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Abstract 
 
One of the perceived advantages of difference-in-differences (DiD) methods is that they do not 
explicitly restrict how units select into treatment. However, when justifying DiD, researchers 
often argue that the treatment is “quasi-randomly” assigned. We investigate what selection 
mechanisms are compatible with the parallel trends assumptions underlying DiD. We derive 
necessary and sufficient conditions for parallel trends that clarify whether and how selection can 
depend on time-invariant and time-varying unobservables. We also suggest a menu of 
interpretable primitive sufficient conditions for parallel trends, thereby providing the formal 
underpinnings for justifying DiD based on contextual information about selection into treatment. 
We provide results for both separable and nonseparable outcome models and show that this 
distinction has implications for the use of covariates in DiD analyses. Building on our analysis of 
nonseparable models, we connect DiD to the literature on nonparametric identification in panel 
models. 
JEL-Codes: C210, C230. 
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. . . while the new papers [in the DiD literature] clarify very well the statistical

assumptions needed for estimation, effective use of these methods also requires

being able to understand what the threats to these assumptions are in different

contexts, and to make a plausible rhetorical argument as to why we should think

the assumptions hold.

— David McKenzie, World Bank Development Impact Blog (McKenzie, 2022)

1 Introduction

Difference-in-differences (DiD) designs are widely used in practice to estimate causal effects.

One of the perceived advantages of DiD is that it does not require explicit assumptions on how

units select into treatment but instead relies on parallel trends assumptions. However, when

justifying DiD in empirical applications, researchers often argue that the treatment is “quasi-

randomly” assigned. Although these discussions allude to potential selection mechanisms,

they are often not explicit about what constitutes a “quasi-random” assignment, arguably

due to the lack of formal guidance. In this paper, we investigate the connection between

selection and parallel trends assumptions and thereby establish formal underpinnings for

justifying parallel trends in practice.

Consider the classical DiD setup, where we observe N units over two time periods. In

the first period, none of the units is treated; in the second period, some units select into

treatment (treatment group), while others remain untreated (control group).1 Let Yit(0)

denote the untreated potential outcome for unit i = 1, . . . , N in time period t = 1, 2. The

identifying assumption of DiD is the parallel trends assumption. This assumption requires

that the expected change across time in the untreated potential outcome, Yit(0), is identical

in the treatment and control group, formally

E[Yi2(0)− Yi1(0)|Gi = 1] = E[Yi2(0)− Yi1(0)|Gi = 0],

where Gi = 1 indicates the treatment group and Gi = 0 indicates the control group.

We begin our analysis with a separable model for the untreated potential outcome

Yit(0) = αi + λt + εit, (1)

1Several recent papers show that more general DiD setups with multiple periods and multiple groups
can be thought of as a sequence of DiD problems with two groups and two periods (e.g., de Chaisemartin
and D’Haultfœuille, 2020; Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021; Sun and Abraham, 2021).
Thus, for expositional simplicity and clarity, we focus on the classical DiD setting. Other multiple-period,
multiple-group DiD settings includes, e.g., Borusyak, Jaravel, and Spiess (2021); Gardner (2021); Marcus
and Sant’Anna (2021); Wooldridge (2021).
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where αi and εit are the time-invariant and time-varying unobservables, respectively. Equa-

tion (1) imposes separability in the unobservable determinants of the untreated potential

outcome and allows for a transparent discussion of our main theoretical results.2 To study

the role of selection into treatment, we consider a general selection mechanism that depends

on the unobservable determinants of the untreated potential outcomes as well as additional

unobservables (νi, ηi1, ηi2),

Gi = g(αi, εi1, εi2, νi, ηi1, ηi2). (2)

Here νi and ηit are vectors of time-invariant and time-varying unobservables, respectively, and

g(·) is an arbitrary function. The general selection mechanism in Equation (2) accommodates

selection based on untreated potential outcomes, selection based on treatment effects (Roy-

style selection), and other economic models of selection.

Our first contribution is to provide necessary and sufficient conditions for parallel trends,

which clarify the empirical content of this key assumption. We consider two scenarios to

characterize the trade-offs between restrictions on selection and time-varying unobservables.

First, suppose that researchers are not willing to impose a specific model for the selection

mechanism. We show that absent any restrictions on how selection depends on εi1 and εi2,

parallel trends holds if and only if εit is time-invariant. This condition is generally implausible

since it implies that the untreated potential outcomes are constant across time up to location

shifts, λt. We therefore consider restricted selection mechanisms: (i) if selection does not

depend on εi2, parallel trends implies a martingale-type property on εit; (ii) if selection does

not depend on (εi1, εi2), parallel trends implies that the conditional mean of εit given αi does

not vary across time. Under high-level conditions on the conditional expectation of Gi, the

latter two necessary conditions are also sufficient for parallel trends.

Alternatively, suppose that researchers are not willing to impose any restrictions on the

distribution of (time-varying) unobservables, then parallel trends holds if and only if selection

is independent of the time-varying unobservable determinants of the untreated potential

outcome. Together with the other necessary and sufficient conditions, this result implies

that parallel trends cannot hold absent additional restrictions on the selection mechanism

or the distribution of (time-varying) unobservables.

These necessary and sufficient conditions raise two questions: (i) Can parallel trends

hold if Yit(0) varies across time beyond location shifts and selection depends on both εi1 and

εi2, albeit in a restricted way? (ii) Are there interpretable primitive sufficient conditions for

parallel trends when researchers are willing to restrict which (if any) time-varying unobserv-

2Note that, even under the separable outcome model (1), parallel trends may not hold without further
restrictions on the selection mechanism.
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ables enter the selection mechanism? We show that the answer to both questions is yes. We

provide three sets of primitive sufficient conditions that differ in terms of whether and how

εi1 and εi2 affect selection. These sufficient conditions constitute theory-based templates for

justifying parallel trends based on contextual information about selection. We illustrate the

sufficient conditions based on two examples of selection mechanisms where selection is based

on untreated potential outcomes and treatment effects (Roy-style selection).

We then examine the role of (time-varying) covariates in DiD analyses.3 We start by

incorporating them into the separable model,

Yit(0) = αi + λt + γt(Xit) + εit, (3)

where γt(·) is an arbitrary, potentially time-varying nonparametric function of the covariates.

We provide interpretable conditions that imply conditional parallel trends. These conditions

generalize the sufficient conditions for unconditional parallel trends by allowing covariates to

enter the selection mechanism and by conditioning on them in all distributional restrictions.

Our analysis highlights the importance of time-varying covariates in weakening the suf-

ficient conditions for parallel trends. In all our sufficient conditions, time-varying covariates

can enter the selection mechanism in an unrestricted way. In particular, they do not have to

obey the restrictions imposed on the time-varying unobservables. Furthermore, conditioning

on both time-invariant and time-varying covariates makes the restrictions on the distribution

of unobservables more plausible.

Finally, we generalize our analysis to a nonseparable model, where covariates and unob-

servables can interact,

Yit(0) = µ(Xµ
it, α

µ
i , ε

µ
it) + λt(X

λ
it, α

λ
i , ε

λ
it). (4)

Here we allow the selection mechanism to depend on all covariates as well as the unobserv-

ables that enter the time-invariant component of the structural function, µ(·). We show

that many of the insights from our analysis of the separable model remain valid. However,

nonseparability between the covariates and the unobservables determining selection implies

that parallel trends can only hold within subpopulations for which these covariates do not

vary across time. This analysis highlights that the role of covariates in DiD analyses depends

on how they enter the outcome model. It also sheds light on the connection between parallel

trends and identifying assumptions in nonseparable panel models (e.g. Altonji and Matzkin,

2005; Chernozhukov, Fernández-Val, Hahn, and Newey, 2013) as well as unconfoundedness

3We assume that covariates are not affected by the treatment. See Caetano, Callaway, Payne, and
Rodrigues (2022) for some recent results relaxing this assumption.

3



(e.g., Imbens, 2004; Imbens and Wooldridge, 2009).

Our analysis has important implications for empirical practice. First, our necessary and

sufficient conditions demonstrate that (implicit) assumptions on selection are unavoidable

in DiD analyses. Second, we expand the set of formally grounded arguments for justifying

DiD based on contextual knowledge about selection, thereby providing formal guidance on

what constitutes “quasi-random” assignment. Finally, our results provide guidance on which

covariates to include in DiD analyses to render the required identification conditions more

plausible. We discuss these implications in detail in Section 6.

This paper contributes to several branches of the causal inference literature. Our first

contribution is to the classical literature on canonical DiD setups without covariates. See,

e.g., Ashenfelter (1978), Ashenfelter and Card (1985), Heckman and Robb (1985), Card

(1990), Card and Krueger (1994), Meyer, Viscusi, and Durbin (1995), and Angrist and

Krueger (1999) for early developments, and Section 2 of Lechner (2010) for a historical

perspective. Our contribution is to provide foundations for the parallel trends assumption

to hold in non-experimental settings, where selection into treatment may depend on time-

invariant and time-varying unobservables.

Our second contribution is to the more recent literature on DiD methods. See, e.g.,

de Chaisemartin and D’Haultfœuille (2021) and Roth, Sant’Anna, Bilinski, and Poe (2022)

for surveys. Within this strand of the literature, our paper is most closely related to Roth

and Sant’Anna (2021), Arkhangelsky and Imbens (2022), and Arkhangelsky, Imbens, Lei,

and Luo (2021), though our focus greatly differs from theirs. Roth and Sant’Anna (2021)

discuss necessary and sufficient conditions under which the parallel trends assumption is

satisfied for all (monotonic) transformations of the untreated potential outcome. We, on

the other hand, take the outcome model (and thus the specific transformation) as given and

study the connection between parallel trends and selection into treatment. Arkhangelsky

and Imbens (2022) and Arkhangelsky, Imbens, Lei, and Luo (2021) propose doubly robust

estimation methods that leverage restrictions on outcome models and/or selection models

with unconfoundedness-type restrictions; see also Athey, Bayati, Doudchenko, Imbens, and

Khosravi (2021). Our results complement theirs as we maintain the parallel trends assump-

tion and discuss the types of restrictions on selection compatible with it.

Our third contribution is to the literature imposing explicit selection and/or outcome

models to develop and compare different methods for estimating treatment effects, includ-

ing DiD (e.g., Ashenfelter and Card, 1985; Heckman and Robb, 1985; Chabé-Ferret, 2015;

Verdier, 2020; Marx, Tamer, and Tang, 2022). These selection mechanisms were developed

for economic models, some of which are tailored to applications such as job training and

technology adoption. Our results complement this strand of the literature in several ways.
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First, our necessary and sufficient conditions are derived for general selection and outcome

models that nest models considered in this literature. Our conditions thus clarify trade-offs

between assumptions on selection and time-varying unobservables that are relevant for those

models. Second, our primitive sufficient conditions nest several of the existing application-

specific restrictions. Third, we provide results for both separable and nonseparable models

and clarify the role of covariates in the context of parallel trends assumptions.

Finally, we connect the DiD assumptions to the literature on nonparametric identification

in nonseparable panel models.4 A strand of this literature has analyzed the identification

of average effects either by allowing for fixed effects and imposing time homogeneity (e.g.

Hoderlein and White, 2012; Chernozhukov, Fernández-Val, Hahn, and Newey, 2013) or re-

stricting individual heterogeneity via nonparametric correlated random effects assumptions

(e.g. Altonji and Matzkin, 2005; Bester and Hansen, 2009). We establish an explicit con-

nection between DiD and the literature on nonseparable panel models. We show that our

sufficient conditions for parallel trends imply combinations of time homogeneity and (corre-

lated) random effects restrictions. Our results demonstrate how restrictions on the selection

mechanism can be used to justify identification assumptions in the nonseparable panel lit-

erature.

Notation. For a random vector Wit, where i = 1, . . . , N and t = 1, 2, we denote its time

series by Wi ≡ (Wi1,Wi2). We use FW to denote the distribution of the random vector W .

Let f(z, w) be a function defined on Z × W . We say that f(z, w) is a trivial function of

w if f(z, w) = f(z, w′) = h(z) for all z ∈ Z, w 6= w′, and (w,w′) ∈ W2. We say that

f(z, w) is a symmetric function in z and w if f(z, w) = f(w, z) for all (z, w) ∈ Z × W .

For a vector Wi, W
j
i is the jth element of Wi. We use the notation

d
= to denote equality

of distribution. For random variables, Xi, Zi, and Wi, Zi|Wi, Xi
d
= Zi|Xi,Wi denotes that

FZi|Wi,Xi(z|w, x) = FZi|Xi,Wi
(z|w, x) for (z, w, x) ∈ Z ×W ×X .

4See, e.g., Altonji and Matzkin (2005); Bester and Hansen (2009); Hoderlein and White (2012); Cher-
nozhukov, Fernández-Val, Hahn, and Newey (2013); Ghanem (2017). This work extends notions of fixed
effects and correlated random effects that originated in the linear model (Mundlak, 1961, 1978; Chamber-
lain, 1982, 1984). Recent surveys (Arellano and Honoré, 2001; Arellano and Bonhomme, 2011) and textbook
treatments (Arellano, 2003; Wooldridge, 2010) further describe the role of restrictions on time and individual
heterogeneity in linear and nonlinear models. Such restrictions have been imposed in the context of iden-
tification in limited dependent variable models (e.g. Manski, 1987; Honoré, 1993; Kyriazidou, 1997; Honoré
and Kyriazidou, 2000a,b) and random coefficient models (e.g. Chamberlain, 1992; Graham and Powell, 2012;
Arellano and Bonhomme, 2012). Nonparametric identification of panel models with additivity restrictions
has been examined, e.g., in Evdokimov (2010) and Freyberger (2017).
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2 Setup and parallel trends assumptions

Consider the classical DiD setup with two groups and two periods. While several recent

papers have considered more general setups with multiple periods and groups, they typically

show that these more general setups can be thought of as a sequence of DiD problems with

two groups and two periods.5 Thus, for expositional simplicity and clarity, we focus on the

classical two-period, two-group setup.

Let Dit and Yit denote the treatment status and outcome for individual (or unit) i in

period t. The treatment group (Gi = 1) selects the following treatment path, Di = (0, 1);

the control group (Gi = 0) selects Di = (0, 0). The potential outcomes with and without

the treatment are Yit(1) and Yit(0), respectively.6

Identification in DiD settings relies on parallel trends assumptions.7 In Section 3, we

abstract from covariates and consider the following unconditional parallel trends assumption.

