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1 Introduction and Motivation

The interest in comovements between economic variables leading to common cyclical fea-

tures has arisen for instance because economic theory predicts such comovements and many

economic variables exhibit strong correlation at various frequencies. The vast literature on

cointegration has focussed on long-run comovements. More recently, some authors have ana-

lyzed the existence of short-run comovements between stationary time series or between �rst

di�erenced cointegrated I(1) series (see Engle and Kozicki 1993; Gouri�eroux and Peaucelle,

1989; Tiao and Tsay, 1989). Among these approaches, the concept of serial correlation com-

mon features (SCCF hereafter) introduced by Engle and Kozicki (1993) appears to be useful.

It means that stationary time series move together in a way such that there exist linear com-

binations of these variables which yield white noise processes. In general, imposing these

common features restrictions when they are appropriate will induce an increase in estimation

eÆciency (L�utkepohl, 1991) and accuracy of forecasts (Vahid and Issler, 1999). The associate

cofeature vectors measure the intensity of short-run relationships between economic variables

and they often have a straightforward economic interpretation. Under these restrictions a set

of time series can be decomposed into their permanent and transitory components (see inter

alia Vahid and Engle, 1993). Notice however that in these decompositions the number of

common features and cointegrating vectors is assumed to be equal to (seldomly smaller than)

the number of variables.1

The aim of this paper is to analyze common cyclical features in relation with cointegration.

The strong assumption that some linear combination of the �rst di�erences of the variables

in the model is white noise will be called a strong form reduced rank structure (SF). It

corresponds to the case of serial correlation common features of the variables in �rst di�erences

and assumes that the left null spaces of the short-run dynamic matrices and cointegrating

matrix overlap. Of course, in line with other authors, when SCCF appears to be too strong,

one could test for the existence of cofeatures in the form of linear combinations of the variables

di�erenced once, that are not white noise but have lower order dynamics than the individual

variables. Tiao and Tsay (1989) for example, study this type of structure in a multivariate

ARMA model and they call it scalar component model (SCM). We consider a natural weaker

alternative assumption under which the common cyclical part is reduced to a white noise

1To avoid confusion, it should be noticed from the outset that the term common cyclical features refers

to a particular type of commonality leading to speci�c reduced rank structures. This concept should not be

confused with the concept of cycle used in business cycle analyses (see the discussion in Cubadda, 1999). On

the other hand, the concept of common cycles (in contrast to common cyclical features) refers to the common

transitory component in particular permanent-transitory decompositions (see Vahid and Engle, 1993; Hecq,

Palm and Urbain, 2000).
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by taking a linear combination of the variables in the �rst di�erences corrected for long-

run e�ects. This case will be termed weak form reduced rank structures (WF). The WF is

attractive as it allows for di�erent common factors generating respectively the long-run and

short-run dynamics of economic variables. It is a necessary condition for the existence of �rst

order codependent cycles in a VAR(2) as studied by Vahid and Engle (1997). As it is also a

necessary condition for the SCCF, it is a natural hypothesis to be tested in sequential model

speci�cation.

Our framework is similar to that of Vahid and Engle (1993), but less restrictive as we

explicitly consider the WF, implying linear combinations of the �rst di�erenced I(1) variables

to be predictable at low frequencies. In the presence of WF only, the lower bound to the

number of common cycles is one whereas under SF, there have to be at least r common cycles

in the system, with r being equal to the cointegration rank. Notice that Reinsel and Ahn

(1992) brie
y discuss a form similar to the WF. In general, they impose a nesting structure

on the null spaces of the model dynamics. They do not discuss all the implications for the

admissible number of common features. We study both the WF and the SF, taking into

account the implications of the WF for the SF in modeling. Thereby, we do not impose a

nesting structure on the null spaces of the model dynamics.

The paper is organized as follows. In Section 2 we present di�erent forms of reduced

rank structures that arise in empirical work. We focus on the partially non-stationary vector

autoregression that will be reparametrized as an Vector Error Correction Model (VECM).

The relationships between the strong and weak form reduced rank structures will be ana-

lyzed. The mixed form (MF) combining SF and WF will also be considered. Our model

representation follows the lines of Ahn (1997) and Reinsel and Ahn (1992) but focusses on

the constraints between the number of cointegrating and common cyclical feature vectors.

Section 3 presents simple statistical procedures based on a two-step canonical correlation and

maximum likelihood analyzes that allow to test various kinds of reduced rank structures, in

particular to check whether short and long-run matrices have a common left null space. In

Section 4, we study the small sample behavior of common feature tests using Monte Carlo

simulations. We show why the number of common feature vectors can be arti�cially bounded

by a wrong assumption about the nature of the reduced rank structure. We present a testing

strategy that allows us to study cointegration and other common features of unknown order

in an integrated framework. Finally, Section 5 illustrates the relevance of di�erent forms of

reduced structures, in particular of the WF for macroeconomic applications. It also demon-

strates the use of the tests in the search for long-run and short-run relationships among real

consumption, investment and gross domestic product in the US, in the period 1954-1996. A
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�nal section concludes.

2 Reduced rank structures

Let us consider a Gaussian Vector Autoregression of �nite order p (VAR(p)) model for an

n-vector time series fyt; t = 1; : : : ; Tg:

yt =

pX
i=1

�iyt�i + "t; t = 1; : : : ; T; (1)

for �xed values of y�p+1; :::; y0 and where "t is a n-dimensional homoskedastic Gaussian mean

innovation process relative to =t = fyt�1; yt�2; : : : ; y1g with nonsingular covariance matrix


. Let L denote the lag operator and de�ne �(L) = In �
Pp

i=1�iL
i: We make the following

assumption

Assumption 1 (Cointegration): In the VAR model (1), we assume that

1. rank(�(1)) = r; 0 < r < n; so that �(1) can be expressed as �(1) = ���
0

; with � and

� both (n� r) matrices of full column rank r;

2. the characteristic equation j�(�)j = 0 has n � r roots equal to 1 and all other roots

outside the unit circle.

