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Abstract 
 
Proponents of Bitcoin argue that demand for electricity from Bitcoin miners can lead to an 
increase in renewable electricity capacity. We rigorously evaluate this claim by estimating a 
Bitcoin electricity demand curve and include this demand curve in a long-run model of the Texas 
electricity market. We find that while Bitcoin mining can indeed increase renewable capacity, it 
also increases carbon emissions. When Bitcoin miners provide grid management services in the 
form of demand response, their emissions impact is largely mitigated. 
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1 Introduction

Bitcoin and cryptocurrency are attracting increasing attention from investors and environmentalists

alike. The size of the market is dramatically expanding, reaching a market capitalization of over

1,000 billion USD at points in 2021 (Statista, 2022). Increased concern about the energy and

environmental impacts of Bitcoin and cryptocurrency warranted the Intergovernmental Panel on

Climate Change to call cyptocurrency an area of “growing concern” in a recent Climate Change

Assessment Report (Intergovernmental Panel on Climate Change, 2022).

Bitcoin proponents claim that the coin can benefit the electricity grid, by both increasing re-

newable energy and supporting grid management. We rigorously test these claims using a long-run

model of electricity markets. We find that increased electricity demand from Bitcoin increases the

optimal quantity of renewable capacity investment, and the share of generation provided by renew-

able resources also modestly increases. However, carbon emissions from an electricity grid with

Bitcoin electricity demand are 1.6 times the emissions without Bitcoin. Bitcoin miners can signifi-

cantly attenuate this emissions impact by providing grid management services that help ameliorate

unexpected decreases in renewable generation.

Bitcoin requires energy for both the mining of new coins as well as the maintenance of Bitcoin’s

digital ledger, called a blockchain. Bitcoin miners use computing power to solve mathematical

puzzles, which verify transactions. Miners are rewarded for solving puzzles with new Bitcoin. Other

cryptocurrencies (e.g. Ethereum, Chia, Litecoin, Cardano), which offer similar platforms for digital

currency exchange, have also been expanding. While the specifics of the algorithms used to mine

and verify the alternative cryptocurrencies differ, their broad implications on energy markets are

consistent: digital currencies require significant amounts of electricity (Badea and Mungiu-Pupazan,

2021).1

Increases in mining for Bitcoin come with increases in the negative externalities from electricity

production, which vary depending on the source of electricity used. The predominance of mining in

China in previous years garnered much attention, where miners had concentrated to take advantage

of cheap electricity fueled by coal (de Vries, 2018; Badea and Mungiu-Pupazan, 2021). In the

summer of 2021, the Chinese government began ordering Bitcoin miners to cease operating. Mining
1That said, Bitcoin uses an algorithm called “proof-of-work”, which has a larger energy footprint per transaction

than algorithms used by other coins such as “proof-of-stake” (HQ, 2019; Coinbase, n.d.; Digiconomist, 2022). Given
this and the fact that Bitcoin remains the dominant cyptocurrency in the market with almost three times the size in
market capitalization compared to its closest competitor (Ethereum), this paper focuses on electricity demand from
Bitcoin.
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operations moved elsewhere, and the U.S. took over as the largest location of Bitcoin mining across

the globe, accounting for 38% of the global hashrate in January 2022 (Cambridge, 2021).2

A recent set of arguments claims that Bitcoin can have positive environmental impacts. One

argument is that the increase in demand from miners can increase the profitability of wind and

solar resources, increasing the amount of renewable capacity on the electric grid (Li et al., 2019).

At a U.S. Congress House Committee on Energy and Commerce hearing on the energy impacts

of cryptocurrency, expert witnesses argued that Bitcoin can offer secure returns to wind investors

concerned about not having enough traditional demand during hours in which wind production is

high (Belizaire, 2022; Brooks, 2022). A related claim is that Bitcoin can increase not just the total,

but the share of electricity provided by renewable energy (Findijs, 2021; Initiative, 2021; Smith,

2022), in essence claiming that electricity demand from miners would increase the profitability and

entry of wind and solar resources at a rate that exceeds the increase in entry from other tradi-

tional generation resources. These claims implicitly involve entry and exit of alternative generation

technologies, and so require a long-run framework to evaluate their veracity.

Bitcoin has also been cited as being able to help with the management of the electric grid. Over

the last year Texas Governor Greg Abbott has welcomed miners to Texas, highlighting that miners

can offer grid management in the form of demand response. Miners could make up for unexpected

shortfalls in renewable generation by reducing demand, which may be particularly appealing to

Texas given its increasing wind portfolio. In fact, miners have already been observed to provide

demand response at times in Texas (Council, 2022).

