability conditions result in

very small coalitions (see seminal papers by Carraro and Siniscalco (1993) and Barrett

(1994)) Since this results from the unrealistic assumption that countries are myopic, we

investigate how robust the finding of small coalitions is if countries are farsighted.

To find the equilibrium number of signatories, we check whether the membership

strategy under consideration is immune to deviations. Here farsightedness implies that

deviations from equilibrium strategies which are not themselves self-enforceable must be

excluded. Thus, characterisation of the equilibrium structure of coalitions relies on an

algorithm which recursively identifies the set of the total number of countries for which

a grand coalition forms in equilibrium. The recursion starts from the smallest total

number of countries that can form a self-enforceable coalition and continues to some

finite integer. This set determines the possible farsighted deviations. Furthermore, the

number of members of equilibrium coalition(s) is a subset of this set. If countries have

a one-off payoff, the comparison of payoffs and the characterisation in each step of the

algorithm is not too demanding. In an infinite-horizon IAM the recursion process can

be onerous and generally requires one to resort to numerical simulations. However, with

our IAM we can obtain intuitive and analytical results in some cases.

In particular, for our model with only exhaustible energy, we can obtain analytical

results if policymakers are very patient. We find a simple condition that characterises

the equilibrium number of coalitions and their number of signatories. We show that the
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number of signatories of climate coalitions is a Tribonacci number if the total number of

countries is fewer than 78.1 Moreover, we show that our results are robust to countries

renegotiating their membership decisions.

For more general versions of our IAM, we calibrate to match the current world sit-

uation and simulate the recursive algorithm to find the equilibrium coalition structure

of farsighted countries. We confirm that large self-enforceable coalitions are feasible and

multiple coalitions can co-exist together in equilibrium. Furthermore, the degree of in-

ternalisation of global warming externalities is much higher than under the conventional

solution concept of cartel stability. Hence, climate policy is more ambitious with a higher

SCC, and thus emissions and temperature are curbed rather more with smaller drops in

consumption and capital due to global warming. Furthermore, we obtain robust coali-

tional equilibria under heterogeneity, across different versions of our model, that confirm

our decoupling result. Given the derived equilibrium coalitional structure, we can back

out the macroeconomic policies, global temperature, growth rate, energy consumption,

and the optimal climate policy for the various countries associated with self-enforceable

climate treaties. This enriches the usual economic approaches that have been used in

the literature on international climate coalition formation.

Section 2 reviews related literature. Section 3 presents our multi-country IAM. Sec-

tion 4 derives optimal decisions for a given coalition structure. Section 5 analyses cli-

mate coalition formation, for symmetric and asymmetric countries. Section 5.4 discusses

reversible agreements, where countries can renegotiate any existing agreement. The cal-

ibration of our IAM and the quantitative analysis of coalition formation is presented in

section 6. Section 7 concludes. All proofs are relegated to the Appendix.

2 Related Literature

Research on International Environmental Agreements (IEAs) or climate governance and

international cooperation by forming climate coalitions has led to an extensive literature

(e.g., Carraro and Siniscalco, 1993; Barrett, 1994; and the reviews in Battaglini and

Harstad, 2016, and Benchekroun and Long, 2012). This literature has provided inputs

into the design of international climate treaties, including the Paris Climate Accord.

Most studies employ the solution concept of cartel stability which implies that only

unilateral deviations are checked while taking the membership decision of the comple-

mentary set of players as given. This leads to the small-coalition paradox, which states

that the maximise size of any coalition is a small number (e.g., 3 countries). This is a

robust result.2 To overcome this paradox, many remedies have been explored: interna-

tional transfers (Carraro and Siniscalco, 1993; Hoel and Schneider, 1997; Carraro et al.,

2006); a breakthrough green technology (Barrett, 2006); ‘modest’ agreements (Finus and

1Cf. the Fibonacci sequence in Ray and Vohra (2001).
2See Battaglini and Harstad (2016) for the literature on the robustness of the small coalition paradox.
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Maus, 2008); a refunding club (Gersbach et al., 2021); trade-off between R&D costs and

costs of adopting breakthrough technology (Hoel and De Zeeuw, 2010); markets for fuel

and tradable rights (Harstad, 2012); non-quadratic functional forms (Karp and Simon,

2013); asymmetric countries (Pavlova and De Zeeuw, 2013)3; trade clubs (Nordhaus,

2015); and incomplete contracts of green technologies (Battaglini and Harstad, 2016).4

However, allowing for formation of only one climate coalition is unnecessarily restric-

tive. We therefore allow the formation of multiple coalitions. The literature on IEAs

with Nash equilibrium and open membership allows for multiple coalitions under cartel

stability (e.g., Yi and Shin, 2000;Asheim et al., 2006; Finus and Rundshagen, 2003, 2009;

Finus et al. (2009)). However, we use a different solution concept for coalition formation

and assume all countries are farsighted (e.g., Aumann and Myerson, 1988; Dutta et al.,

1989; Chwe, 1994; Bloch, 1996; Ray and Vohra, 1997; Chatterjee et al., 1993). Ray and

Vohra (1999) generalise farsighted coalition formation to allow for externalities, and Ray

and Vohra (2001) allow for public goods, in an IEA context.5 Vosooghi (2017) uses the

notion of farsighted stability in a stochastic IEA setting, and Diamantoudi and Sartze-

takis (2018) and De Zeeuw (2008) analyse it in deterministic IEA settings.6 We examine

a dynamic game extension of Ray and Vohra (2001) within the context of an IAM. Our

analysis allows for heterogeneous countries and reversible agreements, which the above

studies abstract from.

Our paper also relates to the literature on IAMs which while abstracting from in-

ternational climate agreements try to capture the global economy and geophysics using

a numerical analysis (e.g., Nordhaus, 2014; Anthoff and Tol, 2013). These IAMs have

been used to obtain analytical expressions for the optimal SCC and climate policies (e.g.,

Golosov et al., 2014; Hassler and Krusell, 2012; van der Ploeg and Rezai, 2021; Van den

Bremer and Van der Ploeg, 2021). Only a small subset of the literature combines IEAs

and IAMs (e.g., Tol, 2001; Eyckmans and Tulkens, 2006; Yang et al., 2008: Buchner

and Carraro, 2009) but in contrast to our approach, these papers use a cooperative

game-theoretic approach.7 Lessmann et al. (2009, 2015) and Bosetti et al. (2013) do

use a non-cooperative game-theoretic approach and cartel stability within the context of

IAMs. They offer numerical simulations to examine the stability of an IEA which in the

absence of any remedies always results in small climate coalitions. Our paper uses both

analytical and numerical approaches, and generalises the stability concept to allow for

farsightedness and thereby departs from the small-coalition paradox.

3But the larger coalitions can only be sustained with small gains from cooperation.
4See also de Zeeuw (2015) for the different approaches and assumptions used in the literature.
5Ray and Vohra (2019) and Dutta and Vohra (2017) study farsighted sets. Since they use the coop-

erative approach and rely on the characteristic function, they do not allow for externalities.
6De Zeeuw (2008) studies the effect of gradual adjustment of emission reductions in a simplified IEA,

and shows numerically that the stable number of signatories under farsightedness depends on the relative
cost of emission adjustment and climate damages.

7Due to the externalities inherent in climate games, cooperative game theory in such settings has been
criticised (Ray and Vohra, 2001).
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3 Integrated Assessment Model

Our IAM framework has N countries; each country is indicated by the subscript i ∈ I,

where I ≡ {1, 2, ..., N}. Time is discrete and indexed by t = 0, 1, 2, .... Each country

is represented by a social planner, who can implement any desired policy in a competi-

tive market economy. A coalition structure is a partition of the set of countries, I, into

coalitions, M ≡ {M1,M2, ...,Mk}. Let m ≤ N be a positive integer showing the car-

dinality (i.e., the number of members) of coalition M . A numerical coalition structure,

M ≡ {m1,m2, ...,mk}, is a partition of N into the sizes of coalitions.

3.1 The Economy

Each country has a representative infinitely-lived household with lifetime utility

∞∑
τ=0

βτU(Cit+τ ), (3.1)

where β ∈ (0, 1) is a constant discount factor, Cit is consumption of the final good, and

U(Cit) = ln(Cit) is the instantaneous utility function. The intertemporal elasticity of

substitution is thus equal to one.8

Each country i has an energy sector, Eit, and a final good sector, Yit. Production of

the final good uses labour, capital and energy. Following the DICE model of Nordhaus

(1993) and the RICE model of Nordhaus and Yang (1996), global temperature negatively

affects aggregate production of final output and global warming damages are proportional

to aggregate output. Golosov et al. (2014) show that an exponential functional form for

damages related to the stock of atmospheric carbon approximates the ratio of global

warming damages to aggregate output of the DICE and RICE models reasonably well.

With a Cobb-Douglas technology and constant returns to scale, aggregate output is

Yit = exp(−γTt)A0iK
α
itE

ν
itL

1−α−ν
0it (3.2)

with L0it labour use, Kit the aggregate capital stock at the start of period t, and α and ν

the shares of capital and energy in output, respectively.9 Initial capital, Ki0, may differ

across countries. The energy composite Eit follows from the CES production function

8Golosov et al. (2014) argue that this is a reasonable assumption in long-run economic growth models.
Chetty (2006) estimates the coefficient of relative risk aversion and shows that the mean estimate is about
one. Gandelman and Hernández-Murillo (2015) use a mega database of 75 countries and also obtain an
estimate of around one.

9Jones (2005) provides a micro-foundation for the Cobb-Douglas aggregate production function at the
macroeconomic level if the parameters of the production technology are drawn from a Pareto distribution.
Moreover, Hassler et al. (2021) using historical data to estimate an aggregate production function show
that the long-run input shares are stationary, which also suggests a Cobb-Douglas production technology.
Miller (2008) surveys the literature on macroeconomic production functions and concludes that Cobb-
Douglas production functions provide a good empirical fit across many data sets.
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Eit = (κ1E
ρ
1it + κ2E

ρ
2it + κ3E

ρ
3it)

1/ρ, (3.3)

where E1it is fossil fuel with exhaustible reserves (oil and gas), E2it is fossil fuel in

abundant supply (coal), and E3it is green energy. Here 1/(1−ρ) is the constant elasticity

of substitution between the three types of energy, and κj , for j = 1, 2, 3, are their

respective shares in the energy production function with
∑3

j=1 κi = 1.10

Oil and gas, E1it, has zero marginal extraction cost but has a shadow price, µit, which

follows from the resource constraint E1it = Rit −Rit+1 or

Rit+1 = Ri0 −
t∑

s=0

E1it−s, (3.4)

where Rit is the exogenous stock of reserves of oil and gas of country i at the start of

period t. Initial oil and gas reserves, Ri0, may differ across countries. Coal production,

E2it, and green energy production, E3it, use only labour and no capital so

Ejit = AjitLjit for j = 2, 3. (3.5)

These energies are abundant and have no scarcity rent, and A2it and A3it are the labour

productivities for coal and green energy production. The production function for final

output is then

Yit = exp(−γTt)A0iK
α
it(κ1E

ρ
1i + κ2(A2itL2it)

ρ + κ3(A3itL
ρ
3it))

ν/ρL1−α−ν
0it . (3.6)

Total Factor Productivity (TFP) of final output has two multiplicative terms, a con-

stant, A0i, which can vary across countries, and a negative exponential function of global

temperature, Tt, where γ is the damage coefficient.11 The energy-specific factor produc-

tivities are exogenous. We assume they are constant, but relax this in the quantitative

analysis of Section 6. The labour force in each country Lit is exogenous.

In competitive equilibrium, the labour and the final good markets have to clear and

the fossil fuel resource constraints have to be satisfied for each country. We assume zero

adjustment cost of capital and full capital depreciation in each period.12 We assume no

international trade in fossil fuel and abstract from any other international interactions,

hence in a decentralised economy all markets clear at the national level. The only factor

which links countries is the externality resulting from global warming damages. Hence,

10Note that κj measures the relative energy efficiency of the different energy sources. Since coal
produces more carbon emissions than oil or gas per unit of energy and E1it and E2it are measured in the
same units (carbon amount emitted), κ1 > κ2.

11The damage coefficient can be assumed to be an uncertain parameter. For example, Golosov et al.
(2014) replace the damage coefficient with the expectation of a fixed and common distribution of γ. We
ignore that the damage coefficient can differ across countries.

12Barrage (2014) using numerical methods shows robustness of the social cost of carbon characterisation
to the assumption of 100% in Golosov et al. (2014). van der Ploeg and Rezai (2021) show that allowing
for logarithmic depreciation does not affect the SCC.
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Cit +Kit+1 = Yit, L0it + L2it + L3it = Lit, E1it = Rit −Rit+1 (3.7)

for every i = 1, .., N . Henceforth, we label the above model as ‘General Model’ (GM),

while we consider two simplified versions of the economic part of the model.