Assumption PT. The (unconditional) parallel trends assumption holds:

E[Yi2(0)− Yi1(0)|Gi = 1] = E[Yi2(0)− Yi1(0)|Gi = 0].

Under Assumption PT, the unconditional average treatment effect on the treated (ATT)

is identified as

E[Yi2(1)− Yi2(0)|Gi = 1] = E[Yi2 − Yi1|Gi = 1]− E[Yi2 − Yi1|Gi = 0].

In many applications, parallel trends may only be plausible conditional on covariates

(e.g., Heckman, Ichimura, and Todd, 1997; Abadie, 2005; Sant’Anna and Zhao, 2020). While

many existing approaches focus on time-invariant covariates, we explicitly allow for a vector

of both time-invariant and time-varying covariates, Xit, assuming that Xit is not affected by

the treatment.

In Section 4, we examine the model in (3), which is separable in observables and unob-

servables. We consider the following parallel trends assumption, which is conditional on the

time series of the covariates.

5See, e.g., de Chaisemartin and D’Haultfœuille (2020); Callaway and Sant’Anna (2021); Goodman-Bacon
(2021); Sun and Abraham (2021).

6We assume that the units do not anticipate their treatment. As a result, at period t = 1 we observe
untreated outcomes for all units, Yi1(0), while at t = 2 we observe Yi2(1) for treated and Yi2(0) for untreated
units.

7For identification strategies that rely on alternative assumptions, see, e.g., Athey and Imbens (2006);
Bonhomme and Sauder (2011); Callaway, Li, and Oka (2018); de Chaisemartin and D’Haultfœuille (2017);
Callaway and Li (2019); D’Haultfœuille, Hoderlein, and Sasaki (2021).
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Assumption PT-X. The conditional parallel trends assumption holds:

E[Yi2(0)− Yi1(0)|Gi = 1, Xi] = E[Yi2(0)− Yi1(0)|Gi = 0, Xi] almost surely (a.s.).

Under Assumption PT-X, the conditional ATT is identified as

E[Yi2(1)− Yi2(0)|Gi = 1, Xi] = E[Yi2 − Yi1|Gi = 1, Xi]− E[Yi2 − Yi1|Gi = 0, Xi].

The unconditional ATT can then be obtained by integrating out with respect to the distri-

bution of Xi conditional on Gi = 1,

E[Yi2(1)− Yi2(0)|Gi = 1] = E [E[Yi2 − Yi1|Gi = 1, Xi]− E[Yi2 − Yi1|Gi = 0, Xi]|Gi = 1] .

In Section 5, we examine the model in (4), which is nonseparable in observables and

unobservables. In this context, it is crucial to differentiate between the covariates that

interact with the unobservable determinants of selection, Xµ
it, and those that do not, Xλ

it.

Intuitively, this is because in general we cannot have parallel trends between treatment and

control subpopulations that experience changes in Xµ
it over time. We therefore examine the

following modified version of Assumption PT-X.

Assumption PT-NSP. The (modified) conditional parallel trends assumption holds:

E[Yi2(0)− Yi1(0)|Gi, X
λ
i , X

µ
i1 = Xµ

i2] = E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2] a.s.

Under Assumption PT-NSP, we can no longer identify the ATT, E[Yi2(1)−Yi2(0)|Gi = 1],

because we cannot identify the conditional ATT, E[Yi2(1)−Yi2(0)|Gi = 1, Xλ
i , X

µ
i ]. Instead,

we can identify the following conditional ATT,

E[Yi2(1)− Yi2(0)|Gi = 1, Xλ
i , X

µ
i1 = Xµ

i2].

After integrating out with respect to the distribution of covariates, we can identify the ATT

for subpopulations that do not experience changes in Xµ
it,

E[Yi2(1)− Yi2(0)|Gi = 1, Xµ
i1 −X

µ
i2 = 0].

It is important to note that if Xµ
it is time-invariant, then Xµ

i1 = Xµ
i2 holds by definition such

that Assumptions PT-X and PT-NSP are equivalent.

Remark 1 (Parallel trends and functional form). Throughout this paper, for both separable

and nonseparable models, we take the functional form of the outcome as given. We thereby
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abstract from the issues arising from the sensitivity of DiD to functional form specification;

see Roth and Sant’Anna (2021) for a discussion.

3 Selection and parallel trends in separable models

In this section, we examine the trade-off between restrictions on the selection mechanism

and the distribution of unobservables in the context of the parallel trends assumption. In

order to keep the presentation transparent, we start with a separable outcome model without

covariates here and extend the analysis to covariates in Section 4 and to nonseparable models

in Section 5.

3.1 Model

We consider a model for the potential outcomes without the treatment that is separable in

the time-invariant and time-varying unobservables.

Assumption SP.

Yit(0) = αi + λt + εit, E[εit] = 0, i = 1, . . . , N, t = 1, 2.

In Assumption SP, αi is the time-invariant unobservable, λt is the (non-stochastic) time

fixed effect, and εit is the time-varying, individual-specific unobservable.8 The assumption

that the time-varying unobservables have mean zero, E[εit] = 0, is a normalization. It is

without loss of generality since we can always redefine λt such that this assumption holds.

In what follows, we denote the supports of αi and εit as A and E , respectively.9

Remark 2 (Two-way fixed effects model). Assumption SP does not impose the standard

two-way fixed effects model for the realized outcomes,

Yit = δDit + αi + λt + εit,

which imposes treatment effect homogeneity. Since Assumption SP does not restrict the

potential outcome with the treatment, Yit(1), it is consistent with arbitrary treatment effect

heterogeneity.

To analyze the role of selection, it is useful to express Assumption PT equivalently as an

orthogonality condition.

8The assumption that λt is non-stochastic is w.l.o.g. since we can always reparametrize the model as
Yit(0) = αi + λ̃t + ε̃it, where λ̃t is stochastic and E[λ̃t] = λt and ε̃it = εit − (λ̃t − λt).

9For simplicity, we assume that the supports do not depend on (i, t).
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Lemma 3.1 (Equivalence). Suppose that Assumption SP holds and that P (Gi = 1) ∈ (0, 1).

Then Assumption PT is equivalent to E[Gi(εi2 − εi1)] = 0.

Recall that under Assumption SP, the counterfactual trend for each unit i, Yi2(0)−Yi1(0),

consists of two components: a common component, λ2 − λ1, and an individual-specific

component, εi2 − εi1. Lemma 3.1 allows us to state Assumption PT as an orthogonality

condition between the selection indicator and the individual-specific component.

The key implication of Lemma 3.1 is that for Assumption PT to hold, we need to impose

additional restrictions on the selection mechanism and/or the distribution of the time-varying

unobservables. To formalize these additional restrictions, we consider a general selection

mechanism in which units may select into treatment based on the unobservable determinants

of the untreated potential outcomes, (αi, εi1, εi2), as well as additional time-invariant and

time-varying vectors of random variables, (νi, ηi1, ηi2),

Gi = g(αi, εi1, εi2, νi, ηi1, ηi2). (5)

This general selection mechanism accommodates many different types of selection, including

random assignment, selection based on past outcomes, Roy-style selection based on treatment

effects, and other selection mechanisms based on economic decision problems (e.g. Heckman

and Robb, 1985; Chabé-Ferret, 2015). Let Gall denote the set of all selection mechanisms

g(·) that map from the support of the unobservables to {0, 1}.
Under the selection mechanism (5), Assumption SP does not imply the PT assumption

without further restrictions. In Section 3.2, we examine the trade-offs between restrictions

on the selection mechanism and the distribution of unobservables by deriving necessary and

sufficient conditions for Assumption PT.

3.2 Necessary and sufficient conditions for parallel trends

To better understand the implications of the parallel trends assumption, we derive necessary

and sufficient conditions for this assumption in two scenarios. The first scenario is where

researchers are not willing to impose a model for the selection mechanism g(·) and want par-

allel trends to hold for any g(·) in a prespecified class (Scenario I). In the second scenario,

researchers are not willing to restrict the distribution of unobservables Fαi,εi1,εi2,νi,ηi1,ηi2 and

want parallel trends to hold for all Fαi,εi1,εi2,νi,ηi1,ηi2 (Scenario II). These two scenarios clarify

the trade-offs between restrictions on selection into treatment and time-varying unobserv-

ables.

Remark 3 (Nonseparable models). In Appendix A, we derive necessary and sufficient con-

9



ditions for a fully nonseparable, potentially time-varying potential outcome model,

Yit(0) = ξt(αi, εit),

where αi, εi1 and εi2 are random vectors. As we discuss in Remarks 4 and 5, the results for

the nonseparable model highlight similar trade-offs as those for separable models.

3.2.1 Scenario I: Parallel trends for any selection mechanism

Suppose that researchers are not willing to impose a specific model for the selection mech-

anism g(·) and want parallel trends to hold for any fixed g ∈ G, where G is a (potentially

restricted) class of selection mechanisms. This requirement can be interpreted as a “ro-

bustness” requirement. We start by analyzing a scenario where researchers are not willing

to make any assumptions on the selection mechanism so that parallel trends needs to hold

for any fixed g ∈ Gall and then also consider two scenarios where parallel trends holds for

restricted versions of Gall.
The following proposition provides a necessary and sufficient condition for parallel trends

absent any restrictions on the selection mechanism.

Proposition 3.1 (Necessary and sufficient condition for g ∈ Gall). Suppose that Assumption

SP holds. Suppose further that P (Gi = 1) ∈ (0, 1), ν1i ⊥ (αi, εi1, εi2), P (ν1i > c) ∈ (0, 1) for

some c ∈ R, and P (εi2 ≥ εi1) > 0. Then Assumption PT holds for any fixed g ∈ Gall if and

only if εi1 = εi2 a.s.

The “if” direction of the proof is straightforward. The “only if” direction follows by

noting that if Assumption PT holds for all g ∈ Gall, then it holds for g(αi, εi1, εi2, νi, ηi1, ηi2) =

1{ν1i > c}1{εi2 ≥ εi1}. By Lemmas 3.1 and B.1, this specific choice of selection mechanism

can be shown to imply the result.

Proposition 3.1 shows that Assumption PT holds for any fixed selection mechanism g(·) if

and only if the time-varying unobservables are in fact time-invariant. Put simply, if one were

to allow for an unrestricted selection mechanism, one would need to rule out time-varying

shocks. Given that this condition is implausible in many applications, we next provide

necessary and sufficient conditions under restricted versions of the selection mechanism.

We consider two restrictions on the selection mechanism. First, we examine a class of

selection mechanisms in which selection does not depend on the time-varying unobservable

10



determinant of Yi2(0),10

G1 = {g ∈ Gall : g(a, e1, e2, v, t1, t2) is a trivial function of e2}.

Second, we do not allow the time-varying unobservable determinants of Yi1(0) and Yi2(0) to

enter the selection mechanism and consider the following class of selection mechanisms,

G2 = {g ∈ Gall : g(a, e1, e2, v, t1, t2) is a trivial function of (e1, e2)}.

The next two propositions provide necessary and sufficient conditions for parallel trends

when the selection mechanism belongs to G1 and G2, respectively.

Proposition 3.2 (Necessary and sufficient condition for g ∈ G1). Suppose that Assumption

SP holds. Suppose further that P (Gi = 1) ∈ (0, 1), ν1i ⊥ (αi, εi1, εi2), P (ν1i > c) ∈ (0, 1)

for some c ∈ R, and P (E[εi2|αi, εi1] ≥ εi1) > 0. If Assumption PT holds for any fixed

g ∈ G1, then E[εi2|αi, εi1] = εi1 a.s. If, in addition, E[Gi|αi, εi1, εi2] = E[Gi|αi, εi1] a.s.,

E[εi2|αi, εi1] = εi1 a.s. is also sufficient for Assumption PT.

Proposition 3.3 (Necessary and sufficient condition for g ∈ G2). Suppose that Assumption

SP holds. Suppose further that P (Gi = 1) ∈ (0, 1), ν1i ⊥ (αi, εi1, εi2), P (ν1i > c) ∈ (0, 1)

for some c ∈ R, and P (E[εi2|αi] ≥ E[εi1|αi]) > 0. If Assumption PT holds for any fixed

g ∈ G2, then E[εi1|αi] = E[εi2|αi] a.s. If, in addition, E[Gi|αi, εi1, εi2] = E[Gi|αi] a.s.,

E[εi1|αi] = E[εi2|αi] a.s. is also sufficient for Assumption PT.

The two propositions demonstrate that while parallel trends is compatible with the pres-

ence of time-varying unobservables under the restricted classes of selection mechanisms, it

implies time series restrictions on εit. Proposition 3.2 shows that for Assumption PT to hold

for any fixed selection mechanism that is a trivial function of εi2 (g ∈ G1), it is necessary

that E[εi2|αi, εi1] = εi1, a martingale-type property. This property is satisfied, for example,

if εi2 = εi1 + ζi2, where ζit is white noise. Moreover, when the conditional expectation of Gi

given (αi, εi1, εi2) does not depend on εi2, this martingale-type property is also sufficient for

parallel trends.

When we further restrict selection to be a trivial function of both εi1 and εi2, Proposition

3.3 shows that parallel trends implies that the conditional mean of εit given αi is stable

over time. This condition is implied by (and weaker than) the textbook strict exogeneity

assumption, E[εit|Gi, αi] = 0, as well as the time homogeneity assumption in Chernozhukov,

10The case where selection does not depend on the time-varying unobservable determinant of Yi1(0) is
symmetric. However, the resulting necessary condition would be implausible from a time-series perspective.
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Fernández-Val, Hahn, and Newey (2013). If E[Gi|αi, εi1, εi2] = E[Gi|αi], this condition is

also sufficient for parallel trends.

Remark 4 (Nonseparable models: Scenario I). The results for fully nonseparable outcome

models, Yit(0) = ξt(αi, εit), in Appendix A highlight similar trade-offs as in the separable

model. The necessary and sufficient condition for parallel trends for any fixed g ∈ Gall
is Yi1(0) − E[Yi1(0)] = Yi2(0) − E[Yi2(0)] a.s. (Proposition A.1). That is, the untreated

potential outcome does not vary across time except for location shifts as in Proposition 3.1.

