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1 Introduction

In recent years public policy has been engaged in redesigning markets
on a massive scale. In Eastern Europe, many formerly state owned en-
terprises were privatized after the breakdown of formerly communist
regimes, and further privatization programs are on the way. And inWest-
ern economies, privatization and deregulation were launched in many
tightly regulated industries, ranging from public utilities to telecommu-
nications. These policies have by and large been successful in building
private markets and raising revenue. However, they have often failed
to pay sufficient attention to the market structure implied by particular
privatization and deregulation schemes.

The recent allocation of government franchises for operating wireless
telecommunication through spectrum auctions is a case in point. These
auctions raised an enormous amount of revenue, which earned them high
praise both in the profession and the general public, but they may not
have created the best market structure.1

Usually an auction is said to be efficient if the objects are allocated
to the bidders who value them most. However, in the case of award-
ing spectrum rights, this principle does not apply without qualification.
For example, if bidders were allowed to get all spectrum rights, the win-
ner of the auction would typically monopolize the market. Awarding a
monopoly may raise the highest revenue for the auctioneer, but typically
at a loss in social welfare.

The recent spectrum auctions did not completely ignoremarket struc-
ture. Indeed, in the U.S. the market was broken down into many regional
submarkets which, in the case of mobile phone services, had to be sup-
plied by two providers, and various affirmative action schemes were em-
ployed to give preferential treatment to minority operated firms. How-
ever, in other countries, nationwide spectrum rights were sometimes auc-
tioned strictly to the highest bidder. For example, in Germany the reg-
ulator recently auctioned ten twin–paired radio frequencies for mobile
telecommunications in the 1800 MHz range in this way. All four existing
providers did participate in the auction, but in the end all frequencies
were awarded to the two major providers (see Cane (1999)): Mannes-

1Market structure is, of course, also a concern in private industry. A case in point
is the relationship between the Holland Sweetener Company that challenged the mo-
nopolistic position of Monsanto, the producer of NutraSweet, and the major buyers
of such sweeteners such as Coke and Pepsi. The latter wished to continue buying
NutraSweet, but also had a vested interest to keep the new competitor alive and well
in order to restrain Monsanto’s monopoly.
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mann Mobilfunk, who won the larger share, and DeTeMobil (Deutsche
Telekom).

If the concern for market structure is taken serious at all by public
policy, it is usually accounted for by imposing restrictions on the (min-
imum) number of suppliers who must serve the market. However, the
issue is usually complicated by the fact that the regulator has incomplete
information about relevant market characteristics, and cannot know how
many firms should serve a particular market unless firms reveal their
individual characteristics. Therefore, the design of franchising or priva-
tization schemes usually cannot be separated from the design of mech-
anisms that detect and implement the right market structure.

The purpose of the present paper is to design optimal mechanisms to
implement the optimal market structure under conditions of incomplete
information, when the regulator cannot know which and howmany firms
should participate in the market, unless he induces firms to reveal their
relevant private information. In particular, we

� characterize the optimal Groves mechanism that yields the highest
tax revenue in the class of mechanisms that implement efficiency;

� solve the optimal mechanism that maximizes a weighted sum of
tax revenue and social surplus, which is relevant if general taxation
is subject to a deadweight loss;

� show that free entry would lead to inefficiency;

� show that optimal mechanisms are generally deficit free.

There is a small literature on the design ofmarket structure, especially
in the context of procurement. This literature usually analyzes particular
mechanisms but does not consider optimal mechanisms. To our knowl-
edge there are three exceptions: Dana and Spier (1994), McGuire and
Riordan (1995), and Auriol and Laffont (1992). However, all three pa-
pers restrict the analysis to two potential suppliers so that the choice is
between duopoly and monopoly.

Dana and Spier (1994) analyze the optimal market structure when tax
revenue and efficiency matter. Their model is the most closely related to
our paper, since they also assume that firms are not regulated once they
are in the market. Similarly, McGuire and Riordan (1995) analyze the
market structure in the particular context of two firms that produce dif-
ferentiated products. The main difference between these and our paper
is that we do not restrict the number of firms to just two firms.
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In turn, Auriol and Laffont (1992) consider a framework where firms
are regulated once they are in the market. Firms’ marginal costs are pri-
vate information whereas fixed costs are common knowledge. They show
that monopoly is favored if market structure is chosen after marginal
costs have been revealed, whereas the government prefers duopoly if
the market structure is chosen ex ante. In contrast to their model, we as-
sume that the government cannot or does not wish to regulate firms once
they are in the market. Moreover, in our model, fixed costs are private
information, which is plausible when firms’ marginal costs are relatively
insignificant, as in the telecommunications industry.

