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1   Introduction

There has recently been considerable interest in the issue of indeterminacy
in both theoretical  and applied  macroeconomics. The  distinctive feature of



indeterminacy is that there are multiple well-behaved rational expectations
(RE) solutions to the model. These can take various forms, including a
dependence on extraneous random variables (called �sunspots�). Such so-
lutions correspond to self-fulÞlling prophecies and have been offered as an
explanation of the business cycle. Much of this recent research has focused
on stationary sunspot equilibria (SSEs) near an indeterminate steady state, a
possibility that has been examined in both extensions of Real Business Cycle
models, incorporating externalities, and in a variety of monetary models.1 A
detailed survey of this literature is provided by (Benhabib and Farmer 1999),
which gives extensive references.
A crucial related issue is the learnability of such solutions. Suppose agents

are not assumed to have rational expectations a priori but instead make fore-
casts using a perceived law of motion with parameters that they update over
time using an adaptive learning rule, such as least squares. Can such learn-
ing rules lead agents eventually to coordinate on an SSE? That it is indeed
possible for sunspot solutions to be learned by agents was demonstrated by
(Woodford 1990) in the context of the Overlapping Generations model of
money. In general it can be shown that the possibility of such coordination
depends on stability conditions for the SSE, as will be discussed further be-
low. It is also easy to develop examples in which SSEs are not stable under
learning. For an extensive treatment of adaptive learning in macroeconomics,
see (Evans and Honkapohja 2001c).
General conditions for stability under learning have been obtained for a

wide variety of models and solutions. These include several different types
of SSEs in both linear and nonlinear models. Again, for a full discussion, see
(Evans and Honkapohja 2001c), who show that �expectational stability� (E-
stability) conditions typically govern the local learnability of SSEs, as well as
other RE solutions. In the context of an endogenous growth model, an exam-
ple of learnable SSEs are the �growth cycles� studied in (Evans, Honkapohja,
and Romer 1998).2 These SSEs ßuctuate between neighborhoods of two dis-
tinct steady states, so that nonlinearity of the model is a crucial element in
the model.
Stability results under learning for the case of SSEs in a neighborhood

of a single indeterminate steady state have remained incomplete, despite

1In nonlinear models SSEs can also exist near multiple distinct steady states or rational
deterministic cycles.

2For another example of a learnable �animal spirits� equilibrium, see (Howitt and
McAfee 1992).
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the above noted prominence of such equilibria in applied macroeconomics.
However, new work has completed the stability results for this case in the
context of one-step forward-looking univariate models. These results are
given in (Evans and Honkapohja 2001a) and (Evans and Honkapohja 2001b),
and for the models studied they show that only a subset of indeterminate
steady states can have E-stable SSEs in their neighborhood. Moreover, these
E-stable SSEs take the particular form of a dependence on Þnite state Markov
processes.
We take up these issues in a standard type of monetary model. We use

a model with representative agents and money demand arising from cash-in-
advance constraints. Labor supply is ßexible and the government Þnances
its consumption purchases using seignorage. It is well known that cash-in-
advance can give rise to indeterminacies.3 However, a systematic study of
the stability under learning of the corresponding SSEs has not previously
been undertaken.
Our primary aims are to demonstrate that standard cash-in-advance mon-

etary models can have sunspot equilibria, in a neighborhood of an indeter-
minate steady state, which are stable under simple adaptive learning rules,
and to characterize the subset of SSEs that are stable under learning.4 A
secondary aim is to demonstrate how to apply the requisite techniques to
models that are sufficiently complex to require numerical evaluation.
Our Þndings are both sharp and somewhat unexpected. The model has

two regimes and the results depend on the regime. For one part of the pa-
rameter domain the model has two steady states. One of them, the one
associated with low inßation, is determinate and stable under learning, while
the other is indeterminate but unstable under learning. In this regime, none
of the SSEs near the indeterminate steady state are learnable. However, for
another part of the parameter domain there is a unique steady state that can
be either determinate or indeterminate. If the steady state is indeterminate,
then there are nearby Markov chain sunspot equilibria that are stable under
learning. In a neighborhood of this steady state, there also exist station-
ary vector autoregressive (VAR) solutions, depending on extraneous sunspot
noise, but these are not stable under learning. These results show that re-
quiring stability under learning redirects the focus of analysis to a particular

3See (Woodford 1994) for an extensive discussion of indeterminacy in cash-in-advance
models.