Assumption 1 implies (see Johansen, 1995) that the process yt is cointegrated of order

(1,1). The columns of � span the space of cointegrating vectors, and the elements of � are

the corresponding adjustment coeÆcients or factor loadings. Decomposing the matrix lag

polynomial �(L) = �(1)L + ��(L)(1 � L), and de�ning � = (1 � L), we obtain the vector

error correction model:

�yt = ��
0

yt�1 +

p�1X
j=1

��j�yt�j + "t; t = 1; : : : ; T; (2)

where ��0 = In, �
�
j = �

Pp
k=j+1�k (j = 1; : : : ; p � 1): Note that for notational convenience,

deterministic terms (constants, trends, ...) are omitted at this level of presentation. With the

exception of some simulation results in Section 4, throughout this paper we will also assume

that p is known. Serial correlation common feature (see Engle and Kozicki, 1993) holds for

the VECM (2), if there exists a (n � s) matrix ~�, whose columns span the cofeature space,

such that ~�0�yt = ~�0"t is a s-dimensional vector mean innovation process with respect to the

information available at time t; =t:
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Consequently, serial correlation common features arise if there exists a cofeature matrix

~�
0

such that the following two conditions are satis�ed:

Assumption 2: ~�
0

��j = 0(s�n); j = 1 : : : p� 1 (3)

Assumption 3: ~�
0

�(1) = �~�
0

��
0

= 0(s�n) (4)

Assumption 2 implies that ~�0 must lie in the intersection of the left null spaces of the matrices

describing the short-run dynamics. Given that ��j = �
Pp

k=j+1�k , j = 1; : : : ; p � 1 and

��p = ��(1) = �(In �
Pp

j=1�j), Assumption 3 implies that ~�0(In � �1) = 0(s�n), e.g. �1

must have eigenvalues equal to one with multiplicity s and the corresponding eigenvectors

must lie in the intersection of the left null spaces of the ��j matrices. Note that if the ranges

of the ��j 's matrices are nested, i.e. if range(��j+1) � range(��j); a nested reduced rank

structure arises (see e.g. Ahn and Reinsel, 1988). We consider the restrictions implied by (3)

or by (3) and (4) without imposing further nesting of the ranges of the ��j 's. This leads us

to distinguish the following two concepts:

De�nition 1 (Strong Form Reduced Rank Structure): If in addition to Assumption

1 (cointegration) both Assumptions 2 and 3 hold, the implied reduced rank structure of the

VECM (2) will be labelled a strong form reduced rank structure (SF). Under SF, there exists

a (n � s) matrix ~�, whose columns span the cofeature space; such that ~�0�yt = ~�0"t is a

s-dimensional vector mean innovation process with respect to =t:

De�nition 2 (Weak Form Reduced Rank Structure): If in addition to Assumption

1 (cointegration) only Assumption 2 holds, the implied reduced rank structure of the VECM

(2) will be labelled a weak form reduced rank structure (WF). Under WF, there exists a (n�s)

matrix ~�, whose columns span the cofeature space; such that ~�0(�yt � ��
0

yt�1) = ~�0"t is a

s-dimensional vector mean innovation process with respect to =t:

Remark (a) The SF is usually considered in the literature (see inter alia Engle and

Kozicki, 1993, Vahid and Engle, 1993 among others). It leads to serial correlation common

features (SCCF). We however prefer to use the concept of SF in order to enable a formal

comparison with the WF and to highlight the fact that the concept of SCCF generally applies

to stationary vector processes irrespective of the presence or absence of cointegration. Under

the SF, we may de�ne a (n(p� 1) + r)� 1 vector X�
t�1 = [�y0t�1; : : : ;�y

0
t�p+1; y

0
t�1�]

0

and a

n� (n(p� 1) + r) matrix �� = [��1; : : : ;�
�
p�1; �], so that (2) is written as

�yt = ��X�

t�1 + "t; t = 1; :::; T: (5)
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Under the assumption of a SF, �� is of reduced rank n � s and can be written as �� =

A�[C�
1 ; : : : ; C

�
p�1; C

�
p ] = A�C�; where A� is n � (n � s) full column rank matrix and C� is

(n � s) � (n(p � 1) + r) and ~�
0

A�C�X�
t�1 = 0; e.g. ~� 2 sp(A�

?
) where A�

?
is the orthog-

onal complement2 of A�. Consequently, as pointed out by Vahid and Engle (1993), in a

n�dimensional I(1) vector process yt with r < n cointegrating vectors, if the elements of yt

have common cyclical features (given by ft = C�X�
t�1) there can be at most n � r linearly

independent cofeature vectors that eliminate the common cyclical features since the cofeature

matrix must 3 lie in sp(�?). The SF implies that s � n � r and that the common dynamic

factors ft consist of linear combinations of the elements of X
�
t�1: The implications of the SF

can be stated more formally as:

Lemma 1: For the SF, sp(�) � sp(e�?):
The proof follows directly from the linear independence between the vectors � and e� (see

Vahid and Engle, 1993) so that rank [� : e�] = r + s � n. Hence we have that dim[sp(�)] �

dim[sp(e�?)] or that rank (�) � rank (e�?) implying that r � n� s.

Remark (b) In the case of WF, we analogously de�ne a n(p � 1) � 1 vector Xt�1 =

[�y0t�1; : : : ;�y
0
t�p+1]

0

and the n� n(p� 1) matrix � = [��1; : : : ;�
�
p�1], so that (2) becomes

�yt = ��
0

yt�1 +�Xt�1 + "t; t = 1; :::; T: (6)

Under the assumption of a WF, � is of reduced rank n � s and can be written as � =

A[C1; : : : ; Cp�1] = AC; where A is n�(n�s) full column rank matrix and C is (n�s)�n(p�1)

such that ~�
0

ACXt�1 = 0: The cofeature matrix ~� must lie in space(A?) but not necessarily

in space(�?).

It is important to stress the di�erence between SF and WF. Firstly, the assumption of a

SF reduced rank rules out predictability at any frequency and hence implies common cycles

at all frequencies. On the contrary, by allowing for linear combinations that are predictable

in the long run, the WF reduced rank structure restricts the short-run dynamics. Secondly,

in the WF case, both the possible number and the nature of the common cyclical features

change: s may be greater than n� r but has to remain � n� 1 and the corresponding n� s

2In the sequel, space will be denoted by sp. We shall always denote the orthogonal complement of any

n� s-dimensional matrix B; with n > s and rank(B) = s, by the n� (n� s) matrix B? such that B
0

B? = 0

with rank(B?)= n � s and rank(B : B?)= n: We then say that B? spans the null space of B and B
0

spans

the left null space of B?.
3Consider the VAR(2) model �yt = �(I��1��2)yt�1��2�yt�1+"t with n = 4; and rank(I��1��2) =

r = 2: In this case, rank(�2) should be necessarily equal to 2, 3 or 4. Otherwise in the strongly nested structure,

rank(�2) = 1 would mean that s+ r = 5 > n which is not possible.
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common dynamic factors consist of linear combinations of the elements of Xt�1; ft = CXt�1;

which only contain lagged �rst di�erences of the process. It is important to notice that the

existence of s weak form common feature vectors with s > r, implies the existence of s � r

strong form common features as is shown in Lemma 2.

Lemma 2: In the VAR model (1) under Assumption 1 with s > r, Assumption 2 implies

the existence of s� r SF common feature vectors.

Proof: Denote by e� the n�s matrix of linearly independent WF common feature vectors.

