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1 Introduction

The frequency and virulence of financial crises has led to serious rethinking concerning
the appropriate form of government intervention in financial markets. A major issue is
whether such crises can or should be avoided or whether a workout approach is superior
to prevention. In particular, it is unclear how financial intermediaries should be regulated
when they are subject to large macroeconomic shocks, as has been the case in the recent
crisis in Asia.’

While in the period before 1970 less intensive competition in banking in connection with
interest rate ceilings created oligopoly profits which acted as a buffer against macroeco-
nomic shocks, the present regulatory frameworks are focussed on the prevention of banking
crises through cash-asset reserves and risk-sensitive capital requirements. If a banking cri-
sis nevertheless occurs, a variety of approaches are applied. In the most common case of
explicit or implicit deposit insurance, the taxpayers’ money is used to bail out banks. In
some cases, banking crises have been dealt with by closing some banks or by takeovers,

which smacks of a discriminatory approach to bailout.?

Since the prevention of crises via restricted competition or ex-post bailout with taxpayers’
money has costs of its own, and because equity will not always be sufficient to buffer severe
macroeconomic shocks,®> we will focus in this paper on the possibility of discriminatory

bailout.

Under discriminatory bailout, the regulator forces only one or a small number of banks
into bankruptcy while the remaining banks are allowed to continue with their operations
although all banks may be identical with respect to their balance sheet. The rationale for
discriminatory bailout can best be understood in an overlapping generation framework
where banks invest short-term deposits in long-term productive investment. During the
fruition time of the long-term investments, banks need to refinance themselves by taking
the deposits from new generations of savers in order to pay back deposits from the old

generation.

Suppose that, during the fruition time, new information reveals that the real return on

long-term investment is low. This shock will not allow all banks to refinance long-term

1See e.g. HELLWIG (1998) and BHATTACHARYA, BOOT, AND THAKOR (1998).

2This has happened e.g. during the crisis in Asia and the Swiss regional bank crisis (see RADELET
AND SACHS (1998, 1999) and STAUB (1998)).

3For example HELLWIG (1995) notes (p. 723): “Given the difficulties of recapitalization after a spell
of bad luck - and given the possibility of repeated bad spells - it is not clear what one means in asking
a bank to follow a strategy of having more equity as a buffer. More equity at the beginning - certainly!
But thereafter?”” Moreover, GERSBACH (2001) shows that requiring large equity buffers for banks reduces
equity in firms, thereby increasing credit rationing which has negative macroeconomic consequences.



productive investment by taking new deposits, since they cannot credibly promise interest
rates that are sufficiently high to attract enough deposits from the new generation. If there
is no coordination mechanism that allows depositors to concentrate savings on a fraction

of banks, regulatory intervention is desirable.

In order to save both, banks and long-term investment projects, the regulator can rely
on the following general-equilibrium effect, which we call funds concentration effect. By
forcing some illiquid banks into bankruptcy, the share of funds available for the remaining
banks will increase, since there are fewer banks competing for new deposits. Moreover, the
surviving banks can buy investment projects from bankrupt banks at liquidation value,
thus enabling them to credibly offer higher deposit rates to the second generation. The

bailout policy of the regulator is discriminatory.

To concentrate on the funds concentration effect of bank closures, we start our analysis
with a situation where the banks’ insolvency is assumed to result solely from an exogenous
macroeconomic shock. As the realization of this shock is not under the control of the
banks’ managers, it would be most natural to decide randomly about which banks to
close (RB). However, closure policies feed back into the banks’ strategic behavior and we

therefore also consider an other bailout scheme, namely bailout of big banks (BB).

We compare the discriminatory bailout approach with scenarios where banking crises are
prevented completely and with the no-regulation case. Moreover, the different implica-
tions of the discriminatory bailout schemes with respect to stability, welfare and credibility
are analyzed. We identify BB as the preferred bailout scheme if depositors can coordi-
nate on maximum-return assessments. BB dominates RB with respect to welfare and

credibility of regulatory actions.

Finally, recognizing that the welfare implication of this paper can only be a first step
towards a more complete assessment of the pros and cons of discriminatory bailout, we
want to stress that an important aspect of this paper is the provision of a simple ana-
lytical framework and a clarification of the major conceptual issues involved. Given the
possibility of a macroeconomic shock and discriminatory bailout, deposits are risky. If
an individual bank raises deposit rates, it will affect its own bailout probability as well
as that of all other banks since the refinancing needs rise accordingly. Therefore, the
expected returns for depositors of all banks are influenced by the decision of an individual
bank. Moreover, the distribution of deposits among banks will affect expected returns
on deposits as well, since some banks have higher refinancing needs under asymmetric
distributions than others. These banks might have to offer higher second-period deposit

rates than under symmetric distributions, forcing the other banks to offer higher rates



as well in order to obtain any savings at all. As expected deposit returns at all banks
are affected by individual bank decisions and by depositors’ savings decisions, it is not a
priori clear whether consistent assessments of depositors’ expected returns actually exist.
We establish a general existence result for consistent return assessments and also identify

the constellations in which such assessments may not exist.

2 Review of the Literature

The role governments should play in managing illiquid banks remains one of the main un-
resolved issues in banking regulation (see BEATTACHARYA, BOOT, AND THAKOR (1998)).
The existing theoretical literature primarily draws on a partial equilibrium point-of-view
where systemic consequences are accounted for only by erogenous factors. It has been
stressed that closure policies have to weigh the costs of bailout (subsidies to uninsured
debtholders) with the closure costs (direct bankruptcy costs, externalities). Excessive
risk-taking incentives can occur as both costs of bailout and costs of closure. On the one
hand, bailout creates moral hazard, as the probability of surviving depends less on the
bank’s risk choice and more on the regulator’s actions. On the other hand, it increases
the bank’s probability of survival, thus raising the value at stake and, in turn, the bank’s

incentive to protect it.*

Depending on how the different costs are weighed, authors come to different conclusions
about the desirability of governmental intervention. While for example HUMPHREY (1986)
and SCHWARTZ (1995) advocate a non-interventionist view, the opposite view, namely
that in some cases bailing out banks is socially desirable, has been put forward by MISHKIN
(1995), SANTOMERO AND HOFFMAN (1998), FREIXAS, PARIGI, AND ROCHET (1998)
or CORDELLA AND YEYATI (1999).> Our paper gives a new slant to this debate. In
our model, closing some banks is necessary so that others can survive without further
government intervention. In this sense, putting the funds concentration effect to work is

both interventionistic and non-interventionistic.

A further question raised in the literature is how the decision to close a bank should depend
on important bank-specific or macroeconomic variables such as the level of uninsured debt
on a bank’s balance sheet (FREIXAS 1999), the size of a bank (GOODHART AND HUANG
1999) or aggregate investment returns (CORDELLA AND YEYATI 1999). FREIXAS (1999)

4See CORDELLA AND YEYATI (1999) for a formalization of the tradeoffs resulting from these two
mutually offsetting effects.
SFor a comprehensive discussion of this issue see GOODHART (1995).



finds that under optimal policies, banks will be closed either if they have a too low or
a too high level of uninsured debt on their balance sheet. Whether the former or the
latter of these policies should be applied depends on the respective dominance of two
counteracting effects: the costs of the subsidies to uninsured debt holders on the one
hand and the monitoring incentives for debtholders (which are increasing in the level of
uninsured debt) on the other hand. CORDELLA AND YEYATI (1999), investigating how
closure policies can minimize the risk-taking incentives of banks, find that banks should
be bailed out if aggregate investment returns fall below a certain threshold level. The
intuition behind their conclusion is that if aggregate returns are high and a bank fails
nevertheless, this will signal excessive risk taking, which is discouraged by threatening
closure. Bailing out banks in low states of the variable will increase a bank’s charter value

and therefore decrease risk-taking incentives.

While the conditionality introduced in CORDELLA AND YEYATI (1999) would have no
sensible application in the crises scenarios we are mainly interested in,® distinguishing
between the relative levels of insured deposits and uninsured debt on a bank’s balance
sheet would be a further useful step for the analysis of bank closure policies in general-

equilibrium frameworks.

Finally, GOODHART AND HUANG (1999) provide a framework that justifies a “bail out
the big ones” policy as long as risk-taking incentives are not taken into account. If these
incentives are important, the optimal rescuing policy may depend on the size of the bank
in a non-monotonic way. While GOODHART AND HUANG (1999) derive their results by
comparing the costs of bank failure (contagion) and of bailout (rescuing insolvent banks
with the taxpayers’ money), we stress the following advantages of BB. First, it helps to
avoid low-return equilibria. Second, it is more credible ex-post than RB and - in contrary
to BS - guarantees the existence of consistent deposit-return assessments. However, BB
is subject to self-fulfilling prophecies and hence return assessments might not be unique.

Moreover, it might provide risk-taking incentives for big banks.

Besides the analysis of optimal bank closure policies, an important strand of the literature
has investigated the regulator’s incentives to apply such rules. BOOT AND THAKOR
(1993) examined the regulator’s incentives to close banks in a manner that results in
socially optimal bank portfolio choices. They find that the regulator’s optimal bank
closure policy is less tight than is socially optimal. The analysis has been extended by
ACHARYA AND DREYFUS (1989), FRIES, MELLA-BARRAL, AND PERRAUDIN (1997) and
MAILATH AND MESTER (1994). Finally, REPULLO (1999) considers government agencies

6While the aggregate-investment indicator would surely indicate that all banks should be rescued in
such scenarios, it would still be too costly to do so.



with different objective functions and investigates which of these agencies should make
bailout decisions. He finds that central banks should be responsible for dealing with small
liquidity shocks, while the deposit insurance agency should deal with large ones. While we
do not address institutional design issues - as considered in REPULLO (1999) -, incentives

for regulators are briefly discussed during the analysis of the bailout schemes’ credibility.

On a conceptual level, this paper is related to the literature in the following respect.
Discriminatory bailout can be interpreted as a version of the “constructive ambiguity”
principle, where regulators have full discretion to let one bank go bankrupt. Two con-
cepts of constructive ambiguity have been discussed in the literature. In FREIXAS (1999)
the central bank deciding which banks are to be rescued follows a mixed strategy. In
GOODFRIEND AND LACKER (1999) and REPULLO (1999), the bailout policy is not ran-
dom from the perspective of the central bank but is perceived as such by outsiders that
cannot observe the supervisory information that leads to the bailout decision. Our clo-
sure policy RB introduces a constructive ambiguity concept similar to FREIXAS (1999)
since the regulator will choose to bail out a bank with a certain probability. The BB and
the BS concept are subtle mixtures of predetermined bailout (if banks differ in size) and
constructive ambiguity (if banks are equal in size). In contrast to FREIXAS (1999), who
considers a regulator that follows a mixed strategy when deciding about a single bank’s
bailout, we investigate the whole banking system and motivate constructive ambiguity
with aggregate solvency concerns. Therefore, bailout probabilities have to be chosen in a
way ensuring that under all realizations of the stochastic decision process, the banks that
have not been closed will be able to survive. This makes the design of such a policy more

demanding.