4(Packalén 1999) and (Weder 2001) consider learnability of SSEs in variants of real
business cycle models.
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type of indeterminate steady state and to particular SSEs near that steady
state.
When stable SSEs do exist, this raises the issue of whether economic

policy can be used to avoid them, either by eliminating the existence of SSEs
or by rendering them unstable. In our model the natural policy variable is
the level of government spending Þnanced by seignorage, and we Þnd that
changes in the level of government purchases can indeed be effective. For a
range of parameter values in which the steady state has nearby stable Markov
sunspot equilibria, lowering government purchases sufficiently can render the
steady state determinate, making the nearby sunspot solutions disappear.

2 The Model
We consider an inÞnite-horizon representative agent economy. There are two
types of consumption goods, cash and credit goods. (Cash goods must be
paid for by cash at hand.) There is also a ßexible labor supply, one unit of
which produces one unit of either consumption good. The unit endowment
of time is split between leisure and labor. Both consumption goods are
perishable and there are no capital goods.
Let the utility function be

Ut = Et

∞X
s=t

Bs−t
·
(c1s)

1−σ

1− σ +
(c2s)

1−σ

1− σ + α
(1− ns)1−σ
1− σ

¸
where c1s, c

2
s and ns denote cash goods, credit goods and labor supply, re-

spectively. B is the discount factor and σ > 0. The (sub-)utilities of cash
goods, credit goods and leisure are assumed identical in order to facilitate
investigation and presentation of numerical results. α is the relative weight
placed on leisure.
The household budget constraint is

Ms+1 +Bs+1 = ps(ns − c1s − c2s) +Ms + IsBs. (1)

Here Ms+1 and Bs+1 denote the stocks of money and bonds at the beginning
of period s+ 1. Is is the nominal one-period interest rate factor on risk-free
bonds earned during period s and known at the end of period s−1. ps is the
price of goods and labor in period s. The cash-in-advance constraint (CA
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constraint) takes the form

psc
1
s =Ms. (2)

We will focus on the case in which bonds are in zero net supply, but they
must be included at this stage in order to derive the household optimization
conditions.
DeÞning

ms+1 =Ms+1/ps and πs = ps/ps−1,

we can write the Þrst order conditions as

(c2t )
−σ = BE∗t [π

−1
t+1(c

1
t+1)

−σ] (3)

(c2t )
−σ = BE∗t [It+1π

−1
t+1(c

2
t+1)

−σ] (4)

(c2t )
−σ = α(1− nt)−σ. (5)

Here E∗t denotes the expectations of the household, conditional on time t
information, where we use the notation E∗t to indicate that the expectations
are not necessarily assumed to be fully rational, due to adaptive learning.
When rational expectations are assumed we will use the notation Et.
The market clearing condition is

nt = c
1
t + c

2
t + gt, (6)

where gt denotes government spending on goods. We assume that gt is an iid
random variable with small bounded support around the mean g > 0. Note
that the CA condition can be written in the form mt+1 = c

1
t+1πt+1.

There is also a government Þnance constraint taking the form

Bt+1 +Mt+1 = ptgt + ItBt +Mt.

For simplicity we ignore taxes, but the model could easily be modiÞed to
include Þxed lump-sum taxes. If bonds are not held in positive net amount
in equilibrium, then this constraint yields the familiar seignorage equation

πt =
mt

mt+1 − gt . (7)
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Household optimization, market clearing and the CA constraint lead to
the equations

nt = 1− α1/σB−1/σ{E∗t [π−1
t+1(c

1
t+1)

−σ]}−1/σ (8)

mt+1 = (1 + α−1/σ)nt − α−1/σ (9)

c1t = mt+1 − gt (10)

c2t = nt − c1t − gt, (11)

It+1 = (c2t )
−σB−1{E∗t [π−1

t+1(c
1
t+1)

−σ]}−1 (12)

Note that mt+1 =Mt+1/pt, the real money stock carried forward from period
t to period t+ 1, is determined at time t. Similarly, It+1 is determined and
known in period t. Equations (8)-(12), together with (7), give the temporary
equilibrium equations determining πt, nt,mt+1, c

1
t , c

2
t and It+1 as functions of

time t expectations, the exogenous government spending shock gt, and the
previous period�s real money stock mt.
We note that the labor supply response in this model is entirely stan-

dard. It can be shown that, under perfect foresight, dynamic labor supply is
characterized by

1− nt
1− nt+1

= BR
−1/σ
t+1 ,

where Rt+1 = It+1/πt+1. Thus increases in the real interest rate factor Rt+1

lead to increases in current labor supply nt for any value of σ.