Any nonsingular transformation of e�, e�A, with A being an s � s nonsingular matrix, also

forms a basis of the space spanned by the columns of e� and therefore is also a basis of the

WF common feature space. The matrix e�0�(1) = �e�0��0 has rank min(r; s). Therefore, if

s > r, there are s� r linearly independent column vectors such that there is an n � (s � r)

matrix B with full column rank such that B0� = 0. B can be constructed as B = e�A� by

choosing the s� (s� r) matrix A� with rank s� r such that B forms a basis for the left null

space of �. Note that we can always normalize B such that the upper part equals Is�r. �

Remark (c) As pointed out, the WF has an interest in its own as it is a necessary

condition for the existence of �rst order codependent cycles in a VAR(2) (see e.g. Vahid

and Engle, 1997; Hecq, 2000) and of the SF. The WF restrictions are generally not invariant

to alternative vector error correction representations such as that where yt�p appears in

levels instead of yt�1: The implications of the lack of invariance are that the results from a

reduced rank analysis of short-run dynamics are parametrization-speci�c.4 Invariance may be

obtained at the price of assuming a SCCF or that the ranges of ��j 's are nested (see e.g. Ahn

and Reinsel, 1988). The methods put forward in this paper can be applied to any of these

alternative parametrizations. We present the analysis for the VECM (2) with yt�1 appearing

in levels, �rst, because this parametrization is frequently used in empirical work; second

because if a reduced rank structure is found it will imply a lower order SCM than for other

parametrizations; third, the WF is more likely to be appropriate as it applies to the coeÆcients

of the higher order lags of �yt in the VECM, which are usually less signi�cant than those of

small order lags of �yt (for non-seasonal processes). Alternatively, when modeling series for

which there are no strong reasons to a priori prefer any of the VECM parametrizations, one

can test the WF restrictions for each parametrization. Next, one can test the SF restrictions

for those parametrizations for which the WF restrictions are not rejected. This sequential

testing is likely to lead to detecting useful structures in the data.

4For instance, for the VAR(2) model in footnote 3, the WF is implied by ~�0�2 = 0; whereas when yt�2 is

included in the error-correction term, WF restrictions require ~�0(I � �1) = 0.
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When n > 2, and s � r > 0, besides the s � r SF common features implied by s WF

common features, the mixed form (MF) reduced rank restrictions may arise. They combine

the SF and the WF in the following way.

De�nition 3 (Mixed Form Reduced Rank Structure): If in addition to Assumption

1 (cointegration) Assumption 2 holds for s common feature vectors e� = (e�1; e�2); with e�1
and e�2 being n � s1 and n � s2 full rank matrices respectively, with s1 + s2 = s, and in

addition Assumption 3 holds for s1 common feature vectors e�1 with s > s1 and n� r > s1 >

max(0; s�r), then the implied reduced rank structure of the VECM (2) will be labelled a mixed

form reduced rank structure (MF). Under MF, the (n�s) matrix e� spans the co-feature space,

such that e�01�yt = e�01"t is a s1-dimensional vector mean innovation process with respect to =t

and e�02(4yt � ��0yt�1) = e�02"t is a s2-dimensional vector mean innovation process to =t:

Remark (d) Under the MF, there are s1�max(0; s� r) > 0 SF common feature vectors

which are not implied by the WF and yield testable restrictions on the parameters of the

VECM (2). The matrix e�1 consists of s� r columns which are linear combinations of e� and

s1 �max(0; s� r) columns of e� which satisfy Assumption 3.

Remark (e) Note that in the mixed case s1 and s2 have to satisfy the inequalities

s1 + s2 � n� 1 and s1 � n� r: Also, along the lines of lemma 1, we get sp(�) � sp(e�?).
Notice that we could easily extend these representations in order to analyze models in

which only a part of short-run components disappears. This type of reduced rank structures

has been studied by Ahn and Reinsel (1988) for stationary processes, Tiao and Tsay (1989) for

VARMA models and by Reinsel and Ahn (1992) and Ahn (1997) for partially non-stationary

processes.

3 Testing Di�erent Forms of Reduced Rank Structures

3.1 Reduced rank hypotheses

The di�erence between the SF and the WF can be illustrated in terms of two competing

models where we assume both cointegration and the existence of a (n � s) common feature

matrix ~�. Under the assumption of SF the following model holds

~�
0

�yt = ~�
0

"t; t = 1; :::; T; (7)

while under WF we have

~�
0

(�yt � ��
0

yt�1) = ~�
0

"t; t = 1; :::; T: (8)
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Let us �rst assume that the cointegrating rank r is known and �xed. For a given maintained

reduced rank structure (WF or SF), we may consider the sequence of hypotheses (or models)

in each column separately in order to test H0 : rank(e�) � s against Ha : rank(e�) < s for the

di�erent values of s starting with s = 0 for the model without common features. In the SF

case, the maximum number of common feature vectors is n� r: For the WF s has an upper

bound5 of n� 1:

Insert Table 1 about here

For each value of s (� n� r) we can also compare the SF against the nesting alternative

of a WF. The resulting structure of the various hypotheses of interest is summarized in Table

1, where � indicates the direction of the nesting between the di�erent implied models. Table

1 shows that the hypotheses are nested "horizontally" and "vertically". In empirical work,

one will usually start by considering "vertical" sequences of nested hypotheses for the WF

and the SF respectively and for each sequence determine the value of s for which the null

hypothesis is not rejected. Denote these values by s and s1 respectively and by Hs1;s the

hypothesis that the number of SF and WF common features is s1 and s respectively. Next,

for the values of s larger than max(1; s� r+1) and for which the SF is not rejected, one will

usually test horizontally the SF against the WF. All other "diagonal" comparisons, such as

H0;sversus H1;1 for instance, involve non-nested hypotheses. Table 1 presents the structure

of reduced rank hypotheses for s1 = 0; : : : ; n� r; s = 0; : : : ; n and r = 1; : : : ; n� 1 and n = 4:

The table is easily extended if we also consider the cointegrating rank as unknown.

3.2 Testing

Given that the hypotheses to be tested are nested, we rely on ML estimation of the underlying

models following the approaches by Reinsel and Ahn (1992), Ahn (1997), Ahn and Reinsel

(1988), Reinsel (1993) among others. Usually, when r and s are unknown, it appears impos-

sible to �nd an explicit solution for the likelihood equations (see Johansen, 1995; Ahn, 1997).

