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Abstract 
 
This study provides evidence for the US that the secular decline in the labor share is not only 
explained by technical change or globalization, but also by the dynamics of factor taxation, 
automation capital (robots), and population growth. First, we empirically find indications of co-
integration for the period from the last quarter of the 20th to the first decade of the 21st century. 
Permanent effects on factor shares emanate from relative factor taxation. The latter also have a 
lasting effect on the use of robots. Variance decompositions reveal that taxing contributes to 
changes in the two income shares and in automation capital. Second, we analyse and calibrate a 
neoclassical growth model extended to include factor taxation, automation capital, and capital 
adjustment costs. Labor and automation capital are perfect substitutes whereas labor and 
traditional capital are complements. The model replicates the dynamics of the observed functional 
income distribution in the US during the 1965-2015 period. Counterfactual experiments suggest 
that the fall in the labor share would have been significantly smaller if labor and capital income 
tax rates had remained at their respective level of the 1960s. 
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1 Introduction

The functional income distribution in most OECD countries has changed significantly

over recent decades. Figure 1.1 displays the labor share of the United States, Japan,

and the Euro Area (EA-12) from 1960 to 2018. During this period these labor shares

declined by roughly 5 to 15 percentage points.

The existing literature emphasizes the role of several factors that contributed to this

decline. They include skill-biased technological change (Goldin and Katz, 2008), de-

clining investment good prices (Karabarbounis and Neiman, 2014), a sufficiently high

elasticity of substitution between capital and labor (Piketty, 2014), globalization (Elsby

et al. (2013), Helpman (2018)), rising profit shares of monopolistic firms and “super-

star firm” dynamics (Eggertsson et al. (2019), Autor et al. (2020)), or population aging

(Irmen, 2021). In contrast to these studies, the present paper emphasizes the effect of

taxation and population growth on the implementation of automation capital and the

labor share.

The focus of our analysis is on the United States where two related evolutions accom-

pany the decline in the labor share. First, as shown in the left panel of Figure 1.2, the

difference in the effective tax rates on income from capital and labor shrinks from 1947

to 2010. Over this time span, capital income is taxed more heavily with an average

effective tax rate of 41% compared to 23% for labor income. However, compared to

their respective levels in 1947 the effective tax rate on income from capital is much

lower in 2010 whereas the one for labor income is much higher. Moreover, in the recent

past, labor is even taxed more heavily than capital. Second, as shown in the right

panel of Figure 1.2, in parallel with the declining labor share the population growth

rate has fallen, in annualized terms, from 1.7% in 1950 to 0.7% in recent years.

Intuitively, the shrinking difference in the taxation of capital and labor and the decline

in population growth induce firms to choose production processes that replace labor

more and more with automation capital. On the one hand, the downward trend in the

capital income tax rate increases the incentive to build up capital. As long as different

types of capital are tied by a no-arbitrage condition, some of the additional capital will

come in the form of automation capital.

On the other hand, the labor supply declines at the intensive margin if the labor income

tax rate increases. In addition, a declining population growth rate reduces the labor
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Figure 1.1: Labor share, 1960-2018: US, Japan, and Euro Area (EA-12).
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Note: Labor share is wage income in GDP at current prices; Source: AMECO database, OECD.

supply at the extensive margin. As argued, e. g., by Heer and Irmen (2014), the relative

decline in the labor force at both margins pushes wages up and, therefore, boosts the

incentive to engage in labor-saving automation investments.

Hence, these tendencies strengthen the comparative advantage of automation capital

in production. This leads to the prediction that the amount of automation capital

per worker should increase. Figure 1.3 confirms this prediction: the time series of

automation capital proxied by the (nowcasted) stock of robots per 1,000 (full-time)

employees in the US from 1975 to 2010 is clearly increasing. Finally, as automation

capital replaces labor, the labor share is expected to decline.

Our analysis derives two main sets of results. First, we provide empirical evidence

for the US supporting the explanation for a declining labor share set out above. We

find indications for cointegrating relationships over the period from the first quarter of

1974 to the fourth quarter of 2008 (henceforth, 1974:q1-2008:q4). Permanent effects on

factor shares emanate from shocks in relative factor taxation. Changes in relative factor

taxation also permanently and sizably affect the use of automation capital. The forecast

error variance decomposition (FEVD) analysis of fitted vector error correction (VEC)

models reveals that taxing policies account for up to roughly 22% of observed changes

in the two income shares and for up to about 35% of the dynamics in automation

2



Figure 1.2: Left panel: Quarterly US tax rates on income from labor and capital (%);

Right panel: US population growth rates (%).
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capital.

The second set of results emanates from the quantitative analysis of a dynamic general

equilibrium model that replicates the downward trend in the US labor share from

1965 to 2015. We derive these findings in a new variant of the neoclassical growth

model where taxes on capital and labor income as well as population growth play a

key role for the dynamics of the functional income distribution. We follow Steigum

(2011) and distinguish two types of capital, traditional capital and automation capital

(robots). While traditional capital is complementary to labor and automation capital,

the latter two factors of production are perfect substitutes. Hence, automation capital

substitutes linearly for labor. We extend Steigum’s framework in three directions.

First, both types of capital investments are subject to adjustment costs. Second, we

allow for an endogenous labor supply and, finally, include an active government that

charges taxes to finance its consumption.

We use this model to compute the dynamics of the labor share, the stocks of tra-

ditional and automation capital, and the evolution of the (endogenous) labor supply

over the period 1965-2029. We maintain that automation capital was not introduced

into production processes until 1965.1 Our calibration incorporates the time series of

1Historical accounts suggest that the use of robots in the US started slowly in the early 1960s.

They were systematically introduced into US manufacturing only in the mid-to-late 1960s (see,

e. g., Encyclopedia Britannica, https : //www.britannica.com/technology/robot − technology, ac-

cessed April 25, 2022), Steigum (2011), p. 543, or Jeremy Gottlieb and David Leech Anderson
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Figure 1.3: Robots per 1K workers in the US: annual and nowcasted quarterly data.
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Sources: Tani (1989), Acemoglu and Restrepo (2019), IFR, CPS.

effective capital and labor income tax rates as well as of the population growth rates

that are displayed in Figure 1.2. The use of quadratic adjustment costs for both types

of capital investments is in the tradition of Hayashi (1982). As a result, our model is

able to closely replicate the downward trend in the labor share. In particular, in line

with the data, we match the actual drop in the labor share from 62% to 57% between

1965 and 2015.

The present paper is related to several strands of the literature. First, our empirical

analysis contributes to a young and growing empirical literature that studies the in-

terplay between automation and institutional as well as macroeconomic variables in

the context of economic growth. To some extent, this literature has revived an old de-

bate about the secular stagnation hypothesis (Hansen, 1939). Acemoglu and Restrepo

(2017) find evidence that supports the view that population ageing induces higher GDP

per capita growth through automation. This contrasts with the conclusions drawn in

(https : //mind.ilstu.edu/curriculum/medicalrobotics/robotsinbeginning.html, accessed April 25,

2022). Figure 1.3 suggests that robots basically amounted to zero prior to 1980 averaging at less than

1 robot per 5000 workers.
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Aksoy et al. (2019). So far, the main focus of this literature has been on longitudinal

data. The seminal study by Graetz and Michaels (2018) covers 14 years and 14 sectors

in 17 countries. It is longitudinal with two cross-sectional dimensions, economies and

industries. Acemoglu and Restrepo (2019) is also longitudinal in nature using data on

robots and exploiting the geographic variation within the United States. In the context

of the rise of robots in China, Cheng et al. (2019) rely on longitudinal survey-based

manufacturing firm-level data, too. These studies reveal insightful and, in parts, even

causal statistical associations between automation, institutional policies, and macroe-

conomic variables. However, the empirical establishment of long run –in the sense of

cointegrating– relationships between these variables is missing.2 The present paper

seeks to fill this gap.

Second, our theoretical analysis shows that an appropriately augmented variant of

Steigum (2011)’s model provides a tractable framework of analysis for macroeconomic

phenomena related to the substitution of labor with automation capital that may serve

as an alternative to existing models used in the literature including, among others,

Acemoglu and Restrepo (2018), Berg et al. (2018), Eden and Gaggl (2018), Irmen

(2021), or Hémous and Olsen (2022). Our quantitative analysis suggests that the

inclusion of adjustment costs in the spirit of Hayashi (1982) for both types of capital into

Steigum’s model proves particularly useful for a realistic description of the introduction

and the buildup of robots.

Finally, and relatedly, our calibration analysis highlights an important role of factor

taxation for the incentives to automate and the evolution of the US functional income

distribution. This adds a new positive explanation for the observed decline in the

US labor share to the literature mentioned above. In particular, our counterfactual

experiments suggest that the labor share in 2015 could have been substantially higher

had the tax rates on capital and labor income remained at their 1965 level. These

findings support the normative assessment of Acemoglu et al. (2020) who argue that the

US tax system generates excessive automation incentives and implies a suboptimally

low labor share. In a similar vein, we conclude from a simple welfare experiment that

an optimal tax on capital income could be quite high.

The paper is organized as follows. In Section 2, we present and interpret the time

2Bergholt et al. (2019) make an attempt in this direction. These authors estimate sign-restricted

structural vector autoregressive (SVAR) models with permanent shocks to study “medium-run” trend

relationships in this context.
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series evidence for the US economy relying on cointegration analysis and VEC models.

Section 3 studies a variant of the neoclassical growth model that distinguishes between

traditional and automation capital and allows for factor taxation and capital adjust-

ment costs. Sections 3.1-3.4 introduce the model and define the competitive equilibrium

with dynamic taxation. Section 3.5 provides an analysis of the steady state without

automation capital and analyses the properties of the asymptotic balanced growth path

with automation capital. Section 3.6 explains how we calibrate the model. Section 3.7

features our results on the transition dynamics. Here, we first devise a calibration that

replicates the actual decline of the US labor share during the period 1965-2015. Sec-

ond, we conduct counterfactual experiments suggesting that the effective tax rates on

capital and labor income had a significant effect on the labor share over the considered

period. Section 3.8 discusses the role of tax policies from a normative point of view.

Section 4 concludes. Section 5, the Appendix, includes details on and discussions of

our empirical (Section A.1-A.4) and our theoretical analysis (Section A.5).

2 Empirical Analysis

This section provides a test for and a quantification of long-run equilibrium relation-

ships between the US income shares and factor taxation, automation capital, and

population growth. Here, ‘equilibrium’ does not refer to market clearing. Rather, it

defines a state of rest. Long-run equilibrium relationships entail systematic movements

of macroeconomic variables that an empirical model—compatible with non-stationary,

long-run dynamics of time series—seeks to test for. Cointegration suggests the pres-

ence of some long-run equilibrium relations that tie the constituents of the modeled

system even though some developments may cause permanent changes. Correspond-

ingly, a neoclassical (stochastic) growth model implies several steady-state relations

among the natural logarithms of its central variables. A conditio sine qua non to

fledge such a model with dynamic taxes and automation capital to study functional

distribution outcomes is to establish such long-run relationships empirically. A VEC

model framework allows for the determination of the dimension of the cointegrating

space and for tests of such structures. Thus, the theory of cointegrated time series can

provide a test-based justification for the specification of a neoclassical growth model.

Our empirical analysis finds permanent effects of factor taxation and population growth

on factor shares and the use of robots, respectively. Pairwise error correcting, i. e., coin-
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tegrating, relationships are established for the following pairs of variables: (i) relative

factor taxation and the capital share, (ii) use of robots and the capital share, and (iii)

population growth and the labor share. The relationships (i) and (iii) are statistically

significant at conventional levels. Relationship (ii) holds only at a 68% level of con-

fidence which, however, is not unusual in a time series context (see, e. g., Baumeister

and Hamilton (2018)).

Establishing equilibrium restoring mechanisms in the short and medium-run requires

historical series of adequate length and frequency. We document issues related to the

compilation and the construction of such time series in the next section. Then, rele-

vant details concerning our methodological framework and the identification strategy

are provided. The section ends with an illustration of the responses of factor shares

and automation capital to factor taxation and population growth. Detail on the contri-

bution to variance of relative factor taxation to income shares and to the use of robots

is provided.