3 The Model

The model encompasses two overlapping generations; the first generation lives from ¢t = 0
to ¢ = 1 and the second from ¢ = 1 to ¢t = 2. Each generation consists of a continuum
of households. There is one single physical good in the economy, which can be used for
production and consumption. Moreover, there is a number of banks owned and man-
aged by bankers. Banks gather the households’ savings and invest them in a production
technology.” The key features of the model are the following.

"For simplicity of representation we do not model bank loans to entrepreneurs.



1. Returns on the production technology are subject to macroeconomic risk.

2. Banks offer uncontingent deposit contracts to households, thereby exposing them-

selves to macroeconomic risk.

We first have to justify why some of the macroeconomic risk remains on the balance
sheets of the banks. According to HELLWIG (1998), a bank could in principle reduce its
exposure to macroeconomic risk traceable to easily observable indicators such as GDP or
interest rates (either by offering state contingent deposit contracts or by transferring risk
to third parties via hedging contracts). However, banks bear substantial macroeconomic
risk in reality. HELLWIG (1998) offers a detailed account of why this is the case. First,
available indicators are only an incomplete measure of exposure to aggregate risk. Second,
in practice banks do not conclude contingent deposit contracts for the following reasons:
the inflexibility of indexed deposit rates as a risk management tool, the existence of
transaction costs, and the market-making role of banks. Moreover, the on-demand clause
of deposit contracts may invite runs on banks if repayments are made contingent on the
realization of macroeconomic variables such as GDP at a certain point in time. Third,
hedging counterparties are often banks themselves and hence our analysis can be applied
to the counterparty banks. Moreover, banks that shift their risk to third parties are still
exposed to credit risk; this risk is likely to be correlated with the macroeconomic risk

they want to insure themselves against.®

In order to keep the analysis as simple as possible, we do not focus on the moral hazard
of banks or risk aversion of households as further possible explanations for aggregate risk
exposure of banks. However, our analysis can be applied to the excessive risk-taking
problem, which has been identified as one of the major problems of prudential banking
regulation (see e.g. DEWATRIPONT AND TIROLE (1994)). If all banks in the industry
undertake portfolio choices with a common macroeconomic risk component that cannot
be diversified, regulatory intervention can follow a logic similar to the one outlined in
this paper. The additional question emerging in this context is how regulatory bailout
schemes affect the banks’ risk choices. We will briefly discuss this issue as an extension

to our analysis.

8 GERSBACH (1998) describes two additional scenarios in which banks do not offer contingent deposit
contracts. In the first scenario, the regulator can commit to the failure of insolvent banks. Macroeconomic
shocks are then borne by risk-neutral entrepreneurs, as long as their inside funds are a sufficient buffer
for these shocks. In the second scenario, banking crises are worked out. Banks offer uncontingent deposit
rates that can only be paid back when the state of returns is good. Downturn macroeconomic risk is
shifted to future generations.



Finally, our model allows an alternative interpretation for the banks’ exposure to macroe-
conomic risk. It draws on the uncertainty about the accuracy of the banks’ risk manage-
ment systems rather than on uncontingent deposit contracts. Suppose that banks write
contingent contracts that - according to their risk management tools - isolate them from
macroeconomic risk. If banks use similar risk management tools, the aggregate uncer-
tainty about future returns can be interpreted as aggregate uncertainty with respect to
the accuracy of the contingencies in the deposit contracts: risk management tools may
overestimate production returns in one macroeconomic scenario while they underestimate

them in an other. This leaves the banking system exposed to systematic risk.’

3.1 Technology

We assume that there is a long-term technology that pays a random return of Ry units of
the good in t = 2 for each unit invested in ¢ = 0. If liquidated in ¢ = 1, returns are zero.'°
Production returns in ¢ = 2 are subject to aggregate risk. Two different realizations of
R, are possible. In the first state, occurring with probability p;, we have low returns:
Ry = ry. In the second state, with probability p, := (1 — p;), we have high returns
Ry = ry,. The realization of the aggregate productivity shock is revealed in ¢ = 1 and
will be observed by all market participants. We assume (a) constant returns to scale and

(b) that investment at arbitrary scale is possible.

3.2 Banks

The need for financial intermediation can arise for several reasons (see BHATTACHARYA
AND THAKOR (1993) for a comprehensive overview). We take this need for granted and do
not model it explicitly here. A special feature of our model is that banks finance long-term
investments with short-term saving contracts. In contrast to the standard DIAMOND AND
DYBVIG (1983) framework, there is no risk of consumption timing for the first generation
in our model. The individuals of the first generation know that they will never see the
fruits of their long-term investments. However, there is an aggregate production risk

that makes consumption uncertain in the second period. The economic problem lies in

9This view is for example substantiated by SHIN (1999), who suggests that the risk management tools
of financial institutions tend to heavily underestimate risk during episodes of market turbulence since
they do not take into account the endogeny of future market outcomes (i. e. the fact that outcomes
depend on their own actions and that of other market participants).

10Tn an extended version of the paper (ERLENMAIER AND GERSBACH 2001) we relax this assumption
and show that our analysis also applies for positive liquidation values .



enabling both generations to participate in the benefits of a risky long-term investment

though only the second generation will see the returns of the investment.

In ¢ = 0 there are n banks, denoted by B, ..., B,. They are long-living institutions
enabling both generations to participate in long-term investments. Banks offer deposit
contracts at deposit rates d: to the first generation and receive an amount D! of deposits
(1 = 1,..,n); all deposits are invested in the production technology. In ¢ = 1 banks have
to pay back their debt d¢D? to first-generation depositors. To obtain new funds, they
offer deposit contracts to the second generation at deposit rates d’. After banks have
received their second-period deposits, two cases can occur for each individual bank. First,
it has raised enough funds from second-generation depositors to pay back its debt; in this
case it receives investment returns in ¢ = 2 and pays back its second-period depositors.
If returns are not sufficient to service all depositors in ¢ = 2, investment proceeds are
uniformly distributed among depositors. Second, the bank cannot raise enough funds; in
this case it has to declare bankruptcy, and the investments are liquidated. First-period
depositors of such banks receive only the bank’s cash, i.e. the savings of second-period

depositors if there are any. Second-period depositors receive nothing.

We complete the description of the banking sector by assuming (a) that banks are owned
by risk-neutral bankers'' who live for three periods and consume in ¢ = 2, and (b) that
bank managers maximize expected bank profits and hence internalize losses that accrue

to depositors in case their claims cannot be fully served.

3.3 Households

There are two overlapping generations of consumers (first and second generation), each
consisting of a continuum of households living for two periods. They are risk-neutral but
want to smooth consumption over time.'> We denote the individual saving function that
describes how much funds household & in generation g (g = 1, 2) is willing to deposit with
banks by sgn. sgn(+) is assumed to be an increasing function of the ezpected return paid

on bank deposits, which we denote by u.

Note that since in both periods some banks might not be able to fully pay back their

debts to depositors, both generations of households have to assess the expected returns

HNote that for the sake of tractability we have excluded the possibility of issuing equity. We could allow
for equity as long as bank reserves cannot buffer losses completely in the event of negative macroeconomic
shocks.

12The assumption of risk-neutrality is made for convenience and tractability as in BERNANKE AND
GERTLER (1988) and K1JOTAKI AND MOORE (1997).



paid by each bank given first-period deposit rates (for the first generation) and given the
first-period allocation and second-period deposit rates (for the second generation). We
denote the resulting aggregate saving function for generation g as Sy(-) and assume that
S, is continuous and strictly increasing in u. Sy(u) can be represented as an integral of the
saving density function sz, (u) over an interval on the real line (without loss of generality
[0,1]), each point on the interval representing one household: S,;(u) = fol Sgn(u) dh. We
will refer to this representation when using the expressions “full measure of savings” and
“zero measure of savings” later on. A certain bank has obtained the full measure of savings
if it has not attracted all depositors but if the integral of the saving density function over
all the banks’ depositors is equal to the integral over all households (“full-measure bank”).
If a bank has attracted some depositors but the integral of the saving density function over
the banks’ depositors is zero, then we say that the bank has obtained a zero measure of
savings (“zero-measure bank”). In the sequel we will use functions of the type S(u) = au®

with a,a € (0,00) as an example for the saving functions of both generations.

Finally, note that the saving functions S, for deposits can be interpreted as a result of
a portfolio decision. Deposits may only be one of several saving possibilities!® that are
imperfect substitutes. In this case, the expected-return elasticity of deposits can be quite
high.

3.4 Example

Throughout the paper we will use the example presented in table 1 to illustrate our results.

Note that R, denotes the expected investment return p;re; + pprap.

Sl(u)
So(u) =1.07-u | pp, =08 | 79 = 1.22

U pr =02 | ry =1.03 R — 118
2— .

Table 1: Example A.

3.5 Regulatory Policy

We will derive the necessity of regulation precisely in sections 4.1 and 5.1. For the time

being, note that it will result from the following reasoning. In the case of low production

13The others are not modeled explicitly but enter the model via the specification of the saving functions.
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returns it might not be possible for all banks to refinance in ¢ = 1 since they cannot cred-
ibly offer sufficiently high second-period deposit rates. Nevertheless, it might be possible
for a fraction of the banks to refinance if depositors concentrated their savings on these
banks. Without regulation though, depositors have no possibility of coordinating their
savings on such a fraction of banks; equilibria in which no bank is able to refinance can
therefore not be excluded. We will consider two types of regulatory scenarios designed to
avoid these problems. The first one (prudential banking) ensures that the whole banking
system is able to refinance in both states of production returns by encouraging banks to
offer low deposit rates in the first period. The second one (discriminatory bailout) allows
for situations where the banking system is not able to refinance itself. The regulator solves
the coordination problem of depositors by closing a fraction of banks in order to make
sure that the others can survive. Closing some banks will have two effects: first, it will
reduce the amount of second-period deposits needed by the banking system; second, by
taking over investment projects of closed banks, surviving banks can offer higher returns

on deposits. In this section we describe the different regulatory approaches formally.

3.5.1 Bailout Schemes

Suppose that there are m < n banks in ¢ = 1 that have received deposits. The regula-
tor observes the realization r, of the macroeconomic shock, i.e. the future prospects of

aggregate production returns. The banking system is able to refinance if and only if

n

Siraf 1) > Y D, )

i=1

d"® is the highest deposit rate that has been offered by a bank in the first period. Note
that ro/dT** is the highest return that all banks can credibly offer to the second generation
in ¢t = 1 (because did} cannot exceed 7). If refinancing condition (1) holds, then all banks
can survive (for example, if a uniform deposit rate of ry/d** is offered to second-period
depositors) and the regulator will not intervene. Consequently all banks will be allowed
to compete for second-generation deposits in this case. In the following we will use the
matrix A = (A;)?, with A; := (A;p, A;r) to summarize deposits and investments of the
banks after the regulatory decision. A;p denotes the obligations to first-period depositors
and A;; denotes the units of investment projects that a bank holds. Hence, if (1) holds,
deposits and investments are given by A; = (diDi, D?) for i = 1,..,n since the regulator

has not stepped in.