It is worth noting that for outcomes with finite support, this condition would generally rule

out location shifts.

Similar to Propositions 3.2 and 3.3, Propositions A.2 and A.3 show that parallel trends

for any fixed g ∈ G1 and g ∈ G2 in the context of the fully nonseparable outcome model implies

a martingale-type property and stability of the conditional mean of the demeaned untreated

potential outcome across time, respectively.

3.2.2 Scenario II: Parallel trends for any distribution of unobservables

Consider a scenario where researchers are not willing to impose any restrictions on the

distribution of unobservables, Fαi,εi1,εi2,νi,ηi1,ηi2 and require parallel trends to hold for all

Fαi,εi1,εi2,νi,ηi1,ηi2 .

The following proposition shows that Assumption PT holds for all Fαi,εi1,εi2,νi,ηi1,ηi2 in

a complete class if and only if selection is independent of the time-varying unobservables

(εi1, εi2). Before we state the proposition, we recall the definition of a complete class of

distributions (Equations (4.8)–(4.9) on p.115 in Lehmann and Romano, 2005).

Definition 3.1 (Completeness of a class of distributions). Let W be a vector of random

variables. A family of distributions F is complete if

E[f(W )] = 0 for all FW ∈ F

implies

f(w) = 0 almost everywhere (a.e.) F .

Proposition 3.4 (Necessary and sufficient condition for any distribution of unobservables).

Suppose that Assumptions SP holds. Suppose further that g ∈ Gall and Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F ,

where F is a complete family of distributions satisfying P (εi1 6= εi2) = 1, E[εi1] = E[εi2] = 0,

and P (Gi = 1) ∈ (0, 1). Assumption PT holds for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F if and only if

P (Gi = 1|εi1, εi2) = P (Gi = 1) a.s. for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F .
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In Proposition 3.4, we require Fαi,εi1,εi2,νi,ηi1,ηi2 to belong to a complete family of distri-

butions, F . Completeness requires that the class of possible distributions of unobservables

is rich enough. This condition is key for showing that parallel trends implies that selection

is independent of εi1 and εi2.

Remark 5 (Nonseparable models: Scenario II). For the fully nonseparable model Yit(0) =

ξt(αi, εit), Proposition A.4 shows that parallel trends holds if and only if P (Gi = 1|αi, εi1, εi2) =

P (Gi = 1) a.s. This condition requires selection to be independent of all unobservable deter-

minants of the untreated potential outcomes. It is stronger than the corresponding result for

the separable model in Proposition 3.4.

Taken together, our necessary and sufficient conditions show that Assumption PT can-

not hold absent additional restrictions on the selection mechanism and the distribution of

unobservables. In particular, these results highlight the role of restrictions on time-varying

unobservables, either in terms of how they vary over time or how they determine selection.

As a result, researchers using DiD approaches cannot avoid making meaningful and nontrivial

assumptions on selection and time-varying unobservables.

3.3 Primitive sufficient conditions for parallel trends

The results in the previous section illustrate that restrictions on time-varying unobservables

are necessary for parallel trends to hold. If researchers are not willing to rule out that

the time-varying unobservable determinants of the untreated potential outcomes enter the

selection mechanism, then parallel trends implies that the untreated potential outcomes are

constant over time up to location shifts (Proposition 3.1). While, naturally, this condition

is sufficient for parallel trends to hold, it is implausible in practice. Propositions 3.2 and

3.3 demonstrate necessary conditions that allow the untreated potential outcomes to vary

over time beyond location shifts. However, these conditions are only sufficient under further

high-level restrictions on the conditional expectation of Gi.

Our analysis in the previous section thus raises two questions: (i) Is there a set of primitive

sufficient conditions that allows for selection on both εi1 and εi2 and allows Yit(0) to vary

across time beyond location shifts? (ii) What are primitive sufficient conditions that imply

parallel trends if g ∈ G1 and g ∈ G2, respectively? The goal of this section is to answer these

two questions and illustrate the primitive conditions in the context of two classical examples

of selection mechanisms: selection based on untreated potential outcomes and selection based

on treatment effects (Roy-style selection).
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3.3.1 Sufficient conditions

The first primitive sufficient condition demonstrates a case where selection depends on both

εi1 and εi2 and the untreated potential outcomes can vary beyond location shifts across time.

To state the condition, we define the class of symmetric selection mechanisms:

Gsym = {g ∈ Gall : g(a, e1, e2, v, t1, t2) is a symmetric function in e1 and e2}

Assumption SC1. The following conditions hold:

1. Gi = g(αi, εi1, εi2, νi, ηi1, ηi2), where g ∈ Gsym.

2. (νi, ηi1, ηi2)|αi, εi1, εi2
d
= (νi, ηi1, ηi2)|αi, εi2, εi1.

3. εi1, εi2|αi
d
= εi2, εi1|αi.

While Assumption SC1.1 allows selection to depend on both εi1 and εi2, it requires the

selection mechanism to be symmetric in them. Assumptions SC1.2 and SC1.3 require two

different types of exchangeability restrictions. Assumption SC1.2 requires that the condi-

tional distribution of (νi, ηi1, ηi2) is exchangeable in εi1 and εi2 after conditioning on αi. This

notion of exchangeability has been employed, for example, in Altonji and Matzkin (2005).

By contrast, Assumption SC1.3 requires the distribution of (εi1, εi2) to be exchangeable con-

ditional on αi. Overall, Assumption SC1 consists of symmetry restrictions on how εi1 and

εi2 enter the selection mechanism and the distribution of unobservables.

The next two sufficient conditions provide restrictions on the selection mechanism and

the distribution of unobservables for the restricted classes of selection mechanisms G1 and G2.

Assumption SC2. The following conditions hold:

1. Gi = g(αi, εi1, εi2, νi, ηi1, ηi2), where g ∈ G1.

2. (νi, ηi1, ηi2)|αi, εi1, εi2
d
= (νi, ηi1, ηi2)|αi, εi1.

3. E[εi2|αi, εi1] = εi1.

Assumption SC3. Suppose that the following conditions hold:

1. Gi = g(αi, εi1, εi2, νi, ηi1, ηi2), where g ∈ G2.

2. (νi, ηi1, ηi2)|αi, εi1, εi2
d
= (νi, ηi1, ηi2)|αi.

3. E[εi1|αi] = E[εi2|αi].
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Assumptions SC2.3 and SC3.3 impose the necessary conditions for parallel trends to hold

when g ∈ G1 and g ∈ G2, respectively. The remaining conditions in Assumptions SC2 and

SC3 provide primitive conditions on g(·) and the conditional distribution of (νi, ηi1, ηi2) that

imply the additional conditional mean independence restriction on Gi in Propositions 3.2

and 3.3, respectively.

The next proposition shows that Assumptions SC1, SC2 and SC3 are indeed sufficient

for Assumption PT.

Proposition 3.5 (Sufficient conditions for parallel trends). Suppose that Assumption SP

holds. Suppose further that P (Gi = 1) ∈ (0, 1). Then (i) Assumption SC1 implies Assump-

tion PT, (ii) Assumption SC2 implies Assumption PT, and (iii) Assumption SC3 implies

Assumption PT.

The key step in the proof of Proposition 3.5 is to show that the conditions imposed on

g(·) and the conditional distribution of (νi, ηi1, ηi2) imply specific properties of the projected

selection mechanism,

ḡ(a, e1, e2) = E[Gi|αi = a, εi1 = e1, εi2 = e2]. (6)

In (i), we show that the symmetry conditions on g(·) and the conditional distribution of

(νi, ηi1, ηi2) imply the symmetry of ḡ(·) in e1 and e2. Similarly, in (ii) and (iii), we show

that the conditions on g(·) and the conditional distribution of (νi, ηi1, ηi2) imply that ḡ(·)
is a trivial function of e2 and (e1, e2), respectively. Together with the restrictions on the

distribution of (αi, εi1, εi2), these conditions on ḡ(·) imply parallel trends by the law of

iterated expectations and Lemma 3.1.

3.3.2 Examples

In this section, we illustrate the primitive sufficient conditions for parallel trends using exam-

ples of classical selection mechanisms. We start by considering selection mechanisms where

selection into treatment is based on untreated potential outcomes.

Example 1 (Ashenfelter and Card (1985)-style selection mechanisms). Consider the fol-

lowing class of threshold-crossing selection mechanisms inspired by the selection mechanisms

considered by Ashenfelter and Card (1985),

Gi = 1 {Yi1(0) + βYi2(0) ≤ c} = 1 {(1 + β)αi + εi1 + βεi2 ≤ c̃} , (7)

where β ∈ [0, 1] is a discount factor and c̃ = c−λ1−βλ2. In Equation (7), selection depends
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only on the unobservable determinants of the untreated potential outcomes (αi, εi1, εi2) so that

the projected selection mechanism is equal to the selection mechanism Gi = ḡ(αi, εi1, εi2).

Under the selection model in Equation (7), Assumption SC1.1 requires that there is no

discounting, β = 1, so that selection depends on the sum of Yi1(0) and Yi2(0),

Gi = 1 {Yi1(0) + Yi2(0) ≤ c} = 1 {2αi + εi1 + εi2 ≤ c̃} . (8)

By contrast, Assumption SC2.1 requires that there is full discounting, β = 0, so that selection

depends only on Yi1(0),

Gi = 1 {Yi1(0) ≤ c} = 1 {αi + εi1 ≤ c̃} . (9)

The selection mechanism in Equation (9) corresponds to that considered on p.651 in Ashen-

felter and Card (1985). Finally, a simple example of a selection mechanism satisfying As-

sumption SC3.1 is Gi = 1{αi ≤ c}, which corresponds to the selection mechanism on p.650

in Ashenfelter and Card (1985).

Next, we present an example of Roy-style selection based on treatment effects. An

important takeaway from Proposition 3.5 is that none of the primitive sufficient conditions

impose any restrictions on how the additional unobservables (νi, ηi1, ηi2) determine selection.

This implies that parallel trends can be consistent with general selection mechanisms based

on (arbitrary functions of) time-varying treatment effects, as we illustrate in the following

example.

Example 2 (Roy-style selection). Consider the following random coefficients model for the

observed outcome,

Yit = αi + δitDit + λt + εit. (10)

Suppose that selection depends on an arbitrary function f(·) of the treatment effects (δi1, δi2)

as well as an individual-specific cost of treatment, ci, that may depend on αi,

Gi = 1{f(δi1, δi2) > ci}. (11)

Since the selection mechanism in (11) does not depend on (εi1, εi2), the conditions on g(·) in

Assumptions SC1, SC2, and SC3 hold immediately. We therefore only have to impose the

distributional restrictions in Assumptions SC1, SC2, and SC3. Specifically, for Assumption

SC1 to hold, the conditional distribution of the treatment effects and costs has to be exchange-

able in (εi1, εi2), i.e., (δi1, δi2, ci)|(αi, εi1, εi2)
d
= (δi1, δi2, ci)|(αi, εi2, εi1). For Assumption SC2
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to hold, the treatment effects and costs have to be independent of εi2 conditional on (αi, εi1),

formally (δi1, δi2, ci)|(αi, εi1, εi2)
d
= (δi1, δi2, ci)|(αi, εi1). Finally, for Assumption SC3 to hold,

it is sufficient that the treatment effects and costs are independent of (εi1, εi2) conditional on

αi, that is (δi1, δi2, ci) ⊥ (εi1, εi2)|αi.
This example illustrates that the time-varying treatment effects can enter the selection

mechanism in an unrestricted way. In fact, f(·) can depend on δi1 and δi2 asymmetrically

(e.g., f(·) could be a trivial function of one or the other, or there could be discounting). As a

result, in the context of Roy-style selection, researchers do not have to impose any restrictions

on how the selection mechanism depends on the treatment effects or costs. Instead, they have

to justify the required distributional restrictions.

On the one hand, the examples in this section show that parallel trends can be consistent

with a wide range of selection mechanisms. On the other hand, because parallel trends is

an assumption on the untreated potential outcomes, nontrivial restrictions may be required

when selection is based on those outcomes. For example, Ashenfelter and Card (1985)-style

selection on outcomes requires assumptions on discounting, while Roy-style selection does

not require any restrictions on the discounting of the treatment effects. We note, however,

that for parallel trends to hold in the Roy-style selection example, additional restrictions on

the conditional distribution of the treatment effects have to be satisfied.

4 Covariates in the separable model

In this section, we introduce covariates in the separable model. Our goals in this section

are two-fold. First, we show how conditioning on covariates weakens the sufficient condi-

tions. Second, we demonstrate how the sufficient conditions can allow for selection on both

observable and unobservable determinants of the untreated potential outcomes.

The following model extends Assumption SP to include a vector of time-invariant and

time-varying covariates, Xit.

Assumption SP-X.

Yit(0) = αi + λt + γt(Xit) + εit, E[εit] = 0, i = 1, . . . , N, t = 1, 2. (12)

Assumption SP-X allows for nonparametric covariate-specific trends, which is a key rea-

son for incorporating covariates in DiD analyses. It nests commonly-used parametric speci-

fications such as γt(Xit) = X ′itβt. Recall that we assume that the treatment does not affect

Xit. In what follows, we denote the support of Xit as X .
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To focus the discussion on the different roles played by the time-varying observable and

unobservable determinants of Yit(0), we state our sufficient conditions in terms of the pro-

jected selection mechanism,

ḡ(a, x1, x2, e1, e2) = E[Gi|αi = a,Xi1 = x1, Xi2 = x2, εi1 = e1, εi2 = e2]. (13)

Assumption SC1-X. The following conditions hold:

1. ḡ(a, x1, x2, e1, e2) is a symmetric function in e1 and e2.

2. εi1, εi2|αi, Xi
d
= εi2, εi1|αi, Xi.

Assumption SC2-X. The following conditions hold:

1. ḡ(a, x1, x2, e1, e2) is a trivial function of e2.

2. E[εi2 − εi1|Xi, αi, εi1] = E[εi2 − εi1|Xi].

Assumption SC3-X. The following conditions hold:

1. ḡ(a, x1, x2, e1, e2) is a trivial function of e1 and e2.

