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Abstract 

In recent years, a significant problem with the carbon credit market has been higher than initially 
predicted price volatility. It is essential to study the market in a repeated-period dynamic setting 
to identify the factors enabling high fluctuations in prices. In this paper, we examine the dynamic 
auction design and propose a method to curb price volatility through a flexible supply cap. The 
equilibrium analysis shows that modifying the cap on per period supply can decrease price 
fluctuations. Currently, the government or the auctioneer sets a per-period limit on the supply, 
which reduces at a fixed rate over time. However, this paper suggests that a flexible cap on the 
per-period supply would be a better alternative. Specifically, we show that correlating the supply 
rate with expected future demand results in a more stable price. 
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1 Introduction

One of the most popular market-based solutions to limit greenhouse gas (GHG) emissions is to use

Cap-and-Trade schemes. Under these schemes, firms use emission credits to pay for GHG emissions.

The largest share of GHGs is CO2; thus, we focus on the case of carbon emission allowances, which

are called carbon credits.1

The carbon credit market has historically exhibited high price fluctuations.2 Demand shocks

are one of the major factors that cause price fluctuations. For example, Figure 2 shows volatility in

the California Cap-and-Trade program with a drastic decrease during 2016 and 2017. While price

fluctuations do not obstruct the operation of Cap-and-Trade markets and price movements are part

of the auction mechanism, large-scale price volatility may impede the reduction of carbon emissions.

Sharp price increases can increase the cost of compliance for firms, and sharp price decreases can

eliminate the incentive to invest in low-carbon technology.3 Thus, attenuating large fluctuations in

carbon prices in the short run can ensure environmental effectiveness. In this paper, we propose

adopting a flexible supply cap that depends on the expected future demand as a possible solution

to curb price volatility.

Carbon credit markets have responded to extreme fluctuations by using fixed prices and quan-

titative caps in the emissions trading system and carbon credit auctions. For example, in the

Cap-and-Trade program of California, quarterly carbon credit auctions have a price ceiling and

a reserve price, which escalate over time.4 Similarly, in the European Union Emission Trading

System (EU ETS), a “Market Stability Reserve” has been created, which releases permits when

there are very few in circulation and withdraws them when there are considerably high amounts

in circulation.5 These fixed cap methods perform well under certainty; however, as noted by Eller-

man and Wing (2003), in the presence of uncertainty, flexible caps and fixed caps lead to different

results. Our method suggests that in the presence of demand uncertainty, a more flexible limit on

1This model is also applicable to other markets for GHG emissions.
2For example, Nordhaus (2007) showed that the demand for allowances was likely inelastic in the short run, which

caused high price volatility. Dutta (2018), Wang (2017), and Zhang and Sun (2016) also provided evidence of price
volatility in carbon credit markets.

3For details, see Köppl et al. (2011) and Borenstein et al. (2019)
4Additionally, manufactures who are trade-sensitive and energy-intensive have an output-based updating allocation

system; under this system free carbon credits are conveyed in proportion to production size in previous periods. For
details, refer to Borenstein et al. (2019)

5For further details, refer to https : //ec.europa.eu/clima/policies/ets/reform en
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supply can decrease price volatility. Specifically, the cap on allowances available for sale should be

structured to be directly proportional to the intensity of the demand shock.6

We consider the primary market where the government or social planner sells carbon credits

through an auction. To examine the price volatility, we set up a dynamic model where carbon credits

are sequentially sold using a uniform auction design.7 This is the most common auction format used

by markets such as RGGI carbon dioxide (CO2) and the EU ETS (CO2).8 Additionally, our model

attempts to capture essential features of the market, such as stochastic demand and differences

in demand urgency across firms. We capture these features within the auction to create a more

realistic market design. We allow firms to differ in their urgency of obtaining carbon credits; this is

modeled as firms having different deadlines. The firm-specific deadlines for buying carbon credits

may be due to the vintage of the carbon credit (i.e., expiry of the credit) or the current portfolio

of credits owned by the firm. This feature helps us capture the heterogeneity among firms in terms

of their demand duration.

In this setting, we derive the equilibrium bid and show that the bid is truthful and ex post

incentive compatible. The optimal bidding strategy indicates that buyers consider their future-

period payoffs when deciding the expected value of winning in the current period. Thus, the

outside option value is endogenously determined through the expected payoff of auctions in the

future.9

In a dynamic setting, the introduction of demand uncertainty changes the optimal supply rate.

In particular, expectations about future supply and demand impact the equilibrium price and the

price fluctuations. Consequently, we show how relating the supply with the expected future demand

can decrease the impact of the demand shocks on price.

6For literature on the comparison of various price control instruments, see Newell and Pizer (2008), Newell and
Pizer (2003), Pizer (2002), Roberts and Spence (1976), Weitzman (1978), Weitzman (1974), Yohe (1978), and Stavins
(1996)

7We refer to the dynamic setting as the case in which a finite number of goods are sold to buyers that arrive over
time. There are two types of dynamic setting in the single-good case. The first type holds the set of buyers fixed and
changes their types over time as a function of allocations selected in earlier periods (for example, Athey and Segal
(2013), Eso and Szentes (2007)). In the second type, a finite number of goods are sold to buyers that arrive over
time. This paper considers the second type of dynamic setting, which we refer to as the changing buyer case. The
term “changing buyer type” is taken from the dynamic mechanism design literature review Vohra (2012)

8For details, see Lopomo et al. (2011)
9Apart from carbon credit auctions, this model can be applied to any market where the bidders differ in their

valuation of the object and urgency of acquiring the good, including spectrum auctions (for wireless networks) or
electricity markets with different delivery dates.
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The comparative statistics section analyzes how demand shocks and the supply rate impact the

equilibrium price for carbon credits. The results show that an increase (decrease) in future supply

decreases (increases) the current price. The change in future supply affects the current price by

increasing the opportunity cost of winning for the firm. A raise in the future supply increases

the probability of winning carbon credits in the future, thereby increasing the opportunity cost of

winning in the current period. Meanwhile, we find that an increase (decrease) in expected future

demand causes an increase (decrease) in the current price. The intuition behind the rise in the

current price is that a rightward shift in future demand makes the firm demand more in the current

period because the carbon credits can be stored and used in future. The outward shift of the

demand curve consequently increases the equilibrium price. Therefore, this paper suggests that the

future supply should be a function of the expected future demand. In particular, the government

can decrease the supply whenever the expected future demand decreases and vice versa. We show

that such a policy can reduce price fluctuations in the market.