This paper quantifies Bitcoin’s impact on long-run renewable capacity investment, carbon emis-

sions, and grid management. We utilize and extend a new model of long-run equilibrium capacity

investment in the electricity market in the United States, Holland, Mansur and Yates (2022), which

we refer to as HMY (2022). We apply the extended HMY (2022) model to Texas’s electricity grid.

Texas is an ideal environment to test the implication of Bitcoin mining on renewable generating

capacity because it has potential for both wind and solar resources, and it is essentially isolated

from other parts of the country. As a result, we can study the long-run equilibrium without needing

to account for import or export of electricity from other regions. Further, the state has already seen

an increase in electricity demand from Bitcoin miners—as of December 2021 it was the state with

the third largest amount of Bitcoin electricity demand in the U.S. (Cambridge, 2021).
2Global hashrate shares are shown in Figure A.1 in the Appendix. Mining in the U.S. occurs predominantly in

nine states, with Georgia, Texas, Kentucky, and New York having the most mining, in that order (Cambridge, 2021).
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In the HMY (2022) model, the capacities of various generation technologies are endogenously

determined in a long-run equilibrium that incorporates demand, prices, and technology costs. We

incorporate Bitcoin into this model by adding global Bitcoin demand into the Texas electricity

grid.3 We estimate global Bitcoin electricity demand first using observed data of miners’ electricity

consumption and prices. We then compare this demand estimate with a bottom-up engineering

approach, which estimates Bitcoin electricity demand based on the technical components of Bitcoin

mining profitability, and we find that these two approaches yield comparable results. Finally,

we estimate a distribution of hourly capacity factors for wind and solar, which we use to extend

HMY (2022) to include uncertainty in renewable energy generation.

We formalize and study the claims about Bitcoin by simulating optimal long-run technology

investment, generation, and carbon emissions across several experiments. We first find the out-

comes in a baseline experiment without Bitcoin electricity demand and then with Bitcoin. Next, we

study the potential for Bitcoin to support grid management as a type of demand response product.

Demand response refers to the suite of incentives used to reduce electricity consumption or move it

to other hours of the day, providing a tool for grid operators to manage uncertainty in generation

(U.S. Department of Energy, 2022), which is anticipated to be increasingly important with more

penetration of wind and solar resources (Cochran et al., 2015). From a technical operations per-

spective, Bitcoin miners can be turned off close to instantaneously with near zero adjustment costs

(Menati and Xie, 2021), making miners good candidates for demand response.4 Specifically, we

allow grid operators to turn the demand from miners off whenever there is an unexpected shortfall

in renewable generation, and compare these results to our other experiments.

The results from the experiments show that increased electricity demand from Bitcoin leads to

a more than doubling of wind capacity and a modest increase in solar capacity. Despite the increase

in renewable capacity, total carbon emissions increase by around 1.6 times the emissions without

Bitcoin due to an increase in generation from natural gas plants. These extra carbon emissions,

however, can almost completely be eliminated if Bitcoin also provides demand response. In addition,
3We include the entire global Bitcoin electricity demand in the Texas interconnection region since miners are

geographically flexible and in theory could be incentivized to reallocate to Texas for sufficiently low electricity prices.
Even with frictions in miners’ geographic flexibility, generating reliable regional or sub-global Bitcoin demand curves
is difficult. If one assumes that miners would not move operations in response to electricity price changes in the
short term, and if data were available, one could use observed miner responses to changes in electricity prices within
electricity grids to estimate regional Bitcoin demand curves. However, this paper is concerned with long-run outcomes
and hence we do not attempt to do this.

4Flexible generation resources such as natural gas peaker plants (peakers) may also be increasingly needed to
manage more intermittent renewable resources; peaker plants are included in HMY (2022) and will be reviewed in
the results.
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we find that while the median daily price variation increases when adding electricity demand from

Bitcoin, extreme price spikes are substantially mitigated, and the mean price variation actually

decreases in the experiments with Bitcoin.

