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1 Introduction

Common agency games under adverse selection have received much attention in the last

few years.3 Contrary to standard monopolistic mechanism design problems which are

now quite well known, oligopolistic screening often leads to a complex characterization

of the equilibrium allocations. This characterization is complex for two reasons. First,

the simple version of the Revelation Principle generally used in monopolistic settings no

longer holds. To describe the whole set of equilibrium allocations of such a game, i.e., the

whole set of allocations which are implementable through a common agency game, one has

either to rely on a Delegation Principle as in Martimort and Stole (2001) or to extend in

an appropriate way the type space before using the Revelation Principle as in Epstein and

Peters (1996). Second, even in the archetypical environments analyzed by Stole (1991),

Martimort (1992, 1996), Martimort and Stole (2000) and Biais, Martimort and Rochet

(2000), the description of the equilibrium allocations is hard because it involves solving a

pair of differential equations which are not Lipschitzian at a boundary of the type spaces.

Except for the variation in competition among principals, these environments are imme-

diate extensions of those used under monopolistic screening. They involve quasi-linear

utility functions, a one-dimensional adverse selection parameter distributed continuously

on an interval with an everywhere positive density, and each principal’s strategy space

consisting of the space of continuously differentiable nonlinear schedules. The complexity

that the modeler may face in comparing the monopolistic and the oligopolistic screening

environments is thus deeply due to the nature of competition in mechanisms.

Much work in incentive theory, however, has studied simpler contracting environments

in which the type space is discrete (generally two types) and direct mechanisms are used

by the principals. The restriction to discrete type spaces can be justified by invoking the

fact that, in the real world, principals find it of value to distinguish only a few subsets of

agents,4 and that, in the theoretical world, much of the economic intuition of self-selection

contracts can be understood with only two types. We similarly adopt this two-type

restriction in the present paper, but in the context of competitive contracting. In addition

to restricting attention to a two-type environment, we also focus on direct communication

mechanisms (i.e., contracts which are menus of no more than 2 elements). In the monopoly

setting, a restriction to direct mechanisms is not an issue because the Revelation Principle

applies and there is no loss of generality. In a common agency framework where screening

mechanisms are available to multiple principals, however, such a restriction is, a priori,

not meaningful as argued by Peters (1999) and shown with an early and abstract counter-

example by Martimort and Stole (1993). Even under oligopolistic screening, however,

3See Stole (1991) and Martimort (1992, 1996), and Martimort and Stole (2000).
4This is certainly the case for firms using nonlinear pricing since they most of the time offer only a

few options to their customers.
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the restriction to direct mechanism is economically meaningful and can be justified when

menu costs impose that each principal finds it optimal to offer at most a single allocation

per subset of identified agents.

Our interest in this paper is to characterize equilibrium allocations in a simple common

agency game involving two sellers and one buyer along the lines of those analyzed by

Stole (1991) and Martimort (1992, 1996) when one insists on both restrictions above: (i),

the finiteness of the type space (and here we focus on the case of two possible types)

and, (ii), the set of feasible mechanisms being a priori restricted to direct mechanisms.

The motivation for this exercise is twofold. First, from a positive point of view, we

want to propose a description of common agency equilibrium in a meaningful and simple

environment. For modelers interested in applying the common agency methodology to

compare monopolistic and oligopolistic screening environments, it may be of little help to

know that a Delegation Principle or an extended version of the Revelation Principle hold in

those environments if they are not amenable to a clear description of incentive constraints,

at least a description which could be compared to that obtained under monopolistic

screening. Second, from a normative point of view, our analysis can be viewed as a

first step towards a full characterization of equilibrium allocations in common agency

environments. Before enlarging the strategy spaces as requested by the Delegation and

the extended Revelation Principles, one may want to know what can be achieved with

mechanisms using communication spaces which have the same dimensionality than the

set of underlying types.

We start by providing the cooperative benchmark which supposes that the two prin-

cipals cooperate in their contractual offers and behave as merged entity (Section 2). We

then move to the analysis of Nash equilibria of the common agency game with direct

mechanisms. Because the most appealing allocations are deterministic, we restrict our

attention to non-random direct mechanisms. Additionally, since pure-strategy equilibria

also have a natural economic appeal, we further restrict our attention to pure-strategy

equilibria and offer an algorithm to compute these equilibria (Section 3). Within the

class of direct-communication, common agency games that we analyze, we find that pure-

strategy equilibria always exist when the principals control activities of the agent which

are complements. We describe the set of those equilibria and show that under compet-

itive contracting there always exists one equilibrium of the common agency game which

replicates what can be obtained by a merged principal. However, competitive contract-

ing may also involve a significant efficiency loss for some equilibria which are shown to

be asymmetric and the corresponding distortions are characterized (Section 4). In the

case of substitutes, existence of a pure-strategy equilibrium with direct mechanisms and

truth-telling always fails (Section 5). Non-existence is due to the desire of each principal

to offer contracts which induce the agent to lie to the other principal. This phenomenon
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leads us to analyze more complex strategy spaces with indirect mechanisms (Section 6)

which may ensure existence. Alternatively, one may want to keep the same strategy

space for the principals but to relax the equilibrium concept. We define the concept of

quasi-equilibrium where principals are bound to offer mechanisms which are collectively

incentive compatible. We show existence of such quasi-equilibria and we characterize the

corresponding allocations (Section 7).5 All proofs are in an Appendix.

2 The Model and its Benchmarks

We begin with a description of a common agency game between two sellers (principals)

selling differentiated products to a common customer. We assume that the buyer has

a quasi-linear utility function which is symmetric and concave in q1 and q2: U = −t +

u(q1, q2, θ) = −t + θ(q1 + q2) − 1
2
(q2

1 + q2
2) − λq1q2, where t is a monetary transfer paid

to the principals, qi the consumption of good i, and θ the valuation for both goods. The

parameter λ ∈ (−1, 1] represents the relationship between q1 and q2 in the agent’s utility

function. The two goods are complements when λ < 0 and substitutes when λ > 0.6 The

agent gets some reservation utility exogenously normalized at zero if he decides not to

consume the two goods. For simplicity, we consider the model of intrinsic common agency

in which the agent is forced to consume both goods.7 The agent’s valuation for the good

is private information, drawn form the set Θ = {θ, θ̄} with respective probabilities 1 − ν

and ν. Principal Pi’s profit is given by Vi = ti − C(qi) when he sells quantity qi of good

i at price ti. We assume that both principals have the same constant marginal cost of

supplying the good: C(qi) = cqi for i = 1, 2. For simplicity, we assume that ∆θ ≡ θ̄ − θ

is not too large given ν, θ, λ and c, thereby guaranteeing a positive consumption for

the low type both under cooperation and competition between the sellers.8 Of course,

nothing is specific to this example and a similar framework could equally be developed to

model competition between two regulatory bodies or between two lobbying groups trying

to influence a common decision-maker.