This paper is related to the literature on price and supply restrictions imposed in the emissions

market.10 Earlier work such as Weitzman (1974) recognized that the optimal instrument would be

a contingency message that provided instructions according to the state of the world.

The current literature has introduced new models that help us understand climate policy re-

sponsiveness. They suggest various proposals for the structure of carbon pricing instruments. This

literature includes papers on the index regulation that suggests that the emission cap should be

proportionate to an index such as the GDP or output. For example, Jotzo and Pezzey (2007) assess

how well intensity targets indexed to future realized GDP can handle uncertainties in international

GHG emissions trading. Additional papers that consider indexing in the emissions market are

Quirion (2005), Sue Wing et al. (2006), Newell and Pizer (2008), Branger and Quirion (2014), and

Ellerman and Wing (2003). The literature has investigated flexible caps, and it has considered

the net benefit of applying a flexible cap using non-auction models such as cost-benefit analysis

and emissions prediction & policy analysis.11. This paper extends this literature by analyzing how

10The early work on this topic was conducted by Roberts and Spence (1976) and Weitzman (1978). They considered
price ceilings and floors under demand and supply uncertainty in a static model.

11An emissions prediction and policy analysis (EPPA-EU) model is used in Ellerman andWing (2003) and Sue Wing
et al. (2006). The cost-benefit analysis was introduced by Weitzman (1974) and used in Quirion (2005) and Newell
and Pizer (2008)

3



a flexible cap affects the strategic bidding decision of a firm, which affects the final price in the

primary sale (during the auction stage).

Apart from indexing, other papers in this literature study how pricing and quantitative instru-

ments can be more responsive to economic fluctuations. Heutel (2012) finds that the optimal policy

accommodates the procyclical behavior of carbon emissions. The cap on the emissions trading sys-

tem in this paper is reduced during recessions and increased during booms. Doda (2016) provides a

comprehensive review of the literature comparing fixed and responsive caps in an emissions trading

system. Our work extends the above literature by introducing a flexible cap in carbon credit auc-

tion design. The previous literature focused on using market equilibrium as the outcome of demand

and supply in the emissions trading market. In this study, we focus on examining how a flexible

supply rate interacts with Cap-and-Trade auctions. This paper aims to model the responsive sup-

ply cap as part of the auction mechanism by including dynamic features in the market, modeling

the uncertainty of future demand, and demonstrating how the firm’s bid and equilibrium auction

price are affected by the flexible supply cap. We consider a dynamic model, which also accounts

for heterogeneity in permit lifetime and compliance deadlines.

This paper is also related to the literature on the dynamic mechanism design with multi-

dimensional private information (see the survey by Bergemann and Said (2010) for details).12 It

extends this literature to investigate the optimal auction for an auctioneer with an unknown number

of buyers and sellers in each period. This paper is also related to the literature on efficient sequential

auction with impatient buyers and those on stochastic auctions.13

The remainder of the paper is structured as follows: Section 2 and section 3 describe the

generalized model setup and derive the equilibrium bid. Section 4 looks at comparative statics

12The most relevant paper for our work is Pai and Vohra (2013), who consider the optimal auction for a single seller
selling multiple units to stochastically arriving bidders; they also allow the arrival time to be private information. The
main difference in our paper is that we consider the auctioneer’s problem of identifying an efficient mechanism with
stochastically arriving sellers. Furthermore, Pai and Vohra (2013) assumes perfectly patient bidders and focuses on
the optimal auction to maximize the seller revenue. Another related paper is Mierendorff (2013), which investigates
a revenue-maximizing mechanism for a seller selling a single good in a dynamic environment with buyers having
multi-dimensional private information. The main difference in our work is that we consider an efficient mechanism
in a dynamic environment with multiple and stochastically arriving sellers.

13The most relevant paper in the literature on sequential auctions with impatient buyers is Gershkov and Moldovanu
(2010). They examine the allocation of a set of durable goods to a dynamic buyer population. In their setting, objects
are durable, whereas in this paper, objects are non-durable, and the total supply in every period is stochastic. For the
literature on stochastic auctions, refer to McAfee and McMillan (1987), Mierendorff (2013), Said (2012) and Jeitschko
(1999)
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focusing on price fluctuations, and section 5 concludes the paper.

2 Model setup

Consider a sequential auction in infinite, discrete-time period model, t ϵ {0, 1, ....∞}. In each period

multiple units of a homogeneous good are auctioned. Buyers with single unit demand arrive over

time. Buyer i has a valuation vi, which is an i.i.d. random draw from the distribution Fv(.) on

[v, v̄]. The demand for each buyer lasts for multiple periods. In particular, the buyer has an arrival

time ai and a demand duration ki. This implies that the unsatisfied demand will last for all t ϵ

{ai, ...., (ai + ki)}. Thus apart from heterogeneous valuations, buyers also differ in terms of their

demand lifetime. The type of a buyer is a triplet consisting of his valuation, arrival time and

demand duration, x = (vi, ai, ki); and the type space is given as X = [v, v̄] × [a, ā] × [1, k̄]. A

buyer’s type is an i.i.d. random draw from a commonly known distribution Fv × Fa × Fk over X.

We assume that the three components of the type space, i.e. valuation, arrival time and demand

duration are independent. For notational ease, we denote the number of active demand periods left

for bidder i in period t as ri,t. Additionally, for each buyer the probability of his demand surviving

in the next period is τ , where τ ϵ [0, 1]. The parameter τ captures the future demand uncertainty

that the buyer might have due to external economic reasons.

In our model, in period t where ri,t ≥ 0, an agent of type xi,t = (vi, ri,t) who faces a possible

payment zt derives the following instantaneous utility:

U(vi, ri,t) =


(vi − zt), if he wins the auction

0, otherwise.