Our paper contributes to a nascent body of literature on the energy impacts of cryptocurrency—

see Badea and Mungiu-Pupazan (2021) for a summary. Li et al. (2019) study the impact of regional

variation in electricity prices on miner location decisions, and de Vries (2018) shows that the energy

required to mine has been increasing, indicating that understanding the interaction between Bitcoin

and electricity markets will be an increasingly important aspect of cryptocurrencies’ impact on our

economy and the environment. Our paper also contributes to the recent literature on the economics

of Bitcoin and blockchain digital currencies (Prat and Walter, 2021; Bertucci et al., 2021; Cong,

He and Li, 2021; Biais et al., 2019; Halaburda et al., 2022). While there is continued debate in the

economics community about the underlying value of cryptocurrencies (Baur, Hong and Lee, 2018;

Fernández-Villaverde, 2018), the premise of this paper is only that Bitcoin is a new and growing

source of electricity demand, and its future impacts on outcomes in the electricity grid are important

and understudied.

2 Model

HMY (2022) develop a long-run model of the electricity sector which accounts for consumers’ demand

for electricity, the capital and marginal cost of generating capacity for a variety of technologies, the

intermittency of renewable generation, and battery storage technology. We augment this model

to account for electricity demand by Bitcoin miners and uncertainty about renewable generation,

but we do not consider storage.5 For a given hour t in a representative year, we let Qt denote the

consumers’ consumption of electricity and Ut(Qt) denote the consumers’ benefit of this consumption.

Similarly, we let Mt denote the miners’ consumption of electricity and Wt(Mt) denote the miners’

benefit of this consumption.6

There are several different technologies that can be used to generate electricity. For a given

technology i we denote the capacity by Ki and the generation in each hour by qit. These variables

are related by the constraint

qit  fitKi, (1)
5HMY (2022) find modest levels of storage in their baseline and little benefit to increasing storage by subsidizing

its capital costs.
6The demand function for consumers and miners is given by the inverse functions of U 0 and W 0, respectively.
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where the fit indicates the capacity factor in hour t. Fossil fuel generation technologies generally have

capacity factors equal to one in each hour. In contrast, renewable energy technologies have capacity

factors that are less than or equal to one, and these capacity factors capture the intermittency of

renewable energy. In HMY (2022), the capacity factors are deterministic. Here we assume the

capacity factors for renewable generation are random variables that are independent across periods

but may be correlated within period. Technology i has constant marginal cost of production ci and

capital costs ri per unit of capacity. In each hour, the total demand for electricity (from consumers

and miners) must equal the total electricity generated by all of the technologies. Thus we have

Mt +Qt =
X

i

qit. (2)

We characterize the long-run competitive equilibrium in the model by exploiting the well known

correspondence between this equilibrium and the planner’s problem. The planner selects consump-

tion, production, and capacities to maximize the expected benefits of electricity use minus the costs

of production and capacity. We assume the capacity factor uncertainty is resolved after the capaci-

ties have been selected but before the generation and consumption have been selected. Accordingly,

we define the value Vt in a given period as a function of the vector of capacities K to be

Vt(K) = max
Mt,Qt,qit

E[Wt(Mt) + Ut(Qt)�
X

i

ciqit] (3)

subject to the constraints (1) and (2). Here the expectation is with respect to the joint random

variable describing the fit. The planner’s problem can then be written as

max
K

X

t

Vt(K)�
X

i

riKi. (4)

For our application of the HMY (2022) model, we consider four generation technologies: two

renewable (wind and solar) and two fossil fuel (natural gas combined cycle and natural gas peaker).7

The marginal production costs and capital costs for these technologies are given in Table A.1 in

the Appendix. Comparing the two natural gas technologies, we see that combined cycle gas plants

have lower marginal but higher capital costs than peaker plants. As in HMY (2022), we assume the

benefit function Ut is quadratic in Qt, so that marginal benefit (i.e. the demand for electricity) is
7HMY (2022) also include a nuclear technology, but this technology is not used unless capital costs are significantly

reduced. Coal is not included because it is unlikely that any new coal plants will be built in the U.S. in the future
and thus coal would not be part of the long-run generation portfolio.
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linear. We augment this with an additional linear demand curve for electricity for Bitcoin mining,

as described in the next section.

3 Bitcoin Demand for Electricity

We present two ways of thinking about Bitcoin demand’s for electricity: one, an engineering based

approach; and two, a revealed preference approach based on the available data. We start with the

engineering based approach as it is instructive for understanding the factors that impact Bitcoin

profitability.