2. E[εi1|αi, Xi] = E[εi2|αi, Xi].

Assumptions SC1-X, SC2-X, and SC3-X demonstrate that incorporating time-varying

covariates makes the restrictions on the selection mechanism more plausible. Specifically,

none of the assumptions impose any restrictions on how the time-varying covariates deter-

mine selection. Assumptions SC1-X.2, SC2-X.2, and SC3-X.2 are conditional versions of

Assumptions SC1.3, SC2.3, and SC3.3, respectively.11 Conditioning on covariates weakens

those distributional restrictions, since they are more likely to be satisfied once we focus on

subpopulations with the same evolution of time-varying covariates.

The following proposition shows that Assumptions SC1-X, SC2-X, and SC3-X are suffi-

cient for Assumption PT-X.

Proposition 4.1. Suppose that Assumptions SP-X holds. Suppose further that P (Gi =

1|Xi) ∈ (0, 1) a.s. Then (i) Assumption SC1-X implies Assumption PT-X, (ii) Assumption

SC2-X implies Assumption PT-X, and (iii) Assumption SC3-X implies Assumption PT-X.

11To see that Assumption SC2-X.2 is the conditional version of Assumption SC2.3, note that the latter
can be equivalently stated as E[εi2 − εi1|αi, εi1] = E[εi2 − εi1], given the normalization, E[εit] = 0.
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The results in this section have implications for the choice of covariates to be included

in DiD analyses. Proposition 4.1 provides several avenues for justifying the inclusion of co-

variates in DiD analyses. A key takeaway from Proposition 4.1 is that time-invariant and

time-varying covariates play different roles in ensuring that Assumption PT-X holds. Any

(observable) time-varying factors that asymmetrically affect selection should be included as

covariates. In addition, practitioners should include time-invariant and time-varying covari-

ates that render the distributional restrictions plausible in their application.

All the sufficient conditions in Proposition 4.1 allow for selection on unobservable deter-

minants of the untreated potential outcome. This is in contrast with the unconfoundedness-

type assumptions commonly used in cross-sectional studies (e.g., Imbens, 2004; Imbens and

Wooldridge, 2009). Therefore, these results elucidate the differences between conditional

parallel trends and unconfoundedness-type assumptions.

The conclusions in this section crucially depend on the separability between covariates

and the unobservables that determine selection. Assumption PT-X will generally not hold

in models where αi and Xit interact. A simple example is a correlated random coefficients

model (e.g., Chamberlain, 1992), Yit(0) = αiXit + λt + εit, where the scalar Xit and αi

enter the selection mechanism. In the next section, we relax the separability restriction

and demonstrate the implications of relaxing separability for the type of conditional parallel

trends assumptions that can hold in this setting.

Remark 6 (Unconditional parallel trends and covariate-specific trends). A natural question

is whether and when unconditional parallel trends (Assumption PT) continue to hold despite

covariates entering the outcome equation as in Assumption SP-X. One can show that this

is possible if three conditions hold. First, the selection mechanism is conditionally mean

independent of the covariates, E[Gi|αi, Xi, εi1, εi2] = E[Gi|αi, εi1, εi2]. Second, the covari-

ates are independent of the unobservable determinants of the untreated potential outcomes,

(αi, εi1, εi2) ⊥ Xi. Finally, selection is orthogonal to the change in εit, E[Gi(εi2 − εi1)] = 0.

While this demonstrates a case where covariates may not be required for identification, even

if there are covariate-specific trends, the conditions are restrictive. Not only do they rule

out covariates determining selection, but covariates would also have to be independent of the

unobservable determinants of the untreated potential outcomes.

5 Selection in a nonseparable model with covariates

So far, we have studied separable models to keep the presentation transparent. However,

since DiD is a model-agnostic reduced-form approach, it is crucial to generalize the results

to nonseparable models for both practical and theoretical reasons. In doing so, we establish
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interesting connections between our sufficient conditions for parallel trends and identifying

assumptions from the nonseparable panel literature. Our results have important implications

for the choice of covariates in DiD analyses. See Section 6 for additional discussion of the

practical implications.

The necessary and sufficient conditions we provide in Section 3 illustrate the trade-offs

between restrictions on selection and the time-varying unobservables. Because the nonsepa-

rable model nests the separable model as a special case, these trade-offs remain relevant for

this more general class of models as we show in Appendix A. We therefore focus on primitive

sufficient conditions for Assumption PT-NSP in this section.

5.1 Model

We consider the following nonseparable model, which nests the models in Assumptions SP

and SP-X.

Assumption NSP.

Yit(0) = µ(Xµ
it, α

µ
i , ε

µ
it) + λt(X

λ
it, α

λ
i , ε

λ
it), i = 1, . . . , N, t = 1, 2,

where Xµ
it, X

λ
it, α

µ
i , αλi , εµit, and ελit are finite-dimensional vector-valued random variables.

The above model consists of time-invariant and time-varying nonseparable components.

Without further restrictions on the unobservables, the additive structure in Assumption

NSP is without loss of generality and the superscripts µ and λ are merely labels. Indeed,

it is possible that Xµ
it = Xλ

it, α
µ
i = αλi , and εµit = ελit, which implies that the model is fully

nonseparable and time-varying in an arbitrary way. In the following, we use Xµ, Xλ, A, and

E to denote the supports of Xµ
it, X

λ
it, α

µ
i , and εµit, respectively.

In view of our analysis of the separable models, it is natural to consider selection based

on the unobservables entering µ(·), since they can be viewed as the counterparts of the

unobservables in the separable model.12 We therefore impose the following condition on the

projected selection mechanism.

Assumption SEL-NSP.

E[Gi|αµi , αλi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2, ε

λ
i1, ε

λ
i2] = E[Gi|αµi , X

µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2].

Assumption SEL-NSP allows the projected selection mechanism to depend on all covari-

ates, but only on the unobservables that enter the time-invariant component of the structural

12To see this, note that the separable model in Assumption SP-X is nested in Assumption NSP by setting
µ(Xµ

it, α
µ
i , ε

µ
it) = αµi + εµit and λt(X

λ
it, α

λ
i , ε

λ
it) = λt + γt(X

λ
it).
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function. In view of Assumption SEL-NSP, we define the following notation:

ḡ(aµ, xµ1 , x
µ
2 , x

λ
1 , x

λ
2 , e

µ
1 , e

µ
2)

=E[Gi|αµi = aµ, Xµ
i1 = xµ1 , X

µ
i2 = xµ2 , X

λ
i1 = xλ1 , X

λ
i2 = xλ2 , ε

µ
i1 = eµ1 , ε

µ
i2 = eµ2 ].

5.2 Sufficient conditions

Here we present three sets of sufficient conditions for Assumption PT-NSP. Each set of con-

ditions consists of assumptions on the projected selection mechanism as well as distributional

restrictions on the unobservables.

Our first sufficient condition allows selection to depend on all covariates as well as the

unobservables that enter the time-invariant component of the structural function, while im-

posing a symmetry restriction on the projected selection mechanism similar to Assumptions

SC1 and SC1-X.

Assumption SC1-NSP. The following conditions hold:

1. ḡ(aµ, xµ1 , x
µ
2 , x

λ
1 , x

λ
2 , e

µ
1 , e

µ
2) is a symmetric function in eµ1 and eµ2 .

2. εµi1, ε
µ
i2|α

µ
i , X

µ
i , X

λ
i

d
= εµi2, ε

µ
i1|α

µ
i , X

µ
i , X

λ
i .

3. (αµi , ε
µ
i1, ε

µ
i2) ⊥ (αλi , ε

λ
i1, ε

λ
i2)|X

µ
i , X

λ
i .

Here we require the distribution of (εµi1, ε
µ
i2) to be exchangeable conditional on (αµi , X

µ
i , X

λ
i ).

Since the projected selection mechanism depends on (αµi , ε
µ
i1, ε

µ
i2), we require them to be in-

dependent of the unobservables entering λt(·) conditional on (Xµ
i , X

λ
i ).

As noted earlier, the exchangeability restriction in Assumption SC1-NSP is different from

the exchangeability assumption in Altonji and Matzkin (2005). The exchangeability assump-

tion in Altonji and Matzkin (2005) requires the conditional distribution of all unobservables

that enter µ(·) and λt(·) to be invariant to permutations of covariates in the conditioning

set, which is a nonparametric correlated random effects restriction (Ghanem, 2017). By

contrast, we assume that the time-varying unobservables are exchangeable conditional on

(αµi , X
µ
i , X

λ
i ) without imposing any restrictions on the distribution of αµi |Gi, X

µ
i , X

λ
i .

Next, in the spirit of Assumptions SC2 and SC2-X, we consider a projected selection

mechanism that is a trivial function of εµi2 in the following sufficient condition.

Assumption SC2-NSP. The following conditions hold:

1. ḡ(aµ, xµ1 , x
µ
2 , x

λ
1 , x

λ
2 , e

µ
1 , e

µ
2) is a trivial function of eµ2 .

2. (αµi , ε
µ
i1) ⊥ ∆µ,i|Xλ

i , X
µ
i1 = Xµ

i2, where ∆µ,i ≡ µ(Xµ
i2, α

µ
i , ε

µ
i2)− µ(Xµ

i1, α
µ
i , ε

µ
i1).
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3. (αµi , ε
µ
i1) ⊥ (αλi , ε

λ
i1, ε

λ
i2)|X

µ
i , X

λ
i .

Assumption SC2-NSP.2 implicitly imposes separability conditions on µ(·) and restrictions

on time series dependence. The independence condition in Assumption SC2-NSP.3 requires

that the unobservable determinants of selection are independent of the unobservables that

enter λt(·), conditional on the times series of the covariates.

The last sufficient condition restricts the projected selection mechanism to only depend

on covariates and the time-invariant unobservables.

Assumption SC3-NSP. The following conditions hold:

1. ḡ(aµ, xµ1 , x
µ
2 , x

λ
1 , x

λ
2 , e

µ
1 , e

µ
2) is a trivial function of eµ1 and eµ2 .

2. εµi1|α
µ
i , X

µ
i , X

λ
i

d
= εµi2|α

µ
i , X

µ
i , X

λ
i .

3. αµi ⊥ (αλi , ε
λ
i1, ε

λ
i2)|X

µ
i , X

λ
i .

Assumption SC3-NSP requires the distribution of εµit, which enters the time-invariant

component, to be time-invariant conditional on (αµi , X
µ
i , X

λ
i ). On the other hand, the unob-

servables that enter the time-varying component, (αλi , ε
λ
i1, ε

λ
i2), are required to be independent

of the unobservables that determine selection, αµi , conditional on (Xµ
i , X

λ
i ).

Looking across the three sufficient conditions, we can see that each of them consists of

three components: (i) a restriction on how/which unobservables determine the projected

selection mechanism, (ii) a restriction on the unobservables entering the time-invariant com-

ponent of the structural function, and (iii) an independence assumption that ensures that

the time-varying component of the structural function is independent of Gi conditional on

the time series of the covariates.

The following proposition shows that each of these conditions is sufficient for Assumption

PT-NSP.

Proposition 5.1. Suppose that Assumptions NSP and SEL-NSP hold. Suppose further that

P (Gi = 1|Xλ
i , X

µ
i1 = Xµ

i2) ∈ (0, 1) a.s. Then (i) Assumption SC1-NSP implies Assumption

PT-NSP, (ii) Assumption SC2-NSP implies Assumption PT-NSP, and (iii) Assumption

SC3-NSP implies Assumption PT-NSP.

5.3 Selection, fixed effects, and correlated random effects

DiD methods have traditionally been motivated using two-way fixed effects models. Fixed

effects assumptions allow for unrestricted dependence between time-invariant unobservables

and the regressors in separable and nonseparable models, thereby implicitly allowing for
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selection on time-invariant unobservables.13 In this paper, we explicitly analyze the con-

nection between selection mechanisms and the parallel trends assumptions underlying DiD.

Therefore, a natural question is how our sufficient conditions relate to the identification as-

sumptions in the panel literature, and those pertaining to nonseparable models in particular.

The literature on nonseparable panel models has considered two broad categories of iden-

tification assumptions. First, time homogeneity conditions (e.g., Hoderlein and White, 2012;

Chernozhukov, Fernández-Val, Hahn, and Newey, 2013) require the distribution of time-

varying unobservables to be stationary across time while allowing for unrestricted individual

heterogeneity (fixed effects). Second, nonparametric correlated random effects restrictions

(e.g., Altonji and Matzkin, 2005; Bester and Hansen, 2009) allow for unrestricted time het-

erogeneity by imposing restrictions on individual heterogeneity, generalizing the classical

notion of correlated random effects (e.g., Mundlak, 1978; Chamberlain, 1984). However,

neither category of assumptions is explicit about the selection mechanism and, in particular,

about how unobservables determine selection.

The existing identification results based on time homogeneity or correlated random effects

assumptions suggest a trade-off between restrictions on time and individual heterogeneity.

Here we show that our sufficient conditions for parallel trends constitute interpretable prim-

itive conditions on the selection mechanism that imply combinations of time homogeneity

and correlated random effects restrictions from the nonseparable panel literature. To sim-

plify the exposition, we abstract from covariates and assume that the selection mechanism

only depends on the unobservables that enter µ(·), Gi = g(αµi , ε
µ
i1, ε

µ
i2).

The following assumption is the time homogeneity assumption from Chernozhukov, Fernández-

Val, Hahn, and Newey (2013) imposed on εµit in Assumption NSP.

Assumption TH. εµi1|Gi, α
µ
i

d
= εµi2|Gi, α

µ
i

Assumption TH requires the distribution of εµit to be homogeneous across time conditional

on Gi and αµi . However, it does not impose any restrictions on the conditional distribution

of εµit given Gi and αµi . Furthermore, there are no restrictions imposed on the distribution

of αµi |Gi, consistent with the notion of fixed effects in the nonseparable panel literature

(Evdokimov, 2010; Hoderlein and White, 2012; Chernozhukov, Fernández-Val, Hahn, and

Newey, 2013).

The next assumption is a nonparametric random effects assumption (e.g., Altonji and

Matzkin, 2005; Ghanem, 2017).

Assumption RE. (αλi , ε
λ
i1, ε

λ
i2)|Gi

d
= (αλi , ε

λ
i1, ε

λ
i2).