Demand Side The buyer’s arrival rate is stochastic: In any period t, na new buyers arrive, where

na is an i.i.d. random draw from the distribution Fn on {1, ...., n̄}. Additionally, let nt denote the

set of active buyers in period t; nt is calculated as nt =
∑k̄

x=0 nt,x, where nt,x denotes the number

of bidders with x periods of active demand in period t. The total number of potential buyers is

given by N ϵ IN such that N ≤ n̄k̄.14

14Recall that n̄ is the upper bound on the new buyers arriving each period and k̄ is the upper bound on the number
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Supply Side: The supply rate in this model, denoted as mt, has two main properties. Firstly,

in the emission auction markets, the goal is to reduce the supply of emission credits, which reduces

the total emission. The reduction in emissions is achieved by having a gradually decreasing supply

rate over time. Let the rate at which supply decreases in each period be denoted by λ ϵ [0, 1].

The decreasing rate implies current period supply is λ times the supply in previous period, i.e.

mt = λmt−1. Secondly, in this model we allow the supply rate to be a function of demand shocks.

Thus, the supply rate λ is a function of the demand uncertainty variable τ , denoted as λ(τ) = f(τ)

. Using these two properties, the supply in period t can be written as mt = λ(τ)×mt−1. The units

sold are identical, and the supply decreases at a constant rate.15 Let the initial period supply be

denoted as m0 = m̄, such that mt ≤ m̄ ∀ t > 0.

Information Structure: The distribution on the buyer’s type space, the distribution of buyers’

arrival rate, the initial period supply and the decreasing rate of the supply are assumed to be

common knowledge. The buyer has private knowledge about his type, composed of his valuation

and demand lifetime. He does not have knowledge of the exact number of other buyers, their types,

or bid reports. The arrival rate of buyers is stochastic. Thus, the exact per period demand is

unknown for future periods.

The timeline of the game is as follows. In each period, t, the active buyers report a bid for a

single unit to the auctioneer. The strategy set of the buyers in period t compromises of their bid

in period t, i.e. bt(vi, ri,t), where vi is the value and ri,t is the number of active periods left at the

tth period. The active buyers consist of new buyers arriving in the current period and the existing

buyers who are still active and have unfulfilled demand. After receiving bids from the active buyers

and an estimate of the number of items to be sold from the social planner, the auctioneer holds an

auction to decide the number of items to be traded, denoted as St, and the clearing price denoted

as zt.

We now give a detailed description of the auction mechanism. The auctioneer holds a series

of static uniform price auctions. Bidders simultaneously submit sealed bids for the item. In each

period t, the auctioneer calculates the total number of items to be traded, denoted by St, by

of periods a demand can last for a buyer
15To focus on the effect of supply and demand dynamics, we will be abstracting away from the multi-unit demand

nature of this market
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equating the demand (denoted by nt) and supply (denoted by mt). The buyers are ranked in

ascending order of their bids, and St highest bids are accepted to allocate the item. 16 The total

traded items St is a function of demand nt and supply mt, i.e. St(nt,mt); for convenience we will

suppress the dependence and use notation St. We will reintroduce the dependence in the notation

for the comparative statics section as it would be relevant in that section. Each winning bidder

gets one unit of the item and pays the price equal to the highest losing bid.

To formally determine the clearing price, we denote the order statistic for bid as b(l), which

represents the lth highest order statistic of the bidding values. Using the ordered bids, the auctioneer

selects the St highest bids in period t to trade. So the bid of a buyer is accepted for trade if bt(vi, ri,t)

ϵ {b(1), b(2)............b(St)}. Every winning bidder pays the bid of the highest losing bidder, i.e. zt =

b(St+1). The price paid by the winning buyers, in any period t, is equal to the (St + 1)th highest

order statistic of the bids. All buyers who bid above zt win the item at a price zt and each accepted

sale request yields a payment equal to zt for social planner.

We solve the repeated period problem using Subgame Perfect Bayesian Nash equilibrium as

the solution concept. In each period, the buyers report a bid for a single unit of the item to the

auctioneer. The equilibrium defines a set of strategies and beliefs, such that given the opponents’

strategies, the expected payoff of every buyer is maximized in each period. Table ?? summarizes

all the notations used in this paper.

Observation 1. Notice that, although the arrival time ai is private knowledge, the buyer does not

have any incentive to lie about the arrival period. This is due to the independence of the buyer’s

payoff function and the arrival time ai. Thus the relevant private information of buyer i is (vi, ki).

3 Equilibrium analysis

Bidder i’s bidding strategy is defined as bi = {b1(vi, ri,1), b2(vi, ri,2), ....b∞(vi, ri,∞)}, where bt(vi, ri,t)

denotes the bid in the tth period given that the bidder’s value is vi and demand will last for ri,t

periods after period t.17 As this is a dynamic setting, we start by defining the state variables. Let

16If the number of items demanded is equal to the number of available units, i.e. mt = nt, the auctioneer sells all
the available supply in period t, i.e. St = mt = nt. On the other hand, if the number of items demanded is less than
available units i.e. nt < mt, the auctioneer sells St = nt number of carbon credits.

17All this assumes, of course, that the particular bidder has not already won an object so is still active in period t.
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σt = {mt, nt} denote the auction “state” in period t. Recall, nt denotes the set of active buyers in

period t and mt represents the number of sale units available in period t.

Let us now consider, in period t the maximizing objective function for the buyer, which is the

total lifetime payoff after realization of demand and supply, denoted by V (vi, ri,t|σt).