3 Linearized Model
Our Þrst step is to determine the possible steady states and then to linearize
the model around the steady states.

3.1 Nonstochastic Steady States

We begin by determining the non-stochastic perfect foresight steady states
that are possible when gt = g is constant and nonstochastic. Denoting steady
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state values by bars over the variables, (8)-(10) and (7) imply

n̄ = 1− α1/σB−1/σπ̄1/σ c̄1

m̄ = (1 + α−1/σ)n̄− α−1/σ

c̄1 = m̄− g
π̄ = m̄/(m̄− g).

These equations can be reduced to a single equation in the steady state
inßation rate π̄,

(1− g)π̄ = 1 + gAπ̄1/σ, (13)

where A = (1 + α1/σ)B−1/σ > 0.
For g = 0 there is a unique steady state π = 1. For g > 0, it can be

seen that the model has two regimes, depending on σ. If σ < 1, then the
right-hand side of (13) is a convex function, while the left-hand side deÞnes
a straight line. When σ < 1 there are therefore two cases. Provided g > 0
is below a threshold value, depending on α, σ and B, there are two distinct
steady states, 1 < π̄L < π̄H , while if g exceeds this threshold there are no
perfect foresight steady states. Below this threshold value, increases in g
raise π̄L and lower π̄H . The σ < 1 regime is standard in seignorage models.
However, this model also has a less familiar regime that arises when σ > 1.
In this case the right hand side is concave, and provided 0 < g < 1, which
we assume throughout the paper, there is a unique steady state π̄. In this
regime increases in g raise π̄. Figures 1 and 2 illustrate the two cases σ < 1
and σ > 1.

3.2 Linearization

Linearizing the model around a steady state, the system can be reduced to
two dynamic equations in the endogenous variables nt and πt. Let gt = g+ut,
where ut is now assumed to be white noise. The linearized model takes the
form

nt = δ0 + δnE
∗
t nt+1 + δπE

∗
t πt+1, (14)

and

πt = β00 + βn0E
∗
t−1nt + βπ0E

∗
t−1πt + βn1E

∗
t nt+1 + βπ1E

∗
t πt+1 + βgut. (15)
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Figure 1: σ < 1
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Figure 2: σ > 1
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The coefficients of the equations are given by

δn = −(1− m̄)(m̄− g)−1 (16)

δπ = −σ−1π̄−1(1 + α−1/σ)−1(1− m̄)
βn0 = −(1 + α−1/σ)(1− m̄)(m̄− g)−2

βπ0 = −σ−1(1− m̄)m̄−1

βn1 = −π̄βn0

βπ1 = −π̄βπ0.

Further details are given in the Appendix.
The linearized reduced form (14)-(15) can be written as

yt = ξ + J0E
∗
t−1yt + J1E

∗
t yt+1 +Kut, (17)

where yt = (nt,πt)0. The coefficient matrices are given by

J0 =

µ
0 0
βn0 βπ0

¶
, J1 =

µ
δn δπ
βn1 βπ1

¶
and K =

µ
0
βg

¶
. (18)

Moreover, ξ0 = (δ0,β00).
5 We next discuss the possible RE solutions to (17).

3.3 Noisy Steady State and VAR Solutions

It is straightforward to see that the reduced form (17) has RE solutions
taking the form of �noisy steady states,�

yt = ā+Kut, where ā = (I − J0 − J1)
−1ξ. (19)

These solutions are often called minimal state variable (MSV) solutions6 and
are the solutions most typically adopted in applied work.
If the steady state, around which we have linearized the model, is deter-

minate then, as is well known, this is the unique stationary solution near the
steady state. See, for example, (Blanchard and Kahn 1980), (Farmer 1999)
and (Evans and Honkapohja 2001c). On the other hand, if the steady state
is indeterminate there exist SSEs in a neighborhood of that steady state.7

5ξ = 0 if the model is expressed in terms of deviations from the steady state. The
speciÞc value of βg will not be needed.