13See, e.g., Chamberlain (1984); Arellano (2003); Evdokimov (2010); Wooldridge (2010); Hoderlein and
White (2012); Chernozhukov, Fernández-Val, Hahn, and Newey (2013).
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Assumption RE is an independence condition between Gi and the unobservables that en-

ter the time-varying component of the structural function, λt(·). This assumption does not

imply random assignment, (Yi1(0), Yi2(0)) ⊥ Gi, since selection into treatment can depend on

the unobservables entering the time-invariant component µ(·). With covariates, Assumption

RE is a correlated random effects restriction that takes the form of a conditional indepen-

dence assumption.

It is straightforward to show that Assumptions TH and RE imply Assumption PT. In

the following proposition, we show that Assumptions SC1-NSP and SC3-NSP are primi-

tive sufficient conditions on the selection mechanism for the nonseparable model satisfying

Assumptions TH and RE.14 This result demonstrates how restrictions on the selection mech-

anism can be used to justify combinations of Assumptions TH and RE.

Proposition 5.2. Suppose that Assumption NSP holds with Xµ
it = Xλ

it = ∅. Suppose further

that Gi = g(αµi , ε
µ
i1, ε

µ
i2). Then (i) Assumption SC1-NSP with g(·) in lieu of ḡ(·) implies

Assumptions TH and RE if P (Gi = 1|αµi = a) ∈ (0, 1) for all a ∈ A and (ii) Assumption

SC3-NSP with g(·) in lieu of ḡ(·) implies Assumptions TH and RE.

Given the selection mechanisms in Assumptions SC1-NSP and SC3-NSP, the results in

Proposition 5.2 follow from two observations. First, the restrictions on the unobservables

that enter µ(·) constitute primitive conditions for Assumption TH. Second, the independence

conditions imposed on the unobservables determining selection and those entering λt(·) imply

Assumption RE.

Proposition 5.2 sheds light on the connection between selection, fixed effects, and corre-

lated random effects in our nonseparable DiD framework. On the one hand, Assumptions

SC1-NSP and SC3-NSP allow the distribution of αµi |Gi to be unrestricted, consistent with

the notion of fixed effects. On the other hand, both conditions require (αλi , ε
λ
i1, ε

λ
i2) to be

independent of the determinants of selection and therefore independent of Gi, consistent

with the notion of random effects.

6 Implications for practice

This paper studies the connection between selection and parallel trends in DiD analyses. We

first provide necessary and sufficient conditions that demonstrate that researchers relying

on parallel trends assumptions implicitly impose restrictions on how selection depends on

unobservables. We then derive primitive sufficient conditions on selection for parallel trends

14In the context of correlated random coefficient models, Graham and Powell (2012) impose a similar
structure on their random coefficient. They assume that the random coefficient consists of a time-invariant
and time-varying component.

24



assumptions with and without covariates. These conditions provide practitioners with new

and explicit theory-based templates for justifying parallel trends assumptions based contex-

tual information on the selection mechanism.

The menu of primitive sufficient conditions consist of different combinations of restrictions

on (i) which/how unobservables determine selection and (ii) how their distribution varies

over time. We recommend that applied researchers relying on our conditions use contextual

information to assess and explicitly discuss which determinants of the untreated potential

outcome affect selection. Once a suitable selection mechanism is identified, the next step

is to discuss the plausibility of the corresponding assumption on the distribution of the

unobservables. In this context, periodicity is crucial both to distinguish between time-

invariant and time-varying factors and to justify the distributional assumptions. These

restrictions are typically more plausible the closer the pre- and post-treatment period are.

Our theoretical results have important implications for the role of covariates in DiD

analyses. First, they clarify how covariates can weaken restrictions on selection. We show

that time-varying covariates do not have to obey the strong symmetry and exclusion restric-

tions required for time-varying unobservables. Thus, researchers should include time-varying

factors that asymmetrically determine selection into treatment as covariates. Second, con-

ditioning on covariates makes the distributional restrictions on unobservables weaker/more

plausible. However, even after conditioning on covariates, researchers still have to take a

stance on how selection depends on the remaining unobservables. We emphasize that our

recommendations only apply to covariates that are unaffected by the treatment.

Finally, by analyzing parallel trends through the lens of nonseparable panel models, we

demonstrate the implications of separability restrictions on the outcome model for how re-

searchers should condition on covariates in their DiD analyses. If covariates and unobservable

determinants of selection enter the outcome model separably, researchers should condition

on the entire time series of covariates. If, in addition, there are covariates that interact

with the unobservable determinants of selection in the outcome model, researchers have to

condition on these covariates not changing over time. Indeed, even if treatment and control

groups experience the same change in these covariates, the two groups may not exhibit the

same counterfactual trends.
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A Necessary and sufficient conditions for nonseparable models

Here we provide necessary and sufficient conditions for parallel trends in the nonseparable

model. To simplify the exposition, we abstract from covariates. We derive the necessary

and sufficient conditions in the context of a fully nonseparable, time-varying outcome model

and a general selection mechanism that can depend on all unobservable determinants of the

outcome as well as additional unobservables (νi, ηi1, ηi2), where νi, ηi1 and ηi2 are vector-

valued random variables.

Assumption A.1 (Nonseparable model).

Yit(0) = ξt(αi, εit), i = 1, . . . , N, t = 1, 2,

where αi, εi1 and εi2 are finite-dimensional vector-valued random variables.

Consider the following general selection mechanism

Gi = g(αi, εi1, εi2, νi, ηi1, ηi2).
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Gall is the set of all selection mechanisms g(·) that maps from the support of the unobservables

to {0, 1}. We also consider the following restricted versions of Gall,

G1 = {g ∈ Gall : g(a, e1, e2, v, t1, t2) is a trivial function of e2},

G2 = {g ∈ Gall : g(a, e1, e2, v, t1, t2) is a trivial function of (e1, e2)}.

To simplify exposition, we use Ỹit(0) to denote the centered potential outcome without

the treatment, Ỹit(0) = Yit(0)− E[Yit(0)] for t = 1, 2.

Proposition A.1 (Necessary and sufficient condition for g ∈ Gall). Suppose that Assumption

A.1 holds. Suppose further that P (Gi = 1) ∈ (0, 1), ν1i ⊥ (αi, εi1, εi2), P (ν1i > c) ∈ (0, 1) for

some c ∈ R, and P (Ỹi2(0) ≥ Ỹi1(0)) > 0. Assumption PT holds for any fixed g ∈ Gall if and

only if Ỹi1(0) = Ỹi2(0) a.s.

Proof. “=⇒”: We show that if Assumption PT holds for any fixed g ∈ Gall, then Ỹi1(0) =

Ỹi2(0) a.s. Since Assumption PT holds for any fixed g ∈ Gall, then it holds for

ǧ(αi, εi1, εi2, νi, ηi1, ηi2) = 1{ν1i > c}1{Ỹi2(0)− Ỹi1(0) ≥ 0}.

By Lemma B.3, Assumption PT holding for ǧ(·) is equivalent to

E[1{ν1i > c}1{Ỹi2(0)− Ỹi1(0) ≥ 0}(Ỹi2(0)− Ỹi1(0))] = 0, (14)

which, by ν1i ⊥ (αi, εi1, εi2) and P (ν1i > c) > 0, is equivalent to

E[1{Ỹi2(0)− Ỹi1(0) ≥ 0}(Ỹi2(0)− Ỹi1(0))] = 0. (15)

Since E[Ỹi2(0) − Ỹi1(0)] = 0 by construction, the above equality implies that Ỹi1(0) =

Ỹi2(0) a.s. by Lemma B.1.

“⇐=”: We show that if Ỹi1(0) = Ỹi2(0) a.s., then Assumption PT holds for any fixed

g ∈ Gall. Note that if Ỹi1(0) = Ỹi2(0) a.s., then Gi(Ỹi2(0) − Ỹi1(0)) = 0 a.s. As a result,

E[Gi(Ỹi2(0) − Ỹi1(0))] = 0, which is the equivalent condition of Assumption PT by Lemma

B.3. This completes the proof.

Proposition A.2 (Necessary and sufficient condition for g ∈ G1). Suppose that Assumption

A.1 holds. Suppose further that P (Gi = 1) ∈ (0, 1), ν1i ⊥ (αi, εi1, εi2), P (ν1i > c) ∈ (0, 1)

for some c ∈ R, and P (E[εi2|αi, εi1] ≥ εi1) > 0. If Assumption PT holds for any fixed

2



g ∈ G1, then E[Ỹi2(0)|αi, εi1] = Ỹi1(0) a.s. If, in addition, E[Gi|αi, εi1, εi2] = E[Gi|αi, εi1],
E[Ỹi2(0)|αi, εi1] = Ỹi1(0) a.s. is also sufficient for Assumption PT.

Proof. “=⇒”: We show that if Assumption PT holds for any fixed g ∈ G1, then E[Ỹi2(0)|αi, εi1] =

Ỹi1(0) a.s. To show this, note that if Assumption PT holds for any fixed g ∈ G1, then it

holds for ǧ(αi, εi1, εi2, νi, ηi1, ηi2) = 1{ν1i > c}1{E[Ỹi2(0)|αi, εi1] − Ỹi1(0) ≥ 0}. By Lemma

B.3, Assumption PT holding for ǧ(·) is equivalent to

E[1{ν1i > c}1{E[Ỹi2(0)|αi, εi1]− Ỹi1(0) ≥ 0}(Ỹi2(0)− Ỹi1(0))] = 0, (16)

which, by ν1i ⊥ (αi, εi1, εi2) and P (ν1i > c) > 0, is equivalent to

E[1{E[Ỹi2(0)|αi, εi1]− Ỹi1(0) ≥ 0}(Ỹi2(0)− Ỹi1(0))] = 0. (17)

By the law of iterated expectations, this is further equivalent to

E[1{E[Ỹi2(0)|αi, εi1]− Ỹi1(0) ≥ 0}(E[Ỹi2(0)|αi, εi1]− Ỹi1(0))] = 0. (18)

Since E[E[Ỹi2(0)|αi, εi1] − Ỹi1(0)] = 0 by construction, the above equality implies that

E[Ỹi2(0)|αi, εi1] = Ỹi1(0) a.s. by Lemma B.1.

“⇐=”: We show that if, in addition, E[Gi|αi, εi1, εi2] = E[Gi|αi, εi1], then E[Ỹi2(0)|αi, εi1] =

Ỹi1(0) a.s. is sufficient for Assumption PT. Note that

E[Gi(Ỹi2(0)− Ỹi1(0))] = E[E[E[Gi|αi, εi1, εi2](Ỹi2(0)− Ỹi1(0)|αi, εi1]]

=E[E[E[Gi|αi, εi1](Ỹi2(0)− Ỹi1(0)|αi, εi1]]

=E[E[Gi|αi, εi1](E[Ỹi2(0)|αi, εi1]− Ỹi1(0)])] = 0, (19)

where the first equality follows from the law of iterated expectations. The second equality

follows from the conditional mean independence restriction imposed on Gi. The last equality

follows, since E[Ỹi2(0)|αi, εi1] = Ỹi1(0) a.s. implies E[Gi|αi, εi1](E[Ỹi2(0)|αi, εi1]−Ỹi1(0)]) = 0

a.s. As a result, the latter term has zero expectation. Since E[Gi(Ỹi2(0)− Ỹi1(0))] = 0 is the

equivalent condition for Assumption PT by Lemma B.3, this completes the proof.

Proposition A.3 (Necessary and sufficient condition g ∈ G2). Suppose that Assumption

A.1 holds. Suppose further that P (Gi = 1) ∈ (0, 1), ν1i ⊥ (αi, εi1, εi2), P (ν1i > c) ∈ (0, 1) for

some c ∈ R, and P (E[Ỹi2(0)|αi] ≥ E[Ỹi1(0)|αi]) > 0. If Assumption PT holds for any fixed

g ∈ G2, then E[Ỹi1(0)|αi] = E[Ỹi2(0)|αi] a.s. If, in addition, E[Gi|αi, εi1, εi2] = E[Gi|αi],
then E[Ỹi1(0)|αi] = E[Ỹi2(0)|αi] a.s. is also sufficient for Assumption PT.
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Proof. “=⇒”: We show that if Assumption PT holds for any fixed g ∈ G2, then E[Ỹi1(0)|αi] =

E[Ỹi2(0)|αi] a.s. To do so, note that if Assumption PT holds for any fixed g ∈ G2, then it

holds for ǧ(αi, εi1, εi2, νi, ηi1, ηi2) = 1{ν1i > c}1{E[Ỹi2(0) − Ỹi1(0)|αi] ≥ 0}. By Lemma B.3,

Assumption PT holding for ǧ(·) is equivalent to

E[1{ν1i > c}1{E[E[Ỹi2(0)− Ỹi1(0)|αi] ≥ 0}(Ỹi2(0)− Ỹi1(0))] = 0, (20)

which, by ν1i ⊥ (αi, εi1, εi2) and P (ν1i > c) > 0, is equivalent to

E[1{E[Ỹi2(0)− Ỹi1(0)|αi] ≥ 0}(Ỹi2(0)− Ỹi1(0))] = 0. (21)

By the law of iterated expectations, this is further equivalent to

E[1{E[Ỹi2(0)− Ỹi1(0)|αi] ≥ 0}E[Ỹi2(0)− Ỹi1(0)|αi]] = 0. (22)

Since E[E[Ỹi2(0)− Ỹi1(0)|αi]] = 0 by construction, the above equality implies E[Ỹi1(0)|αi] =

E[Ỹi2(0)|αi] a.s. by Lemma B.1.

“⇐=”: We show that if, in addition, E[Gi|αi, εi1, εi2] = E[Gi|αi] holds, then E[Ỹi1(0)|αi] =

E[Ỹi2(0)|αi] a.s. is also sufficient for Assumption PT. Note that

E[Gi(Ỹi2(0)− Ỹi1(0))] = E[E[E[Gi|αi, εi1, εi2](Ỹi2(0)− Ỹi1(0))|αi]]

= E[E[E[Gi|αi](Ỹi2(0)− Ỹi1(0))|αi]]

= E[E[Gi|αi]E[Ỹi2(0)− Ỹi1(0)|αi]] = 0, (23)

where the first equality follows by the law of iterated expectations. The second follows from

the conditional mean independence restriction imposed on Gi. The last equality follows by

noting that since E[Ỹi2(0)|αi] = E[Ỹi1(0)|αi] a.s., then E[Gi|αi]E[Ỹi2(0)− Ỹi1(0)|αi] = 0 a.s.,

which therefore has zero expectation. Since E[Gi(Ỹi2(0) − Ỹi1(0))] = 0 is the equivalent

condition for Assumption PT by Lemma B.3, this completes the proof.