An important question is whether optimal mechanisms are deficit
free. Interestingly, this question bears some relationship to the literature
concerning excessive entry in oligopoly markets (see Mankiw and Whin-
ston (1986) and Suzumura (1995)). As it turns out, optimal mechanisms
are deficit free if and only if excessive entry occurs in a hypothetical free
entry game. Adapting a well–known excessive entry result by Mankiw
and Whinston, we conclude that optimal mechanisms are deficit free if
the integer constraint on the number of firms does not bind.

The plan of the paper is as follows. Section 2 introduces the model.
Section 3 explains some basic properties of feasible direct revelation
mechanisms that are crucial for the design of optimal mechanisms. Sec-
tion 4 analyzes the implementation of efficient market structure in dom-
inant strategies and characterizes the tax revenue maximizing Groves
mechanism. Section 5 solves the optimal mechanism when tax revenue
matters more than social surplus, due to the deadweight loss of gen-
eral taxation. Section 6 shows why free entry cannot generally imple-
ment the efficient market structure, which explains why entry regulation
is desirable in natural oligopoly, and Section 7 shows that the optimal
mechanism is generally deficit free. The paper closes in Section 8 with a
discussion.

2 The model

Consider a natural oligopoly market with a large number of potential
firms. All firms have the same variable costs, but different fixed costs.
The regulator has decided to award a limited number of unrestricted li-
censes to operate in this market. The regulator’s problem is to determine
the optimal number of licenses to be issued if efficiency or tax revenue
matters, and to assign them to particular firms. This problem is compli-
cated by the fact that fixed costs are firms’ private information.
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After licenses have been awarded, the licensees play some market
game that gives rise to identical equilibrium profits π (before deducting
fixed costs) and aggregate consumer surplus C , that are a function of
the number of licenses n. These reduced form payoff functions have the
following properties.

Assumption 1 Aggregate producer surplus Π(n) := nπ(n) is decreas-
ing: Π(n+ 1) < Π(n), aggregate consumer surplus is increasing: C(n+
1) > C(n), and aggregate social surplus S(n) := Π(n)+ C(n) is increas-
ing: S(n + 1) > S(n), but at a decreasing rate: ∆S(n) > ∆S(n + 1),
∆S(n) := S(n) − S(n − 1). No payoffs are generated if no licenses are
issued: Π(0) = C(0) = 0.

From the regulator’s perspective, firms’ privately known fixed costs
are independent random variables θ̂ := (θ̂1, . . . , θ̂N ), drawn from a distri-
bution G(x1, . . . , xN) =

∏N
i=1Gk(xk), with support Θ :=∏N

i=1[θi, θ̄i], and
with positive densities gk(xk) := G′k(xk).

A market game that gives rise to the properties stated in Assump-
tion 1 is the standard Cournot game, provided that game has a unique
equilibrium in pure strategies. In the present framework, a frequently
employed sufficient condition for existence and uniqueness is (see Sel-
ten (1970) and Szidarovszky and Yakowitz (1977))2

Assumption 2 Market demand P(Q) has a finite satiation point Q̄, i.e.
P(Q) = 0,∀Q ≥ Q̄, is twice continuously differentiable with P(Q) > 0,
and P ′(Q) < 0, ∀Q ∈ [0, Q̄), and satisfies the condition: P ′′(Q)Qi +
P ′(Q) < 0, ∀qi > 0,Q ∈ [0, Q̄)].

Finally, we assume:

Assumption 3 The least cost monopoly profit is nonnegative, which re-
quires π(1) ≥ min{θ̄1, . . . , θ̄N}, and max{θ1, . . . , θN} ≤ ∆S(N), which
implies that each conceivable market size can be efficient.

3 Basic properties of feasible mechanisms

We begin with some basic properties of feasible regulatory mechanisms.
By the Revelation Principle (Myerson (1979)) attention can be restricted

2Of course, the market game may differ from the Cournot game; however, without
specifying the game one cannot know which assumptions are required for uniqueness
of the solution of that game.
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to direct revelation mechanisms, where the regulator asks firms to inde-
pendently announce their fixed costs, and then determines who gets a
license and how much each firm has to pay.

Direct revelation mechanisms are described by two outcome func-
tions (p, t) of the form p : ΘN → [0,1]N and t : ΘN → RN . For each
vector of announced fixed costs φ ∈ ΘN , the allocation rule pk(φ) is the
probability that firm k gets a license, and the payment rule tk(φ) is firm
k’s payment to the regulator. Note, a firm may have to pay something
even if it is not awarded a license.