3.1 Bottom-up Approach to Estimating Bitcoin Electricity Demand

The profitability of Bitcoin mining is the total revenue from the effort spent mining less the costs of

that effort. Total revenue is a product of computational effort, the inverse difficulty of finding new

blocks in the blockchain, the conversion of new blocks to Bitcoin reward, and the price of Bitcoin,

pb. Computational effort in this setting is measured by the number of hashes per second, where a

hash can be thought of as one guess of the cryptographic puzzle that miners attempt to solve to

find new blocks b. The number of hashes needed to solve a blockchain block b is the product of

a known parameter in the Bitcoin network called Bitcoin Difficulty denoted D,8 multiplied by a

constant denoted �, that comes from Bitcoin source code.9 When miners find a new block, they are

rewarded in Bitcoin based on the networks’ Bitcoin Block Award, which is the amount of Bitcoin c

that is created and awarded to the miner when a block is solved (CoinWarz, 2022).

The costs of effort are calculated as the amount of electricity W used per hash per second, s,

which is based on the efficiency of the hardware used for mining times the price of electricity, pe.10

Bitcoin profits ⇡ in an hour can be expressed:

⇡ =
h

s

⇢✓
1

D
� s

◆✓
c

b

◆✓
$

c

◆
�
✓

W

h/s

◆✓
$

W

◆�
(5)

8The Bitcoin algorithm was designed to modulate Bitcoin Difficulty up and down so that blocks are consistently
rewarded every 10 minutes, regardless of the amount of hashing effort on the network. This means when more
mining effort is present on the Bitcoin network, the difficulty measure increases, and when less mining effort is on
the network, the difficulty measure decreases. The algorithm is programmed such that the Bitcoin difficulty measure
endogenously updates every two weeks, with limits on the size of the update up and down, set at 300% up and 75%
down (CoinMetrics, 2022a).

9� is referred to as the “the constant of proportionality” in Bitcoin parlance.
10In this paper we view the costs of mining hardware as previously incurred lump sum costs, and mining decisions

here are conditional on owning hardware. We leave future research to study the hardware investment decision.
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where s = 3600
10 as the Bitcoin network is set up such that it consistently takes 10 minutes to solve a

block, and the numerator reflects seconds per hour. For a given set of parameters governing Bitcoin

Difficulty, Block Award, and machine efficiency, we can find the electricity price for which mining is

profitable conditional on the Bitcoin price. The Difficulty and Block Award parameters are easily

observed from the Bitcoin network: we use the current Difficulty measure of 29.57 trillion hashes

per winning block, and the current Block Award of 6.25 coins per block (CoinWarz, 2022). Finally,

we use the current frontier technology for mining hardware efficiency.11 We estimate the electricity

price for which miner profits are greater than zero conditional on a Bitcoin price using this frontier

technology. We find that for the maximum and minimum Bitcoin prices observed over the period

August 3, 2021—August 3, 2022 of $68,990 and $17,602, respectively, mining is profitable when

electricity prices are below $607 and $155 per MWh. In the data used for simulation (described

below), the reference price is below $155 per MWh in 98.4 percent of hours in a year and below

$607 per MWh in 99.4 percent of hours.

3.2 Revealed Preference Approach to Estimating Bitcoin Electricity Demand

To estimate an electricity demand curve for miners in a revealed preference approach, we use publicly

available Bitcoin energy consumption data from the Cambridge Bitcoin Electricity Consumption

Index (Cambridge, 2021), which we will refer to as CBECI.12 For this paper, we use CBECI’s

central estimate of daily energy use associated with daily Bitcoin mining, which assumes that

miners use the most energy-efficient bundle of hardware available to mine.13 CBECI estimates a

global hashrate as well as country specific shares of the global hashrate, attributing energy demand
11The energy efficiency of Bitcoin hardware evolves over time. The current frontier technology, Bitmain Antminer

S19 XP, can produce 140 trillion hashes per second consuming 3250 watts (Software Testing Help, 2022).
12As energy consumed by Bitcoin miners is not easily observed, CBECI develops a model that estimates energy

consumption based on several data sources and assumptions about hardware used for mining. A key input to the
model is the daily network hashrate, which refers to the average rate at which miners solve hash puzzles per day,
measured in Exahases per second (Eh/s). These inputs to CBECI’s model come from dynamically updated data from
Coin Metrics (CoinMetrics, 2022b). Next, CBECI evaluates the set of hardware potentially used by miners and their
associated technical specifications, which inform CBECI’s estimate of the energy efficiency of alternative hardware,
measured in Joules per Gigahash (J/Gh).