There are essentially two approaches to the determination of r; s and to the estimation of the

parameters of interest. The �rst approach proposed and investigated by Ahn (1997), Ahn and

Reinsel (1988) is to exploit the nested reduced rank structures and to compute numerically a

Gaussian reduced-rank estimator based on iterative solution of approximate Newton-Raphson

equations. Alternatively, one may follow a two-step approach in which r is �rst determined,

while ignoring restrictions on the short-run dynamics of the model. Once r is determined and

5s = n implies that �yt � ��0yt�1 is already a n dimensional vector white noise process.
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� (the cointegrating matrix) is estimated, s may be determined using the approach proposed

by Vahid and Engle (1993) for example. The rationale behind this simple two-step analysis

is that the determination of r and the eÆciency of estimation of � are not a�ected asymp-

totically by the presence of the reduced rank structure on the short-run dynamics (see also

Ahn, 1997; Phillips, 1991).

We use the two-step approach, although one may reasonably suspect small sample eÆ-

ciency losses compared to using a one-step full information estimation method. As pointed

out by various authors, a convenient way to test for reduced rank structures within the VECM

is based on canonical correlation analysis. Let us �rst assume that r and � are known or that

superconsistent estimates are available so that we may essentially consider them to be �xed

and given.

De�ne the T �n matrices W1 = �Y = (�y1; : : : ;�yT )
0, Y�1 = (y0; : : : ; yT�1)

0, Z1 = �Y �

with �Y � being the LS residuals from the multivariate regression of �Y on Y�1� and

the T � (n(p � 1) + r) matrix W2 = [Z2; Y�1�] with Z2 being the T � n(p � 1) matrix

(�Y �
�1; : : :�Y

�
�p+1): Under the maintained hypothesis of a SF reduced rank structure, the

sequence of common feature Gaussian likelihood ratio test statistics for H0 : rank(�
�) � n�s

against Ha : rank(�
�) > n�s; where �� is de�ned in (5), or equivalently for H0 : rank(e�) � s

against Ha : rank(e�) < s can be shown (see L�utkepohl, 1991; Velu et al, 1986)) to be

�S = �T

sX
i=1

log(1� �i); s = 1; :::; n� r; (9)

where 0 � �1 � �2 � ::: � �n�r < 1 are the ordered eigenvalues of the symmetric matrix

(W 0
1W1)

�1=2W 0
1W2(W

0
2W2)

�1W 0
2W1(W

0
1W1)

�1=2: The test statistic (9) can also be interpreted

as the minimum of the objective function of the GMM estimator of e� subject to the normal-

ization (1=T ) e�0W 0
1W1

e� = Is (see Anderson and Vahid, 1998). For known r and �, under

the null the test statistic �S is asymptotically �2-distributed with s(n(p� 1) + r)� s(n� s)

degrees of freedom (Vahid and Engle, 1993).

In the case of WF reduced rank structure, this likelihood ratio test for H0 : rank(e�) � s

against Ha : rank(e�) < s reads as

�W = �T

sX
i=1

log(1� ~�i); s = 1; :::; n � 1; (10)

where 0 � e�1 � e�2 � ::: � e�n�1 < 1 are the ordered eigenvalues of the symmetric matrix

(Z 0
1Z1)

�1=2Z 0
1Z2(Z

0
2Z2)

�1Z 0
2Z1(Z

0
1Z1)

�1=2: This statistic has an asymptotic �2-distribution

with s(n(p� 1))� s(n� s) degrees of freedom under the null.

10



A MF reduced rank structure hypothesis H0 : rank( ~�1) � s1; for min(n � r; s) � s1 >

max(0; s�r) and rank( ~�2) � s2 againstHa : rank( ~�1) < s1 or rank( ~�2) < s2, with s1+s2 = s,

can be tested in several ways. One way is to test SF restrictions for s1 = 1; : : : ; n� r; using

the statistic �S in (9). As this test ignores the restrictions implied by the existence of s2 weak

form common features, some power might be lost as will be illustrated in the next section.

Alternatively, the parameters ~� and � from the WF can be estimated jointly by FIML

for given s and �; e.g. by maximizing the likelihood function based on the (s� 1) subsystem

(8), normalized on the �rst s variables of �yt by setting ~�0 = (Is ~��0s�(n�s)); and completed

by adding (n� s) "reduced form" equations for the remaining (n� s) variables in �yt

B0�yt =

0
@ 0s�n 0s�n : : : 0s�n �1

��21 ��22 : : : ��2p�1 �2

1
A X̂�

t�1 +B0"t; (11)

with

B0 =

0
@ Is ~��0s�(n�s)

0(n�s)�s In�s

1
A ;

X̂�
t�1 = X�

t�1 with � replaced by the �rst stage superconsistent estimate, the ��2i matrices,

i = 1; : : : ; p � 1, indicate the n � s bottom rows of the ��i matrices in (2) and (�01 �
0
2) is

the partition of �0B. Under a MF structure, for given �; s and s1, we can specify a similar

pseudo-structural system:

B0�yt =

0
BB@

0s1�n 0s1�n : : : 0s1�n 0s1�r

0s2�n 0s2�n : : : 0s2�n �2

��31 ��32 : : : ��3p�1 �3

1
CCA X̂�

t�1 +B0"t; (12)

where

B0 =

0
BB@

Is1
~��0
1;s1�(n�s1)

0s2�s1
~�0
2;s2�(n�s1)

0(n�s)�s1 A(n�s)�(n�s1)

1
CCA ;

~�0
2;s2�(n�s1)

= (Is2
~��0
2;s2�(n�s)

)0, A(n�s)�(n�s1) = (0(n�s)�s2 In�s), the ��3i matrices, i =

1; : : : ; p�1, indicate the n�s bottom rows of the ��i matrices in (2) and �
0B = (00s1�r �

0
2 �

0
3)

with �2 and �3 of dimension (s2 � r) and (n� s)� r respectively.

For given � and s, the MF with s1 SF vectors and s2 WF vectors can tested against the

11



WF by testing for the validity of the additional parameter restrictions implied by (12) using

a standard LR test statistics denoted by �M . No eÆciency loss arises if a superconsistent

estimate is substituted for the cointegrating vectors �. Under the null of the MF, �M is

asymptotically �2-distributed with degrees of freedom being given by the number of additional

parametric restrictions imposed under (12), i.e. s1r � s2s1. This estimation procedure has

been used in the empirical analysis reported in Section 5.6

For given r, a likelihood ratio test statistic for the null hypothesis of a SF against the

alternative of a WF, for each possible common feature rank s = max(1; s� r+1) : : : n� r, is

given by

�SW = �T

sX
i=1

logf
(1� �i)

(1� ~�i)
g; (13)

where the e�i's and the �i's are de�ned as above. Conditional on known r and �, all variables

involved are weakly stationary both under the null and the alternative, so that standard

asymptotic theory applies. �SW has an asymptotic �2-distribution with degrees of freedom

equal to the number of restrictions rs imposed under the H0. If the null hypothesis is

rejected, one can proceed further in determining s by testing the number of zero squared

canonical correlations between Z1 and Z2: Note that the test statistics (9), (10) and (13)

only enable to formally compare the nested models from Table 1. For "diagonal" type of

model comparisons involving non-nested hypotheses, we propose to select the model which,

for given p; r and �; minimizes one of the well-known model selection critera (AIC, SBC,

