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Industrial Robots, Workers’ Safety, and Health 
 
 

Abstract 
 
This study explores the relationship between the adoption of industrial robots and workplace 
injuries. Using establishment-level data on injuries, we find that a one standard deviation increase 
in our commuting zone-level measure of robot exposure reduces work-related annual injury rates 
by approximately 1.2 cases per 100 workers. US commuting zones more exposed to robot 
penetration experience a significant increase in drug- or alcohol-related deaths and mental health 
problems. Employing longitudinal data from Germany, we exploit within-individual changes in 
robot exposure and document that a one standard deviation change in robot exposure led to a 4% 
decline in physical job intensity and a 5% decline in disability, but no evidence of significant 
effects on mental health and work and life satisfaction. 
JEL-Codes: I100, J000. 
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1 Introduction

This paper studies the relationship between the adoption of industrial robots and workers’

safety, health, and well-being. Robots and artificial intelligence are radically changing the role

of workers in the production process, generating lively discussions on their effects on labor

markets (Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; de Vries et al., 2020; Dauth

et al., 2021). The reallocation of tasks associated with automation is likely to have effects on

work-related health risks. According to the Bureau of Labor Statistics (2020), private industry

employers in the US reported over 5,000 fatal work-related injuries and 2.8 million nonfatal

workplace injuries and illnesses in 2019, whose total estimated cost to the nation, employers,

and individuals was $171 billion (National Safety Council, 2020), equivalent to 4% of 2019 US

government budget. While the rapid adoption of industrial robots presents both new hopes and

challenges to workers’ safety and health (CDC, 2021), empirical evidence on robots’ impacts on

workplace safety and health remains sparse.

The relationship between robots and workers’ physical health and safety is complex. On

the one hand, since their introduction, industrial robots have typically been used for physically

intensive tasks that are often associated with detrimental effects on health and increased risk

of accidents at work.1 In this context, automated systems can offer considerable safety benefits

to human workers, as robots can help prevent injuries or adverse health effects resulting from

working in hazardous conditions. Examples include musculoskeletal disorders due to repeti-

tive or awkward motions (Schneider and Irastorza, 2010), or traumatic injuries (e.g., in poultry

processing, where cuts are common). Robots can also prevent multiple hazards in emergency re-

sponse situations such as chemical spills (Ishida et al., 2006). Besides protecting workers, robots

can also minimize risks stemming from human error (Karwowski et al., 1988; Linsenmayer, 1985).

If a job is repetitive and monotonous, humans tend to commit a mistake, whereas robots can do

these things the same way repeatedly. On the other hand, robots can pose a variety of hazards

to workers (Kirschgens et al., 2018). For example, while industrial robots have been designed to

operate at a distance from workers, these machines often lack the sensory capabilities necessary

to detect nearby humans. Moreover, the spread of collaborative robots, which are intended to di-

1See, for instance, https://www.designnews.com/automation-motion-control/

robots-keep-workers-dangerous-tasks
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rectly interact and share workspaces with humans, can lead to additional safety risks (Matthias et

al., 2011). Therefore, the direction and the magnitude of the effects of robot adoption on workers’

physical health are theoretically ambiguous and represent an open empirical question.

There is also increased concern that the complex relationship between humans and machines

may have detrimental effects on workers’ mental health (Robelski and Wischniewski, 2018) and

act as an additional stressor at the workplace (Körner et al., 2019; Szalma and Taylor, 2011).

Furthermore, the labor market effects of robot adoption and automation may increase stress

and anxiety even among individuals who are not directly exposed (Venkataramani et al., 2020;

Venkataramani and O’Brien, 2020).

In this study, we begin by investigating the relationship between the adoption of industrial

robots and work-related injuries using data from the United States (US) and Germany, two of the

leading robot adopters in the world. To examine the impact of robots on work-related injuries in

the US, we use detailed establishment-level data on work injuries from the Occupational Safety

and Health Administration (OSHA) Data Initiative (ODI) covering the 2005 to 2011 period, while

information on the distribution of industrial robots across sectors and over time are sourced from

the International Federation of Robotics (IFR).2 Using establishment-level data on injury rates,

we find that a one standard deviation increase in robot exposure (1.34 robots per 1,000 workers)

reduces work-related injury rates by approximately 1.2 injuries per 100 full-time workers (0.15

standard deviations; 95% CI: -1.8, -0.53). To gauge the economic significance of the effects, a back-

of-the-envelope calculation suggests that the increase in robots between 2005 and 2011 saved $1.69

billion per year in injury costs (in 2007 dollars). This result largely reflects a reduction in injury

rates at manufacturing firms which decline by 1.75 injuries per 100 full-time workers (or 0.22

standard deviations; 95% CI: -2.48, -1.02). The results are robust to several sensitivity checks (for

details, see Section 4.2).

We then turn to investigate whether robots have an impact on workers’ mental health in the

US. Using commuting zone-level data on mortality (source: The Centers for Disease Control and

Prevention [CDC] Vital Statistics) and survey data on mental health problems (source: Behav-

ioral Risk Factor Surveillance System [BRFSS]), we show that robot penetration leads to sizable

increases in drug or alcohol-related deaths and mental health problems. A one standard de-

2Our analysis on establishment-level work injuries ends in 2011 because the ODI data was not collected after 2011.
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viation increase in robot exposure raises deaths due to drug or alcohol abuse by 0.37 standard

deviations (10.5% increase with respect to the mean) and the number of days during the previous

month when the respondent felt his or her mental health was not good by 0.40 standard devi-

ations (14.9% increase with respect to the mean). However, we find no evidence of significant

effects on the suicide rate. Overall, we interpret these findings as evidence suggesting that the

labor market pressure and fears induced by robot penetration (Acemoglu and Restrepo, 2020)

may have detrimental effects on workers’ mental health (see also Venkataramani and O’Brien

(2020)).

Next, we leverage additional data from Germany to provide further evidence. Several rea-

sons make Germany an appealing context to explore and complement the analysis based on the

US establishment and regional data. First, Germany is a world leader in robotics whose robot

penetration is even higher than that of the US, as shown in Figure 1. Second, evidence suggests

that the effect of robot penetration on German manufacturing jobs was largely mitigated by the

growth of jobs in services, thereby suggesting that the effects on mental health may be different

compared to those observed in the US. Third, the availability of longitudinal survey data from

the German Socio-Economic Panel (SOEP) containing information on occupation, sector, and

various health and well-being outcomes allows us to shed further light on the complex effects of

robot penetration on workers’ safety using individual-level data and exploiting within-individual

changes in exposure to robot penetration. Finally, using the SOEP data, we adopt an alternative

identification strategy relying on the probability of exposure to robots based on the occupation

associated with one’s vocational training. Thus, we only leverage variation in robot exposure

based on the track choice individuals made early in their life. This decision is unlikely to reflect

correlates of robots’ adoption and labor market outcomes later in life, and therefore, less likely

to be endogenous.

The results based on the German individual panel data show that a one standard deviation

increase in robot exposure is associated with a 0.01 standard deviations reduction in the risk of

reporting any disability (-5% with respect to the mean) and a 0.02 standard deviations reduction

in the likelihood of being employed in a highly physically intensive task (-4% with respect to

the mean). We also find no evidence of significant effects of robot exposure on workers’ well-

being and mental health. Overall, our results for Germany are consistent with those documented
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by Dauth et al. (2021), who show that robot exposure did not cause disruptive job losses in

Germany and that the individual risk of becoming unemployed is even lower among more robot-

exposed manufacturing workers who were re-trained. They find that the longer-term shift from

manufacturing to services was driven by young labor market entrants, not by actual switches.

We argue that this is likely the main explanation for the different effects of robot exposure on

mental health in Germany.

Figure 1: Trends in Robot Adoption in the US, Germany and Europe - 1993-2016

Notes - This figure shows the number of robots per thousand workers in the US, Germany, and European countries on average
between 1993 and 2016. Data are drawn from the International Federation of Robotics.

Our methodological approach is closely connected to some recent studies analyzing the im-

pact of robots on labor market conditions, life course choices, and demographic behavior. Recent

studies have analyzed the effects of the increase in industrial robot usage on employment and

wages across various countries (Acemoglu and Restrepo, 2020; Dauth et al., 2021; Giuntella and

Wang, 2019; Graetz and Michaels, 2018; de Vries et al., 2020). While Acemoglu and Restrepo

(2020) and Giuntella and Wang (2019) estimate sizable and negative impacts of the rise in robot
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exposure on employment and wages across the US commuting zones and China, respectively,

Dauth et al. (2021) and Graetz and Michaels (2018) find no significant effects on employment

in Germany and for a set of 17 countries, respectively. Using data from 37 countries, de Vries

et al. (2020) find that a rise in robot adoption reduces the employment share of routine manual

jobs. Recent literature also examines the impact of robotization on family outcomes (Anelli et al.,

2021). In a recent study, using data on self-reported health in the US and exposure to robots at

the MSA-level, Gunadi and Ryu (2020) find that a 10% increase in robots per 1,000 workers is as-

sociated with approximately a 10% reduction in the fraction of low-skilled individuals reporting

poor health. To the best of our knowledge, this is the only other study analyzing the relation-

ship between robot penetration and physical health. Unlike Gunadi and Ryu (2020), we focus

on establishment-level data on work-related injuries and use longitudinal data from Germany on

both physical and mental health outcomes of workers. There are two other recent studies ana-

lyzing the relationship between automation and mental health. Venkataramani et al. (2020) find

evidence of a strong association between automotive assembly plant closure and opioid overdose

mortality between 1999 and 2016. In a concurrent work, Venkataramani and O’Brien (2020) show

that robot penetration led to a substantial increase in drug overdose mortality between 1993 and

2007. While the present study examines a wider range of outcomes, our evidence on mortality

in the US is largely consistent with their findings. Using data from Germany, Abeliansky and

Beulmann (2019) find evidence of a decline in mental health associated with increased exposure

to robots. While the latter study uses similar data for Germany, we adopt a different identifica-

tion strategy and focus on a broader set of outcomes, and find no evidence of a decline in mental

well-being.