V (vi, ri,t|σt) ≡
{
Pr

(
b(vi, ri,t) > b

(St)
j ̸=i

∣∣∣∣σt)E[vi − b(St+1)(vi, ri,t)

∣∣∣∣b(vi, ri,t) > b
(St)
j ̸=i

]
+

[
1− Pr

(
b(vi, ri,t) > b

(St)
j ̸=i

∣∣∣∣σt)]τ ∫
nt+1

V (vi, ri,t − 1|σt+1)

}
(1)

The first term represents the expected payoff from the auction in the first period and the second

term is the future integrated over possible arrival rates σt+1. The future payoff is equal to the total

payoff for value vi and (ri,t − 1) periods left. Let W (vi, ri,t) denote the total payoff ex-ante, i.e.,

before the realization of the state variable ‘σt’,evaluated as follows

W (vi, ri,t) ≡
∫
ri,t

τ

{
Pr

(
b(vi, ri,t) > b

(St)
j ̸=i

∣∣∣∣σtri,t)E[vi − b(St+1)(vi, ri,t)

∣∣∣∣b(vi, ri,t) > b
(St)
j ̸=i

]
(2)

+

[
1− Pr

(
b(vi, ri,t) > b

(St)
j ̸=i

∣∣∣∣σt)]W (vi, ri,t − 1)

}

Using the total payoff ex-ante, we can rewrite the ex-post per period payoff in Equation 1 as

V (vi, ri,t|σtri,t ) ≡
{
Pr

(
b(vi, ri,t) > b

(St)
j ̸=i

∣∣∣∣σtri,t)E[vi −W (vi, ri,t − 1)− b(St+1)(vi, ri,t)

∣∣∣∣b(vi, ri,t) > b
(St)
j ̸=i

]
+W (vi, ri,t − 1)

}
(3)

Pseudo type for each period:

Observe that we have the probability of winning in each period defined in terms of the bid, in order

to define that in term of the bidder’s type, we will define a per period pseudo type for each period

t and bidder i as ηi,t. Let Gt(.) be the distribution for ηt,i. The pseudo type is defined as follows:

ηi,t =


vi −

∑ki
l=t+1

∫
nl
τ l−tG

(Sl)
l (ηi,l|σl)

(
ηi,l − E[(ηSl

l )|ηi,l > ηSl
l ]

)
, if t ≥ ai or t ≤ ki

0, otherwise.
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The pseudo type helps simplify the payoff function as well as the bid. The following lemma

shows the relation between the pseudo type and the payoff function

Lemma 1. The equilibrium bid is increasing in pseudo type and the total payoff in period t can be

rewritten as follows :

W (ηi,t) =

∫
nt

τG
(St)
t (ηi,t|σt)

(
ηi,t − E[(ηSt

t )|ηi,t > ηSt
t ]

)
+W (ηi,t+1) (4)

V (ηi,t) = G
(St)
t (ηi,t|σt)

(
ηi,t − E[(ηSt

t )|ηi,t > ηSt
t ]

)
+W (ηi,t+1) (5)

We can use this equation in order to determine equilibrium bid functions, as demonstrated in

the following result. We focus on the symmetric Bayesian Nash equilibrium.

Theorem 1. The equilibrium per period bidding strategy in the dynamic auction game is given as:

b(ηi,t) = vi −W (ηi,t+1)

or

b(ηi,t) = ηi,t

4 Analysis of flexible cap and its effect on price fluctuation

This section evaluates how the supply rate can be strategically used to stabilize price fluctua-

tion arising from demand shocks. Demand shocks can occur from weather conditions, changes in

government policies regarding environmental issues, and unpredictable events such as the onset

of Covid-19. Section 4.1 looks at the advantage of using flexible cap for curbing price volatility.

Additionally, section 4.2 gives preliminary data evidence to motivate the need for a flexible cap.

4.1 Derivation of the optimal flexible cap

In this section we analyze the impact of demand shock on price fluctuations; specifically looking

at whether flexible cap can curb demand induced price fluctuations. We compare the flexible cap

case to the non-flexible cap case, in order to see the relative benefit of switching to flexible cap.

Note that the current model accommodates these two cases, i.e. whether supply rate changes with

9



demand shock, as special cases. Hence we can use the above model to derive comparative analysis

in both of these two cases.

Non-Flexible cap:
dmt

dτ
= λ′

NF (τ)×mt−1 = 0 (6)

Flexible cap 1:
dmt

dτ
= λ′

F1
(τ)×mt−1 ≥ 0 (7)

Flexible cap 2 :
dmt

dτ
= λ′

F2
(τ)×mt−1 ≤ 0 (8)

In the flexible cap cases, the supply rate changes in the event of a demand shock. In this model,

demand shocks are interpreted as a change in the demand survival rate, denoted by τ . Note that

a negative (positive) demand shock decreases (increases) the survival rate τ .

Proposition 1 states the main result of this section. It shows that the proposed flexible cap

1 decreases price fluctuation and can be used to stabilize the price. From Corollary 1 and 2 we

see that λ and τ have an opposite effect on the price. Thus, an optimal strategy will negatively

correlate the future supply rate and expected demand. The rest of the section explains the intuition

and steps behind the result.

Proposition 1. In the event of change in demand survival rate (or a demand shock), the change

in price would be lower in case of the new supply rate.

dE(Pt|λF1)

d(τ)
<

dE(Pt|λNF )

d(τ)
<

dE(Pt|λF2)

d(τ)

where λF1, λF2 , λNF are defined using equations 7, 8, and 6 correspondingly. To see how the

supply rate can stabilize the effect of demand uncertainty on the price, we need first to look at the

basic non-flexible case, where we individually analyze the impact of supply rate and the impact of

future demand uncertainty on the equilibrium price.

The results from Proposition 2 and Corollary 1 show that a positive demand shock, i.e. an

increase in demand survival rate, increases the bidder’s total payoff and decreases the current

period bid and price. The intuition is straight forward as we would expect that an increase in

future demand would make bidders bid more aggressively, which leads to increase in current period

bid and price.
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Proposition 2. The bidder’s expected payoff is decreases when the demand survival rate decreases.

d(V (ηi,t|σt))
d(τ)

≥ 0 (9)

Proposition 2 shows that the payoff is positively affected when there is a positive demand shock,

i.e. future demand survival rate increases.

Corollary 1. The current bid and price increase with increase in demand survival rate.

d(b(ηi,t))

d(τ)
≥ 0

dE(Pt)

d(τ)
≥ 0

This shows that an increase (decrease) in demand survival rate increases (decreases) the price.