2.1 Time Series

We work with time series in quarterly frequency for the US economy ranging from the

first quarter of 1974 to the fourth quarter of 2008. The limiting factor with regard to

the span of our sample period is the automation capital series. Tani (1989) provides the

numerator of the first part of actual datapoints for the nowcast of the automation cap-

ital series as shown in Figure 1.3. Underlying is a series of biannual frequency for the

1970s and, from 1980-1985, of annual frequency. This series states the industrial robot

population in the US, where an industrial robot is defined by the Industrial Organi-

zation for Standardization (ISO).3 The denominator in the construction of datapoints

prior to 1986 shown in Figure 1.3 is the corresponding annual average of the seasonally

adjusted (SA) number of full-time employees in the US as collected in the Current

Population Survey (CPS). The ISO normed definition of robots and the expression in

units of “per thousand workers” allows us to combine it with the corresponding annual

data from the International Federation of Robotics (IFR) as provided by Acemoglu and

Restrepo (2019) and to nowcast a quarterly series of automation capital. Our nowcast

3Accordingly, an “industrial robot is an automatic position-controlled reprogrammable multifunc-

tional manipulator having several degrees of freedom capable of handling materials, parts, tools, or

specialized devices through variable programmed motions for the performance of a variety of tasks”

(Tani, 1989, p. 192).
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is based on the procedure proposed by Shumway and Stoffer (2008). It relies on the

Kalman filter in combination with the expectation maximization (EM) algorithm. A

detailed outline of this technique is contained in Appendix A.1. The quarterly series for

US effective tax rates on income from capital and labor are provided by Gomme et al.

(2011). The construction of the tax rates series is based on the National Income and

Product Accounts (NIPA). However, taxes levied on capital and paid by households

have to be imputed. The imputation follows a methodology that is generally accepted

in the empirical macroeconomic literature (Gomme et al. (2011), p. 266). For further

details on the set-up of the two series, the interested reader is referred to Appendix A.1.

Fernald (2014) provides the capital share series in quarterly frequency. Quarterly series

for the US population (in thousand) stem from the BEA and is provided in the FRED

database. We seasonally adjust this series by means of an X12-ARIMA and consider

its log first differences transform. Also from FRED we retrieve the BEA series of the

US quarterly gross compensation of employees in the form of paid wages and salaries

as well as the corresponding GDP series.

These procedures prepare the data set for a multivariate cointegration analysis. It

comprises series of quarterly frequency for the US income shares, factor taxation, pop-

ulation growth, and automation capital. The sample period covers all quarters from

1974 to 2008.

2.2 VEC Model Analysis

We rely on the maximum likelihood (ML) based framework for estimation and infer-

ence in cointegrating systems often referred to as the “Johansen approach” (Johansen,

1995). The variables of interest include the two effective tax rates as well as the two

factor shares. Due to the natural log transformation, it is technically feasible to jointly

consider the shares of labor and capital income. However, a (near perfect) collinearity

prevents the joint integration of both income tax rates into a particular VECM speci-

fication. An alternative to including both tax rates is the construction and use of the

labor-tax-to-capital-tax ratio (LCTR, Figure 2.1) which serves as a workaround in our

VECM specifications. It organically takes care of the historical tax policy mix.

Our reduced form (RF) VECM space consists of three dimensions: a relatively exoge-

nous variable Xt (population growth), a policy variable Yt (the factor tax policy mix,

8



Figure 2.1: Labor-tax-to-capital-tax ratio (LCTR), 1954:q1 to 2008:q4.
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i. e., the LCTR), and a multivariate group of response variables Wt (our automation

capital proxy and the two factor shares), making it

Zt = [Xt, Yt,Wt]⇒ Zt = A1Zt−1 + A2Zt−2 + ...+ ApZt−p + ut. (2.1)

In standard VEC notation this becomes

∆Zt = Γ1∆Zt−1 + Γ2∆Zt−2 + ...+ Γp−1∆Zt−p−1 + ΠZt−1 + ut, (2.2)

where Γi = (I−A1−A2 − ...−Ap) for all i = 1, ..., p. Π may be thought of as consisting

of an adjustment speed matrix a and a long-run coefficient matrix b. Then, Π = ab′,

where b′Zt−1 is the vectorial analogue of the error correction term in the Engel-Granger

approach.

2.3 Identification Strategy

Our identification scheme for the ∆Z vector autoregression (VAR) part of the VECM

specification—modeling the short to medium term cyclical dynamics—resembles what

has become known as “Slow-r -Fast” scheme in the literature (Stock and Watson, 2016,
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p. 455, pp. 477-478).4 It delivers a block recursive scheme with an ordering of the

respective elements of the partitioned Zt vector that is not decisive for the system

rotation matrix. In our application, population growth is supposed to be “the least”

endogenous and does not respond to the policy variable, i. e., to the LCTR, and to

any of the response variables within a quarter. The response variables are comprised

of our automation capital measure and the two factor shares. As we focus on the

responses to shocks in the tax policy variable, the ordering within Wt is uncritical.

For the ∆Z/VAR-part of the respective VECM, the following block recursive scheme

to identify responses to shocks ε, with orthogonalized analogues η, is implied


ηXt

ηYt

ηWt

 =


HXX 0 0

HY X HY Y 0

HWX HWY HWW




εXt

εYt

εWt

 for Φ (L) ∆Zt =


ηXt

ηYt

ηWt

 , (2.3)

where Zt is partitioned Zt =
(
Xt Yt Wt

)′
, and HWW is squared. Our lag order

choice p = 13 for (2.1), (2.2), is supported by the adequate Likelihood ratio (LR) test.

2.4 Results

The Johansen testing procedure, detailed in Appendix A.2, fails to reject the null

of at most three cointegrating equations of our VECM representation. The second

cointegration equation in the Johansen-normalization identification clearly indicates

a statistically significant equilibrium relationship between the LCTR series and the

two factor shares. Additionally, our specification is stable adhering to the implied

eigenvalue stability condition.

Impulse response (IR) functions of factor shares in response to a relative increase of

taxing labor vis-à-vis capital, i. e., to a positve LCTR shock, are given in Figure 2.2.

A positive one percent LCTR shock implies a permanent increase in the capital share

of production of about 0.64%. In contrast, the labor share response is negative (see

the right schedule of Figure 2.2). It is also permanent in nature and of similar size.

4The name stems from the order of partitioning of the dependent variables’ vector by nature of its,

partially sub-vectorial, elements. It has been used, in particular, to identify monetary policy shocks

(Bernanke et al., 2005). Under this scheme so-called slow-moving variables such as output and prices

do not respond to monetary policy rate dynamics or to movements in fast-moving variables, such as

expectational variables, within the period.
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Figure 2.2: Orthogonalized IR functions of factor shares to LCTR shock.

Note: Left (right) panel: impulse variable is LCTR, response variable is capital (labor) share of production.

Solid lines represent IR functions obatined from a VEC model specification (2.1), (2.2) with a ’Slow-r-Fast’

identification scheme for its VAR-part, a cointegration rank of two, and a lag order of 13. The dashed lines

depict 68% Hall’s percentile method based bootstrap confidence intervals (see, Benkwitz et al. (2001) for

details).

However, the point estimate shows a reaction to a one percent LCTR impulse that

lies slightly above a permament decrease in the labor share of −0.64%. It amounts to

approximately −0.59%. Nevertheless, in terms of its size, th decline in response to a

one percent LCTR shock covers also −0.64% within the range of reasonable confidence.

The latter is—in the time series context—frequently given by a 68% band (Figure 2.2).

Table 2.1: FEVD values for an LCTR shock by response variable.

Step Capital share Labor share Automation capital

10 0.010460 0.126208 0.296361

20 0.050732 0.118803 0.354056

30 0.080220 0.125973 0.347809

40 0.085780 0.127680 0.332902

50 0.086906 0.129162 0.325100

60 0.090602 0.128036 0.313584

70 0.091387 0.123696 0.299503

80 0.091690 0.117447 0.289272
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Table 2.1 shows FEVD statistics for the three response variables, the capital share, the

labor share, and automation capital, given a positive LCTR shock. After about 30 to

40 quarters, relative factor taxation accounts for up to 9% (13%) of observed changes

in the capital (labor) share and for up to 35% of the dynamics in the automation

capital series. While the effect starts to peter out after 20 years (falling below 30%)

for the use of robots, it only slightly falls for the two factor shares. Bear in mind,

in contrast to the following model simulations of Section 3, these contributions rely

on RF empirical models and empirical series. Thus, they do not truly isolate the

effects of factor taxation. Nevertheless, the VECM analysis, following the generic

Johansen procedure and resting on a “Slow-r -Fast”-style identification strategy for

its VAR-part, has uncovered three significant long-run equilibrium correcting, i. e.,

cointegrating, relationships (see Appendix A.2 for details). These are given for the

following three pairwise (cointegration) relationships: population growth and the labor

share, relative factor taxation and the capital share of income, and the use of robots

and the capital share of income.5 This implies that the system is driven by two to

three independent stochastic trends. Each of them is shared by the respective pair of

cointegrated macroeconomic variables. It allows us to state that there exists, at least,

an equilibrium relationship between population growth and the labor share and between

relative factor taxation and the capital share, respectively. Each of the pairs of variables

tends to develop –in the absence of shocks– in a lockstep that is proportional in nature.

This is in the spirit of a long-run equilibrium relationship that entails a systematic co-

movement among macroeconomic variables. For example, population growth tends to

translate into a labor share dynamics that is proportional to it. This proportionality

may only temporarily be perturbed by shocks and overlain by business cycle dynamics.

Furthermore, we have illustrated that shocks to relative factor taxation have permanent

effects on factor shares. Corresponding variance decompositions reveal that shock in

the factor-tax policy mix contribute at some decade-long forecasting horizons to both

changes in the two income shares and in automation capital.

5Note, however, the last of these cointegration relationships is on the fence of being statistically

significant (see Appendix A.2). It is significant only for a level of confidence of 68%. In the computation

of IR functions shown in Figure 2.2 we abstracted from the last of these cointegration relationships

and based it on a rank 2 VECM.
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3 A Neoclassical Growth Model with Dynamic Taxes, Au-

tomation Capital, and Adjustment Costs

We conduct our analysis in a framework that extends the neoclassical growth model

in three ways. First, we follow Steigum (2011) and distinguish two types of capital in

the aggregate production function, i. e., traditional capital (structures, machines) and

automation capital (robots). Traditional capital and labor are imperfect substitutes

whereas automation capital and labor are perfect substitutes. Second, we introduce

adjustment costs associated with the installation of either type of capital. Finally

and most importantly, we integrate dynamic taxes on capital and labor income to

study their role for the installation of automation capital and the functional income

distribution.

The economy comprises a household, a production, and a government sector in an

infinite sequence of periods, t = 0, 1, 2, ...,∞. At all t, there is a single manufactured

good that serves as numéraire. This good may be directly consumed by households,

invested, or collected by the government in the form of taxes. If invested, it serves in

the next period either as traditional capital or as automation capital. If collected by

the government, it is a means to provide contemporaneous government services to each

member of the population.

3.1 Household Sector

There is a single representative household with Nt members. The household size grows

at rate nt, i. e.,

Nt+1 = (1 + nt)Nt, N0 > 0. (3.1)

The household’s inter-temporal utility is

U0 =
∞∑
t=0

βt [u(ct, 1− lt) + ν(gt)] , 0 < β < 1, (3.2)

where ct, lt, and gt denote, respectively, per-capita consumption of the manufactured

good, the individual supply of working hours, and the per-capita consumption of the

services provided by the government at t. In each period, the household’s time budget
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is normalized to unity. Hence, 1 − lt is leisure at t. We refer to gt as individual

government consumption at t.

The periodic utility of a household member is additively separable in the utility en-

joyed from consumption and leisure, u(., .), and the utility derived from government

consumption, ν(gt). Hence, government consumption, gt, does not affect the house-

hold’s optimization with respect to consumption and labor.

The utility function u : R+ × [0, 1]→ R is given by

u(c, 1− l) =

(
cθ(1− l)1−θ

)1−η − 1

1− η
, 0 < θ < 1, η > 1, (3.3)

where θ and 1− θ denote the weights attached to consumption and leisure.

