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Abstract 
 
We study how precipitation has affected food consumer price inflation (CPI), using dynamic panel 
estimation of food CPI Phillips curves across countries for 34 OECD member and candidate 
economies from 1985 to 2010 augmented with climate variables. We allow for nonlinear effects 
of precipitation on food CPI inflation, and also control for possible nonlinear effects of 
temperature. We find that precipitation has significant nonlinear effects on food CPI inflation. 
The coefficient of food CPI inflation on the linear precipitation term is significantly negative, and 
the coefficient on the quadratic precipitation term is significantly positive. Consequently, food 
CPI inflation increases as precipitation becomes very low and very high. Moreover, we find that 
temperature has no additional explanatory power for food CPI inflation over and above that of 
precipitation. We control for the effects of inflation expectations, the output gap and exchange 
rate changes on food CPI inflation, which are significant with the expected signs. 
JEL-Codes: E310, E520, E580, Q480, Q580. 
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1. Introduction 
 
We study how precipitation has affected food consumer price inflation (CPI) ex-post, via 

dynamic panel estimation of food CPI Phillips curves across countries for 34 OECD member and 
candidate economies from 1985 to 2010 augmented with climate variables. We allow for 
nonlinear effects of precipitation on food CPI inflation, and also control for the effects of 
temperature. We also control for the effects of the ouput gap, exchange rate changes and inflation 
expectations on food CPI inflation. 

Changes in global precipitation are among the most important and least well-understood 
consequences of climate change, with increasing greenhouse gas emissions thought to affect the 
zonal-mean distribution of precipitation (Marvel and Bonfils, 2013). The main mechanisms for 
this are that increasing temperatures lead to an intensification of the hydrological cycle, and 
changes in atmospheric circulation patterns lead to poleward displacement of the storm tracks 
and subtropical dry zones (Marvel and Bonfils, 2013). The effects of climate change on the 
hydrological cycle are expected to increase the risk of heavy rainfall events and prolonged 
droughts (Lehmann et al., 2018). There is evidence of an intensification of daily rainfall extremes 
due to anthropogenic climate change (Min et al., 2011; Madakumbura et al., 2021; Fischer and 
Knutti, 2016; Kotz et al., 2022). The mean number of record-wet months globally has significantly 
increased over recent decades, broadly consistent with observed trends in mean rainfall 
(Lehmann et al., 2018). This is mainly due to changes in the northern middle to high latitudes, 
where record-wet months have occurred by up to 37% more frequently regionally. Southeast 
Asia has also seen more record-wet months, while Africa has seen more record-dry months 
(Lehmann et al., 2018). Increases in greenhouse gas emissions have contributed to the observed 
intensification of heavy precipitation events in around two thirds of Northern Hemisphere land 
areas covered by data (Min et al., 2011). Models seem to underestimate the observed increase in 
heavy precipitation with warming (Allan and Soden, 2008).  

Recent evidence suggests that the frequency and intensity of heavy precipitation events have 
increased since the 1950s over most land area for which observational data are sufficient for 
trend analysis, and human-induced climate change is likely the main driver (International Panel 
on Climate Change (IPCC), 2021). Moreover, human-induced climate change has contributed to 
increases in agricultural and ecological droughts in some regions due to increased land 
evapotranspiration (IPCC, 2021). 

The frequency of extreme heat events has increased with global warming, and is projected to 
increase further with future global warming. Extreme heat events, which occurred with a 
probability of 10% per year worldwide from 1850-1900, were already happening with a higher 
probability of 28% recently, and are projected to happen with still larger probabilities of 41%, 
56% and 94% under global warming scenarios of 1.5°C, 2°C and 4°C above pre-industrial 
temperatures, respectively.1 Human influence has likely increased the probability of increases in 
the frequency of concurrent heatwaves and droughts on the global scale since the 1950s (IPCC, 
2021). Adverse climate events due to global warming, including more severe floods and droughts, 
can lead to large economic costs and disruptions (OECD, 2015). 