The effect of non-flexible supply rate on market outcomes: As expected, an increase in the

supply rate will positively affect the bidder’s total payoff and negatively impact the current bid and

price. Increasing future supply rate, would lead to a higher supply in the which would increase the

opportunity cost of winning the auction in the current period. As we show in the equilibrium section

the current period bid is negatively impacted by opportunity cost. Thus, increase in future supply

rate decreases the current bid and final price. We provide the formal derivation in Proposition 3

and Corollary 2 to show that the general results of a rightward shift in supply still hold even after

the introduction of stochastic demand and multi-dimensional bidder type in the model.

Proposition 3. The bidder’s expected payoff is increasing with the increase in the future supply

rate.

d(V (ηi,t|σt))
d(λ)

≥ 0 (10)

The above proposition shows that the expected payoff in each period t is positively correlated

with the future periods’ supply rates. The intuition behind the result is that as the supply increases,

the chances of acquiring credits in the future increase, thereby increasing the total expected payoff

of the buyer.

11



Corollary 2. The bid and price are decreasing with the increase in the future supply rate.

d(b(ηi,t))

d(λ)
≤ 0

dE(Pt)

d(λ)
≤ 0

The price and the bid in the current period are negatively affected by an increase in the supply

rate. Thus, even though the total payoff increases for the bidder, they will still decrease the current

period’s bid. The intuition behind the increase in the current period bid is that an increase in the

supply rate increases the payoff in the future, which increases the opportunity cost of winning in the

current period (tth period). Thus, the buyer’s bid and the auction price are negatively correlated

to the supply rate.

Now that we have established the individual effects of the supply rate and demand shocks on

price, we look at how to utilize it to stabilize the price path.

Using proposition 3 and 2 we have analyzed the impact on price in the absence of the adjustment

in the supply rate. In this case, impact of a demand shock on expected price is given by dE(Pt|λ)
δ(τ) .

This is true because only τ changes due to a demand shock. On the other side, in the flexible

supply rate case, a demand shock will impact the expected price in two ways. First, it will change

due to the change in τ ; additionally, it will change due to change in supply. Mathematically this

would look like

Case1: fixed rate → dE(Pt|λ)
δ(τ)

(11)

Case2: proposed flexible rate → δE(Pt|λ)
δ(λ)

δ(λ)

δτ
+

δE(Pt|λ)
δ(τ)

(12)

Note that from Proposition 1 we know that the expected price and demand survival rate are

positively correlated. Additionally, from the above two equations, it is evident that the effect in

the two cases differ due to the first term in Equation 12, which is negative due to Proposition 2 and

Equation 10. Thus, the change in price due to demand shock is lower in the case of the proposed

supply rate.
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4.2 Discussion:

This section provides data evidence that confirms the equilibrium bidding behavior derived in our

model. Additionally, we look at price movements in the emission markets with fixed caps and

identify potential residual fluctuations in the price due to short-term shocks. The evidence of price

fluctuation in the markets with fixed caps further motivates an examination of flexible caps.

Recall that the optimal bidding strategy indicates that the buyers consider their future payoffs

when deciding the value of winning in the current period. This consideration would result in a

correlation between the current price and the advance price of carbon credits. The dependence

of current prices on the expected outcome of future auctions is evident if we compare the current

and future prices in the California Cap-and-Trade market. Figure(2) plots the prices for current

and advance prices, which appear highly correlated. Apart from the auctions held in the early

periods, the current price closely follows the future price, which indicates that the current bid also

accommodates the effect of future prices.

As noted by Nordhaus (2015) ,Dutta (2018), and Zhang and Sun (2016), high volatility in price

is a problem in the carbon credit market. Even after the price caps, there can be a high variance

in price within the bounded prices. Let us use the example of the RGGI carbon credit market.

Figure(1) shows the price path with significant events during the timeline. Here, we observe that

the price fluctuates with changes in demand. For example, 2016 saw a substantial fall in price when

the demand uncertainty increased because the supreme court halted the Environmental Protection

Agency’s Clean Power Plan.18 This example shows that demand shocks can cause sharp price

increases. In our model, the proposed flexible supply rate would have been temporarily adjusted,

thereby reducing the intensity of price drops from the temporary demand shock.

Additionally, in the European Union Emissions Trading System (EU ETS), shocks such as

technological progress, weather conditions, and prices in related industries have caused a high

degree of price fluctuation in the market. For example, EU allowances saw a drastic increase in

prices in January 2005. According to the Carbon Market Monitor 2005 Review at PointCarbon,

the sharp price change was due to high gas and oil prices (specifically observed in the UK), low

18For details, see “Opinion: Supreme Court puts the brakes on the EPA’s Clean Power Plan” - February 9 2016
Washington Post.
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coal prices, and the onset of cold weather.19 More recently, the economic downturn caused by

COVID-19 has caused a drop in carbon credit prices. For example, the EU ETS allowance prices

decreased in the first quarter of 2020 to €17/tCO2e (US$19/tCO2e) compared to approximately

€25/tCO2e (US$27/tCO2e) over 2019.20

Thus, past data shows the necessity of introducing responsive quantity caps that responds to

uncertainty in the market. As discussed in the literature, multiple papers have suggested such a

mechanism; our paper contributes by suggesting a demand-dependent cap at the auction stage.

This cap may also have economic appeal. Adjusting the cap according to demand shocks can

decrease the expected costs incurred for reaching a particular environmental target. This work

shows that linking the supply rate to changing market factors will stabilize the price. Further,

empirical analysis is required to estimate the exact functional form of the flexible cap.

5 Conclusion

In this paper, we analyzed a dynamic auction setting with the stochastic arrival of bidders and

multi-dimensional bidder’s type. We derived the BNE bid in the repeated auctions setting. The

setup was used to understand the price volatility in the Cap-and-Trade scheme auction of carbon

credits. Price uncertainty is a significant concern in the Cap-and-Trade market because firms

need a more stable short-term supply of carbon credits to change to more renewable energy. The

paper identifies two factors that affect the price fluctuation: the rate of supply and uncertainty

in future demand. The uncertainty in future demand is not in the control of the auctioneer (or

the government in this case). However, the rate of supply is decided by the government. Thus,

the suggested policy in this paper is that the government should correlate the supply rate with

the uncertainty in the market. Specifically, they should decrease the future supply rate when the

future demand uncertainty in the market increases. In other words, increase the supply rate as the

expected future demand increases. The results show that this policy will result in a more stable

price over time. The paper also analyzed the general model setup, which can be applied to other

19For details, see Carbon Market Monitor 2005 Review, Jan. 2006, available at:
http://www.pointcarbon.com/research/carbonmarketresearch/monitor/ and Mason (2009)

20For details, refer to https://openknowledge.worldbank.org/handle/10986/33809
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markets. One key feature of the paper is that we looked at the multi-dimensional type of bidders.