Households own two kinds of assets, traditional capital, kt, and automation capital, pt

(both in per capita terms). These stocks depreciate at the same rate, δ ∈ (0, 1), so

that their respective accumulation is given by

(1 + nt)kt+1 = (1− δ)kt + ikt , (3.4a)

(1 + nt)pt+1 = (1− δ)pt + ipt . (3.4b)

Here, ikt and ipt denote per-capita investments in traditional and in automation capital,

respectively. Following Hayashi (1982), we allow for symmetrical and quadratic ad-

justment costs for either type of capital. More precisely, for x ∈ {k, p} an investment

ixt requires

φ(ixt , xt) = ixt +
a1 (ixt )

2

2(a2 + xt)
, (3.5)

units of produced output at t where a1 > 0 and a2 > 0. The (small) constant a2 allows

for the transition from a regime with pt = 0 into one with pt > 0.6

Let wt denote the real wage, rkt the rental rate of traditional capital, and rpt the rental

rate of automation capital at t. Then, the household receives income from labor, wtlt,

taxed at rate τwt ∈ (0, 1), and interest income on traditional capital, rkt kt, and automa-

tion capital, rpt pt, both taxed at rate τ rt ∈ (0, 1). In addition, the household receives

lump-sum government transfers, trt. Household income is spent on consumption, ct,

taxed at the constant rate τ c > 0, and on investment in both types of capital. Accord-

ingly, the household’s periodic budget constraint is

(1 + τ c)ct+φ(ikt , kt) +φ(ipt , pt) = (1− τwt )wtlt+ (1− τ rt )rkt kt+ (1− τ rt )rpt pt+ trt. (3.6)

6The usual specification of adjustment costs has a2 = 0 (see, e. g., Heer and Scharrer (2018)).
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For given values k0 > 0 and p0 ≥ 0, the representative household’s optimal plan is a

sequence {ct, lt, ikt , i
p
t , kt+1, pt+1}∞t=0 of per-capita variables that maximizes U0 subject

to (3.4a), (3.4b), (3.6), lt ∈ [0, 1], and non-negativity constraints on ct, i
k
t , i

p
t , kt+1,

pt+1. The first-order conditions of the household problem are (a detailed derivation of

these conditions can be found in Appendix A.5.1)

λt(1 + τ c) = θc
θ(1−η)−1
t (1− lt)(1−θ)(1−η), (3.7a)

λt(1− τwt )wt ≤ (1− θ)cθ(1−η)t (1− lt)(1−θ)(1−η)−1with “<” only if lt = 0, (3.7b)

qkt ≤ λt

(
1 +

a1i
k
t

a2 + kt

)
with “<” only if ikt = 0, (3.7c)

qpt ≤ λt

(
1 +

a1i
p
t

a2 + pt

)
with “<” only if ipt = 0, (3.7d)

qkt ≥
β

1 + nt

{
λt+1

[
(1− τ rt+1)r

k
t+1 +

a1
(
ikt+1

)2
2(a2 + kt+1)2

]
+ qkt+1(1− δ)

}
with “>” only if kt+1 = 0, (3.7e)

qpt ≥
β

1 + nt

{
λt+1

[
(1− τ rt+1)r

p
t+1 +

a1
(
ipt+1

)2
2(a2 + pt+1)2

]
+ qpt+1(1− δ)

}
with “>” only if pt+1 = 0, (3.7f)

0 = lim
t→∞

βtλtkt+1, (3.7g)

0 = lim
t→∞

βtλtpt+1. (3.7h)

Here, λt, q
k
t , and qpt are the respective Lagrange multipliers on the periodic budget

constraint (3.6) and on the capital accumulation equations (3.4a) and (3.4b).

Conditions (3.7a) and (3.7b) characterize the contemporaneous trade-off between the

consumption demand and the labor supply of a household member. Since u(c, 1− l) is

strictly concave on its domain and satisfies the Inada conditions

lim
c→0

∂u(c, 1− l)
∂c

=∞ and lim
l→1

∂u(c, 1− l)
∂l

= −∞

the optimal plan involves ct > 0 and lt < 1. However, (3.7b) allows for a corner solution

lt = 0 that obtains if

ct >
θ

1− θ
1− τwt
1 + τ c

wt. (3.8)

Hence, the individual labor supply vanishes if ct, τ
w
t , or τ c are sufficiently high relative

to the wage.
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Condition (3.7c) says that ikt > 0 if the marginal cost of producing one unit of tradi-

tional capital, 1 +a1i
k
t /(a2 + kt), expressed in period-t utility as λt

(
1 + a1i

k
t /(a2 + kt)

)
is equal to the marginal revenue from selling one unit of traditional capital expressed

in period-t utility, qkt × 1. Moreover, ikt = 0 if the costs exceed the benefit for the first

marginal unit of investment in traditional capital. Mutatis mutandis, the interpretation

of condition (3.7d) for automation capital is the same.

Condition (3.7e) says that kt+1 > 0 if the return associated with one additional unit

of traditional capital per-capita in t + 1 shared by a population that has grown by a

factor 1 + nt and expressed in period-t utility is equal to the marginal revenue from

selling one unit of traditional capital expressed in period-t utility, qkt × 1.7 Mutatis

mutandis, the interpretation of condition (3.7f) for automation capital is the same.

Finally, conditions (3.7g) and (3.7h) state the transversality conditions on both types

of capital.

3.2 Production Sector

The production sector has a single competitive representative firm. Following Steigum

(2011), this firm has access to the production function

Yt = A [Lt + κPt]
1−αKα

t , A > 0, (3.9)

where Lt is employed hours worked, Pt the amount of hired automation capital, and

Kt the amount of hired traditional capital. Hours worked and automation capital are

perfect substitutes with a marginal rate of substitution equal to κ.8

The representative firm’s optimal plan is a sequence {Kt, Lt, Pt, Yt}∞t=0 of factor de-

mands and output supplies that maximizes the net present value of all current and

7The return associated with one additional unit of traditional capital per-capita in t + 1 has

three components. First, there is the after-tax rate of return (1 − τ rt+1)rkt+1. Second, given ikt+1

adjustment costs decline by a1
(
ikt+1

)2
/
(
2(a2 + kt+1)2

)
. These returns can be consumed and add

λt+1

[
(1− τ rt+1)rkt+1 + a1

(
ikt+1

)2
/
(
2(a2 + kt+1)2

)]
to period-t+ 1 utility. Third, the remaining 1− δ

units can be sold which generates a period-t+ 1 utility return equal to qkt+1(1− δ).
8Below, we choose κ to be smaller than unity to obtain reasonable results in our calibrations. In

contrast to the actual evolution of the labor share, a specification involving κ = 1 (and a corresponding

value A = 0.83 that generates an asymptotic growth rate of 2%) predicts that the labor share drops

to 46% after the first year during which automation capital is used, i. e., when Pt > 0.
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future profits. This comes down to the maximization of periodic profits, Πt, given by

Πt = Yt − wtLt − rktKt − rptPt.

The corresponding first-order conditions for all t are

(1− α)A

[
Kt

Lt + κPt

]α
≤ wt,with “<” only if Lt = 0, (3.10a)

(1− α)κA

[
Kt

Lt + κPt

]α
≤ rpt ,with “<” only if Pt = 0, (3.10b)

αA

[
Lt + κPt
Kt

]1−α
= rkt . (3.10c)

These conditions reflect that Kt is essential but neither Lt nor Pt is.

Let LSt denote the labor share at t. Using (3.10a) - (3.10c), the latter can be expressed

as

LSt =


1− α if Lt > 0, Pt = 0,
1−α

1+κ
Pt
Lt

if Lt > 0, Pt > 0,

0 if Lt = 0, Pt > 0.

(3.11)

Hence, in the presence of automation capital the labor share is smaller than 1 − α.

Moreover, it declines in the automation capital intensity, Pt/Lt. This is the result of

two reinforcing effects that become visible if the labor share is expressed as the ratio of

the marginal to the average product of hours worked, i. e., LSt = wt/(Yt/Lt). A higher

automation capital intensity reduces the marginal product of hours worked and boosts

its average product.

3.3 Government Sector

At all t, the government collects taxes and spends its receipts in the form of government

consumption and lump-sum transfers while keeping its budget balanced. Let taxt

denote per-capita tax receipts. Then,

taxt = τ cct + τwt wtlt + τ rt r
p
t pt + τ rt r

k
t kt. (3.12)

Moreover, the government budget constraint reads

Ntgt +Nttrt = Nttaxt. (3.13)
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3.4 Dynamic Competitive Equilibrium with Dynamic Taxes

Given K0 > 0, P0 ≥ 0, N0 > 0, Nt = (1 + n)tN0, and a sequence of tax rates{
τ c, τwt , τ

k
t

}∞
t=0

the dynamic competitive equilibrium with dynamic taxes determines

sequences of prices
{
wt, r

k
t , r

p
t

}∞
t=0

, allocations
{
ct, lt, i

k
t , i

p
t , kt+1, pt+1, Kt, Lt, Pt, Yt

}∞
t=0

,

and government activities {gt, taxt, trt}∞t=0. The equilibrium sequences are determined

by the following conditions for all t = 0, 1, 2, · · · ,∞:

(E1) The plan of the representative household satisfies conditions (3.7a) - (3.7h).

(E2) The plan of the representative firm satisfies (3.10a) - (3.10c).

(E3) The activities of the government satisfy (3.12) and (3.13).

(E4) The labor market clears, i. e.,

wt ≥ 0, Lt ≤ Ntlt, and wt(Lt −Ntlt) = 0.

(E5) The market for both types of capital clear, i. e.,

rkt ≥ 0, Kt ≤ Ntkt, and rkt (Kt −Ntkt) = 0,

rpt ≥ 0, Pt ≤ Ntpt, and rpt (Pt −Ntpt) = 0.

(E6) The market of the final good clears, i. e.,

ct + gt + φ(ikt , kt) + φ(ipt , pt) = yt. (3.15)

Since the production function (3.9) exhibits constant returns to scale and factor markets

are competitive, (E2) implies Πt = 0. (E4) and (E5) describe the usual factor market

clearing conditions. The price of labor cannot be negative, demand must not exceed

supply, and an excess supply requires wt = 0. Similarly, for the two stocks of capital.

Below it becomes clear that we have to deal with the cases where either lt = 0, i. e., the

supply of labor vanishes, or pt = 0, i. e., the supply of automation capital vanishes. In

the former case, the demand for hours worked must vanish, too. This is the case for all

wages above wt = (1− α)A(Kt/(κPt))
α which is then the equilibrium wage consistent

with Lt = 0. Combining the latter with equation (3.8) we obtain the equilibrium

condition under which the individual labor supply vanishes as

ct >
θ

1− θ
1− τw

1 + τ c
(1− α)A

(
Kt

κPt

)α
. (3.16)
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Similarly, if the supply of automation capital is zero, then its demand must vanish.

This is the case for all rental rates above rpt = (1 − α)κA(Kt/Lt)
α which is then the

equilibrium rental rate for automation capital consistent with Pt = 0.

Finally, (E6) states the goods market equilibrium in per-capita terms, i. e., the supply

of produced output is equal to private and government consumption demand plus

investment outlays for both types of capital.

3.5 Initial Steady State and Asymptotic Balanced Growth Path

Let period t = 0 correspond to the year 1965. Prior to this period, we assume that the

economy is in steady state without automation capital. More precisely, the population

growth rate n0, and the tax rates τ c0 , τw0 , and τ r0 are constant and equal to the respective

values prevailing in 1965. Moreover, the growth rate of the economy is set equal to

zero, and labor share is LS = 1− α (see Appendix A.5.2 for details).

An asymptotic balanced growth path (ABGP) is defined as an equilibrium path to

which the economy tends as t→∞ that satisfies

lim
t→∞

yt+1

yt
= lim

t→∞

kt+1

kt
= lim

t→∞

pt+1

pt
= lim

t→∞

ikt+1

ikt
= lim

t→∞

ipt+1

ipt
= lim

t→∞

ct+1

ct
= 1 + γ (3.17)

for a constant population growth rate, nt = n, constant tax rates, τ rt = τ r and τwt = τw,

as well as a constant ratio gt/yt < 1. Here, γ > 0 is the asymptotic growth rate of

per-capita variables.