We denote by np(φ) :=
∑
pk(φ) the number of firms that obtain a

license if the mechanism (p, t) is used, and define the expected payment,
probability of being in the market and profit in this case of firm k when
it announces fixed costs φk as

t̄k(φk) := Eθ̂−k
[
tk(φk, θ̂−k)

]
, (1)

p̄k(φk) := Eθ̂−k
[
pk(φk, θ̂−k)

]
, (2)

π̄k(φk) := Eθ̂−k
[
π(np(φk, θ̂−k))pk(φk, θ̂−k)

]
, (3)

Expectation is taken over the fixed costs θ̂−k of all firms except k. Note
that π̄ does not depend on the payment rule t. Moreover, let

Uk(φk | θk) := π̄k(φk)− θkp̄k(φk)− t̄k(φk) (4)

denote the expected payoff of firm k if it announces φk while its true
fixed cost is θk. Finally, we define

Ūk(θk) := Uk(θk | θk). (5)

Using this notation, a direct revelation mechanism (p, t) is incentive
compatible if Ūk(θk) ≥ Uk(φk, θk), for all φk and k, it satisfies the in-
terim participation constraint if Ūk(θk) ≥ 0, for all θk and k, and it is
called feasible if it is both incentive compatible and satisfies the interim
participation constraint.

Theorem 1 (Revenue–Equivalence) A feasible direct revelation mech-
anism (p, t) gives rise to the following payoffs Ūk(θk) and expected tax

6



revenue T :

Ūk(θk) = Ūk(θ̄k)+
θ̄k∫
θk

p̄k(x)dx (6)

Ūk(θ̄k) ≥ 0 (7)

T =
N∑
k=1

(
E
[(
π̄k(θ̂k)− θ̂kp̄k(θ̂k)

)
−
∫ θ̄k
θ̂k
p̄k(x)dx

]
− Ūk(θ̄k)

)
. (8)

In particular, all such mechanisms that have the same allocation rule p
and reservation utilities Ūk(θ̄k) also give rise to the same payoffs and
expected tax revenue.

Proof In a feasible direct revelation mechanism truth–telling is a best
reply to truth-telling. Hence,3

∂U
∂φk

(φk | θk)
∣∣
φk=θk = 0.

Using the envelope theorem, one obtains:

Ū ′k(θk) =
∂
∂θk

U(φk | θk)
∣∣
φk=θk = −p̄k(θk). (9)

Integration gives (6), and hence Ūk(θk) ≥ 0 iff Ūk(θ̄k) ≥ 0, for all θk, by
the monotonicity property (9). Using Ūk(θk) = (π̄(θk)−θk)− t̄k(θk) gives
t̄k(θk), and (8) follows from the fact that T =∑E[t̄k(θ̂k)]. Since π̄k does
not depend on t, we conclude that, for a given allocation rule, all feasible
direct revelation mechanisms give rise to the same payoffs and expected
tax revenues, unless firms’ reservation utilities differ. �

4 The optimal Groves mechanism

The efficient market structure which maximizes social welfare can be
implemented in dominant strategies by a Groves mechanism. In this
section we characterize the efficient market structure and derive that
particular Groves mechanism which maximizes the expected tax revenue

3Ūk is piecewise continuously differentiable if the density g is smooth. If differen-
tiability is not satisfied, the proof is a bit more elaborate along the lines of the proof
of Myerson (1981).
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in the class of Bayesian mechanisms that implement the efficient market
structure.

Note that implementation in Bayesian Nash equilibrium strategies is
a much weaker requirement than implementation in dominant strate-
gies. It may be somewhat surprising that a simple dominant strategy
mechanism maximizes tax revenue in the larger class of mechanisms
that implement the efficient allocation as a Bayesian Nash equilibrium.4

An allocation rule p generates the social welfare

W(p,θ) =
N∑
k=1

(
π
(
np(θ)

)− θk)pk(θ)+ C (np(θ)) .
Call an allocation rulemonotone if it assigns entry rights only to the firms
with the lowest fixed cost, i.e. if pk(θ) = 1 and θl < θk implies pl(θ) = 1.
Clearly, the efficient rule must be monotone.

For monotone allocation rules social welfare can be written as

W(p,θ) =
np(θ)∑
k=1

(
π
(
np(θ)

)− fk)+ C (np(θ)) = S (np(θ))−
np(θ)∑
j=1

fj,

where f denotes the order statistic of θ. It remains to determine the
optimal market size. For this purpose, rewrite welfare as

W(p,θ) =
np(θ)∑
k=1

[
∆S(j)− fj

]
.

From this representation, we conclude that the j–th best firm should
enter themarket if and only if fj ≤ ∆S(j). Therefore, the efficient market
size is

n$(θ) :=max
{
k : fk ≤ ∆S(k)

}
(10)

The efficient allocation rule is

p$k (θ) =

1 if θk ≤ ∆S (n$(θ))
0 else .

(11)

Note that np$ = n$.
As is well–known, it is possible to implement the efficient allocation

rule in dominant strategies. The revenue maximizing mechanism in this
class of mechanisms is characterized as follows.

4On the optimality of the Clarke–Groves mechanism in several other applications
see Krishna and Perry (1998) and Schweizer (1999).