HQC) where, given that we have omitted deterministic terms, the number of parameters is

n(n(p�1)+r)�s(n(p�1)+r)+s(n�s) under the SF and n(n(p�1)+r)�s(n(p�1))+s(n�s)

under the WF.7

4 Monte Carlo Results

In this section we present evidence on the �nite sample behavior of the sequential test proce-

dure put forward in Section 3.2. One should indeed be careful when interpreting the outcome

of the three sequences of LR tests �S; �W and �SW . Given that s is unknown, and given the

sequential nature of the testing procedure, the signi�cance levels of the individual tests in the

6Alternalively, the subsystem (8) normalized as above could be estimated by GMM, to get unrestricted

estimates of the matrices ~��0 and ~�0� (for given �) and testing the rank of the matrix ~�0� (see Hecq, Palm

and Urbain, 1999).
7These model selection criteria can be also used to select the optimal values for r and s given p (as we

assumed in the preceding section) and have also recently been considered for common feature analysis by Vahid

and Issler (1999) for unkown s and p.
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sequence must be distinguished from the overall Type I error of the sequential testing pro-

cedure. Also, the above sequential procedures are essentially based on asymptotic properties

such as the irrelevance of the reduced rank structure for the optimal estimation of � and the

determination of r. A Monte Carlo experiment should shed some light on the �nite sample

behavior of the sequences of common features LR tests presented in the preceding section.

We concentrate on two issues which we believe are particularly relevant for applications:

1. the size and power in �nite samples of the common feature LR tests,

2. the possible e�ect of incorrectly specifying the number of cointegrating vectors and/or

the lag length.

In order to address these issues we consider a simple trivariate data generating process

(DGP) where we assume the existence of two common feature vectors, i.e. s = 2. Throughout

the simulations, p is �xed either to its true value p = 2 or to 4. The size and power of

codependence tests in the presence of either incorrectly speci�ed lag length of the model

dynamics, omission of a cointegrating vector, non-normal errors, or temporal aggregation

have been extensively analyzed by Beine and Hecq (1999). Strong and weak form reduced

rank structures are considered. The DGP is a Gaussian VAR of order two written in VECM

form. In order to provide some motivation for the choice of the DGP, we label the three

variables ct, it; yt as for consumption, investment and real output. In line with a simple form

of a neo-classical model, we assume the existence of two long-run relationships: ct � yt and

it�yt. The covariance matrix has been calibrated on quarterly real US data for consumption,

investment and value added for the period 1950-1996.

2
664

�ct

�it

�yt

3
775 =

2
664

0:2 0:1 0:1

0:8 0:4 0:4

0:4 0:2 0:2

3
775

2
664

�ct�1

�it�1

�yt�1

3
775+ ��

0

2
664

ct�1

it�1

yt�1

3
775+

2
664
"1t

"2t

"3t

3
775

2
664
"1t

"2t

"3t

3
775 � N

0
BB@

2
664

0

0

0

3
775 ;
2
664

1:0 0:6 0:6

0:6 1:0 0:6

0:6 0:6 1:0

3
775

1
CCA :

(14)

The cofeature matrix associated with the DGP in (14) is given by

~�
0

=

2
4 1 �0:25 0

1 0 �0:5

3
5 :
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It yields two linear combinations of the variables in the model that annihilate the short-run

dynamics. In our experiments, the nature of the reduced rank structure depends on the choice

of the values for � and �. Tables 2 and 3 illustrate the outcome of the simulations when the

DGP has a SF reduced rank structure with p = 2; r = 1 and s = 2. Tables 2 and 3 present the

rejection frequencies of the statistics (9), (10) and (13) for models assuming r = 1, r = 2 and

r being estimated for a DGP with s = 2 and choosing the correct lag length p = 2 or setting

the lag length equal to 4 respectively. Notice that for the SF and with n = 3, the number of

cointegrating vectors is by de�nition bounded to be equal to one in the DGP. We therefore

present simulation results for models with the correct speci�cation of the cointegrating rank

as well as over-speci�cation of r.

In each case, we use 10,000 replications and a sample size of T=1000 and 100. The

cointegration coeÆcients � are set equal to their estimated values obtained by ML estimation

in a �rst stage (see Johansen, 1995). Conditionally on these estimates for �, � and ~� are

estimated by ML as described in Section 3.2. All simulations have been performed with

GAUSS and the �rst 50 observations initialize the processes. The empirical (size unadjusted)

power and size are given as percentage rejection frequencies. The nominal size used to obtain

these rejection frequencies is �xed at 5% for each individual test.

Insert Tables 2-3 about here

Tables 2 and 3 report simulation results for a DGP with SF. Several remarks are worth

to be made:

� In general, the di�erences between the results in Tables 2 and 3 are small. The ineÆ-

ciency resulting from choosing too long lags is small.

� When the DGP has a SF and the number of cointegrating vectors is correctly speci�ed,

both �S and �W behave fairly well in detecting the two cofeature vectors. Note also the

behavior of the sequence of the LR tests �SW that does not show any signi�cant size

distortion.

� If we estimate the number of cointegrating vectors or �x it at a value higher than the

true r, the rejection frequency of �S is slightly distorted. �W still behaves very well in

detecting the correct number of common feature vectors. However the LR tests for SF

versus WF display signi�cant size distortions reaching 50% instead of the 5% chosen

nominal level.
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� Overall, the tests appear to reject too frequently the null hypothesis when the model is

misspeci�ed in some way (with the exception of lag length). The tests therefore tend to

favor accepting models with fewer restrictions than the true model, implying thereby a

loss of eÆciency, but not a misspeci�cation.

In the Tables 4 and 5, rejection frequencies for a DGP under WF restrictions are given.

Insert Tables 4-5 about here

We draw some conclusions from Tables 4 and 5:

� Again, the e�ect of over�tting the lag length is small.

� When the DGP with r = 1 has a WF reduced rank structure, �W determines without

size distortions the correct number of common feature vectors, whether r is �xed at the

true value, estimated or �xed at 2. When the true value of r equals 2, �W performs

very well except when r is �xed at 1.

� The statistic �S detects a SF reduced rank structure implied by a WF reduced rank

structure (s�r > 0) with a rejection frequency of approximately 5% when r is correctly

speci�ed (panel one). When r is �xed at a value larger than the true one or when it

is estimated, the size of �S is much larger than the nominal size of 5%. For �SW , the

rejection frequencies are similar.