If condition (1) does not hold, then not all banks will be able to refinance themselves

11



because new funds at the largest credible uniform deposit rate are less than the aggregate
obligations of the banking system.* In this case the regulator will close a certain number
(m — k) of banks and additionally eliminate a fraction (1 — b) of the surviving banks’
deposits. Depositors whose deposits have been eliminated will loose their claims on the
bank. The bailout schemes differ with respect to the manner in which the subset of
surviving banks, which we denote by B*, is determined. Under random bailout (RB),
Bt is chosen by randomly drawing k banks (out of the m banks which have received
any deposits). Under prudential banking (PB), the regulator also applies RB but
additionally imposes a penalty P on all banks that had to be closed. P is assumed to
be so high that a bank strategy with a positive probability of leading to P will always
be eschewed in favor of any strategy that does not involve the possibility of insolvency,
including exiting from the market.!> While the surviving banks are chosen randomly
under RB and PB, banks are ordered with respect to the amount of first-period deposits
they have gathered under bail out the big ones (BB):

DI(I)>...>DI(E):...:DI(k):...:DI(E)>...>DI(m)_

The set B* will contain the banks B,(1), ..., Br—1) and another k¥ — (K — 1) banks which

are chosen randomly from the set {B.), ..., By} '°

The investment projects of closed banks are distributed among surviving banks in propor-
tion to the amount of deposits they have gathered. Hence, after regulatory intervention,
the balance sheet of a surviving bank ¢ consists of obligations bd: D! to first-period de-

positors and of b;D? units of investment projects where'”

" D:
b] = b[(B+) = % (2)
ieB 1

141f higher deposit rates would be credibly offered by some banks, then at least the bank that has
offered di"®* in ¢t = 0 would not be able to receive any deposits.

5Note that by offering very unfavorable deposit rates a bank can always ensure that it will never
become insolvent, regardless of the behavior of the other banks.

16In previous versions (ERLENMAIER AND GERSBACH 2001) we have also considered the reversed
pecking order, i.e. bail out the small ones (BS). It is shown that BS raises severe stability problems. In
this version we therefore do not further consider this bailout scheme.

1"Note that we use B+ not only to denote the set of surviving banks but also to denote the set of indices
i1,..-,4x that identify the surviving banks. Note also that if all banks in Bt have only a zero measure
of deposits on their balance sheet, then the denominator of equation (2) is zero. In this case investment
projects are uniformly distributed among all banks in BT.

12



Hence

A . [ @diDi bDY) ifie Bt
v (0, 0) else.

Recall now that regulatory policy must ensure that all remaining banks are able to pay
back their first-period depositors with the savings of the second generation. Note that if
a bank 7 receives exactly the amount of second-period deposits that it needs to service
its obligations (i.e. D} = bd:D?), then it will be able to credibly offer a deposit rate
robr/(bd?) to its second-period depositors; hence the rate roby/(bd™®) can be offered by
all surviving banks, and the total amount of second-period savings that can be attracted
is at least So (7"2131 / (bdrlnax)>. Since b/by is equal to the fraction of overall deposits which
have not been eliminated (we denote this fraction by ¢), we conclude that all remaining

banks will be able to refinance if

S () > ad™ > Dy,
qdy

i=1

The highest possible fraction § of first-period deposits that can be bailed out under the
constraint that the surviving banks shall be able to refinance is therefore given as solution

of the equation'®
T max S 7
q i=1
Note that under BB we have

by, DY
9= —<=n ;i

Hence, £ and b can be chosen to ensure that ¢ = ¢. Obviously there is more than one

(4)

combination of £ and b that leads to ¢ = ¢. It is therefore important to note that allowing
the regulator to additionally eliminate a fraction (1 —b) of all the surviving banks’ balance
sheets only serves technical purposes.'® In principle we do not allow for the balance sheets
of all banks to be scaled down arbitrarily without disruptive consequences for the banks

when continuing their operations and thus for the economy. If such an arbitrary scale-

18Note that the left-hand side of the equation is decreasing while the right-hand side is strictly increasing
in ¢ which, together with the fact that inequality (1) does not hold, implies that there is a unique solution
q € [0,1] of equation (3).

19This assumption allows us to avoid discontinuities (see page 25).
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down were possible, an alternative implementation of the funds concentration effect would
be to scale down the balance sheets of all banks without closing any of them completely.
But under severe macroeconomic shocks (in which our major interest lies), the scale-
down needed would most likely disrupt the banks’ operations and thus shrinking all banks
simultaneously is no viable alternative. Therefore, under all bailout schemes we will try

to choose b as high as possible. Hence, using equation (4) we determine k£ and b under
BB by

l n
ko= min{lE]N | ZDI‘“MZD%}, (5)
=1 =1

b= (QZ Di)/(im“’). (6)

Contrary to BB, the fraction ¢ of bailed out depositors under RB is in general not de-
termined by the choice of £ and b, since it is not clear which banks will be chosen to
survive. To determine £ under RB, we must therefore take into account that the fraction
of remaining deposits should not exceed g, regardless of which banks have been chosen.
The worst case that can be thought of in terms of remaining deposits is that - as under
BB - the k largest banks have been chosen to survive. Hence, to ensure that the fraction
of bailed out deposits is equal to ¢ in this case, k£ and b are determined as under BB, i.e.

according to equations (5) and (6).

3.5.2 Bailout Schemes: The Symmetric Case

In this section we illustrate the working of the bailout schemes for an arbitrary symmetric
first-period allocation (dy, D;) where all banks have offered the same deposit rate d; and
received the same amount of first-period deposits D;. In this case all bailout schemes will
proceed in the same way. First, ¢ is determined as the solution of a simplified version of

equation (3):

T2
gndi Dy = So(——). 7
Dy =5:(5) (1)
Figure 1 illustrates the solution of equation (7) for example A, which will be used for
all illustrations unless otherwise indicated. Second, to achieve a fraction ¢ of bailed out

deposits with b as a high as possible, we choose k = [nq] and b = (nq)/[nqg].?° The k

20Note that [z] denotes the smallest integer greater than or equal to z.
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Figure 1: Bailed out first-period De- Figure 2: Number k of surviving banks as
posits gndi D1 and second-period savings function of q.

Sa(re/qdy) as functions of ¢ (nDy = 2.7 and
d; = 1.05, example A).

banks that will survive are chosen randomly under all schemes since all banks have raised
the same amount of first-period deposits; hence the bailout probability of each single

deposit is equal to the fraction g of bailed out deposits.

As an example consider the case n = 4. Figure 2 depicts the function ¢ — [ng]. If e.g.
g = 0.6, then [ng| = 3 and one bank will be closed. Moreover, b = 1.8/3 = 0.6 and 40%

of each surviving bank’s deposits are eliminated.

3.5.3 Bailout Schemes: The Asymmetric Case

If the first-period deposit distribution is asymmetric (i.e. if not all banks have received
the same amount of deposits), the schemes RB and BB will generally produce different
regulatory decisions; under BB, always a fraction ¢ of depositors is bailed out and the
bailout probabilities for deposits depend on the size of the bank at which the deposits
are held. Under RB, in contrary, the bailout fraction can be lower than ¢ and the bailout

probability of each deposit is given by (k — 1 + b)/m.

We start, however, with an important case of asymmetric deposit distribution where RB
and BB produce the same regulatory decision: the case where one bank has obtained all
deposits and the other banks none. In this case we have £ = 1 and b = ¢ implying that
the bailout probability of each deposit is equal to the fraction ¢ of bailed out deposits.

As an example illustrating the differences between BB and RB, consider a deposit distri-

bution as depicted in figure 3 and suppose that as above § = 0.6. To determine k, note
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that the sum of all first-period deposits is 10. Since 5/10 < 0.6 and (5+ 2)/10 > 0.6, we
have k =2 and b = 10-0.6/(5 + 2) ~ 0.85. Under BB, the regulator will therefore close
bank 4 and either bank 2 or bank 3; the choice between those two banks is performed
randomly with each bank having a probability of 0.5 to survive. After that a fraction
(1 — b) = 0.15 of the surviving banks’ deposits is eliminated. Hence, the bailout prob-
ability for deposits at bank 4 is zero, it is 0.5 - 0.85 = 0.425 for deposits with banks 2
and 3, and it is given by 0.85 for deposits at banks 1. Under RB, in contrast, the bailout
probability is equal to (2 — 1+ 0.85)/4 = 0.462 for all deposits. Moreover, the fraction of
bailed out deposits is 0.6 if bank 1 and bank 2 have been chosen to survive while it drops
to [0.85 - (2 + 1)]/10 = 0.255 if banks 3 and 4 have been chosen.

Finally, consider the case where one bank has

obtained the full measure of savings and the

5 1 other (n — 1) have obtained zero measures of

4t 1 savings. As for the case where only one bank
%_ 3l ] hasreceived any deposits, we obtain £ = 1 and
o

b = . But while under BB the (n — 1) small
banks are closed and the bailout probability

for the depositors of the big bank is ¢, the

1 2 3 4 bailout probability under RB drops to §/n.
Bank Moreover, with probability (n — 1)/n, the full

Figure 3: Example for a first-period deposit measure of deposits is eliminated.
distribution.

3.5.4 Bailout the Big Ones: The Case of Zero-Measure Banks

Concluding the description of the bailout schemes, we note that BB will slightly differ
from the procedure described above in case that some banks have only gathered a zero
measure of deposits in ¢ = 0. Note that under BB such banks will always be closed if
the refinancing condition (1) is not fulfilled. Hence, when determining g in such a case,
the first-period deposit rates offered by zero-measure banks do not have to be taken into
account. In such a situation, the regulator will therefore define di"** as the maximum
first-period deposit rate offered by positive-measure banks and will close all zero-measure
banks that have offered deposit rates higher than d***. The BB bailout scheme described
in the previous sections will then be applied to the positive-measure banks and to the

remaining zero-measure banks.
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3.6 Summary: Sequence of Events

We now summarize the sequence of events.

1. Banks offer first-period deposit rates.
In ¢ = 0 banks simultaneously offer their first period-deposit rates d? (i = 1,..,n).

d; = (d?)™_, denotes the vector of all first-period deposit rates.

2. Households (first generation) assess expected returns and make their
saving decisions.
First-generation households make assessments u; = (u%)™, about the expected
returns that will be paid on deposits by each bank. Based on these assessments,
they decide on the amount of savings they want to deposit with each bank. We
denote the vector of all first-period deposits by D; = (D?)™,. Finally, banks invest
the deposits obtained in the production technology.