6See (McCallum 1983).
7The terminology �regular� and �irregular� is often used synonymously with �deter-

minate� and �indeterminate.�
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The possibility of modeling business cycle ßuctuations as SSEs has been
emphasized by (Cass and Shell 1983), (Azariadis 1981), (Farmer 1999) and
(Guesnerie and Woodford 1992).
Standard procedures yield the following result (e.g. see Chapter 10 of

(Evans and Honkapohja 2001c)):

Proposition 1 The linearized model (17) is indeterminate if and only if at
least one of the eigenvalues of (I − J0)

−1J1 lies outside the unit circle. This
holds near the steady state if and only if

|1− βπ0| < |δn − δnβπ0 + δπβn0 + βπ1| .

In this and other propositions we are excluding non-generic knife-edge
cases in which an eigenvalue lies on the boundary of the indeterminacy or
stability condition.
Given the speciÞc form of the matrices (18), with coefficients given in

(16), it can be shown that J1 is singular and thus that (I − J0)
−1J1 has a

zero eigenvalue. The steady state is therefore indeterminate if and only if
the other root has absolute value greater than one, leading to the condition
given. Details are provided in the Appendix.
A familiar feature of the seignorage model is that in the case of two steady

states the high inßation equilibrium is indeterminate. As we will see, this
result also holds in our model. In addition, it can be shown that for some
parameter values we have indeterminacy in the regime σ > 1 when there is
a single steady state. In fact we have:

Corollary 2 In the case σ > 1 the steady state is indeterminate when σ is
sufficiently large.

This result can be seen by noting that limσ→∞ m̄ = m∞ and limσ→∞ π̄ =
π∞ are Þnite, and that we have βπ0 → 0−, βπ1 → 0+, βn0 → 2(1−m∞)(m∞−
g)−2, βn1 → −π∞2(1−m∞)(m∞−g)2, δπ → 0− and δn → −(1−m∞)(m∞−
g)−2. With these values the condition in the proposition is satisÞed.
We next consider the form of SSEs in cases of indeterminate steady states.

Using the method of undetermined coefficients one can show that there exist
stochastically stationary solutions of the form

yt = a+ byt−1 + c0ut + c1ut−1 + d0ηt + d1ηt−1, (20)

10



where ηt, the sunspot variable, is an arbitrary (observable) exogenous vari-
able satisfying Etηt+1 = 0. For convenience we will refer to these as vector
autoregressive (VAR) SSEs, though they also include moving average depen-
dencies on both the intrinsic and extrinsic disturbances. This is the type of
solution that is emphasized by much of the applied indeterminacy literature,
see e.g. (Benhabib and Farmer 1999). For the case at hand, when the steady
state is indeterminate, there are VAR SSEs in which b has one eigenvalue of
0 and one root equal to the inverse of the nonzero root of (I − J0)

−1J1.8

Although the VAR solutions are the form of SSEs that have recently
received the most attention, the literature has also drawn attention to the
existence of solutions generated by Þnite state Markov solutions. We next
show that this type of solution can exists in the monetary model that we
have developed.

4 Markov Sunspot Solutions
When a steady state is indeterminate it can be anticipated from the theoret-
ical literature, see e.g. the survey paper by (Chiappori and Guesnerie 1991),
that there will also exist SSEs around the steady state for which the sunspot
process is a Markov chain with a Þnite number of states. We will call such
solutions Markov SSEs to distinguish them from the VAR SSEs discussed
above.9

For simplicity, we focus on SSEs driven by a 2-state Markov chain. Thus
assume that st is a two state exogenous process, taking values st = 1 or
st = 2. The transition probabilities are pij , j = 1, 2, so that p12 = 1 − p11

and p21 = 1− p22. We look for solutions of the form:

nt = n(j) and πt = π(i, j) + βgut if st−1 = i and st = j,

for i, j = 1, 2. To satisfy (14)-(15) under RE the values of n(j) and π(i, j)
we must have

n(j) = δn(pj1n(1) + pj2n(2)) + δπ(pj1π(j, 1) + pj2π(j, 2)), (21)

π(i, j) = βn0(pi1n(1) + pi2n(2)) + βπ0(pi1π(i, 1) + pi2π(i, 2)) +

βn1(pj1n(1) + pj2n(2)) + βπ1(pj1π(j, 1) + pj2π(j, 2)).