We explain the derivation and the properties of the unique ABGP in Appendix A.5.2.

Here, we simply note that in the limit t → ∞ the production function (3.9) becomes

Yt = A (κPt)
1−αKα

t . As Pt and Kt grow at the same rate along the ABGP, the

asymptotic behavior of the model mimics the one of the AK-model of, e. g., Frankel

(1962) or Romer (1986), and γ > 0 will be endogenously determined.

3.6 Calibration

We calibrate the neoclassical growth model with dynamic taxes, automation capital,

and adjustment costs to match empirical characteristics of the US economy for the time

span from 1965 to 2010. Periods correspond to years. Our calibration strategy com-

prises four steps. First, a subset of preference and production parameters, {β, η, θ, α, δ},
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Table 3.1: Calibration of parameters in the benchmark growth model

Parameter Value Description

Preferences

β 0.96 discount factor

1/η 1/2 intertemporal elasticity of substitution

θ 0.3938 weight of consumption in utility

Production

α 0.38 production elasticity of capital

A 9.60 total factor productivity

κ 0.019 marginal rate of substitution

between labor and automation capital

δ 0.07 depreciation rate of capital

(a1, a2) (12.0,0.10) adjustment cost parameters

γ 2.0% asymptotic growth rate of per-capita vari-

ables

Fiscal parameters

(τ r1965, τ
r
2010) (47.3%, 37.1%) capital income tax rates in 1965 and 2010

(τw1965, τ
w
2010) (17.9%, 28.9%) labor income tax rates in 1965 and 2010

τ c 5.9% consumption tax rate

G/Y 18% share of government spending in production

is chosen in accordance with the initial steady state corresponding to the year 1965.

Second, the adjustment costs parameters a1 and a2 are set in accordance with prior

empirical estimates and the simulated series of automation capital during the initial

phase of the transition. Third, the production parameters A and κ are jointly chosen

to imply an asymptotic endogenous growth rate of per-capita variables, γ, equal to the

average annual growth rate during 1965-2010 and a labor share equal to 57% in 2010.

Finally, the fiscal and population parameters are set in accordance with the time series

evidence for the US during 1965-2010. Table 3.1 summarizes the calibration.
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Preferences. We set β = 0.96 and η = 2. These values are commonly applied in

dynamic general equilibrium models (see, e. g., in Heer and Maußner (2009)). This

calibration implies a steady-state real interest rate of 3.75% and an intertemporal

elasticity of substitution equal to 1/2. The latter is approximately the midpoint of

empirical estimates for 1/η. The weights of consumption and leisure in utility, θ =

0.3938 and 1 − θ = 0.6062, are chosen to generate an average labor supply equal to

0.30 in the initial steady state.

Production. The production function parameters A and κ are chosen jointly to

imply an asymptotic growth rate γ = 2.0% and a labor share equal to 57% in 2010.9

The production elasticity of traditional capital, α = 0.38, is set to imply a labor share

equal to 62% in 1965. Following Trabandt and Uhlig (2011) the depreciation rate

of capital is δ = 7.0%. The parameter of the adjustment cost function, a1 = 12.0,

which governs the speed of adjustment in the two capital stocks, is taken from Heer

and Schubert (2012). The adjustment cost parameter a2 is a small constant added

mainly for numerical purposes. If a2 = 0, then the marginal adjustment costs in the

initial steady state without automation capital, Pt = 0.0, would be infinite and the

accumulation of automation capital would never take off. The long-run effect of the

parameter a2 on aggregate variables is asymptotically zero. Moreover, its magnitude

affects the growth rates of automation capital only in the initial phase of the transition.

We, therefore, choose a2 = 0.10 so that the simulated growth rates of automation

capital Pt (=10.9%) is approximately equal to the annual growth rate of the robots

during the period 1974-1980 (=10.7%) as depicted in Figure 1.3.

Government. The time series of the two income tax rates, τ rt and τwt , are the es-

timates taken from Gomme et al. (2011) for the US economy during 1954-2010 that

Figure 1.2 displays. In 1965, τ rt and τwt amount to 47.3% and 17.9%, in 2010 to 37.1%

and 28.9% , respectively. The consumption tax rate τ c = 5.0% and the government

share G/Y are chosen as in Trabandt and Uhlig (2011).10

9The computation details are described in the Appendix A.5.3.
10Note that the government share was not constant during the period 1965-2020 but fell from 23%

to 18%. As a robustness check we analysed whether the decline in government expenditures relative

to GDP had a significant quantitative effect on the decline of the labor share and simulated the model

accordingly. However, we find that the fall in the government share contributes only 0.04 percentage

points to the decline in the labor share in 2010. Therefore, we excluded government consumption
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3.7 Transition Analysis

This section has two parts. First, we study the transition from 1965-2015 of our

benchmark economy with automation capital, a strictly positive labor supply, and the

dynamic tax rates.11 The main result is that the model explains the actual drop in the

labor share from 62% to 57% that took place between 1965 and 2015. Second, we run

counterfactual experiments to highlight the role of the tax rates on capital and labor

income for the decline in the labor share. We demonstrate that the labor share would

have been several percentage points higher if either the tax rate on labor income alone

or both tax rates had remained at their 1965 level.

3.7.1 Benchmark

Figures 3.1 and 3.2 illustrate the transition dynamics of our model economy for the

time span 1965-2030. The transition is computed under the following assumptions:

1. The economy is in steady state prior to 1965 with a labor share equal to 62%.

The tax rates on labor and capital income and the population growth rate are

set equal to their value in 1965, i. e., 17.9%, 47.3%, and 1.7%, respectively.

2. The transition starts in 1965. The initial capital stock is given by the steady-

state stock of traditional capital. Households build up savings and supply labor

according to their Euler equations for both types of capital and their first-order

conditions with respect to consumption and labor.

3. For the period 1965-2010 the tax rates and the population growth rates are equal

to their empirical counterparts.

4. In 1965, the household also starts to invest in automation capital.

5. After 2010, the tax rates on labor and capital income as well as the population

growth rate remain constant at 28.3%, 37.1%, and 0.9%, respectively.

from the set of explanatory factors of the labor share decline.

11In our numerical analysis, we compute the transition dynamics over the period 1965-2175. By

2175, the deviation of the final values from their asymptotic steady state values is less than 0.001%.

For reasons of exposition, we only display the first part of the transition. Some additional details on

the computation of the transitional dynamics can be found in Appendix A.5.4.
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Figure 3.1: Transition Dynamics in the Model with Automation Capital and Adjust-

ment Costs, Part I.

The first row of Figure 3.1 reveals that the household initially adjusts its asset portfolio

and shifts wealth from traditional capital (upper left panel), kt, to automation capital

(upper right panel), pt. After approximately 30 years, both types of capital start to

grow over time. As we argue above, the asymptotic behavior of our model is similar to

an AK-model, i. e., the economy converges to a balanced growth path with a growth

rate of per-capita variables equal to 2.0%.

In the first year of the transition, the labor supply increases slightly from 0.3 in 1964 to

0.303 in 1965. As initially labor income taxes are low the household substitutes labor

intertemporally so that lt remains higher than 0.3 until 1973. Between 1965 and 2015,

the labor supply drops from 0.303 to 0.262 (lower right panel).12 This is the effect of

two channels which operate simultaneously. First, automation capital replaces labor

in production. Second, the incentive to supply labor falls with the increase in the tax

12Eventually, the labor supply vanishes completely. In our benchmark, lt = 0 is reached in the year

2132.
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Figure 3.2: Transition Dynamics in the Model with Automation Capital and Adjust-

ment Costs, Part II.

rate on labor income. Experiment 1 below suggests that the increase in τ lt from 17.9%

to 28.3% during 1965-2010 is the driving force behind the decline in lt.

Per-capita consumption (lower left panel in Figure 3.1) falls between 1970 and 1985

for two reasons. First, the net wage income declines with a falling labor supply and

increasing tax rates on labor income. During 2004-2010, the labor supply displays a

hump-shaped increase which reflects the temporary fall in the labor income tax rate,

τwt , during these years (see Figure 1.2). Second, the household increases savings as, on

average, the tax rates on capital income fall during 1965-2010 (see again Figure 1.2).

Therefore, consumption declines during the first 30 years of the transition. Eventually,

the growth effect sets in and consumption starts to increase after 2004. In the long

run, consumption grows at the endogenous asymptotic growth rate. Notice the hump-

shaped dynamics of consumption during the years 2004-2011 that mirrors the evolution

of the labor supply and, hence, of (net) wage income.

The evolution of the factor prices wt and rkt over 1965-2030 are displayed in the upper
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row of Figure 3.2. Their evolution reflects the first-order conditions (3.10a) - (3.10c)

that define a factor-price frontier linking rkt , r
p
t , and wt according to

rkt = α(1− α)
1−α
α κ

1−α
α A

1
α (rpt )

− 1−α
α and wt =

rpt
κ
.

Since traditional capital, kt, decreases and automation capital increases during 1965-

1980, the wage, wt, falls at the beginning of the transition. Consequently, the rental

rate on traditional capital, rkt , rises during this period.13

Figure 3.3: Labor Share Dynamics.

The evolution of the labor share, LSt, is illustrated in Figure 3.3. The model (broken

green line) is able to replicate the downward trend of the labor share (solid red line)

during 1965-2015. In fact, as observed empirically the model generates a drop in the

labor share by five percentage points between 1965 and 2015. This effect is explained

by the substitution of labor with automation capital. The income share accruing to

these two production factors is constant and equal to 1 − α = 62%. However, the

13Asymptotically, the rental rates of traditional and automation capital approach the value given

in (A.5.9).
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relative income share of automation capital increases over time at the expense of the

residual share for labor.

3.7.2 Experiments

We conduct two counterfactual experiments. In Experiment 1 the tax rate on labor

income remains constant at its (low) 1965 level of τwt = τw = 17.9% whereas the

tax on capital income varies in line with the empirical evidence shown in Figure 1.2.

Experiment 2 leaves both tax rates constant at their 1965 level, i. e., in addition the tax

rate on capital income remains constant at its (high) 1965 level of τ rt = τ r = 37.1%.

The counterfactual transition of the labor share is shown in Figure 3.4. The actual

US labor share and the labor share of our benchmark model appear again as the solid

red and the broken green line. In Experiment 1 the decline of the labor share (broken

dotted blue line) is less pronounced than in reality and the benchmark. In particular,

in 2015 it is 1.3 percentage points higher at 57.9%. Experiment 2 generates an even

shallower decline in the labor share to 60.9% (dashed black line).14 We conclude that

the observed increase in the tax on labor income and the decline in the tax on capital

income from 1965 to 2015 played an important role for the evolution of the labor share

over this period.

To understand the dynamics of the labor share in these experiments relative to the

benchmark it is instructive to compare the co-evolutions of the remaining endogenous

variables. For this purpose, Figure 3.5 illustrates the dynamics of traditional capital,

kt, automation capital, pt, consumption, ct, the labor supply, lt, the wage, wt, and the

rental rate of traditional capital, rkt , (from the upper left to the lower right panel) in

these experiments and the benchmark.

In Experiment 1 the lower labor income tax rate increases the labor supply in the

year 2015 from 0.2605 in the benchmark to 0.292. As a consequence, net labor income

increases which results in a strong rise of consumption and a moderate rise of savings

(the sum of investments in traditional and automation capital, not presented). As is

evident from the bottom-left panel of Figure 3.5, the increase in the labor supply also

14 Section A.5.5 has a sensitivity analysis for different values of the Frisch labor supply elasticity.

When this elasticity drops, e. g., from 1.64 (as in the benchmark case with utility function (3.3))

to a lower value of 0.64, then in the two experiments the labor shares decline to 57.6% and 60.9%,

respectively.
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Figure 3.4: Labor Share and Income Taxes τw and τ r.

implies a rise of the rental rate of capital, rkt . Therefore, individual household members

adjust their portfolio composition and shift wealth from automation to traditional

capital over time. The top row of Figure 3.5 reveals that kt is larger and pt lower in

Experiment 1 than in the benchmark. Accordingly, with a higher labor supply, lt, and

less automation capital, pt, the labor share increases.