3. Regulatory policy.

The regulator observes the realization of the productivity variable ro. If the re-
financing condition (1) is fulfilled, the regulator will not intervene. In this case
the deposits and investments of bank ¢ are given by A; = (d' D%, D). If condi-
tion (1) is not fulfilled, then one of the bailout schemes will be applied and some
banks will be closed. The set of surviving banks is denoted by B*. Investment
projects of closed banks are distributed among surviving banks in proportion to the
amount of first-period deposits they have gathered. Deposits and investments of
bank i after regulatory policy are given by A; = (0,0) if it has been closed and by
A; = (bd: D¢, b, D?) if it has survived.

4. Surviving banks offer second-period deposit rates.
Surviving banks simultaneously offer their second-period deposit rates d(A) (i €

B*). The vector of all second-period deposit rates is denoted by da = (d%);cs+-

5. Households (second generation) assess expected returns and make their
saving decisions.
Second-generation households make assessments us = (u});cs+ about the expected
returns that will be paid on deposits by each bank. Based on this assessment, they
decide on the amount of savings they want to deposit with each bank. The vector

of all second-period deposits is denoted by Da = (D});cp+-
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6. Surviving banks pay their second-period depositors back.
In t = 2 surviving banks receive returns from investments and pay their second-

period depositors back. Profits are consumed by managers.

We call steps 4 -6 the second-period subgame of the intermediation game.

3.7 Equilibrium Concept

In order to derive the subgame-perfect equilibrium of the game described in section 3.6,
some subtle points have to be taken into account. In particular we need to discuss how the

households’ return assessments can be derived. Two issues are important in this respect.

First, given an assessment ug by households in generation g (¢ = 1,2) about expected
deposit returns, the deposit distribution Dy = Dg(ug) is derived from the households’

utility maximization. We use B*** to denote the subset of all banks that are assessed

max
9

in B** will receive all the savings of the households: ZieB;ﬂ&x Di(ug) = S(uy®) and

9
Di(ug) = 0 for all 7 ¢ B>

to pay the maximum expected return u** among all banks for generation g. The banks

Since depositors are indifferent with regard to all banks in B**, it is unclear how deposits
are distributed among these banks. We will assume that if two banks are in B**, they
will receive the same amount of deposits if all of their characteristics are identical.?! This
means that indifferent depositors will randomize among their preferred banks with equal

probability and independently of each other.

Second, the households’ assessments have to be consistent. In order to give a precise
definition of consistency, we use Uy(dy, D) to denote the vector of expected returns on
first-period deposits resulting from the allocation (d;, D;) and from regulatory policy.
Furthermore, given the matrix A of deposits and investments after regulatory policy
and given second-period deposit rates dz and deposit distribution D2, we can define
the resulting vector of expected second-period returns as U, (A, d,, D2>. We will show
in section 4.1 that the functions Uy(-) and Uy(-) are well defined for all entries i with
i € By®, i.e. for banks that are assessed to pay the maximum expected returns on
deposits. However, if i ¢ By** then bank ¢ will receive no deposits and exit the market;
it is therefore unclear whether the assessment was correct in the first place. To deal with

this problem, we introduce a so called “zero-measure test”. We calculate the expected

21Tn t = 0, banks are identical if they have offered the same first-period deposit rates and in ¢ = 1 they
are identical if their balance sheets are identical and if they have offered the same second-period deposit
rate.
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returns for each bank resulting from a deposit distribution Dg(ug). Dg(ug) differs from
Dg(ug) only in one respect, namely that banks ¢ ¢ B receive a zero measure of savings

instead of no savings at all:

Di(ug) if i € By

zero measure else.

ﬁ;(ug) = {

Definition 1 ( Consistent assessments )

Given first-period deposit rates dy, an assessment u; is consistent if and only if

U, (dl,ﬁl(u1)> = u;.

Given the matrix A of post-regulation deposits and investments, and given second-period

deposit rates dg, an assessments uq is consistent if and only if

U, (A,dz,f)z(uz)> _—

Note that we will only consider different assessments for two banks if they are different

with regard to at least one of their characteristics.

Consistent assessments mean that depositors make optimal saving decisions?? and that
expected returns are equal to returns generated when depositors distribute themselves
among the preferred banks. Whether or not consistent assessments exist will be discussed
at length in the next section. If more than one consistent assessment exists, we apply
the Pareto selection criterion and assume that the assessment which generates the highest

returns will be realized. We therefore define:

Definition 2 ( Optimal assessments )
An assessment ug (g = 1,2) is called optimal if it is consistent and if u;™ is at least as

high as the maximum expected return resulting from any other consistent assessment.

We will see that under regulation the best assessment and the corresponding deposit
distribution are always unique. We conclude this section by summarizing our equilibrium
concept. Note that, since banks are identical ex-ante, we constrain ourselves to the

analysis of symmetric equilibria.

22].e. savings decisions that lead to the highest expected returns, given the deposit rates offered by the
banks.

19



Definition 3 ( Equilibrium concept )

For any given regulatory policy, a symmetric subgame-perfect Bayesian equilibrium is a
set consisting of first-period deposit rates dy = (dy, .., d;), assessments uy = (u, ..., u1),
a deposit distribution Dy = (Ds, ..., Dq), reaction functions do = da(A) that assign a
vector of second-period deposit rates dy to each possible set A of post-regulation deposits
and investments, and a second-period deposit distribution Dy = (Ds, .., D). This set has

to fulfill the following conditions:

1. Given A, second-period deposit rates do(A) constitute an equilibrium in the sub-

game.

2. The second-period subgame equilibrium is symmetric, i.e. banks that are identical

in t = 1 offer the same second-period deposit rate.

3. The strategies (dl, d2(-)) constitute a subgame-perfect Bayesian Nash equilibrium

in the entire game.

4. Assessments are optimal.

The equilibrium concept is a subgame-perfect Bayesian Nash equilibrium involving two
subtleties. First, individual deposit decisions have no influence on return assessments since
the contribution of each single depositor to overall deposits has zero measure. However,
the distribution of deposits matters. Second, different deposit distributions for the same
vector of deposit rates can imply different probabilities for bank defaults, which feeds
back into the return assessments. Both subtleties raise considerable problems for the
determination of return assessments. These problems will be addressed in the following

section.

4 Equilibria in the Second Period and Consistent As-
sessments
In this section we first solve the second-period subgame and then analyze the existence

of consistent assessments in the first period. All proofs in this and the next sections are

deferred to the appendix.
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4.1 Equilibria in the Second Period

Recall that a surviving bank 7 in ¢ = 1 has bd D! first-period deposits and b;D? units of
investment projects. If the refinancing condition (1) holds or if no regulation is applied in
t =1, then b = by = 1 and all banks that have received any deposits in t = 0 compete for
second-period deposits. If, on the other hand, condition (1) does not hold and regulation
is applied, then b < 1, b; > 1, and the regulator closes all banks outside of B*.23 The

surviving banks’ profits in both cases are given

i . J rebiDi = (1=0)diD} — dyD; i Dy > bd; D}
2‘ —d} D; else.

To analyze the second-period subgame equilibrium we define Jrlna" = max;ep+t{di}, db =
52—1(21.68+ bdgpg) and

. {dg:ci;, Di = bdi Di (ieB*)}.

Note that dj is the lowest deposit rate that generates enough second-period deposits for
all surviving banks to refinance and that &; is the (potential) second-period equilibrium

where all surviving banks offer dj.

We start with the analysis of the no-regulation case. This case is only presented to
derive the necessity of regulation. We will restrict ourselves in this case to first-period
constellations where all banks have offered the same deposit rate d; and therefore have
received the same amount D; of deposits. Note that this implies that J‘lnax = d; and
5 = Sy '(md,D;) where m is the number of banks that have received any deposits in
t=0.

Proposition 1 ( No-regulation case )
Suppose that banks have offered the same deposit rate d, and therefore have received the

same amount D, of deposits in t = 0. Then the following statements hold:

(i) Ifry/dy > dj, then £ is an equilibrium. Moreover, from the point of view of the

banks, £5 Pareto-dominates all other possible equilibria.

(ii) Ifry/d, < d, then there is no equilibrium where all banks can refinance themselves.
Moreover, in all symmetric second-period equilibria, where all banks offer the same

deposit rate dy, no bank can refinance itself and we have D} = 0 for all i € B.

23Note that if no bank has been closed by the regulator, then Bt simply denotes the set of all banks
that have received any deposits in ¢ = 0.
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Intuitively statement (i) stems from the following reasoning. First, deviations from &;
are not profitable since higher deposit rates increase repayment obligations; deviation
to lower deposit rates either leads to the loss of all second-period deposits to the other
banks or to the concentration of all savings on the deviating bank, which both takes the
deviating bank’s profits down to zero. Second, £; Pareto-dominates all other equilibria,
since equilibria with higher deposit rates lead to an increase in repayment obligations
and because in equilibria with lower deposit rates no bank will receive any deposits. The
mechanism leading to the latter observation is also responsible for the second part of

statement (ii) and can be explained as follows.

Assume that the refinancing condition were fulfilled for 7 banks (M < m), i.e. that
25 S;l(mdlDl).
d

If depositors could manage to deposit their savings only with a subset of /m banks, these
banks would be able to refinance. But since all banks are identical, depositors cannot
coordinate to deposit with a particular subset of banks; rather they would randomize
independently between banks and, by the law of the large numbers, every bank would
receive the same amount of savings, which is not enough to refinance. This in turn
implies that none of the banks will receive any savings. Discriminatory bailout solves this
coordination problem by closing some of the banks so that the remaining ones can raise

enough new funds to refinance.

Of course there can be asymmetric constellations where one bank is able to refinance.
Imagine the case where there are only two banks and 75/d; > S;'(d,D;). If one bank
offers u,, defined as the positive solution of v = roD;/S(u), and the other bank offers
a lower deposit rate, the depositors’ coordination problem is solved, since they know
that the bank that has offered u, can pay strictly higher returns. Without regulation,
however, there is a severe coordination problem, because both of them would like to be the
bank that is able to pay depositors back. Therefore, in our analysis of the no-regulation
case in section 5.1 we will assume that no bank will receive any second-period savings
if 7o/d; < dj. On the other hand, if ro/d; > dj, we assume that &£ is played which -

according to proposition 1 - can be justified by the Pareto selection criterion.

We now turn to the case where regulation (PB, RB or BB) ensures that ry/(qd™) > d.
The regulation case will be analyzed in the general setting where banks may have offered
different deposit rates in ¢ = 0. We have already derived that under symmetric first-
period allocations, banks will offer second-period deposit rates that are just sufficient to

attract enough second-period savings to pay back their obligations to first-period depos-
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itors. Deviations to lower deposit rates can be excluded as the bank which has offered
lower deposit rates will receive no second-period savings. Under asymmetric first-period
constellations, however, deviations to lower deposit rates could be profitable for big banks,
since the smaller non-deviating banks cannot cope with all second-period savings alone.
This in turn could lead to non-existence of equilibria or to equilibria where not all banks
can refinance (despite the fact that all banks would be able to refinance if offered de-
posit rates were high enough). To avoid these problems, we assume that the regulator
imposes a lower bound on second-period deposit rates (LBD), i.e. she guarantees
that no banks offers a deposit rate lower than d5.2* This ensures that refinancing of all
banks indeed occurs in equilibrium under asymmetric first-period constellations as the

next proposition indicates.