We begin with two benchmarks for comparison: The full information contract and the

5An alternative route would be to look for mixed-strategy equilibria and prove existence using possibly
the techniques of Dasgupta and Maskin (1986). Their theorems apply when the strategy spaces are closed
subsets making them not directly useful in the case here since the set of contracts is a priori unbounded.

6When λ = 0 the two goods are unrelated. When λ = 1, the goods are perfect substitutes; i.e.,
U = t + θQ− 1

2Q2, where Q = q1 + q2.
7See Martimort and Stole (2000) for a similar model where we discuss the difference between intrinsic

and delegated common agency. In the latter case, the agent can choose to refuse one of the contract he
is offered. On possible motivation for this focus on the intrinsic common agency game is that the buyer
and the sellers are all units of the same firm and that trade between those units is mandatory as it is the
case for some practices of transfer pricing within the firm.

8 A sufficient condition is that ν∆θ ≤ (1 − ν − λ2)(θ − c), though except for Proposition 2, this is
much stronger than necessary.
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second-best contract obtained when the principals cooperate under asymmetric informa-

tion and behave as a merged principal.

The full information first-best levels of outputs are obviously given by:

qFB(θ) =
θ − c

1 + λ
, ∀θ ∈ Θ.

Moreover, the agent gets zero rent whatever his type:

UFB(θ) = 0, ∀θ ∈ Θ.

Let us now move to the standard case of monopolistic screening where a merged

principal offers the contract.

Proposition 1 : The collusive second-best levels of outputs are given by:

qC(θ̄) =
θ̄ − c

1 + λ
,

qC(θ) =
θ − c

1 + λ
−

(
ν

1− ν

)
∆θ

1 + λ
.

The cooperative transfers paid by each type for those quantities are given by:

tC(θ̄) = u(qC(θ̄), qC(θ̄), θ̄)− 2∆θqC(θ),

tC(θ) = u(qC(θ), qC(θ), θ).

The high valuation agent gets a positive information rent:

UC(θ̄) = −tC(θ̄) + u(qC(θ̄), qC(θ̄), θ̄) = 2∆θqC(θ).

The low valuation agent gets zero information rent:

UC(θ) = −tC(θ) + u(qC(θ), qC(θ), θ) = 0.

This proposition is standard and well-known from the monopolistic screening literature.

Although the high valuation agent consumes an efficient amount of both goods at the

optimal contract under centralized contracting, the low valuation agent’s consumption is

distorted downwards under asymmetric information. Such a distortion reduces indeed the

cost of the incentive constraint of a high valuation agent willing to mimic a low valuation

one.
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3 Finding Pure-Strategy Equilibria

We now turn our attention to the analysis of the non-cooperative subgame perfect equi-

libria of the common agency contracting game.

This game unfolds as follows. First, the principals Pi (for i = 1, 2) non-cooperatively

offer their direct revelation mechanisms {ti(θ̂i), qi(θ̂i)}θ̂i∈Θ; second, the agent accepts or

refuses both offers; and third, the agent chooses within each menu by sending a private

report θ̂i to principal Pi.

We begin by defining a non-random pure-strategy equilibrium for our specific common

agency setting, which requires no restriction on the communication space between each

principal and the agent.9 Unless stated otherwise, we will use the term equilibrium to

denote this specific notion.

Definition 1 : In a non-random, pure-strategy equilibrium of the common agency game

with communication spaces Mi (i = 1, 2), each principal Pi offers a deterministic contract,

{ti(mi), qi(mi)}mi∈Mi
, and the agent does not randomize among the messages he sends to

the principals.

Before proceeding to a systematic investigation of the pure-strategy equilibria of the

common agency game with direct communication (where Θ = Mi), we propose an algo-

rithm which helps to characterize the best-response of a principal to any pure-strategy

mechanism offered by his rival.10

For any mechanism {t2(m2), q2(m2)}m2∈M2 offered by P2, there is no loss of generality

in looking for P1’s best-response within the class of direct revelation mechanisms of the

form {t1(θ̂1), q1(θ̂1)}θ̂1∈Θ. Any payoff that P1 can achieve when he offers a mechanism with

some general communication space M1 can be also achieved with such a direct revelation

mechanism. Here, we simply apply the Revelation Principle for a given non-random

mechanism offered by P2.
11

However, different mechanisms offered by P2 may affect differently the agent’s incen-

tives to misreport to P1. To capture this effect mathematically, we define the agent’s

indirect utility function vis à vis P1 as:

Û1(q1, θ) ≡ max
{m2∈M2}

u(q1, q2(m2), θ)− t2(m2).

9In Section 6 we explore indirect mechanisms, for example.
10See also Martimort and Stole (2000) for a general use of this algorithm in the case of a continuum of

types.
11The argument above relies on the fact that we focus on pure-strategy equilibria between the two

principals with the agent not mixing among messages in the mechanisms he receives from either principal.
Allowing for mixed strategies alters the analysis; see footnote ?? below.
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The indirect utility function gives the value of the agent’s utility whatever his own type

and his consumption of good 1 once he has communicated an optimal message to P2 given

this type and this quantity. Moreover, for a given indirect utility function, P1’s problem is

identical to the standard principal-agent contracting problem under monopolistic screen-

ing. P2’s contract can be ignored except for its effect on this indirect utility function.

The allocation {(t1(θ̄), q1(θ̄)); (t1(θ), q1(θ))} chosen, at a best response, by P1 is solution

to the following program:

max
{(t̄1,q̄1),(t1,q

1
)}

ν(t̄1 − cq̄1) + (1− ν)(t1 − cq
1
)

subject to

Û1(q̄1, θ̄)− t̄1 ≥ Û1(q
1
, θ̄)− t1 (1)

Û1(q
1
, θ)− t1 ≥ Û1(q̄1, θ)− t̄1 (2)

Û1(q̄1, θ̄)− t̄1 ≥ 0 (3)

Û1(q
1
, θ)− t1 ≥ 0, (4)

where Û1(·) is the indirect utility function corresponding to the contract offered by P2.