Model with no exhaustible energy (NEEM): oil and gas are bundled together

with coal and the resulting fossil fuel has inexhaustible reserves, so the exhaustible re-

source constraint (3.4) is irrelevant. There are thus two broad types of energies: fossil

fuel, Ef
it ≡ E1it + E2it, and green energy, E3it. Hence, the energy equation (3.3) is

Eit = (κ(Ef
it)

ρ + (1− κ)(E3it)
ρ)1/ρ. (3.8)

Model with only exhaustible energy (EEM): exhaustible fossil fuel is the only

type of energy, so κ1 = 1 and κ2 = κ3 = 0. No labour is required for extraction of

fossil fuel. Labour is only used for production of final output. To obtain an AK model

of economic growth, we use units of effective labour K̄itLit with K̄it the economy-wide

capital stock (efficiency of labour). The production function for final output is thus

Yit = exp(−γTt)A0iK
α
itE

ν
it(K̄itLit)

1−α−ν . (3.9)

Labour is supplied inelastically and fixed at unity. In equilibrium, economy-wide capital

equals firm-level capital, i.e. K̄it = Kit, and hence

Yit = exp(−γTt)A0iK
1−ν
it Eν

it. (3.10)

3.2 Dynamics of temperature and cumulative emissions

Global temperature increases linearly in cumulative emissions of CO2, St (e.g., Allen

et al., 2009; Matthews et al., 2009; van der Ploeg and Rezai, 2021; Dietz et al., 2021)

Tt = T0 + ξSt, (3.11)

where T0 is initial temperature and ξ the transient climate response to cumulative emis-

sions. The stock of cumulative emissions is the sum of past and current emissions:

St = St−1 + Ef
t , (3.12)

where Ef
t ≡

∑N
i=1(E1it +E2it) is the flow of emissions produced by all countries at time

t (oil/gas and coal). With cumulative emissions at time zero equal to zero, we obtain

St =

N∑
i=1

t∑
s=0

(E1it−s + E2it−s). (3.13)
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4 Optimal Carbon Pricing for a Given Coalition

When choosing their optimal climate policy, the m members of coalition M internalise

the emissions externality they impose on other coalition members, while acting non-

cooperatively against other coalitions. The members of each coalition maximise their

joint discounted infinite-horizon payoff or the total worth of coalition M given by

∑
i∈M

∞∑
τ=0

βτ{ln(Cit+τ )} (4.1)

with respect to E1it and E2it subject to (3.6) and (3.7), for each i ∈ M , and the temper-

ature dynamics (3.11) and (3.13).

For the members of coalition M , the optimality condition for exhaustible energy is13

νκ1Yit

E1−ρ
1it Eρ

it

= µitCit + Λ̂it(m)Yit, i ∈ M, (4.2)

where m denotes the number of countries in coalition M (Appendix A.1). Equation (4.2)

states that the marginal productivity of exhaustible fossil fuel is set to its marginal cost

which equals the scarcity rent, µitCit (the shadow price in utility units, µit, divided by

the marginal utility of consumption, 1/Cit, to convert to final goods units) plus the SCC,

Λ̂(m)Yit, with the SCC per unit of aggregate output given by

Λ̂it(m) = Λ̂(m) ≡ γξm

1− β
, i ∈ M. (4.3)

The SCC per unit of output of each signatory for any period t is the present value of the

sum of discounted climate damages for all m members of coalition M from emitting one

unit of carbon today.14 It follows that the SCC is proportional to aggregate economic

activity in the coalition, i.e., mYit. Hence, the larger the coalition, the larger aggregate

economic activity and internalised global warming damages, and thus the larger the SCC.

In equilibrium all members of coalition M have the same per unit SCC. The SCC also

increases in the damage coefficient, γ, and the transient climate response to cumulative

emissions, ξ. Furthermore, the SCC is higher and climate policy more vigorous with

more patient policy makers (higher β).

The case of full international cooperation corresponds to a grand coalition with m =

N and k = 1. This gives the first-best outcome where the SCC is proportional to world

economic activity and all global warming externalities are fully internalised. The fully

non-cooperative outcome corresponds to k = N singletons. The SCC is then proportional

13Cit, Yit and other variables with subscript i refer to country i and not to the whole coalition to which
i belongs.

14The term social here is from the point of view of coalition M . The SCC can be implemented in a
decentralised economy using for example a Pigouvian carbon tax or permit market where the revenues
are rebated in lump-sum fashion.
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to the output of one country, since only global warming externalities affecting the own

country are internalised. Carbon prices are low and climate policy is lacklustre, and as

a result temperatures are higher. For any 1 < m < N , we have Λ̂(1) < Λ̂(m) < Λ̂(N).

The optimality condition for the exhaustible fossil fuel (4.2) can be rearranged as

E1it = E
− ρ

1−ρ

it ϵ1it(m), (4.4)

where

ϵ1it(mi) ≡

(
νκ1

µit(1− αβ) + Λ̂(m)

) 1
1−ρ

(4.5)

and the scarcity rent per unit of consumption is

µit = β−tµi0 (4.6)

for i ∈ M . Here µi0 is the initial shadow price of exhaustible resources that exactly

satisfies equations (3.4), (4.4), (4.5) and (4.6) for a given stock of initial reserves, Ri0.

Similarly, energy use for non-exhaustible fossil fuel, E2it, and green energy, E3it, are

E2it = E
− ρ

1−ρ

it ϵ2it(m) and E3it = E
− ρ

1−ρ

it ϵ3it, i ∈ M, (4.7)

where

ϵ2it(mi) ≡

(
νκ2A2iL0it

1− α− ν + Λ̂(m)A2iL0it

) 1
1−ρ

and ϵ3it ≡
(
νκ3A3iL0it

1− α− ν

) 1
1−ρ

, i ∈ M.

(4.8)

Here ϵ3it does not depend on m, because green energy does not generate emissions. For

a given value of E1it, equations (4.7) together with the labour market-clearing condition

and the energy production functions (3.5) can be solved for E2it, E3it, and thus

Eit = (κ1ϵ
ρ
1it(m) + κ2ϵ

ρ
2it(m) + κ3ϵ

ρ
3it)

1−ρ
ρ , i ∈ M. (4.9)

The optimality condition for optimal coal use sets the marginal product of non-

exhaustible fossil fuel (coal) to its SCC (as there is no scarcity rent for this type of fossil

fuel). An important consequence of our functional assumptions is that the per-unit SCC

of E1it and E2it is independent of all stocks and of future values of output, consumption

and cumulative emissions. The emission strategies are dominant, so that emissions of

complementary coalitions do not affect emission strategies of any coalition.15 Although

15To see this, notice that having a Cobb-Douglas production function in the final good sector implies
that the marginal products of capital and energy are proportional to output, marginal damages (Λ̂(m)Yit)
are proportional to output, and logarithmic utility implies that the marginal utility of consumption is
inversely proportional to output.
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emission strategies are dominant, their payoffs depend on global cumulative emissions

and the entire coalition structure, and the associated energy use of all countries.

To pin down the path of µit and E1it, we first guess E1i0 for any given level of Ri0

and solve for all other values recursively. To see this, notice first that equation (4.2)

together with the optimality condition µit = βµit+1 gives

νκ1

E1−ρ
1it Eρ

it

− Λ̂(m) = β

(
νκ1

E1−ρ
1it+1E

ρ
it+1

− Λ̂(m)

)
. (4.10)

Since energy levels in period zero can be computed as function of an initial guess for

E1i0, equation (4.10) is in terms of E1i1 and Ei1. It can be used to solve for all the energy

levels in period 1, again using equations (4.7), for period 1, and so on. This delivers the

entire sequence of energy inputs and, hence, cumulative emissions, temperature, output,

consumption, and investment. One then needs to verify whether Ri0 =
∑

tRit. If fossil

fuel use exceeds (falls short of) initial reserves, the initial guess for E1i0 is adjusted

downwards (upwards). Hence, exhaustible fossil fuel is fully depleted asymptotically.

Indeed, as the per-unit shadow price of exhaustible fossil fuel increases over time at

the rate 1/β, demand for exhaustible fossil fuel decreases over time. The scarcity rent

(in units of final goods) grows at a rate equal to the marginal product of capital, rit,

which is αYit/Kit in the GM and the NEEM, and (1− ν)Yit/Kit in the EEM. It equals

the rate of interest plus the depreciation rate (i.e., 1) in the market economy. This rule

for the scarcity rent is the Hotelling rule. The initial shadow price in utility units, µi0,

is such that cumulative fossil fuel use exhausts initial reserves for each country either in

finite time or asymptotically, limt→∞
∑t

s=0E1it−s = Ri0. Hence, at time t, after joining

a (non-singleton) coalition, and by committing to a new and higher per-unit SCC, the

shadow price in utility units in each country in coalition M is adjusted.

Corollary 1 . The larger the size of the coalition, m, the smaller the shadow price of

fossil fuel in utility units, µi0, for i ∈ M , after joining coalition M .

The shadow price of fossil fuel in utility units µit in countries which are signatories to

larger coalitions is lower after the membership stage, since internalising the global warm-

ing externality implies that such countries deplete their given reserves at a later time.

By joining a coalition, the emission level of signatories is affected by two counteracting

factors: the decrease in the shadow price and the increase in coalition size and hence the

per-unit SCC. However, the former is a result of the latter and it is plausible to assume

that the former does not dominate the effect of the higher SCC on emissions. We allow

µit to be heterogeneous across countries and assume that the participating countries in

climate negotiations have a finite scarcity rent.

The other first-order optimality conditions give rise to the following results.
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Proposition 1 . In the GM, aggregate output, consumption, and the capital stock, and

the economic growth rate of each member i of the coalition M (of size m) in coalition

structure M at time t are

Yit(M) = exp(−γTt(M))A0iKit(M)α (κ1ϵ
ρ
1it(m) + κ2ϵ

ρ
2it(m) + κ3ϵ

ρ
3it)

(1−ρ)ν
ρ L1−α−ν

0it ,

Cit(M) = (1− s)Yit(M), Kit+1(M) = sYit(M), and (4.11)

Yit(M)

Yit−1(M)
= exp(−γξEf

t (M))

(
s rit−1(M)

α

)α( κ1ϵ
ρ
1it(m) + κ2ϵ

ρ
2it(m) + κ3ϵ

ρ
3it

κ1ϵ
ρ
1it−1(m) + κ2ϵ

ρ
2it−1(m) + κ3ϵ

ρ
3it−1

) (1−ρ)ν
ρ

,

respectively, where s = αβ is the countries’ common and constant saving rate.

Aggregate output, consumption and investment increase in TFP, but decrease in

warming and the fossil fuel price.16 So via the per-unit SCC, aggregate output falls in

the number of signatories. Consumption and investment are constant shares of output.

The savings rate is high if society is more patient (higher β) and the share of capital

(α) is high. Consumption and capital choices are non-stationary, because they depend

through aggregate output on the time-varying paths of µit and St.

5 Formation of Self-Fulling Climate Coalitions

Before any production or consumption takes place, countries have the choice to partici-

pate in climate negotiations and form climate coalitions to collectively decide about their

emissions and cut damages from global warming. The game begins when all countries

are singletons. Each period has two stages: the membership stage and the action stage.

After the membership stage all countries enter the action stage, where the signatories set

their climate policy as agreed at the membership stage and their individually-determined

policies. Finally, at the end of each period, countries observe emissions of all countries

and payoffs for each country are realised.

We assume that formation of coalitions is costless and open, so that no country

can be excluded from joining and no country can be forced to join a coalition. Join-

ing a climate coalition requires signing a binding agreement with the other signato-

ries of the coalition. Upon signing an agreement, the signatories tie their hands and

act cooperatively as a block in deciding on their common climate policy summarised

by the per unit SCC implemented by this coalition, for all t ∈ {0, 1, ...,∞} and all

i ∈ M . Implementation of a climate treaty is costless because upon formation of an

equilibrium coalition compliance is not a problem. After the membership stage, each

country i ∈ M , in addition to the collectively-chosen fossil fuel uses, determines its

individual green energy, consumption, next period capital stock and resource extrac-

16Since temperature depends on global emissions, it depends on the entire coalition structure, M and
thus so do aggregate output, consumption, investment and the capital stock for all i ∈ M .
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tion for the infinite horizon: {E1it+τ (M,M), E2it+τ (M,M), E3it+τ (M,M), Cit+τ (M,M),

Kit+τ+1(M,M), Rit+τ+1(M,M)}∞τ=0.

Assumption 1 . Membership decisions are irreversible.

This ensures that countries cannot renegotiate. If at the start of a period a full coalition

structure, M, has been negotiated and agreed from previous periods, the membership

stage is skipped in that period and all future periods. We relax this assumption in section

5.4 where we allow for renegotiation at the start of each period.

5.1 A bargaining model of climate coalition formation

The climate negotiation stage is modeled as a non-cooperative bargaining process with

proposals and responses in sub-periods of the membership stage.17 In each sub-period,

one country is chosen as the initial proposer. We assume that the duration of a sub-

period relative to the length of any period is fixed, and as in Rubinstein (1982) there is

a cost of delay for rejections in a sub-period which is captured by the discount factor σ.

Our farsighted methodology holds for σ → 1 from below, so that in the limit bargaining

in period t is frictionless. We assume σ < 1 to avoid multiplicity of equilibria.

Definition 1 . The rules of bargaining are set by a protocol.

The protocol is exogenous and is set at the very beginning of the game. According to

the protocol, a proposer makes a proposal to form a coalition to a group of respondent

countries which are in the negotiation room (those who have not joined any other binding

coalition yet). Such respondents are the active players in the negotiation room.

The proposal consists of the identity of the members (thus of the size m too) and

the optimal per-unit SCC of the coalition signatories and the corresponding emission

plans for the members of the treaty. We do not allow for transfers across coalition

members so the only purpose of joining a coalition is to internalise the externality of

emissions. The proposal is conditioned on the complementary coalition structure and

thus the proposed emission plan is conditioned on the emission plans of other coalitions,

at every contingency. However, in our setup coalitions have dominant strategies as both

the marginal cost and benefit of countries are proportional to cumulative emissions, when

determining their optimal emissions, hence there is no need to condition on the emission

plans of other coalitions. If some countries have left the negotiation room on binding

agreements, the proposal must be conditioned on those coalition structures which are

consistent with this. We define the information set on which the proposal is conditioned

in equilibrium in section 5.2. After a proposal is made, it is the turn of the respondents

to either accept or reject the proposal. If m = 1, the proposer exits the negotiations as

a singleton coalition, and if m > 1, the proposer must at least include herself.18

17This captures that usually, climate negotiations take a couple of months.
18Committing to staying alone is a reasonable assumption in a public good game. We show that a
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The order in which countries take action in the negotiation stage is deterministic

and determined by the protocol. This includes the order of the initial proposers and all

chosen respondents. We focus on protocols which require the unanimity of members for

a coalition to form: if the proposal is rejected by even one country, no coalition forms

in that sub-period. The next proposer may or may not include the initial proposer in

its proposal. We focus on rejector-friendly protocols, where rejectors are not excluded

from counterproposing. We use a special class of such protocols where the first rejector

is the next proposer of a coalition M . Excluding countries in a public-good game is

never beneficial and the assumption of rejector-friendly protocols is in line with what is

observed in climate negotiations.