� It is interesting to note that the sequence of �W still selects the correct number of

common feature vectors without size distortions when we overspecify the number of

cointegrating vectors. This is not surprising since the coeÆcient of a non signi�cant I(1)

variable in a I(0) model converges in probability to zero. �S still rejects the presence of

any cofeature vector since this case excudes the existence of an implied SF (s� r = 0).

� Overall, the likelihood ratio statistics �SW for the null of SF against the WF has high

power close to one in most cases. When s� r > 0 in the DGP, there are (s� r) implied

SF common features vectors and the rejection frequencies for s = 1 in Tables 4 and 5

have to be interpreted as an empirical size of the test. In these cases, the statistic �SW

rejects too frequently the (implied) null hypothesis.

Results for the statistics presented above with a small sample correction as suggested by

Reinsel and Ahn (1992) for cointegration tests, where �W and �S are respectively premultiplied

by the factors (T �n(p�1))=T and (T �n(p�1)� r)=T , (for further details see Hecq, 2000),
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have been obtained as well. They are available from the authors upon request. Overall, the

results are similar to the corresponding results given in Tables 2-5. For T = 100, in some

instances, the corrected version of the tests performs better than the uncorrected ones.

Table 6 contains some illustrative simulation results for a DGP with a MF reduced rank.

For this purpose, the DGP is slightly modi�ed and extended in order to account for a MF.

The selected DGP is a VAR(2) with n = 4; r = 2 and s = 3: From Lemma 2 there is one

implied cofeature vector (s � r = 1). The loading matrix � is chosen such that the DGP

displays one additional cofeature vectors, i.e. s1 = 2. The following matrices are retained:

~� =

2
666664

1 1 1

�:25 0 0

0 �:5 0

0 0 �:4

3
777775
; ~�? =

2
666664

�:1

�:4

�:2

�:25

3
777775
; � =

2
666664

�:2 :2

�:8 0

�:4 :8

�:5 0

3
777775
; � =

2
666664

1 0

0 1

1:2 �:8

�1 �1

3
777775
:

This particular choice of � implies the existence of ~�01 satisfying8 ~�01� = 0: As discussed in

the preceding section, we report results for �S and a likelihood ratio tests of the mixed form

denoted by �M :

In Table 6 we report rejection frequencies, based on 10,000 replications, under the correct

assumption of a mixed form with s1 = 2 (size of the tests) as well as those obtained when we

let the parameter �3;1 successively take the values -0.45, -0.5 which implies the existence of a

weak form9. In all the cases, the empirical power is not size adjusted.

Insert Table 6 about here

From Table 6, we observe that �S and �M do not su�er from serious size distortion. With

respect to the empirical powers, it appears that �M perform substantially better than �S .

Remark that r is assumed known while � is estimated and thus the cointegrating rank is

correctly speci�ed.

The limited Monte Carlo evidence presented in this section leads us to propose the fol-

lowing model selection strategy.

1. Start by determining the lag length p and the number of cointegrating vectors, trying

to avoid underestimation of r: In practice, Johansen's ML statistics complemented by

8The columns of the 4� 2 matrix ~�1 may simply be constructed by adding the �rst and second column of
~� on the one hand and by adding the second and the third one on the other hand.

9Remark that the values of �3;1 chosen for the computation of the empirical powers only imply small

deviation from the mixed form. For other values the empirical power rapidly reaches 1.
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a visual inspection may prove useful to determine an upper bound for r,

2. compute the sequences of common feature LR tests �S and �W and select s for the SF

and WF respectively, check whether the number of WF common features exceeds r, in

which case the WF implies s� r SF common features,

3. for the cases where s1 = max(1; s�r+1); :::; n�r compute �SW to select the appropriate

reduced rank structure,

4. for the cases where s1 = max(1; s� r + 1); :::;min(n� r; s), compute a likelihood ratio

MF test,

5. repeat the analysis with r � i cointegrating vectors for i = 1; : : : ; r � 1. For each case

compute the various information criteria.

5 An Application

5.1 Background

A vast amount of empirical macroeconomic literature has studied the long-run implications

of the real business cycle models, see e.g. Neusser (1991), King and al. (1991), Kunst and

Neusser (1990). With the exception of the work of Issler and Vahid (2001), little work has

however been done on short-run co-movements in neoclassical growth models. As in Issler and

Vahid (2001) we analyze a simple form of the real business cycle (RBC) model which assumes

common trends and common cycles between U.S. per capita real consumption, investment

and output. We relax the hypotheses about the number of common feature and cointegrating

vectors. More formally, consider the following trivariate system for the logarithms of income

yt, consumption ct and investment it put forward by King, Plosser and Rebelo (1988) and

analyzed by Issler and Vahid (2001):

ct = x
p
t + �c+ �ck̂t (15)

it = x
p
t +�{+ �ik̂t (16)

yt = x
p
t + �y + �yk̂t; (17)

where xpt = x
p
t�1 + "

p
t is the common trend, that is a random walk measuring among other

the impact of technology processes, �y; �c and �{ are the constant steady state values, k̂t is the

common cycle, that is the stationary transitory deviation of the capital stock from its steady

state value and �c,�i and �y are constant parameters. "
p
t and k̂t may be correlated.
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We analyze the period 1954:1 - 1996:4, that is 172 quarterly observations. Data prior to

1954:1 were used as initial observations in regressions that contain lags. Notice that we had

the observations from 1948:1 onwards but we preferred, as King and al. (1991) suggested, to

exclude turbulent periods during Korean War, price control and Treasury-Fed agreement. The

data used are the revised (May 1997) series from the Survey of Current Business national

account for the United States (source BEA). The variables are ct : personal consumption

expenditures, it : gross private domestic investment and the output yt is the GDP less the

government expenditures. The three variables have been divided by the size of the civilian

population above sixteen years of age. Figure 1 presents the data series used in this section.

The series are seasonally adjusted and transformed into natural log.

Insert Figure 1 about here

5.2 Cointegration and Common Feature Analysis

The model that best characterizes the covariance structure of the data is a VAR of order 5

(using LR statistics) with an unrestricted intercept in the short-run. Table 7 presents the

test statistics for the Johansen (1995) rank test of the number of cointegrating relationships

with small sample correction and the 5% critical values.

Insert Table 7 about here

The results in Table 7 indicate that we cannot reject the presence of two cointegrating

vectors whose coeÆcients are not far from the theoretical ones i.e. ct� yt and it� yt are both

I(0)10. The estimated cointegrated relationships are respectively:

ct � 0.958

(0.016)

yt and it � 1.103

(0.045)

yt; (18)

where asymptotic standard errors are reported in parentheses. The likelihood ratio test for

unit long-run elasticities in both vectors (e.g. stationarity of the great ratios); �2
(2)
-distributed

under the null, yields a value of 3.07 so that these restrictions are rejected at the 5% level. For

the determination of the number of common feature vectors, we use the sequential likelihood

10The traditional Augmented Dickey Fuller unit root test statistics also strongly reject the null hypothesis.