13CBECI also develops a lower and upper bound estimate of energy consumption assuming that miners use the
most and least efficient hardware available, respectively. Given this paper seeks to estimate price elasticity of mining,
it is worthwhile to note that CBECI also includes a static electricity cost assumption of 0.05 USD per KWh in their
model, which is used to inform their estimate the type of hardware used for mining at any point in time. Their central
estimate of energy use assumes that miners use the lowest cost equipment available up to the profitable threshold
based on the assumed electricity cost. When no mining hardware is profitable at 0.05 USD per KWh, miners continue
to mine in their model and use the last hardware that was used profitably. CBECI’s use of an electricity cost to
partially inform the model’s selection of hardware used for mining highlights an opportunity for further refinement;
namely, allowing hardware to be an endogenous function of the country-specific electricity prices that we use for the
price elasticity estimation.
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for mining to miners based on IP addresses and find that mining is predominantly located in nine

countries—Canada, China, Germany, Iran, Ireland, Kazakhstan, Malaysia, Russia, and the U.S.

Miners in China initially occupy the largest share, around 65 percent over the period 4th quarter

2019 through 1st quarter 2021, while starting in July 2021 the U.S. takes over as the country with

the largest global mining share. Figure A.1 in the Appendix shows the country hashrate shares

over this time period. We map the country-specific hashrate shares into energy estimates by using

CBECI’s time-varying estimate of total global energy use from mining.

We match the time-varying estimates of country-specific electricity demand for mining with

information about electricity and natural gas prices by country, purchased from Global Petrol Prices

(Global, 2022), shown together with consumption data in Figure 1a. Since the electricity and natural

gas price data are only available by calendar quarter, we sum the daily country-level electricity

consumption level over each quarter. Given the potential for Bitcoin demand to impact electricity

prices, we use a two-stage least squares instrumental variables approach, using a country’s natural

gas prices as an instrument for their electricity prices. We estimate the parameters of the following

regression:

Ect = ↵+ �cZct + µt + ✏ct (6)

where Ect is country c’s electricity demand from Bitcoin miners in quarter-year t and cZct is the

electricity price instrumented by country-quarter natural gas price. We include year by quarter

fixed effects, µt, to control for changes in factors impacting Bitcoin profitability, notably including

changes in Bitcoin prices. We exclude country fixed effects as we do not think of energy demand for

mining as contained within one country and do not want to focus on within-country responses to

variation in electricity price changes. For example, high prices in one country could induce miners

to relocate to another lower-electricity price country. The parameter estimates from (6) are shown

in Table A.2 in the Appendix. We use these parameter estimates to construct the Bitcoin electricity

demand curve in Figure 1b. This figure also includes the electricity price cutoffs above which mining

is no longer profitable from the engineering based approach as discussed above. Overall we take

Figure 1b to illustrate that the revealed preference based demand curve estimation is in the general

range of the two electricity price cutoffs at recently observed minimum and maximum Bitcoin prices.

A potential drawback of both of our approaches to understanding Bitcoin’s electricity demand is

that neither considers changes in mining hardware efficiencies over time. Innovation in computing
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hardware will increase miners’ hashrate per unit of electricity consumed, which would decrease

the marginal electricity costs of mining and, all else equal, increase mining profitability. However,

hardware innovation that reduces computing costs could also induce more miner entry, increasing the

difficulty parameter in Equation 5 and thereby decreasing mining profitability. Further, the block

to coin ratio has decreased over time—specifically, it has been reduced by one half three times since

2009—and its next decrease by one half is expected as early as 2024 (Conway, 2021). Bitcoin prices

are also notoriously volatile, which could impact both hardware innovation and miner entry. Thus,

while mining hardware may be expected to increase in efficiency over time, given the uncertainty

of other factors impacting future Bitcoin profitability and their impact on hardware innovation, the

overall trend in Bitcoin profitability going forward is uncertain. Prat and Walter (2021) develop

a structural model of miner entry and the evolution on computing power on the Bitcoin network

and find that a significant portion of mining revenue is invested in mining hardware. Bertucci et al.

(2021) also develop a structural model of the Bitcoin industry and find that innovation spending

is proportional miner rewards. Future research would do well to further investigate the factors

influencing each variable in Equation 5, in particular to consider endogenous technological efficiency

improvements as a function of Bitcoin price.