Thus, this model can fit any market where the bidders differ by more than only the object’s value.

Future works can extend this setting to multi-unit demand and examine double auction settings,

which can further generalize the auction design.

This work shows that linking the supply rate to demand shocks can stabilize the price. Further-

more, empirical analysis is required to understand the implementation of such policy. Borenstein

et al. (2019) conducted an extensive study on how different factors affected the price fluctuation

and provided simulations. Since they looked at the secondary trading market, similar studies are

required to analyze the price fluctuation in the primary market of selling carbon credits through

auction.
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6 Appendix

6.1 Figures and Tables

Table 1: Notation

List of Symbols

vi Buyer i’s value
ai arrival time of buyers
ki number of periods buyer’s demand is active
Fv × Fa × Fk buyers type distrubution for value, arrival time and demadn duration.
ri,t The number of active demand periods left for bidder i in period t
τ the future demand uncertainty for the buyer
na New buyers in period t drawn from Fn

λ rate of reducing supply each period
mt Supply in period t
nt Total demand in period t
St Total items traded in period t
bt Bid in period t

b(l) The lth highest order statistic of the bids
σt = {mt, nt} the auction “state” (demand and supply) in period t
ηi,t per period pseudo type for each period t and bidder i
Gl(.) distribution of pseudo type in period l
V (ηi,t|σt) The total lifetime payoff after realization of demand and supply
W (ηi,t) denote the total payoff ex-ante
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Figure 1: California Quarterly Auction Revenue Since 2018

Source: The Regional Greenhouse Gas Initiative (RGGI) — www.rggi.org

Figure 2: Cap-and-Trade auction current and advance prices in California

Source: The California Air Resources Board (CARB)
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6.2 Proof

Proof of Lemma 1 Recall the definition of η is as follows:

ηi,t =


vi −

∑ki
l=t+1

∫
nl
τ l−tG

(Sl)
l (ηi,l|σl)

(
ηi,l − E[(η(Sl)

j,l )j ̸=i|ηi,l > η
(St)
j,l ]

)
, if t ≥ ai or t ≤ ki

0, otherwise

Through recursive addition and subtraction, it is easy to see that the above is equivalent to the

following :

Replacing probability of bid with probability of pseudo type we can rewrite the payoff functions

as

W (ηi,t) =

∫
nt

τG
(St)
t (ηi,t|σt)

(
vi − E[(ηSt

t )|ηi,t > ηSt
t ]

)
+ (1−G

(St)
t (ηi,t|σt))W (ηi,t+1) (13)

V (ηi,t) = G
(St)
t (ηi,t|σt)

(
vi − E[(ηSt

t )|ηi,t > ηSt
t ]

)
+ (1−G

(St)
t (ηi,t|σt))W (ηi,t+1) (14)

This can be rewritten as

W (ηi,t) =

∫
nt

τG
(St)
t (ηi,t|σt)

(
vi −W (ηi,t+1)− E[(ηSt

t )|ηi,t > ηSt
t ]

)
+W (ηi,t+1) (15)

V (ηi,t) = G
(St)
t (ηi,t|σt)

(
vi −W (ηi,t+1)− E[(ηSt

t )|ηi,t > ηSt
t ]

)
+W (ηi,t+1) (16)

Now, we rewrite the pseudo type in terms of the payoff function. Using addition and subtraction

and using the definition of η we can rewrite the definition of η as :

ηi,t = vi −
∫
nt+1

τG
(St)
t (ηi,t|σl)

(
vi − E[(ηSt

t )|ηi,t > ηSt
t ]

)

+

ki∑
l=t+2

∫
nl

( l−(t+1)∏
q=1

(1−
∫
nq

G
Sq
q (ηi,q))

)
τ l−tG

(Sl)
l (ηi,l|σl)

(
vi − E[(ηSl

l )|ηi,l > ηSl
l ]

)
, if t ≥ ai or t ≤ ki
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Note that the second term in the equation above is equal to W (ηi,t+1). Thus we have

ηi,t =


vi −W (ηi,t+1), if t ≥ ai or t ≤ ki

0, otherwise

Thus, using the above equation we can rewrite Equation 15 and Equation 16 as

W (ηi,t) =

∫
nt

τG
(St)
t (ηi,t|σt)

(
ηi,t − E[(ηSt

t )|ηi,t > ηSt
t ]

)
+W (ηi,t+1) (17)

V (ηi,t) = G
(St)
t (ηi,t|σt)

(
ηi,t − E[(ηSt

t )|ηi,t > ηSt
t ]

)
+W (ηi,t+1) (18)

Proof of Theorem 1

The symmetric Bayesian Nash equilibrium bid in period t maximizes the following payoff of bidder

t:

V (ηi,t) =

{
G

(St)
l (ηi,t|σl)E

[
ni,t − b(St)(ni,t)

∣∣∣∣b(ni,t) > b
(St)
j ̸=i

]
+W (ηi,t+1)

}

Notice that W (ηi,t) in the above expression is merely an additive constant.

We will use the above equation and backward induction to solve for the equilibrium bidding

function.

First from the structure of V (ηi,t|σt), it is clear that after the last active period ki, the buyer’s

equilibrium bid will be equal to zero, i.e. bit = 0 ∀ t > ki. This is because the buyer is only active

till period ki and would earn a negative profit from winning if he is active after the actual deadline.