By contrast, a growing number of studies investigate the effects of other labor market shocks

on injuries and health (Colantone et al., 2019; Hummels et al., 2016; McManus and Schaur, 2016;

Pierce and Schott, 2020). For instance, McManus and Schaur (2016) examine the effect of import

competition in the US and find that an increase in import competition significantly increases

worker injury and illness rates. Further, Hummels et al. (2016) exploit Danish employer-employee

data combined with individual health data to demonstrate how rising exports may lead to in-

creases in injuries, severe depression, and hospitalizations because of heart attack and strokes,

whereas Colantone et al. (2019) explore the effects of exposure to global trade on mental health.
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Pierce and Schott (2020) find that areas more exposed to international trade policy exhibit relative

increases in fatal drug overdoses, specifically.

Our work also appeals to the recent few studies analyzing the effects of immigration on

task allocation, work-related health risk, and the health of the native population (Giuntella and

Mazzonna, 2015; Giuntella et al., 2019). Related to this literature, our study explores the effects

of the changes in task allocation induced by robotization, and in particular, its effects on work-

related accidents and mental health.

Finally, our study contributes to the literature that investigates the relationship between work-

ers and machines, and their consequences on the health and mental well-being of workers. Ro-

belski and Wischniewski (2018) provide a comprehensive review of the literature on human-

machine interaction and physical and mental health, underlining the need for more research on

the relationship between health and human-machine interaction.

The remainder of this paper proceeds as follows. Section 2 describes the data. We discuss the

empirical strategy in Section 3. The evidence from the establishment and regional data for the

US is presented in Section 4. In Section 5, we discuss the data and the empirical strategy, and

report the results from the individual-level analysis in Germany. Section 6 concludes.

2 US Data

To study the relationship between robotization and workers’ health and safety in the US, we

employ data from the following sources: ODI, CDC, BRFSS, the American Community Survey

(ACS), and IFR.

2.1 OSHA Data

Our primary data are drawn from the OSHA Data Initiative (ODI), which was established by

OSHA. A unique feature of the ODI dataset is that it collects data on injuries and acute illnesses

attributable to work-related activities at the establishment-level. The ODI collects workplace in-

jury and illness data annually from approximately 80,000 employers. These data were collected to

calculate establishment-specific injury and illnesses rates. The sample is restricted to firms with

over 40–60 employees in high-hazard industries. The sample excludes industries not regulated
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by OSHA, such as mining and most government workers. The ODI dataset is an unbalanced

panel: different establishments are included every year, with some overlapping across years.

The establishments’ data collected by OSHA through ODI present some important limitations.

First, for each data collection cycle, OSHA only collects data from 1% of the total establishments

(i.e., approximately 80,000 out of 7.5 million total establishments). Thus, the data are not rep-

resentative of all businesses. OSHA takes multiple steps to ensure the quality of the data but

acknowledges problems and errors may exist for a small percentage of establishments. Finally,

not all states participate in the ODI survey. For instance, the data do not contain information for

Alaska, Oregon, Puerto Rico, South Carolina, Washington, and Wyoming.3

Despite these limitations, the ODI dataset represents the only publicly available database

including information on national establishment-level occupational injury and illness rates. Fur-

thermore, while the ODI data are more likely to represent high injury and illness rate industries

because of the survey exclusion criteria mentioned above, Neff et al. (2008) show that the state-

level distributions of its findings do not differ dramatically from those obtained using the Survey

of Occupational Injury and Illnesses. Finally, OSHA determines that the database is adequate for

longitudinal analysis (Neff et al., 2008).4

The ODI survey provides data from 1996 to 2011, thereby allowing scholars to study trends

and differences in private-sector occupational injury and illness rates.5 In addition to including

data on the establishment name, address, and industry, the ODI survey provides information on

three key safety measurements: the associated total case rate (TCR), the days away, restricted,

or transferred (DART) case rate, and the days away from work injury and illness (DAFWII) case

rate. We use these safety metrics at the establishment-level as our main outcomes of interest.

In particular, while the TCR reflects the number of work-related injuries per 100 full-time

workers during a one-year period, DART includes only those injuries that resulted in days away

3The sampling is based on censuses within industry and establishment-size groups, but some plants are automati-
cally selected because of their injury records and other targeting strategies. Thus, yearly samples are partly selected as
discussed in the paper, and unfortunately the selection rules are not fully disclosed and vary over time (see McManus
and Schaur (2016)). The dataset is therefore partly biased towards high-injury plants. However, as documented by
McManus and Schaur (2016), the correlation between industry-year TCR in the ODI sample and BLS population esti-
mates is 0.9. We re-estimated the industry-year correlation between ODI and BLS official data (in our sample period),
leading to a value of 0.93.

4See also https://clear.dol.gov/study/evaluation-osha%E2%80%99s-impact-workplace-injuries-and-illnesses-
manufacturing-using-establishment.

5For simplicity, we refer to injuries and illnesses as “injuries.” The ODI data was not collected after 2011.
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from work, restricted work activity, or transfers to another job. Formally, DART is calculated

using the following formula:
N

EH
∗ 200, 000 (1)

where N is the number of cases involving days away and/or restricted work activity, and/or job

transfers; EH is the total number of hours worked by all employees during the calendar year;

and 200,000 is the base number of hours worked for 100 full-time equivalent employees during a

one-year period.

DAFWII includes only days away from work per 100 full-time equivalent employees. Thus,

it represents the more severe injuries, as cases requiring temporary transfers to another job or

restricted work are excluded from this definition. Formally, DAFWII can be written as follows:

T
EH
∗ 200, 000 (2)

where T is the number of cases involving days away from work; EH and the base number of

hours per 100 full-time equivalent employees are defined in the same way as in formula (1).

It is worth remarking that the TCR, DART, and DAFWII measures are yearly rates of injuries

at the establishment level, where the denominator is based on the number of the employees at a

given establishment. Thus, when investigating the effect of robot penetration on these outcomes,

we are not capturing a mechanical displacement effect. Summary statistics for the three safety

metrics are reported in Panel A of Table A.1 in the Appendix.

2.2 Data on Mortality, Mental Health, and Occupational Burden

We collect data on the cause of death by county and year from the CDC and the National

Center for Health Statistics using the CDC Wonder Online Database. Data are drawn from the

detailed mortality file for the years 2005–2011. We restrict attention to deaths associated with

drug and alcohol abuse and suicides and compute mortality rates per 100,000 inhabitants.

Information on mentally unhealthy days is drawn from the BRFSS, where individuals are

asked to think about their mental health (including stress, depression, and problems with emo-

tions), and report how many days during the last 30 days their mental health was not good. Data

obtained from the BRFSS (2005-2011) are representative of each state’s total non-institutionalized
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population over 18 years of age and have included more than 400,000 annual respondents with

landline telephones or cellphones since 2011. We then aggregate county-year level data at the

commuting zone-year level to conduct our analysis.

To measure physical and psychological burden, we employ the ISCO classification from the

ACS and the General Index for Job Demands in Occupations constructed by Kroll (2011) and

Giuntella et al. (2019), which associates a measure of the physical and psychological burden to

each occupation on a 1–10 scale. We then aggregate the data at the commuting zone and year

level to obtain the share of workers employed in jobs with a high physical and psychological

burden (defined as a score above eight for both physical and psychological burdens).6 Panel B of

Table A.1 in the Appendix displays summary statistics on mortality and mental health.

2.3 Robot Data

Data on the stock of robots by industry, country, and year are drawn from IFR, a professional

organization of robot suppliers established in 1987 to promote the robotics industry worldwide.

These data are collected through a survey among IFR members, which gathers information on

the number of robots that have been sold in a given industry and country. The data cover 70

countries over the period 1993 to 2016, accounting for more than 90% of the world market for

robots. The IFR data report information on the operational stock of “industrial robots,” defined as

“automatically controlled, reprogrammable, and multipurpose machines” (IFR, 2016). Industrial

robots are autonomous machines not operated by humans and can be programmed for several

tasks, such as welding, painting, assembling, carrying materials, or packaging. By contrast,

single-purpose machines, such as coffee machines, elevators, and automated storage systems are

not robots based on this definition, because they cannot be programmed to perform other tasks,

require a human operator, or both.

The IFR robot data are presently the best available data source on industrial robots. More-

over, this data source has been used by several scholars to analyze the labor market effects of

industrial robots (Acemoglu and Restrepo, 2020; Dauth et al., 2021; Giuntella and Wang, 2019;

Anelli et al., 2021; de Vries et al., 2020; Graetz and Michaels, 2018). Nevertheless, the data do

present several limitations. First, we only have information on the number of industrial robots

6Commuting zones can be regarded as local labor market areas.
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by sectors for a sub-sample of countries for the period 1990–2003. In particular, for the US, the

IFR dataset has information on the sectoral distribution of robots only since 2004, although in-

formation on the total stock of industrial robots is available since 1993. Second, the industry

classifications are coarse with only 13 industrial sectors for manufacturing: food and beverages

(1), textiles (2), wood and furniture (3), paper (4), plastic and chemicals (5), glass and ceramics

(6), basic metals (7), metal products (8), metal machinery (9), electronics (10), automotive (11),

other vehicles (12), and other manufacturing industries (13). For non-manufacturing sectors,

data on the operational stock of robots are restricted to six broad categories, namely, agriculture,

forestry and fishing, mining, utilities, construction, education, research and development, and

other non-manufacturing industries (e.g., services and entertainment). Approximately, a third

of the robots are not classified. These unclassified robots were allocated in the same proportion

as in the classified data following Acemoglu and Restrepo (2020). An additional limitation of

the IFR data is that the geographical information on the distribution of robots is available only

at the country level. Nonetheless, we follow previous studies and construct a measure of robot

exposure across regions (i.e., commuting zones), which we discuss in detail in the next section.

3 Empirical Strategy for the US Analysis

To investigate how robot exposure affects workers’ health and safety, we estimate the follow-

ing linear regression model:

Yect = α + β(Exposure to Robots)US
ct + τt + ηc + εect (3)

where the subscript ect denotes an establishment e located in a commuting zone c in a given

year t. Yect represents one of our workplace safety outcomes of interest, including, for instance,

TCR, DART, and DAFWII case rates (detailed in the previous section). Our variable of interest

is (Exposure to Robots)US
ct , which represents the exposure to robots of a commuting zone c at

time t. For ease of interpretation, our measure of exposure to robots is expressed in units of its

standard deviation in all our specifications.