Figure 1: Engineering and Revealed Preference Approaches to Demand

(a) Data (b) Estimated

Notes: Figure 1a plots quarterly TWh consumed by Bitcoin miners at the country level on the x-axis, by quarterly
country electricity price on the y-axis. Figure 1b shows a predicted linear demand curve—solid blue line—based on
the parameters estimated from the data using Equation 6 in Section 3. The dashed green line shows the electricity
price above which mining is no longer profitable based on Equation 5 using the lowest Bitcoin price observed over
the period 8/3/2021—8/3/2022. The dashed red line shows the electricity price above which mining is no longer
profitable using the highest Bitcoin price observed over the same period.
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4 Simulation

We study long-run electricity market outcomes under three different experiments: without Bitcoin

electricity demand, with Bitcoin electricity demand, and with Bitcoin electricity demand where

miners provide Demand Response whenever there is an unexpected shortfall in generation from

renewable resources.14 To do so we extend HWY (2022) to include demand from Bitcoin miners

and introduce uncertainty in renewable energy generation. For our set of experiments, we assume

that the entire global demand for Bitcoin electricity takes place in the Texas interconnection region.

Our results will thus be effected to some extent by the particular features of the Texas electricity

sector. For example, the wind and solar availability in Texas will have a key role in the long-run

equilibrium, and other states may be more or less endowed with these natural resources.15

For the experiments we need values for all of the exogenous variables and functions in the plan-

ner’s problem. We then solve the problem by adapting the algorithm described in HMY (2022) to

account for the miners’ benefit from electricity consumption and uncertain capacity factors. The

simulation is based on all 8760 hours in a year. For each hour, we have a reference level of demand,

a reference price, and Texas-specific capacity factors for wind and solar generation. The values for

these variables, averaged across each hour, are shown in Figure A.2 in the Appendix. Reference

prices and reference demand peak around 5 p.m., while solar capacity factors are the largest around

1 p.m., and wind capacity factors are the largest around midnight. To construct consumers’ linear

demand curves for electricity in each hour, we use the reference demand and prices in conjunction

with HMY (2022)’s baseline assumption that the demand elasticity is -0.15. Integrating the de-

mand curves gives us the benefit functions Ut for consumers’ electricity consumption. The miners’

hourly demand curve comes from dividing the quarterly linear Bitcoin demand function into hours.

Integrating these hourly demand curves yields the benefit functions Wt. The capital and marginal

costs for the production technologies are given in Table A.1 in the Appendix.

We determine the parameters of the distributions for the capacity factors as follows. We first

calculate a distribution of hourly capacity factors by technology using the observed wind and solar

generation data in Texas from 2016—2020.16 Solar and wind generation data come from publicly
14In particular, if generation from renewables in a given hour is less than the expected value, then bitcoin demand

is decreased by the same amount to exactly offset the renewable shortfall.
15Overall, is not obvious whether this modeling choice will yield an overly optimistic assessment of the ability of

Bitcoin to increase renewable generation and impact on carbon emissions. Spreading Bitcoin demand over a larger
geographic area may increase or decrease renewable generation depending on how these other areas have characteristics
that differ from Texas.

16We use the HMY (2022) procedure to calculate capacity factors, which measure production per MW of installed
capacity.
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available ERCOT reports and capacity data from the U.S. Energy Information Administration

Form-860. We partition time into hours of the day (i = 1 . . . 24) and days (k = 1 . . . 365 ⇤ 5). For a

given hour of the day i, we estimate a Seemingly Unrelated Regression (SUR) using the system of

equations

si,k = cs,i + �s,id+ "s,i

wi,k = cw,i + �w,id+ "w,k

(7)

where si,k is the set of all solar capacity factors for hour i over all days in 2016 - 2020 and d is a month-

level fixed effect. Using the residuals from this regression, we determine the variance/covariance

matrix for a joint normal random variable. Uncertainty about capacity factor in hour i in month

j is modeled as the sum of the predicted capacity factor from the SUR plus a random component

from the joint random variable. We discretize this joint random variable into a three point equal

probability marginal distribution for the solar capacity factors. For each value in this three point

distribution, we discretize the resulting conditional normal random variable into a three point equal

probability conditional distribution for wind capacity factors. This procedure allows the wind and

solar shocks to be correlated, with the degree of correlation determined by the residuals in the SUR.

In the end, we have a set of nine-point joint distributions for uncertainty about capacity factors

such that all thirty or so hour i’s in a month j have the same distribution.