In Experiment 2 the capital income tax rate is permanently higher than in Experiment

1. Therefore, the after-tax rate of return from traditional capital, kt, falls by approxi-

mately 25% in 2015 from 12.2% in Experiment 1 to 9.1% in Experiment 2. Since the

growth rate of per-capita variables is endogenous and depends on the capital income

tax rate, τ k, growth slows down and approaches asymptotically 0.85%. For this reason,

output, consumption and investment are significantly smaller in Experiment 2 than in

Experiment 1. In particular, in 2015, automation capital, pt, in Experiment 2 (1) only

amounts to 0.29 (1.08) units of contemporaneous output which — after noticing that

the labor supply does not react strongly to the higher capital income tax rate, τ rt —

explains the much higher labor share of 60.9%.
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Figure 3.5: Transition Dynamics in Experiments 1 and 2.

3.8 Welfare and Tax Policies

What are the optimal tax rates on labor, automation and traditional capital that a

benevolent planner would choose? In the context of our model this question is of

interest since the accumulation of robots crowds out labor. In fact, from the year

2069 onwards firms completely dispense with labor so that government revenues can

no longer rely on the taxation of wages. Therefore, the optimal capital income tax rate

levied on robots and traditional capital in the long run cannot be zero as suggested by

Chamley (1986) and Judd (1985). The government would no longer be in a position

to finance its exogenous expenditure comprising its consumption and transfers (for a

constant tax rate on consumption).15

15See, e. g., Slav́ık and Yazici (2014), Costinot and Werning (2018), Thuemmel (2018), or Guerreiro

et al. (2022) for alternative justifications of optimal tax or subsidy rates on robots.
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To derive welfare implications and optimal tax policies, (τ rt , τ
w
t ), we conduct a simple

fiscal policy experiment following Grüner and Heer (2000). The government announces

an unexpected once-and-for-all change in the capital income tax rate, τ r, in the year

2020. The labor income tax rate, τwt , adjusts so that the fiscal budget is balanced.

Moreover, we assume that - irrespective of the considered tax policy - the time paths

of government consumption and transfers, Gt and Trt, in absolute terms remain as in

the benchmark equilibrium (see Grüner and Heer (2000) for a detailed discussion of this

procedure). In addition, we stipulate that the transition from the year 2020 to the new

ABGP is completed by 2080. Hence, from this period onward, the per-capita variables

yt, kt, pt, and ct grow at the endogenous growth rate γ which depends (negatively) on

the capital income tax rate τ r.

In our simulation, we find that the optimal capital income tax rate is 38.2%, about

one percentage point higher than in 2020. For the household with intertemporal utility

(3.2) this implies a welfare gain of 0.26% of total consumption. Since the optimal

capital income tax rate is close to its benchmark value the welfare gain is rather small.

To develop some intuition for this result observe that capital income tax rates smaller

than those prevailing in 2020, i. e., values of τ r below 37%, are insufficient to finance

government consumption and transfers until 2069 when labor has converged to zero.

This reflects two effects of opposite sign that a lower capital income tax rate has on

government revenues. First, as the growth rate of per-capita variables is higher than in

the benchmark equilibrium, the tax base and government revenues increase. Second,

government revenues decline since τ r is lower. In our model the latter effect dominates.

For τ r < 37% this implies that the government can no longer finance its expenditure

with higher levels of τwt once the convergence of the labor supply becomes sufficiently

close to zero. For capital income tax rates higher than those prevailing in 2020, i. e.,

values of τ r exceeding 37%, the growth rate of per-capita variables falls below 2% and,

beyond a certain threshold tax level slightly above 40%, total income taxes become

again insufficient to finance government expenditures until the year 2080. Hence, the

admissible range of capital income tax rates is [37%, 40%]. Over this range welfare is

a concave function and peaks at τ r = 38.2%.
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4 Conclusion

In the empirical part, we find three significant long-run equilibrium correcting, i. e.

cointegrating, relationships for the 1974-2008 period. They are given for our factor-tax

policy mix variable and the capital share, our use of robots variable and the capital

share, and population growth and the labor share. Permanent effects on factor shares

emanate from shocks in relative factor taxation. The latter also permanently affect

the use of robots. Variance decompositions reveal that taxing factors contributes long-

lastingly to the variation both in the two income shares and in automation capital.

Overall, our findings give grounds for setting up and simulating a neoclassical growth

model augmented by automation capital, capital adjustment costs, and factor taxation.

In our simulations, we find that tax rates on both labor and capital income have a

significant effect on the functional income distribution and, in particular, on the labor

share of income. For the US economy, the motivating empirical effect amounts to

approximately 4 percentage points over the period 1965-2015. We demonstrate that

this stylized fact can be reproduced by a neoclassical growth model with automation

capital. Our growth model also predicts a continuing fall in the labor share over the

coming decades. However, we would like to interpret this latter finding in a cautious

way because we neglect other aggravating factors like artificial intelligence (AI). In

our model, the productivity of the automation capital does not increase over time.

In future research, we plan to endogenize the investment in AI and its effects on the

functional income distribution.
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5 Appendix

The Appendix includes methodological and mathematical details that complement our

empirical (Sections A.1-A.4) and theoretical (Section A.5) analysis.
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A.1 Construction of Central Time Series

A.1.1 Nowcasting (Bi-)annual Automation Capital to Obtain a Quarterly

Series

A.1.1.1 Underlying Time Series

To-be-nowcasted time series. The series we seek to nowcast – or to generate

(pseudo-)quarterly data for – is the use of industrial robots per 1,000 workers in the

US as provided in Acemoglu and Restrepo (2019). The original source is the IFR. This

series is of annual frequency and starts in 1993. It ends in 2014. However, due to data

limitations with regard to other series relevant for our analysis we end it in 2008. We

merge these data with observations that we construct in the following way. Tani (1989)

in his Tab. 1 (col. 3, p. 193) provides data for the industrial robot population in the

US for the years 1974, 1976, 1978, and in annual frequency from 1980 to 1985. As Tani

(1989) in his Tab. 3 standardizes these data to workers in the manufacturing sector

only, we refrain from using his standardized series, but divide the non-standardized

robots figures through the respective annual averages of the US full time employees,

SA (in 1K), data that we obtain from the CPS. The result is a series of mixed bi-annual,

annual frequency with missing values for 1986 to 1992. Hence, covered years are 1974,

1976, 1978, 1980-1985, 1993-2008. Graphically this series is made of the dots shown in

Figure 1.3. As this series represents a stock variable (robots per 1,000 employees) for

particular years, we might interpret it as end-of-year or q4-values.

General strategy and information set series. Given the (quasi-)q4-data of robots

per 1,000 workers, the procedure runs in two main steps. In the first step, the miss-

ing (quasi-)q4-, or annual, values are generated using information from other use of

automation capital related variables, for which we have data over the entire period

and, at best, at a quarterly observation frequency. In a second step, for the obtained

complete annual frequency series, running from 1974 to 2008, an analogue nowcasting

approach is followed to generate a (pseudo-)quarterly series. Our baseline information

set essentially uses variables from the Fernald (2014) database in contemporaneous

and first lag expression that recently have been shown by Graetz and Michaels (2018)

to be profoundly and significantly associated with robots input: hours worked, labor

productivity, different estimates of labor quality (i.e. labor composition), total factor
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productivity (TFP), and utilitization-adjusted TFP. Additionally, we also consider the

US tax rate on labor income provided by Gomme et al. (2011) as firms adopt robots

mainly for saving on labor costs (besides ensuring uniform quality). Generally, labor

costs depend on labor productivity and taxation.

A.1.1.2 Method

Starting point of the procedure is the notion of a general state space model for an

n-dimensional time series yt consisting of a measurement equation that relates the

observed data to an m-dimensional state vector αt. The generation of the state vector

αt from the past state αt−1, for t = 1, ..., T , is determined by the state equation. The

measurement equation has the form

yt = Ztαt + dt + ut, t = 1, ..., T. (A.1.1)

In (A.1.1), Zt is an n×m matrix called measurement or observation matrix, dt is an

n× 1 vector and ut ∼ iid N(0,Ht) is an error vector. The state equation is given by

αt = Ttαt−1 + ct +Rtνt, t = 1, ..., T. (A.1.2)

In (A.1.2), Tt is an m ×m matrix called transition matrix, ct is an m × 1 vector, Rt

is an m× g matrix and νt ∼ iid N(0,Qt) is a g × 1 error vector. The matrices Zt, dt,

Ht, Tt, ct, Rt and Qt are referred to as system matrices. Usually, it is assumed that

the errors of the measurement and the transition equation are uncorrelated, i.e.

E[utν
′
t] = 0 ∀s, t = 1, ..., T.

Furthermore, it is assumed that the initial state is given by a normal vector

α0 ∼ N(a0,P0); E[uta
′
0] = 0, E[νta

′
0] = 0, t = 1, ..., T.

In our application of a state-space model, as defined by (A.1.1) and (A.1.2), we seek

to generate estimators for the underlying unobserved signal αt given the data ys,

for s = 1, ..., S. Whenever s = t this problem is called filtering, while we speak

of smoothing if s > t and forecasting in case s < t. The problem of finding such

estimators is solved by the Kalman Filter (KF), Kalman Smoother (KS) and forecasting

recursions, respectively. The KF is a set of recursion equations (prediction equations
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and updating equations) that determine the optimal estimates for the state vector αt

given the information available at t (henceforth, It). The following definitions are used

at := E[αt|It] (A.1.3)

and

Pt := E[(αt − at)(αt − at)′|It]. (A.1.4)

That is, at is the optimal estimator of αt based on It and Pt is the mean square error

(MSE) matrix of at.

Prediction equations. Given at−1 and Pt−1,

at|t−1 = E[αt|It−1]

= Ttat−1 + ct (A.1.5)

Pt|t−1 = E[(αt − at−1)(αt − at−1)′|It−1]

= TtPt−1T
′
t +RtQtRt. (A.1.6)

And the optimal predictor of yt is obtained from

yt|t−1 = Ztat|t−1 + dt

= ZtTtat−1 +Ztct + dt

= Zt(Ttat−1 + ct) + dt. (A.1.7)

The corresponding prediction error and its MSE matrix are

et = yt − yt|t−1
= yt −Ztat|t−1 − dt
= Ztαt + dt + ut −Ztat|t−1 − dt
= Zt(αt − at|t−1) + ut (A.1.8)

and

E[ete
′
t] := Ft = ZtPt|t−1Z

′
t +Ht. (A.1.9)
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Updating equations. The moment yt is the optimal predictor observed and its

MSE matrix are updated according to

at = at|t−1 + Pt|t−1Z
′
tF
−1
t (yt − yt|t−1)

= at|t−1 + Pt|t−1Z
′
tF
−1
t (yt −Ztαt|t−1 − dt)

= at|t−1 + Pt|t−1Z
′
tF
−1
t et (A.1.10)

Pt = Pt|t−1 − Pt|t−1ZtF
−1
t︸ ︷︷ ︸

Kalman Gain

ZtPt|t−1. (A.1.11)

Filter derivation. The KF-derivation makes use of the following properties of a

bivariate normal distribution. Given y, the distribution of x is normal with

E[x|y] = µx|y = µx + ΣxyΣ
−1
yy (y − µy) (A.1.12)

V ar(x|y) = Σxx −ΣxyΣ
−1
yy Σyx. (A.1.13)

For the state vector at t = 1,

α1 = T1α0 + c1 +R1ν1,

with α0 ∼ N(a0,P0), ν1 ∼ N(0,Q1) and E[α0ν
′
1] = 0. In a linear Gaussian state-

space model the initial state vector is normally distributed with

a1|0 := E[α1] = T1a0 + c1 (A.1.14)

P1|0 := V ar(α1) = T1P1|0T
′
1 +R1Q1R

′
1.

From the measurement equation, it follows that

y1 = Z1α1 + d1 + u1,

with u1 ∼ N(0,H1) s.t.

y1|0 := E[y1] = Z1a1|0 + d1 (A.1.15)

V ar(y1) = E[(y1 − y1|0)(y1 − y1|0)′]

= E[(Z1{α1 − a1|0}+ u1)(Z1{α1 − a1|0}+ u1)
′]

= Z1P1|0Z
′
1 +H1.