8See the Appendix for a brief discussion and references.
9(Evans and Honkapohja 2001b) examine the relation between these two types of SSEs

and their E-stability properties in the basic one-step forward looking model.
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This can be rewritten in the form

θ = T θ, (22)

where

θ0 = (n(1), n(2), π(1, 1), π(1, 2),π(2, 1),π(2, 2))

and the matrix T is obtainable from equations (21). A Markov SSE θ exists
if there exist 0 < p11 < 1 and 0 < p22 < 1 and θ 6= 0 for which θ satisÞes the
equation (22).
Note that if an SSE exists then, in our linearized model, kθ is also an

SSE for any real k for the same transition probabilities, so that the �size� of
the sunspot ßuctuations is indeterminate. Formally, SSEs exist if and only
if T − I is singular for some 0 < p11, p22 < 1. Noting that T depends on p11

and p22, we solve the equation

det(T (p11, p22)) = 0

that gives the required relationship

p11 = f(p22). (23)

Based on previous studies of simpler forward-looking models, see in particular
(Chiappori, Geoffard, and Guesnerie 1992), we hypothesize that there exist
Markov SSEs if and only if the steady state is indeterminate. Numerical
support for this proposition is given below.
In linearized models such as the current one, SSEs exist only for very par-

ticular transition probabilities. That is, for arbitrary transition probabilities
the matrix T is nonsingular, so that the equation θ = T θ has only the trivial
solution θ = 0, which corresponds to the steady state. The condition (23)
can be thought of as a resonant frequency condition that makes it possible
for the excitation of the SSE.10 As indicated above, corresponding to a prob-
ability pair (p11, p22) satisfying (23) is a 1-dimensional continuum of values
for θ that constitute SSEs.
10This terminology is suggested by (Evans and Honkapohja 2001b) in which such Markov

SSEs are theoretically studied for the basic one-step forward looking linear model.
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5 Stability Under Learning
We now take up the question of stability of the RE solutions under adaptive
learning rules. In the case of indeterminate steady states we separately assess
each of the three types of solution for their stability under learning.
The starting point for analysis of learning is the temporary equilibrium

in the model. If agents optimize using subjective (but possibly nonrational)
probability distributions over future variables, optimal behavior is character-
ized by Þrst-order necessary conditions that can be written as a sequence of
Euler equations involving subjective expectations over the entire future. The
Euler equation for the current period is assumed to be the behavioral rule
giving the current decision as a function of the expected state next period.
To complete the description of the agents� behavior we must supplement
this Euler equation with a rule for forecasting the required state variables
next period. The parameters of the forecast functions are updated using a
standard adaptive learning rule such as least squares.
Least squares and related learning dynamics have been widely studied and

shown to converge to the usually employed REE in many standard models.
This is true of the stationary solutions of, for example, the Cagan model of
inßation, the Sargent-Wallace IS-LM-PC model, the Samuelson overlapping
generations model and the real business cycle model.11

In modeling learning the private agents are assumed to have perceptions
about the (in general stochastic) equilibrium process of the economy. This is
usually called the perceived law of motion (PLM) and depends on parameters
that are updated as new data become available over time. At each period t,
agents form expectations by making forecasts using the estimated PLM. This
leads to a temporary equilibrium, called the actual law of motion (ALM),
which provides the agents a new data point of the key variables. Estimated
parameters are updated in each period according to least squares and the new
data. The issue of interest is the stability under learning of some rational
expectations solution, i.e. whether the estimated parameters of the PLM
converge to REE values over time.
It is well known that, for a wide range of models, stability under adaptive

learning is governed by E-stability conditions, see the (Evans and Honkapohja
2001c) book for an extensive discussion of these concepts and analytical tech-

11Recent overviews of the literature are provided e.g. in (Evans and Honkapohja 1999)
and (Evans and Honkapohja 2001c). (Bray and Savin 1986) and (Marcet and Sargent
1989b) are key early papers on adaptive learning.

13



niques. The E-stability conditions are developed as follows. For given values
of the parameters of the PLM one computes the resulting ALM, and E-
stability is then determined by a differential equation in notional time in
which the parameters adjust in the direction of the ALM parameter values.
We now illustrate these steps in detail for the case of steady state REE and
then just sketch the procedure and provide the E-stability conditions in the
other cases.
Consider the noisy steady state solutions (19). These solutions exist

whether or not a steady state is indeterminate. Agents have a PLM of the
form

yt = a+Kut.