Climate change is likely to affect inflation and the monetary policy transmission mechanism, 
and is therefore relevant for monetary policy (Smets, 2020; Network for Greening the Financial 
System (NGFS), 2020). Central banks are increasingly incorporating climate change 

 
1 See International Panel on Climate Change (2021) and Banque de France (2021).  
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considerations into their monetary and financial stability frameworks. Following the conclusion 
of its monetary policy strategy review, the ECB Governing Council stated its strong commitment 
to further incorporating climate change considerations into its monetary policy framework (ECB, 
2021). The ECB Governing Council also decided to conduct theoretical and empirical analyses on 
the implications of climate change and climate policies for the economy and the transmission of 
monetary policy (ECB, 2021). Moreover, the ECB has developed economy-wide climate stress 
tests of banks based on climate scenarios of the NGFS (Alogoskoufis et al., 2021). 

Most of the research on the effects of climate change and climate policy on macroeconomic 
variables so far has focussed on the effects on growth.2 Kotz et al. (2022) studied the effect of 
precipitation on economic growth allowing for nonlinearity. Kotz et al. (2022) show that 
economic growth rates respond nonlinearly to total annual rainfall, and are reduced by increases 
in the number of wet days and in extreme daily rainfall, with high-income countries most affected. 
They conclude that anthropogenic intensification of daily rainfall extremes will have negative 
global economic consequences, which require further study in order to evaluate the costs of 
climate change. By contrast, higher total annual rainfall can increase growth in low-income 
agriculturally dependent economies (Kotz et al., 2022; Damania et al., 2020; Barrios et al., 2010). 
Controlling for nonlinear effects of precipitation, Burke et al. (2015) showed that economic 
productivity is nonlinear in temperature for both developed and developing countries, with 
productivity peaking at an annual average temperature of 13°C and declining strongly at higher 
temperatures (Burke et al., 2015).  

Eurosystem work stream on climate change (2021) provides an overview of the evidence on 
the effects of climate change on inflation.3 Parker (2018) finds that droughts and floods tend to 
increase headline CPI inflation. Kamber et al. (2013) find that a drought of the magnitude of that 
of early 2013 in New Zealand increases food CPI prices by around 1.0-1.5%, and wholesale 
electricity prices by up to 8%, but has no effect on retail electricity prices. Associated depressed 
economic activity results in falling prices for other non-tradable sectors, so that there is no 
significant effect on headline CPI. Buckle et al. (2007) also found no significant effect on consumer 
prices from droughts in New Zealand. 

Faccia et al. (2020) use temperature anomaly data to study the effects of extreme 
temperatures on prices. They find that hot summers, where temperatures exceed a country’s 
long-run mean by more than 1.5°C, are associated with an increase in food prices of around 0.2pp 
during the same summer quarter. De Winne and Peersman (2021) find that increases in global 
agricultural commodity prices caused by harvest or weather disruptions in other regions of the 
world significantly reduce economic activity, and that the effect is stronger in advanced countries. 
They conclude that the consequences of climate change on advanced economies through food 
prices could be larger than previously thought.4 

Our paper contributes to the literature by providing ex-post empirical analysis of the effects 
of precipitation on food CPI inflation allowing for nonlinear effects, for a broad sample of OECD 
countries, and controlling for the effects of temperature. 

We choose cross-country panel estimation of Phillips curves based on Jasova et al. (2019, 
2020) in order to capture inflation dynamics well. Phillips curves are the standard way to model 

 
2 See Dell et al. (2014) for a survey on the effects of climate change on growth.  
3 The effects of climate policy in the form of carbon pricing on inflation has been studied in Konradt and 
Weder di Mauro (2021), McKibbin et al. (2021), Kaenzig (2021) and Moessner (2022).  
4 De Winne and Peersman (2016) find for the United States that adverse food commodity market shocks 
lead to an increase in food commodity prices and food CPI inflation, as well as a persistent fall in real GDP. 
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inflation dynamics in modern monetary policy analysis (Clarida et al., 1999; Smets, 2003; 
Woodford, 2003; Levin and Moessner, 2005). This approach allows to exploit cross-country 
variation to avoid the difficulties of identification present for country-specific estimates, as 
discussed by Reichlin (2018) and Forbes (2019) in the case of the output gap. Here we apply this 
approach to food CPI inflation, as in Moessner (2022), to capture food CPI inflation dynamics well 
by controlling for the effects of the output gap, exchange rate changes and inflation expectations. 