8



Theorem 2 (Optimal Groves Mechanism) The mechanism (p$, t$)
with allocation rule p$ given by (11) and the payment rule

t$k (θ) =
(
π (n$(θ))−min

{
θ̄k,∆S (n$(θ)) , fn$(θ)+1

})
p$k (θ)

(12)

is a Groves mechanism.5 Moreover, it is the mechanism that maximizes
tax revenue among all feasible mechanisms which implement the efficient
market structure p$.

Proof A Groves mechanism which implements p$ has payments of the
form

tk(θ) = hk(θ−k)−
[∑
j �=k

(
π (n$(θ))− θj

)
p$j (θ)+ C (n$(θ))

]
.

Let
h$k (θ−k) = W

(
p$, (θ̄k, θ−k)

)
be the social welfare which is generated if firm k has the highest fixed
cost θk = θ̄k. We now show that

t$k (θ) = h$k (θ−k)−
[∑
j �=k

(
π (n$(θ))− θj

)
p$j (θ)+ C (n$(θ))

]

can be simplified to (12).
If p$k (θ) = 0, then also p$(θ̄k, θ−k) = 0. Thus, we have W(p$, θ) =

W(p$, (θ̄k, θ−k)), and it follows that t$k (θ) = 0. If p$k (θ) = 1, we distin-
guish the following cases:

1) θ̄k =min
{
θ̄k,∆S (n$(θ)) , fn$(θ)+1

}
:

Then firm k stays in the market with fixed costs θ̄k. Thus, p$(θ̄k, θ−k) =
p$(θ), n$(θ̄k, θ−k) = n$(θ), and therefore

h$k (θ−k) =
∑
j �=k

(
π (n$(θ))− θj

)
p$(θ)+π(n$(θ))− θ̄k + C (n$(θ)) ,

which yields
t$k (θ) = π (n$(θ))− θ̄k .

2) fn$(θ)+1 =min
{
θ̄k,∆S (n$(θ)) , fn$(θ)+1

}
:

5Recall that f is the order statistic of θ.
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In this case, the firm with fixed costs fn$(θ)+1 replaces firm k. Therefore,
n$(θ̄k, θ−k) = n$(θ), p$(θ̄k, θ−k) �= p$(θ), and p$i (θ̄k, θ−k) = 1 for the
firm with the n$(θ)+ 1-highest fixed costs. Thus,

h$k (θ−k) =
∑
j

(
π (n$(θ))− θj

)
p$j (θ̄k, θ−k)+ C (n$(θ)) ,

which yields
t$k (θ) = π (n$(θ))− fn$(θ)+1 .

3) ∆S (n$(θ)) =min
{
θ̄k,∆S (n$(θ)) , fn$(θ)+1

}
:

Here, firm k drops out of the market and no other firm takes its place.
Therefore, n$(θ̄k, θ−k) = n$(θ)− 1 and the kth element of p$ becomes
zero. We get

h$k (θ−k) =
∑
j

(
π (n$(θ)− 1)− θj

)
p$(θ̄k, θ−k)+ C (n$(θ)− 1)

=
∑
j≠k

(
π (n$(θ)− 1)− θj

)
p$j (θ)+ C (n$(θ)− 1)

Thus,

tk =
∑
j �=k

[
π (n$(θ)− 1)−π (n$(θ))

]
p∗j (θ)−∆C (n$(θ))

= π (n$(θ))−∆Π (n$(θ))−∆C (n$(θ))
= π (n$(θ))−∆S (n$(θ)) .

We now show that the expected utility of firm k is zero in the worst
case, when its fixed cost is equal to θ̄k. In this event it can only make
a profit if it is in the market, that is if θ̄k ≤ ∆S(n$(θ̄k, θ−k)). But
this entails θ̄k ≤ fn$(θ)+1 by definition of p$. Thus, firm k has to pay
π(n$(θ̄k, θ−k)) − θ̄k in this case, which is exactly equal to its profit so
that Ūk(θ̄k) = 0.

As we know from the Revenue–Equivalence Theorem, in each feasible
mechanism that implementsp$ the regulator is only free to choose firms’
reservation utilities Ūk(θ̄k). In view of the participation constraint, it is
therefore optimal to set all of them equal to zero. This is exactly what
the mechanism (p$, t$) does. �

10



5 Optimal mechanisms if tax revenue matters

The government may care more for tax revenue than for consumer and
producer surplus because themarginal cost of raising other taxes to fund
government expenditures is greater than one, due to welfare distortions
associated with general taxation. This suggests that the regulator maxi-
mizes a convex combination of expected tax revenue and social surplus:
λT+(1−λ)E[W], or equivalently (µ−1)T+E[W], where µ := 1/(1−λ) ≥ 1
represents themarginal cost of general taxation.6 Generally, a preference
for tax revenue, µ > 1, makes it optimal to deviate from the allocation
rule that maximizes social welfare.