The first two constraints are the incentive compatibility constraints of the high and

the low valuation agents, respectively; the last two constraints are their participation

constraints. We will use this program throughout when computing the levels of outputs

of the pure-strategy equilibria for the different communication games we consider in this

paper.12 We already note that different message spaces M2 correspond to possibly different

indirect functions Û1(q1, θ) and therefore to possibly different best-responses by P1.
13

For further references, it is useful to express (1) in the case of direct mechanisms. In a

pure-strategy equilibrium, the agent chooses to tell the truth to both principals. For the

high valuation agent, this means that we must have Û1(q̄1, θ̄)−t̄1 = u(q̄1, q̄2, θ̄)−t̄1−t̄2. The

incentive compatibility constraint (1) may thus take different expressions depending on

P2’s offer and the optimal reports that the high valuation agent makes to P2 conditionally

on lying to P1. Two possible variations of this constraint are:

−t̄1 − t̄2 + u(q̄1, q̄2, θ̄) ≥ −t1 − t2 + u(q
1
, q

2
, θ̄) (5)

12 Note that this way of proceeding is not as straightforward in the case of a mixed-strategy equilibria.
In a such case, if P2 randomizes over a distribution of mechanisms, the agent’s indirect utility function
vis à vis P1 becomes a random function. In a mixed-strategy equilibrium, P1 must take into account this
randomness at the time of offering his own contract program, in particular including randomness into
the constraint set. In the case of random pure-strategy equilibria, our method of determining optimal
contracts is relatively unchanged: the agent’s indirect utility function will not be a random function as the
agent chooses a contract allocation before any randomness is resolved and so P1’s program is unchanged.

13For ease of notation, we will leave throughout the dependence of Û1 on P2’s contract implicit.
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when Û1(q
1
, θ̄)− t1 = u(q

1
, q

2
, θ̄)− t1 − t2, (i.e., the agent lies to both principals) and

−t̄1 + u(q̄1, q̄2, θ̄) ≥ −t1 + u(q
1
, q̄2, θ̄) (6)

when Û1(q
1
, θ̄)− t1 = u(q

1
, q̄2, θ̄)− t1 − t̄2 (i.e., the agent lies to only P1).

Finally, still in equilibrium, Û1(q
1
, θ) − t1 = u(q

1
, q

2
, θ) − t1 − t2. Hence, the low-

valuation agent’s participation constraint (4) becomes

−t1 − t2 + u(q
1
, q

2
, θ) ≥ 0. (7)

4 Characterization of Pure-Strategy Direct Equilib-

ria with Complements

We now turn to the analysis of the specific case where q1 and q2 are complements in

the agent’s utility function, i.e., −1 < λ < 0. First, we characterize the set of direct

communication equilibria of the common agency game.

Proposition 2 : Assume that q1 and q2 are complements (λ ∈ (−1, 0]), the cooperative

outcome can be implemented as a non-cooperative pure-strategy equilibrium of the direct

communication common agency game. There exists a set of equilibria which entail a

symmetric output allocation given by the collusive second-best levels

qC(θ), ∀θ ∈ Θ.

In these equilibria, the principals receive transfers such that (5) and (7) are both binding.

The following constraints are also satisfied for the transfers offered by P1:

u(qC(θ), qC(θ̄), θ̄)−u(qC(θ), qC(θ), θ̄) < t1(θ̄)−t1(θ) < u(qC(θ̄), qC(θ̄), θ̄)−u(qC(θ), qC(θ̄), θ̄)

and a similar inequality holds for the transfers offered by P2. The high and the low

valuation agent both get the same information rent as in the cooperative outcome.14

In short, even under competitive contracting, the cooperative outcome can still be

implemented. This result can be intuitively understood by returning to the definition

of the indirect utility function Û1(q1, θ). When a high valuation agent chooses a high

consumption from P1 he also has an incentive to consume a large quantity from P2 since

the two goods are complements. We thus have Û1(q̄1, θ̄) = −t̄2 + u(q̄1, q̄2, θ̄). Similarly,

14Note that there will typically be a continuum of possible different divisions of transfers for the lowest
type among the principals. We focus on those divisions which are such that each principal gets a positive
expected payoff.
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when a high valuation agent chooses a low consumption from P1, he also has an incentive

to consume less from P2. This case arises when t̄2 − t2 is sufficiently large so that −t̄2 +

u(q
1
, q̄2, θ̄) < −t2 + u(q

1
, q

2
, θ̄). P2 charges then a high price to the high valuation agent

so that consuming a low quantity q
1

makes him eager to also claim he has a low valuation

to P2. We have then Û1(q
1
, θ̄) = −t2 + u(q

1
, q

2
, θ̄). Writing the incentive compatibility

constraint (1) for this high valuation agent with the indirect utility function yields (5).

This global incentive compatibility constraint is exactly the same as if the principals were

cooperating and therefore, no distortion is entailed by their non-cooperative behavior.

Of course, if only this global incentive constraint is relevant, the sum of the transfers

obtained by both principals can be determined just as under centralized contracting with

a merged principal. However, the flexibility in designing the individual transfers received

by each principal can be used to insure that, following a deviation, each principal realizes

that only the global incentive constraint (5) is relevant. The private incentives that each

principal faces when he wants to induce information revelation by the high valuation agent

are then aligned with the incentives of the merged principal.

There still exists a whole array of possible transfer differentials t̄i− ti which are consis-

tent with such an equilibrium (see Figure 1). In all those equilibria, the same symmetric

output allocation is realized.

The non-cooperative implementation of the cooperative outcome is striking and con-

trasts with the continuum-of-types analysis developed in Stole (1991) and Martimort

(1992,1996). There, it was shown that the non-cooperative behavior between the princi-

pals leads always to more inefficiencies than the cooperative outcome. The key difference

is that those papers assume that the agent’s valuation is continuously distributed on an

interval. With discrete types, there is always some leeway in specifying transfer differen-

tials t̄i − ti so that the cooperative outcome can still be implemented with competitive

contracting. This leeway disappears with a continuum of types since the slope of the

nonlinear prices that each principal offers in equilibrium is then exactly pinned down by

the agent’s incentive compatibility constraint.

We now move to the analysis of inefficient equilibria.

Proposition 3 : Assume that q1 and q2 are complements and that λ2 ≤ 1−ν. Then there

exists two sets S1 and S2 of inefficient pure-strategy asymmetric equilibria of the direct

communication common agency game. Set 1 can be indexed by the equilibrium output

qA
1 (θ) ∈ [q̃1(θ), q

C
1 (θ)] that P1 gives to an inefficient agent with

q̃1(θ) ≡
θ − c

1 + λ
− ν(1− ν − λ2 − λ)

(1− ν)(1− ν − λ2)(1 + λ)
∆θ,

qA
2 (θ) = θ − λq1(θ)−

ν

1− ν
∆θ,
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qA
i (θ̄) = qFB(θ̄) ∀i ∈ {1, 2}.

In these asymmetric equilibria, the principals receive transfers such that (5), (6) and (7)

are all binding. The following constraint is also satisfied by P2’s transfers:

u(qA
1 (θ), qA

2 (θ̄), θ̄)−u(qA
1 (θ), qA

2 (θ), θ̄) = tA2 (θ̄)−tA2 (θ) < u(qA
1 (θ̄), qA

2 (θ̄), θ̄)−u(qA
1 (θ̄), qA

2 (θ), θ̄).