Proposition A.4 (Necessary and sufficient condition for parallel trends for any distribution

of unobservables). Suppose that Assumptions A.1 holds. Suppose further that g ∈ Gall and

Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F , where F is a complete family of probability distributions satisfying

P (Ỹi1(0) = Ỹi2(0)) = 0 and P (g(αi, εi1, εi2, νi, ηi1, ηi2) = 1) ∈ (0, 1). Assumption PT holds

for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F if and only if P (Gi = 1|αi, εi1, εi2) = P (Gi = 1) a.s. for all

Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F .

Proof. “=⇒”: By Lemma B.3, Assumption PT is equivalent to E[Gi(Ỹi2(0)− Ỹi1(0))] = 0,
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which in turn is equivalent to the following

E[ḡ(αi, εi1, εi2)(ξ̃2(αi, εi1, εi2)− ξ̃1(αi, εi1, εi2))] = 0, (24)

where ḡ(αi, εi1, εi2) = E[g(αi, εi1, εi2, νi, ηi1, ηi2)−E[Gi]|αi, εi1, εi2] and ξ̃t(αi, εi1, εi2) = ξt(αi, εi1, εi2)−
E[Yit(0)] for t = 1, 2. The equivalence between E[Gi(Ỹi2(0) − Ỹi1(0))] = 0 and (24) follows

by the law of iterated expectations and subtracting E[Gi]E[Ỹi2(0) − Ỹi1(0)], noting that it

equals zero by construction.

It follows that Assumption PT holds for all Fαi,εi1,εi2,ηi1,ηi2 ∈ F is equivalent to

E[ḡ(αi, εi1, εi2)(ξ̃2(αi, εi1, εi2)− ξ̃1(αi, εi1, εi2))] = 0, (25)

for all Fαi,εi1,εi2,ηi1,ηi2 ∈ F . By completeness of F , the last equality implies (Lehmann and

Romano, 2005, p.115) that

P (ḡ(αi, εi1, εi2)(ξ̃2(αi, εi1, εi2)− ξ̃1(αi, εi1, εi2)) = 0) = 1 for all Fαi,εi1,εi2,ηi1,ηi2 ∈ F . (26)

Now note that the left-hand side of (26) can be simplified as follows,

P (ḡ(αi, εi1, εi2)(ξ̃2(αi, εi1, εi2)− ξ̃1(αi, εi1, εi2) = 0)

=P (ḡ(αi, εi1, εi2)(ξ̃2(αi, εi1, εi2)− ξ̃1(αi, εi1, εi2)), ξ̃2(αi, εi1, εi2) = ξ̃1(αi, εi1, εi2))

+ P (ḡ(αi, εi1, εi2)(ξ̃2(αi, εi1, εi2)− ξ̃1(αi, εi1, εi2)), ξ̃2(αi, εi1, εi2) 6= ξ̃1(αi, εi1, εi2))

=P (ḡ(αi, εi1, εi2)(ξ̃2(αi, εi1, εi2)− ξ̃1(αi, εi1, εi2))|ξ̃2(αi, εi1, εi2) 6= ξ̃1(αi, εi1, εi2))

=P (ḡ(αi, εi1, εi2) = 0) = 1, (27)

where the penultimate equality follows since P (ξ̃2(αi, εi1, εi2) 6= ξ̃1(αi, εi1, εi2)) = P (Ỹi2(0) 6=
Ỹi1(0)) = 1 by assumption. As a result, by the definition of ḡ(αi, εi1, εi2),

P (E[g(αi, εi1, εi2, νi, ηi1, ηi2)|αi, εi1, εi2] = E[Gi]) = 1 for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F . (28)

“⇐=”: The if statement follows by the law of iterated expectations. All following statements

are understood to hold for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F . Note that P (Gi = 1|αi, εi1, εi2) = P (Gi =

1) a.s. is equivalent to E[Gi|αi, εi1, εi2] = E[Gi] a.s. Next, the law of iterated expectations

implies the following equality

E[Gi(Ỹi2(0)− Ỹi1(0))] = E[E[Gi|αi, εi1, εi2](Ỹi2(0)− Ỹi1(0))]

= E[E[Gi](Ỹi2(0)− Ỹi1(0))] = 0. (29)
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The second equality follows from E[Gi|αi, εi1, εi2] = E[Gi] a.s. The last equality follows from

E[Ỹit(0)] = 0 for t = 1, 2 by definition.

B Proofs

B.1 Proof of Lemma 3.1

Under Assumption SP, Assumption PT can be rewritten as

E[εi2 − εi1|Gi = 1] = E[εi2 − εi1|Gi = 0].

It follows that Assumption PT holds if and only if E[εi2 − εi1|Gi] = E[εi2 − εi1] = 0,

where the last equality follows since E[εit] = 0 for t = 1, 2. It remains to show that (a)

E[εi2 − εi1|Gi] = 0 if and only if (b) E[Gi(εi2 − εi1)] = 0. Since P (Gi = 1) ∈ (0, 1), the

conclusion that (a)⇒ (b) is immediate. Therefore, we are left to show that (b)⇒ (a). Note

that E[Gi(εi2 − εi1)] = 0 implies E[εi2 − εi1|Gi = 1] = 0 since

E[Gi(εi2 − εi1)] = E[εi2 − εi1|Gi = 1]P (Gi = 1)

and P (Gi = 1) ∈ (0, 1) by assumption. To show that E[Gi(εi2 − εi1)] = 0 implies E[εi2 −
εi1|Gi = 0] = 0, we subtract E[εi2 − εi1] from both sides of the former equality, multiply by

−1, which yields

E[(1−Gi)(εi2 − εi1)] = 0

since E[εi2 − εi1] = 0 (Assumption SP). This implies E[εi2 − εi1|Gi = 0] = 0 since P (Gi =

0) ∈ (0, 1) and, by definition,

E[εi2 − εi1|Gi = 0] =
E[(1−Gi)(εi2 − εi1)]

P (Gi = 0)
.

B.2 Proof of Proposition 3.1

“=⇒”: We show that if Assumption PT holds for any fixed g ∈ Gall, then εi1 = εi2 a.s.

Since Assumption PT holds for any fixed g ∈ Gall, then it holds for ǧ(αi, εi1, εi2, νi, ηi1, ηi2) =

1{ν1i > c}1{εi2 − εi1 ≥ 0}. By Lemma 3.1, Assumption PT holding for ǧ(·) is equivalent to

E[1{ν1i > c}1{εi2 − εi1 ≥ 0}(εi2 − εi1)] = 0, (30)
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which, by ν1i ⊥ (εi1, εi2) and P (ν1i > c) > 0, is equivalent to

E[1{εi2 − εi1 ≥ 0}(εi2 − εi1)] = 0. (31)

Since E[εi2− εi1] = 0 by assumption, the above equality implies εi2− εi1 = 0 a.s. by Lemma

B.1.

“⇐=”: We show that if εi1 = εi2 a.s., then Assumption PT holds. This is immediate, since if

εi1 = εi2 a.s., then Gi(εi2− εi1) = 0 a.s. As a result, E[Gi(εi2− εi1)] = 0, which is equivalent

to Assumption PT by Lemma 3.1. This completes the proof.

B.3 Proof of Proposition 3.2

“=⇒”: We show that if Assumption PT holds for any fixed g ∈ G1, then E[εi2|αi, εi1] = εi1

a.s. Since Assumption PT holds for any fixed g ∈ G1, then it holds for ǧ(αi, εi1, εi2, νi, ηi1, ηi2) =

1{ν1i > c}1{E[εi2|αi, εi1]−εi1 ≥ 0}. By Lemma 3.1, Assumption PT holding for ǧ(·) is equiv-

alent to

E[1{ν1i > c}1{E[εi2|αi, εi1]− εi1 ≥ 0}(εi2 − εi1)] = 0, (32)

which, by ν1i ⊥ (αi, εi1, εi2) and P (ν1i > c) > 0, is equivalent to

E[1{E[εi2|αi, εi1]− εi1 ≥ 0}(εi2 − εi1)] = 0. (33)

By the law of iterated expectations, this is further equivalent to

E[1{E[εi2|αi, εi1]− εi1 ≥ 0}(E[εi2|αi, εi1]− εi1)] = 0. (34)

Since E[εi2 − εi1] = 0 by assumption, the above equality implies E[εi2|αi, εi1] − εi1 = 0 a.s.

by Lemma B.1.

“⇐=”: We show that if, in addition, E[Gi|αi, εi1, εi2] = E[Gi|αi, εi1], then E[εi2|αi, εi1] = εi1
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a.s. is also sufficient for Assumption PT. Note that

E[Gi(εi2 − εi1)] = E[E[E[Gi|αi, εi1, εi2](εi2 − εi1)|αi, εi1]]

= E[E[E[Gi|αi, εi1](εi2 − εi1)|αi, εi1]]

= E[E[Gi|αi, εi1](E[εi2|αi, εi1]− εi1)]

= 0.

The first equality follows by the law of iterated expectations. The second equality follows

by the conditional mean independence restriction imposed on Gi. The third equality follows

since E[εi2|αi, εi1] = εi1 a.s. implies that E[Gi|αi, εi1](E[εi2|αi, εi1]−εi1) = 0 a.s. As a result,

its expectation is zero. Since E[Gi(εi2−εi1)] = 0 is equivalent to Assumption PT by Lemma

3.1, this implies the result. The proof is complete.

B.4 Proof of Proposition 3.3

“=⇒”: We show that if Assumption PT holds for any g ∈ G2, then E[εi1|αi] = E[εi2|αi].
Since Assumption PT holds for any fixed g ∈ G2, then it holds for ǧ(αi, εi1, εi2, νi, ηi1, ηi2) =

1{ν1i > c}1{E[εi2|αi] − E[εi1|αi] ≥ 0}. By Lemma 3.1, Assumption PT holding for ǧ(·) is

equivalent to

E[1{ν1i > c}1{E[εi2|αi]− E[εi1|αi] ≥ 0}(εi2 − εi1)] = 0, (35)

which, by ν1i ⊥ (αi, εi1, εi2) and P (ν1i > c) > 0, is equivalent to

E[1{E[εi2|αi]− E[εi1|αi] ≥ 0}(εi2 − εi1)] = 0. (36)

By the law of iterated expectations, this is further equivalent to

E[1{E[εi2|αi]− E[εi1|αi] ≥ 0}(E[εi2|αi]− E[εi1|αi])] = 0. (37)

Since E[εi2−εi1] = 0 by assumption, the above equality implies that E[εi2|αi]−E[εi1|αi] = 0

a.s. by Lemma B.1.

“⇐=”: We show that if, in addition, E[Gi|αi, εi1, εi2] = E[Gi|αi], then E[εi1|αi] = E[εi2|αi]
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a.s. is sufficient for Assumption PT. Note that

E[Gi(εi2 − εi1)] = E[E[E[Gi|αi, εi1, εi2](εi2 − εi1)|αi]]

= E[E[E[Gi|αi](εi2 − εi1)]|αi]]

= E[E[Gi|αi](E[εi2|αi]− E[εi1|αi])]

= 0.

The first equality follows by the law of iterated expectations. The second equality follows by

the conditional mean independence restriction imposed on Gi. The third equality follows,

since E[εi1|αi] = E[εi2|αi] a.s. implies that E[Gi|αi](E[εi2|αi]−E[εi1|αi]) = 0 a.s. It therefore

has zero expectation, which implies the equivalent condition of Assumption PT by Lemma

3.1. This completes the proof.

B.5 Proof of Proposition 3.4

Recall that F is a complete family of distributions satisfying P (εi1 = εi2) = 0, E[εi1] =

E[εi2] = 0, and P (g(αi, εi1, εi2, νi, ηi1, ηi2) = 1) ∈ (0, 1).

“=⇒”: We show that if Assumption PT holds for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F , then P (Gi =

1|εi1, εi2) = P (Gi = 1) a.s. for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F . By Lemma 3.1, Assumption PT is

equivalent to E[Gi(εi2 − εi1)] = 0, which in turn is equivalent to

E[ḡ(εi1, εi2)(εi2 − εi1)] = 0, (38)

where ḡ(εi1, εi2) = E[g(αi, εi1, εi2, νi, ηi1, ηi2)−E[g(αi, εi1, εi2, νi, ηi1, ηi2)]|εi1, εi2]. This follows

by the law of iterated expectations and subtracting E[Gi]E[εi2 − εi1], noting that it equals

zero by assumption.

It follows that Assumption PT holding for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F is equivalent to

E[ḡ(εi1, εi2)(εi2 − εi1)] = 0 for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F . (39)

By completeness of F , the last equality implies (Lehmann and Romano, 2005, p.115) that

P (ḡ(εi1, εi2)(εi2 − εi1) = 0) = 1 Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F . (40)
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Now note that the left-hand side of (40) can be simplified as follows,

P (ḡ(εi1, εi2)(εi2 − εi1) = 0)

=P (ḡ(εi1, εi2)(εi2 − εi1) = 0, εi1 = εi2) + P (ḡ(εi1, εi2)(εi2 − εi1) = 0, εi1 6= εi2)

=P (ḡ(εi1, εi2)(εi2 − εi1) = 0|εi1 6= εi2)

=P (ḡ(εi1, εi2) = 0) = 1, (41)

where the penultimate equality follows since P (εi1 6= εi2) = 1 by assumption. As a result,

by the definition of ḡ(εi1, εi2), it follows that

P (E[g(αi, εi1, εi2, νi, ηi1, ηi2)|εi1, εi2] = E[Gi]) = 1 for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F . (42)

“⇐=”: We now to show the other direction. In the following, all statements are understood

to hold for all Fαi,εi1,εi2,νi,ηi1,ηi2 ∈ F . If P (Gi = 1|εi1, εi2) = P (Gi = 1) a.s., which is equivalent

to E[Gi|εi1, εi2] = E[Gi] a.s., then

E[Gi(εi2 − εi1)] = E[E[Gi|εi1, εi2](εi2 − εi1)] = E[E[Gi](εi1 − εi2)] = 0,

where the first equality follows by the law of iterated expectations and the second equality

follows by the conditional mean independence condition on Gi. The last equality follows

from E[εit] = 0 for t = 1, 2. This completes the proof.