To prepare the thus generalized optimal mechanism design problem
we introduce the definitions of “virtual social surplus”:

Sλ(n) := S(n)− λC(n), (13)

and “priority levels” (that name will become clear later on):

γk(θk) := θk + λGk(θk)gk(θk)
. (14)

Furthermore, we let ζ = (ζ1, . . . , ζN) be the order statistic of γ, where ζ1
denotes the lowest and ζN the highest priority level.

In addition, we make the following assumption:

Assumption 4 Priority levels γk(θk) are strict monotone increasing for all
k ∈ {1, . . . , N}. A sufficient condition is that hazard rates gk(θk)/Gk(θk)
are strict monotone decreasing.

Assumption 4 considerably simplifies the characterization of the op-
timal mechanism since it assures that the second–order condition of the
incentive compatibility constraint is satisfied. However, it can be dis-
pensed with by employing a convexification argument developed in My-
erson (1981) and Baron and Myerson (1982).7

Lemma 1 The following mechanism (pλ, tλ)maximizes the convex combi-
nation of expected tax revenue and social welfare, Lλ := λT +(1−λ)E[W]

6This objective function is frequently used in public economics, see for example
Laffont and Tirole (1993) and Dana and Spier (1994).

7For a more accessible account of this procedure see also Landsberger and
Tsirelson (1999)).
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in the class of feasible direct revelation mechanisms.

pλk(θ) =

1 γk(θ) ≤ ∆Sλ(nλ(θ))
0 otherwise,

(15)

tλk(θ) = pλk(θ) (π(nλ(θ))− θk)−
∫ θ̄k
θk
pλk(x, θ−k)dx, (16)

nλ(θ) :=max{k : ζk ≤ ∆Sλ(k)}. (17)

Proof The expected tax revenue of feasible direct revelation mecha-
nisms has already been determined in (8). A necessary condition for the
maximum of T is Ūk(θ̄k) = 0, for all k. Therefore, the regulator’s objec-
tive function, Lλ, can be written in the form:

Lλ =E
[ N∑
k=1
λ
(
(π(np(θ̂))− θ̂k)pk(θ̂)−

θ̄k∫
θ̂k

pλk(x, θ̂−k)dx
)

+ (1− λ)
( N∑
k=1

(
π(np(θ̂))pk(θ̂)− θ̂kpk(θ̂)

)
+ C(np(θ̂))

)]
.
(18)

Using Fubini’s theorem, we obtain

E
[ θ̄k∫
θ̂k

p̄k(x)dx
]
=
θ̄k∫
θk

∫
Θ−k

pk(x, θ̂−k)g−k(θ̂−k)dθ̂−kGk(x)dx

=
∫
Θ−k

pk(x, θ̂−k)Gk(θ̂k)g−k(θ̂−k)dθ̂−k

=
∫
Θ

pk(θ̂)
Gk(θ̂k)
gk(θ̂k)

g(θ̂)dθ̂ .

Plugging this back into (18), it follows that Lλ is equal to

∫
Θ

( N∑
k=1
pk(θ̂)

[
π(np(θ̂))−

(
θ̂k + λGk(θ̂k)

gk(θ̂k)

)]
+ (1− λ)C(np(θ̂))

)
g(θ̂)dθ̂.

It is sufficient tomaximize pointwise for every vector of types (θ). Hence,
we focus on

N∑
k=1
pk(θ̂)

[
π(np(θ̂))−

(
θ̂k + λGk(θ̂k)

gk(θ̂k)

)]
+ (1− λ)C(np(θ̂)) .

12



Obviously we want the firms with the lowest priority levels to enter the
market. We can therefore restrict attention to allocation rules p which
are monotone in the priority levels. For such mechanisms, the sum can
be transformed into

np(θ)∑
k=1

(
π(np(θ̂))− ζk

)
+ (1− λ)C(np(θ̂)) = Sλ(np(θ))−

np(θ)∑
k=1

ζk

Thus, the regulator has to determine the size np which maximizes the
difference between virtual social surplus and the sum of priority levels.
Now, because of

Sλ(np(θ))−
np(θ)∑
k=1

ζk =
np∑
k=1
∆Sλ(np(θ))− ζk ,

the optimal number of firms in the market is given by

nλ(θ) :=max{k : ζk ≤ ∆Sλ(k)}.
Thus, the allocation rule pλ which maximizes the difference between vir-
tual social surplus and the sum of priority levels satisfies

pλk(θ) = 1 if γk(θk) ≤ ∆Sλ(nλ),
and pλk = 0 otherwise.

It remains to show that (pλ, tλ) is a feasible mechanism. Expected
utility from this mechanism is given by

Ūk(θk) =
∫ θ̄k
θk
pλk(x, θ−k)dx ≥ 0 .