The high valuation agent gets a positive information rent which is strictly smaller than at

the cooperative outcome:

UA(θ̄) = −tA1 (θ̄)− tA2 (θ̄) + u(qA
1 (θ̄), qA

2 (θ̄), θ̄) = ∆θ(qA
1 (θ) + qA

2 (θ)) < UC(θ̄).

The low valuation agent gets zero information rent:

UA(θ) = −tA1 (θ)− tA2 (θ) + u(qA
1 (θ), qA

2 (θ), θ) = 0.

Set 2 of asymmetric equilibria is obtained by permuting the roles of principals 1 and 2.

In the case where t̄2 − t2 is sufficiently small, P2 charges a low marginal price to the

high valuation agent so that even if he consumes a low quantity q
1

he still claims he has

a high valuation to P2. We have then Û(q
1
, θ̄) = −t̄2 + u(q

1
, q̄2, θ̄). Writing the incentive

compatibility constraint (1) for this high valuation agent with the indirect utility function

yields therefore (6). This local incentive compatibility constraint is exactly the same as if

P1 was taking into account that P2 has independently already obtained information on

the agent. Everything happens therefore as if P1 had now to obtain information from a

coalition made of P2 and the agent.

We have represented on Figure 2, the values of the transfers in these asymmetric

equilibria.

Since, none of the low valuation agent’s incentive constraints is binding in equilibrium,

Û1(q
1
, θ) = −t2+u(q

1
, q

2
, θ) and (4) translates to (7), with an equality at the equilibrium.

From P1’s point of view, everything happens thus as if inducing information revelation

from the high valuation type requires leaving a payoff−t̄1+u(q̄1, q̄2, θ̄) to the high valuation

agent which, using (6) and (7), is at least equal to u(q
1
, q̄2, θ̄)− u(q

1
, q

2
, θ) + t2. With our

specification of the agent’s utility function,

u(q
1
, q̄2, θ̄)− u(q

1
, q

2
, θ) = q

1
(∆θ − λ∆q2) (8)

where ∆q2 = q̄2 − q
2

> 0. Had the principals instead cooperated in their contract offers,

inducing information revelation from the high valuation type would require leaving a

payoff −t̄1 + u(q̄1, q̄2, θ̄) to the high valuation agent which, using (5) and (7) is least

u(q
1
, q

2
, θ̄)− u(q

1
, q

2
, θ) + t2 − t̄2. With our specification of the agent’s utility function,

u(q
1
, q

2
, θ̄)− u(q

1
, q

2
, θ) = ∆θ(q

1
+ q

2
). (9)
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Comparing (8) and (9), it appears clearly that reducing the output q
1

offered to a low

valuation agent is more valuable in the first case than in the second since ∆θ−λ∆q2 > ∆θ

when P2 offers a monotonic contract such that ∆q2 > 0.15 As a result, P1 further reduces

the consumption of a low valuation agent below what he would do at the cooperative

contracts. By complementarity, both consumptions of the low valuation agent are in

equilibrium below the cooperative outcome.

There exists in fact a continuum of such asymmetric equilibrium quantities coming

from the fact that P1’s objective function has a kink at q1(θ). Indeed, in such an equilib-

rium, the high valuation agent is indifferent between revealing or lying about his type to

P2 when he chooses to claim he has a low valuation to P1. Starting from this equilibrium

output, q1(θ), which is lower than the cooperative outcome, qC(θ), P1 does not want to

induce a further downward distortion in q
1
. For these deviations, the agent prefers indeed

to claim he has also a low valuation to P2. The incentive compatibility constraint that is

satisfied is the global one and q1(θ) remains the best of such deviations since P1’s objective

function is concave in q
1

over the interval [0, qC(θ)]. It is also clear that P1 does not want

to distort q
1

further upward. For these deviations, the agent prefers to claim he has also

a high valuation to P2. The incentive compatibility constraint that is now satisfied is the

local one and a concavity argument as above shows that q1(θ) itself is the best of such

upward deviations.

Finally, it is interesting to note that asymmetric equilibria are characterized by down-

wards distortions of the productions which are comparable to those arising for all sym-

metric equilibria obtained in the case of a continuum of types.16 The economic reason

underlying those distortions is the same in both cases. Given the cooperative optimal

contract which could be offered by a merged principal, the way that those transfers are

split between the two principals may be such that a principal may have an individual

incentive to deviate and offer an alternative contract which induces revelation by the high

valuation agent of his type to this principal at a smaller cost from his own point of view.

This is obtained by reducing further the production offered to a low valuation agent and

decreasing the payment made by this agent. By doing so, the deviating principal exerts a

negative externality on the non-deviating one who, by complementarity, must also reduce

the output offered to a low valuation agent. In equilibrium, this negative externality

finally leads to an overall excessive reduction in the volume of trade. The only difference

between the discrete and the continuum cases is that, in the latter, both principals have

an incentive to deviate from the cooperative contracts and this leads to symmetric equi-

libria where both principals distort downwards the productions they offer to the agent.

In the discrete case, only one of the principal has an incentive to deviate away from the

15We show in the Appendix that, in equilibrium, this monotonicity is guaranteed.
16See Sole (1991) and Martimort (1992).
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cooperative outcome and this leads to asymmetric equilibria.

5 Non-Existence of a Pure-Strategy Direct Equilib-

rium with Substitutes

With substitutes, the picture is strikingly different.

Proposition 4 : When q1 and q2 are substitutes (i.e., λ ∈ (0, 1]), there does not exist a

pure-strategy equilibrium in the direct-communication, common agency game.

The intuition for this result goes as follows: First, assume that P1 offers a separating

contract. As long as this contract does not reverse the Spence-Mirrlees property of the

indirect utility of the agent vis à vis P2, the latter principal has an incentive to raise the

output q̄2 he offers to a high valuation agent to make him consume little of good 1 by

claiming to P1 that he has a low valuation. P2 makes some profit at the expense of P1 by

proposing such an upward deviation to the agent. Of course, P1 is willing to do the same

and there cannot be a pure-strategy equilibrium with separating contracts. Second, there

cannot be an equilibrium with both principals inducing full pooling. Indeed, suppose that

P2 offers a pooling contract, then P1 would takes this offer as given and would offer himself

a separating allocation as we show in the Appendix. With substitutes, each principal is

thus willing to “corner” the other one and there does not exist an equilibrium in which

the principals use pure-strategies.17

Given this rather disappointing result, on may want to either extend the strategy

space available the principals or to relax the equilibrium concept to insure existence.