B.6 Proof of Proposition 3.5

We prove the three statements separately. By Lemma 3.1, it suffices to show that E[Gi(εi2−
εi1)] = 0.

(i) We first show that Assumptions SC1.1-SC1.2 imply the symmetry of ḡ(a, e1, e2) =

E[Gi|αi = a, εi1 = e1, εi2 = e2] in e1 and e2. To do so, we note that Assumptions SC1.1-SC1.2

imply the following for (a, e1, e2) ∈ A× E2

ḡ(a, e1, e2) =

∫
g(a, e1, e2, v, t1, t2)dFνi,ηi1,ηi2|αi,εi1,εi2(v, t1, t2|a, e1, e2)

=

∫
g(a, e2, e1, v, t1, t2)dFνi,ηi1,ηi2|αi,εi1,εi2(v, t1, t2|a, e2, e1) = ḡ(a, e2, e1), (43)

where the penultimate equality follows by the symmetry of g(·) and Fνi,ηi1,ηi2|αi,εi1,εi2 in εi1

and εi2 imposed in Assumptions SC1.1 and SC1.2, respectively.

Next, by the law of iterated expectations, we can decompose E[Gi(εi2 − εi1)] and then
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invoke the symmetry restrictions on ḡ(·) implied by Assumptions SC1.1-SC1.2 and Fεi1,εi2|αi
in Assumption SC1.3:

E[Gi(εi2 − εi1)] = E[E[ḡ(αi, εi1, εi2)εi2|αi]− E[ḡ(αi, εi1, εi2)εi1|αi]]

=

∫ (∫
ḡ(a, e1, e2)e2dFεi1,εi2|αi(e1, e2|a)−

∫
ḡ(a, e1, e2)e1dFεi1,εi2|αi(e1, e2|a)

)
dFαi(a)

=

∫ (∫
ḡ(a, e2, e1)e2dFεi1,εi2|αi(e2, e1|a)−

∫
ḡ(a, e1, e2)e1dFεi1,εi2|αi(e1, e2|a)

)
dFαi(a) = 0

The second equality follows from the symmetry restrictions on ḡ(·) and Fεi1,εi2|αi . Together,

they imply that the difference in the conditional expectations in parenthesis equals zero. As

a result, Assumption SC1 implies Assumption PT.

(ii) We first show that Assumptions SC2.1 and SC2.2 imply that ḡ(a, e1, e2) is a trivial

function of e2. To do so, we note that Assumptions SC2.1 and SC2.2 imply the following for

(a, e1, e2, e
′
2) ∈ A× E3, e2 6= e′2,

ḡ(a, e1, e2) =

∫
g(a, e1, e2, v, t1, t2)dFνi,ηi1,ηi2|αi,εi1,εi2(v, t1, t2|a, e1, e2)

=

∫
g(a, e1, e

′
2, v, t1, t2)dFνi,ηi1,ηi2|αi,εi1(v, t1, t2|a, e1) = ḡ(a, e1, e

′
2), (44)

where the penultimate equality follows from Assumption SC2.1, the definition of a trivial

function, and the conditional independence assumption in Assumption SC2.2. As a result,

we can define ˇ̄g(a, e1) = ḡ(a, e1, e2).

Next, by the law of iterated expectations, we can decompose E[Gi(εi2 − εi1)] as follows,

E[Gi(εi2 − εi1)] = E[ḡ(a, e1, e2)(εi2 − εi1)|αi, εi1]] = E[ˇ̄g(αi, εi1)(E[εi2|αi, εi1]− εi1)] = 0,

(45)

where the second equality follows since ḡ(·) is a trivial function of εi2 implied by Assumptions

SC2.1 and SC2.2. The last equality follows from Assumption SC2.3. As a result, Assumption

SC2 implies Assumption PT.

(iii) We first show that Assumptions SC3.1-SC3.2 imply that ḡ(a, e1, e2) is a trivial function

of e1 and e2. To do so, we show that Assumptions SC3.1-SC3.2 imply the following for
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(a, e1, e2, e
′
1, e
′
2) ∈ A× E4, where e1 6= e′1 and e2 6= e′2,

ḡ(a, e1, e2) =

∫
g(a, e1, e2, v, t1, t2)dFνi,ηi1,ηi2|αi,εi1,εi2(v, t1, t2|a, e1, e2)

=

∫
g(a, e′1, e

′
2, v, t1, t2)dFνi,ηi1,ηi2|αi(v, t1, t2|a) = g(a, e′1, e

′
2), (46)

where the penultimate equality follows by Assumptions SC3.1, the definition of a trivial

function and the conditional independence assumption imposed in Assumption SC3.2. As a

result, we can define ˇ̄g(a) = ḡ(a, e1, e2).

Next, by the law of iterated expectations, we can decompose E[Gi(εi2 − εi1)] as follows,

E[Gi(εi2 − εi1)] = E[E[ḡ(αi, εi1, εi2)(εi2 − εi1)|αi]] = E[ˇ̄g(αi)E[εi2 − εi1|αi]] = 0. (47)

The second equality follows since ḡ(·) is a trivial function of εi1 and εi2. The last equality

follows by Assumption SC3.3. As a result, Assumption SC3 implies Assumption PT.

B.7 Proof of Proposition 4.1

In this proof, all equalities involving random variables are understood to hold a.s. By Lemma

B.2, it suffices to show that each assumption implies E[Gi(εi2 − εi1)|Xi] = E[Gi|Xi]E[εi2 −
εi1|Xi].

(i) The exchangeability restrictions in Assumption SC1-X imply the following:

E[ḡ(αi, Xi1, Xi2, εi1, εi2)εi1|αi = a,Xi = (x1, x2)]

=

∫
ḡ(a, x1, x2, e1, e2)e1dFεi1,εi2|αi,Xi(e1, e2|a, x1, x2)

=

∫
ḡ(a, x1, x2, e2, e1)e1dFεi1,εi2|αi,Xi(e2, e1|a, x1, x2)

= E[ḡ(αi, Xi1, Xi2, εi1, εi2)εi2|αi = a,Xi = (x1, x2)], (48)

a.e. (a, x1, x2) ∈ A× X 2.
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Integrating out αi|Xi in the above yields the following a.e. equality:∫
E[ḡ(αi, Xi1, Xi2, εi1, εi2)εi1|αi = a,Xi1 = x1, Xi2 = x2]dFαi|Xi1,Xi2(a|x1, x2)

=

∫
E[ḡ(αi, Xi1, Xi2, εi1, εi2)εi2|αi = a,Xi1 = x1, Xi2 = x2]dFαi|Xi1,Xi2(a|x1, x2). (49)

As a result, by the law of iterated expectations we have that E[Gi(εi2 − εi1)|Xi] = 0.

This completes the proof, since Assumptions SP-X and Assumption SC1-X.2 directly imply

that E[εi2 − εi1|Xi] = 0.

(ii) Since under Assumption SC2-X, ḡ(·) is a trivial function of εi2, we can define ˇ̄g(a, x1, x2, e1) =

ḡ(a, x1, x2, e1, e2). Note that

E[Gi(εi2 − εi1)|Xi]

=E[E[ḡ(αi, Xi1, Xi2, εi1, εi2)(εi2 − εi1)|Xi, αi, εi1]|Xi]

=E[ˇ̄g(αi, Xi1, Xi2, εi1)E[εi2 − εi1|Xi, αi, εi1]|Xi]

=E[ˇ̄g(αi, Xi1, Xi2, εi1)E[εi2 − εi1|Xi]|Xi]

=E[Gi|Xi]E[εi2 − εi1|Xi], (50)

where the first equality follows by the law of iterated expectations. The second equality fol-

lows from Assumption SC2-X.1. The third equality follows by Assumption SC2-X.2, which

implies the result in the last equality.

(iii) Now since ḡ(·) is a trivial function of εi1 and εi2 under Assumption SC3-X, we can

define ˇ̄g(a, x1, x2) = ḡ(a, x1, x2, e1, e2).

E[Gi(εi2 − εi1)|Xi] = E[E[Gi|Xi, αi, εi1, εi2](εi2 − εi1)|Xi, αi]|Xi]

= E[ˇ̄g(αi, Xi1, Xi2)E[εi2 − εi1|Xi, αi]|Xi] = 0. (51)

The first equality follows by the law of iterated expectations. The second equality follows

by Assumption SC3-X.1. The last equality follows from E[εi1|Xi, αi] = E[εi2|Xi, αi] under

Assumption SC3-X.2. The result then follows from noting that E[εi2 − εi1|Xi] = 0 under

this assumption, which completes the proof.
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B.8 Proof of Proposition 5.1

In this proof, all equalities involving random variables are understood to hold a.s.

First, note that Lemma B.5 applies here by simply changing the conditioning set. As a

result, Assumption PT-NSP under Assumption NSP holds if and only if

E[Gi(Yi2(0)− Yi1(0))|Xλ
i , X

µ
i1 = Xµ

i2] = E[Gi|Xλ
i , X

µ
i1 = Xµ

i2]E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2]

(52)

Next, we state some preliminary observations and then proceed to show each statement sep-

arately.

Note that by the law of iterated expectations, Assumption SEL-NSP and the definition

of ḡ(·), the LHS of (52) equals the following

E[Gi(Yi2(0)− Yi1(0))|Xλ
i , X

µ
i1 = Xµ

i2]

=E[E[Gi|αµi , αλi , X
µ
i , X

λ
i , ε

µ
i1, ε

µ
i2, ε

λ
i1, ε

λ
i2](Yi2(0)− Yi1(0))|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)(Yi2(0)− Yi1(0))|Xλ

i , X
µ
i1 = Xµ

i2]. (53)

Similarly, by the law of iterated expectations, the RHS of (52) equals the following,

E[Gi|Xλ
i , X

µ
i1 = Xµ

i2]E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2]

=E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)|Xλ

i , X
µ
i1 = Xµ

i2]E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2] (54)

As a result, in the following, to show that Assumptions SC1-NSP, SC2-NSP and SC3-NSP

are sufficient for Assumption PT-NSP, it suffices to show that each assumption implies the

following equality,

E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)(Yi2(0)− Yi1(0))|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)|Xλ

i , X
µ
i1 = Xµ

i2]E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2]
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(i) By Assumption NSP, it follows that

E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)(Yi2(0)− Yi1(0))|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)(µ(Xµ

i2, α
µ
i , ε

µ
i2)− µ(Xµ

i1, α
µ
i , ε

µ
i1))|Xλ

i , X
µ
i1 = Xµ

i2]

+ E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)(λ2(X

λ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1))|Xλ

i , X
µ
i1 = Xµ

i2],

(55)

We first examine the first term on the RHS of the above equality. Note that by the symmetry

restrictions in Assumptions SC1-NSP.1 and SC1-NSP.2, it follows that a.e. (a, xµ, xλ1 , x
λ
2) ∈

A× Xµ ×X 2
λ

E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)µ(Xµ

i1, α
µ
i , ε

µ
i1)|Xλ

i = (xλ1 , x
λ
2), Xµ

i1 = Xµ
i2 = xµ, αµi = a]

=

∫
ḡ(a, xµ, xµ, xλ1 , x

λ
2 , e1, e2)µ(xµ, a, e1)dFεµi1,ε

µ
i2|Xλ

i ,X
µ
i1=X

µ
i2,α

µ
i
(e1, e2|(xλ1 , xλ2), xµ, a)

=

∫
ḡ(a, xµ, xµ, xλ1 , x

λ
2 , e2, e1)µ(xµ, a, e1)dFεµi1,ε

µ
i2|Xλ

i ,X
µ
i1=X

µ
i2,α

µ
i
(e2, e1|(xλ1 , xλ2), xµ, a)

=E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)µ(Xµ

i2, α
µ
i , ε

µ
i2)|Xλ

i = (xλ1 , x
λ
2), Xµ

i1 = Xµ
i2 = xµ, αµi = a].

(56)

As a result, the first term in (55) equals zero by (56) and the law of iterated expectations.

Next, we consider the second summand in (55),

E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)(λ2(X

λ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1))|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)|Xλ

i , X
µ
i1 = Xµ

i2]E[λ2(X
λ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1)|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ḡ(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1, ε

µ
i2)|Xλ

i , X
µ
i1 = Xµ

i2]E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2]. (57)

The first equality follows from the conditional independence assumption in Assumption SC1-

NSP.3. The last equality follows from the time homogeneity of Fεµit|X
µ
i ,X

λ
i ,α

µ
i
, which follows

from the exchangeabilty restriction in Assumption SC1-NSP.2 by Lemma B.4, and implies

that E[µ(Xµ
i2, α

µ
i , ε

µ
i2)− µ(Xµ

i1, α
µ
i , ε

µ
i1)|Xλ

i , X
µ
i1 = Xµ

i2, α
µ
i ] = 0 as well as

E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2] = E[λ2(X
λ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1))|Xλ

i , X
µ
i1 = Xµ

i2]

by the law of iterated expectations. As a result, the above implies that Assumption PT-NSP

holds.

(ii) By Assumption SC2-NSP.1, we can define ˇ̄g(aµ, xµ1 , x
µ
2 , x

λ
1 , x

λ
2 , e

λ
1) = ḡ(aµ, xµ1 , x

µ
2 , x

λ
1 , x

λ
2 , e

λ
1 , e

λ
2).
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By Assumption NSP, it follows that

E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1)(Yi2(0)− Yi1(0))|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1)∆µ,i|Xλ

i , X
µ
i1 = Xµ

i2]

+ E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1)(λ2(X

λ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1))|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1)|Xλ

i , X
µ
i1 = Xµ

i2]E[∆µ,i|Xλ
i , X

µ
i1 = Xµ

i2]

+ E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1)|Xλ

i , X
µ
i1 = Xµ

i2]E[λ2(X
λ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1)|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2, ε

µ
i1)X

λ
i , X

µ
i1 = Xµ

i2]E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2] (58)

The second equality follows from the conditional independence conditions in Assumptions

SC2-NSP.2 and SC2-NSP.3. The last equality follows from Assumption NSP, which implies

Assumption PT-NSP.