Proposition 2 ( Regulation case )
Suppose that regulation ensures that ry/(qd™>) > dj and that LBD is applied in t = 1.
Then &5 is a second-period equilibrium. Moreover, from the point of view of the banks,

&5 Pareto-dominates all other possible equilibria.

Regulation LBD ensures that banks do not undercut the rate dj. Moreover, banks that
have offered higher deposit rates than dj have higher repayment obligations than under
&5. This implies that deviations from & are not profitable and that all other possible

equilibria are Pareto-dominated by &5.

Throughout the paper we will assume that under regulation, banks will play £ which
can be justified by the Pareto criterion. In this case, second-period deposits just suffice
to cover the refinancing needs of the banks and we can describe expected returns on first-
period deposits of bank i as u¢ = (pig} + prql)d: (i =1,...,n). ¢ (¢}) denotes the bailout

probability for bank 7 in the case of low (high) production returns.

4.2 Consistent Assessments in the First Period

In this section we analyze the existence and uniqueness of consistent assessments in the
first period, assuming that one of the regulatory schemes is applied.? Consider a situation
where there are two groups of banks, B; and By, that have offered first-period deposit rates
dy; and dyy, (dy; < dy) respectively. Note that the assessments and deposits for all banks

in B; and for all banks in B; must be identical. Note also that this scenario includes two

24 Again we could think that a high enough penalty is imposed in case that banks do not follow the
regulatory requirement.
25The no-regulation case will be summarized in section 5.1.
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important cases that need to be considered in order to analyze symmetric equilibria of
the intermediation game: first, the symmetric non-deviation case where all banks offer
the same first-period deposit rate di; = dy, = d and second, the deviation case in which
one bank deviates to a lower or a higher deposit rate. In the non-deviation case all banks
are in one group (without loss of generality in B;) while in the deviation case either the

deviating bank is in B;, while the the non-deviating banks are in B; or vice versa.

We will now examine expected first-period returns on deposits in the non-deviation case
and in the deviation case if one group of banks receives all deposits.?® We denote the de-
posit rate in the non-deviation case and the deposit rate offered in the group of banks that
has received all savings in the deviation case by d. The corresponding return assessment
is denoted by u and the bailout probability when productivity is low (high) is denoted by
¢; (gn). Using equation (7) we observe that in both cases u can only be consistent if it

solves the system S(d) that consists of the equations

u = (pq + pran)d (8)
. 1 T

a = mln{ dSl(u)SQ(ql_d> , 1} 9)

g, = min{ #@)SQ(C;L’CLZ) , 1} (10)

and of the constraints ¢, > 0 and ¢, > 0. Note that refinancing condition (1) will hold in
both states of production returns if and only if dS;(d) < Sa(ry/d). We denote the highest
first-period deposit rate at which this is the case by dr,. Hence, dy, is the unique solution

of the equation
r
S;l(dsl(d)) =2

Moreover, we use u := min{u|S(u) > 0}. The next lemma is crucial for the analysis of

consistent first-period assessments.

Lemma 1

Suppose that d > u. Then the system S = S(d) has a unique solution which we denote
by (ta, @14, Gn,a)- Moreover, this solution has the following properties:

(i) 4y, G,y and Gy.) are continuous functions of d.

(ii)) a4 =d for d < dy, and 44 < d for d > dy..

26We will see later (in propositions 3 and 4) that we do not have to consider the case where one bank
deviates and both the deviating bank and the non-deviating banks receive deposits.
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(111) Qa < 1 for d > dL,' Q,d, Qh,a > 0 for all d.

(iv) . is strictly decreasing in d for all d € Dy; where

Dy i= {d | dS(a) < Salranfd) and d > d,}.

The existence and uniqueness of a solution for

S is derived from a fixed-point argument: the 10 ' ' I{g_l%:g%l ,,,,,,,,,
-1]=6%

right-hand-side of equation (8) is a decreasing or T

function of u (since bailout probabilities ¢; and 8| -

qn, are decreasing in u) while the left-hand-side

[u-1] (%)

is strictly increasing. This implies existence
and uniqueness of 4, because of the continuity \‘\

of the bailout probabilities as functions of wu.

Figure 4 illustrates the solution of S. Note 4 5 6 7 8 9

that v and d are represented by the percentage [u-11 C6)

points by which they exceed 1, i.e. u=1.06iS Figure 4: The left-hand and the right-hand
represented by 6. This scale will be used for side of equation (8) as functions of u for dif-
ferent values of d (example A) Note that u
is represented by the percentage points by
Note that at this point our technical device which it exceeds 1.

v and d in all following illustrations.

that allows for a fraction (1 —b) of the surviv-

ing banks’ deposits to be eliminated guarantees the continuity of the bailout probabilities
as functions of u and thus the existence of a solution for §. If only entire banks could
be closed, the bailout probabilities would not be continuous in u. Discontinuities would
appear for all v where a marginal higher value of u requires to close an additional bank:
in such points bailout probability would fall by 1/n. Hence, consistent assessments might

not exist for some values of d.

In the next two propositions we characterize consistent and optimal assessments. Note
that in the non-deviation case where all banks have offered the same first-period deposit
rate dq, assessments for expected returns of banks are denoted by u;. In the deviation case
there are two groups of banks, B; and By, that have offered different first-period deposit
rates dy; and dyy, respectively (dy; < dij,). Here we denote the corresponding assessments

by uq; and uqp respectively.

Proposition 3 ( Consistent assessments: Non-deviation case )
If all banks have offered the same first-period deposit rate dy, then uy = (g, ..., Uq,) IS

the only consistent assessment under all bailout regimes.
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Proposition 4 ( Consistent assessments: Deviation case )

In the deviation case only the following types of assessments can be consistent:
a) uy < uyp = Uqy, b) up < uy = gy, c) assessments of the type uy = usp.
More specifically, we obtain:

(i) Under the RB or PB bailout scheme, uy; < u1p, = Ugq,, is the only consistent assess-

ment.

(ii) Under the BB bailout scheme, uy < w1, = Ug,, iS a consistent assessment and

U1y < U1y = Ug,, IS a consistent assessment if and only if

(plll!dlladlh + phIh,dll,d1h> dlh < ’lj/dll

where*

Lidy 0, 1= 1{52(7“2i/d1h) > dSl(adu)} (i =1h).

Moreover, an assessment uq; = uy is never optimal.

Proposition 3 follows directly from lemma 1 since expected returns for depositors can be
expressed by equations (8) - (10). Moreover, under RB, bailout probabilities for all banks
are the same, implying that the banks that have offered the highest deposit rates will
always pay the highest returns. Therefore assessments are also unique in the deviation
case. Under BB, however, we cannot generally exclude assessments that assign higher
expected returns to banks in B; despite the fact that those banks have offered lower deposit
rates than the banks in By,. This is due to a self-fulfilling prophecy effect caused by BB.
Suppose that a bank is assessed to pay higher expected returns than the other banks.
This bank will obtain more deposits than the others and hence will be “bigger” in terms
of the bailout regime. Under BB it will therefore have a higher bailout probability. This
effect can indeed compensate for lower deposit rates. To see why an assessment wuy; = uyp
cannot be optimal under BB, note that in this case banks in B, must be smaller with
respect to first-period deposits than banks in B;; otherwise bailout probability and offered
deposit rates would be higher for Bj-banks. But this implies that Bj,-banks have a lower

2TNote how the indicator function 1{-} is defined. 1{A} is equal to 1 if statement A holds and equal
to 0 if statement A does not hold.
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bailout probability than in the case where they receive all deposits. The formalization of

these arguments leads to statement (ii) in proposition 4.

Propositions 3 allow us to characterize symmetric equilibria under regulation solely in
terms of the first-period deposit rate d; offered by all banks:

1. Banks offer d; = (dy, ...,d;) which leads to the assessments u; = (ig,, ..., 4q,) and
to the deposit distribution Dy = (Dl, Dl) where Dy = S, (tig,) /n.

2. The regulator observes the realization ry of the aggregate productivity shock and

determines ¢ as the positive solution of

_ T2
d;S = S5(——
qdy1S1(tg,) 2(qd1)

if that solution is lower than 1; otherwise ¢ is set equal to 1. k£ and b are determined
by k = [ng] and b= (ng)/[ng].

3. A set BT of k banks is randomly chosen from all n banks; each bank has the same
probability of being chosen. Investment projects of closed banks are uniformly
distributed among surviving banks. Deposits and investments of surviving banks

are given by
A= (bdlDl nD, /k).
4. Banks offer dy = (ds, ..., d3) where
dy = Sil(q_sl(ﬂdl))-

We will characterize symmetric equilibria by using the short form £ = (d,).

5 Allocations Under Different Regulatory Approaches

Note that from a ¢t = 0 perspective expected profits for bank ¢ are given by
Il := — Prob(4,)(d:Di + P) + (1 - Prob(A,-)) E [RQbIDi — (1—b)d.Di — diDi| A;].

A; denotes the eventuality of bank ¢ being closed by the regulator or not being able to

meet its obligation in ¢ = 1 and A{ denotes the complement of A;, i.e. the possibility of
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bank ¢ living on until ¢ = 2.2 Remember that P is the penalty imposed by the regulator
under A;. While P > 0 under PB, we have P = 0 under RB and BB. Note again that
under all regulatory approaches, banks are assumed to internalize losses that accrue to
depositors. The penalty P under PB will be imposed additionally to any other penalties

that might be used to force banks to internalize losses.

5.1 No Regulation

In this section we analyze the no-regulation

B ' T o case to motivate the potential benefits of reg-
10r | ulation. Consider a symmetric equilibrium where

°T | all banks have offered the same deposit rate d;

S:E o | int = 0. Note that according to proposition 1

S : : | only three first-period return assessments are

o / possible, namely dy, p,d; and zero. Obviously,

BT 1 if di; < dy, then only u; = d; is consistent and

-200 i d.L All els alad;p dlc 1|2 banks can refinance in both states of produc-

[d,-1] () tion returns.? If d; > dy,, then u; = d; is no

Figure 5: Expected returns u; for the first longer consistent since under this assessment
generation as function of the first-period de- banks would go bankrupt for 7y = 79, (because
posit rate dy (no-regulation case, example d% > ry/d), which would lead to u < d;. Equi-
A). dzp stands for dzp. libria where banks are correctly assessed to

pay zero returns can also be excluded. Hence,
the only other possible assessment is u; = ppd;. Such an assessment will be correct if
and only if ron/di > d3(d1) > roi/di where di(d) := S (dSl(phd)). Hence, by defining
dc as the unique solution of d%(d) = ry/d, we have derived that without regulation no

consistent assessments exist if dy, < d; < dc.