The model in Equation (3) contains year fixed effects (τt) to account for possible trends in

11



our outcomes. We also include a full set of commuting zone fixed effects (ηc) to control for

unobservable time-invariant differences across commuting zones that may affect our outcomes

of interest. Finally, εect represents an idiosyncratic error term. Throughout the analysis, given that

our measure of robot exposure varies at the commuting zone and year level, we cluster standard

errors at the commuting zone level. We show that the significance of the results is robust to the

use of wild cluster bootstrap standard errors (Cameron et al., 2008).7

We measure robot penetration following Acemoglu and Restrepo (2020). Therefore, we ex-

ploit the pre-existing distribution of employment across commuting zones and industries and

multiply it by the national level evolution in the number of robots across industries. As most of

the rise in industrial robots in the US occurred after 1990, we choose 1990 as the baseline year.

In practice, we compute the ratio of robots to employed workers in industry s at the national

level and multiply it by the commuting zone’s baseline employment share in sector s, and then

sum separately for each commuting zone, over all sectors. Formally, our measure of exposure to

robots is constructed as follows:

Exposure to RobotsUS
c,t = ∑

s∈S
l1990
cs (

RUS
s,t

LUS
s,1990

) (4)

where l1990
cs denotes the 1990 distribution of employment across industries and commuting

zones; RUS
s,t identifies the stock of robots in the US across industries in year t; and LUS

s,1990 represents

the total number of individuals (in thousands) employed in sector s in 1990. Our identification

largely exploits the variation in robot exposure across commuting zones and over time. This

variation hinges on the differences across industries over time in the adoption of industrial robots

and the initial distribution of sectoral employment across commuting zones.

Figure 2 illustrates the gradual growth in robot adoptions between 2004 and 2016, comparing

manufacturing sectors with all the other industries. Manufacturing (left-axis) has, by far, the

highest number of robots per thousand workers (approximately 13 robots per thousand workers

in 2016) as opposed to other sectors (approximately 0.2 robots per thousand workers in 2016).

The measure of exposure to robots is based on the initial employment shares in the commut-

ing zone: a Bartik-type instrument. However, to mitigate concerns about the potential correlation

7Furthermore, the significance of our main results is largely unaffected when we cluster standard errors by state
instead of commuting zone (Acemoglu and Restrepo, 2020).
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of our measure of robot exposure with other factors that may also affect work-related injuries,

we follow Acemoglu and Restrepo (2020) and use the industry-level robot installations in other

economies, which are meant to proxy improvements in the world technology frontier of robots,

as our instrumental variable (IV) for the adoption of robots in the US. In practice, we use the

average robot exposure at the industry-level in the nine European countries that are available in

the IFR data over the same period.8 The underlying idea is to exploit only the variation in the

increase in robot adoption across industries of other countries. Our instrument for exposure to

robots is defined as follows:

Exposure to RobotsIV
c,t = ∑

s∈S
l1970
cs (

Rp30,EU
s,t

LEU
s,1990

) (5)

where the sum runs over all industries available in the IFR data, l1970
cs represents the 1970

share of employment in commuting zone c and industry s, as calculated from the 1970 Census,

and
Rp30,EU

s,t
LEU

s,1990
denotes the 30th percentile of robot exposure among the above-mentioned European

countries in industry s and year t.9

Model (3) is estimated using two stage least squares (2SLS), and the first-stage regression is

given by:

∑
s∈S

l1990
cs (

RUS
s,t

LUS
s,1990

) = π0 + π1[∑
s∈S

l1970
cs (

Rp30,EU
s,t

LEU
s,1990

)] + δt + σc + vct (6)

where ∑s∈S l1990
cs (

RUS
s,t

LUS
s,1990

) is instrumented with [∑s∈S l1970
cs (

Rp30,EU
s,t

LEU
s,1990

)], the industry-level robot expo-

sure variable based on the adoption of robots across sectors in the above-mentioned European

countries. δt, σc, and vct are defined in the same way as in Model (3).

We adopt a similar estimation strategy when using individual-level data from Germany.

However, as explained in Section 5, in the case of Germany, we use an individual fixed effect

strategy, exploiting within-individual variation in exposure to robots over time based on the in-

dividual sector as of 1994. Furthermore, we also propose an alternative identification strategy

allocating the inflows of robots based on the occupation associated with an individual’s school

8The nine European countries are France, Denmark, Finland, Italy, Germany, Norway, Spain, Sweden, and the
United Kingdom.

9Following Acemoglu and Restrepo (2020), we used the 30th percentile as the US robot adoption closely follows
the 30th percentile of the EU robot adoption distribution.
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track and vocational training, and restrict the sample to individuals who were born before 1981

and thus entered the tracking system in the early ’90s.

Figure 2: Evolution of Industrial Robots in the US, Manufacturing vs. Other Sectors

Notes - This figure shows the number of robots per thousand workers in the US separately for the manufacturing sector (left vertical
axis) and other (non-manufacturing) sectors (right vertical axis) during 2004-2016. Data are drawn from the International Federation
of Robotics.
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4 Results for the US

4.1 Effects on Work-Related Injuries

In Table 1, we explore the direct effect of robot exposure on our primary three workplace

safety outcomes: TCR, DART, and DAFWII (see Panels A, B, and C, respectively). In these

regressions, we use the ODI data and include year and commuting zone fixed effects. Columns

1 and 2 report the ordinary least squares (OLS) and reduced form coefficients, while the 2SLS

estimates are presented in column 3. The first-stage F statistic reported at the bottom of each

Panel is well above the conventional levels (see also the first stage relationship presented in Table

A.2 in the Appendix). The magnitude of 2SLS and OLS estimates is fairly similar. This is not

surprising because our measure of robot exposure is already a Bartik-type instrument, which

exploits the geographical distribution of sectors in the base-year to allocate robots across US

commuting zones.

Overall, Table 1 documents a negative and highly significant impact of robot exposure on

TCR. Focusing on the IV estimate in column 3 of Panel A, we find that a one standard deviation

increase in our measure of robot exposure decreases the number of workplace injuries by 1.169

per 100 full-time workers during a one-year period, which is equivalent to approximately 16%

of the mean in our sample (7.132 cases per 100 workers). Similarly, as shown in Panel B, estab-

lishments based in commuting zones that are more exposed to robot penetration experience a

significant reduction in the number of injuries that result in DART. Specifically, a one standard

deviation increase in robot exposure decreases the DART rate by 0.84 injuries per 100 full time

workers, equivalent to 20% for the mean of the dependent variable (4.187 cases per 100 workers).

By contrast, in Panel C, we find no evidence of significant impacts of robot exposure on the most

serious injuries, that is, DAFWII.10

To gauge a sense of the economic magnitude of these effects, we conducted a back-of-the en-

velope calculation. Throughout the period, the stock of robots increased from an average of 1.34

robots per 1,000 workers in 2005 to 1.71 robots per 1,000 workers in 2011, increasing by roughly

25% with respect to the mean over this period of time (a change equivalent to approximately

10Arias (2014) argues that DAFWII is prone to measurement issues due to possible data reporting problems. In
fact, in their study on import competition and worker health, McManus and Schaur (2016) consider only TCR and
DART, which they interpret as their measure of “severe injury rate.”
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Table 1: Effects of Robot Exposure on Workplace Injuries

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure -1.559*** -1.169***
(0.375) (0.321)

Robot exposure - IV -0.495***
(0.139)

Mean of dep. var. 7.132 7.132 7.132
Std. dev. of dep. var. 8.235 8.235 8.235
R-squared 0.051 0.051 0.017
First stage F statistic 681.1

Panel B: Dep. var.: DART

Robot exposure -1.010*** -0.841***
(0.224) (0.207)

Robot exposure - IV -0.356***
(0.088)

Mean of dep. var. 4.187 4.187 4.187
Std. dev. of dep. var. 5.429 5.429 5.429
R-squared 0.040 0.040 0.015
First stage F statistic 681.1

Panel C: Dep. var.: DAFWII

Robot exposure -0.020 0.132
(0.151) (0.132)

Robot exposure - IV 0.056
(0.057)

Mean of dep. var. 2.150 2.150 2.150
Std. dev. of dep. var. 3.398 3.398 3.398
R-squared 0.037 0.037 0.006
First stage F statistic 681.1

Observations 445,562 445,562 445,562

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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.28 standard deviations). Given these numbers, we estimate that the increase in the adoption of

robots between 2005 and 2011 led to a reduction of 0.33 injuries per 100 workers over time.11

Given that 153.5 million persons worked at some point during 2011 (Bureau of Labor Statistics,

2011)12, this implies 508,611 if less injuries between 2005 and 2011, or 72,658 less injuries per year.

Leigh (2011) estimates that each injury case costs $23,000 of damage in 2007 dollars. Using this

estimate, we calculate that the increase in robots observed between 2005 and 2011 saved $11.69

billion throughout the period, or $1.67 billion per year in 2007 dollars (or 0.065% of the 2007

US government budget). For comparison, Lai et al. (2019) estimate that the increase in Chinese

imports saved $1.58 billion in injury costs per year in 2007 dollars.

It is worth remarking that our three injury outcomes are measured as rates out of the total

number of workers at the establishment. Therefore, these results are not driven by mere displace-

ment effects. In other words, conditional on the same number of workers, in areas where robot

penetration increased, the number of injuries declined.

As a falsification test, we analyzed the relationship between robot adoption and lagged injury

rates. A significant relationship would cast doubt on our identification assumption suggesting

that areas that were more exposed to robot penetration between 2005 and 2011 may have already

been on differential trends with respect to injury rates. When regressing the change in work-

related injuries between 1996 and 2001 on the change in robot exposure between 2005 and 2011,

we find that the OLS and reduced form coefficients on TCR and DART become much smaller

and no longer significant, yielding further support to the causal interpretation of our estimates

(see Table 2).13

As previously mentioned, we hypothesize that the reduction in injuries may be driven by a

reallocation of tasks in production, with robot penetration leading workers toward less physi-

cally intensive tasks and jobs. In Table 3, we explore the potential mechanism underlying the

reduction in occupational injury using ACS data at the commuting zone level over the 2005–2011

period. We find a negative effect on total job burden, measuring both physical and psycholog-

11This is obtained multiplying the change in robots per 1,000 workers (.37) by the coefficient of our baseline estimate
on TCR (1.2, see column 1 of Table 1), divided by the standard deviation (1.34).