If a proposal is unanimously accepted, a binding coalition of size m forms and irre-

versibly leaves the negotiation room. Negotiation continues among the remaining active

countries in the negotiation room. Once all treaties are concluded, the coalition structure

M which corresponds to a numerical coalition structure, M, is established.19

5.2 Equilibrium climate membership decisions

The incentives of countries in the climate negotiation stage are determined by the opti-

mum value function of a country in a given coalition M . To ensure sequential rationality,

we solve the model backwards in time. Thus, to characterise the equilibria of the entire

game, we build on the results from section 4 which characterise the optimal decisions of

the action stage and we move to the membership stage.

We use the equilibrium notion of Ray and Vohra (1999) which extends Rubinstein

(1982) and Chatterjee et al. (1993), and is used when countries write binding agreements

to act cooperatively within the coalition while there is non-cooperative play across coali-

tions. Farsightedness is central to this equilibrium notion. The proposer and the respon-

dents of an ongoing proposal rationally predict the complementary coalition structure

that may form among the active players in the negotiation room, as well as their con-

tributions, and in equilibrium such predictions are correct. If a coalition forms, it is the

best option for all members of such a coalition. Then the complementary coalition(s)

(if any) forms (form) in a similar way. Thus, the equilibrium coalition structure forms

sequentially and endogenously. More precisely, before signing any binding agreement,

a potential group of deviating countries has to consider further possible deviations by

the deviating group (the deviating group can split further before signing their binding

agreement) as well as deviations from the active players in the negotiation room, which

may disband too. Hence, each group of players which contemplates forming a coalition

makes a rational prediction about the entire coalition structure M.

singleton coalition, if formed in equilibrium, has the highest payoff. If it joins any other coalition, it must
set the same per-unit SCC as the other signatories of that coalition, and thus has a larger per-unit SCC.

19If bargaining continues forever, we assume that all countries receive a (normalised) payoff of zero.
This assumption is also made in the IEA model of Ray and Vohra (2001).
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Since potential deviations from a treaty must be constrained to be farsighted, the set

of equilibrium coalitions must be defined recursively. In each step of the recursion, we

need to identify for which number of countries, a grand coalition forms in equilibrium.

Let us denote the equilibrium coalition structure by M∗ and the equilibrium numerical

coalition structure by M∗. If countries are identical, the identity of any particular

country is indeterminate in equilibrium and characterising the equilibrium membership

strategies involves only the sizes of the coalitions and the number of coalitions (the

equilibrium numerical coalition structure, M). However, with heterogeneous countries

both the identity of members and the equilibrium numerical coalition structure matter

as there can be multiple coalitions with the same number of members.

Dynamic games often have a large number of subgame-perfect equilibria. To refine

these equilibria, we focus on pure strategy Markov Perfect equilibria (MPEs). A strat-

egy profile is a MPE, if it is a subgame-perfect equilibrium in which all countries use

Markovian strategies.20 Markovian strategies depend only on payoff-relevant variables

summarised in the current state, and history matters only through its effect on the cur-

rent state. In contrast to repeated games with no state or stocks, investigating MPEs in

dynamic games is common.21 The use of MPEs can be restrictive as it prevents players

from punishing other players for past decisions, but in a framework with binding agree-

ments as ours, there is no compliance issue in the action stage, so there is no incentive

to punish a country for its past actions as all coalition members will comply with the

agreed policy. Maskin and Tirole (2001) argue that MPEs are simple, robust and con-

sistent with rationality and state that ‘bygones are bygones more completely than does

the concept of subgame-perfect equilibrium’. As Harstad (2016) argues, since the state

includes only payoff-relevant variables and does not depend on the history in arbitrary

ways, the MPEs are robust to miscoordination among players.

The current state in our framework includes the formed coalitions (if any), the number

and identity of countries that are negotiating (if any), the proposal (ongoing or signed)

and the identity of the proposing country, the capital stocks Kit, the stock of cumulative

emissions St, and the shadow price of exhaustible fossil fuel in utility units, µit.

Before presenting our results under farsightedness, we briefly discuss the outcomes

of our model under the more commonly used cartel (or internal and external) stability

conditions for symmetric countries. Under cartel stability, the largest coalition size is

m∗ = 2 for any total number of countries N in our GM (Appendix A.3), and the re-

mainder are singletons. This is the small-coalition paradox. The cartel stability concept

considers only unilateral deviations and upon a deviation, either totally disregards the

possibility of updating the membership strategies by the active countries, or disregards

20Focusing on pure strategies is a common assumption in coalition formation theory. To the best of
our knowledge, Dixit and Olson (2000) and Hong and Karp (2012) are the only papers which focus on
mixed-strategy equilibria in coalition games with public goods.

21Our dynamic game presented in the last section has 2N + 1 state variables.
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an optimal update of strategies (as in Appendix A.3). Under such myopic assumptions,

as put by Chwe (1994), the countries act naively and, having a higher incentive to free

ride, can only form a small coalition with a maximum size of 3 countries. This is true

for any number of countries N .

Relative to the internal and external stability concept, where only unilateral de-

viations are considered, the coalition-proofness stability concept generalises the Nash

equilibrium in that respect and examines multilateral deviations too. However, upon a

deviation by a potential coalition, the membership decisions of the complementary set

are assumed to be fixed. Instead, as explained above, we will use an equilibrium notion

which is based on farsightedness to relax this restrictive assumption.

5.2.1 Numerical coalition structure for symmetric countries in the EEM

As the case of asymmetric countries follows directly from the case of symmetric countries,

we start with the symmetric setup and discuss asymmetries in Section 5.3. Moreover, we

first work with the EEM presented in Section 3 as in this case we can derive analytical

results and gain intuition for the dynamics of our more complicated models (GM and

NEEM) which are solved numerically in Section 6.

Let Vi(St,Kit, µit,m,M) denote the optimum value function of a signatory of a coali-

tion M with size m in a numerical coalition structure M. Henceforth, we suppress all

arguments not directly relevant for the analysis of characterising the equilibrium nu-

merical coalition structure, so we use the shorthands Vi(m, {M}) and Vi({N}) for the

optimum value functions of a country in a coalition of size m in M and of a country in

a grand coalition {N} respectively.

As mentioned earlier, we identify the equilibrium numerical coalition structure recur-

sively. For completeness, if N = 1, a singleton coalition forms. Next, we need to find

M∗ if N = 2. Given that, we then find M∗ if N = 3, and continue the recursion until we

have reached the total number of countries N that are in the global economy. If N = 2,

the problem reduces to whether {1, 1} or {2} forms. This depends on the sign of

Vi(1, {1, 1})− Vi({2}) =
1

1− β(1− ν)

{
ν{ln

(
Eit(1)

Eit(2)

)
+ βln

(
Eit+1(1)

Eit+1(2)

)
+ ...}

− 2γξ

1− β
{[Eit(1)− Eit(2)] + β[Eit+1(1)− Eit+1(2)] + ...}

}
.

(5.1)

Here Eit = E1it. So, Vi(1, {1, 1}) − Vi({2}) is independent of the capital stocks and

cumulative emissions, and only depends on the emission paths under the two scenarios.

The second line in equation (5.1) is the discounted infinite sum of the ratio of the benefit

of emitting in a singleton relative to the benefit of emitting in a grand coalition, and is

positive. The third line captures the discounted infinite sum of the losses resulting from
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the damages of emitting in a singleton relative to the damages of emitting in a grand

coalition, and is negative.

In general, determining the sign of equation (5.1) requires a numerical analysis with

specific parameter values. However, for the case of σ → 1 and β → 1, we can characterise

the equilibrium analytically.22 For the EEM, it is easy to show that with two countries

limβ→1(Vi(1, {1, 1})− Vi({2})) < 0 so that the grand coalition forms in equilibrium, and

the equilibrium numerical coalition structure is M∗ = {2}.
Continuing to the case N = 3, there are three possible numerical coalition structures

with symmetric countries: {3}, {2, 1}, or {1, 1, 1}. From the case N = 2, we know that

(if one of the three countries leaves) a group of two countries would not unravel. Hence,

due to the farsightedness of the countries, there is no need to check {1, 1, 1}.
In a public-good game, considering deviations implies splitting N (or any active

number of players in the negotiation room) into coalitions where their sizes result from

breaking up N into the largest possible integers at which a grand coalition was stable in

previous stages of the recursion. Ray and Vohra (2001) show that in a public-good game

with symmetric countries, it is sufficient to check the deviation by the smallest element of

M when upon this deviation N countries have to split into the largest possible coalitions,

i.e., those that result from the decomposition of N . Since we are in a symmetric setup

checking such a deviation from the grand coalition is a sufficient condition for every

country to prefer the grand coalition to any other coalition structure.

We proceed with defining two fundamental concepts for our analysis.

Definition 2 . T ∗ is defined as the set of the total number of countries, N , for which

a grand coalition forms in equilibrium.

Definition 3 . For any integer N , the decomposition D(N) is defined as {m1,m2, ...,mk},
such that mk is the largest integer in T ∗ that is strictly smaller than N . Then any other

mi in D(N), is the largest integer in T ∗ that is no greater than N −
∑k

j=i+1mj.

For example, for the case N = 3, we know from previous stages of the recursion that

T ∗ = {1, 2}, and thus the decomposition of N is D(2) = {2, 1}.
As mentioned earlier, at each stage of the recursion, the optimum value of only the

smallest coalition in a coalition structure must be compared with that of the grand

coalition which significantly cuts the number of checks. Ray and Vohra (2001) show

that under low bargaining frictions (σ → 1), the resulting numerical coalition structure

or decomposition of N coincides with the equilibrium numerical coalition structure of

the bargaining game. Hence, as negotiations start, if the grand coalition is not stable,

a proposer makes an acceptable offer first to the smallest equilibrium coalition, that in

a public-good game has the highest payoff, and without any delay the offer is accepted

and the coalition forms. And a similar process continues among the remaining countries.

22Note that since we assume that the ratio of the length of sub-periods to periods is fixed, it is possible
to analyse the model under σ → 1 and β → 1.
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For example, if N = 3, it is sufficient to check the sign of Vi(1, {2, 1})−Vi({3}). This
time, limβ→1(Vi(1, {2, 1})−Vi({3})) > 0, thus in contrast to the case of N = 2, the grand

coalition is not stable and in equilibrium there will be one singleton and a coalition of

size two, so that the equilibrium numerical coalition structure is M∗ = {2, 1}. Similarly,

for N = 4 , the only conceivable decomposition consistent with farsightedness is {2, 2}
which has to be considered against {4}, and it can be shown that here, a grand coalition

forms again, i.e., M∗ = {4}. Hence, T ∗ expands to {1, 2, 4}.23

Comparing the optimum value function of the smallest coalition in the decomposition

with the value function of the grand coalition at each stage of the recursive procedure

(i.e., for each N) can be demanding. We show that in our EEM, the recursion process

can be simplified as there is a general rule for the inequality (5.1).

Proposition 2 . Let D(N) = {m1,m2, ...,mk} be the decomposition of N , such that

m1 < m2 < ... < mk. For β → 1 and symmetric countries, a grand coalition forms in

equilibrium in the EEM if

ln(
N

m1
) < k − 1. (5.2)

This proposition is proved in Appendix A.4 and offers a simple sufficient condition for

the full characterisation of the set T ∗ for our EEM and β → 1.24 The left-hand side

of (5.2) is the gain from emitting in the smallest coalition versus emitting in the grand

coalition. The right-hand side of (5.2) is the externality damage resulting from forming

D(N) versus the grand coalition. Since in the limit as β → 1, emissions are almost

stationary, it is sufficient to compare the gains and losses of one period only: if damages

are higher than the gains from emitting, a grand coalition forms in equilibrium.25

Corollary 2 . For the EEM and β → 1, a grand coalition occurs in equilibrium if the

total number of countries N is an element of

T ∗ = {1, 2, 4, 7, 13, 24, 44, 79, 146, 268, 482, 873, 1580, ...}. (5.3)

If N ∈ T ∗, then M∗ = {N}; if N /∈ T ∗, then M∗ = D(N), given T ∗. Thus

to characterise M∗ in our EEM with farsighted and patient countries there are two

simple steps. First, generate the set T ∗ using Proposition 2, and if the total number of

countries belongs to the set T ∗ then a grand coalition forms in equilibrium. If not, then

the equilibrium coalition structure is the decomposition of N using T ∗. For example,

going back to the case of N = 3, since 3 /∈ T ∗, the grand coalition does not form and

23If there are two numerical coalition structures {m} and {m′,m′} with the same payoffs, we break
the tie in favour of the larger coalition in line with the convention in the literature.

24Although k and m1 are endogenous and to be determined, it is always true that m1 ≤ N/k .
25From equation (4.6) the shadow price of fossil fuel rises at an infinitesimally small rate and thus from

equations (4.4) and (4.5) emissions decline at an infinitesimally small rate in the limit.
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its decomposition, using the elements of T ∗ that are smaller than 3, determines the

equilibrium coalition structure, i.e., M∗ = {2, 1}. The decomposition structure implies

that the total efficiency loss should be small, since even in cases where the grand coalition

does not emerge, the biggest coalition is still large, and the number of coalitions is small.