5 Results

The first two rows in Table 1 compare the long-run technology capacity and carbon emissions

outcomes with and without Bitcoin electricity demand. We see that wind capacity substantially

increases in the experiment with Bitcoin demand, around double the wind capacity as without. Solar

capacity marginally increases with Bitcoin demand, while combined cycle natural gas also increases

and gas peaker capacity decreases. Carbon emissions with Bitcoin increase substantially, by around

1.6 times the experiment without Bitcoin, or 30 milion metric tons (mil mt). The last row shows the

investment outcomes when Bitcoin miners are being used as demand response. In this experiment,

the grid operator can turn the miners’ demand off whenever there is an unexpected shortfall in

renewable energy generation. Allowing miners to provide demand response modestly increases wind

and solar, but more substantially decreases the amount of investment in combined cycle gas. This
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experiment lowers emissions compared to Bitcoin without demand response, increasing emissions by

only 2 mil mt annually relative to baseline. Overall, we find that integrating Bitcoin onto the Texas

interconnection can occur without large increases in carbon emissions when miners are providing

demand response. Finally, we calculate the share of generation provided by renewable resources by

dividing total wind and solar generation over total generation and find that both Bitcoin experiments

increase the share of generation provided by renewables, with shares of 0.63 and 0.74 with demand

response, compared to 0.61 without Bitcoin.

Table 1: Generation Capacity with and without Bitcoin

Experiment Solar Wind Gas CC Gas Peaker Carbon
Baseline 48.68 34.24 27.47 5.62 46.43
Bitcoin 58.39 75.39 42.60 0.00 75.07
Bitcoin with Demand Response 58.48 82.92 29.42 0.00 48.67

Notes: This table shows the optimal long-run technology capacity across alternative experiments, as well as the
resulting total annual carbon emissions. Capacities are in GW and carbon emissions are in millions of metric tons.

We use the long-run investment outcomes from the planner’s problem to simulate one represen-

tative year’s worth of electricity outcomes, average these outcomes by hour, and plot them in Figure

2. The left hand side shows average hourly consumption from the two sources of electricity demand,

traditional consumers and miners, and the right hand side shows the average hourly generation by

technology. A notable result is that Bitcoin demand is relatively flat throughout the hours of the

day, especially compared to the more lumpy shape of traditional demand. As we see on the right

hand side, wind generation (blue) is also relatively flat throughout the day. Comparing the top right

panel to the middle and bottom right panels, we see that most of the increase in Bitcoin demand is

met with an increase in wind generation. Further, the gas peakers (red) that were required without

Bitcoin are no longer needed. In the middle-right panel, we seen an increase in generation from

combined cycle gas plants (green) in all hours compared to the top panel, the experiment without

Bitcoin. When allowing Bitcoin to provide demand response, we see in the bottom panel a reduction

in combined cycle gas, which provides the emissions attenuating effect we find in Table 1.

Although Bitcoin proponents have not generally included the effects on prices in their arguments

for the benefits of Bitcoin on the electricity grid, price variation is an important metric for grid

operations. Larger price volatility indicates more switching costs throughout the day as marginal

generators turn off and on. Large price changes would also indicate larger peaks and troughs in

electricity demand throughout the day, and demand profiles with larger changes in demand are

12



Figure 2: Average Hourly Consumption and Generation across Experiments

Notes: Each row in this figure corresponds to a unique experiment, with hour of the day on the x-axis. The figures
on the left hand side plot GWh consumption from traditional consumers and Bitcoin miners, averaged at the hourly
level. The right hand side figures plot the average hourly generation by technology for the corresponding experiments.
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Table 2: Summary Statistics for Price Variance and Price by Experiment

Experiment Median Mean Max Std. Dev.
Price Variance:
No Bitcoin 1.81 123.83 117577.05 1953.21
Bitcoin, No Demand Response 2.20 15.89 5285.39 106.33
Bitcoin, Demand Response 3.07 46.18 23202.77 503.30

Price:
No Bitcoin 26.68 32.46 1781.29 55.39
Bitcoin, No Demand Response 29.91 33.84 404.28 19.73
Bitcoin, Demand Response 26.68 32.81 809.77 33.74

Notes: This table shows summary statistics for price variance and price across alternative experiments. Variance is
calculated as the squared difference of average daily price less hourly prices, divided by 24 hourly observations within
each day.

generally harder to manage than smoother hourly consumption profiles. Table 2 compares daily

price variation across the experiments by constructing a measure of within day price variation as

the sum of the squared deviations of hourly prices less average daily price divided by 24 hourly price

observations.