12Bureau of Labor Statistics, US Department of Labor, The Economics Daily, Employment and Unemployment Ex-
perience of the US Population in 2011, available at: https://www.bls.gov/opub/ted/2012/ted_20121227.htm (vis-
ited on October 2, 2021)

13ODI data are available since 1996 for TCR and DART. Data on DAFWII for the period 1996-2001 are not available.
However, the effects of robot exposure on DAFWII in our baseline estimates were not statistically significant.
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Table 2: Falsification test: Robot Exposure (2005-2011) and Pre-Trends (1996-2001) in Injuries
(Commuting-Zone Level)

(1) (2) (3) (4)
Dep. var.: Change in TCR Change in DART

∆2001−1996 ∆2001−1996
OLS Reduced form OLS Reduced form

Change in robot exposure 0.003 0.006
(∆2011−2005) (0.010) (0.012)
Change in robot exposure - IV 0.062 -0.004
(∆2011−2005) (0.070) (0.031)

Observations 596 596 596 596
Mean of dep. var. -0.062 -0.062 0.015 0.015
Std. dev. of dep. var. 1.540 1.540 0.741 0.741

Notes - Data are drawn from the ODI (OSHA) dataset. The unit of observation is at the commuting zone level. Standard errors are
reported in parentheses and are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

ical burden. We define high total burden as a dummy variable equal to one if the continuous

indicator of total burden is larger than eight (i.e., the 75th percentile). However, the coefficient is

not precisely estimated. In column 2, the 2SLS estimate suggests that a one standard deviation

increase in robot exposure is associated with a 6.3% reduction in the likelihood of working in a

highly physically intensive occupation (defined as physical burden above 8), whereas we find no

evidence of significant effects on the high occupational psychological burden (defined as psycho-

logical burden above 8, see column 3). As shown in Table A.3 in the Appendix, these results are

driven by the most physically intensive jobs.

It is worth noting that the analysis of physical and psychological burden only captures

changes across occupations. Previous studies have shown that the reallocation of risk within

an occupation title can be significant, and it is likely the case that the adoption of robots induced

a reallocation of workers to less physically intensive tasks within a job, and not just a reallocation

of workers to different occupational titles (Giuntella and Mazzonna, 2015).

Table 4 reports the 2SLS estimates of the effects of robot exposure on workplace injuries by

the industrial sector. Specifically, focusing on TCR as our dependent variable (see Panel A),

we find that the overall effects are driven by the manufacturing sector (see column 3). A one

standard deviation increase in robot exposure reduces the number of workplace injuries in the
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Table 3: Robot Exposure, Physical and Psychological Burden - 2SLS Estimates

(1) (2) (3)
Dep. var.: High total burden High physical burden High psychological burden

Robot exposure -0.008 -0.015*** 0.004
(0.005) (0.005) (0.005)

Observations 5,187 5,187 5,187
Mean of dep. var. 0.296 0.236 0.155
Std. dev. of dep. var. 0.043 0.046 0.021
R-squared 0.013 0.041 0.014
First stage F statistic 577.2 577.2 577.2

Notes - Data are drawn from the American Community Survey (2005-2011). The unit of observation is at the commuting zone-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

manufacturing sector by 1.75 injuries per 100 workers, which corresponds to approximately 28%

relative to the mean outcome (6.349). We obtain a similar finding when we consider DART as

the dependent variable: the 2SLS estimate reported in column 3 of Panel B suggests that a one

standard deviation increase in robot exposure leads to a decrease in DART of about 34% relative

to the average DART. It is reassuring that we find no evidence of significant effects in sectors that

are less exposed to the penetration of industrial robots (see column 6). It is worth noting that the

health care sector comprises 97% of the establishments in the service industry surveyed in the

ODI dataset.

4.2 Sensitivity Analysis

In what follows, we perform a variety of robustness checks to test how the results change

when we modify the sample or use a different specification compared to our benchmark model

(see Table 1). First, we show that our estimates of the effects of robot exposure on workplace

injuries are robust to aggregating the data at the commuting zone and year level (see Table A.4 in

the Appendix). Second, in Table A.5 in the Appendix, we illustrate that the main results are not

affected by the inclusion of state-specific time trends, which are meant to capture unobserved

cross-state differences in work-related injuries over time. Third, as individuals may need ad-

ditional time to adjust their health behavior in response to robot exposure, we re-estimate our
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Table 4: Effects of Robot Exposure on Workplace Injuries, by Industrial Sector - 2SLS Estimates

(1) (2) (3) (4) (5) (6)
Sample: Agriculture Construction Manufacturing Transportation Retail & Wholesale Trade Services

Panel A: Dep. var.: TCR

Robot exposure -4.822 -1.214 -1.752*** 0.226 0.255 -0.422
(3.439) (10.303) (0.372) (1.173) (0.533) (0.722)

Mean of dep. var. 7.351 6.031 6.349 7.605 7.507 10.15
Std. dev. of dep. var. 8.188 7.411 7.865 7.925 6.805 10.61
R-squared 0.016 0.001 0.020 0.021 0.022 0.004
First stage F statistic 850 81.59 858.9 361.6 442.3 395.3

Panel B: Dep. var.: DART

Robot exposure -2.611 4.848 -1.171*** 0.057 0.324 -0.524
(2.443) (5.246) (0.237) (0.765) (0.312) (0.607)

Mean of dep. var. 4.321 3.190 3.420 5.170 4.775 6.500
Std. dev. of dep. var. 5.625 4.169 5.106 6.121 5.027 6.072
R-squared 0.010 0.000 0.017 0.018 0.014 0.005
First stage F statistic 850 81.59 858.9 361.6 442.3 395.3

Observations 5,373 14,819 260,306 43,755 63,100 57,951

Notes - Data are drawn from the ODI (OSHA) dataset (2005-2011). The unit of observation is at the establishment-year level. All
models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered at the
commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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baseline specification using a one-year lagged measure of robot exposure as the main explana-

tory variable (see Table A.6 in the Appendix). Reassuringly, the results substantially confirm

the findings presented in our main analysis. Fourth, in Table A.7 we show that the inclusion of

time-varying, commuting-zone level socio-demographic controls, such as the share of women,

the average age and the proportion of individuals with a college degree, did not alter the main

results. Moreover, while we only have data on the sectoral distribution of robots in the US since

2004, we follow Acemoglu and Restrepo (2020) and use the sectoral distribution of robots in Eu-

rope (our IV) to explore the reduced form relationship between robot penetration in Europe and

work-related injuries in the US over a longer period (1996–2011).14 As displayed in Table A.8, the

reduced form point estimates are slightly larger than the ones presented in column 2 of Table 1,

suggesting that a one standard deviation in robot exposure reduces TCR by 0.782 cases per 100

workers (equivalent to 7.9% relative to the mean outcome) and the DART rate by 0.529 cases per

100 workers (equivalent to 9.6% relative to the mean outcome). Next, we check the sensitivity

of the reduced form estimates to the exclusion of the recession period. Overall, the estimates

reported in Table A.9 confirm that firms in commuting zones with a higher robot penetration

experience a decline in work-related injuries.

As a further robustness check, we estimate Model (3) including establishment fixed effects,

which allow us to net out the confounding effects of any time-invariant characteristic across estab-

lishments. Reassuringly, the 2SLS estimates presented in Panel A of Table A.10 in the Appendix

demonstrate that the effects of robot exposure are very similar to the benchmark specification.

Finally, we exploit the sectoral information available in the ODI dataset to construct an alterna-

tive measure of robot exposure that varies by sector and year. In this case, we create a metric of

sectoral exposure at the national level and assign it to each establishment in a given sector. The

2SLS coefficients displayed in Panel B of Table A.10 are overall consistent with those obtained

using the geographical measure of robot exposure at the commuting zone level. Specifically, we

find that a one standard deviation increase in sectoral robot exposure leads to a 1.649 reduction

in the number of injury cases per 100 workers, which is equivalent to a 21.6% reduction for the

mean outcome.

To address the concern that our results may be confounded by differential trends experienced

14ODI data are available since 1996 for two of the safety outcomes, namely, TCR and DART.
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by some industries, we calculated the Rotemberg weights following the methodology described

in Goldsmith-Pinkham et al. (2020).15 We find that the electronics sector has, by far, the largest

weight in our identification strategy during our period of interest (see Table A.11 in the Ap-

pendix). Reassuringly, results are robust when controlling for area-specific trends across areas

with low and high initial shares of employment in the electronics sector or when removing estab-

lishments in the electronics sector (see Panels A and B of Table A.12 in the Appendix). Moreover,

we show that the results are largely unchanged when including specific time trends across areas

with different initial shares of the automotive sector employment, the sector that adopted most

robots throughout the period of study (see Table A.13 in the Appendix).

One may be worried that our measure of robot exposure could be correlated with other eco-

nomic shocks, particularly to the exposure to import competition from China (Autor and Dorn,

2013). Acemoglu and Restrepo (2020) and Anelli et al. (2019) illustrate that the trade shock is

orthogonal to the adoption of robots for both the US and Europe. These studies document how

industries that strongly robotized production processes were generally industries that did not

offshore production. However, we also show that our results are robust to the inclusion of con-

trols for exposure to trade penetration (see Panel A of Table A.14).16 As a further check, in Panel

B of Table A.14 in the Appendix we also show that our findings are not affected by the inclusion

of time-specific trends interacted with the 1990 share of employment in total manufacturing. Fi-

nally, results are also robust to the inclusion of region-year fixed effects (see Panel C), and are

substantially unaltered when including industry-year fixed effects (see Panel D).