In our EEM, the equilibrium number of signatories to a climate treaty (corresponding

to the grand coalition or a smaller coalition), is a Tribonacci number (i.e., the sum of the

two preceeding numbers in the sequence) if N ≤ 78.26 We note that for values of up to

N = 500, the Tribonacci sequence is a close approximation of T ∗.27 The methodology

of Ray and Vohra (2001) can be applied to any public-good setting and can lead to any

set of total number of countries for which a grand forms in equilibrium. They show that

with a quadratic cost function, T ∗ follows the Fibonacci sequence (of order 2) up to

the 7th element. In our case too the series at which the formation of a grand coalition

is an equilibrium diverges from Tribonacci sequence (or Fibonacci sequence of order 3)

after the 7th element. The reason that we obtain a Tribonacci set instead of a Fibonacci

set relates to functional forms. Ray and Vohra (2001) have a quadratic-linear payoff

function, while we have a log-linear optimum value function (for further details and

discussion, see Appendix B).

Ray and Vohra (2001) assume that countries are symmetric and have a one-off pay-

off, so after bargaining countries receive their agreed payoffs and the game ends. The

recursion is not demanding and leads to an analytical solution. We use and extend their

methodology to answer questions in an infinite-horizon IAM with time-varying payoffs.28

Proposition 2 gives a sufficient condition to analytically characterise M∗. Furthermore,

given Corollary 2, for the EEM there is no need to check payoffs at each stage of the

recursion to find the integers at which a grand coalition forms in equilibrium if N < 78.

Proposition 2 results from the solution concept and the special features of our IAM.

In particular the structure of our IAM yields a per-unit SCC that is independent of

aggregate economic outcomes, a constant saving rate and dominant emission strategies.

The assumption β → 1 leads to unambiguous tractable outcomes and can be justified by

a normative approach.29 However, Corollary 2 is not robust to lower values of β.

Proposition 2 shows that the equilibrium number of signatories in climate coalitions

26They occur in the natural world if an efficient way of packing elements together is called for. For
example, the number of petals of flowers, bracts of pine cones, and trees branches tend to be from a
Fibonacci sequence (Campbell, 2020; Minarova, 2014; Sinha, 2017). Tribonacci numbers were first found
by Charles Darwin in the Origin of Species.

27The Tribonacci sequence starting with {0, 0, 1} is {1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, ...}.
For our IAM, Tj = Tj−3 + Tj−2 + Tj−1 and Tj ∈ T ∗, for all j = 1, 2, ..., 7.

28Generally, numerical simulation is called for at each stage of the recursion. De Zeeuw (2008) is the
only infinite-horizon public-good game with farsighted countries, but derives results only numerically.

29Many have argued that the social is smaller than the private discount rate. Arrow et al. (2003)
argue that because of market imperfections, especially in long-run, using market observables such as the
interest rate to identify the social discount rate can be misleading. Following Ramsey (1928) who argues
that it is unethical to discount the welfare of future generations, climate economists have often used a
near-zero rate of time preference (e.g. Stern, 2007; Dietz and Stern, 2015).
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can be large. This contrasts with the small-coalition paradox resulting from the Nash

equilibrium solution concept and its assumption of a single coalition found in the liter-

ature on IAM and IEA (Lessmann et al., 2009, 2015; Bosetti et al., 2013). Adopting

the more realistic farsighted assumption without any of the known ‘remedies’ to increase

cooperation, we have shown that the number of signatories depends on the number of

countries N and the countries’ payoffs and can be significantly larger. If a grand coalition

does not form, the largest stable climate coalition in M∗ can still be large (the largest

integer in the set T ∗ that is smaller than N). Moreover, multiple (non-singleton) climate

coalitions can form with more ambitious climate policies than the singleton coalitions

that occur under cartel stability.

Our equilibrium notion does not assume that if a country breaks off the negotiations,

other countries do not react as under cartel stability. This implies that in equilibrium,

countries have to rationally predict the reaction of all active countries prior to their

membership decisions. This, in turn, reduces their free-riding incentives and leads to

formation of larger coalitions.

5.2.2 Example: the EEM with 195 symmetric countries

Consider N = 195. Since 195 /∈ T ∗ (from Corollary 2) , we verify M∗ = {146, 44, 4, 1}
with 146 + 44 + 4 + 1 = 195. Hence, 4 coalitions form. The coalition of 1 signatory forms

first, then the coalition with 4, then the one with 44 signatories leaves the negotiation

room, and lastly the largest coalition with 146 members forms.30 There is no small-

coalition paradox and multiple coalitions emerge. The equilibrium numerical coalition

structure is not too complicated, since only 4 coalitions form. The large coalition of

m∗ = 146 has more ambitious climate policies than the coalition of 44 countries. The

coalition of 44 countries has more ambitious policies than the coalition of 4 countries,

which is more ambitious than the singleton. Furthermore, the set M∗ does not have

many coalitions with a small number of countries. Our results imply that a group of

146 countries forms a stable coalition and sets the per-unit SCC at Λ̂(m∗) = 146γξ
1−β

for all future periods. The other three smaller coalitions set their climate policy in

their binding agreement accordingly leading to a smaller per-unit SCC corresponding to

fractions 44/146, 4/146 and 1/146 of the per-unit SCC of the coalition of 146 countries.

30By using MPE, we abstract from the order of coalition formation, but as mentioned earlier it is well
known that in a public-good game the smallest coalitions have the highest payoff and form first.

20



5.3 Equilibrium coalition formation of heterogeneous countries

In our framework, countries may differ in their initial capital levels, Ki0, total factor

productivities, A0i, and shadow price, µit depending on fossil fuel stocks, Ri0.
31 32

These asymmetries are important topics for climate negotiations. We first investigate

the impact of heterogeneity with respect to initial capital and TFP in the GM with three

sources of energy and then discuss heterogeneity with respect to initial stocks of fossil

fuel, and thus the scarcity rent in the EEM.

Starting from the smallest set of countries (N = 2), we should find M∗ for each

group of two countries. Then, knowing which group of two countries can strike a deal,

all possible M∗ have to be found for N = 3 and the process continues for N = 4,

etc. With heterogeneous countries, there will be path-dependency as the equilibrium

outcome depends on which countries are chosen in earlier stages of the recursive process.

Multiplicity of equilibria will occur and the analysis can be tedious.

Recall our full notation and denote the optimum value function of country i in coali-

tion M , when country j is the initial proposer as a function of M and the underlying

M by V j
i (St,Kit, µit,M,M), and the optimum value function of the country in a grand

coalition {I} by V j
i (St,Kit, µit, I).

Suppose j is the initial proposer and has approached country i (which can be j itself).

For any N , a farsighted country i must identify the most profitable deviation from the

grand coalition. It is sufficient to compare the payoff of the best profitable deviation

by forming coalition M ∈ {M1,M2, ...,Mk} versus that of staying in the grand coalition

{I}. So, country i needs to determine the sign of

V j
i (St,Kit, µit,M,M)− V j

i (St,Kit, µit, I). (5.4)

This expression is independent of A0i and the initial capital stock for any discount factor

β (see Appendix A.5), so membership decisions are unaffected by heterogeneity with

respect to Ki0 and A0i.

Expression (5.4) is a log-linear function of energies only. As discussed in the previous

section, because of their dominant strategies, emission plans of signatories of coalition

M depend only on its own size, m, and need not be conditioned on the entire coalition

structure. Also, all members of a coalition of size m have the same per-unit SCC,

Λ̂(m). Although V j
i depends on the equilibrium coalition structure, emission plans in

the proposal and thus (5.4) depends only on m and total energy used in each country

31In a Supplementary Appendix (available here) we allow green energy and exhaustible fossil fuel to
be perfect substitutes and we study heterogeneity with respect to cost of the green energy.

32To the best of our knowledge, only Ray (2007) studies non-cooperative games and coalition formation
with heterogeneous agents and externalities. He derives sufficient conditions for existence of equilibria
without delay: (i) coalitions which form subsequently have a lower average worth; (ii) the more active
countries in the negotiation room, the larger equilibrium payoff; and (iii) the equilibrium payoff of being a
proposer exceeds the equilibrium payoff of being proposed to (without any lapse of time or discounting).
In our climate game with free-riding incentives of the countries, all these conditions are satisfied.
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(through equations (4.4) and (4.7)). With different Ki0’s and A0i’s (and symmetry in

all other parameters), all different energy sources and total energy of each country are

symmetric in a given coalition. With dominant strategies and in the absence of transfers,

heterogeneity thus does not affect the sign of (5.4). The identity of the initial proposer

is irrelevant too. We can thus characterise the numerical equilibrium coalition structure

using the method developed for symmetric countries. Hence, to determine the sign of

(5.4), we can determine the sign of

V j
i (St,Kit, µit,m,M)− V j

i (St,Kit, µit, N) for i ∈ M, (5.5)

where M is a numerical coalition structure. This holds for all our three models.33

Heterogeneity in initial fossil fuel stocks, Ri0, impacts the value function via its

shadow price in utility units, µit, which are (via (4.4) and (4.5)) negatively related.

Heterogeneity in fossil fuel stocks µit’s gives heterogeneity in emissions, even within a

given coalition.34 This heterogeneity does not affect the countries’ payoffs in an additive-

separable fashion, so it is not straightforward to conclude whether it affects the equilib-

rium numerical coalition structure or not. However in case of the EEM (κ1 = 1) and

β → 1, we show that the difference of payoffs in (5.4) is independent of µit. The decision-

making of farsighted countries in joining climate coalitions is then also independent of

heterogeneity in scarcity rents and the identity of the proposer in this model specifica-

tion, hence we can characterise the equilibrium numerical coalition structure also here.35

Proposition 3 simplifies the characterisation of the equilibrium coalition structure for any

number of heterogeneous countries N . No matter how heterogeneous countries are, the

equilibrium numerical coalition structure is unique (see Appendix A.5 for proof).

Proposition 3 . M∗, can be characterised independently of heterogeneities in the Ki0’s

and A0i’s that enter the value functions in an additive-separable form, and is thus inde-

pendent of the identity of initial proposers. For the EEM, M∗ can also be characterised

independently of heterogeneities in the Ri0’s (and µit’s) if β → 1.

We thus decouple the problem of cardinality of coalitions in equilibrium from the

composition of countries in each M∗ ⊆ M∗, where M∗ is the equilibrium coalition struc-

ture (including identities of members). So, the numerical coalition structure can be

characterised without considering heterogeneity. Then after finding M∗, we focus on

33In fact, it holds for any other public-good payoff structure with additive-separable heterogeneity,
dominant strategies, and no transfers.

34Emission levels can differ for two reasons. First, countries differ in initial fossil fuel stocks. Second,
by joining coalitions with different sizes, their emission path affects the trajectory path of their shadow
price of fossil fuel. In the membership stage of reversible coalition formation, we focus on the effect of
ex-ante asymmetry on membership decisions.

35As showed in the previous section, for the EEM the analytical characterisation of the equilibrium
numerical coalition structure relies on the assumption of β → 1 even for symmetric countries.
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which m∗ countries an initial proposershould propose to, considering global emissions

and efficiency improvements.

Although this decoupling result depends on the particular payoff specification of

our IAM, it allows us to characterise equilibrium numerical coalition structures among

heterogeneous countries. This result is stronger with heterogeneities in Ki0’s and A0i’s,

since it does not require β to be close to 1.36 The decoupling result for heterogeneous

R0i and µit does depend on functional forms and requires β to be close to 1. Section 6

explores robustness of the decoupling result with regards to these heterogeneities. Since

equilibrium payoffs and emissions, and thus temperature depend on the identity of the

initial proposer and the composition of the countries in each coalition, equilibrium payoffs

may differ across countries. No matter what the protocol ordering of initial proposers is,

every proposer selects the number of members which M∗ prescribes.

5.3.1 Global Emissions with Heterogeneous Countries

We now discuss how successful these coalitions are in curbing global emissions and how

this depends on the identity of the members in each coalition.

The fully globally efficient outcome arises if the grand coalition forms and all global

warming damages are fully internalised. Any other equilibrium coalition structure will

lead to some inefficiency as not all damages are internalised. If the grand coalition is

not stable, how much of damages are internalised depends on the numerical coalition

structure (sizes of the coalitions) and the identity of the coalition members.

Consider the EEM and assume that countries differ only in initial fossil fuel reserves

and associated scarcity rents. For example, consider countries I = {1, 2, 3, 4, 5, 6}, where
for all i ∈ I we have µit > µi+1t. This ensures a strict order, so country 1 has lowest

initial fossil fuel reserves, highest scarcity rent, and lowest emissions while country 6

has highest reserves, lowest scarcity rent, and highest emissions. No two countries have

equal scarcity rents. Proposition 2 gives the equilibrium numerical coalition structure

M∗ = {2, 4}. Consider two alternative compositions for the coalition structure, i.e.,

{{1, 2}, {3, 4, 5, 6}} and {{5, 6}, {1, 2, 3, 4}}. Global emissions in period t are then

E1t(2) + E2t(2) + E3t(4) + E4t(4) + E5t(4) + E6t(4) (5.6)

for the first composition and

E5t(2) + E6t(2) + E1t(4) + E2t(4) + E3t(4) + E4t(4) (5.7)

for the second composition, where emissions are

36This result can be used with any reduced-form payoffs where heterogeneity affects countries’ payoffs in
an additive-separable fashion. For any Vi(Ei, bi) = f(Ei)+g(bi), where f(.) and g(.) are two independent
functions, bi is heterogeneous across players, and Ei is the choice variable among all coalition members,
the decoupling result holds. In our case, g(.) is logarithmic, and bi is either Ki0 or A0i.
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Eit(m) =
ν(1− β)

(1− β)µit[1− β(1− ν)] +mγξ
. (5.8)

For 0 < β < 1, the first composition results in lower emissions than the second one if

E1t(2) + E2t(2) + E5t(4) + E6t(4) < E5t(2) + E6t(2) + E1t(4) + E2t(4). (5.9)

Since global emissions are lower if countries with large reserves (and lower scarcity rents)

belong to the larger coalition with 4 members and countries with small reserves belong

to the smaller coalition with 2 members, this inequality holds and the first composition

gives lower emissions than the second composition. Also, the value of the coalition

with the first composition is higher than that of the second composition. Appendix A.6

generalises this result for any set of countries I: a country prefers the coalition structure

with lowest global emissions.