Note that it is of the same form as the steady state REE, but in general
the value of a differs from ā given in (19). Under adaptive learning agents
estimate a as the sample mean of past yt, i.e.12

at = t
−1

tX
`=1

yt−`.

The temporary equilibrium is then given by (17) with E∗t−1yt = at−1 and
E∗t yt+1 = at. The question of interest is whether for this system at → ā as
t→∞. The answer is that convergence is governed by E-stability.
To determine E-stability one assumes expectations Et−1yt = Etyt+1 = a,

based on the above PLM, for an arbitrary a (intuitively, at evolves asymp-
totically slowly under adaptive learning). Substituting these into (17) the
implied ALM takes the form

yt = ξ + (J0 + J1)a+Kut.

This gives rise to a mapping T (a) = ξ+(J0+J1)a, and E-stability is deÞned as
the local asymptotic stability of the Þxed point ā of the differential equation

da

dτ
= T (a)− a,

12For this simple set-up, least squares estimation of an unknown constant amounts to
computing the sample mean from past data. We are assuming that the current value of
yt is unavailable when a is estimated at t.
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where τ is virtual or notional time. (Note that this is simply a partial ad-
justment formula in the virtual time.) Exploiting the linearity of the T -map
in this case and using the techniques in (Evans and Honkapohja 2001c) we
establish:

Proposition 3 The noisy steady state is stable under learning if and only
if it is E-stable. The E-stability condition is that all eigenvalues of J0 + J1

have real parts less than one. This is equivalent to the conditions

δn + βπ0 + βπ1 < 2 and δn − δnβπ0 + δπβn0 + βπ1 < 1− βπ0.

See the Appendix for the derivation of the stated condition. We remark
that this E-stability condition is not the same as the determinacy condition.
Consider next the VAR SSEs. Now agents are assumed to estimate the

coefficients of their PLM (20) using recursive least squares, and to make fore-
casts based on the estimated PLM. E-stability of such solutions is examined
by constructing the mapping from the PLM to the ALM. In the Appendix we
outline the arguments establishing that necessary conditions for E-stability
are given by

Proposition 4 Necessary E-stability conditions for the VAR SSEs are that
all the eigenvalues of the matrices

J0 + J1(I + b) and b0 ⊗ J1 + I ⊗ (J0 + J1b)

have real parts less than one.

We remark that this condition can be readily evaluated numerically.13

Finally we consider the Markov SSEs. The possibility of convergence of
adaptive learning to Markov sunspot solutions was Þrst shown by (Woodford
1990), in the context of an overlapping generations model. (See also (Evans
1989)). Local stability conditions for Markov SSEs in simple forward looking
models were developed in (Evans and Honkapohja 1994). For Markov SSEs
near an indeterminate steady state, additional results have recently been

13We note that, in these results, the agents are assumed to use only data up to the
preceding period t− 1 for their parameter estimates for period t. If instead contempora-
neous data can be used, the stability condition is sometimes though not always altered,
see (Van Zandt and Lettau 2001) and Section 3.4 of (Evans and Honkapohja 2001c) for
discussions of this issue.
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obtained in (Evans and Honkapohja 2001b) and (Evans and Honkapohja
2001a). We extend these techniques to model learning in the monetary model
of this paper.
Suppose that agents observe a sunspot st satisfying the resonant frequency

condition and that they consider conditioning their actions on the values of
the sunspot. A simple learning rule is that agents compute state contingent
averages. Thus at any time t they estimate the value of n(j) as the mean
value that nt−` has taken in state st−` = j, for ` = 1, . . . , t. Similarly π(i, j)
is estimated as the mean value πt−` has taken whenever st−`−1 = i and
st−` = j. Agents then make forecasts using these estimates and the transition
probabilities for the observed sunspot (which can also be estimated if they
are unknown).14

Based on previous research we expect that the stability of SSEs under
adaptive learning depends upon the corresponding E-stability condition and
we now examine E-stability of resonant frequency Markov SSEs. The deÞni-
tion of E-stability is easily formulated as follows. The T -mapping that maps
the PLM to the corresponding ALM (actual law of motion) is here linear and
given by the matrix T in (22). E-stability is determined by the stability of
the differential equation

dθ/dτ = T θ − θ. (24)

This leads to the following result:15

Proposition 5 Necessary and sufficient conditions for a Markov SSE to be
E-stable are that T − I has one zero root and that all other roots of T − I
have negative real parts.