We find that precipitation has significant nonlinear effects on food CPI inflation. The 
coefficient of food CPI inflation on the linear precipitation term is significantly negative, and the 
coefficient on precipitation squared is significantly positive. Consequently, food CPI inflation 
increases as precipitation becomes very low and very high. Moreover, we find that temperature 
has no additional explanatory power for food CPI inflation over and above that of precipitation. 
We also find that the effects of the output gap, exchange rate changes and inflation expectations 
on food CPI inflation are significant with the expected signs.   

The remainder of the paper is organised as follows. Section 2 summarises the data, and 
Section 3 presents the method and results. Finally, Section 4 concludes. 

 

2. Data  
 

We use data on precipitation and temperature (in °C) from the replication dataset of Burke et al. 
(2015), whose source is the University of Delaware dataset of Matsuura and Willmot (2012), 
which contains 0.5 degree gridded monthly average temperature and total precipitation data for 
all land areas. Burke et al. (2015) aggregate these 0.5 degree grid cell estimates to the country-
year level, weighted by population density in the year 2000 using data from the Gridded 
Population of the World. We use this measure of population density weighted total annual 
precipitation in decimeters (dm) from the replication dataset of Burke et al. (2015). 

Data on food consumer price indices (CPI) indices (food and non-alcoholic beverages) are 
based on data from the OECD, national sources and BIS calculations. Data on output gaps (as a 
percentage of potential GDP) are from the OECD. Global commodity prices are taken as the IMF 
all commodity price index. Data on professionals’ survey-based CPI inflation expectations are 
from Consensus Economics surveys for next-year headline CPI inflation expectations. Nominal 
effective exchange rate indices (trade-weighted broad indices, annual averages) are from the BIS, 
with an increase indicating an appreciation of the domestic currency.  

Our sample of countries consists of 34 economies, the OECD economies Austria, Australia, 
Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Great 
Britain, Greece, Hungary, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Mexico, the Netherlands, 
Norway, New Zealand, Poland, Portugal, Slovakia, Slovenia, South Korea, Spain, Sweden, 
Switzerland and the United States, and the OECD candidate country Bulgaria.  

The sample period is from 1985 to 2010 at annual frequency. 
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3. Method and results 
 
We quantify the effects of precipitation on inflation via dynamic panel regressions of Phillips 

curves according to 

πitf = ρ πit−1f + λ1 precit + λ2 precit2 + ϕ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖+β𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖.                                           (1) 

This approach is based on Jasova et al. (2019, 2020) and Moessner (2022), using dynamic 
panel estimation of food CPI Phillips curves in order to capture food CPI inflation dynamics well. 
It is augmented with the climate variable precipitation in country 𝑖𝑖 at time t, precit, in order to 
study its additional effects, as well as with precipitation squared, precit2 , to allow for nonlinearity. 
Phillips curves are the standard way to model inflation dynamics in modern monetary policy 
analysis.  

In our baseline specification of equation (1) πitf  denotes year-on-year (y/y) food CPI inflation 
in percent, calculated from log differences in food consumer price indices in country 𝑖𝑖 at time t. 
Moreover, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 denotes the output gap in country 𝑖𝑖 at time t. Our baseline model includes 
country fixed effects, 𝛼𝛼𝑖𝑖, to capture unobserved heterogeneities across countries that might affect 
food CPI inflation. We also include annual time fixed effects, β𝑡𝑡, to control for the effects of global 
factors, such as global trends or shocks. We use fixed effect panel estimations and robust standard 
errors clustered at the country level.  