6 Existence with Indirect Mechanisms: An Example

The non-existence result obtained in the case of direct mechanisms contrasts sharply with

what can sometimes be done when message spaces with each principal are conveniently

extended. In particular, existence of a pure-strategy equilibrium may no longer be a

problem. To show this result, we provide an instructive counter-example. Consider the

case where the two suppliers are selling perfectly substitutes.18 We begin by describing
17Myerson (1982) has shown that a truthful equilibrium in contracts may not exist in the case of

competing hierarchies by using an abstract example which is closely related to our model.
18Importantly, note that the agent is forced to consume both goods in our context. Hence, our focus is

only on how the competition between the two suppliers shifts the cost-price margin towards zero. We do
not allow the agent to refuse to play one of the given mechanisms. This assumption may be more relevant
in a regulatory context than in a competing sellers setting but we choose to keep this interpretation to
be coherent with our earlier exposition.
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an equilibrium of an indirect communication common agency game.

Proposition 5 : When q1 and q2 are perfect substitutes (i.e., λ = 1), there exists a

pure-strategy equilibrium of the indirect communication common agency game in which

principals compete through nonlinear prices, {ti(qi)} defined over the whole real line, such

that:

• each principal offers a two-part tariff:19

ti(qi) = cqi + ai, ∀qi

with a1 + a2 = (θ−c)2

2
;

• the agent always chooses the first-best total consumption and if he splits equally his

consumption between the two principals:20

qS(θ) = qFB(θ) =
θ − c

2
, ∀θ ∈ Θ;

• only the high valuation agent gets a positive information rent:

US(θ̄) = 2∆θqFB(θ),

US(θ) = 0.

In this equilibrium, the profit of each principal is independent on the output he is

selling and represents only a fraction of the first best surplus obtained by the low-valuation

agent. With perfect substitutes, the principals are making zero profit at the margin. The

ability of the agent to choose any possible consumption bundles within the two schedules

offered by the principals helps him to play one principal against the other to erode their

individual market power. As a result, the overall surplus is the same as in the first-best.

Only the distribution of this surplus between the principals and the agent differs. Indeed,

because of our assumption of intrinsic common agency, the high valuation agent can only

get a fraction of this overall surplus and the low valuation type always gets zero.

With direct mechanisms, the indirect utility function of the agent no longer exhibits

smooth behavior. As we show in the proof of Proposition 4, a small increase in the output

offered through this direct mechanism by P1 to the high valuation agent may trigger a

19One word of caution is in order here. We do not restrict the principals to those two-part tariffs in
the first place but obtain these at the equilibrium within the larger class of nonlinear prices.

20The agent is indifferent between whom he consumes from and many other splitting of consumptions
are equilibrium outcomes. We take this particular splitting to keep the same formula as in the case of
differentiated goods.
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discontinuous change in the report made to P2 by this agent. Indeed, the high valuation

agent reduces his consumption of good 2 by a large amount. In turn, this reduction

increases P1’s profit by a strictly positive amount. This discontinuity in each principal’s

payoff when they consider increasing the output they offer to the high valuation type

leads to the nonexistence of the pure-strategy equilibrium.

Instead, in the present example of an indirect mechanism, there are now enough out-

of-equilibrium messages contained in P2’s nonlinear price so that any small change in the

quantity consumed from P1 also triggers a small change in the consumption made from

P2. The agent’s indirect utility function becomes smooth and this smoothness ensures

the existence of the pure-strategy equilibrium.

It is striking to note that this pure-strategy equilibrium with extended communication

with both principals looks very much like a mixed-strategy equilibrium. For all transfer-

output pairs offered by a principal in this equilibrium, the profit made on both types is

the same.

7 Quasi-Equilibrium

Another way of obtaining existence is to relax the equilibrium concept. The non-existence

stressed above comes from the fact that, in a direct communication game with substitutes,

each principal wants the agent to lie to the other. We can avoid this problem by imposing

a priori that the set of incentive compatible pairs of contracts be collectively agreed by

the two principals. Then, each principal can only deviate within this set of collectively

incentive-compatible contracts.

Definition 2 : A pair of deterministic direct mechanisms, {ti(θ̂i), qi(θ̂i)}θ̂i∈Θi
for i ∈

{1, 2} is collectively incentive-compatible if and only if the following incentive compatibility

constraints are always satisfied:

−t1(θ)−t2(θ)+u(q1(θ), q2(θ), θ) ≥ −t1(θ̂1)−t2(θ̂2)+u(q1(θ̂1), q2(θ̂2), θ) ∀(θ, θ̂1, θ̂2) ∈ Θ3.

(10)

The difference with a purely non-cooperative approach is that each principal must

offer contracts which ensures that the agent will always tell the truth not to only to him

but also to the other principal. Note that this set of collectively incentive compatible

contracts is strictly smaller than the set of contracts which would be incentive compatible

for a merged principal since, in this latter case, the agent is forced to send the same

reports to both principals and necessarily θ̂1 = θ̂2 on the right-hand-side of (10).

14



Definition 3 : A pure-strategy quasi-equilibrium of the common agency game is pair of

deterministic direct mechanisms, {ti(θ̂i), qi(θ̂i)}θ̂i∈Θi
for i ∈ {1, 2} which is collectively

incentive-compatible, such that each principal Pi is on a best response to the contract

offered by the other.

Having defined a quasi-equilibrium being now defined, we can show its existence and

characterize the corresponding allocation in the case of substitutes.

Proposition 6 : When q1 and q2 are substitutes, there exists a unique pure-strategy

quasi-equilibrium of the direct communication game with monotonic output schedules. It

such that

qQ(θ̄) =
θ̄ − c

1 + λ

and

qQ(θ) =
θ − c

1 + λ
−

(
ν

1− ν + λ

)
∆θ

1 + λ
.

In this quasi-equilibrium, the only binding incentive constraints are the local incentive

compatibility constraints for each principal:

u(qQ(θ), qQ(θ̄), θ̄)− u(qQ(θ), qQ(θ), θ̄) = tQ(θ̄)− tQ(θ).

In a quasi-equilibrium, everything happens, from P1’s point of view, as if the inducing

information revelation from the high valuation type requires to leave a payoff −t̄1 +

u(q̄1, q̄2, θ̄) to the high valuation agent which, using (6) and (7), is at least equal to

u(q
1
, q̄2, θ̄)− u(q

1
, q

2
, θ) + t2. With our specification of the agent’s utility function,

u(q
1
, q̄2, θ̄)− u(q

1
, q

2
, θ) = q

1
(∆θ − λ∆q2) (11)

where ∆q2 = q̄2−q
2

> 0 and now λ > 0. Reducing the output q
1
offered to a low valuation

agent is now less valuable than under cooperation since ∆θ − λ∆q2 < ∆θ when P2 offers

a monotonic contract such that ∆q2 > 0. As a result, P1 increases the consumption of

a low valuation agent above what he would do at the cooperative contracts. By com-

plementarity, both consumptions of the low valuation agent are in equilibrium below the

cooperative outcome. With substitutes, each principal exerts a positive externality on the

other and in a quasi-equilibrium, the volume of trade is greater than under cooperation.