(iii): By Assumption SC3-NSP.1, we can define ˇ̄g(aµ, xµ1 , x
µ
2 , x

λ
1 , x

λ
2) = ḡ(aµ, xµ1 , x

µ
2 , x

λ
1 , x

λ
2 , e

λ
1 , e

λ
2).

Now by the Assumption NSP and SC3-NSP.1, it follows that

E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2)(Yi2(0)− Yi1(0))|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2)(µ(Xµ

i2, α
µ
i , ε

µ
i2)− µ(Xµ

i1, α
µ
i , ε

µ
i1))|Xλ

i , X
µ
i1 = Xµ

i2]

+ E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2)(λ2(Xλ

i2, α
λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1))|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2)E[µ(Xµ

i2, α
µ
i , ε

µ
i2)− µ(Xµ

i1, α
µ
i , ε

µ
i1)|Xλ

i , X
µ
i1 = Xµ

i2, α
µ
i ]|Xλ

i , X
µ
i1 = Xµ

i2]

+ E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2)|Xλ

i , X
µ
i1 = Xµ

i2]E[λ2(Xλ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1)|Xλ

i , X
µ
i1 = Xµ

i2]

=E[ˇ̄g(αµi , X
µ
i1, X

µ
i2, X

λ
i1, X

λ
i2)|Xλ

i , X
µ
i1 = Xµ

i2]E[λ2(Xλ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1)|Xλ

i , X
µ
i1 = Xµ

i2]

=E[Gi|Xλ
i , X

µ
i1 = Xµ

i2]E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2],

where the first equality follows from Assumption NSP. The second equality follows by ap-

plying the law of iterated expectations to the first term and the conditional independence

imposed in Assumption SC3-NSP.3 to the second term. The first term on the RHS of the

second equality equals zero by the conditioning on Xµ
i1 = Xµ

i2 and the time homogeneity

condition in Assumption SC3-NSP.2. The last equality follows from noting, similar as in the

proof of (i), that since E[µ(Xµ
i2, α

µ
i , ε

µ
i2)− µ(Xµ

i1, α
µ
i , ε

µ
i1)|Xλ

i , X
µ
i1 = Xµ

i2, α
µ
i ] = 0,

E[Yi2(0)− Yi1(0)|Xλ
i , X

µ
i1 = Xµ

i2] = E[λ2(X
λ
i2, α

λ
i , ε

λ
i2)− λ1(Xλ

i1, α
λ
i , ε

λ
i1)|Xλ

i , X
µ
i1 = Xµ

i2]

by the law of iterated expectations. This completes the proof.
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B.9 Proof of Proposition 5.2

Throughout this proof, equalities involving conditioning statements are understood to hold

a.e. We proceed to show each result separately.

(i) Here it suffices to show (i.a) Assumptions SC1-NSP.1 and SC1-NSP.2 imply Assumption

TH and (i.b) Assumptions SC1-NSP.1 and SC1-NSP.3 imply Assumption RE.

(i.a) Consider

Fεµi1,Gi|α
µ
i
(e1, g|a) = FGi|εµi1,α

µ
i
(g|e1, a)Fεµi1|α

µ
i
(e1|a) (59)

Assumption SC1-NSP.2 implies Fεµi1|α
µ
i
(e|a) = Fεµi2|α

µ
i
(e|a) as well as Fεµi1|ε

µ
i2,α

µ
i
(e1|e2, a) =

Fεµi2|ε
µ
i1,α

µ
i
(e1|e2, a) by Lemma B.4, which implies

FGi|εµi1,α
µ
i
(g|e1, a) =

∫
1{g(a, e1, e2) ≤ g}dFεµi2|εµi1,αµi (e2|e1, a)

=

∫
1{g(a, e2, e1) ≤ g}dFεµi1|εµi2,αµi (e2|e1, a) = FGi|εµi2,α

µ
i
(g|e1, a). (60)

As a result,

Fεµi1,Gi|α
µ
i
(e1, g|a) = FGi|εµi1,α

µ
i
(g|e1, a)Fεµi1|α

µ
i
(e1|a) = FGi|εµi2,α

µ
i
(g|e1, a)Fεµi2|α

µ
i
(e1|a)

=Fεµi2,Gi|α
µ
i
(e1, g|a). (61)

This implies Assumption TH by the definition of a conditional distribution Fεµit|Gi,α
µ
i
(e|g, a) =

F
ε
µ
it
,Gi|α

µ
i
(e,g|a)

F
Gi|α

µ
i

, where FGi|αµi (g|a) > 0 by assumption.

(i.b) This statement follows in a straightforward manner from the definition of Gi in

Assumption SC1-NSP.1 and the independence condition in Assumption SC1-NSP.3 which

together imply Assumption RE. This completes the proof of (i).

(ii) To show the result, it suffices to show that (ii.a) Assumptions SC3-NSP.1 and SC3-NSP.2

imply Assumption TH and (ii.b) Assumptions SC3-NSP.1 and SC3-NSP.3 imply Assumption

RE.

(ii.a) Under Assumptions SC3-NSP.1 and SC3-NSP.2, Gi = g(αµi ) is a degenerate ran-
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dom variable equaling either zero or one with probability one conditional on αµi . As a result,

Fεµit|Gi,α
µ
i
(e|g, a) =

∑
g=0,1

P (εµit ≤ e|Gi = g(a), αµi = a)1{g(a) = g}

=
∑
g=0,1

P (εµit ≤ e|αµi = a)1{g(a) = g} =
∑
g=0,1

Fεµit|α
µ
i
(e|a)1{g(a) = g}. (62)

As a result, Assumption SC3-NSP.1 together with the time homogeneity of Fεµit|α
µ
i

in As-

sumption SC3-NSP.2 is sufficient for the time homogeneity of Fεµit|Gi,α
µ
i
(e|g, a), which yields

Assumption TH.

(ii.b) The statement (ii.b) is immediate from noting that Gi = g(αµi ) (Assumption

SC3-NSP.1) and the independence condition in Assumption SC3-NSP.3 imply that g(αµi ) ⊥
(αλi , ε

λ
i1, ε

λ
i2), which is equivalent to Assumption RE. This completes the proof of (i).

B.10 Supplementary lemmas

Lemma B.1. For a scalar random variable Wi, let W̃i = Wi−E[Wi]. If E[W̃i1{W̃i ≥ 0}] =

0, then Wi = E[Wi] a.s.

Proof. First, note that by definition E[W̃i] = 0, which is equivalent to

E[W̃+
i ] = E[W̃−

i ], (63)

where W̃+
i = |W̃i|1{W̃i > 0} and W̃−

i = |W̃i|1{W̃i < 0}.
Now suppose that E[W̃i1{W̃i ≥ 0}] = 0 holds, which is equivalent to

E[W̃+
i 1{W̃i ≥ 0}] = E[W̃−

i 1{W̃i ≥ 0}]. (64)

Note that the right-hand side equals zero by the definition of W̃−
i . As a result, E[W̃+

i 1{W̃i ≥
0}] = E[W̃+

i ] = 0. Since W̃+
i ≥ 0, this implies that P (W̃+

i = 0) = 1. Now note that P (W̃+
i =

0) = P (|W̃i|1{W̃i > 0} = 0) = P (1{W̃i > 0} = 0) = 1, which implies P (W̃i > 0) = 0.

Since E[W̃i] = 0, (63) further implies that E[W̃−
i ] = E[W̃+

i ] = 0. Since W̃−
i ≥ 0, it

follows that P (W̃−
i = 0) = 1. Now note that P (W̃−

i = 0) = P (|W̃i|1{W̃i < 0} = 0) =

P (1{W̃i < 0} = 0) = 1, which implies P (W̃i < 0) = 0.

Together, P (W̃i > 0) = 0 and P (W̃i < 0) = 0 imply that P (W̃i = 0) = 1 − (P (W̃i <

0) + P (W̃i > 0)) = 1, which completes the proof.

18



Lemma B.2. Suppose SP-X and P (Gi = 1|Xi) ∈ (0, 1) a.s. hold. Assumption PT-X holds

if and only if

E[Gi(εi2 − εi1)|Xi] = E[Gi|Xi]E[εi2 − εi1|Xi] a.s. (65)

Proof. Since P (Gi = 1|Xi) ∈ (0, 1) a.s., Assumption PT-X holds iff

E[Gi(Yi2(0)− Yi1(0))|Xi] = E[Gi|Xi]E[Yi2(0)− Yi1(0)|Xi] a.s. (66)

by arguments similar to Lemma 3.1 while conditioning on Xi. By Assumption SP-X, the

left-hand side of the above simplifies to

E[Gi(Yi2(0)− Yi1(0))|Xi]

=E[Gi|Xi](λ2 − λ1) + E[Gi|Xi](γ2(Xi)− γ1(Xi)) + E[Gi(εi2 − εi1)|Xi] a.s.

As a result, Assumption PT-X holds iff

E[Gi(εi2 − εi1)|Xi] = E[Gi|Xi]E[εi2 − εi1|Xi] a.s. (67)

Lemma B.3. Suppose P (Gi = 1) ∈ (0, 1) holds. Then, Assumption PT holds iff E[Gi(Yi2(0)−
Yi1(0))] = E[Gi]E[Yi2(0)− Yi1(0)].

Proof. Assumption PT can be written as

E[Yi2(0)− Yi1(0)|Gi = 1] = E[Yi2(0)− Yi1(0)|Gi = 0]. (68)

As a result, Assumption PT holds iff E[Yi2(0)−Yi1(0)|Gi] = E[Yi2(0)−Yi1(0)]. It remains to

show that (a) E[Yi2(0)−Yi1(0)|Gi] = E[Yi2(0)−Yi1(0)] holds if and only if (b) E[Gi(Yi2(0)−
Yi1(0))] = E[Gi]E[Yi2(0) − Yi1(0)]. The result that (a) ⇒ (b) is immediate. As for (b) ⇒
(a), E[Gi(Yi2(0) − Yi1(0))] = E[Gi]E[Yi2(0) − Yi1(0)] implies E[Yi2(0) − Yi1(0)|Gi = 1] =

E[Yi2(0)− Yi1(0)] by dividing the former equality by E[Gi] = P (Gi = 1) ∈ (0, 1). It remains

to show that E[Gi(Yi2(0)− Yi1(0))] = E[Gi]E[Yi2(0)− Yi1(0)] implies E[Yi2(0)− Yi1(0)|Gi =

0] = E[Yi2(0) − Yi1(0)]. To do so, we subtract E[Yi2(0) − Yi1(0)] from both sides of the

previous equality and multiply by −1.

E[(1−Gi)(Yi2(0)− Yi1(0))] = E[1−Gi]E[Yi2(0)− Yi1(0)] (69)
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Since E[1 − Gi] = P (Gi = 0) ∈ (0, 1), the above implies that E[Yi2(0) − Yi1(0)|Gi = 0] =

E[Yi2(0)− Yi1(0)]. This completes the proof.

Lemma B.4. Suppose that Assumption SC1-NSP.2 holds, then

(i) Fεµi1|α
µ
i
(e|a) = Fεµi2|α

µ
i
(e|a) a.e. (a, e) ∈ A× E

(ii) Fεµi1|ε
µ
i2,α

µ
i
(e1|e2, a) = Fεµi2|ε

µ
i1,α

µ
i
(e1|e2, a) a.e. (a, e1, e2) ∈ A× E2.

Proof. (i) By the definition of the marginal distribution, Assumption SC1-NSP implies (i)

by the following, a.e.

Fεµi1|α
µ
i
(e1|a) = lim

e2→∞
Fεµi1,ε

µ
i2|α

µ
i
(e1, e2|a) = lim

e2→∞
Fεµi1,ε

µ
i2|α

µ
i
(e2, e1|a) = Fεµi2|α

µ
i
(e1|a). (70)

(ii) By the definition of the conditional distribution and (i) of this lemma, Assumption

SC1-NSP implies (ii) by the following

Fεµi1|ε
µ
i2,α

µ
i
(e1|e2, a) =

Fεµi1,ε
µ
i2|α

µ
i
(e1, e2|a)

Fεµi2|α
µ
i
(e2|a)

=
Fεµi1,ε

µ
i2|α

µ
i
(e2, e1|a)

Fεµi1|α
µ
i
(e2|a)

= Fεµi2|ε
µ
i1,α

µ
i
(e1|e2, a), (71)

a.e. (a, e1, e2) ∈ A× E × Ea, where Ea is the support of εµit|α
µ
i for t = 1, 2.

Lemma B.5. Suppose Assumptions NSP and P (Gi = 1|Xi) ∈ (0, 1) a.s. hold. Then,

Assumption PT-X holds iff

E[Gi(Yi2(0)− Yi1(0))|Xi] = E[Gi|Xi]E[Yi2(0)− Yi1(0)|Xi] a.s.

Proof. We first note that Assumption PT-X holds iff

E[Yi2(0)− Yi1(0)|Gi, Xi] = E[Yi2(0)− Yi1(0)|Xi] a.s. (72)

It remains to show that (a) E[Yi2(0) − Yi1(0)|Gi, Xi] = E[Yi2(0) − Yi1(0)|Xi] a.s. iff (b)

E[Gi(Yi2(0) − Yi1(0))|Xi] = E[Gi|Xi]E[Yi2(0) − Yi1(0)|Xi] a.s. The result that (a) ⇒ (b)

follows immediately by the law of iterated expectations. As for (b) ⇒ (a),

E[Gi(Yi2(0)− Yi1(0))|Xi] = E[Gi|Xi]E[Yi2(0)− Yi1(0)|Xi] a.s. (73)

implies that

E[Yi2(0)− Yi1(0)|Gi = 1, Xi] = E[Yi2(0)− Yi1(0)|Xi] a.s.
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since P (Gi = 1|Xi) ∈ (0, 1) a.s. Now subtracting E[Yi2(0) − Yi1(0)|Xi] from both sides of

(73) and multiplying by −1 yields

E[(1−Gi)(Yi2(0)− Yi1(0))|Xi] = E[(1−Gi)|Xi]E[Yi2(0)− Yi1(0)|Xi] a.s. (74)

Since P (Gi = 0|Xi) ∈ (0, 1) a.s., the above implies

E[Yi2(0)− Yi1(0)|Gi = 0, Xi] = E[Yi2(0)− Yi1(0)|Xi] a.s.

This completes the proof.
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