Note from inequality (5.9) that if β → 1 ( for which we have established an equilib-

rium), Eit(m) becomes infinitesimally small and positive asymptotically while the effect

of the shadow price, µit, becomes infinitesimally small too. Hence, the composition of

the coalitions has only a vanishingly small effect on global emissions as β → 1.

Proposition 4 . Assume that the grand coalition is not stable. For κ1 = 1 and β →
1, global emissions in the equilibrium numerical coalition structure are asymptotically

independent of the identity of the coalitions’ members.

Hence, if β → 1, the only thing that matters for global emissions is the size of the

equilibrium coalitions via its effect on the SCC while the effect of the scarcity rent is

infinitesimally small. But if 0 < β < 1, initial fossil fuel reserves and scarcity rents do

play a role for global emissions.

5.4 Reversible climate agreements

Now we relax Assumption 1 and assume that countries can renegotiate agreements at

no cost. To get analytical solutions, we focus on the EEM (κ1 = 1), but the analysis

can be generalised for the GM and NEEM too. We allow countries to have different

K0i’s and/or A0i’s. We use the weak renegotiation-proof concept of Farrell and Maskin

(1989), so a subgame-perfect equilibrium is renegotiation-proof if there do not exist two

histories such that all players strictly prefer the continuation equilibrium in the one to

the continuation equilibrium in the other. We continue to focus on Markovian strategies.

The change of the coalition structure over time under reversible coalition formation is

like moving from one Markov state to another. There is a fixed protocol for all periods.

Renegotiation starts while coalition structure M∗
t−1 from t− 1 is in place at the start

of period t ≥ 1, and the countries in coalition M∗
t−1 face a proposal to form coalition Mt

of size mt. If the proposal is accepted by all, and Mt forms, then in the action stage of

24



period t, countries consider all future renegotiations and so all possible future coalition

structures when deciding about emissions. Thus, the signatories jointly maximise

∑
i∈Mt

∞∑
τ=0

βτ E{ln(Cit+τ ) | Mt} (5.10)

subject to the usual constraints. We abstract from presenting other variables in the

Markov state which are not directly relevant here. Appendix A.7 shows that this gives

Eit(mt) =
ν(1− β)

E(µit | Mt)(1− β(1− ν))(1− β) + γξ[mt(1− β) + β E(mt+τ | Mt)]
, (5.11)

where τ ≥ 1. With reversible agreements, emissions (and µit) depend on the expected

value of the size of future coalitions. Now we go backward to the membership stage of

period t. In a reversible setting, binding agreements are justified if there is an approval

committee (including all parties of an existing binding coalition) that can approve the

move to another Markov state (Hyndman and Ray, 2007). Some members of this agree-

ment are affected by the new state: either their membership is affected, and/or their

payoffs are directly affected.37 The approval committee ensures that the rights of those

in binding agreements are protected. Hence, in each sub-period of period t, a proposer,

selected by the protocol, makes a proposal to a group of countries. If the approval com-

mittee approves it, subsequently extra respondents (if any) can respond. If accepted by

all, the negotiation game moves to a new state in the next sub-period in period t.

Because the protocol is fixed, at the start of the first sub-period of the membership

stage in t, the same initial proposer as in the first sub-period of t− 1 is selected. Recall

that in a public-good game, the smallest coalition forms first. The initial proposer is

thus a member of either the smallest coalition in t− 1 or the grand coalition (if formed

in t− 1). If D(N) = {m1,m2, ...,mk}, such that m1 is the size of the smallest coalition

in the decomposition of N , then in the first sub-period, the initial proposer j and the

approval committee of M∗
1t−1 consider a proposal about the formation of M j

t , and each

must determine the sign of

EVi(M
j
t ,Mt,M∗

t−1)− EVi(It,Mt,M∗
t−1). (5.12)

If mj
t > m1t−1, the above is upon approval by the approval committees of other relevant

coalitions in M∗
t−1. Note that the left-hand-side of the difference in (5.12) is the expected

payoff of the best possible deviation for country i, and the right-hand-side is the expected

payoff of the grand coalition in period t. The inequality (5.12) is independent of the

various types of heterogeneity that we consider, so characterisation of the equilibrium

37By the direct effect on payoffs we do not refer to the indirect effect through the channel of externality
of global temperature on the signatories of other coalitions, but we refer to the effect of a change of their
per-unit SCC and emissions.
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is reduced to that of M∗. Appendix A.7 shows that this inequality only depends on

emissions, which depend on future sizes of coalitions.

A key observation is thus that any renegotiation can affect only future emissions.

Hence, if the equilibrium coalition structure in t−1 is not a grand coalition, the approval

committee of any non-ultimate coalition, will reject inclusion of any new members in the

coalition in any period t ≥ 1, because inclusion implies that they should internalise more

of the global warming externality and should agree to a higher SCC per unit. They

would reject being excluded from the existing coalition too, because the next coalition

that forms in equilibrium will be larger. If a grand coalition was formed in t − 1, any

approval committee would reject any exit by free riders.

Therefore, if countries sign a binding agreement to form Mt−1, there is no expectation

that the size of coalition will change ex-post. Thus E(mt+τ | Mt,Mt,M∗
t−1, ) = mt for

τ ≥ 1. Countries expect this to be the case for all other binding coalitions. Therefore,

we can show that the inequality (5.12) reduces to the inequality in Proposition 2.

Proposition 5 . For the EEM (κ1 = 1) and reversible coalition formation, M∗
t is

independent of heterogeneity for any t. If β → 1, M∗
t in Proposition 2 for irreversible

agreements, is renegotiation-proof with same equilibrium coalition structure M∗
t for all t.

Proposition 5 (proof in Appendix A.7) extends Proposition 2 and states that even if

countries have the option to renegotiate every period, the equilibrium numerical coali-

tion structure is the same as with irreversible agreements. In addition, the approval

committee and the fixed protocol ensure that not only the same numerical coalition

structure M∗ forms, but also the same coalition structure M∗ forms upon every rene-

gotiation. So, if within a coalition there is no ex-post Pareto improvement,38 there will

be no renegotiation. Whenever the result of renegotiation is fully predictable, they can

write renegotiation-proof agreements.39

6 Quantitative analysis

So far, most of our focus has been on the EEM and very patient countries (β → 1) to

obtain analytical results for the equilibrium coalition structure. Here we consider lower

values of β and use the more realistic NEEM and GM (see Section 3). We use a numerical

approach to offer robustness checks for the discount rate and the type of model, and to

allow heterogeneity, also from a policy perspective. We first describe our calibration and

then discuss our numerical results.

38Here, a Pareto improvement is only from the perspective of members of the binding coalition who
are considering the renegotiation proposal.

39In the EEM, N includes those countries which contribute to the externality and want to internalise
it. So, the membership strategies are renegotiation-proof as long as countries have a finite scarcity rent.
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Name Value Unit Description

β 0.999ˆ10 or 0.985ˆ10 - Decadal Discount Factor
α 0.3 - Share of Capital in Production
γ 0.007 T$/◦C Temperature Damage Coefficient
ν 0.043 - Share of Energy in Production
ξ 2 ◦C/TtC TCRE
s 0.297 or 0.2579 - Saving Rate (αβ)
ρ -0.058 - Elasticity of Substitution of Energy sources
T0 1.3 ◦C Initial Temperature
Y0 800 T$/decade Initial Global Decadal GDP
K0 128 T$ Initial Global Capital Stock
R0 0.3 TtC Initial Global Oil & Gas Reserves

2 %/year Annual Growth Rate of TFP

General Model (GM)

κ1 0.508 - Share of Oil & Gas in Total Energy
κ2 0.08916 - Share of Coal in Total Energy
κ3 0.41004 - Share of Green Energy in Total Energy
A2 7683 - Labour Efficiency in Coal Production
A3 1311 - Labour Efficiency in Green Energy Production
E0 0.119 TtC/decade Initial Global Decadal Energy Consumption
A0 2063624 - TFP

No Exhaustible Fossil Fuel Model (NEEM)

κ2 0.42 - Share of Oil, Gas and Coal in Total Energy
κ3 0.58 - Share of Green Energy in Total Energy
AF 3.635 - Labour Efficiency in Fossil Fuel Energy
AG 0.1045 - Labour Efficiency in Green Energy Production
E0 0.0143 TtCe/decade Initial Global Decadal Energy Consumption
A0 2260194 - TFP

Table 6.1: Calibration

6.1 Calibration and parameter values

We first calibrate the three specifications of our EEM, GM, and NEEM for the business

as usual case (BAU), where BAU refers to when none of the countries take climate action

and is our benchmark for calibration to the world economy. We take each period to be

10 years and assume full capital depreciation.40 We consider two discount factors. We

first check our analytical results for case β → 1 with a discount factor of 0.99910 per

decade (Stern’s β). We also provide results for β = 0.98510 per decade (Nordhaus’s β).

We have zero population growth and set Lit = 1. Following Golosov et al. (2014), we

use a capital share of 30% and an energy share of 4.3%. The elasticity of substitution

40To approximate our infinite-horizon IAM, we run our simulation for 1500 decades. This is long
enough, since our results do not change for any horizon between 1000 to 3000 decades.
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between energy types is set to 0.945 (ρ = −0.058), so all energy factors are essential and

cannot be phased out completely. For the GM we follow Golosov et al. (2014) and set

the energy share parameters to κ1 = 0.5008, κ2 = 0.08916 and κ3 = 0.041004, and the

labour-efficiency parameters to A2 = 7683 and A3 = 1311.41 Initial global total energy

use is set to E0 = 0.119TtC, the global capital stock to K0 = 128$, and initial global

GDP to Y0 = 800T$, all per decade, which leads to A0 = 2063624. To obtain, values for

individual countries, we divide these numbers by the number of countries N . We set the

annual growth rate for At to 2%.

The NEEM merges coal and oil to one energy source and we use the BP Statistical

Review to get decadal oil, gas, coal, and green energy consumption, and convert total

energy in Exajoules to TtCe which gives E0 = 0.0143. We then set κ2 = 0.42, κ3 = 0.58,

AF = 3.635 and AG = 0.1045 to fit initial global total energy consumption and match a

4◦C increase in temperature by 2100 under BAU.42

Finally, we set the temperature response to cumulative emissions to ξ = 2◦C/TtC.

We use the estimate of Nordhaus (2017) of a 2.1% loss of GDP at 3◦C and fit our

exponential damage function to obtain γ = 0.007.

6.2 Numerical Results and Equilibrium Coalition Structure

We define the Internalisation Index (II) as the weighted average SCC for the underly-

ing coalition structure. This indicates how much of the climate change externality is

internalised. To illustrate, II equals 1 for the grand coalition and 1/N for the fully non-

cooperative outcome (all singletons) for the case of N countries. Hence, for any coalition

structure, II ∈ [1/N, 1] while II is equal to zero for BAU.43

6.2.1 The case of 195 countries (N = 195)

With 195 countries in the world, the first row of Table 6.2 gives T ∗ for two discount

factors for the NEEM and the GM: this is the set of numbers for which a grand coalition

forms in equilibrium. We see that for both models, more patience (higher β) implies that

there are more cases in which a grand coalition forms. Intuitively, the more countries

take account of future payoffs, the more costly it is to leave a grand coalition. Note that

the T ∗ for β = 0.99910 in both models follow partly the Tribonacci sequence, which offers

some robustness for our analytical result for the EEM.

The second row of Table 6.2 shows the equilibrium coalition structure, also for N =

195. For the GM with β = 0.99910 per decade, we find that M∗ = {177, 15, 2, 1}, so there

are 4 coalitions with the largest of them having 177 members and the smallest being a

41Golosov et al. (2014) use relative prices and demands for coal and green energy, and extraction cost
for coal to calibrate these parameters.

42Details of these conversions and intermediate steps are available upon request.
43Note II = m2

1/N
2 +m2

2/N
2 +m2

3/N
2 + ..+m2

k/N
2 for k coalitions in the coalition structure, since

the weight of coalition i is mi/N and its SCC equals mi/N times the SCC under the grand coalition.
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singleton. For the NEEM with the same discount factor, M∗ = {168, 27} so there is a

large coalition of 168 countries and a smaller coalition with 27 countries.44 Despite a

different equilibrium coalition structure for the two models, we get a large coalition and

a few smaller ones.

Row 3 of Table 6.2 shows the Internalisation Index (II) for the different specifications.

For both models, more patience (high β) gives fewer and larger coalitions which results

in a higher II: larger coalitions internalise more of the climate change externality as

they have to take account of the payoffs in the far future. Note that for the EEM,

M∗ = {146, 44, 4, 1}, and II=0.6119 which is not too different from the II in the GM.

It is instructive to compare our results if cartel stability is used as the equilibrium

concept for coalition formation. In line with this literature, our numerical analysis shows

that for the NEEM and the GM and both discount factors, a stable coalition with a

maximum of 2 members emerges so that m∗ ≤ 2 and all other countries are singletons.