It should be stressed that this kind of distortions are exactly the same as in the case

of a continuum of types where existence is guaranteed.21

21See Stole (1991) and Martimort (1992).

15



The motivation for restricting the set of feasible deviations to the set of collectively

incentive compatible contracts comes from the fact that we want to limit the the possi-

bility that either of the principals induces the agent to lie to the other. In a sense, this

restriction is a minimal one. If an equilibrium allocation with direct truthful mechanisms

exists, it must be such that the incentive constraints (10) are all satisfied by the equilib-

rium contracts. Otherwise, we would have a contradiction with the agent’s equilibrium

behavior. Hence, if a pure strategy equilibrium in the direct communication game exists

when each principal is allowed to deviate freely, the same equilibrium allocation should

also be obtained when each principal is restricted to deviate within a smaller set, the

set of collectively incentive compatible contracts.22 As a direct consequence of this latter

remark, we immediately get the following.

Proposition 7 : When q1 and q2 are complements, the set of pure-strategy quasi-equilibria

of the direct communication game is the same as the set of subgame perfect equilibria.
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Appendix

Proof of Proposition 1: There is no loss of generality in applying the Revela-

tion Principle as there is effectively a single “merged” principal who offers a contract

{(t̄, q̄1, q̄2), (t, q1
, q

2
)} which maximizes the sum of expected profit subject to incentive

and participation constraints which are respectively:

−t + u(q
1
, q

2
, θ) ≥ −t̄ + u(q̄1, q̄2, θ), (12)

−t̄ + u(q̄1, q̄2, θ̄) ≥ −t + u(q
1
, q

2
, θ̄), (13)

−t + u(q
1
, q

2
, θ) ≥ 0, (14)

−t̄ + u(q̄1, q̄2, θ̄) ≥ 0. (15)

As usual in two-type adverse selection models, (13) and (14) are the only relevant con-

straints at the optimum. The optimal relaxed cooperative contract is then solution of the

following program

max
{(t̄,q̄1,q̄2);(t,q

1
,q

2
)}

(1− ν)(−c(q
1
+ q

2
) + t) + ν(−c(q̄1 + q̄2) + t̄)

subject to (13) and (14). Solving this program and taking into account that the solution of

this optimization is symmetric, we find the results in Proposition 1. The assumption that

∆θ is sufficiently small (see footnote 8), specifically that ν∆θ ≤ (1−ν)(θ− c), guarantees

that qC
i (θ) ≥ 0. It is easy to check that the condition qC

i (θ) > qC
i (θ) and the assumption

uθqi
= 1 > 0 for i = 1, 2, ensures that the omitted constraints (12) and (15) are slack at

the optimum. The expressions of the transfers and information rents immediately follow.

Proof of Propositions 2 and 3: Suppose that a pure-strategy equilibrium exists and

for each principal Pi, let (q̄i, t̄i) and (q
i
, ti) denote the corresponding outputs and equilib-

rium transfers for respectively the high and the low valuation agent. The proof proceeds

in five steps.

Step 1: Monotonic Allocations in Equilibrium
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Lemma 1 : All pure-strategy equilibria of any communication game with complements

implement monotonic allocations of outputs: q̄i ≥ q
i
for i = 1, 2.

Proof: In any pure-strategy equilibrium, the following incentive compatibility constraints

must be satisfied: For the low valuation agent,

−t1 − t2 + u(q
1
, q

2
, θ) ≥ −t̄1 − t̄2 + u(q̄1, q̄2, θ), (16)

−t1 + u(q
1
, q

2
, θ) ≥ −t̄1 + u(q̄1, q2

, θ), (17)

−t2 + u(q
1
, q

2
, θ) ≥ −t̄2 + u(q

1
, q̄2, θ), (18)

and for the high valuation agent

−t̄1 − t̄2 + u(q̄1, q̄2, θ̄) ≥ −t1 − t2 + u(q
1
, q

2
, θ̄), (19)

−t̄1 + u(q̄1, q̄2, θ̄) ≥ −t1 + u(q
1
, q̄2, θ̄), (20)

−t̄2 + u(q̄1, q̄2, θ̄) ≥ −t2 + u(q̄1, q2
, θ̄). (21)

Summing (16) and (19) implies

∆θ(∆q1 + ∆q2) ≥ 0; (22)

summing (17) and (20) implies

∆q1(∆θ − λ∆q2) ≥ 0; (23)

summing (18) and (21) implies

∆q2(∆θ − λ∆q1) ≥ 0, (24)

where we denote ∆qi ≡ q̄i− q
i
. When λ < 0, it is easy to check that only allocations such

that ∆qi ≥ 0 satisfy (22), (23) and (24). ||

This first Lemma is important since it now allows us to restrict the analysis to pure-

strategy equilibria with monotonically increasing allocations.

Step 2: Monotonicity of agent’s best response.

• Denote by q∗1(θ) the output such that the agent with type θ is indifferent between telling

the truth or not to P2 when he consumes a quantity q∗1(θ) of good 1:

−t̄2 + u(q∗1(θ), q̄2, θ) ≡ −t2 + u(q∗1(θ), q2
, θ).

• Define θ̂∗2(q1, θ) =≡ arg maxθ̂2∈{θ,θ̄}−t2(θ̂2) + u(q1, q2(θ̂2), θ).
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Lemma 2 Assume that P2 offers a monotonic contract such that q̄2 ≥ q
2
, then θ̂∗2(q1, θ)

is increasing in q1 and in θ, and q∗i (θ) is decreasing in θ.

Proof: By definition we have: −t2(θ̂2)+u(q1, q2(θ̂2), θ) ≤ −t2(θ̂
∗
2(q1, θ))+u(q1, q2(θ̂

∗
2(q1, θ)), θ)

for any θ̂2 ≤ θ̂∗2(q1, θ). But, since λ < 0 and q2(θ̂2) ≤ q2(θ̂
∗
2(q1, θ)), we have for q′1 > q1

−t2(θ̂2) + u(q′1, q2(θ̂2), θ) ≤ −t2(θ̂
∗
2(q1, θ)) + u(q′1, q2(θ̂

∗
2(q1, θ)), θ)

which ensures that θ̂∗2(q
′
1, θ) ≥ θ̂∗2(q1, θ). Reasoning similarly holding q1 constant, increas-

ing θ and using u1θ > 0 yields that θ̂∗2(·) is increasing in θ. Finally, totally differentiating

the defining expression for q∗1(θ) with respect to θ and q1 yields
dq∗1(θ)

dθ
= θ

λ
< 0. ||

Step 3: Monotonicity of P1’s Best-Response Contract: We now prove that P1’s

best-response to a monotonically increasing contract offered by P2 is itself monotonically

increasing:

Lemma 3 : A mechanism offered by P1 which satisfies incentive constraints (1) and (2)

is monotonic, i.e., it satisfies q̄1 ≥ q
1
.