The estimation results of equation (1) are shown in column I of Table 1. The coefficient on the 
output gap is significant at the 1% level with the expected sign. The coefficient on the linear 
precipitation term is negative and significant at the 5% level. We also find evidence of 
nonlinearity. The coefficient on precipitation squared is positive and also significant at the 5% 
level. Consequently, food CPI inflation increases as precipitation decreases to very low levels of 
precipitation (close to drought levels), and food CPI inflation increases as precipitation increases 
to very high levels of precipitation (close to flood levels).  

Values of total annual precipitation for the sample used in equation (1) range from around 
1.98dm to 19.09dm, with a mean precipitation level of 8.57dm. Figure 1 shows the effect of 
precipitation on food CPI inflation for this range of precipitation levels minus that at the mean 
precipitation level, in percentage points (pp) based on the coefficients of column I of Table 1. We 
can see that for very high precipitation levels food CPI inflation is up to around 2.6pp higher than 
at the mean precipitation level. For very low precipitation levels, food CPI inflation is up to around 
1.8pp higher than at the mean precipitation level. 

For robustness, we add inflation expectations and nominal effective exchange rate changes to 
equation (1), in order to capture inflation dynamics via the Phillips curve better, but at the cost 
of reducing the sample size due to data availability issues,  

πitf = θ 𝜋𝜋𝑖𝑖𝑖𝑖𝑒𝑒 + ρ πit−1f + λ1 precit + λ2 precit2 + ϕ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 + 𝜇𝜇 ∆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖  + 𝛼𝛼𝑖𝑖+β𝑡𝑡
+ 𝜀𝜀𝑖𝑖𝑖𝑖.                                           (2) 

Here, 𝜋𝜋𝑖𝑖𝑖𝑖𝑒𝑒  denotes next-year CPI inflation expectations from Consensus Economics surveys, 
y/y in percent; ∆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 is the y/y change in the nominal effective exchange rate in percent, 
calculated from the log change in the nominal effective exchange rate, with an increase indicating 
an appreciation of the domestic currency. The results of equation (2) are shown in column II of 
Table 1. The coefficient on the linear precipitation term remains negative, with a lower magnitude 
and significance level of 10%. We also continue to find evidence of nonlinearity. The coefficient 
on precipitation squared remains of similar magnitude and positive, at a higher significance level 



6 
 

of 1%. Our results are therefore generally robust to including inflation expectations and nominal 
effective exchange rate changes. We also find that the effects of the output gap, exchange rate 
changes and inflation expectations on food CPI inflation are significant with the expected signs in 
both equations (1) and (2). The output gap, inflation expectations and exchange rate 
depreciations all have significant positive effects on food CPI inflation.  

As a further robustness check, we replace time fixed effects by y/y changes in the global 
commodity price index, πtcom,  

πitf = θ 𝜋𝜋𝑖𝑖𝑖𝑖𝑒𝑒 + ρ πit−1f + λ1 precit + λ2 precit2 + ϕ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 + 𝜇𝜇 ∆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 + η πtcom + 𝛼𝛼𝑖𝑖
+ 𝜀𝜀𝑖𝑖𝑖𝑖.                                           (3) 

The results of equation (3) are shown in column III of Table 1. The coefficients on the linear 
and quadratic precipitation terms remain very similar to those in the baseline specification 
(column I of Table 1). We consequently find that our results for the effects of precipitation on food 
CPI inflation are robust to replacing time fixed effects by global commodity price inflation. 

As a further robustness check, we also control for the effect of temperature, Tit, and of 
temperature squared, Tit2, in equation (1), since idiosyncratic changes in local precipitation can be 
correlated with changes in local annual temperatures (Aufhammer et al., 2013; Burke et al., 
2015),5 

πitf = ρ πit−1f + λ1 precit + λ2 precit2 + γ1 Tit + γ2 Tit2 + ϕ 𝑜𝑜𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖+β𝑡𝑡
+ 𝜀𝜀𝑖𝑖𝑖𝑖.                                           (4) 

The results of equation (4) are shown in column I of Table 2. We can see that the coefficients 
on both the linear and quadratic temperature terms are insignificant. Consequently, temperature 
has no additional explanatory power over and above that of precipitation. The coefficients on the 
linear and quadratic precipitation terms remain very similar to those in the baseline specification 
shown in column I of Table 1. We therefore find that our results for the effects of precipitation on 
food CPI inflation are robust to also controlling for potential nonlinear temperature effects. 