This confirms the small-coalition paradox. With cartel stability II ≤ 0.0002 which is way

lower than the II we get with farsighted countries.

GM NEEM

β = 0.99910 β = 0.98510 β = 0.99910 β = 0.98510

T ∗ {1,2,4,8,15,29,52,96,177} {1,4,16,64} {1,2,4,8,15,27,50,91,168} {1,5,25,125}
M∗ {177,15,2,1} {64,64,64,1,1,1} {168,27} {125,25,25,5,5,5,5}
II 0.83 0.3232 0.7614 0.4464

Table 6.2: Equilibrium Coalition Structure, M∗, and Internalisation Index (II), for 195
countries (N = 195)

Finally, we numerically check outcomes for heterogeneous countries to confirm the

decoupling result that we have obtained analytically.45 We find that heterogeneity in

the initial capital stocks and TFP’s does not affect the equilibrium coalition structure

for the GM and NEEM and for both discount factors. As the Ki0’s and A0i’s do not

affect total energy Ei, emissions and temperature paths also remain unchanged. With

heterogeneity in the R0i’s, we find numerically that for β → 1, the equilibrium coalition

structure for the GM model remains unchanged.

Time paths for temperature and coal use: The two panels of Figure 1 show

the temperature path for the GM under BAU, no cooperation, the grand coalition, and

the equilibrium coalition structure for Stern’s and Nordhaus’s β. The temperature path

for the fully non-cooperative outcome (all singletons) is the highest of all paths (but

lower than temperature under BAU) while the fully cooperative (grand coalition) gives

44With the much more restrictive model EEM, we found that for β → 1, M∗ = {146, 44, 4, 1}.
45We let one country have twice as high Ki0, A0i and R0i as the other countries. We show that whether

this country is in the grand or smallest coalition m1 does not affect the equilibrium coalition structure.
The exercise can be generalised for any number of heterogeneous countries.
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the lowest temperature. In between lies the temperature trajectory for the equilibrium

coalition structure. We see that for very patient policy makers (high β), the fully cooper-

ative and the equilibrium coalition paths are very close. This is in line with our previous

finding that for high β we get larger coalitions and a higher II.

(a) β = 0.99910/decade (Stern) (b) β = 0.98510/decade (Nordhaus)

Figure 1: Temperature trajectory for the GM model

The two panels of Figure 2 show the trajectory of aggregate coal use under the

different scenarios. As expected, the grand coalition has the lowest coal trajectory but

for a high β, the fully cooperative and the equilibrium coalitions paths are very close.

Further details of time paths for the different outcomes are given in Appendix C.

(a) β = 0.99910/decade (Stern) (b) β = 0.98510/decade (Nordhaus)

Figure 2: Aggregate Coal use for the GM model

6.2.2 A general number of countries in the world (N)

Let us now consider the exercise where the world consists of a fixed number of N coun-

tries, where N can be any number from 1 to 200 including 195. Figure 3 illustrates the

benchmarks for the NEEM and GM: the grand coalition and the fully non-cooperative

outcome (all singletons). The II for the grand coalition is always 1 and 1/N for the

fully non-cooperative outcome, so the II converges to zero as the number of countries

increases (and note that the II under BAU equals zero). The figure indicates that the

II for the equilibrium coalition structure is non-monotonic in the number of countries in
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the world economy. For N ∈ T ∗, a grand coalition forms in equilibrium and the path

of II hits the upper limit of 1. For N /∈ T ∗, we get an equilibrium coalition structure,

M∗, which equals D(N) and the II decreases until we reach a grand coalition again.

Following a similar pattern, we see that with more patient policy makers (higher β),

larger coalitions in equilibrium and a larger II emerge. We also reach a grand coalition

more often, recognised by II = 1.

(a) GM with β = 0.99910 (Stern) (b) GM with β = 0.98510 (Nordhaus)

(c) NEEM with β = 0.99910 (Stern) (d) NEEM with β = 0.98510 (Nordhaus)

Figure 3: Internalisation Index for the equilibrium coalition structure for different N .

Interestingly, the equilibrium II qualitatively is not too dissimilar from the saw-tooth

pattern of the II produced by the Tribonacci sequence, but it does not give the exact

coalition structures and internalisation indices of the equilibrium coalition structure.

7 Conclusion

We have examined the formation of climate coalitions with farsighted countries and cer-

tain types of heterogeneity and have put forward an approach to characterise the equilib-

rium number of coalitions and their number of signatories (numerical coalition structure)

which are independent of their heterogeneity. By studying sources of heterogeneity which

affect the payoffs of countries in additive-separable ways (the case of asymmetric initial

capital stocks or TFP) or sources of heterogeneity which become asymptotically irrele-

vant if the policymakers are patient enough (the case of asymmetric stocks of initial fossil

fuel reserves), we have obtained unique predictions for the equilibrium coalition structure

in both analytical and numerical analyses. We have also shown that the resulted treaties

are robust if agreements are renegotiable, i.e., if countries can renegotiate, they do not

have any incentive to walk away from the agreed treaty.

We capture various aspects of the incentives of countries that participate in interna-

tional climate negotiations by integrating an IEA with an integrated assessment model of

the economy and global warming (IAM). Our analysis takes account of the general equi-
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librium features of the economy of each country and the resulting consumption/saving

decisions and management of fossil fuel resources.

In a simplified version of our IAM where only exhaustible fossil fuel is used and

policy makers are very patient, we have fully characterised the unique equilibrium nu-

merical coalition structure. We have shown that farsighted countries that foresee the

consequences of their climate membership decisions, form treaties where the number of

participating countries is a Tribonacci number in equilibrium provided there are less than

78 countries. We have also analysed numerically equilibrium numerical coalition struc-

ture in a fully calibrated IAM with a more realistic energy and production sector. We

confirm robustness of our analytical heterogeneity results in our general IAM. Moreover,

with sufficiently patient policymakers, we have shown that the equilibrium Social Cost

of Carbon (SCC) and our Internalisation Index (II) move closely with its Tribonacci

counterpart.

In both the prevailing literature on IEAs and in practice, there is much focus on

forming a single climate coalition despite that it is a fragile coalition and not ambitious

enough. Unfortunately, there is a big gap between current pledges of countries and the

targets of the Paris Agreement. There has been too much focus on the formation of the

unlikely grand climate coalition of all countries concerned. It may be more worthwhile to

search under the umbrella of these IEA’s for multiple climate coalitions among smaller

group of countries that are overall more ambitious than what we observe today.

We have therefore departed from the single-coalition architecture of climate coalitions

and the cartel equilibrium solution concept. By assuming that policy makers are far-

sighted and predict all consequences of their decisions, we have shown that if the grand

coalition does not form in equilibrium, multiple climate coalitions can form with different

levels of ambition regarding their emission mitigation strategies. Furthermore, the num-

ber of signatories can be large and in particular much larger than three (predicted by

the cartel stability solution concept). Thus, we need to move away from myopic policy

makers which increase free-riding incentives in climate negotiations.

The only link among countries stems from global emissions and temperature nega-

tively affecting production in all countries in our IAM. Future research could investigate

other factors linking countries such as international trade for fossil fuels and final goods,

an international capital market, or international labour migration. It might also examine

how international climate treaties are hampered by political economy constraints on the

international transfers that are needed to sustain coalitions.

Finally, our results rely on the observability of actions at the compliance stage in

each period. This rules out any scope for strategic uncertainty about emissions. In prac-

tice, this resembles the increasing emphasis in climate negotiations on transparency of

emissions and abatement actions. Accordingly, an important achievement of the Paris

Agreement has been to create a framework to improve transparency, and now the Task
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Force, a working group of the Intergovernmental Panel on Climate Change, is responsi-

ble for developing and implementing a unified methodology in measuring and reporting

emissions and abatement of each country.
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Appendices

A Proofs and Model Details

A.1 The decision making of a signatory in the action stage

Since every country i ∈ M internalises its emission that affects payoffs of other members

in coalition M in any period τ ≥ t, using the Lagrange method, the problem of planner

of country i ∈ M can be written as:

max
{E1it+τ ,E2it+τ}∞τ=0

∑
i∈M

∞∑
τ=0

βτ ln(Cit+τ ) (A.1)

subject to (3.6), (3.7), (3.11), (3.13) and non-negativity constraints.

Let βτλit+τ be present value Lagrange multiplier for final output feasibility constraint

(3.1) and βτµit+τ be present value Lagrange multiplier for resource constraint in (3.4).46

Thus the Lagrange function of each member of coalition can then be written as,

∑
i∈M

∞∑
τ=0

βτ [ln(Cit+τ )+

λit+τ (exp(−γ(T0 + ξ(S0 +
N∑
i=1

t∑
s=0

(E1it+τ−s + E2it+τ−s)))) (A.2)

A0iK
α
it+τ (κ1E

ρ
1it+τ + κ2(A2iL2it+τ )

ρ + κ3(A3iL3it+τ )
ρ)ν/ρ

(Lit+τ − L2it+τ − L3it+τ )
1−α−ν)− Cit+τ −Kit+τ+1 + µit+τ (Rit+τ − E1it+τ −Rit+τ+1)]

(A.3)

The first-order optimality condition for E1it is

λit[
νκ1Yit

E1−ρ
1it Eρ

it

]− γξ
∑
i∈M

∞∑
τ=0

λit+τβ
τYit+τ = µit, (A.4)

where µit is the shadow cost of exhaustible fossil fuel defined in units of utility. The

first-order optimality condition for E2it is,

λit[
νκ2Yit

E1−ρ
2it Eρ

it

]− γξ
∑
i∈M

∞∑
τ=0

λit+τβ
τYit+τ = 0. (A.5)

The planner of each country decides about consumption, investment in the capital

stock and resource extraction, i.e.,

max
{Cit+τ ,Kit+τ+1,Rit+τ+1,E3it+τ}∞τ=0

∞∑
τ=0

βτ ln(Cit+τ ) (A.6)

46For simplicity of exposition, we omit the non-negativity constraints from the presentation here.
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again, subject to (3.6), (3.7), (3.11), (3.13) and non-negativity constraints.

The first-order optimality condition for Cit is
47

λit =
1

Cit(M,M)
. (A.7)

The first-order optimality condition for Kit+1 and (A.7) give the Euler equation

1

Cit(M,M)
= αβ

1

Cit+1(M,M)

Yit+1(M,M)

Kit+1(M,M)
. (A.8)

Using Cit(M,M) = (1 − sit)Yit(M,M), and therefore Kit+1(M,M) = sitYit(M,M),

the Euler equation reduces to

sit
1− sit

= αβ
1

1− sit+1
. (A.9)

with unique solution sit = s = αβ, for all t and all i.

Next, we compute the SCC associated with any coalition with m members as the

present discounted value of the utility cost of all m members caused by an additional unit

of emissions. As we have already noted, emissions are associated with energy produced

from fossil fuel and their effect on global temperature. Using the expression for first-order

condition of E1it in (A.4) (or E2it), the shadow cost of emissions in utility units can be

computed from

Λit(m) ≡ γξ
∑
i∈M

∞∑
τ=0

λit+τ

λit
βτYit+τ , (A.10)

which using equation equation (A.7) and s = αβ can be simplified to

Λit(m) = Yit
ξγm

1− β
, (A.11)

Λit(m)/Yit ≡ Λ̂it(m) = Λ̂(m) ≡ ξγm

1− β
. (A.12)

Then the first-order optimality condition for E1it can be written as

νκ1Yit

E1−ρ
1it Eρ

it

=
µit

λit
+ Λit(m), (A.13)

which using equation (A.7) and sit = s = αβ can be simplified to

νκ1

E1−ρ
1it Eρ

it

= µit(1− αβ) + Λ̂(m). (A.14)

Therefore,

47Notice that the choices of Rit+1, Cit, Kit+1, do not affect the payoffs of the other members of the
coalition to which country i belongs.
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E1it = E
−ρ/1−ρ
it ϵ1it(m), (A.15)

where

ϵ1it(m) ≡

(
νκ1

µit(1− αβ) + Λ̂(m)

)1/1−ρ

. (A.16)

Using the first-order optimality condition for Rit+1 (µit = βµit+1), (A.14) implies

νκ1

E1−ρ
1it Eρ

it

− Λ̂(m) = β

(
νκ1

E1−ρ
1it+1E

ρ
it+1

− Λ̂(m)

)
. (A.17)

This is a version of Hotelling’s rule corrected for the exogenous externality term Λ̂(m) .

Similarly the first-order optimality conditions for L2it and L3it (using the first-order

conditions of E2it and E3it) are

A2it

(
νκ2

E1−ρ
2it Eρ

it

− Λ̂(m)

)
=

1− α− ν

L0it
, (A.18)

A3it
νκ2

E1−ρ
2it Eρ

it

=
1− α− ν

L0it
, (A.19)

which give

E2it = E
−ρ/1−ρ
it ϵ2it(m), (A.20)

E3it = E
−ρ/1−ρ
it ϵ3it, (A.21)

where

ϵ2it(m) ≡

(
νκ2A2itL0it

1− α− ν + Λ̂(m)A2itL0it

)1/1−ρ

, (A.22)

ϵ3it ≡
(
νκ3A3itL0it

1− α− ν

)1/1−ρ

. (A.23)

A.2 Optimum value function of a signatory

Let Vi(St,Kit, µit,M,M) be the optimum value function of a signatory in coalition M of

size m in coalition structure M. By substituting the solutions in the summation of flow

and continuation utility of the representative consumer of country i ∈ M , we obtain:
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Vi(St,Kit, µit,M,M) = ln(Cit(M,M)) + β ln(Cit+1(M,M)) + ...