As injuries are notoriously skewed, we also conducted alternative estimations obtained by

topcoding the dependent variables at the 99th percentile. Results of this analysis presented in

Panel A of Table A.15 are similar to the baseline. Furthermore, results tend in the same direction

when considering the outcomes in logarithms (see Panel B) or using the inverse hyperbolic sine

15Specifically, we used the Bartik weight ado file made available by Paul Goldsmith-Pinkham. For details, see
https://github.com/paulgp/bartik-weight.

16To measure trade penetration, we followed Pierce and Schott (2020) and computed exposure to Chinese imports
by looking at the difference between tariff rates set by the Smoot-Hawley Tariff Act and the corresponding NTR
(normal trade relations) tariffs. In 2000, the US passed a bill granting normal trade relations to China. This trade
liberalization affected differentially US regions depending on their industry structure. A larger difference between
the non-NTR rates and the NTR rates implied a larger potential for Chinese exporters increasing import competition
for US producers in a given sector. Consistent with Pierce and Schott (2020), we calculated the commuting zone-level
exposure to import penetration using the labor-share-weighted average NTR gaps of the industries active within a
commuting zone in 1990. We then interacted this commuting zone-level measure of exposure to trade with year
dummies.
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transformation (see Panel C), although the effect on DART is less precisely estimated (p-values

equal 0.14 and 0.17, respectively). Table A.16 shows that the significance of our main results does

not vary substantially when using wild cluster bootstrap standard errors.

4.3 Effects on Drug- and Alcohol-Related Deaths and Suicides

On the one hand, robots may have reduced the risk of injuries and the overall physical in-

tensity of job tasks, while on the other hand, they may have increased job precariousness and

workers’ uncertainty. Acemoglu and Restrepo (2020) find significant negative effects of robot

exposure on income and hours worked, and a positive effect on unemployment.17 These results

are consistent with the reasoning that at least in the short-run, robots may have increased un-

certainty on labor market opportunities, and thus, may have contributed to increased pressure

on workers, similar to what is documented when examining the effects of trade and other labor

market shocks on workers’ mental health (Colantone et al., 2019) and found by Venkataramani et

al. (2020) when examining the association between plant closures and opioid overdose mortality.

To analyze the effects of robot exposure on the mental health of workers, we merged the IFR

data with commuting zone-level data on the reason of death (CDC), and BRFSS data aggregated

at the commuting zone-level on the number of mentally unhealthy days. All these estimates are

weighted by the commuting zone-level population. We focus on deaths due to drug or alcohol

abuse and suicides. The results of this analysis are reported in Table 5.

Panel A of Table 5 documents a positive and significant relationship between the exposure

to industrial robots and the rate of deaths due to drug or alcohol abuse. The OLS estimate

in column 1 suggests that a one standard deviation increase in robot exposure is associated

with an increase of 37.8 cases per 100,000 inhabitants (equivalent to 9.6% relative to the mean

of the dependent variable). The average increase in robots per 1,000 workers throughout the

period (0.37) would lead to an increase of approximately 10.2 cases per 100,000 inhabitants (or

a 3% increase with respect to the mean). The 2SLS estimate displayed in column 3 is only

slightly larger, suggesting a 10.5% increase with respect to the mean. In Panel B, we examine the

relationship between robot exposure and suicide rates. We find no evidence of significant effects

17We replicate their analyses on wages and employment and confirm significant negative effects of robot exposure
on labor market outcomes. Results are available upon request.
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Table 5: Effects of Robot Exposure on Deaths due to Drug or Alcohol Abuse, Suicide Rate, and
Mental Health

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: Deaths due to drug or alcohol abuse

Robot exposure 37.841*** 41.436***
(5.464) (5.732)

Robot exposure - IV 17.053***
(2.027)

Observations 4,607 4,607 4,607
Mean of dep. var. 390.6 390.6 390.6
Std. dev. of dep. var. 110.8 110.8 110.8
R-squared 0.954 0.954 0.048
First stage F statistic 489.5

Panel B: Dep. var.: Deaths due to suicides

Robot exposure 0.397 0.339
(0.567) (0.685)

Robot exposure - IV 0.139
(0.286)

Observations 1,379 1,379 1,379
Mean of dep. var. 14.47 14.47 14.47
Std. dev. of dep. var. 4.954 4.954 4.954
R-squared 0.853 0.853 0.154
First stage F statistic 388

Panel C: Dep. var.: Number of mentally unhealthy days

Robot exposure 0.312** 0.555***
(0.134) (0.153)

Robot exposure - IV 0.233***
(0.062)

Observations 4,245 4,245 4,245
Mean of dep. var. 3.713 3.713 3.713
Std. dev. of dep. var. 1.384 1.384 1.384
R-squared 0.448 0.449 0.037
First stage F statistic 407

Notes - Data on reason of death (Panels A and B) are drawn from Vital Statistics (CDC). Data on the number of mentally unhealthy
days are drawn from the BRFSS (Panel C). The unit of observation is at the commuting zone-year level. All models control for
commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered at the commuting zone level.
All estimates are weighted by the commuting zone-level population.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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on suicide rate, although the point estimate indicates that areas that are more exposed to robot

penetration experience a slight increase in suicide rate (+2.3%).18 Similarly, we find a positive

but non-significant coefficient when measuring the relationship between robot penetration and

psychological burden (see column 3 of Table 3).

Finally, Panel C shows a positive relationship between robot exposure and the number of

mentally unhealthy days. The 2SLS estimate in column 3 indicates that a one standard deviation

increase in robot exposure leads to a 0.555 increase in the number of days in the past 30 days that

individuals reported mental health as not being good, which is equivalent to a 14.9% increase for

the mean outcome. Equivalently, the average increase in robots per 1,000 workers throughout the

period (0.37) would lead to a 4% increase in the number of mentally unhealthy days with respect

to the mean.

As for injury rates, we show that the results on substance abuse, suicides, and mental health

are largely robust to controlling for specific trends across areas with high and low initial shares of

employment in the electronics sector, removing establishments in the electronics sector, as well as

controlling for the exposure to trade penetration and specific trends in the manufacturing sector

(see Panels A-D of Table A.17 in the Appendix).

5 Individual-Level Data from Germany

As mentioned in Section 1, Germany has been a leader in robotics since the early ’90s, thereby

providing a very interesting context to study the effects of robots on workers’ health and safety.

Furthermore, the availability of a longitudinal dataset with information on workers’ industrial

sector, health, and well-being allows us to exploit within-individual variation in the exposure to

robots over time and investigate how robots affect workers’ health over more than 20 years.

18It is worth noting that the sample size reduces substantially, as we only have information on suicides on a
restricted sample of counties (542).
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5.1 Data and Empirical Specification for Germany

5.1.1 Data

To analyze the relationship between robot exposure and workers’ health and safety in Ger-

many, we employ data from the SOEP, a longitudinal dataset of the German population contain-

ing information on a rich set of individual socioeconomic characteristics since 1984.19 The SOEP

consists of several subsamples and is constructed to ensure it is representative of the entire pop-

ulation of Germany. For a detailed description of the survey, see Wagner et al. (2007) and Goebel

et al. (2019). The SOEP provides information on several health metrics (including self-assessed

health status, satisfaction with health, and mental and physical health). In this study, we focus on

two main health outcomes: a dummy variable equal to one for a doctor-assessed disability, and

an indicator variable taking value one if the individual reported a work accident that required

treatment by a doctor or at a hospital. While information about disability status is available

from 1984 onward, respondents were asked about their accidents at work only during the years

between 1987 and 1999. Furthermore, the SOEP data contains information on individual la-

bor market histories and the worker’s industrial sector based on the NACE 2-digit classification,

which we use to merge with the data on robots from the IFR. To estimate our model, we construct

an unbalanced panel of manufacturing and non-manufacturing workers from 1994 through 2016,

thereby covering the period for which we have IFR data on the stocks of industrial robots by

sector in Germany.20

5.1.2 Empirical Specification

To dispel the concern that individual sorting across sectors as a response to robots may in-

validate our identification strategy, our measure of individual exposure to robot penetration is

based on the sector in which workers were employed in 1994. We restrict the sample to individ-

uals observed in 1994 (N=17,810).21 Thus, our metric of robot penetration in Germany is based

19The data version used in this paper is SOEP version 35, SOEP, 2020, doi: 10.5684/soep.v35.
20While we do have information on robots since 1993, information on disability and work-related injuries is not

available in the 1993 SOEP wave.
21Individuals who were unemployed in 1994 were assigned their first available industrial sector. Results are

substantially identical if we restrict the sample to individuals employed in 1994 and assign robot exposure based on
their occupation in 1994 (available upon request).
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on the sector of employment at baseline and the variation over time in the adoption of robots

across sectors. We then follow individuals over time and exploit the within-individual variation

over time in robot exposure to identify its effects on the likelihood of reporting any disability,

and our measure of occupational physical intensity. After restricting the sample to workers who

were SOEP respondents in 1994, were aged 18–64 during the years in which outcomes were

measured, and were not self-employed, we obtain a final longitudinal sample containing 64,358

person-year observations resulting from 6,228 individuals. Table A.18 in the Appendix reports

descriptive statistics on the main variables used in the analysis. Figure 3 illustrates the trends in

robot adoption in Germany, comparing manufacturing industries vs. all the other sectors. As is

evident from the figure, there is a marked difference in the levels of robot penetration between

manufacturing and the other sectors, while the growth rate is relatively similar.