Using the parameter values from example A, we illustrate the consistent-assessment prob-
lem in figure 5: if dy, < d; < d¢, and depositors assume that all banks will survive in both
states of production returns, then return assessments are given by the upper (broken) line
in figure 5. Actual returns paid are represented by the lower (broken) line; if depositors
assume that banks can only refinance in the high state, then assessments are given by
the lower line and actual returns paid by the higher line. Finally, if d; < dg, or d; > dc¢,

the solid lines represent the respective consistent return assessments for first-generation

28Note that given A; bank i cannot pay anything to depositors since the liquidation value of the project
is zero.

29Note that in this case first-period savings amount to S;(d) and hence d5 = S;* (dSl (d)) which by

definition of dy, is not higher than rq /d.
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depositors.

In order to assess the benefits of regulation we also want to compare expected returns
for depositors resulting with and without regulation. For our purposes it is sufficient to
observe that banks will not bid deposit rates higher than d; = Cizp which is defined as
the unique solution of the equation 7(d) = 0. 7(d) are the banks’ profits per deposit in a

symmetric equilibrium d; = d if d > de. They can be described by
7(d) = —pid + pn (ron — dd3(d)).

Symmetric equilibria with higher deposit rates will not occur since such equilibria would
imply negative bank profits (because 7(-) is strictly increasing in d). Our results are
summarized in the following proposition.

Proposition 5

Suppose that banks play a symmetric strategy d; = (di,...,d;) in the first period and

that there is no regulation. Then the following statements hold:

(i) Ifdy < di < dg, then no consistent assessments exist.

(ii)) For both generations, the highest possible symmetric equilibrium returns are either
achieved if dy = dy, or d; = sz. The corresponding unique first-period assessments

are dr, and phcizp respectively.

(iii) If CZZP < dc, then the highest possible symmetric equilibrium returns are achieved
for dy = dy,.

Note that in example A we have dzp = 1.079 < dc = 1.105 and hence statement (iii)
applies. Proposition 5 points to the potential benefits of regulation. Without regulation,
the existence of consistent assessments is not guaranteed and it can occur that none
of the banks is able to refinance in ¢ = 1, implying that intermediation services break
down completely for the second generation. In the following, we discuss how regulatory
approaches can avoid the breakdown of intermediation. In section 5.2, we consider the
enforcement of prudential equilibria with d; < dg,, and in section 5.3 we analyze the case
of discriminatory closure of some banks in order to allow the others to refinance. Both
scenarios also help to avoid the problem of nonexistent assessments, as we have already
observed in proposition 3. In section 6 we explicitly compare the no-regulation and the
different regulatory approaches with respect to stability and expected returns paid on

deposits.
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5.2 Prudential Banking

In this section we assume that the regulatory regime forces banks to avoid the possibility
of default.

Proposition 6

The unique symmetric equilibrium under prudential banking is £r,.

Obviously, prudential banking can heavily depress deposit rates and investments if a
serious productivity shock can occur. Moreover, in the case ro < u, intermediation is
impossible. In the next sections we therefore examine work-out type regulatory approaches

to banking crises and their implications.

5.3 Discriminatory Bailout

In this section we investigate the equilibria that occur under discriminatory bailout. In
order to describe the banks’ profits under discriminatory regulation schemes, we recall
the definition of the set D), and additionally introduce the set Dy:

Dy = {d | dS, (g) < Sa(ron/d) and d > dL}

Dy = {d|d81(ad)>52(r2h/d)}.

The sets Dj; and Dy refer to a situation where all banks have symmetrically offered a
deposit rate dy = d in t = 0. If d € Dy, then all banks can refinance in the good state
but not in the bad state of production returns while banks cannot refinance in both states
for d € Dy. Moreover, dj(d) := S;* (d51 (ﬂd)) is the second-period deposit rate that - if
symmetrically offered by all n banks in ¢ = 1 - generates just enough savings for all banks

to refinance.

Now consider a potential symmetric equilibrium £ = (d;), or a deviation d$¢" from such
a symmetric equilibrium where the deviating bank receives all savings. Then the ex-
pected profits that a bank makes on each unit of deposits are given by 7(d;) and m(dd®")

respectively where 7 is defined by’

Ry — dd3(d) if d < dy,
7(d) =1 —pu(1 = @)+ pa(ron — ddj(d)) it d € Dy
(1 = @,a)d — pr(1 — Gna)d if d € Dy.

30Remember that Ry = pyro; + prran.
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Figure 6: Expected returns u; for the first Figure 7: Profits per unit of deposits as
generation as function of the first-period de- function of the first-period deposit rate d
posit rate d; (example A). (example A).
Lemma 2

7(+) is a continuous function of d.

We note that 7(d) > 0 if d < dr, and that 7(d) < 0 if d € Dy. Hence, by the continuity of
7(-), there is a first-period deposit rate d with 7(d) = 0. We will work with the following

assumption:

Assumption 1 ( UZP )
There is a unique first-period deposit rate d where profits are zero (n(d) = 0). We denote

this deposit rate by dzp and further assume that 7(d) < 0 for d > dzp.

Note that assumption UZP is satisfied if @y is increasing in d for all d € Dy, which can

be verified for our example saving functions.

Lemma 3

If Si(u) = a;u® with a, o € (0,00) (i = 1,2), then 1y is increasing in d for all d € Dy.
We can now turn to the analysis of the random bailout regime:

Proposition 7

Suppose that UZP holds. Then the unique symmetric equilibrium under random bailout

1S SZP = (dzp).

Ezp is the zero-profit equilibrium. Equilibria with higher deposit rates imply negative
profits for banks and will thus not be played. Equilibria with lower deposit rates do not

exist, since banks will have an incentive to deviate to slightly higher deposit rates thereby
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collecting all savings. Figures 6 and 7 show expected returns for the first generation
and banks’ expected profits as functions of the first-period deposit rate d; that has been
offered.

Having derived this result, we now set out to examine whether and how allocations are
affected if the regulator follows BB instead of RB. We have already indicated that BB
can lead to self-fulfilling prophecy effects when first-period deposit rates are set asymmet-
rically. Banks that have offered lower deposit rates can consistently be assessed to pay
higher returns than banks that have offered higher deposit rates. To present our results

we introduce the following tie-breaking rule:

(TR) If depositors receive the same expected returns when depositing with non-deviating

banks as when depositing with the deviating bank, they choose the non-deviating ones.

Moreover, we introduce the function

1%V (d) := maX{W(J)S(EJ) DU > ﬂd},
which describes the maximum profits that can be obtained when deviating from a sym-
metric equilibrium where all banks have offered a first-period deposit rate d. Finally we

distinguish the following cases for the relationship between expected equilibrium returns

for the first generation and offered first-period deposit rates:

1. There is a deposit rate dyn (dr < dun) such that u(, is strictly increasing in d for
d < dygm and strictly decreasing for dyg < d < dzp. (UID)

2. There is a deposit rate dyr, (dr < dyw) such that 4. is strictly decreasing in d for
d < dyr and strictly increasing for dyy, < d < dzp. (UDI)

These cases are illustrated in figures 8 and 9. Note that under UID (UDI), both constel-
lations are possible: (a) dUH < dgzp (dUL < dzp) and (b) dUH > dzp (dUL > dzp).

Proposition 8
Suppose that the assumption UZP holds and that TR is applied. Then the following holds
under bail out the big ones:

(i) &€ = (d) is an equilibrium for each deposit rate d € Upay 1= argmax .y |z(a)>o-

(ii) Under UID we obtain that Eyp := (min{dUH, dzp}) is the unique symmetric equi-

librium.
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Figure 8: The case UID. Figure 9: The case UDIL

(iii) Under UDI we obtain:

o Ifdy, > ug,,, then &, is the unique symmetric equilibrium.

o Ifdy, < Ugy,y, then Ezp is an equilibrium and &;, is an equilibrium if and only
if 119V (dy,) < m(dy,)S(dr)/n. No other equilibria exist.

The next corollary is an immediate consequence of proposition 8. It is concerned with the

cases where 1, is strictly increasing (UI) or strictly decreasing (UD) for dy, < d < dzp.

Corollary 1
Suppose assumption UZP holds and that TR is applied. Then under bail out the big ones

we obtain:

(i) Under Ul, £zp is the unique equilibrium.

(ii) Under UD, &, is the unique equilibrium.

What is the economic intuition behind the results in proposition 87 Let us first turn to
statement (i). Under BB, maximum expected return equilibria are supported, since even
if banks deviate to higher deposit rates, depositors can consistently assess non-deviating
banks as paying higher returns, thereby securing maximum expected returns. This is
not possible under RB. Let us now turn to the interesting case of statement (ii) where
dun < dzp. Equilibria with higher deposit rates are not possible, because banks would
deviate to lower rates, and depositors would switch to the deviating banks since they
can guarantee higher expected returns. Again this is made possible by the self-fulfilling
prophecy effect of BB. Lower deposit rates are not possible because banks will deviate to

higher rates. Statement (iii) can be explained by the same reasoning.
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6 Comparison

In this section we compare the three regulatory scenarios (prudential banking, random
bailout and bail out the big ones) and the no-regulation scenario. Our comparison is
concerned with three issues: fragility issues, credibility issues and expected returns. For
two points of the analysis we have relied on simulation results: first, for the determination
of the shape of @) as function of d; second, for the comparison of expected returns in the

&1, and the £;p equilibrium.

We will focus on what we call the “normal case”, namely the case where 4, is strictly
increasing in d. The label “normal” is justified by the fact that ) has this property for
our family of example saving functions and because %) has behaved in this way for a

wide range of other numerical examples.

6.1 Stability Issues

Regulation improves the stability of interme-

diation. First, the existence of second-period
equilibria is guaranteed under regulation. More-
over, these equilibria can be ranked by banks

according to the Pareto criterion. Without

[u-1] (%)

regulation, neither are guaranteed. Second,

under regulation the nonexistence of consis-

s ! ! ! ! L tent assessments in the first period, which may
d 3 4 8 dzp

[¢)]
(]
~

(dy-1] %) occur without regulation (see proposition 5),

can be avoided.

Figure 10: Expected returns for both gener- . o . .
The crucial question in comparing the stabil-

ations as function of the first-period deposit
rate d; (example A). ity across regulatory schemes is whether the

proposed coordination mechanism for deposi-
tors return assessments works if there is more than one consistent assessment. We have
assumed that if there is more than one consistent assessment, then depositors choose the
assessment, that promises the highest expected returns (optimal assessment). If this is
the case, all regulatory regimes yield the same stable result, namely unique assessments
and a unique equilibrium: €zp (under RB and BB) and &, (under PB). The result for
PB and RB is independent of whether the optimal-assessment criterion holds or not. The
stability of the BB regime on the other hand depends upon it heavily: if it does not hold,

uniqueness is not guaranteed (see proposition 4).
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6.2 Return Issues

Recall that in the normal case we have to compare the equilibria £, (implemented by
prudential banking and possibly implemented without regulation), Ezp (possibly imple-
mented without regulation) and £zp (implemented by RB and BB). The expected returns
for the first generation (u;) and for the second generation (u3) in the different equilibria

are presented in table 2.