=
ln(1− s)

1− β
+ {ln(Yit(M,M)) + β ln(Yit+1(M,M)) + ...}

=
ln(1− s)

1− β
+ {ln[e−γξSt−γT0A0iK

α
itEit(m)νL1−α−ν

0it ]

+ β ln[e−γξSt+1−γT0A0iK
α
it+1Eit+1(m)νL1−α−ν

0it+1 ] + ...}

=
α ln(Kit) +H1 +H2 +H3

1− s
,

(A.24)

where the Hj are defined as

H1 ≡
s ln(s)− s ln(1− s) + ln(A0i)− γT0 + (1− α− ν) ln(L0i)

1− β
(A.25)

H2 ≡ −γξ[St + βSt+1 + β2St+2 + ...] (A.26)

and

H3 ≡ ν[ln(Eit(m)) + β ln(Eit+1(m)) + β2 ln(Eit+2(m)) + ...]. (A.27)

The second expression can be expanded to a function of the summation of the past,

current, and future emissions of all countries:

H2 =− γξ

1− β
{
∑
i

t∑
s=0

(E1it−s + E2it−s) +
∑
i ̸∈M

(E1it + E2it) +
∑
i∈M

(E1it(m) + E2it(m))

+
∑
i ̸∈M

[β(E1it+1 + E2it+1) + β2(E1it+2 + E2it+2) + ...]

+
∑
i∈M

[β(E1it+1(m) + E2it+1(m)) + β2(E1it+2(m) + E2it+2(m)) + ...]}.

(A.28)

A.3 The small-coalition paradox under cartel stability

Consider the general model presented in Section 3, with three types of energy. Assume

that there is a single coalition M of m countries, and the N−m non-signatories form the

fringe. Furthermore, in this section, we assume that the countries are ex-ante symmetric,

but after the membership stage they may end up in asymmetric situations.

Definition 4 . Cartel stability is a state at which no coalition member wishes to leave the

coalition (internal stability), and no fringe country wishes to join the coalition (external

stability).

In our model the external stability condition is automatically satisfied wheneverm∗ >

1, because the non-participating countries always gain from free riding and have no

incentives for joining the climate coalition.
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For the internal stability condition, it is sufficient to check a one-shot deviation.

Hence, a coalition of size m is internally stable if the continuation payoff of a signatory

is greater or equal to the payoff of a one-shot deviation plus the continuation payoff

following the deviation.

As a Nash equilibrium, the internal and external stability conditions imply that

the deviating country takes the actions of the other players as given. Here, we follow

Battaglini and Harstad (2016), who suggest a more generalised version of this stability

condition. They assume that upon a deviation of one period, the remaining participants

update their joint climate policies as if m = m∗ − 1, and then again return to the

equilibrium path.48 This implies that if a country that is supposed to be a signatory

considers a deviation, in that period it chooses its best response to the strategy of others.

Then, the country will be expected to join the coalition next period. This deviation will

therefore affect aggregate emissions and thus the continuation payoff of all countries for

ever. As explained above, countries have dominant strategies, thus the reaction function

of the deviating country is not affected by the number of signatories and it leads to the

non-cooperative emission level.

Proposition 6 . Under the assumption of cartel stability, the largest coalition size is

m∗ = 2 for any total number of countries N .

To see this note that a signatory does not have any incentive to leave coalition M of

size m if

Vi(St,Kit, µit,M) ≥ ln(Cd
it) + β{Vi(E

t,Kit+1, µit,M)}, (A.29)

where Vi(St,Kit, µit,M) is the optimum value function of a signatory in coalition M as

defined in section A.2, and Et ≡ (Et, Et−1, ..., E0). Furthermore, Cd
it is the consumption

level associated with the deviation period. Note that Et in Vi(E
t,Kit+1, µit,M) is im-

pacted by the deviation in period t. More specifically, the right-hand-side of equation

(A.29) consists of

ln(Cd
it) = ln(1− s) + ln(Y d

it )

and

Vi(E
t,Kit+1, µit,M) =

α ln(Kit+1) +H1 +H ′
2 +H ′

3

1− s
. (A.30)

Accordingly, ln(Kit+1) = ln(1− s) + ln(Y d
it ), and

48This is more general than the conventional internal stability which does not require any update of
strategies by the remaining signatories upon a deviation by a country.
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H ′
2 ≡ −γξ[(St+1) + β(St+2) + ...]

= − γξ

1− β
{
∑
i

t∑
s=1

(E1it−s + E2it−s) +
∑

j ̸∈M\i

(E1jt + E2jt) +
∑

j∈M\i

(E1jt(m− 1) + E2jt(m− 1))

+
∑
i ̸∈M

[(E1it+1 + E2it+1) + β(E1it+2 + E2it+2) + ...]

+
∑
i∈M

[(E1it+1(m) + E2it+1(m)) + β(E1it+2(m) + E2it+2(m)) + ...]}

(A.31)

and

H ′
3 ≡ ν[ln(Eit+1(m)) + β ln(Eit+2(m)) + ...]. (A.32)

The internal stability condition (A.29) can be further simplified by multiplying both

sides by 1−s, and cancelling all future emissions of H2 and H ′
2 from both sides, and using

the symmetry of the emission strategies of signatories and likewise for non-signatories,

and the fact that

ln(Y d
it ) = −γξ{

∑
i

t∑
s=1

Eit−s+
∑

j ̸∈M\i

(E1jt + E2jt) +
∑

j∈M\i

(E1jt(m− 1) + E2jt(m− 1))}

+ ln(A0i) + α ln(Kit) + ν ln(Eit) + (1− α− ν)L0it.

(A.33)

However, note that the shadow price, µit, in the two sides of the internal stability

condition (A.29) are not the same after the deviation. Using the corresponding emission

levels, the internal stability condition forms a concave function of m and the parameters

of the model. The coalition sizes at which the internal stability condition binds with

equality, determine the lower bound and the upper bound of equilibrium coalition sizes,

m∗. As usual, the roots of the internal stability condition are found numerically. Here

we use the parameter values from the calibrated model in section 6, and with broad

robustness checks, the solutions are 1 and 2.

Lastly, the internal stability condition is independent of the capital stock or the stock

of cumulative emissions or of other state variables but it does depend on current emission

levels. Thus it depends on the scarcity rents which in turn indirectly depend on the stocks

of fossil fuel. In particular, for low initial stocks of exhaustible fossil fuel reserves and

large values of the per-unit scarcity rent, the stable number of signatories may reduce to

one, i.e. no coalition can be stable.
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Proofs

A.4 Proof of Proposition 2

Consider N countries, where the decomposition of N as D(N) = {m1,m2, ...,mk}, such
thatm1 < m2 < ... < mk. In a public-good game, the most profitable and self-enforceable

deviation from the grand coalition would lead to Vi(m1, {m1,m2, ...,mk}). According to

Ray and Vohra (2001) methodology, a sufficient condition for the formation of the grand

coalition is

Vi(m1, {m1,m2, ...,mk})− Vi({N}) < 0. (A.34)

In the EEM where κ1 = 1, and the production function of final output is given by

equation (3.10), it can be shown that the sufficient condition for every country to prefer

the grand coalition to any other coalition structure is

Vi(m1, {m1,m2, ...,mk})− Vi({N}) =
1

1− β(1− ν)

{
ν[ln(

Eit(m1)

Eit(N)
) + βln(

Eit+1(m1)

Eit+1(N)
) + β2...]

− γξ

1− β
{[
∑
i∈M1

Eit(m1) +
∑
i∈M2

Eit(m2) + ...+
∑
i∈Mk

Eit(mk)−
∑
i∈I

Eit(N)]+

β[
∑
i∈M1

Eit+1(m1) +
∑
i∈M2

Eit+1(m2) + ...+
∑
i∈Mk

Eit+1(mk)−
∑
i∈I

Eit+1(N)] + β2...}
}
< 0.

(A.35)

Note that in the EEM, the optimal emission of each country in equation (A.15) and

(A.16) can be written as

Eit(m) =
ν(1− β)

(1− β)µit[1− β(1− ν)] +mγξ
.

The inequality in (A.35) can thus be rewritten as

Vi(m1, {m1,m2, ...,mk})− Vi({N}) =
1

1− β(1− ν)

{
ν[ln(

(1− β)µit[1− β(1− ν)] +Nγξ

(1− β)µit[1− β(1− ν)] +m1γξ
) + β ln(

(1− β)µit+1[1− β(1− ν)] +Nγξ

(1− β)µit+1[1− β(1− ν)] +m1γξ
) + β2...]

− γξ

1− β
{[ m1ν(1− β)

(1− β)µit[1− β(1− ν)] +m1γξ
+

m2ν(1− β)

(1− β)µit[1− β(1− ν)] +m2γξ
+ ...

+
mkν(1− β)

(1− β)µit[1− β(1− ν)] +mkγξ
− Nν(1− β)

(1− β)µit[1− β(1− ν)] +Nγξ
]+

β[
m1ν(1− β)

(1− β)µit+1[1− β(1− ν)] +m1γξ
+

m2ν(1− β)

(1− β)µit+1[1− β(1− ν)] +m2γξ
+ ...

+
mkν(1− β)

(1− β)µit+1[1− β(1− ν)] +mkγξ
− Nν(1− β)

(1− β)µit+1[1− β(1− ν)] +Nγξ
] + β2...}

}
< 0.

(A.36)
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In the limit that β → 1, the inequality in equation (A.36) converges to

ν[ln(
N

m1
) + ln(

N

m1
) + ...]− ν{[k − 1] + [k − 1] + ...} < 0. (A.37)

This is satisfied if

ln(
N

m1
) < (k − 1), (A.38)

as required. □

A.5 Proof of Proposition 3

Consider the general model with three sources of energy, presented in section 3, and

assume the countries are heterogeneous with respect to Ki0 and/or A0i. The equilib-

rium coalition structure needs to be defined recursively to ensure the self-enforceability

of any deviation and any resulting coalition. Suppose j is the initial proposer and

has approached country i (which can be j itself). For any N , country i compares

the payoff of the best profitable deviation by giving rise to the formation of coalition

M ∈ {M1,M2, ...,Mk} (which is to be identified) versus the payoff of staying in the

grand coalition {I}. Thus, the planner of country i needs to determine the sign of

V j
i (St,Kit, µit,M,M)− V j

i (St,Kit, µit, {I}). (A.39)

But this equation is independent of stocks, in particular independent of Ki0. It is

also independent of TFP A0i. To see this, note that

Vi(St,Kit, µit,M, {M1,M2, ...,Mk})− Vi(St,Kit, µit, {I}) =
1

1− β(1− ν)

{
ν[ln(

Eit(M)

Eit(I)
) + β ln(

Eit+1(M)

Eit+1(I)
) + β2...]

− γξ

1− β
{[
∑
i∈M1

Eit(M1) +
∑
i∈M2

Eit(M2) + ...+
∑
i∈Mk

Eit(Mk)−
∑
i∈I

Eit(I)]+

β[
∑
i∈M1

Eit+1(M1) +
∑
i∈M2

Eit+1(M2) + ...+
∑
i∈Mk

Eit+1(Mk)−
∑
i∈I

Eit+1(I)] + β2...}
}
.

(A.40)

Coalitions in {M1,M2, ...,Mk} are included if they are non-empty. Clearly if the

source of heterogeneity is Ki0 and/or A0i, then the membership decision of countries

in (A.40) is not affected by the heterogeneity across countries. Furthermore, the above

equation is only a function of emissions, which only depend on size of coalitions and M
and not the identity of countries in any coalition and M. Hence, M∗ can be characterised

independent of heterogeneity with respect to Ki0 or A0i. This proves the first part of

the proposition.
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Now consider the EEM, where κ1 = 1, and the production function of final output is

given by equation (3.10). If the countries are heterogeneous with respect to Ri0 and µit,

as shown in (A.36), in the limit that β → 1, the difference in (A.39) converges to

lim
β→1

(
Vi(St,Kit, µit,M, {M1,M2, ...,Mk})− Vi(St,Kit, µit, {I})

)
=

[ln(
N

m
) + ln(

N

m
) + ...]− {[k − 1] + [k − 1] + ...}.

(A.41)

This equation is independent of µit of any country and any stocks. Moreover, it only

depends on k, and m, which can be determined by characterising M∗.

A.6 Proof of Section 5.3.1

Consider the EEM, where κ1 = 1, and the production function of final output is given

by equation (3.10). Assume the grand coalition is not stable and country i is the initial

proposer of a coalition which leads to the formation of equilibrium numerical coalition

structure {m∗
1,m

∗
2, ...,m

∗
k}, and assume m∗

1 < m∗
2 < ... < m∗

k. Assume that i is the

proposer of a non-ultimate coalition with m∗
k−1 members, and considers between two

coalitions of the same size, say Mk−1 and M ′
k−1, where the latter includes countries from

the set of active players which have the highest scarcity rent, such that at least one

member in M ′
k−1 has a scarcity rent which is strictly greater. Thus, at least one country

in M ′
k (which is a larger coalition) has a scarcity rent which is strictly smaller relative

to the scarcity rent of the countries in Mk. Country i itself is in both coalitions. In that

case, we have

V i
i (Mk−1,{M1,M2, ...,Mk})− V i

i (M
′
k−1, {M1,M2, ...,Mk−2,M

′
k−1,M

′
k}) =

1

1− β(1− ν)

{
ν[ln(

Eit(Mk−1)

Eit(M ′
k−1)

) + β ln(
Eit+1(Mk−1)

Eit+1(M ′
k−1)

) + ...]