For instance for and ADF(4) we get the values �� = �3:31; �� = �3:97 for the variable ct�yt and �� = �4:14;

�� = �4:23 for the variable it � yt:
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ratio tests presented in Section 3. For p = 5 and r = 2 �xed we obtain the tests statistics and

the p-values reported in Table 8.

Insert Table 8 about here

�S and �W respectively denote likelihood ratio tests for the number of common features

for given cointegrating rank r and a given reduced rank structure. �corS and �corW are the small

sample corrected version. �SW = �S��W yields the likelihood ratio statistic for the null of SF

against WF for given cointegrating and cofeature rank. For s = 1; the �SW test statistic has

a value of 10.06 for a �2
(2)

null distribution which yields a rejection probability of .0065. We

reject the SF model in favor of the WF one. The common feature relation we would retain in

the SF case is �ct + 0:106�it � :959�yt. In the class of WF we still have to choose between

s = 1 and s = 2: The test statistic �W = 33:83 does not reject the null hypothesis of s � 2;

i:e: the presence of at least two common features vectors. Notice that information criteria

also favor the WF assumption with s = 2. With s = 2 and r = 2, the WF does not imply a

SF common feature since s� r = 0.

FIML estimates of the WF model (11), under s = 2 and permuting the columns of ~� in

order to �nd the vectors with the meaningful economic interpretation, results in the following

two cofeature relationships:

�c�t � 0.501

(0.087)

�y�t and �i�t � 4.776

(0.481)

�y�t ; (19)

where asymptotic standard errors are reported in parentheses and where a � indicates that the

corresponding variables are expressed in deviation from long-run e�ects. It is seen that these

two vectors �t pretty well business cycle stylized facts, e.g. that consumption is smoother

than output, investment is more volatile than output and there is a single synchronous cycle

which can be extracted using the Stock-Watson-Beveridge-Nelson decomposition developed

in Hecq, Palm and Urbain (2000). This common cyclical component is given in Figure 2 with

the shaded areas indicating the NBER peak to trough periods.

Insert Figure 2 about here

The �nal step is to investigate the potential presence of MF common features. We may

easily obtain the matrices entering the restricted representation (12). Assuming that the �rst
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vector is of a strong form, FIML estimation of the MF model with unknown e� = (e�1 e�2)
leads to the following two cofeature linear combinations:

�ct � 0.639

(0.191)

�yt + 0.039

(0.044)

�it and �i�t � 4.866

(0.475)

�y�t :

The likelihood ratio test of the MF against the WF is distributed �2(1) under the null of

the MF. Its value is 1.472. The likelihood ratio test for the additional restriction that the

coeÆcient of �it in the �rst cofeature vector is zero has a value of 0.592. It is also �2(1)-

distributed. Consequently, we may reestimate the MF model by FIML which leads to the

following two cofeature relations:

�ct � 0.485

(0.067)

�yt and �i�t � 4.86

(0.467)

�y�t :

Notice that a MF model that assumes that the �rst vector is of a weak form is rejected at

any reasonable signi�cance level (p-value less than 0.001).

At this stage it may be interesting to note the sharp reduction in the number of parameters

that have to be estimated once we impose (valid) reduced rank structures. The unrestricted

trivariate VAR(5) model contains 45 unknown parameters. Under cointegration with r = 2,

the number of unknown parameters reduces to 44. With one SF cofeature vector it reduces

to 32 while with two weak form cofeature vectors the number becomes 22. Note �nally that

the mixed form only contains 20 unknown parameters.

6 Conclusion

In this paper, we studied a linear Gaussian VAR model with nonstationary but cointegrated

variables that have common cyclical features.

We introduced the concepts of strong, weak and mixed form reduced rank structures and

discussed their implications for VAR modeling. SF reduced rank structures arise when the

common features are such that there exists one or several linear combinations of the set of

variables under investigation expressed in �rst di�erences which are white noise. The existence

of a WF reduced rank structure implies that linear combinations of the �rst di�erences of the

variables in the model in deviation from the long-run relationships are white noise. We showed

that the constraint that the number of common features plus the number of cointegrating

relationships should be less than or equal to the number of variables no longer applies under
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the WF. This allows to consider more signi�cant long-run relationships between the variables

in �rst di�erences. It also yields an eÆciency increase for the estimates, resulting from the

reduction in the number of free parameters to be estimated.

We designed a modeling strategy and proposed likelihood ratio tests for the three types of

reduced rank structures. We studied the small sample properties of the test using Monte Carlo

simulations. It appeared that in particular under SF it is of great importance to correctly

determine the cointegrating rank before testing SF against WF. An empirical analysis of the

relationship between the consumption, investment and real GDP leads to the conclusion that

the existence of a WF reduced rank structure with one common trend and one weak form

common cycle is not rejected by the information in the series. The presence of two common

feature vectors means that the short-run dynamics of the system is governed by a single

weak form common cycle as shown in Hecq, Palm and Urbain (2000) who present the Stock-

Watson-Beveridge-Nelson decompositions of yt into permanent and transitory components for

the SF and the WF reduced rank structures.
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Table 1: Reduced Rank Hypotheses for n = 4

r = 1

s1 = 0

s1 = 1

s1 = 2

s1 = 3

H0;0 � H0;1 = H0;1

[ [ [

H1;1 = H1;1 � H1;2 = H1;2

[ [ [

H2;2 = H2;2 � H2;3 = H2;3

[ [ [

H3;3 = H3;3 � H3;4

r = 2

s1 = 0

s1 = 1

s1 = 2

s1 = 3

H0;0 � H0;1 � H0;2 = H0;2

[ [ [ [

H1;1 = H1;1 � H1;2 � H1;3 = H1;3

[ [ [ [

H2;2 = H2;2 � H2;3 � H2;4

r = 3

s1 = 0

s1 = 1

s1 = 2

s1 = 3

H0;0 � H0;1 � H0;2 � H0;3 = H0;3

[ [ [ [ [

H1;1 = H1;1 � H1;2 � H1;3 � H1;4
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Table 2: Empirical Rejection Frequencies1 of the LR tests for SF, p = 2

DGP: SF s = 2 Estimated Model

r = 1

� =

2
4 �0:10
�0:40
�0:20

3
5

�0 =
�
0 1 �1

�

r = 1; p = 2
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 0:24 0:41 0:78 0:33 0:53 0:92
s � 2 4:90 5:00 5:37 6:72 6:53 6:13
s = 3 100:00 100:00 100:00 100:00 100:00 93:96
r = 2; p = 2