Thus, the interim participation constraint is satisfied. By Assumption
4, the probability p̄λk of being in the market is decreasing in θk. This is
equivalent to incentive compatibility. �

From this result we can now derive a simple and intuitively appealing
characterization of the optimal mechanism. For this purpose suppose
fixed costs have been revealed to the regulator and consider a firm k that
qualifies to be awarded a license, because its priority level is sufficiently
low, according to the allocation rule (15). Then, the regulator can com-
pute the supremum of fixed cost that this firm k could have had, given
θ−k, while still qualifying to get the license:

yλk (θ−k) := sup
{
x ∈ [θk, θ̄k] : γk(x) ≤min{ζnλ+1,∆Sλ(nλ)}

}
.

This supremum of “winning” fixed costs plays a key role in the construc-
tion of the optimal payment rule, as follows.
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Theorem 3 (Optimality if Tax Revenue Matters) The optimal mech-
anism issues a license to the nλ(θ) firms with the lowest priority levels.
Payments are collected only from those firms that obtain a license, who
then pay a transfer equal to the net profit they would have earned if they
had the supremum of “winning” fixed costs:

tk(θ) = π(nλ(θ))−yλk (θ−k). (19)

Proof Employing the definition of yλk (θ−k), the optimal allocation rule
(15) is equivalent to

pλk(θk, θ−k) =

1 if θk ≤ yλk (θ−k)
0 otherwise.

Integrating yields

∫ θ̄k
θk
pλk(x, θ−k)dx =


y

λ
k (θ−k)− θk if θk ≤ yλk (θ−k)

0 otherwise.

Therefore, the optimal payment rule (16) can be written in the form:

tλk(θ) =

π(nλ(θ))−y

λ
k (θ−k) if θk ≤ yλk (θ−k)

0 otherwise.
(20)

�

Corollary 1 If the optimal mechanism is adopted, the expected number
of licensed firms, nλ, is decreasing in λ. For λ = 0 we are back at imple-
menting the welfare optimum, and for λ = 1, i.e. if tax revenue is the only
thing that matters, the optimal mechanism implements monopoly.

If firms’ fixed costs are i.i.d. random variables, only the least cost
firms get a license. However, if the θ̂’s differ, it is generally optimal to
discriminate between firms, as follows.

Theorem 4 Suppose hazard rates are monotone across firms. Then, the
optimal mechanism exhibits “handicapping” of firms whose fixed costs are
drawn from the more favorable distribution.
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Proof Consider two firms, say firm 1 and firm 2, and assume firm 1
has a lower hazard rate, everywhere,

∀x :
g1
G1
(x) ≤ g2

G2
(x).

Then, for all y :
∫ θ̄
y g1(x)/G1(x)dx ≤

∫ θ̄
y g2(x)/G2(x)dx, which implies

lnG1(y) ≥ lnG2(y), and hence G1(y) ≥ G2(y). In other words, θ̂1
dominates θ̂2 in the sense of first–order stochastic dominance. Since
lower fixed costs are more favorable, we conclude that θ̂1 is the more
“favorable” random variable than θ̂2. Using the definition of priority
levels we conclude:

∀x : γ1(x) := x + λG2

g2
(x) ≤ x + λG1

g1
(x) =: γ2(x).

Therefore, the allocation of licenses to the firms with the lowest priority
levels, as advised by the optimal mechanism, handicaps those firms who
draw their fixed cost from the more favorable distributions. �

We close with some examples to illustrate the gains from such dis-
crimination. Suppose fixed costs are uniformly distributed on [θi, θ̄i].
Then gi(θ) = 1

θ̄i−θi and Gi(θ) =
θi−θi
θ̄i−θi . This yields priority levels

γi(θi) = θi + λ(θi − θi).

The markup of a firm’s fixed costs is proportional to the extent it exceeds
its minimal cost θi. In this sense, the optimal mechanism discriminates
against “good” firms which increases their payments in case they win a
license.

Now let N = 2 and λ = 1 (only tax revenue matters). Moreover, let θ̂1
be uniformly distributed on [0,1] and θ̂2 uniformly distributed on [1,2],
so that θ̂1 is unambiguously the more favorably distributed random vari-
able than θ̂2. Priority levels are

γ1(θ1) = 2θ1, γ2(θ2) = 2θ2 − 1. (21)

And the tax revenue maximizing mechanism summarized in Theorem 3
deviates from the efficient selection of one firm by picking the inferior
firm 2 whenever θ2 < θ1 + 0.5.

In order to gain some intuition why it is optimal to add a distortion in
this manner, consider the impact of a distortion of efficiency on tax rev-
enue that is due to awarding the license to the inferior firm 2 whenever

15



θ2 < θ1 + δ, for δ > 0. As one can easily confirm, if one starts from the
efficient selection of one firm and raises δ just marginally, tax revenue
jumps up in the event when firm 1 wins the license, which occurs al-
most with certainty, and declines when firm 2 wins (which almost never
occurs).8 Therefore, adding a small distortion, δ > 0, unambiguously
increases tax revenue.