Equations (A.1.14) and (A.1.15) are the prediction equations for α1 and y1 at t = 0.
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In a next crucial step one has to find the distribution of α1 conditional on y1 being

observed (updating). For this purpose the joint normal distribution of (α′1,y
′
1) must

be determined. In finding the joint normal distribution we use

α1 = a1|0 + (α1 − a1|0)

y1 = y1|0 + y1 − y1|0
= Z1a1|0 + d1 +Z1(α1 − a1|0) + u1.

Note that since

Cov(α1,y1) = E[(α1 − a1|0)(y1 − y1|0)′]

= E[(α1 − a1|0)(Z1{α1 − a1|0}+ u1)
′]

= E[(α1 − a1|0)({α1 − a1|0}Z ′1 + u′1)]

= E[(α1 − a1|0)(α1 − a1|0)Z
′
1] + E[(α1 − a1|0)u

′
1]

= P1|0Z
′
1,(

α1

y1

)
∼ N

((
a1|0

Z1a1|0 + d1

)
,

(
P1|0 P1|0Z

′
1

Z1P1|0 Z1P1|0Z
′
1 +H1

))
.

In combination with (A.1.12) and (A.1.13), (α1|y1) ∼ N(a1,P1) follows with

a1 = a1|0 + P1|0Z
′
1(Z1P1|0Z

′
1 +H1)

−1(y1 −Z1a1|0 − d1)

= a1|0 + P1|0Z
′
1F
−1
1 e1 (A.1.16)

P1 = P1|0 − P1|0Z
′
1(Z1P1|0Z

′
1 +H1)

−1Z1P1|0

= P1|0 − P1|0Z
′
1F
−1
1 Z1P1|0. (A.1.17)

Note that (A.1.16) and (A.1.17) are the Kalman Filter updating equations for t = 1.

ML-estimation and EM algorithm. Let θ denote the parameters of the state-

space model. These parameters are embodied in the system matrices. The likelihood

of the state-space model is calculated based on the prediction errors et with t = 1, ..., T .

The prediction error decomposition of the (negative) log-likelihood is

−2 ln L(θ|y) = nT ln(2π) +
T∑
t=1

ln |Ft(θ)|+
T∑
t=1

e′t(θ)F−1t (θ)et(θ). (A.1.18)

Shumway and Stoffer (2008) proposed a procedure based on the EM algorithm that is

conceptually simpler and more efficient than alternative procedures such as the Newton-

Raphson algorithm. The basic idea is that if all states αT = {αt}Tt=0 together with
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the observations yT = {yt}Tt=1 were observed, one could consider the entire data space

{αT ,yT}. The complete data likelihood might, thus, be written as

−2 ln L(θ|α,y) = ln |F0|+ (α0 − a0)
′F−10 (α0 − a0)

+ n ln |Qt|+
T∑
t=1

(αt − Ttαt−1)′Q−1t (αt − Ttαt−1)

+ n ln |Ht|+
T∑
t=1

(yt −Ztαt)
′H−1t (yt −Ztαt).

(A.1.19)

Given the complete data without any missing values and mostly in the desired (quar-

terly) frequency, one could easily obtain the ML-estimates of θ. However, as this is not

the case, we may find the ML-estimates based on the incomplete data with short-fall by

successively maximizing the conditional expectation of the complete data likelihood.

This is done in the following steps:

1. Find some initial values for parameters θ(0),

2. Calculate the incomplete data likelihood − ln L(θ(j−1)|y); see equation (A.1.18),

3. At iteration j = 1, 2, ... use the KF and KS to obtain smoothed values for α
(S)
t ,

P
(S)
t and P

(S)
t|t−1 for t = 1, ..., T based on the parameters θ(j−1). Use the smoothed

values to calculate the conditional expectation of the complete data likelihood

Q(θ|θ(j−1)) =E
{
−2 ln L(θ|α,y)|yn,θ(j−1)

}
= ln |F0|+ tr

{
F−10

[
P

(S)
0 +

(
α

(S)
0 − a0

)(
α

(S)
0 − a0

)′]}
+ n ln |Qt|+ tr

{
Q−1 [S11 − S10Z

′
t −ZtS10 +ZtS00Z

′
t]
}

+ n ln H

+ tr

{
H−1

T∑
t=1

[(
yt −Ztα

(S)
t

)(
yt −Ztα

(S)
t

)′
+ZtP

(S)
t Z ′t

]}
,

where

S11 =
T∑
t=1

(
α

(S)
t α

(S)′

t + P
(S)
t

)
,

S10 =
T∑
t=1

(
α

(S)
t α

(S)′

t|t−1 + P
(S)
t|t−1

)
and

S00 =
T∑
t=1

(
α

(S)
t|t−1α

(S)′

t|t−1 + P
(S)
t|t−1

)
.
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4. Update θ0 according to

T
(j)
t = S10S

−1
00 ,

Q
(j)
t = n−1

(
S11 − S10S

−1
00 S

′
10

)
and

H
(j)
t = n−1

T∑
t=1

[(
yt −Ztα

(S)
t

)(
yt −Ztα

(S)
t

)′
+ZtP

(S)
t Z ′t

]
to obtain θ(j).

5. Repeat steps 2 to 4 until convergence is achieved (i.e.until parameters or like-

lihood values stabilize in the sense of differing from their predecessor values by

some predetermined small amount κ only).

A.1.1.3 Application

Annual series nowcast. Having sketched the nowcasting procedure and indicators

set, referred to as information set It above, we run the annual series (or q4-value) now-

cast for four differently sized set of indicators: I1 (index t dropped for notational ease)

considers 16 series, i.e. in contemporaneous and first lag expression: hours worked,

labor productivity, actually used labor composition/quality, labor composition/quality

as reported by the Bureau of Labor Statistics (BLS), TFP, utilitization-adjusted TFP,

and the tax rate on labor income. The next two considered sets, I2 and I3, are similar

in size and nowcasting performance: Set I3 comprises ten series by dropping the two

labor composition/quality indicator series and the utilization-adjusted TFP series. Us-

ing either of the two TFP series does not alter the nowcasted values. It merely changes

fourth or higher decimal places. The same applies to the two different labor quality

indicators. I2 is of the same size as I3 but into account labor composition/quality in-

dicator and leaves out the labor tax series. Information set I4 compared to I3 includes

the labor tax indicator and drops labor productivity.

In line with intuition that – both and primarily – productivity and costs matter with

regard to automization, information set I3 (see the lower left schedule in Figure A.1)

generates the most accurate and reasonable annual series nowcast. Note, however,

that the annual series is nowcasted only quite imprecisely, i. e., with relatively high

prediction errors, for the information sets I1, I2, and I4 (see the upper left, upper right

and the lower right schedules in Figure A.1). This circumstance does not allow us to
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directly and thoroughly assess the robustness of our cointegration analysis with regard

to these alternatives. Such an assessment would require Monte Carlo method based

simulations that are beyond the scope of this paper. Nonetheless, our choice of the

information set I3 may be justified on efficiency grounds.

Figure A.1: Annual nowcast of robots per 1K workers for different information sets
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Note: Underlying indicator sets, from left to right, first row: I1, I2, second row: I3, I4 (from left to

right); black line and dots: empirical values, red dots: smoother values, blue dashed lines: 95 % C.I. of

prediction errors

Quarterly series nowcast. For our quarterly series nowcast, we fill up the I3-based

annual projections and empirical values but now rely on an I3 analogue using all quar-

terly instead of just q4 information. The result is shown for different observation and

state equation variance values, Ht and Qt, in Figure A.3. The right schedule circle and

red dot values correspond to our nowcasted quarterly series of choice and corresponds

to the time series (solid blue line) displayed in Figure 1.3.
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As can be seen from Figure A.2 our nowcasts are slightly sensitive with regard to

observation equation variances and produce more accurate predictions of the empirical

observations for lower values. Thus, we proceed with the I3-based annual nowcast with

the lower observation equation variance values.

Figure A.2: Observation-equation-variance sensitivity of I3-based nowcast
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Note: Variances in observation equation matrix (Ht) doubled from 1 (left) to 2 (right schedule);

black circles: empirical values, red dots: smoother values, blue dashed lines: 95 % C.I. of prediction errors

Figure A.3: Observation/state-equation-variance sensitivity of quarterly nowcast
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Note: Quarterly I3-based (filling up I3-based annual nowcast); variances in observation (state) equa-

tion matrix Ht (Qt) are set to 0.01 (1) for left schedule and 0.01 (0.01) for right schedule, respectively; black

circles: empirical and nowcasted (q4-/fourth quarter) annual values; remaining legend as for Figure A.2
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A.1.2 Construction of the Capital Tax Rate and Labor Tax Rate Series

As mentioned above, the capital tax collected from households must be imputed. The

corresponding tax rate, τh, on general household income—including capital income—

is an intermediate input into subsequent calculations. In line with the established

approach of the macroeonomic literature, Gomme et al. (2011, p. 266) derive it from

the following ratio:

τh =
Personal Current Taxes

Net Interest + Proprietors’ Income + Rental Income + Wages
.

Labor income taxes are obtained via the following straightforward calculation:

Labor Income Taxes = τh [Wages + (1− α)Proprietors’ Income] + GSI,

where Wages denotes wages and salaries and GSI contributions for government social

insurance, respectively. Total labor income is given by

Labor Income = Wages + (1− α)Proprietors’ Income + EGSI,

where EGSI denotes employer contributions for government social insurance. Finally,

the tax rate on labor income can be computed as

τL =
Labor Income Taxes

Labor Income
.

Gomme et al. (2011) calculate capital income taxes as

Capital Income Taxes = τh[Net Interest + αProprietors’ Income

+ Rental Income − (Housing Net Interest

+ αHousing Proprietors’ Income

+ Housing Rental Income)] + CIT

+ Real Estate Property Taxes

+ Other Taxes,

where CIT denotes corporate income taxes. Capital income is given by

Capital Income = Net Operating Surplus

+ Consumption of Private Fixed Capital

− Housing Net Operating Surplus

+ (1− α)(Proprietors’ Income

− Housing Proprietors’ Income).
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In analogy to the labor tax rate, the capital tax rate is obtained from

τK =
Capital Income Taxes

Capital Income
.

Gomme et al. (2011) draw these constituent series from the US NIPA. However, several of

these series are not available quarterly. See Gomme et al. (2011, pp. 268-269) for details on

how the corresponding annual series are converted into quarterly frequency.
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A.2 VEC Model Analysis

As noted above, our RF model space consists of three dimensions: a relatively exoge-

nous variable Xt (population growth), a policy variable Yt (the factor tax policy mix,

i. e., the LCTR), and a multivariate group of response variables Wt (our automation

capital proxy and the two factor shares), making it

Zt = [Xt, Yt,Wt]⇒ Zt = A1Zt−1 + A2Zt−2 + ...+ ApZt−p + ut. (A.2.1)

In standard VEC notation this becomes

∆Zt = Γ1∆Zt−1 + Γ2∆Zt−2 + ...+ Γp−1∆Zt−p−1 + ΠZt−1 + ut, (A.2.2)

where Γi = (I−A1−A2 − ...−Ap) for all i = 1, ..., p. Π can be thought of as consisting

of an adjustment speed matrix a, and a long-run coefficient matrix b, such that Π =

ab′, where b′Zt−1 is the vectorial analogue of the error correction term in the Engel-

Granger approach. For an exemplary unity lag order

∆Zt =


∆Yt

∆Xt

∆Wt

 = Γ1


∆Yt−1

∆Xt−1

∆Wt−1

 +Π


Yt−1

Xt−1

Wt−1

+ et

= Γ1



∆Yt−1

∆Xt−1

∆W1 t−1

∆W2 t−1

∆W3 t−1


+



a11 a12 a13 a14

a21 a22 a23 a22

a31 a32 a33 a34

a41 a42 a43 a44

a51 a52 a53 a54




b11 b21 b31 b41 b51

b12 b22 b32 b42 b52

b13 b23 b33 b43 b53

b14 b24 b34 b44 b54





Yt−1

Xt−1

W1 t−1

W2 t−1

W3 t−1


+ et.