Thus we can rewrite the equilibrium bidding strategy as a set of finite bids that corresponds to

bids in the periods with active demand. WLOG let time period 1 be the start of active demand

for bidder i, this implies ai = 1. The biding strategy can be rewritten as follows

bi = {b(ηi,t1), b(ηi,2), ....b(ηi,ki)}

Now we will first show that in the last active round of bidder i’s lifetime i.e. kthi period, bidder
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bids their pseudo valuation, so b(ηi,ki) = ηi,ki . Note that in the last period pseudo type is equal to

value of the bidder, i.e. ηi,ki = vi

• If b′ < vi.

In cases where the price for the object is in-between b(vi, ki) and vi, i.e. b(vi, ki) < ztki < vi,

the current period discounted utility from winning is positive i.e (vi− ztki ) > 0 but the buyer

does not win. Thus this is not optimal

• If b′ > vi.

In cases where the price for the object is in-between b(vi, ki) and vi, i.e. b(vi, ki) > ztki > vi,

the current period discounted utility from winning is negative i.e (vi − ztki ) < 0. Thus this is

not optimal.

From above we get that any other bid than b(ηi,ki) = vi = ηi,ki would decreases buyers payoff. Thus

b(vi, ki) = ηi,ki is an optimal bid in the last active period (kthi period) for bidder i.

Next we prove reporting bid equal to b(ηi,t) is optimal in an arbitrary t during the active demand

period, i.e., ai ≤ t < ki, assuming it is optimal in all period after t. Recall that equilibrium bid

maximizes V (ηi,t)

V (ηi,t) =

{
G

(St)
l (ηi,t|σl)E

[
ni,t − b(St)(ni,t)

∣∣∣∣b(ni,t) > b
(St)
j ̸=i

]
+W (ηi,t+1)

}

Here the first term represents the expected current period discounted utility and the second term

represents the expected utility from the future if he loses the current period auction . Notice

that the second term is independent of the bid in period tr. Thus, this is equivalent to the bid

maximizing the first term.

Note that ηi,t = vi −W (ηi,t+1) represents the adjusted value for bidder i in period t.We will now

show b(ηi,t) = ηi,t maximizes eqn(6). Consider any arbitrary b′ ̸= b(ηi,t).

• If b′ < b(ηi,t)

In cases where the price for the object is in-between b′ and b(ηi,t), i.e. b′ < zt < b(ηi,t), the

current period discounted utility from winning is positive i.e vi −W (ηi,t+1)− ztr > 0 but the

buyer does not win. Thus this is not optimal.
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• If b′ > b(ηi,t)

In cases where the price for the object is in-between b′ and b(ηi,t), i.e. b′ > zt > b(ηi,t), the

current period discounted utility from winning is negative i.e vi−W (ηi,t)− zt < 0. Thus this

is not optimal.

Which gives the optimal bidding strategy as, b(ηi,t) = vi −W (ηi,t+1).

Proof for Proposition 3 First we look at how the rate of future supply effects the equilibrium

payoff of the bidder . The period t payoff for bidder i after realization of state σt is

V (ηi,t|σt)) = GSt(ηj,t)E
[
vi − b(St)(ηj,t)j ̸=i

∣∣∣∣b(ηj,t) > b(St)(ηj,t)

]
+ (1−GSt(ηj,t))W (ηi,t+1|λ) (19)

Note that the bid is made after the supply and demand realization, so λ only affects future payoff.

Also, W (ηi,t+1) is dependent on the number of traded items, i.e. St which is a function of mt

and thereby λ. For ease of representation we usually suppress the notation for the dependence of

St+1(λ) and W (.|λ) on λ. However, we reintroduce it here as it is critical. Using integral-form

envelopee theorem we get :

δ(V (ηi,t|σt))
δ(λ)

=

(
1−G

(St)
t (ηi,t)

)
δ(W (ηi,t+1|λ))

δ(λ)
(20)

Now to show
δ(W (ηi,t+1|λ))

δ(λ) ≥ 0, we will use Lemma 1 and proof by induction starting from the last

active period.

Let us prove this for non-active demand period, i.e., the case where ri,t = 0. From the proof of

Theorem 1, we know that the equilibrium bid for non-active demand period will be bi(η(vi, 0)) = 0,

implying W (ηi(vi, 0)) = 0. The derivative is shown below

δ(W (ηi(vi, 0)))

δ(λ)
= 0 ≥ 0

Now let us assume that the proposition is true for any arbitrary ai ≤ t′ + 1 ≤ ki, i.e. assume

29



δ(W (ηi,t′+1))

δ(λ) ≥ 0, we show that this hold in t′ period too. Rewriting Equation 4 for t′ + 1

d(W (ηi,t′))

d(λ)
=

d
∫
ni,t′

τGSt′ (λ)(ηi,t′)

(
ηi,t′ − E[ηSt′ (λ)

t′ |ηi,t′ > η
St′ (λ)
t′ ]

)
+W (ηi,t′+1)

dλ

Using envelope theorem we get

=

∫
nt′+1

τ
δGSt′+1(ηi,t′+1)

δλ

(
ηi,t′+1 − E[ηSt′+1

t′+1 |ηi,t′+1 > η
St′+1

t′+1 ]

)

−GSt′+1(ηi,t′+1)
δE[ηSt′+1

t′+1 |ηi,t′+1 > η
St′+1

t′+1 ]

δλ
+

δW (ηi,t′+1)

δλ

using
δGSt′+1(ηi,t′+1)

δλ
≥ 0 and the assumption

δ(W (ηi,t′+1)

δ(λ)
> 0, we get

d(W (ηi,t′))

d(λ)
≥ 0 as long as

δE[ηSt′+1

t′+1 |ηi,t′+1 > η
St′+1

t′+1 ]

δλ
≤ 0

Thus, it is sufficient to prove
δE[η

St′+1
t′+1

|ηi,t′+1>η
St′+1
t′+1

]

δλ ≤ 0. Expanding the above term while suppress-

ing the subscript t′ + 1 and reintroducing the subscript for number of demanded credits, i.e., nt′+1

we get:

E[(ηS:n|ηi > ηS:n] = E[(η1:n−S |ηi ≥ η1:n−S ]

=

∫ ηi

0
x
(n− S)Fn−S−1(x)fn(x)