First Generation | Second Generation

&L | dL di(dy)

Ezp | prdzp P+ prd(dzp)
Ezp | MiGadzp + Prdzp | 1Sy " (@l,ddZP& (ﬂdzp)) + prd;(dzp)

Table 2: Expected returns under different equilibria

The most important question is whether regulation can improve expected returns for both
generations. We observe that returns u;(€zp) in £zp are higher for both generations than

returns U,’(gzp) in £;p (1 =1,2). This is stated in the next proposition:

Proposition 9
ui(Ezp) > ui(Ezp) fori = 1,2.

Proposition 9 implies that regulation can improve welfare. On the other hand, it is not
clear whether £;p also delivers higher returns than £,. Obviously, ui(Ezp) > ui(Er),
but the effect for the second generation is ambiguous, since ¢; 4qdzp might be smaller than
dr, and hence might offset the effect that d5(dr) < d5(dzp). However, in all simulation
exercises £zp also improves returns for the second generation compared to £;. Hence, in
these cases discriminatory bailout improves expected returns for both generations com-
pared to PB and compared to the non-regulation case. As illustration we show in figure
10 expected returns for the first and the second generation under discriminatory bailout
as function of offered first-period deposit rates (for example A). The returns resulting

under &£, and £zp are presented in table 3.3

31Note that the equilibrium d; = sz does not exist in the no-regulation case for example A. Hence
the highest possible equilibrium returns are achieved under &y,.
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[di = 1)(%)  [un = 1](%) [ue = 1](%) @
En 2.64 2.64 0.34 1

Ezp 8.75 7.00 9.24 0.92

Table 3: First-period deposit rates, expected returns, and fraction of bailed out depositors for
example A.

6.3 Credibility Issues

The issue of credibility obviously only has a bearing on the three regulatory schemes. The
most important difference with respect to the credibility of those schemes is the out-of-
equilibrium strategy that is required. While the credibility of PB first of all depends on
the credibility of the penalties that have to be applied (which will not be taken up here),
the credibility of BB and RB depends on the impact of the respective out-of-equilibrium

closure rules.

In section 3.5.3 we have already illustrated that while the maximum fraction of depositors
is always bailed out under BB, under RB it might be necessary to bail out a significantly
lower fraction of first-period deposits than would be possible. This occurs if the de-
posit distribution is very unequal. The necessity to commit to lower-than-possible bailout
fractions might well reduce the credibility of the RB scheme. Agents might expect the
regulator to abandon RB and bail out more depositors if an asymmetric deposit distribu-
tion occurs. As mentioned above, this kind of credibility problem does not occur under
BB.

6.4 Extensions

In an extended version of this paper ERLENMAIER AND GERSBACH (2001) we explore
several extensions to the framework discussed here. In particular, it is shown that cases
where %) is not increasing in d can occur and that for these cases BB dominates RB
with respect to expected returns. We also indicate that RB may provide less incentives

for excessive risk-taking than BB.
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7 Conclusion

We have attempted to provide a general-equilibrium analysis of the funds concentration
effect and the corresponding regulatory bailout schemes in an overlapping-generations
framework. We have found that bail out the big ones (BB) dominates random bailout
(RB) and prudential banking with respect to expected returns on deposits and with
respect to credibility.
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A Appendix

A.1 Proofs for Section 4

Proof of proposition 1.
(i) Step 1: &5 is an equilibrium.

First, we note that if d} = dj is played (i € B*), the assessment u} = dj (i € BY) is
optimal and only the deposit distribution D = d! D¢ (i = 1,..,n) is consistent with this
assessment. Second, we have to show that deviations from d = dj are not profitable.
Deviations to higher deposit rates can be excluded since they raise repayment obligations.
If a bank deviates to di® < d3, it is not possible for all banks to receive a positive measure
of deposits.®> But then either all or none of the non-deviating banks receive a positive
measure of deposits.?® Hence, there can only be one case where the deviating bank receives
a positive measure of savings, namely if it can attract the full measure of second-period
savings. But in this case the deviation cannot be profitable for the following reasons.
Depositors only choose to give resources to the deviating bank if returns are at least as
high as returns at the non-deviating banks. But if depositors chose to deposit with the

non-deviating banks, returns are given by min{u., d5}, where u, is the positive solution
of

(m — 1)7"2D1
U= . 11
500 (11)
If, on the other hand, depositors deposit with the deviating bank, returns cannot be higher
than min{ud®, d3°}, where ud®" is the positive solution of equation (11) when m — 1 is

replaced by 1. Hence, the inequality 49 > u, can only be fulfilled if m = 2 and d3®" > wu,.

But in this case the deviating banks’ profits cannot be higher than zero.
(i) Step 2: Pareto-dominance.

If d, > dj, then banks obtain lower profits than in £ because repayment obligations are
higher. If dy < d, then the amount of overall savings is bounded by Sy(d;) and hence

second-period deposits of a single bank are limited by Sy(ds)/m (since depositors cannot

32If that were the case, all banks would have to be assessed paying the same return us < d3®v. But
then Sa(u2) < md; D1, and hence at least one bank cannot refinance. This implies that us = 0 and
S2(u2) = 0 in contradiction to the assumption that all banks receive a positive measure of deposits.

33Since the non-deviating banks are identical with respect to all their characteristics, they will receive
the same amount of deposits.
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coordinate on a subset of banks). But this implies that no bank can refinance and the
only consistent assessment is uy = 0 for all banks, implying that no bank receives any

savings.

(ii) The first observation is obvious and the second has already been derived under step
2 in the proof of (i).

Proof of proposition 2.

Step 1: & is an equilibrium. We observe that if di = dj is played, the assessment
ub = d3 (i € BY) is optimal and only the deposit distribution D} = bdi D! (i = 1,..,n)
is consistent with this assessment. Deviations to higher deposit rates would increase
repayment obligations and can therefore not be profitable. Deviations to lower rates are
excluded by LBD.

Step 2: Pareto-dominance. Equilibria where some banks have offered lower deposit rates
than dj are excluded by LBD, and all other equilibria are Pareto-dominated by &£ since

repayment obligations are higher than under &;.

Proof of lemma 1.
Step 1: The system S has a unique solution.

First, note that if 4, is a solution of the system S, then @z > u. But for all u > u, equations
(9) and (10) have unique, strictly positive solutions, which we denote by ¢, = ¢;(d, u) and

34 Figure 11 illustrates the argument by depicting the left-

qrn = qn(d,u) respectively.
hand and the right-hand side of equation (9) for example A and d = 1.05. Figure 11 also
illustrates that the functions ¢;(d, -) and g(d, -) are decreasing in u for fixed d by depicting
the solutions of the equation for u = 1.05 and u = 1.07. Moreover, ¢(-,-) and g4(-,) are
continuous in d and u since the left and the right-hand side of the equations (9) and (10)
are continuous functions of d and u. Inserting ¢;(d,u) and g¢,(d,u) in equation (8), we
obtain an implicit equation for u. As we saw above, we have to restrict the range of this

equation to v > u. Hence the left-hand side of this equation is strictly increasing in u

34The left-hand sides of the equations are strictly increasing in ¢; and g, respectively and they take all
values in (0, 00); the right-hand sides are decreasing in ¢; and g, respectively.
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and takes all values in IR that are strictly higher than u; the right-hand side is decreasing
in u and higher than wu if u is close enough to u.>> Hence, by the mean value theorem, a
unique solution u,4 of this implicit equation exists. This solution is a continuous function
of d since the left and the right-hand side of the equation are continuous functions of d.

Finally, inserting @, in ¢, and ¢, we obtain g, 4 := ¢/(d, @) and Gp 4 := qn(d, Uq)-
Step 2: Proof of statements (i) - (iv)

The continuity of %) has already been shown in step 1 and the continuity of g and
qn,(.) follows directly from the continuity of (., ¢(-,-) and g4(-,-). Statements (ii) and
(iii) are straightforward.We now need to substantiate (iv), i.e. the monotony of g . for
all d € D;s. Recall that

Dy = {d | dS, (@ig) < Sa(ran/d) and d > dL},

and note that for d € Dy, we have

-1 :5“%)
%3-1%:7% ******** 7 1 S ( el ) (12)
098 | | N |
g Wi = g (@g) "> \@ad
S 0% ]
; \ Gna =1 and
§ 0.94 ,,;,“,“_<;,,;_,;_,“\7.;;;::,,; i
: el —
: L
092 i tua = (PuGia + ph)d. (13)
0'90.; 092 094 09 oos Suppose now that d < d. If aq < 4, then we
Bailout fraction obtain g4 > §, 7 from equation (12). If on the

. ther hand @y > @, then Gg > g 5 foll
Figure 11: The left-hand and the right-hand 0" ARG ta = g, Lhen Gra > G g 101OWS

side of equation (9) as functions of ¢ (exam-
ple A, d = 1.05).

from equation (13).

Proof of proposition 3.

Since banks are identical, assessments and deposit distribution have to be symmetrical:
u; = (4,...,u) and Dy = (D, .., D) where D = S(u)/n. Hence the expected return on
first-period bank deposits is given by equations (8) - (10). But we know from lemma 1

that in this case u = 14, is the only consistent assessment.

35Note that if u — u, the right-hand side approaches d, which is assumed to be higher than w.
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Proof of proposition 4.

We denote the share of deposits that the banks in B; receive by ); . First, note that
an assessment uy; < uy, always leads to A\; = 0 and to a symmetric distribution of all
savings among banks in Bj. Hence, by lemma 1, this assessment is consistent if and only
if u1p, = Ugq,, and if the assessment passes the zero measure test: if all banks in B; receive a
zero measure of deposits, then depositors at B;-banks must receive lower expected returns
than %g4,,. Of course, the same is true for the converse assessment wuy, < uy. It leads
to Ay = 1 and uy; = g4, and is consistent if and only if the return paid by zero-measure

Bp,-banks is smaller than g, .

The assessment uy; < uip, = Ugq,, is consistent under RB, PB and BB, since under all
those bailout schemes the bailout probability for depositors at zero-measure banks is never
higher than the bailout probability for deposits at positive-measure banks. Furthermore,
under PB and RB bailout probabilities are the same for all deposits. Hence, expected
returns on deposits of B,-banks are strictly higher than those on deposits of B;-banks for
any consistent assessment. Finally, under BB, the assessment u, < uy; = ug,, passes the

zero-measure test if and only if

(pl[l,du,dlh +ph[h,du,d1h)d1h < Ugy, -

This follows from the fact that under BB zero-measure banks are closed if they have offered
higher first-period deposit rates than all positive-measure banks and if the refinancing
condition (1) for the banking system does not hold. Therefore, B;-bank deposits will be
bailed out with the same probability as in the symmetric case where all banks have offered
d1;-%® Hence, expected returns on Bj-bank deposits are equal to u,4,,. The variables I; 4., 4,,
(¢ = [, h) indicate whether the overall refinancing condition (1) holds in the low (high)
state of production returns, thereby setting the bailout probability of the zero-measure
B;-banks to 0 or 1.