Proof: By adding the incentive constraints, we get ∆θÛ
1(q̄1, ·) ≥ ∆θÛ(q

1
, ·) where ∆θ is

the difference operator over θ (e.g., ∆θÛ(q, θ) ≡ Û1(q, θ̄)− Û(q, θ)). Thus, it is sufficient

to show that ∆θÛ
1(q1, θ) is continuous and increasing in q1. Using our definition of q∗1(θ),

there are three possible regions of q1 to consider. For q1 < q∗(θ̄), we have θ̂∗2(q1, θ) =

θ̂∗2(q1, θ̄) = θ and therefore ∆θÛ(q1, θ) = [q1 + q2(θ)]∆θ. For q1 ∈ (q∗(θ̄), q∗1(θ)), we have

θ̂∗2(q1, θ) = θ and θ̂∗2(q1, θ̄) = θ̄, and therefore ∆θÛ(q1, θ) = q1[∆θ− λ∆θq2(θ)]. Finally, for

q1 > q∗(θ), we have θ̂∗2(q1, θ) = θ̂∗2(q1, θ̄) = θ̄ and therefore ∆θÛ(q1, θ) = [q1 + q2(θ̄)]∆θ.

Within all three regions, ∆θÛ
1(q, θ) is continuous and increasing in q. Straightforward

algebra reveals that ∆θÛ
1(q, θ) is continuous at q∗1(θ) and q∗1(θ̄). ||

Step 4: Output Best-Responses: Lemma 3 implies that (2) is satisfied whenever

(1) is binding at the optimum of P1’s program. To reduce the agent’s rent it must also

be that (4) is binding. It remains to make precise the expressions of those constraints

depending on P1’s offer.

• For a consumption q
1
≤ q∗1(θ̄), the incentive constraint (5) is binding and, using Lemma

2, θ̂∗2(q1
, θ) = θ. After having eliminated transfers, we can rewrite P1’s program as (up to

some constant corresponding to P2’s transfer):

max
{q̄1,q

1
≤q∗1(θ̄)}

ν(−cq̄1 + u(q̄1, q̄2, θ̄))
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+(1− ν)

(
−cq

1
+ u(q

1
, q

2
, θ) +

ν

1− ν
(u(q

1
, q

2
, θ)− u(q

1
, q

2
, θ̄))

)
.

This yields the following best-responses: For the consumption of the high valuation agent

q̄1 = θ̄ − c− λq̄2,

and for the consumption of the low valuation agent

q
1

= max
{

qG

1
, q∗1(θ̄)

}
,

where qG
1
≡ θ − c− λq

2
− ν

1−ν
∆θ.

• For a consumption q
1
≥ q∗1(θ̄), the incentive constraint (6) is relevant in P1’s prob-

lem. After some manipulations, his objective function becomes (up to some constant

corresponding to P2’s transfers):

max
{q̄1,q

1
≥q∗1(θ̄)}

ν(−cq̄1 + u(q̄1, q̄2, θ̄))

+(1− ν)

(
−cq

1
+ u(q

1
, q

2
, θ) +

ν

1− ν
(u(q

1
, q

2
, θ)− u(q

1
, q̄2, θ))

)
.

After optimization of P1’s program, we obtain the following best responses:

q̄1 = θ̄ − c− λq̄2,

and

q
1

= min
{

qL

1
, q∗1(θ̄)

}
,

where qL
1
≡ θ − c− λq

2
− ν

1−ν
(∆θ − λ∆q2).

Step 5: Equilibrium Conditions:

• Consider now a monotonic contract offered by P2. Monotonicity implies that qL
1
≤

q∗1(θ̄) ≤ qG
1
, and hence P1’s objective function attains its maximum at a kink at q∗1(θ̄).

Moreover, P1’s optimal contract satisfies −t̄1 + u(q̄1, q̄2, θ̄) = −t1 + u(q
1
, q̄2, θ̄) because

the local incentive constraint is binding, and thus we have Û2(q
2
, θ̄) = −t1 + u(q

1
, q

2
, θ̄)

for all q
2
≤ q̄2, where Û2 is the indirect utility function of the agent vis à vis P2. As

such, (5) is the relevant incentive compatibility constraint for P2 when determining his

own output best-responses. These best-responses are then given by q̄2 = θ̄− c− λq̄1, and

q
2

= qG
2
≡ θ − c− λq

1
− ν

1−ν
∆θ.

• In equilibrium, it is immediate to observe that we must always have q̄1 = q̄2 = qFB(θ̄).

• An asymmetric equilibrium is obtained when q
1

= q∗1(θ̄) and q
2

= qG
2
. The largest and

smallest implementable values of q
1

are determined as follows. The highest sustainable

value of q
1

occurs when q
i
= qG

i
for i = 1, 2 which is precisely the cooperative quantities,

20



qC
i (θ). The lowest sustainable value is found by setting q

1
= qL

1
and q

2
= qG

2
and checking

that the resulting output schedules are monotonic. At such a point, one finds q
1

= q̃1(θ) ≡
qFB(θ)− ν(1−ν−λ2−λ)

(1−ν)(1−ν−λ2)(1+λ)
∆θ and q

2
= qFB(θ)− ν

(1−ν−λ2)(1+λ)
∆θ. Monotonicity is satisfied

whenever qFB
1 (θ̄)− q̃1(θ) ≥ 0, which is equivalent to (1−ν−λ)

(1−ν)(1−ν−λ2)
∆θ ≥ 0, or more simply

1− ν ≥ λ2. Finally, our assumption on ∆θ small guarantees that q
1

> q
2
≥ 0.

• A symmetric equilibrium is obtained when qi(θ) < q∗i (θ̄) for i = 1, 2. Then, it is a best

response for each principal to consider (5) as the incentive constraint binding in his own

program. The equilibrium consumptions for a low valuation agent are the same as under

cooperation between the principals.

• Lastly, we need to check that q
i
≥ 0 in the posited equilibria outcomes. The assumption

that ∆θ is sufficiently small (see footnote 8), specifically that ν∆θ ≤ (1− ν − λ2)(θ − c),

guarantees that, in equilibrium, q
i
≥ 0.

Proof of Proposition 4: The proposition proceeds in three steps.