In particular, tax revenue can be expressed as function R of the dis-
tortion parameter δ, as follows:

R(δ) =π(1)−
(
(1− δ)+

∫ 1+δ

1

∫ θ2−δ
0

(θ2 − δ)dθ1dθ2

+
∫ 1

1−δ

∫ θ1+δ
1

(θ1 + δ)dθ2dθ1
)

=π(1)− 4δ3 − 3δ2 + 6
6

.

It follows immediately that the tax revenue maximizing distortion is to
set δ = 0.5 (and the expected tax revenue is thus raised from π(1)−1 to
π(1)−23/24), which is precisely the optimal mechanism summarized in
Theorem 3 for λ = 1.

6 Free entry and inefficiency

A natural question is whether a mechanism is needed in the first place.
Why not let free entry implement the efficient market size? Another
important issue is whether the optimal mechanism, if it is adopted, con-
tributes to a budget deficit. Ideally, the optimal mechanism should also
be deficit free. As we show in this and the subsequent section, both is-
sues are somewhat interrelated. In particular, free entry generally leads
to an inefficient market size, and the optimal mechanism is generally
deficit free.

To explain market size under free entry, consider a two–stage market
game. After having observed their own fixed costs, firms simultaneously
decide whether to enter into the market, and then, after entry decisions
have been observed, play a Cournot–style market game. For simplicity,

8If firm 1 wins, one has either θ2 > 1 + δ, in which case tax revenue is equal to
π(1) − 1, or θ2 < 1 + δ and θ1 ∈ (0, θ2 − δ), in which case tax revenue is equal
to π(1) − (θ2 − δ). Therefore, if firm 1 wins, tax revenue is always higher than in
the efficient mechanism (where it is equal to π(1) − 1). However, if firm 2 wins, tax
revenue is equal to π(1)− (θ1 + δ), which is evidently lower than π(1)− 1.
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fixed costs are assumed to be i.i.d. random variables with the continuous
probability distribution function G : [0, θ̄]→ [0,1], and θ̄ > π(N).9

In the Bayesian equilibrium of this game, firms enter the market iff
their fixed costs are below some threshold level c ∈ (0, θ̄), which is
uniquely determined by the condition of indifference between entry and
non–entry:

N−1∑
m=0

π(m+ 1)
(
N − 1
m

)
G(c)m (1−G(c))N−1−m − c = 0. (22)

Thereby, the left-hand side is the equilibrium expected profit of the bor-
derline firm with fixed cost equal to c if it enters, given that only the
firms with fixed costs at or below c do enter.10

Theorem 5 Free entry generally gives rise to an inefficient market size.

Proof The equilibrium market size under free entry is equal to the ef-
ficient size n∗ if

∆S(N$ + 1) > c > ∆S(n$).

The free entry equilibrium defines a deterministic threshold level c, im-
plicitly defined in (22), whereas the efficient number of firms, n∗, and
therefore ∆S(n$) is random, because it depends on the realization of
fixed costs. Consequently, free entry generally fails to implement the
efficient market size. �

7 Is the optimal mechanism deficit free?

We now show that the optimal mechanism is generally deficit free by us-
ing an excessive entry property of a hypothetical entry game. We proceed
as follows: First, we introduce the hypothetical entry game and explain
why it exhibits excessive entry. Second, we consider the optimal Groves
mechanism analyzed in Section 4, which maximizes tax revenue in the
class of mechanisms that implement the efficient market size. We show
that this mechanism is deficit free. Third, we conclude that the optimal
mechanism which maximizes the weighted sum of expected tax revenue
and social surplus is also deficit free.

9If θ̄ ≤ π(N) all firms would enter the market and no one would suffer a loss.
10For a proof of existence and uniqueness of the equilibrium threshold level c see

Dixit and Shapiro (1986).
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At the outset notice that the regulator would subsidize a firm that
earns a negative profit in order to induce it to participate in the market
game if this raises the social surplus by more than this firm’s losses.
Therefore, it is not obvious that the optimal mechanism should be deficit
free.

Consider a hypothetical entry game which serves exclusively as a
benchmark for our analysis. In this hypothetical game firms’ fixed costs
are common knowledge, and all least cost firms enter until the marginal
firm earns zero profits and then play a Cournot–style market game. Inte-
ger constraints on the number of firms are ignored. This game gives rise
to excessive entry, analogous to the well–known excessive entry property
of symmetric Cournot market games discovered by Mankiw and Whin-
ston (1986).

Lemma 2 In the equilibrium of the hypothetical entry game, the number
of entrants, ne(θ), is greater than or equal to the welfare maximizing
number of entrants, n0(θ), for all θ.