We estimate the following linear regression model:

Yijrt = α + β(Exposure to Robots)GE
jt + λXit + γi + τt + ηr + εijrt (7)

where the index ijrt denotes an individual i, working in IFR sector j in federal state r at the

year of interview t. The outcome variable Yijrt represents an indicator variable for an individual

who reported a disability, high physical burden (defined as a dummy variable if the physical

burden is above 8), high psychological burden (defined as a dummy taking the value one if the

psychological burden is above 8), work satisfaction, and life satisfaction. Our variable of interest

is (Exposure to Robots)GE
jt , which represents the robot adoption in industry j and year t. For

ease of interpretation, our measure of exposure to robots is expressed in units of its standard

deviation in all our specifications. In the vector Xirt, we include worker-level covariates, such as

a full set of age dummies, gender, and indicators for education and marital status. We account for

the longitudinal nature of the SOEP data by including worker fixed effects (γi), and thus, control

for unobservable, time-constant differences among workers. Additionally, we control for survey

year fixed effects (τt) to account for possible trends in our outcomes as well as a set of federal

state dummies (ηr), which are meant to capture unobservable, time-invariant differences across

states that may influence individuals’ health outcomes. Finally, εijst represents a disturbance

term. In all our specifications, we use the SOEP survey weights. Standard errors are clustered
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Figure 3: Evolution of Industrial Robots in Germany, Manufacturing vs. Other Sectors (1994–
2016)

Notes - This figure shows the number of robots per thousand workers in Germany separately for the manufacturing sector (left
vertical axis) and other (non-manufacturing) sectors (right vertical axis) during 1994-2016. Data are drawn from the International
Federation of Robotics.
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at the industry level, given that we exploit the variation in robot exposure over time and across

industrial sectors, rather than a measure of geographical exposure. As a robustness check, we

include a Table reporting the p-values obtained using wild cluster bootstrap standard errors.

5.2 Exploiting German Tracking System

As an alternative strategy, we explore the peculiarity of tracking system to measure exposure

to robots based on the occupation associated with a given vocational training path. Tracking

decision in Germany occurs at the transition from primary and secondary schooling (Krause

and Schüller, 2014; Zimmermann et al., 2013). Primary schools cover four grades and pupils

are aged ten years when they are tracked into three different school paths: a) lower secondary

school (Hauptschule), preparing students for manual and blue-collar professions; b) intermediate

secondary school (Realschule), preparing students for administrative and lower white-collar jobs;

and c) upper secondary school (Gymnasium), lasting three years longer and preparing students

for higher education, allowing for direct access to universities. This decision is made jointly by

parents and teachers, with teachers recommending a secondary school track to parents. This rec-

ommendation is however not binding in most states, and students are allowed to move between

school tracks at any grade, although only a very small percentage (less than 2%) do so (Dust-

mann et al., 2017). This institutional feature of the German school system allows us to propose

an alternative empirical strategy based on the tracking system and vocational training.

The SOEP includes a set of variables designed to provide information on the occupation

associated with vocational training during secondary schooling (2-digit level, 99 different occu-

pations). Since 1985, respondents are asked if they have left education since the beginning of

the year before the survey and which degrees they have obtained. This information is used for

the generation of the variable on the occupation associated with vocational training. Similarly,

since 2001 this information is collected among respondents filling the biography questionnaire.

In practice, we use the occupation associated with one’s vocational training during secondary

education to construct a probabilistic measure of robot exposure, which is a weighted average of

the sectoral robot exposure, where the weight is given by the relative probability of working in a

given sector conditional on one’s vocational training path.
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We restrict the sample to individuals born before 1981 to focus on those who entered a track

in the early 1990s, further mitigating the concern of endogeneity concerning future robot inflows

by sector.22 Our measure of exposure to robots is then calculated as follows:

Exposure to RobotsGE
o,t = ∑

j∈j
λoj(

RGE
j,t

LGE
j,1990

) (8)

where RGE
j,t represents the stock of robots in Germany across industries in year t; and LGE

j,1990 is

the total number of individuals (in thousands) employed in sector j in 1990. λoj denotes the

probability that an individual works in sector j given his/her initial occupation associated with

vocational training. In practice, we collect information from all individuals in the SOEP with

non-missing information on the occupation associated with vocational training.

This allows us to only exploit variation in robot exposure based on the track and vocational

choice individuals made in school, which is unlikely to be correlated with future trends in robot

adoption over time, and thus, could alleviate the concerns of selection and omitted variable bias.

To conduct this approach, we include all workers reporting information on their school track and

do not restrict the sample to individuals interviewed in 1994 to maximize the sample size. It is

worth remarking that information on school track is only available for a sub-sample of respon-

dents which substantially reduces our sample size. Furthermore, information on the occupation

associated with vocational training is asked to a very limited sample of individuals before 2001,

since the retrospective information was not collected before 2001 (SOEP, 2019). This prevents us

from using work-related injuries as an alternative outcome, as this variable is available only until

1999.

5.3 Results for Germany

Panel A of Table 6 reports the OLS of the effects of robot exposure on several outcomes

measuring workers’ health and safety: disability, high physical burden, high psychological bur-

den, work satisfaction, and life satisfaction. As described in the previous section, we include

individual-level covariates, individual fixed effects, as well as state and year dummies in each

22We obtain similar results restricting the sample to individuals born before 1975, although the sample size shrinks
substantially. While the effect on disability remains unchanged, the point estimate on physical burden is similar but
less precisely estimated.
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regression. We find that a one standard deviation increase in robot exposure is associated with a

5% reduction in the risk of reporting any disability (see column 1), and a 4% reduction in the like-

lihood of being employed in a highly physically intensive task (see column 2 ).23 By contrast, we

find no evidence of significant effects of robot exposure on mental burden (see columns 3–5).24

Reassuringly, in Table 7 we find no evidence of significant effects when examining the impact

of robot exposure between 1994 and 2000 on lagged values of disability, work accidents, and

physical burden covering the 1984–1990 period, thereby providing further support to a causal

interpretation of our findings.

Table 6: Effects of Robot Exposure in Germany

(1) (2) (3) (4) (5)
Dep. var.: Disability High physical burden High psychological burden Work satisfaction Life satisfaction

Panel A: OLS Estimates

Robot exposure -0.003** -0.008* -0.001 0.019 0.006
(0.001) (0.004) (0.002) (0.013) (0.006)

Mean of dep. var. 0.064 0.210 0.187 6.897 6.931
Std. dev. of dep. var. 0.244 0.408 0.390 1.936 1.611
R-squared 0.698 0.798 0.718 0.459 0.546
Observations 64,358 63,873 63,873 63,197 64,223

Panel B: Robot Exposure based on Vocational Training

Robot exposure -0.015* -0.027* -0.011 0.369** -0.038
(0.008) (0.013) (0.014) (0.148) (0.121)

Mean of dep. var. 0.051 0.173 0.200 7.188 7.417
Std. dev. of dep. var. 0.220 0.379 0.400 2.032 1.612
R-squared 0.796 0.856 0.792 0.533 0.603
Observations 29,526 29,311 29,311 28,208 28,718

Notes - Data are drawn from the SOEP (1994-2016). The unit of observation is at the individual-year level. All models control for age
dummies, indicators for education, marital status, state dummies, as well as year and individual fixed effects. We exclude education
from the controls of Panel B because of the use of vocational training in the construction of our robot exposure measure. The sample
in Panel B is restricted to individuals born before 1981. Robust standard errors are reported in parentheses and are clustered at the
industry sector level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

Using the measure of exposure based on the school track and vocational training and restrict-

23Results are only slightly larger in magnitude when excluding workers who switched their sector of employment
throughout the sample studied (see Table A.19 in the Appendix).

24For the years before 2000, we do have information on work-injuries. When examining the effect of robot exposure
on work-injuries before 2000, we find that a one standard deviation increase in robot exposure led to a 1.8 percentage
point decline in the likelihood of reporting any work related injury (coeff.: -0.018; s.e.: 0.009; p-value: 0.06).
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Table 7: Falsification Test in Germany: Robot Exposure (1994-2000) and Pre-Trends (1984-1990)
in Health, Work Accidents, and Physical Burden

(1) (2) (3)
Dep. var.: Disability Work accidents High physical burden

1984-1990 1984-1990 1984-1990

Robot exposure 0.001 -0.004 0.002
(1994-2000) (0.003) (0.016) (0.008)

Observations 18,625 8,643 18,057
Mean of dep. var. 0.057 0.066 0.288
Std. dev. of dep. var. 0.231 0.249 0.453
R-squared 0.806 0.479 0.907

Notes - Data are drawn from the SOEP (1984-2016). The unit of observation is at the individual-year level. All models control for
age dummies, indicators for education, martial status, state dummies, as well as year and individual fixed effects. Standard errors
are reported in parentheses and are clustered at the industry sector level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

ing the sample to individuals born before 1981 (see Panel B of Table 6), qualitatively we largely

confirm the findings presented in Panel A. Point estimates are larger, suggesting that an increase

in one standard deviation exposure to robots reduces the likelihood of reporting any disability

by 1.5 percentage points, equivalent to a 29% reduction (see column 1). Similarly, the likelihood

of working in a highly physically demanding job declines by 2.7 percentage points, equivalent

to a 16% reduction (see column 2). Considering the average increase in robots per 1,000 work-

ers throughout the period studied (5.6), our results imply a 9% reduction in the likelihood of

reporting any disability and a 5% decline in the likelihood of working in a highly physically

demanding job. Similarly to what observed in the US, the effects on physically demanding jobs

are driven by the most physically intensive occupations (see Table A.20 in the Appendix).

These larger estimates are not particularly surprising as by exploiting vocational training we

focus on a sample of workers who were more likely to be exposed to robot penetration. Thus, the

coefficients capture a local average treatment effect on this particular population. At the same

time, we confirm the lack of negative effects on mental health (see columns 3-5), and if anything,

we find evidence of a 5% increase in work satisfaction. Table A.21 in the Appendix reports the

p-values obtained using wild cluster bootstrap standard errors for our main analysis.

We view our results as being consistent with those documented by Dauth et al. (2021), who

show that robot adoption did not cause disruptive job losses with the decline in manufacturing
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jobs mostly driven by young labor market entrants. It is worth noting that while we focus on

drug and alcohol use related deaths in the US, here, we focus on job psychological burden and

self-reported metrics of mental health. We do not have information on causes of death, and

unfortunately, the small sample size of our panel would not allow us to conduct this analysis

using our longitudinal data.