(A.2.3)

The central requirement of cointegration (CI) is a reduced rank of Π = a
n×r

(
b
n×r

)′
,

i. e., Zt ∼ I (1) ⇒ ∆Zt−1 ∼ I (0) ⇒ ΠZt−1
!∼ I (0) for ut ∼ I (0). This allows for
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up to n − 1 = 5 − 1 = 4 CI - relationships of the form b′Zt−1 ∼ I (0), r ≤ n − 1

cointegrating vectors ∈ Π, i. e., r columns of b form r linearly independent stationary

combinations of variables ∈ Zt.

As a first step we perform augmented Dickey-Fuller (ADF) tests for all considered

series. Throughout the unit root hypothesis cannot be rejected at a one percent level

of significance according to the MacKinnon approximate p-values. For all log first

differences transforms the null of a unit root is rejected at every conventional level of

significance. The order of integration of variables is I(1) (see the Appendix for details).

In a second step the appropriate lag length choice is made resorting to likelihood ratio

(LR) testing. Here, we follow Schwert (1989) and set pmax =
[
12 · (T/100)

1
4

]
quarters

where T = 140 and brackets denote the nearest integer part of the argument. Hence,

pmax = 13.

As Π = − (I−A1−A2 − ...−Ap), or equivalently Π =
∑p

i=1 Ai − I, the Johansen-

procedure makes use of Granger’s Representation Theorem which states that if matrix

Π has reduced rank r < n with n denoting the number of non-stationary variables

considered, then there exist n × r matrices a and b each with rank r such that Π =

ab′ and b′Zt ∼ I (0); then, r is the number of cointegration relations (cointegrating

rank) and each column of b is a cointegrating vector. However, before estimating Π,

deterministic components of the general system

∆Zt = Γ1∆Zt−1 + ...+ Γp−1∆Zt−p−1

+a


b

m1

d1


′ (

Zt−1 1 t
)

+ m2 + d2t+ ut

(A.2.4)

must to be chosen. The above system can discriminate four central versions: (v1) no

intercept or trend in the cointegrating equation (CE) or VAR part (d1 = d2 = m1 =

m2 = 0); (v2) intercept and no trend in the CE part and neither intercept nor trend

in the VAR part (d1 = d2 = m2 = 0), i. e., the no linear trend in data case (first

differences have zero mean); (v3) intercept in the CE part and the VAR part, but no

trends (d1 = d2 = 0), i. e., no linear trends in levels of data case; (v4) intercept in the

CE part and the VAR part paralleled by a linear trend in the CE or in the VAR part,

i. e., the linear trend in the CE case, sometimes referred to as the exogenous growth

case. Following the Pantula Principle, we start with the most restrictive model, i. e.,
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r = 0 in combination with v1, and move gradually to the least restrictive one where

r = n − 1 in combination with v4. For each gradual step, the trace-test statistics is

compared with the critical value and the iteration stops when for the first time the null

of no cointegration is not rejected. This determines the order of Π, i. e., the number of

cointegration vectors. Besides trace-based rank testing, we cross-check and validate our

findings with maximum eigenvalue and information criteria-based cointegration rank

tests (see the Appendix for details).

Table A.1: Unit root (UR) and stationarity test statistics

ADF I ADF II PP KPSS

Log levels:

Population growth –1.732 –1.679 –1.840 0.399∗∗∗

Factor tax policy mix (LCTR) –1.717 –2.003 –5.379 0.988∗∗∗

Robots per 1K workers –2.841∗ –2.792 –0.481 0.504∗∗∗

Wage share –1.253 –2.861 –2.338 0.290∗∗∗

Capital share –1.377 –1.937 –1.876 0.361∗∗∗

Log first differences:

Population growth –11.36∗∗∗ –11.39∗∗∗ –11.36∗∗∗ 0.0631

Factor tax policy mix (LCTR) –7.887∗∗∗ –17.13∗∗∗ –14.08∗∗∗ 0.0359

Robots per 1K workers –5.086∗∗∗ –5.468∗∗∗ –10.61∗∗∗ 0.1030

Wage share –15.81∗∗∗ –9.181∗∗∗ –12.52∗∗∗ 0.0415

Capital share –6.547∗∗∗ –6.618∗∗∗ –4.111∗∗∗ 0.0381

Note: ADF – Augmented Dickey-Fuller (UR under null; I/II = without/with linear trend component);

PP – Phillips-Perron (UR under null); KPSS – Kwiatkowski-Phillips-Schmidt-Shin (stationarity under

null; with automatic bandwidth selection and autocovariances weighted by quadratic spectral kernel);
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01.

As can be seen from Tables A.1 and A.2, all series in log levels used in the fitted VECM,

as described in the empirical part of the paper, are I(1) and the result of the Johansen

test procedure is that there are, at least, three cointegrating relationships. The latter

concern population growth and the wage share, the factor tax policy mix (LCTR) and

the capital share, and robots density and capital share, respectively.
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Table A.2: Johansen test procedure and test statistics for cointegrating equations

Trace Max EV Info Criterion

Model Max Rank Stats 5% c.v. Stats 5% c.v. HQIC

(v1) 0 101.04 59.46 43.72 30.04 –35.52362

1 57.31 39.89 30.31 23.8 –35.64426

2 27.00 24.31 17.77 17.89 –35.70900

3 9.23* 12.53 9.21 11.44 –35.72472*

4 0.01 3.84 0.01 3.84 –35.72275

(v2) 0 145.46 76.07 68.08 34.4 –35.52362

1 77.38 53.12 30.36 28.14 –35.81121

2 47.02 34.91 23.44 22.00 –35.85150

3 23.58 19.96 17.56 15.67 –35.88699

4 6.01* 9.42 6.01 9.24 –35.92591*

(v3) 0 133.92 68.52 68.07 33.46 –35.49021

1 65.85 47.21 30.23 27.07 –35.80259

2 35.62 29.68 21.39 20.97 –35.86672

3 14.22* 15.41 12.56 14.07 –35.91094

4 1.66 3.76 1.66 3.76 –35.93535*

(v4) 0 207.72 87.31 116.61 37.52 –35.49021

1 91.10 62.99 36.70 31.46 –36.15999

2 54.39 42.44 25.86 25.54 –36.25025

3 28.53 25.32 17.42 18.96 –36.30482

4 11.11* 12.25 11.11 12.52 –36.3426*

(v5) 0 188.16 77.74 111.36 36.41 –35.51998

1 76.79 54.64 36.56 30.33 –36.17327

2 40.23 34.55 25.80 23.78 –36.28723

3 14.43* 18.17 13.46 16.87 –36.36616

4 0.97 3.74 0.97 3.74 –36.39762*

Note: Trace – trace test; Max EV – maximum eigenvalue test; Info Criterion – information criterion

(IC) with IC of choice: HQIC – Hannan-Quinn information criterion; procedure starts with test for

zero cointegrating equations (CE), i.e. a maximum rank of zero, and then accepts the first null that

is not rejected (indicated by ‘∗’); the Pantula Principle sequence is: (v1) no intercept or trend in CE

or in VAR part; (v2) intercept and no trend in CE part and neither intercept nor trend in VAR part;

(v3) intercept in CE part and VAR part, but no trends; (v4) intercept in CE part and in VAR part

paralleled by linear trend in CE part or in VAR part.
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However, the last of these CE relationships is significant at a 68% level of significance

only according to the z-statistics of the Johansen normalized restriction test.

A post-estimation stability check confirms three (two) imposed unit moduli of eigenval-

ues of the companion matrix of our fitted VECM with two excact unit eigenvalues and

one very close to one, i.e. with a value of .97. All remaining moduli of eigenvalues of

the companion matrix are strictly less than one indicating stability. Serial correlation

of residuals is clearly rejected by appropriate Lagrange Multiplier tests (LM tests).

Against the backdrop of the performed tests (with further detail available on request)

we assess our VECM specification as being, all in all, acceptable.

A.3 Construction of the Adjusted Labor Share

Our adjusted labor income share is based on BEA time series for GDP and GDI, that

is, compensation of employees, paid wages and salaries. The share has been adjusted

assuming that a one third add-on to GDI is attributable to the self-employed. Just

like any adjustment of the empirical labor share, it represents a crude approximation.

Contrary to alternative approaches, it precludes double counting.

Figure A.4: Capital income share, labor income share, and the elasticity of substitu-

tion
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A mean difference test for the two factor shares, capital income share and labor income

share, summing to one (with mean rounded based on the digit at fourth decimal place)

fails to reject the null of unity at any conventional level of significance.

An implied aggregate elasticity of substitution between capital and labor σ that is

close to but slightly less than unity, σ ≤ 1, is in line with recent evidence based on

longitudinal data and consistent estimates by Glover and Short (2020). A σ . 1 (see

the sum of the red and blue area in Figure A.4), as used in the empirical part of our

paper, excludes the simple capital deepening explanation of the global decline in the

labor share. For σ . 1, the fall in the labor’s share cannot be rationalized by “rising

effective capital ratios through physical investment in response to the fall in investment

prices” (Glover and Short, 2020, p. 35).

A.4 Summary Statistics of Series Used in VECM

Table A.3: Summary statistics of series used (as log levels) in VECM

Series Mean Std. dev. Min Max Skewness Kurtosis

Population growth 0.0026 0.0004 0.0021 0.0035 0.7574 2.0393

Factor tax policy mix (LCTR) 0.7417 0.0985 0.4733 0.8891 –1.0011 3.0182

Robots per 1K workers 0.3936 0.3695 0.0149 1.0278 0.9128 2.0670

Wage share 0.6341 0.0299 0.5827 0.6914 0.0355 2.0890

Capital share 0.3247 0.0164 0.2953 0.3717 0.9221 3.0684

Note: Summarized series were transformed to log levels before using them in the VECM as outlined

in the empirical part of the paper; robots per 1K workers is the pseudo-quarterly series nowcasted as

described above; throughout the observation period ranges from 1974:q1 to 2008:q4 (N obs = 140).

All sources of data are given in the text (empirical part of the paper).
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A.5 A Neoclassical Growth Model with Dynamic Taxes, Automation Cap-

ital, and Adjustment Costs - Analytical Details

A.5.1 Household Optimization Problem

The Lagrangean of the household optimization problem is

L =
∞∑
t=0

βt

{(
cθt (1− lt)1−θ

)1−η − 1

1− η

+ λt

[
(1− τwt )wtlt + (1− τ rt )rkt kt + (1− τ rt )rpt pt + trt − (1 + τ c)ct

− φ(ikt , kt)− φ(ipt , pt)
]

+ qkt
[
ikt + (1− δ)kt − (1 + nt)kt+1

]
+ qpt [ipt + (1− δ)pt − (1 + nt)pt+1]

+ µltlt + µi
k

t i
k
t + µi

p

t i
p
t + µkt+1kt+1 + µpt+1pt+1

}
,

where µxt , x ∈ {l, ik, ip, k, p}, denotes the Lagrange multiplier on the respective con-

straint lt ≥ 0, ikt ≥ 0, ipt ≥ 0, kt ≥ 0, and pt ≥ 0.

Since the utility function u(c, 1 − l) of (3.3) is strictly concave on its domain and

satisfies the Inada conditions mentioned in the main text the first-order conditions for

the household’s optimization problem are

λt(1 + τ c) = θc
θ(1−η)−1
t (1− lt)(1−θ)(1−η), (A.5.1a)

λt(1− τwt )wt + µlt = (1− θ)cθ(1−η)t (1− lt)(1−θ)(1−η)−1, (A.5.1b)

qkt + µi
k

t = λtφik(i
k
t , kt), (A.5.1c)

qpt + µi
p

t = λtφip(i
p
t , pt), (A.5.1d)

qkt −
µkt+1

1 + nt
=

β

1 + nt

{
λt+1

[
(1− τ rt+1)r

k
t+1 − φk(ikt+1, kt+1)

]
+ qkt+1(1− δ)

}
,

(A.5.1e)

qpt −
µpt+1

1 + nt
=

β

1 + nt

{
λt+1

[
(1− τ rt+1)r

p
t+1 − φp(i

p
t+1, pt+1)

]
+ qpt+1(1− δ)

}
,

(A.5.1f)

µltlt = 0, µi
k

t i
k
t = 0, µi

p

t i
p
t = 0, µkt+1kt+1 = 0, µpt+1pt+1 = 0,

0 = lim
t→∞

βtλtkt+1, (A.5.1g)

0 = lim
t→∞

βtλtpt+1. (A.5.1h)
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Here, φix(i
x, x), x ∈ {k, p}, denotes the first derivative of the adjustment cost function

φ(ix, x) with respect to investment ix. Similarly, φx denotes the first derivative of this

function with respect to the second argument x ∈ {k, p}. For the specification of

the adjustment cost function φ in (3.5), the above first-order conditions boil down to

those of (3.7). Standard arguments show that the relevant second-order conditions are

satisfied.