Fn−S(x)
dx

The differentiation of the above term gives us

δ

(
E[(ηS:n|ηi > ηS:n]

)
δλ

=

∫ ηi

0
x
−Fn−S−1(x)− (n− S)(n− S − 1)Fn−S−2(x) + (n− S)Fn−S−1(x)

F 2(n−S)(x)

dS

dλ
fn(x)dx

→
δ

(
E[(ηS:n|ηi > ηS:n]

)
δλ

≤ 0 as (n− S)(n− S − 1)Fn−S−2(x) ≥ (n− S)Fn−S−1(x)

hence proved.
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Proof for Corollary 2 first we show bid is decreasing in supply rate:

δ(b(ηi,t)

δ(λ)
=

δ(vi −W (ηi,t+1|λ))
δλ

(21)

− δ(W (ηi,t+1|λ))
δλ

(22)

≤as a result of proposition(3) (23)

Notice that this also implies
δ(ηi,t)
δ(λ) ≤ 0, thus we have

E(Pt) = E
(
η
(λ∗mt)
t

)
→ δE(Pt)

δ(λ)
=

δ(E[η(λ∗mt)
t ]

δ(λ ∗mt)
mt +

δ(E[η(λ∗mt)
t ]

δ(ηt)

δ(ηt)

δ(λ)
≤ 0

Proof for Proposition 2

First we look at how the future demand survival rate effects the equilibrium payoff of the bidder

. The period t payoff for bidder i after realization of state σt is

V (ηi,t|σt)) = GSt(ηj,t)E
[
vi − b(St)(ηj,t)j ̸=i

∣∣∣∣b(ηj,t) > b(St)(ηj,t)

]
+ (1−GSt(ηj,t))W (ηi,t+1|τ) (24)

Note that the bid is made after the supply and demand realization, so τ only affects future payoff.

Also, W (ηi,t+1) is dependent on the number of traded items, i.e. St which is a function of mt and

thereby τ . For ease of representation we usually suppress the notation for the dependence of St+1(τ)

and W (.|τ) on τ . However, we reintroduce it here as it is critical. Using integral-form envelopee

theorem we get :

δ(V (ηi,t|σt))
δ(τ)

=

(
1−G

(St)
t (ηi,t)

)
δ(W (ηi,t+1|τ))

δ(τ)
(25)

Now to show
δ(W (ηi,t+1|τ))

δ(τ) ≥ 0, we will use Lemma 1 and proof by induction starting from the last
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active period.

Let us prove this for non-active demand period, i.e., the case where ri,t = 0. From the proof of

Theorem 1, we know that the equilibrium bid for non-active demand period will be bi(η(vi, 0)) = 0,

implying W (ηi(vi, 0)) = 0. The derivative is shown below

δ(W (ηi(vi, 0)))

δ(τ)
= 0 ≥ 0

Now let us assume that the proposition is true for any arbitrary ai ≤ t′ + 1 ≤ ki, i.e. assume

δ(W (ηi,t′+1))

δ(τ) ≥ 0, we show that this hold in t′ period too. Rewriting Equation 4 for t′ + 1

d(W (ηi,t′))

d(τ)
=

d
∫
ni,t′

τGSt′ (τ)(ηi,t′)

(
ηi,t′ − E[ηSt′ (τ)

t′ |ηi,t′ > η
St′ (τ)
t′ ]

)
+W (ηi,t′+1)

dτ

Using envelope theorem we get

=

∫
nt′+1

GSt′+1(ηi,t′+1)

(
ηi,t′+1 − E[ηSt′+1

t′+1 |ηi,t′+1 > η
St′+1

t′+1 ]

)
+

∫
nt′+1

τ
δGSt′+1(ηi,t′+1)

δτ

(
ηi,t′+1 − E[ηSt′+1

t′+1 |ηi,t′+1 > η
St′+1

t′+1 ]

)

−GSt′+1(ηi,t′+1)
δE[ηSt′+1

t′+1 |ηi,t′+1 > η
St′+1

t′+1 ]

δτ
+

δW (ηi,t′+1)

δτ

using
δGSt′+1(ηi,t′+1)

δτ
≥ 0 and the assumption

δ(W (ηi,t′+1)

δ(τ)
> 0, we get

d(W (ηi,t′))

d(τ)
≥ 0 as long as

δE[ηSt′+1

t′+1 |ηi,t′+1 > η
St′+1

t′+1 ]

δτ
≤ 0

Thus, it is sufficient to prove
δE[η

St′+1
t′+1

|ηi,t′+1>η
St′+1
t′+1

]

δτ ≤ 0. Expanding the above term while suppress-

ing the subscript t′ + 1 and reintroducing the subscript for number of demanded credits, i.e., nt′+1

we get:

E[(ηS:n|ηi > ηS:n] = E[(η1:n−S |ηi ≥ η1:n−S ]

=

∫ ηi

0
x
(n− S)Fn−S−1(x)fn(x)

Fn−S(x)
dx
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The differentiation of the above term gives us

δ

(
E[(ηS:n|ηi > ηS:n]

)
δτ

=

∫ ηi

0
x
−Fn−S−1(x)− (n− S)(n− S − 1)Fn−S−2(x) + (n− S)Fn−S−1(x)

F 2(n−S)(x)

dS

dτ
fn(x)dx

→
δ

(
E[(ηS:n|ηi > ηS:n]

)
δτ

≤ 0 as (n− S)(n− S − 1)Fn−S−2(x) ≥ (n− S)Fn−S−1(x)

hence proved.

Proof of Corollary 1 first we show bid is decreasing in uncertainty:

δ(b(ηi,t)

δ(τ)
=

δ(τvi −W (ηi,t+1|τ))
δτ

(26)

vi −
δ(W (ηi,t+1|τ))

δτ
(27)

≥ 0 (28)

Notice that this also implies
δ(ηi,t)
δ(τ) ≥ 0, thus we have

E(Pt) = E
(
η
(St)
t

)
→ δE(Pt)

δ(τ)
=

δ(E[η(mt)
t ]

δ(ηt)

δ(ηt)

δ(τ)
≥ 0

Proof of Proposition 1 Proof in the text
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