While adding Bitcoin demand increases the median daily price variance, it decreases the mean

daily variance and substantially decreases the maximum daily price variance as well as the standard

deviation in daily price variance. Interestingly, mean daily price variance is higher with demand

response than without. Daily variance across experiments is also shown in Figure A.4 in the Ap-

pendix. This figure plots daily variance with Bitcoin (blue) and without Bitcoin (green). Bitcoin

has consistently high daily variances, as reflected in the medians in Table 2. Yet, the mean daily

variance with Bitcoin is lower than without. This is because on days when the daily variance is

very high, the experiments with Bitcoin demand have lower maximums than the experiments with-

out. Thus, while Bitcoin demand comes with higher variation in hourly prices within the day on

most days, it mitigates days with extreme variation, which may be increasingly important to grid

operators seeking to limit exposure to extreme price spike events and volatility.

6 Conclusion

We have evaluated several claims about Bitcoin mining and the electricity grid. Notably, we find that

Bitcoin mining comes with an increase in the total amount of renewable capacity and generation,
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from increases in wind capacity in Texas as well as a modest increase in the share of generation

provided by renewable resources. Yet, if the reason we want to increase renewable generation is to

reduce carbon emissions, then the positive externalities of Bitcoin mining are attenuated, as carbon

emissions can increase. On the other hand, there may be other positive externalities to increasing

renewable energy capacity such as cost reductions from economies of scale and learning-by-doing,

which we have not evaluated here. It it important to emphasize that these results are particular to

the Texas electricity grid, which is endowed with high potential solar and wind resources, and are

not necessarily applicable to other interconnection regions with differing wind and solar resource

availability and costs.

We also find that when Bitcoin miners provide grid management support in the form of making

up for unexpected shortfalls in renewable generation, their overall emissions impact is moderated,

yielding only a modest increase in carbon emissions as in the experiment without Bitcoin demand.

Yet, very high Bitcoin prices could also have the effect of making miners unwilling to shut off.

Future research would do well to study the incentives on both the grid operator and miners side in

terms of both interconnection agreements and demand response commitments.

Finally, in our model we have abstracted away from the details of the miners’ operational

decisions to purchase computer equipment and select mining locations. Rather, we have used the

estimated demand curve for electricity use for Bitcoin mining as an aggregate measure of the benefits

of Bitcoin mining. We have also considered only one electricity region in a single country. It may be

fruitful in future research to consider a more detailed model in which the Bitcoin mining capacity is

an endogenous variable along with the capacities of the various electricity generating technologies

and Bitcoin miners select locations in which to mine based on electricity prices.
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Appendix

Table A.1: Capital and Marginal Production Costs

Annual Marginal Carbon
Capital Cost Cost Emissions
$ per MW $ per MWh tons/MWh

Gas Peaker 54,741 44.13 0.526
Gas Combined Cycle 79,489 26.68 0.338
Wind (onshore) 99,452 0 0
Solar PV 62,456 0 0

Notes: Data correspond to the renewable innovation/subidy case in HMY (2022), which has capital cost for solar and
wind equal to 75 percent of their baseline values. This case is used to approximate the existing subsidies for solar
and wind.

1



Figure A.1: Country Share of Global Bitcoin Hashrate (CBECI)

Notes: This figure shows daily country-specific shares of global Bitcoin hashrate using data from CBECI. These data
are then used to estimate country-specific energy consumption from Bitcoin by multiplying country hashrate shares
by CBECI’s estimate of global Bitcoin energy consumption.

Figure A.2: Data for Texas Interconnection, Averaged over Each Hour

Notes: This figure illustrates the data inputs for the HMY (2022) model, averaged at the hourly level.
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Table A.2: Demand Estimation

(1) (2)
OLS 2SLS

USD per GWh -0.456
(-1.63)

USD per GWH, instrumented -0.170
(-0.90)

Constant 123383.045 72951.308
(1.08) (0.90)

Year by Quarter FE Yes Yes
Observations 99 59

Notes: This table shows the coefficient estimates from estimating Equation 6. Column (1) is an ordinary least squares
estimations, and column (2) is a two stage least squares estimation using natural gas prices as an instrument for
electricity price. Natural gas and electricity price observations are at the country-quarter level.

Figure A.3: Hourly Electricity Market Outcomes with and without Bitcoin Providing Demand
Response

Notes: These figures show alternative outcomes in the set of experiments with uncertainty in renewable capacity
factors, with hour of day on the x-axis. The solid blue shows the results when Bitcoin miners do not provide demand
response, and the dashed green shows when they do.
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Figure A.4: Daily price variance across experiments

Notes: These figures show the daily price variance across alternative experiments. Variance is calculated as the
squared difference of average daily price less hourly prices, divided by 24 hourly observations within each day. Daily
price variances in the top two graphs are winsorized at 60 for visualization purposes.
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