A.5.2 Details on the Initial Steady State and the Asymptotic Balanced

Growth Path

The initial steady state is pinned down by the following 8 equations in the 8 endogenous

variables k, l, ik, c, w, rk, qk, and λ:

(1 + τ c)λ = θcθ(1−η)−1(1− l)(1−θ)(1−η), (A.5.2a)

1− τw

1 + τ c
w =

1− θ
θ

c

1− l
, (A.5.2b)

qk = λ

(
1 +

a1i
k

a2 + k

)
, (A.5.2c)

qk

λ
=

β

1 + n
(1− τ r)rk +

a1(i
k)2

2(a2 + k)2
+
qk

λ
(1− δ), (A.5.2d)

ik = (n+ δ)k, (A.5.2e)

c+ g + φ(ik, k) = Al1−αkα, (A.5.2f)

w = (1− α)A

[
k

l

]α
, (A.5.2g)

rk = αA

[
l

k

]1−α
. (A.5.2h)

The derivation of the Asymptotic Balanced Growth Path (ABGP) involves the following

steps.

The accumulation equations (3.4a) and (3.4b) in conjunction with (3.17) deliver the

asymptotic investment ratios

ik

k
=
ip

p
= (1 + n)(1 + γ)− 1 + δ. (A.5.3)

Next consider the first-order conditions with respect to ikt and ipt given by (3.7c) and

(3.7d). Equations (3.17) and (A.5.3) imply that the ratio ikt /(a2 + kt) converges to
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ikt /kt = ik/k whereas ipt/(a2 + pt) converges to ipt/pt = ip/p. Hence, asymptotically we

have

qk

λ
= 1 + a1

ik

k
and

qp

λ
= 1 + a1

ip

p
, (A.5.4)

so that qk = qp = q. Moreover, λt and qkt = qpt = qt grow at the same rate. Using the

latter in (3.7e) and (3.7f) reveals that the ABGP requires

q

λ
=

β

1 + n

{
λt+1

λt

[
(1− τ r)rkt+1 +

a1
2

(
ik

k

)2
]

+
qt+1

qt

( q
λ

)
(1− δ)

}
, (A.5.5a)

q

λ
=

β

1 + n

{
λt+1

λt

[
(1− τ r)rpt+1 +

a1
2

(
ip

p

)2
]

+
qt+1

qt

( q
λ

)
(1− δ)

}
. (A.5.5b)

Hence, asymptotically we must have rk = rp. From (3.10b) and (3.10c) expressed in

per-capita variables the latter requires that

(1− α)Aκ lim
t→∞

(
kt

lt + κpt

)α
= αA lim

t→∞

(
lt + κpt
kt

)1−α

. (A.5.6)

Since limt→∞ lt ∈ [0, 1] (as we show below) the ABGP has

lim
t→∞

(
kt

lt + κpt

)α
=

(
k

κp

)α
and lim

t→∞

(
lt + κpt
kt

)1−α

=
(κp
k

)1−α
. (A.5.7)

With the latter in (3.10b) and (3.10c) we obtain

k

p
=

α

1− α
(A.5.8)

and

rk = rp = Aαα(1− α)1−ακ1−α. (A.5.9)

Equation (A.5.8) implies that the right-hand side of (3.16) converges to the finite

constant

θ

1− θ
1− τw

1 + τ c
(1− α)1−αA

(α
κ

)α
.

Since ct grows asymptotically at a positive rate (3.16) will be satisfied in finite time.

Hence, the ABGP has l = 0. From (3.7a) this implies that asymptotically

λt+1

λt
=
qt+1

qt
= (1 + γ)θ(1−η)−1.
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A.5.3 Calibration Details

In this section, we describe the calibration of the two production parameters A and κ.

We formulate 5 conditions for the variables A, κ, qk/λ, k, and ik. They include the

four equations (A.5.10)-(A.5.12) and the condition that the endogenous labor share in

our simulation equals 57% in 2010.

The first condition stems from the initial steady state in 1965, where both kt and ikt

are constant. Hence, equation (A.5.2e), which describes the accumulation of physical

capital kt, implies

ik = (n+ δ)k. (A.5.10)

The second and the third condition stem from the first-order conditions (A.5.2c) and

(A.5.2d) for ikt and kt+1. In conjunction with (A.5.2h) and evaluated at the steady

state these become

qk

λ
= 1 + a1

n+ δ

a2 + k
k, (A.5.11a)

qk

λ
=

β

1 + n

{
(1− τ r)αAkα−1l1−α + a1

(n+ δ)2k2

2(a2 + k)2
+
qk

λ
(1− δ)

}
. (A.5.11b)

The fourth condition is derived from the asymptotic growth rate of per-capita variables,

γ = 2.0%. The value of γ derives from

q

λ
=
β(1 + γ)θ(1−η)−1

1 + n

{
(1− τ r)Aαα(1− α)1−ακ1−α +

a1
2

(
ik

k

)2

+
q

λ
(1− δ)

}
,

(A.5.12)

which expresses (A.5.5a) along the ABGP.

The fifth condition imposes in our simulation a value of 57% on the endogenous labor

share in 2010.

These conditions constitute a complex non-linear system of five equations in five en-

dogenous variables. We use an iterative procedure to solve this computational problem.

We start with a guess for the parameter A. Next, we solve (A.5.10)-(A.5.12) for the

endogenous variables κ, k, ik and qk/λ given γ = 2.0%. Finally, we simulate the model

and compute the labor share in the year 2010. If the labor share is equal to 57%, we

stop. Otherwise we update our guess for A. To speed up the convergence in the outer

loop over A, we use the secant method described in Section 11.5.1 of Heer and Maußner

(2009).
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A.5.4 Details on the Computation of the Transition Dynamics

To compute the transition dynamics, we need to solve a difference equation system in

the state variables {kt, pt}2175t=1965. We choose a time horizon of 210 years (= periods) so

that the growth rates of the variables stabilize and are numerically close to their exact

asymptotic counterparts.

As endogenous variables of our difference equation system, we use consumption, ct,

investment in both capital stocks, ikt and ipt , and labor lt. The difference equations

system include the household’s first-order conditions (3.7c), (3.7e), (3.7f), and the

resource constraint (3.15). With the endogenous variables, it is straightforward to

compute the dynamics of the two capital stocks, kt and pt, from (3.4) for given initial

values k1965 > 0 and p1965 = 0 taken from the steady state without automation capital.

Using kt, pt, and lt, we compute the factor prices wt, r
k
t , and pt. From the first-order

conditions (3.7a), (3.7c) and (3.7d) we calculate λt, q
k
t , and qpt . Hence, the values

of all variables that show up in the equilibrium conditions of our model are pinned

down. For the endogenous variables in the year 2176 that are also needed to compute

the transition dynamics, we assume that ct, i
k
t , and ipt grow at the asymptotic growth

rate, while lt is equal to zero (which occurs in the year 2132 in our simulation of the

benchmark economy).

In essence, we have to solve a non-linear equations problem in 4× 210 = 840 variables.

This is a non-trivial task. The problem is to find a good initial value for the endogenous

variables during 1965-2175. We, therefore, proceed as follows:16

Algorithm: Computation of the Transition Dynamics in the Benchmark

Model with Automation Capital

Step 1: Compute the initial steady state in the year 1964 without automation capital.

Step 2: Compute the final steady state of the model with κ = 0 and, hence, without

automation capital, for the tax rates and the population growth rate prevailing

in 2015.

Step 3: Project a transition path for the model without automation capital (with κ =

0) for {ikt , ct, lt}2015t=1965 in the form of a linear adjustment.

16The Gauss computer code is available from the authors upon request.
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Step 4: Solve the simple model without automation capital (κ = 0).

Step 5: Use the transition path from Step 4 with pt ≡ 0 for t = 1965, . . . , 2015 as

initial guess for the computation of the transition in the model with automation

capital. Assume that the variables {ikt , i
p
t , ct} grow at the rate γ after the final

period, while lt falls at the rate γ.

Step 6: Iterate over the time horizon of the transition T by incremental steps of one

year. Use the transition path of the previous iteration as an initial guess

assuming that in the period T + 1, the variables {ikt , i
p
t , ct} grow at the rate γ,

while lt falls at rate γ if it is larger than zero or remains equal to zero otherwise.

Step 7: Stop when the dynamics of the model during the period 1965-2015 do not

change any more and the endogenous variables have reached their asymptotic

values in the period T .

A.5.5 Sensitivity Analysis: Utility Function and Frisch Labor Supply Elas-

ticity

The response of the labor supply and, hence, the labor share with respect to a change

in income taxation is mainly driven by the response of the labor supply to a change

in the net wage rate. This section provides a sensitivity analysis of our results with

respect to the labor supply elasticity.

In our benchmark equilibrium, the instantaneous utility function is given by (3.3). The

implied Frisch labor supply elasticity, ηF , is

ηF =
1− θ(1− η)

η

1− l
l
.

Thus, in the initial steady state (with l = 0.30) we have ηF = 1.63. This value is in

the upper range of empirical estimates. Though, estimates of the Frisch labor supply

elasticity based upon microeconometric studies vary considerably. MaCurdy (1981) and

Altonij (1986) estimate values of 0.23 and 0.28 using PSID data, while Killingsworth

(1983) finds a value of 0.4. Domeij and Floden (2006) argue that these estimates are

biased downward due to omitted borrowing constraints. In macroeconomic studies

such as Trabandt and Uhlig (2011), a value of unity is often chosen to account for the

effects of higher wages on labor along both the intensive and extensive margins. These
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findings lead us to test the sensitivity of our results for a different utility function that

exhibits a Frisch labor supply elasticity equal to 0.64, a value much lower than 1.63.

Following Fehr et al. (2013), consider the following instantaneous utility function

u(c, 1− l) =
1

1− η

[
c1−

1
ρ + θ(1− l)1−

1
ρ

] 1−η
1− 1

ρ , (A.5.13)

where ρ denotes the intra-temporal elasticity between consumption and leisure and

1/η is again the intertemporal elasticity of substitution. Then, the implied Frisch

labor supply elasticity is (see, Fehr et al. (2013), p. 99).

ηF =
l

1− l
[ξη + (1− ξ)ρ] , ξ =

θρw1−ρ

1 + θρw(1− ρ)
.

We use the value ρ = 0.60 from Fehr et al. (2013) so that the Frisch labor supply

elasticity is equal to 0.641 in the initial steady state. The latter is a reasonable in-

termediate value between those estimated by the microeconometric studies and those

applied in macroeconomic simulations using Dynamic General Equilibrium models.17

Figure A.5: Sensitivity Analysis: Labor Share and Income Taxes τw and τ r.
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Figure A.5 presents our results for the behavior of the labor share in our model under

the utility function (A.5.13) and in the two experiments 1 and 2 where we set the

labor income tax rate, τw, and both income tax rates, τw and τ r, equal to their values

prevailing in 1965, respectively.

17We also re-calibrated the parameter set (θ,A, κ, a2) = (0.317, 9.5, 0.019, 0.11) so that 1) the aver-

age labor supply in 1965 is equal to 0.30, 2) the asymptotic growth rate is equal to 2.0%, 3) automation

capital grows at 10.9% during the initial years 1975-1980, and 4) the labor share amounts to 57% in

2010.
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Comparing Figure A.5 to Figure 3.4 reveals that the combined contribution of the two

tax rates for the explanation of the labor share decline is approximately the same.

Under the utility function (3.3) the labor income tax and capital tax rate explain

18% and 60% of the decline in the labor share (Figure 3.4), under the utility function

A.5.13, the explanatory shares amount to 12% and 66%, respectively (Figure A.5).

Unsurprisingly, the explanatory power of the labor income tax rates for the decline in

the labor share shrinks with a lower labor supply elasticity, while that of the capital

income tax rate even increases.
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