6 Conclusion

In this study, we explore the relationship between the penetration of industrial robots and

work-related injuries using data from the US and Germany. Using the US establishment-level

data from OSHA, we find that a one standard deviation increase in robot exposure reduces

work-related injuries by 1.2 cases per 100 full-time workers (-16% with respect to the mean;

95% CI: -1.8, -0.53). These results are driven by manufacturing firms (-1.75 injuries per 100

full-time workers; 95% CI: -2.48, -1.02), while we find no significant effects for sectors that do

not adopt industrial robots (i.e., services). At the same time, areas that are more exposed to

robot penetration experience higher rates of drug- or alcohol-related deaths (10.5% with respect

to the mean) and mentally unhealthy days (14.9% with respect to the mean). Overall, these

results are consistent with reduced physical job intensity (6.3% with respect to the mean) and

increased economic uncertainty (Acemoglu and Restrepo, 2020). Employing individual-level

data from Germany, we exploit within-individual variation in the exposure to robots over time

and propose an alternative identification strategy exploiting information on school tracking and

vocational training. We find similar results on physical job intensity and physical health but no

evidence of significant effects on mental health, which appears consistent with the findings of

Dauth et al. (2021), who document how the rise of new jobs in services offset the displacement

effects in the manufacturing sector in Germany.

Overall, our results highlight the complex relationship between the adoption of these new

technologies and the physical and mental health of workers in the sectors that are most exposed

to robot adoption. Previous studies have often emphasized the negative effects robots may have

on labor market outcomes. Our findings suggest that we should pay attention to the signifi-

cant mental health consequences of these labor market shocks. Yet, we should not discount the
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potential beneficial effects of robots on workplace safety.

Future research could shed further light on how the adoption of robots affect the reallocation

of tasks within firms and occupations. Understanding the complex interaction between workers

and robots in the workplace goes beyond the scope of this study. The relationship between robot

exposure and workers’ mental health calls for a more in-depth study exploiting granular data

and rich information on firms’ practices and employees’ well-being.
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Schröder, and Jürgen Schupp, “The German Socio-Economic Panel (SOEP),” Jahrbücher für
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Appendix A: Supplemental Tables

Table A.1: Descriptive Statistics in the US, 2005-2011

Mean Std dev

Panel A: ODI dataset - Observations: 445,562

TCR 7.13 8.23
DART 4.19 5.43
DAFWII 2.15 3.40

Panel B: CDC Data - Observations: 4,607

Deaths due to drug or alcohol abuse 390.6 110.8
Suicide rate 14.47 4.95
Number of mentally unhealthy days 3.71 1.38

Notes - Data are drawn from the ODI (OSHA) dataset in Panel A and from the CDC in Panel B (survey years: 2005-2011). The
sample size of the suicide rate and number of mentally unhealthy days reduces to 1,379 and 4,245 observations, respectively.

Table A.2: First stage: Effects of Robot Exposure IV on Robot Exposure

(1)
Dep. var.: Robot exposure

Robot exposure - IV 0.423***
(0.016)

Observations 445,562
Mean of dep. var. 0
Std. dev. of dep. var. 1

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.4: Effects of Robot Exposure on Workplace Injuries – Analysis at the Commuting Zone-
Year Level

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure -1.544*** -1.145***
(0.382) (0.324)

Robot exposure - IV -0.485***
(0.141)

Mean of dep. var. 8.170 8.170 8.170
Std. dev. of dep. var. 3.341 3.341 3.341
First stage F statistic 696.5

Panel B: Dep. var.: DART

Robot exposure -1.004*** -0.827***
(0.228) (0.207)

Robot exposure - IV -0.351***
(0.088)

Mean of dep. var. 4.535 4.535 4.535
Std. dev. of dep. var. 2.174 2.174 2.174
First stage F statistic 696.5

Panel C: Dep. var.: DAFWII

Robot exposure -0.017 0.136
(0.151) (0.131)

Robot exposure - IV 0.057
(0.056)

Mean of dep. var. 2.567 2.567 2.567
Std. dev. of dep. var. 1.613 1.613 1.613
First stage F statistic 696.5

Observations 4,480 4,480 4,480

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the commuting
zone-year level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are
clustered at the commuting zone level. All estimates are weighted by the commuting zone-level population.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.5: Effects of Robot Exposure on Workplace Injuries - Adding State-Specific Time Trends

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure -1.575*** -1.185***
(0.377) (0.321)

Robot exposure - IV -0.501***
(0.139)

Mean of dep. var. 7.132 7.132 7.132
Std. dev. of dep. var. 8.235 8.235 8.235
First stage F statistic 690.5

Panel B: Dep. var.: DART

Robot exposure -1.013*** -0.847***
(0.226) (0.207)

Robot exposure - IV -0.358***
(0.088)

Mean of dep. var. 4.187 4.187 4.187
Std. dev. of dep. var. 5.429 5.429 5.429
First stage F statistic 690.5

Panel C: Dep. var.: DAFWII

Robot exposure -0.016 0.135
(0.151) (0.132)

Robot exposure - IV 0.057
(0.057)

Mean of dep. var. 2.150 2.150 2.150
Std. dev. of dep. var. 3.398 3.398 3.398
First stage F statistic 690.5

Observations 445,562 445,562 445,562

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects, and state-specific time trends. Standard errors are reported in
parentheses and are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.6: Effects of Robot Exposure (Lagged by One Year) on Workplace Injuries

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure (t− 1) -1.580*** -1.063***
(0.362) (0.330)

Robot exposure - IV (t− 1) -0.438***
(0.136)

Mean of dep. var. 6.886 6.886 6.886
Std. dev. of dep. var. 8.248 8.248 8.248
First stage F statistic 470.9

Panel B: Dep. var.: DART

Robot exposure (t− 1) -0.971*** -0.760***
(0.178) (0.201)

Robot exposure - IV (t− 1) -0.314***
(0.083)

Mean of dep. var. 4.033 4.033 4.033
Std. dev. of dep. var. 5.406 5.406 5.406
First stage F statistic 470.9

Panel C: Dep. var.: DAFWII

Robot exposure (t− 1) 0.012 0.081
(0.113) (0.139)

Robot exposure - IV (t− 1) 0.033
(0.058)

Mean of dep. var. 2.085 2.085 2.085
Std. dev. of dep. var. 3.380 3.380 3.380
First stage F statistic 470.9

Observations 383,291 383,291 383,291

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.7: Effects of Robot Exposure on Workplace Injuries - Adding Controls

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure -1.553*** -1.163***
(0.366) (0.312)

Robot exposure - IV -0.491***
(0.135)

Mean of dep. var. 7.132 7.132 7.132
Std. dev. of dep. var. 8.235 8.235 8.235
First stage F statistic 692.7

Panel B: Dep. var.: DART

Robot exposure -1.033*** -0.865***
(0.227) (0.208)

Robot exposure - IV -0.365***
(0.088)

Mean of dep. var. 4.187 4.187 4.187
Std. dev. of dep. var. 5.429 5.429 5.429
First stage F statistic 692.7

Panel C: Dep. var.: DAFWII

Robot exposure -0.060 0.088
(0.162) (0.142)

Robot exposure - IV 0.037
(0.061)

Mean of dep. var. 2.150 2.150 2.150
Std. dev. of dep. var. 3.398 3.398 3.398
First stage F statistic 692.7

Observations 445,562 445,562 445,562

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects, as well as commuting-zone level controls, such as the share of
women, the average age and the proportion of individuals with a college degree. Standard errors are reported in parentheses and
are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.8: Effects of Robot Exposure on Workplace Injuries - Reduced Form, 1996-2011

(1) (2)
Dep. var.: TCR DART

Robot exposure - IV -0.782*** -0.529***
(0.076) (0.052)

Observations 960,675 960,677
Mean of dep. var. 9.846 5.502
Std. dev. of dep. var. 17.83 14.55

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 1996-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

Table A.9: Effects of Robot Exposure on Workplace Injuries - Reduced Form, 1996-2007

(1) (2)
Dep. var.: TCR DART

Robot exposure - IV -0.826*** -0.555***
(0.103) (0.089)

Observations 703,448 703,450
Mean of dep. var. 11.16 6.185
Std. dev. of dep. var. 20.03 16.62

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 1996-2007). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.10: Effects of Robot Exposure on Workplace Injuries - 2SLS Estimates

(1) (2) (3)
Dep. var.: TCR DART DAFWII

Panel A: Including establishment FE

Robot exposure -1.078*** -0.768*** 0.113
(0.413) (0.293) (0.216)

Observations 387,829 387,829 387,829
Mean of dep. var. 7.409 4.398 2.231
Std. dev. of dep. var. 7.953 5.490 3.425
First stage F statistic 647.7 647.7 647.7

Panel B: Sector-level robot exposure

Robot exposure (sector-level) -1.649** -0.924** -0.130
(0.713) (0.445) (0.249)

Observations 360,730 360,730 360,730
Mean of dep. var. 7.625 4.554 2.284
Std. dev. of dep. var. 8.449 5.587 3.437
First stage F statistic 15.71 15.71 15.71

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. Panels A and B control for establishment fixed effects and year dummies. Standard errors are reported in parentheses and are
clustered at the commuting zone level in Panel A, and IFR sector and year in Panel B.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.11: Rotemberg Weights

Sector Rotemberg Weight
Electronics 0.78
Basic metal 0.15
Paper 0.07
Metal machinery 0.07
Construction 0.05
Automotive 0.04
Metal products 0.03
Plastic and chemicals 0.03
Glass and ceramics 0.01
Textiles 0.01
Other vehicles 0.00
Education 0.00
Mining 0.00
Food and beverages 0.00
Agriculture 0.00
Wood and furniture 0.00
Electric and gas 0.00
Other non-manufacturing 0.00
Other manufacturing 0.00

Notes - We calculated Rotemberg weights by year and sector. Here we report the average weight of each sector throughout the
period of the analysis.
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Table A.12: Effects of Robots Exposure on Workplace Injuries - Controlling for Trends in Low
vs High Electronics Intensive Areas or Excluding Establishments in the Electronics Sector - 2SLS
Estimates

(1) (2) (3)
Dep. var.: TCR DART DAFWII

Panel A: Controlling for Trends in the Electronics Sector

Robot exposure -1.212*** -0.878*** 0.115
(0.317) (0.202) (0.117)

Mean of dep. var. 7.132 4.187 2.150
Std. dev. of dep. var. 8.235 5.429 3.398
First stage F statistic 572.8 572.8 572.8
Observations 445,562 445,562 445,562

Panel B: Excluding Establishments in the Electronics Sector

Robot exposure -1.218*** -0.901*** 0.116
(0.326) (0.211) (0.142)