Proof Ignoring integer constraints let f(n) be a continuously differ-
entiable function that denotes the n–th highest fixed costs, q(n) each
firm’s equilibrium output, and P(nq(n)) the inverse market demand.
Then, the social welfare generated by the n–firm hypothetical entry cum
Cournot–style oligopoly game is equal to:

W(q(n),n) =
nq(n)∫
0

P(y)dy −
n∫
0

f(y)dy, (23)

and ne is implicitly determined by the zero–profit condition:

π(ne)− f(ne) = 0. (24)

Differentiating (23) with respect to n yields, at n = ne:
dW
dn

∣∣∣∣
n=ne

=P(neq(ne)) (q(ne)+neq′(ne))− f(ne)
=π(ne)− f(ne)+ P(neq(ne))neq′(ne)
=P(neq(ne))neq′(ne)
<0.

(25)

Hence, welfare can be increased by lowering n below ne. �
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Theorem 6 If integer constraints on the number of firms do not bind, the
optimal mechanism is deficit free.

Proof The assertion follows easily for the optimal Groves mechanism
that implements the efficient market size n0(θ). Indeed, by definition of
n0 and ne, combined with the excessive entry property ne(θ) ≥ n0(θ)
one has, for all θ:

π(n0(θ)) ≥π(ne(θ))
≡f(ne(θ))
≥f(n0(θ))

≡ d
dn

∫ n0(θ)
0

f(x)dx

≡ d
dn
S0(n0(θ)).

Therefore, the regulator receives a nonnegative transfer from each firm
that is awarded a license (others neither pay nor receive anything) equal
to

t = π(n0(θ))−min{ d
dn
S0(n0(θ)), θ̄i} ≥ 0.

Hence, the optimal Groves mechanism is deficit free.
Compared to the optimal Groves mechanism, which maximizes tax

revenue in the class of mechanisms that implement the efficient market
size, the optimal mechanism, analyzed in Section 5, gives more weight to
tax revenue. Therefore, it yields at least as much tax revenue, and hence
is also deficit free. �

Of course, it is not satisfactory to ignore the integer constraint on
the number of firms, as we did so far, in this section. Indeed, if one
takes this constraint into account, one can easily find examples, where
the hypothetical entry game gives rise to insufficient entry. However, as
Mankiw and Whinston (1986) have shown, ne ≥ n∗ − 1, so that entry is
never insufficient by more than one firm. Also, Perry (1984) performed
numerical simulations assuming constant elasticity of demand curves
and Cournot equilibrium, and showed that the integer constraint tends
to matter only if the number of firms in the entry equilibrium tends to
be in the order of one or two firms.

In addition, we report the following necessary and sufficient condition
for the optimal mechanism to be deficit free, that does not ignore the
integer constraint.
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Theorem 7 Taking the integer constraint into account, the optimal mech-
anism is always deficit free if and only if for all n ≥ 2

∆S(n) ≤ π(n). (26)

Proof Again, we first look at the efficient mechanism and then extend
the result to the optimal mechanism.

Condition (26) entails min{θ̄k,∆S (n$(θ)) , fn$(θ)+1} ≤ π(n). This
assures that the efficient mechanism does not subsidize any firm, which
proves sufficiency.

It remains to be shown that (26) is also a necessary condition. For this
purpose, suppose, per absurdum, that (26) is violated so that π(n) <
∆S(n) for some n. Now consider the event that π(n) < fn < ∆S(n), for
all i = 1, . . . , n. Then, the efficient mechanism selects these n firms to
participate in the market. Since participation is voluntary, this requires
that they are subsidized. And the subsidy per active firm i is at least as
high as

fi −π(n) > 0, ∀i = 1, . . . , n.

Therefore, the efficient mechanism gives rise to a deficit.
The optimal mechanism gives more weight to tax revenue than the

efficient mechanism. Therefore, the above condition also assures that
the optimal mechanism is deficit free. �

8 Discussion

In the present paper we have analyzed the regulation of entry in a nat-
ural oligopoly market, in the tradition of the optimal mechanism design
approach. The two key assumptions were that firms have private infor-
mation about their fixed costs and that the regulator is unable to control
the behavior of firms once they are in the market.

We addressed four issues: 1) the design of the optimal Groves mecha-
nism that yields the highest tax revenue in the class of mechanisms that
implement efficiency; 2) the design of the optimal mechanism that maxi-
mizes a weighted sum of tax revenue and social surplus, which is relevant
if general taxation is subject to a deadweight loss; 3) a comparison of the
optimal mechanism with the free entry market equilibrium, and 4) an
assessment of the budgetary consequences of the optimal mechanism.

There are two main limitations of the present analysis. First, our
analysis is restricted to an independent private values framework, where
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firms’ fixed costs are independent random variables. In a framework
of stochastic dependency, one would probably need other mechanisms,
that supply firms with more information about each other, just like in an
open ascending auction. The second major limitation has to do with the
assumption that all potential firms have the same marginal cost, and dif-
fer only in their fixed costs. Ideally one would like to assume that firms
have different fixed and marginal costs which is firms’ private informa-
tion. However, this gives rise to multi–dimensional mechanism design
problems that are still not resolved with sufficient generality.
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