It remains to show that an assessment uy; = u1;, cannot be optimal under BB. Hence it
remains to analyze assessments of the type uy; = uy, under BB. Note that such assessments
can only be consistent if \; > n;/n where n; denotes the number of banks in B;. Hence,

the statement u := uy; = uyp is a consistent assessment is equivalent to the existence of a

36See section 3.5.4 for the special treatment of zero-measure banks under BB.
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real number \; > n;/n with u solving the system S()\;) described by equations 14 - 19:

u = (mq + Prgng)du (14)
v = (niqn + Prnn)din (15)
1 if g; > A
Gy = Pi= A (i=1,h) (16)
g/ N else
i — A 1—N) ifg > A )
g = WA e A (17)
0 else
. 1 a1
= S 1 18
q mln{ S () 2(Qld1h> , } (18)
. 1 Tan
= S 15. 19
qn mln{ A Q(thlh) ; } (19)

Note that ¢;; and g;, denote the bailout probabilities of banks in B; and B}, respectively
(¢ = I, h denotes the state of production returns). The remaining statements therefore

follow from lemma 4.

Lemma 4
Suppose that u < dy < dy,. If S(\;) has a solution u for arbitrary \; € (0,1], then

u < ﬂdlh.

Proof.

First of all note that a solution of the complete system has to solve the subsystems S,
(consisting of equations 14, 16, 18 and 19) and the subsystem S}, (consisting of equations
15, 17, 18 and 19).

The proof rests on the observation that the sub-system S, consists of the same equations
as the system S(dy;), which has the solution u4,. The only difference is that in the
system S(dip), gip is replaced by ¢; (¢ = [, h) in equation (15). The statement u < @g,,
therefore follows from the fact that ¢;, < g;.

To present this argument in a more formal way, we use the index ¢ to indicate both 7 = [
and i = h. Note that a solution of S, can be derived by solving equations (18) and (19)
and inserting the solutions in equation (17), which yields ¢; »(u, A;). Since the right-hand
side of equation (17) is decreasing in \; for arbitrary ¢; < 1, we obtain that g;,(u,-)

is decreasing in \;. By inserting ¢; in equation (15) we can therefore conclude that
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the solution u(dip, A;) of the resulting equation is decreasing in A;. Hence u(dyp, \) <
u(dyp, 0) = Gq,, . In order to show that the inequality holds strictly for A; > 0, we assume
that w(dip, \)) = g, for Ay > 0. By inserting u = 1g4,, in equations (18) and (19) we
can then see that ¢; = i q,, and therefore that g; ,(N\;) < ¢iq,,- But then insertion into

equation (15) would imply that u(dyp, ;) < @g,,, in contradiction to our assumption.

A.2 Proofs for Section 5

The propositions in section 5 are concerned with symmetric equilibria in £ = 0. Hence we
will either have to analyze the case where all banks offer the same first-period deposit rate
d; or the deviation case where (n — 1) banks offer the same first-period deposit rate d;
and one bank j offers a different rate d{¢¥. We will always denote the assessment for the
non-deviating banks by u; and that for the deviating bank by ud®'. Resulting first-period
deposits are denoted by D; and D¢ respectively.

Proof of proposition 5.
It only remains to substantiate (ii) and (iii). Statement (ii) is obvious for first-period
returns and follows for second-period returns, because they are given by S,* (d5'1 (d))
if di < dy, and by pu + pth§(d1) if d, > dy. Both expressions are increasing in d;.
Statement (iii) follows immediately from (ii) since if dzp < d¢ only symmetric equilibria
with d; < dy, are possible.

Proof of proposition 6.

Step 1: &1, is an equilibrium.

Given d; = (dg,...,dL), the only consistent assessment is u; = (dg,...,dr,). Hence the
equilibrium deposit distribution is D! = S;(dy,)/n (i = 1, ...,n) and each bank’s expected
profits are given by

1, = Sildy)

pr(ron — 1o1) > 0.

Consider now a deviation of one bank. Deviation to d% < d; leads to u¢® < u; and
hence to D%V = 0, which cannot be profitable. On the other hand d{® > d; leads
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to u; < ud® = Uggev and hence to Dev = S1(Tggev). This implies that the deviating
bank cannot refinance in the case of low production returns. By our assumption, the
punishment P which is imposed by the regulator in this case would outweigh all possible

deviation gains.
Step 2: No other equilibria & = (d;) with d; # dy, exist.

If d; < dy, then deviation to a slightly higher deposit rate di¢ (d; < d{® < dr) would
lead to u; < ufe’ = Ugger = dd®'. Therefore D{¢¥ = S;(d{®¥) < S;(dy) and the deviating
bank would be able to refinance in both states of production returns. The collection of
all savings outweighs the slightly higher interest payment. If d; > dy,, the only possible
assessment is uy = (Ug,, .-, Ug,) Where 4y, < di. But this implies a positive probability
of being closed and suffering the punishment P, which leads to negative expected profits.

Of course this is not possible in equilibrium.

Proof of lemma 2.

The proof rests on the continuity of the functions S;(-) (i = 1,2), @) and g,y (i = I, h).
First we prove the continuity for the points d € Dj;. Consider a sequence (dy)nen With
dy, — d (n — o0). If dSi(ug) < Sa(ren/d), then d,Si(4q,) < Sa(ren/d) for sufficiently
large n. If dSi(@4) = Sa(ron/d), we have @4, — 1 by equation (10) and di(d,) — ro1/d
(n — 00). Hence, in both cases we obtain 7(d,) — 7(d).

For points d € Dy the proof is completely analogous. Now suppose that d < dy. Again,
only the case d = dy, is interesting. If d, — d, then ¢4, — 1 by equation (9) and
d,di(d,) — dypdi(dy) = ry. Hence n(d,) — pu(ren — 721)-

Proof of lemma 3.

If d € Dy, then by equation (9) we obtain

__ 02 Ty,
daiu® " qd

q

implying that ¢ = cd~'u~% where

(azrgf)l/(lwz)
c:=—=—
ai
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and &; := o;/(1 + ;) (i = 1,2). Inserting ¢; in equation (8) we find that @4 can be

described as solution of the equation F'(u,d) = 0 where

a1

F(u,d) :== u — pjeu™®" — ppd.

But since F(i4,d) = 0 we find that F,u), + F; = 0 implying that @, = —F;/F,.3" Hence,

u., > 0 follows from

Fd(ua d) = —DPn
Fu(ua d) = 1+ O~11plu_(&1+1)-

Proof of proposition 7.
The proof follows the same arguments as the proof of proposition 6:

(1) £zp is an equilibrium. Deviation to d$® < dzp leads to u$® < u; and hence to D{¢¥ =
0, which cannot be profitable. On the other hand, d{* > d; leads to u; < u{® = Ugdev

and hence to D¢ = S (Uggev). But since 7(dd") < 0, deviation profits are negative.

(2) No other equilibria & = (d;) with d; # dgzp exist. If d; < dzp, then deviation to a
slightly higher deposit rate d{*" (di < d{*V < dzp) leads to D{*" = S(ev). By continuity,
losses in profits per unit of deposits can be offset by the collection of all savings if (d¢V —d;)

is small enough. If d; > dzp, then 7(d;) < 0, which cannot be the case in equilibrium.

Proof of proposition 8.

Considering a deviation d® # d; from a symmetric equilibrium d; = (dy, ..., d;), we make

the following preliminary remarks:

(1) From proposition 4 we know that only the following two assessments and deposit

constellations are possible:

(Al) u‘lie" < U D?ev =0 D, = Sl(ﬂdl)/n
(A2) U;?ev > Uy D(liev = Sl(ﬂdcliev) D1 =0.

37F, and F,; denote the partial derivatives of F' with respect to u and d respectively.
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Al is consistent if d{*¥ < d; and A2 if d{®¥ > d,. Moreover, if dy, < d;, d$® < dzp, then
the following additional consistency conditions hold. A1l is consistent if Uggev < TUg, and

A2 if tggee > 1Ug,. This follows directly from proposition 3 and the fact that (e.g. for Al)
(plIl,dl,d‘lie" +ph[h,d1,d‘fe")d(1jev < prdf® < gger < gy

(2) We can exclude equilibria & = (d;) where d; > dzp because they are negative expected

profits equilibria.

3) We do not have to consider deviations to d%¢¥ > dzp since they cannot be profitable.
1 y

They lead to zero profits in the case of A1l and to zero or negative profits in the case of
A2.

(4) If d1 € Umax, then d1 Z dL-
Now we turn to the proof of the proposition.

(i) Suppose that d; € Upax- Deviation to d®¥ # d; with d{*" < dzp cannot be profitable
since by TR depositors would always choose to deposit with the non-deviating banks (A1l

is consistent and Ug, > Uggev)-

(ii) We define d =: min{dyn,dzp}. From statement (i) we know that £y is a Nash
equilibrium because Eyg = (J) and d € Uypa,. No other equilibrium with d; + d exists,
since for d; < d deviation to a slightly higher deposit rate d¢¢¥ > d; leads to A2 (because
Uggev > TUg,) and hence such a deviation is always profitable if (d{ev — d;) is small enough.
The same argument applies for d; > d if d = dyg. In this case, deviation to slightly lower

deposit rates is profitable.

(iii) Case 1 follows from the same arguments as used under (ii). Consider now case 2. £zp
is a Nash equilibrium according to statement (i). Now turn to the question whether &, is
an equilibrium. Obviously, only deviations to d{¢¥ > dp, with Ugdew > dy, can be profitable.
Hence deviation is profitable if and only if 119 (dy,) — 7(dr,)S1(d)/n > 0. Moreover, no
other equilibria & = (d;) can exist since for d, < d; < dyr, deviation to slightly lower,
and for d; < dr, and d; > dyr, deviation to slightly higher deposit rates is profitable by

the same arguments as in (ii).
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Proof of proposition 9.

Suppose that Ul(gzp) > u1(Ezp). Then dgp > dgp (see table 2) and hence d;(czzp) >
d3(dzp). But since under E,p banks’ profits per deposit are given by

Dh (7“2h — J;(CZZP)> ;

this would imply that those profits are smaller than 7(dzp) = 0, which is impossible
in equilibrium. To prove that uQ(gzp) < us(Ezp), we draw on the fact that J;(JZP) <
d3(dzp).®® This implies that

Uz (gzp)

pu+ phczé(gzp)
< piu+ prds(dzp)
< U9 (gzp).

N

38Suppose that d(dzp) > d5(dzp). Then dzp > dzp which - as above - would imply that profits per
deposits are negative under £ p.
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