Step 1: Nonexistence of a Separating Pure-Strategy Equilibrium: Con-

sider first the case where this equilibrium is fully separating. In such an equilibrium,

it must be that the following holds: Û1(q̄1, θ̄) = u(q̄1, q̄2, θ̄) − t̄2. Since q
1

< q̄1, we must

also have Û1(q
1
, θ̄) = u(q

1
, q̄2, θ̄) − t̄2. From the optimality of P1’s offer, (1) must be

binding and therefore: u(q̄1, q̄2, θ̄) − t̄1 = u(q
1
, q̄2, θ̄) − t1. Inserting this expression into

the principal’s objective function and optimizing with respect to q̄1 yields the first-best

consumption for the efficient agent when this maximum is given by the following first-

order condition: q̄0
1 = θ̄ − c − λq̄2, where q0

1 represents the optimum consistent with

the equilibrium requirement that the high-type always consumes {q̄1, q̄2}. In equilib-

rium, however, the optimality of P2’s offer requires also that (1) is binding and therefore:

u(q̄0
1, q̄2, θ̄) − t̄2 = u(q̄0

1, q2
, θ̄) − t2. Hence, any small upward deviation by P1 such that

q̄′1 > q̄1 entails Û1(q̄1, θ̄) = u(q̄1, q2
, θ̄)−t2. The best of such deviations has still (1) binding

and therefore: u(q̄1, q2
, θ̄) − t2 − t̄1 = u(q

1
, q̄2, θ̄) − t̄2 − t1. Inserting this expression into

the principal’s objective function and optimizing with respect to q̄1 yields a contradiction.

Indeed, P1’s objective function is continuous in q̄1 and differentiable on the right-hand-

side of q̄0
1. It is easy to check that its derivative is proportional to θ̄ − c− q̄1 − λq

2
which

is greater than 0 for q̄0
1 when P2 offers a separating contract. Hence, a small upward

deviation in q̄1 raises his profit. This gives a contradiction with the fact that q̄0
1 is at a

global optimum of P1’s profit and that, in equilibrium, the high type consumes the high

allocation from each principal.

Step 2: Nonexistence of a Pooling Pure-Strategy Equilibrium: This is im-

mediate: If P2 offers a pooling contract, P1 deviates and screens across the agent’s types.
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Step 3: Nonexistence of a Hybrid Pure-Strategy Equilibrium. Suppose that

P2 offers a pooling contract, say (t2, q2), and P1 offers a separating contract. In equilib-

rium, the optimality of P1’s offer requires that (1) is binding and therefore: u(q̄1, q2, θ̄)−
t̄1 = u(q

1
, q2, θ̄)− t1. It also requires that (4) is binding, i.e.: u(q

1
, q2, θ)− t1 − t2 = 0. We

consider now the incentives of P2 to offer such a pooling contract. First of all, P2 must

prefer this contract to a deviation in which he offers (t2, q2) = (t2, q2
) and (t̄2, q̄2) where

q̄2 > q2. In this case, we have: Û2(q̄2, θ̄) = u(q
1
, q̄2, θ̄)− t1. The best of such deviations is

obtained when (1) is binding, i.e.: u(q
1
, q̄2, θ̄) − t1 − t̄2 = u(q̄1, q2, θ̄) − t̄1 − t2. Inserting

the expression of the transfer into P2’s objective function and optimizing with respect to

q̄1, a necessary condition for such a deviation not to be beneficial is to have:

q2 ≥ θ̄ − c− λq
1
. (25)

However, if P2 finds optimal to offer a pooling contract, it must be that (4) is binding:

u(q
1
, q2, θ)− t1 − t2 = 0. Optimizing with respect to q2 yields then:

q2 = θ − c− λq
1
, (26)

a contradiction with (25).

Proof of Proposition 5: Assume that P2 offers a nonlinear schedule such that: t2(q2) =

cq2+a2. We can compute the indirect utility function of the agent vis à vis P1: Û1
I (q1, θ) =

maxq2 u(q1, q2, θ)− cq2 − a2. Maximizing this concave expression over q2 and substituting

yields Û1
I (q1, θ) = −a2+cq1+

(θ−c)2

2
. Satisfying (1) and (2) imposes that: t̄1−cq̄1 = t1−cq

1
.

In particular, this implies that P1 is indifferent between all pairs (t̄1, q̄1) and (t1, q1
) since

he gets the same profit on each. Let that profit be denoted a1. Moreover, the partici-

pation constraints (3) is satisfied when (4) is binding. This yields: a1 + a2 = (θ−c)2

2
. All

direct mechanisms which satisfy these properties can be offered in a best-response of P1

to the indirect mechanism offered by P2. Consider the schedule t1(q1) = cq1 + a1. This

indirect mechanism supports all possible allocations which can arise as a best-response of

P1. Hence, we have constructed an equilibrium in indirect mechanisms defined over all

the real line. Furthermore, when he is given this pair of nonlinear schedules the agent

chooses the first-best consumptions.

Proof of Propositions 6 and 7: We first characterize the set of collectively incentive

compatible mechanisms. We focus as usual on the incentive compatibility constraints of a

high valuation agent and check ex post the incentive constraint of a low valuation agent.

The set of collectively incentive compatible contracts for θ̄ is characterized by constraints
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(19) to (21). Similarly, The set of collectively incentive compatible contracts for θ is

characterized by constraints (16) to (18).

When λ > 0, the local incentive constraints (20) and (21) define a set of transfers

which is strictly interior to that defined by the global incentive constraints (19). Indeed,

we then have:

−t̄1 − t̄2 + t1 + t2 ≥ u(q̄1, q2
, θ̄)− u(q̄1, q̄2, θ̄) + u(q

1
, q̄2, θ̄)− u(q̄1, q̄2, θ̄)

> u(q
1
, q

2
, θ̄)−−u(q̄1, q̄2, θ̄)

when q̄i > q
i
for i ∈ {1, 2}. Hence, as on Figure 3, this is the local incentive constraint

which is binding in each principal’s best response to what the other offers. Neglecting the

low valuation agent’s incentive constraint which has to be checked ex post, the transfers

offered by P1 are such that (20) and (7) are binding. After having eliminated transfers,

we can rewrite P1’s program as (up to some constant corresponding to P2’s transfer):

max
{q̄1,q

1
≤q∗1(θ̄)}

ν(−cq̄1 + u(q̄1, q̄2, θ̄))

+(1− ν)

(
−cq

1
+ u(q

1
, q

2
, θ) +

ν

1− ν
(u(q

1
, q

2
, θ)− u(q

1
, q̄2, θ̄))

)
.

This yields the following best-responses: For the consumption of the high valuation agent

q̄1 = θ̄ − c− λq̄2,

and for the consumption of the low valuation agent

q
1

= θ − c− λq
2
− ν

1− ν
(∆θ −∆q2).

For a symmetric quasi-equilibrium, the outputs are finally as in Proposition (6). It is easy

to check that the low valuation agent’s incentive constraints are all slack.
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