Mean of dep. var. 7.315 4.306 2.213
Std. dev. of dep. var. 8.324 5.493 3.444
First stage F statistic 703.2 703.2 703.2
Observations 424,664 424,664 424,664

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Panel A further includes specific time-trends across electronics
intensive areas (below and above the median 1990 share of employment in the electronics sector). Panel B removes establishments
in the electronics sector. Standard errors are reported in parentheses and are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.13: Effects of Robots Exposure on Workplace Injuries - Controlling for Trends in Low vs
High Automotive Intensive Areas or Excluding Establishments in the Automotive Sector - 2SLS
Estimates

(1) (2) (3)
Dep. var.: TCR DART DAFWII

Panel A: Controlling for Trends in the Automotive Sector

Robot exposure -1.072*** -0.909*** 0.011
(0.367) (0.254) (0.186)

Mean of dep. var. 7.132 4.187 2.150
Std. dev. of dep. var. 8.235 5.429 3.398
First stage F statistic 298.2 298.2 298.2
Observations 445,562 445,562 445,562

Panel B: Excluding Establishments in the Automotive Sector

Robot exposure -1.103*** -0.801*** 0.143
(0.331) (0.210) (0.128)

Mean of dep. var. 7.120 4.202 2.166
Std. dev. of dep. var. 8.258 5.460 3.421
First stage F statistic 592.6 592.6 592.6
Observations 429,328 429,328 429,328

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Panel A further includes specific time-trends across automotive
intensive areas (below and above the median 1990 share of employment in the automotive sector). Panel B removes establishments
in the automotive sector. Standard errors are reported in parentheses and are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.14: Effects of Robots Exposure on Workplace Injuries - Controlling for Trade Trends and
Manufacturing Trends - 2SLS Estimates

(1) (2) (3)
Dep. var.: TCR DART DAFWII

Panel A: Adding Controls for Trends in Trade

Robot exposure -1.140*** -0.863*** 0.098
(0.308) (0.207) (0.153)

Mean of dep. var. 7.132 4.187 2.150
Std. dev. of dep. var. 8.235 5.429 3.398
First stage F statistic 330.9 330.9 330.9
Observations 445,562 445,562 445,562

Panel B: Adding Controls for Trends in the Manufacturing Sector

Robot exposure -1.348*** -1.052*** 0.040
(0.310) (0.230) (0.171)

Mean of dep. var. 7.132 4.187 2.150
Std. dev. of dep. var. 8.235 5.429 3.398
First stage F statistic 296.3 296.3 296.3
Observations 445,562 445,562 445,562

Panel C: Including Region-Year Fixed Effects

Robot exposure -1.306** -0.750** 0.344
(0.549) (0.373) (0.249)

Mean of dep. var. 7.132 4.187 2.150
Std. dev. of dep. var. 8.235 5.429 3.398
First stage F statistic 566.3 566.3 566.3
Observations 445,562 445,562 445,562

Panel D: Adding Industry-Year Fixed Effects

Robot exposure -1.125*** -0.896*** 0.116
(0.251) (0.189) (0.168)

Mean of dep. var. 7.132 4.187 2.150
Std. dev. of dep. var. 8.235 5.429 3.398
First stage F statistic 341.3 341.3 341.3
Observations 445,562 445,562 445,562

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.15: Effects of Robots Exposure on Workplace Injuries - Topcoding, Logarithms and In-
verse Hyperbolic Sines - 2SLS Estimates

(1) (2) (3)
Dep. var.: TCR DART DAFWII

Panel A: Topcoding the Outcomes at the 99th Percentile

Robot exposure -1.293** -0.760** 0.274
(0.564) (0.368) (0.252)

Mean of dep. var. 7.027 4.116 2.093
Std. dev. of dep. var. 6.869 4.683 2.960
First stage F statistic 566.3 566.3 566.3
Observations 445,562 445,562 445,562

Panel B: Outcomes in Logarithms

Robot exposure -0.125*** -0.091 0.072
(0.048) (0.062) (0.065)

Mean of dep. var. 1.656 1.212 0.781
Std. dev. of dep. Var. 1.022 0.958 0.809
First stage F statistic 566.3 566.3 566.3
Observations 445,562 445,562 445,562

Panel C: Outcomes using Inverse Hyperbolic Sines

Robot exposure -0.143*** -0.104 0.090
(0.055) (0.076) (0.083)

Mean of dep. var. 2.080 1.542 1.003
Std. dev. of dep. var. 1.251 1.199 1.031
First stage F statistic 566.3 566.3 566.3
Observations 445,562 445,562 445,562

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.16: Effects of Robot Exposure on Workplace Injuries, Physical and Psychological Burden,
and Mental Health – 2SLS Estimates – Bootstrap P-Values

(1) (2) (3)

Panel A: Workplace Injuries
Dep. var.: TCR DART DAFWII

Robot exposure -1.145*** -0.827*** 0.136
(0.324) (0.207) (0.131)

Bootstrap p-values 0.035 0.026 0.506
Observations 4,480 4,480 4,480
Mean of dep. var. 8.170 4.535 2.567
Std. dev. of dep. var. 3.341 2.174 1.613
First stage F statistic 696.5 696.5 696.5

Panel B: Physical and Psychological Burden
Dep. var.: High total burden High physical burden High psychological burden

Robot exposure -0.008 -0.015*** 0.004
(0.005) (0.005) (0.005)

Bootstrap p-values 0.110 0.006 0.385
Observations 5,187 5,187 5,187
Mean of dep. var. 0.296 0.236 0.155
Std. dev. of dep. var. 0.0436 0.0465 0.0218
First stage F statistic 577.2 577.2 577.2

Panel C: Deaths due to Drug or Alcohol Abuse, Suicide Rate, and Mental Health
Dep. var.: Deaths due to drug Deaths due to Number of mentally

or alcohol abuse suicides unhealthy days

Robot exposure 41.436*** 0.339 0.555***
(5.732) (0.685) (0.153)

Bootstrap p-values 0.000 0.742 0.040
Observations 4,607 1,379 4,245
Mean of dep. var. 390.6 14.47 3.713
Std. dev. of dep. var. 110.8 4.954 1.384
First stage F statistic 489.5 388 407

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the commuting
zone-year level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are
clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.17: Effects of Robot Exposure on Deaths due to Drug or Alcohol Abuse, Suicide Rate,
and Mental Health – Robustness Checks – 2SLS Estimates

(1) (2) (3)
Dep. var.: Deaths due to drug Deaths due to Number of mentally

or alcohol abuse suicides unhealthy days

Panel A: Adding Controls for Trends in the Electronics Sector

Robot exposure 41.307*** 0.290 0.548***
(6.229) (0.645) (0.167)

Observations 4,607 1,379 4,245
Mean of dep. var. 390.6 14.47 3.713
Std. dev. of dep. var. 110.8 4.954 1.384
First stage F statistic 372.3 345.7 326.6

Panel B: Excluding Establishments in the Electronics Sector

Robot exposure 40.606*** 0.306 0.537***
(6.147) (0.662) (0.148)

Observations 4,607 1,379 4,245
Mean of dep. var. 390.6 14.47 3.713
Std. dev. of dep. var. 110.8 4.954 1.384
First stage F statistic 357.4 321.4 313.2

Panel C: Adding Controls for Trends in Trade

Robot exposure 42.085*** 0.344 0.551***
(5.916) (0.687) (0.153)

Observations 4,607 1,379 4,245
Mean of dep. var. 390.6 14.47 3.713
Std. dev. of dep. var. 110.8 4.954 1.384
First stage F statistic 479.2 381.2 402.1

Panel D: Adding Controls for Trends in the Manufacturing Sector

Robot exposure 42.034*** 0.344 0.552***
(5.901) (0.687) (0.153)

Observations 4,607 1,379 4,245
Mean of dep. var. 390.6 14.47 3.713
Std. dev. of dep. var. 110.8 4.954 1.384
First stage F statistic 479.6 382.2 402.7

Notes - Data on reason of death are drawn from Vital Statistics (CDC). Data on the number of mentally unhealthy days are drawn
from the BRFSS. The unit of observation is at the commuting zone-year level. All models control for commuting zone and year fixed
effects. Standard errors are reported in parentheses and are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.18: Descriptive Statistics in Germany, 1994-2016 - Observations: 64,358

Mean Std. dev.

Disability 0.064 0.244
Work accidents 0.057 0.231
High physical intensity 0.210 0.408
High psychological intensity 0.187 0.390
Work satisfaction 6.897 1.936
Life satisfaction 6.931 1.611
Age 43.937 10.134
Female 0.445 0.497
Married 0.718 0.450
Lower secondary education (basic track) 0.333 0.471
Medium secondary education (intermediate track) 0.391 0.488
Higher secondary education (academic track) 0.200 0.400

Notes - Data are drawn from the SOEP for individuals aged 18-64 years (survey years: 1994-2016). All the samples contain individuals
for whom information on all observables and the respective outcome variable are not missing. The sample size of work accidents,
high physical (psychological) burden, work satisfaction and life satisfaction reduces to 26,925, 63,886, 63,231 and 64,228, respectively.
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Table A.21: Effects of Robot Exposure based on Vocational Training in Germany – Bootstrap
P-Values

(1) (2) (3) (4) (5)
Dep. var.: Disability High physical burden High psychological burden Work satisfaction Life satisfaction

Robot exposure -0.015* -0.027* -0.011 0.369** -0.038
(0.008) (0.014) (0.018) (0.147) (0.104)

Bootstrap p-values 0.0511 0.0621 0.576 0.0210 0.735
Mean of dep. var. 0.0509 0.173 0.200 7.188 7.417
Std. dev. of dep. var. 0.220 0.379 0.400 2.032 1.612
Observations 29,526 29,311 29,311 28,208 28,718

Notes - Data are drawn from the SOEP (1994-2016). The unit of observation is at the individual-year level. All models control
for age dummies, indicators for education, marital status, state dummies, as well as year and individual fixed effects. We exclude
education from the controls because of the use of vocational training in the construction of our robot exposure measure. The sample
is restricted to individuals born before 1981. Robust standard errors are reported in parentheses and are clustered at the industry
sector level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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