We similarly add linear and quadratic temperature terms to equations (2) and (3). These 
results are shown in columns II and III of Table 2, respectively. The coefficients on both the linear 
and quadratic temperature terms are again insignificant. The coefficients on the linear and 
quadratic precipitation terms are very similar to those shown in columns II and III of Table 1, so 
that our results are robust to the inclusion of temperature also for these specifications. 

 

4 Conclusions 
 
We study how precipitation has affected food consumer price inflation ex-post, using dynamic 

panel estimation of Phillips curves across countries for 34 OECD member and candidate 
economies from 1985 to 2010 augmented with climate variables. We allow for nonlinear effects 
of precipitation on food CPI inflation, and also control for possible nonlinear effects of 
temperature.  

 
5 See also IPCC (2021) who find that human influence has likely increased the chance of increases in the 
frequency of concurrent heatwaves and droughts on the global scale since the 1950s.  
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We find that precipitation has significant nonlinear effects on food CPI inflation. The 
coefficient of food CPI inflation on the linear precipitation term is significantly negative, and the 
coefficient on precipitation squared is significantly positive. Consequently, food CPI inflation 
increases as precipitation becomes very low (closer to drought levels) and very high (closer to 
flood levels). Moreover, we find that temperature has no additional explanatory power for food 
CPI inflation over and above that of precipitation. We also control for the effects of inflation 
expectations, the output gap and exchange rate changes on food CPI inflation, which are 
significant with the expected signs. The output gap, inflation expectations and exchange rate 
depreciations all have significant positive effects on food CPI inflation.   
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Tables  

 

 
 

 

Effects of precipitation on food CPI inflation Table 1
Dep. Var.: πf

it

I II III
πf

it-1 0.3972*** 0.1195** 0.1781***

precit -0.5831** -0.3883* -0.4668*

prec2
it 0.0297** 0.0256*** 0.0291**

outputgapit 0.1920*** 0.2347*** 0.4199***

πe
it 1.0849*** 1.0465***

ΔNEERit -0.0984*** -0.1064***

πcom
t -0.0002

constant 5.4682*** -0.1012 1.2512

observations 697 404 404
number of countries 34 34 34
time fixed effects yes yes no
R2 within 0.429 0.658 0.439
R2 between 0.797 0.611 0.395
Note: Fixed effects panel estimation; sample period: 1985-2010. ***/**/* denote statistical significance at 1/5/10%
confidence level. Robust standard errors clustered at the country level.
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Effects of precipitation on food CPI inflation, with temperature Table 2
Dep. Var.: πf

it

I II III
πf

it-1 0.3993*** 0.1199** 0.1718***

precit -0.5693** -0.3830* -0.4428*

prec2
it 0.0285** 0.0248*** 0.0272**

tempit 0.0144 0.1509 0.0911

temp2
it 0.0281 0.0037 0.0135

outputgapit 0.1898*** 0.2265*** 0.3910***

πe
it 1.0955*** 1.0987***

ΔNEERit -0.0989*** -0.1051***

πcom
t 0.0013

constant 2.1967 -2.2815 -1.7962

observations 697 404 404
number of countries 34 34 34
time fixed effects yes yes no
R2 within 0.435 0.659 0.443
R2 between 0.379 0.482 0.248
Note: Fixed effects panel estimation; sample period: 1985-2010. ***/**/* denote statistical significance at 1/5/10%
confidence level. Robust standard errors clustered at the country level.
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Figures 

 
Figure 1: Effect of precipitation on food CPI inflation minus effect at mean precipitation  

 
Notes: Based on column I of Table 1; population density weighted total annual precipitation in decimeters (dm) from 
the replication dataset of Burke et al. (2015); effect on food CPI inflation in percentage points. 
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