T = 1000 T = 100
�S �W �SW �S �W �SW

s � 1 1:76 0:41 4:09 2:37 0:66 4:81
s � 2 34:59 4:91 50:24 40:88 7:29 53:58
s = 3 100:00 100:00 100:00 100:00 100:00 98:12

r̂ = rank(�̂); p = 2
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 0:52 0:42 1:34 0:78 0:61 1:72
s � 2 14:19 5:02 15:85 18:26 7:12 18:87
s = 3 100:00 100:00 100:00 100:00 100:00 94:84

1 The rejection frequencies are based on 10,000 replications and calculated using
asymptotic critical values. The nominal level is �xed at 5%.
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Table 3: Empirical Rejection Frequencies1 of the LR tests for SF, p = 4

DGP: SF s = 2 Estimated Model

r = 1

� =

2
4 �0:10
�0:40
�0:20

3
5

�0 =
�
0 1 �1

�

r = 1; p = 4
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 0:26 0:21 2:54 0:48 0:53 3:09
s � 2 5:52 5:49 5:36 10:38 10:17 6:57
s = 3 100:00 100:00 100:00 100:00 100:00 93:45
r = 2; p = 4

T = 1000 T = 100
�S �W �SW �S �W �SW

s � 1 1:10 0:23 12:94 2:20 0:77 13:99
s � 2 21:97 5:61 49:97 32:78 11:06 51:62
s = 3 100:00 100:00 100:00 100:00 100:00 97:77

r̂ = rank(�̂); p = 4
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 0:63 0:22 4:51 1:14 0:67 5:43
s � 2 11:11 5:61 15:99 18:66 11:14 19:17
s = 3 100:00 100:00 100:00 100:00 100:00 94:50

1 The rejection frequencies are based on 10,000 replications and calculated using
asymptotic critical values. The nominal level is �xed at 5%.
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Table 4: Empirical Rejection Frequencies1 of the LR tests for WF, p = 2

DGP: WF s = 2 Estimated Model

r = 1

� =

2
4 �0:50

0:10
0:20

3
5

�0 =
�
1 0 �1

�

r = 1; p = 2
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 5:10 0:34 10:78 6:22 0:50 12:34
s � 2 100:00 5:03 100:00 100:00 7:59 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00
r = 2; p = 2

T = 1000 T = 100
�S �W �SW �S �W �SW

s � 1 30:11 0:35 40:57 36:08 0:60 46:32
s � 2 100:00 4:88 100:00 100:00 7:56 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00

r̂ = rank(�̂); p = 2
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 11:69 0:36 17:35 16:45 0:54 22:82
s � 2 100:00 4:98 100:00 100:00 7:80 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00

r = 2

� =

2
4 �0:50 �0:20

0:10 �0:30
0:20 0:20

3
5

�0 =

�
1 0 �1
0 1 �1

�

r = 2; p = 2
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 100:00 0:40 100:00 99:84 0:49 99:91
s � 2 100:00 5:17 100:00 100:00 6:98 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00
r = 1; p = 2

T = 1000 T = 100
�S �W �SW �S �W �SW

s � 1 100:00 5:18 100:00 98:00 5:24 98:61
s � 2 100:00 100:00 100:00 100:00 97:11 99:96
s = 3 100:00 100:00 100:00 100:00 100:00 100:00

r̂ = rank(�̂); p = 2
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 100:00 0:40 100:00 99:84 0:49 99:91
s � 2 100:00 5:17 100:00 100:00 6:98 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00

1 The rejection frequencies are based on 10,000 replications and calculated using asymp-
totic critical values. The nominal level is �xed at 5%
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Table 5: Empirical Rejection Frequencies1 of the LR tests for WF, p = 4

DGP: WF s = 2 Estimated Model

r = 1

� =

2
4 �0:50

0:10
0:20

3
5

�0 =
�
1 0 �1

�

r = 1; p = 4
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 5:43 0:18 36:10 8:23 0:82 35:07
s � 2 100:00 5:68 100:00 100:00 12:85 99:98
s = 3 100:00 100:00 100:00 100:00 100:00 100:00
r = 2; p = 4

T = 1000 T = 100
�S �W �SW �S �W �SW

s � 1 18:56 0:19 57:14 25:35 0:62 58:96
s � 2 100:00 5:60 100:00 100:00 11:40 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00

r̂ = rank(�̂); p = 4
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 9:87 0:19 40:73 15:66 0:72 42:59
s � 2 100:00 5:69 100:00 100:00 12:39 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00

r = 2

� =

2
4 �0:50 �0:20

0:10 �0:30
0:20 0:20

3
5

�0 =

�
1 0 �1
0 1 �1

�

r = 2; p = 4
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 100:00 0:18 100:00 99:42 0:59 99:95
s � 2 100:00 5:67 100:00 100:00 11:57 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00
r = 1; p = 4

T = 1000 T = 100
�S �W �SW �S �W �SW

s � 1 100:00 5:78 100:00 99:12 10:15 98:70
s � 2 100:00 100:00 100:00 100:00 99:68 99:96
s = 3 100:00 100:00 100:00 100:00 100:00 100:00

r̂ = rank(�̂); p = 4
T = 1000 T = 100

�S �W �SW �S �W �SW
s � 1 100:00 0:18 100:00 99:43 0:65 99:95
s � 2 100:00 5:67 100:00 100:00 12:40 100:00
s = 3 100:00 100:00 100:00 100:00 100:00 100:00

1 The rejection frequencies are based on 10,000 replications and calculated using asymp-
totic critical values. The nominal level is �xed at 5%.
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Table 6: Empirical Rejection Frequencies1 of the LR

tests for MF, p = 2

T Size Power Power

�3;1 = �0:4 �3;1 = �0:45 �3;1 = �0:5

�S 100 8.22 15.04 28.29
1000 5.15 78.20 99.35

�M 100 6.87 19.28 38.93
1000 5.03 91.42 100

1 The nominal level is �xed at 5%. The statistics �S
and �M use the estimated �̂ under the assumption of
known cointegrating rank r = 2.

Table 7: Cointegration Tests

Max.Eig.Test 95% cv Trace Test 95% cv

r = 0 28.08 21.0 45.96 29.7
r � 1 14.39 14.1 17.88 15.4
r � 2 3.48 3.8 3.48 3.8

Table 8: Common Feature Tests

r = 2 �T ln(1� �i) df Pb > �2df Pb > �2df

�S �W �S �W �S �W �corS �corW

s � 1 20:51 10:44 12 10 :058 :402 :092 :466

s � 2 (53:54) 33:83 (26) 22 (:001) :051 (:004) :087
s = 3 (150:1) 117:3 (42) 36 (< :001) < :001 (< :001) < :001
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Figure 1: Log Levels of Macro Aggregates
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Figure 2: Unique Weak Form Common Cycle and NBER Contraction Periods

30