− γξ

1− β
{[
∑

i∈Mk−1

Eit(Mk−1) +
∑
i∈Mk

Eit(Mk)]− [
∑

i∈M ′
k−1

Eit(M
′
k−1) +

∑
i∈M ′

k

Eit(M
′
k)]+

β[
∑

i∈Mk−1

Eit+1(Mk−1) +
∑
i∈Mk

Eit+1(Mk)]− β[
∑

i∈M ′
k−1

Eit+1(M
′
k−1) +

∑
i∈M ′

k

Eit+1(M
′
k)] + ...}

}
.

(A.42)

Emission of those which remain in coalitions with the same sizes does not affect i’s

decision. The expression in (A.42) is independent of capital stocks or TFPs. The second

line in (A.42) is the direct gain of country i from emitting in Mk−1 versus in M ′
k−1. Given

that both coalitions have the same size, and country i has the same scarcity rent in both

scenarios, the ratio of two emissions in any period is one, and thus the second line is

zero. The third and fourth lines are the externality damages. Because both coalition

structures correspond to the same numerical coalition structure, the SCC in Mk−1 is the

same as in M ′
k−1, also both Mk and M ′

k have the same SCC. It is easy to see that for
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any general β, the total emissions of Mk−1 and Mk is larger than the total emissions of

M ′
k−1 and M ′

k. In other words, in period t for example,

[
∑

i∈Mk−1

Eit(Mk−1) +
∑
i∈Mk

Eit(Mk)]− [
∑

i∈M ′
k−1

Eit(M
′
k−1) +

∑
i∈M ′

k

Eit(M
′
k)] (A.43)

is positive. Hence, for any β ∈ (0, 1), the difference of payoffs in (A.42) is negative.

Therefore, when comparing the value of any two coalition structures in any given numer-

ical coalition structure, a country prefers the coalition structure with the lower global

emissions. □

A.7 Proof of Proposition 5

Consider the EEM where κ1 = 1, and the production function of final output in equation

(3.10). We begin in period t ≥ 1, when the countries in a coalition M∗
t−1, formed in t−1,

are considering to renegotiate M∗
t−1 and are facing a proposal to form coalition Mt of

size mt.

In period t, countries solve the problem backwards from the action stage, and now

they have to consider all future renegotiations and so all possible future coalition struc-

tures when deciding about emissions. In the action stage of period t, after Mt is formed,

the signatories jointly maximise

∑
i∈Mt

∞∑
τ=0

βτ E{ln(Cit+τ ) | Mt}. (A.44)

For ease of readability of the information set, here we abstract from the other variables

in the Markov state which are not directly relevant here. The maximisation problem is

subject to the usual non-negativity constraints, and the expected value of final output

production function (3.10), the market-clearing conditions without the labour market

constraint (3.7), the climate dynamics constraints (3.11) and (3.13), for each i ∈ M .

The Lagrange function is now,

E
{ ∑

i∈Mt

∞∑
τ=0

βτ [ln(Cit+τ )+

λit+τ (exp(−γ(T0 + ξ(S0 +

N∑
i=1

t∑
s=0

(Eit+τ−s)))) (A.45)

AiK
ı−ν
it+τE

ν
it+τ − Cit+τ −Kit+τ+1 + µit+τ (Rit+τ − E1it+τ −Rit+τ+1)] | Mt

}
. (A.46)

The first-order optimality condition for Eit is

λit[
νYit
Eit

]− E
{∑

i∈M

∞∑
τ=0

λit+τβ
τγξYit+τ − µit | Mt

}
= 0. (A.47)
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The first-order optimality condition for Cit gives

λit =
1

Cit(M,M)
. (A.48)

The first-order condition of Kit+1 and (A.48) give the Euler equation

1

Cit(M,M)
= β E

{
1

Cit+1(M,M)

Yit+1(M,M)

Kit+1(M,M)
(1− ν) | Mt

}
. (A.49)

The Euler equation reduces to

sit
1− sit

= β(1− ν)E
{

1

1− sit+1
| Mt

}
(A.50)

Using the solution sit = s = β(1 − ν), for all t and all i, and equations (A.48) and

(A.47), we get

Eit(mt) =
ν(1− β)

E(µit | Mt)(1− β(1− ν))(1− β) + γξ[mt(1− β) + β E(mt+τ | Mt)].
(A.51)

where τ ≥ 1. We go backwards to the membership stage. Since the protocol is fixed and

deterministic, the same initial proposer j, is selected. In a public-good game, as it is

here, the smallest coalition which has the highest payoff forms first, thus at the beginning

of renegotiation stage in period t, the initial proposer is a member either of the smallest

coalition of t−1 (where D(N) = {m1,m2, ...,mk}) or of the grand (if it was stable in the

last period). Thus the initial proposer and any member i of the approval committee of

M∗
1t−1 consider a proposal about the formation of Mt, each need to determine the sign

of the following difference:

EVi(M
j
t ,Mt,M∗

t−1)− EVi(It,Mt,M∗
t−1). (A.52)

If mj
t > m1t−1, the above is upon approval by the approval committees of all other

relevant coalitions in M∗
t−1. Similar to Proposition 3, this difference is independent of

all sources of heterogeneity with respect to the capital stock and TFP constant, and

the difference in (A.52) is only a function of expected value of emissions, which are

independent of the identity of countries. Thus, characterising the equilibrium reduces to

the characterisation of M∗. If the approval committee of M∗
1t−1 allows country i, then

joining the smallest coalition of size m1t in the decomposition of N is the best profitable

deviation. And given the dominant strategies in emissions, the grand coalition forms in

period t if

EVi(m1t, {m1t,m2t, ...,mkt},m∗
1t−1)− EVi({N}t,m∗

1t−1) ≤ 0, (A.53)

where {N}t refers to the formation of the grand coalition in period t. The above inequal-

ity can be expanded to
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1

β(1− ν)

{
ν
(
E
[
ln(Eit(m1t)) + β ln(Eit+1(mit+1)) + β2 ln(Eit+2(mit+2)) + ... | m∗

1t−1

]
− E

[
ln(Eit(N)) + β ln(Eit+1(mit+1)) + β2 ln(Eit+2(mit+2)) + ... | m∗

1t−1

])
− γξ

1− β
E
[
m1tEit(m1t) +m2tEit(m2t) + ...+mktEit(mkt)−NEit(N) | m∗

1t−1

]}
≤ 0,

(A.54)

where τ = 1, 2, .... All future values of size of coalitions are unknown at time t, thus

all future values of emissions in the first line and second line cancel each other out. For

the same reason, in the third line, only the current values of emissions are written here.

Hence, the inequality is simplified to

1

β(1− ν)

{
ν
(
E[ln(Eit(m1t))− ln(Eit(N)) | m∗

1t−1]
)

− γξ

1− β
E
[
m1tEit(m1t) +m2tEit(m2t) + ...+mktEit(mkt)−NEit(N) | m∗

1t−1

]}
≤ 0.

(A.55)

Thus the only uncertainty in this decision making concerns the uncertainty regarding

the future coalition sizes in the SCC in equation (A.51).49 Given that the agreements

are binding, and the fact that the renegotiation is only affecting the SCC, the approval

committee of M1t−1 (and in general of any non-ultimate coalition) always rejects any

change of number of signatories: clearly no one would be interested to leave any non-

ultimate coalition in a public-good game, as the subsequent coalitions are larger, and no

approval committee would allow enlarging the coalition as it would increase their Λ̂. If a

grand coalition was formed in t− 1, then any approval committee would also reject any

exit by free riders.

Thus, there will be no ex-post incentive to change size of existing coalitions, and even

their identity (initially determined by the protocol) remains the same. Thus E(mt+τ |
mt,Mt,Mt−1) = mt for τ ≥ 1. So, the emission in equation (A.51) is

Eit(mt) =
ν(1− β)

µit(1− β(1− ν))(1− β) + γξmt
. (A.56)

Furthermore, they expect this is going to be the case for any other (if any) formed

binding coalitions, and the result of renegotiation is fully predictable. So, the uncertainty

in the inequality in (A.55) is resolved, and the problem is identical to the problem of

irreversible case. Therefore, the MPE has an absorbing membership state, with the same

equilibrium coalition structure M∗
t for any t, i.e. from any initial equilibrium coalition

structure, the equilibrium moves to the same membership state. And, in the limit analysis

where β → 1, the inequality in (A.55) reduces to the inequality in Proposition 2. So M∗
t

is renegotiation-proof for any t.□

49The uncertainty about µit is also due to the uncertainty about the future coalition sizes.
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B Discussion of Fibonacci and Tribonacci Results

Obtaining a series of Fibonacci sequences by optimising payoffs relates to the Fibonacci

search method in mathematics (Pierre (1986)). That is a bracketing method to find the

optimum of a single-valued function, say V (m), over an (initial) interval, say [a, b], and it

does not require any differentiation. The bracketing methods involve finding the optimum

over several iterations, where each iteration leads to elimination of a part of the interval,

until the optimum is found, given a set tolerance error. More precisely, in each iteration,

two values of the interval, say m1 and m2 (which do not need to be integers) are selected

such that they have the ‘same’ distance dp from the two sides of the boundaries a, and b.

The distance dp is a ratio, qp, of the interval such that dp ≡ qp(b−a) = m2−a = b−m1.

For example the following figure shows a bracketing method in the first round.

a m1 m2 b

d1
d1

Then the values of the function at m1 and m2 are compared and if we aim to find

the maximum of the function and for example V (m1) ≥ V (m2), then in the next round,

the interval is reduced to [a,m2] and the process continues.

In the Fibonacci search method, the distance dp is not made as a fixed ratio of the

initial interval but in each round p of iteration, qp is a Fibonacci constant (the ratio of

two consecutive Fibonacci numbers), i.e. qp = Fp/Fp+1, where

F0 = F1 = 1, Fp = Fp−1 + Fp−2, p = 2, 3, ... (B.1)

For large number of iterations, qp converges to the golden ratio, 0.618, so qp becomes

a constant. The problem of finding set T ∗ in the farsightedness approach is equivalent to

comparing the coalitions’ values for a country i, Vi(m), in a round of iteration p. There

are differences though: m is a positive integer here; and here building up set T ∗ over

different rounds of the farsightedness recursions, can be seen as if we add to N , and thus

expand the interval. So we are going in the opposite direction and

dp =
Fp

Fp+1
dp+1. (B.2)

Since m can only be an integer, if dp+1 is not an integer, we need to round it to the

closest integer. Given (B.2), it is not surprising that if the initial element of m2 coincides

with Fibonacci numbers itself, all subsequent m2’s at which we need to compare values of

Vi(.) will be a Fibonacci number. For example, trivially d1 = 1 then, d2 = (F1/F (2))d2,

so d2 = 2; and d3 = 3, etc.
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For any N , the two m’s that the Fibonacci search method finds to compare the values

of Vi, are the two relevant values of decomposition of N , D(N).50 If one maximises a

decreasing function Vi(m), the lower bound of the interval (ap) is fixed, as we expect

Vi(m1) > Vi(m2). But an important feature of coalition formation games is that Vi(.)

function shifts across set m, as we increase N , and thus its maximum can move. So, if N

is a number at which a grand coalition forms, then we get the boundary optimum and dp

moves up to dp+1. To see this in an example, if N=4, then using (the Fibonacci sequence

in) T ∗ of Ray and Vohra (2001), we know that D(4) = {3, 1}, and the Fibonacci search

method also suggests d3 = 3 and so comparing values of m1 = 1 and m2 = 3,

0 1 2 3 4

d3 = 3

From the quadratic-linear specification of Vi(.) in Ray and Vohra (2001), we know

that the maximum is at m1 = 1. If N = 5, using d3 = 3 implies comparing Vi(2) and

Vi(3),

0 1 2 3 4 5

d3 = 3

Here from the specification of Vi(.), we know that there is a boundary optimum at

N = 5, so for the next round, i.e. for N = 6, we use d4 = 5, which leads to m1 = 1 and

m2 = 5,

0 1 2 3 4 5 6

d4 = 5

Here Vi(1) dominates Vi(5) and Vi(6). So, no grand forms here and d4 = 5 is used

for the next round too, and it continues.

To the best of our knowledge there is no Tribonacci search method, but the same

logic applies here. While we point out that the emergence of the Fibonacci sequences in

an optimisation problem is well-known in mathematics, and the Fibonacci search method

is an efficient and quick way of finding the optimum, and it is particularly useful if the

function is not differentiable, we do not claim that the equilibrium number of signatories

in a climate coalition can be found using a Tribonacci sequence, and indeed in section 6

we show that the divergence of T ∗ from a Tribonacci sequence in NEEM and GM can

50Note that if D(N) contains more than two elements, then the search misses the intermediate elements
of D(N), however in the coalition theory of public goods, we know that they are irrelevant in finding the
maximum of Vi(m), and thus irrelevant for characterisation of T ∗.
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happen very quickly, in the case of β → 1, and for lower values of β they do not emerge at

all. Divergence of T ∗ from the Fibonacci sequences can have different reasons including

rounding dp+1’s into integers.

C Time Paths of Energy and Macroeconomic Outcomes

(a) β = 0.99910 (Stern) (b) β = 0.98510 (Nordhaus)

Figure 4: Aggregate energy use for the GM model

(a) β = 0.99910 (Stern) (b) β = 0.98510 (Nordhaus)

Figure 5: Aggregate fossil fuel use for the GM model
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(a) β = 0.99910 (Stern) (b) β = 0.98510 (Nordhaus)

Figure 6: Aggregate Renewable energy use for the GM model

(a) β = 0.99910 (Stern) (b) β = 0.98510 (Nordhaus)

Figure 7: Aggregate cumulative emissions for the GM model

(a) β = 0.99910 (Stern) (b) β = 0.98510 (Nordhaus)

Figure 8: Aggregate consumption for the GM model
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