We end this section with two remarks. First, it is possible in principle for
a steady state to be stable under learning and at the same time for nearby
SSEs to be stable under learning. When this occurs, the solution to which

14An alternative learning procedure would be to estimate the expectations of nt+1 and
πt+1 conditional on the current sunspot state st. Because it is simpler to simulate, we
later adopt this alternative scheme when examining the nonlinear model numerically. The
stability properties of the two approaches appear to be identical.
15Note that T − I always has a zero eigenvalue as a result of the resonant fre-

quency condition (23). The necessary condition was proved in Chapter 10 of (Evans and
Honkapohja 2001c). Sufficiency follows from the mathematical Lemma in the Appendix
of (Honkapohja and Mitra 2001).
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the economy converges depends on the form of the PLM, i.e. on whether
or not agents in their learning allow for a possible dependence on sunspots.
Second, the results of this section are subject to the qualiÞcation that our
linearized monetary model has been derived from an underlying nonlinear
model. Therefore, we will also investigate the existence and stability of SSEs
directly for the nonlinear model using numerical methods and simulations.

6 Numerical Results
Using the theoretical results in the preceding sections one can numerically
investigate the existence and stability under learning of the various types
of solution for the different regimes. The underlying structural parameters
are the utility function parameters B,α, σ together with the mean level of
government spending g. To keep the numerical search manageable, we Þx
the discount rate at B = 0.95 and α = 1. We then consider a grid of possible
values for the utility parameter σ > 0 and government spending g > 0.
Recall that in the regime σ < 1 there are two (noisy) steady states, provided
that g > 0 is less than the critical value (which will be assumed hereafter),
while in the regime σ > 1 there is a single (noisy) steady state. We have the
following numerical results:16

1. If σ < 1 the low inßation steady state πL is determinate and the high
inßation steady state πH is indeterminate. If σ > 1 the steady state
can be determinate or indeterminate. Both VAR and Markov SSEs
exist near indeterminate steady states.

2. If σ < 1 the determinate steady state solution πL is always stable
under learning and the indeterminate steady state solution πH is always
unstable under learning. If σ ≥ 1 the steady state is always stable under
learning whether it is determinate or indeterminate.

3. The VAR SSEs are never stable under least squares learning.

4. When σ < 1, Markov SSEs near πH are not stable under learning (one
of the roots of T−I is positive at the resonant transition probabilities).

5. When σ > 1 and the steady state is indeterminate, Markov SSEs exist
and are stable under learning.

16The numerical routines are available from the Þrst author upon request.
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These numerical results were also conÞrmed for a range of values of α > 0.
Here is a numerical example of a Markov SSE satisfying the resonant

frequency condition.

Example: Suppose that B = 0.95, α = 1,σ = 3.5 and g = .19.17 The
steady state is indeterminate: (I − J0)

−1J1 has one root of 0 and one root
of −1.2408. There are Markov SSEs with, for example, p11 = 0.1041 and
p22 = .09, and these SSEs are stable under learning.

We now return to the original nonlinear system to discuss further the
Markov SSEs. There are several important differences between the nonlin-
ear system (7)-(10) and the linearized system (14)-(16) with respect to the
Markov SSEs. In the linearized system the resonant frequency condition (23)
must be satisÞed exactly and the �size� of the SSE is indeterminate, as earlier
discussed. In the exact nonlinear system there are Markov SSEs for transi-
tion probabilities close to the resonant frequency condition and the value of
θ is in part determined by these probabilities. This issue is fully analyzed
for the univariate forward looking model in (Evans and Honkapohja 2001a).
Thus, although the linearized model is convenient for obtaining existence
and stability conditions for Markov SSEs, it is important to establish further
details using the nonlinear model.
Consider, therefore, the learning dynamics in the original nonlinear model

(7)-(10). The key variable that agents must forecast is Xt+1 = π
−1
t+1(c

1
t+1)

−σ.
Because the sunspot variable is assumed to be Þrst-order Markov, the con-
ditional expectation of this variable depends only on the current state. A
simple learning rule is thus to estimate the mean value of Xt+1 conditional
on the current sunspot state at t, e.g. by state contingent averaging:

�Xi,t = (#Ni(t))
−1

X
1≤`≤t,
st−`−1=i

Xt−`,

i = 1, 2, where #Ni(t) denotes the number of data points in which st−`−1 = i
for 1 ≤ ` ≤ t. Thus agents at time t estimate the mean value that Xt+1 will
take, next period, as �Xi,t, when the sunspot in period t is in state st = i,
i = 1, 2. Accordingly they form expectations at t as E∗tXt+1 = �Xi,t. Over
time the estimates �Xi,t are revised in accordance with observed values of

17We have not tried to obtain the parameter values by calibrating the model to data,
since our main goal is to illustrate numerically the different cases that can arise.
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Figure 3: Convergence of adaptive learning to sunspot solution

Xt following each of the two different states. Under adaptive learning the
model consists of these learning dynamics together with the equations (7)-
(12). From the numerical results for the linearized model, we anticipate
convergence to a stationary sunspot solution, for transition probabilities close
to satisfying the resonant frequency condition, when σ > 1 and the steady
state is indeterminate.
We have simulated the nonlinear system and the corresponding E-stability

differential equation using the parameter values from the above example.
Figure 3 illustrates convergence to the sunspot equilibrium for the choice of
transition probabilities p11 = 0.07 and p22 = 0.05 and initial conditions near
the steady state. (The vertical axis shows deviations of �X1 and �X2 from
the steady state value of X̄ and the initial deviations were �X1 = X̄ + 0.01
and �X2 = X̄ − 0.01). The simulation clearly shows convergence to a Markov
SSE. In this SSE the ratio of output in the two states is n1/n2 = 1.11 and
expected inßation E∗t πt+1 in the two states are 1.20 and 2.86.
The results of this section show that, in the case in which σ > 1 and the

steady state is indeterminate, endogenous ßuctuations due to expectational
indeterminacy are a real concern. For exogenous sunspots near the resonant
frequency, rational expectation SSEs exist and are stable under simple learn-
ing rules. These considerations raise the question of whether policy is able
to avoid such expectational volatility.
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7 Changes in Policy
We have seen that in this model there are two steady states, πL and πH when
σ < 1 and g > 0. There has been much discussion of the issue of whether
the economy might converge to the indeterminate steady state πH in related
seignorage models. While we do take seriously the potential economic in-
stability of the economy due to the multiplicity of equilibria in this case,
we believe that the primary concern in this case is divergent paths (with πt
increasing beyond πH to unsustainable levels) if for some reason πt escapes
from the basin of attraction of πL. Reductions in g tend to stabilize the econ-
omy in this case, making convergence to πL more likely. Fiscal constraints
on deÞcits and debt can also play an important role. The stability results
of this and other papers suggest that πH and SSEs near πH are not locally
stable under learning, though divergent paths are a concern.18

However, a new case appears in our model of seignorage Þnance. In the
case σ > 1 there is a unique steady state that can be determinate or indeter-
minate and for σ sufficiently large it will necessarily be indeterminate. For
values of σ > 1 the (noisy) steady state is stable under steady state learn-
ing. Furthermore, if the steady state is indeterminate and agents condition
their actions on an exogenous sunspot near the resonant frequency, then they
will converge to a noisy Markov SSE. Can policy help avoid the endogenous
ßuctuations which can arise in this case?
That this is indeed possible can be seen by continuing the example from

the previous section. Simulations show that as g is reduced the amplitude of
the ßuctuations becomes smaller, and that if g is reduced sufficiently there
will instead be convergence to the steady state, even though in their learning
agents allow for the possibility of a dependence on the sunspot state. Figure
4 simulates the E-stability differential equation for the nonlinear model using
the same structural parameter values and the transition probabilities for the
Markov sunspot variable, but with g reduced to g = 0.05. (Initial values are
taken as �X1, �X2 = X̄ ± 1. Clearly there is now convergence to the steady
state. In this steady state π = 1.16 and output ßuctuations are eliminated.
Using the theoretical results of earlier sections, we can numerically in-

vestigate this issue more generally. For the results given in Table 1, we set
α = 1 and again Þx the discount rate at B = 0.95. For each value of σ

18The standard seignorage model under learning was Þrst studied by (Marcet and
Sargent 1989a). The role of Þscal constraints is discussed in (Evans, Honkapohja, and
Marimon 2001).
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we examine the implications of different choices of g. Table 1 shows that
for a substantial range of values for σ, endogenous ßuctuations depending
on extraneous sunspot variables can be avoided by decreasing government
purchases g sufficiently.

TABLE 1: Critical values of g for α = 1.

σ 1.1 1.5 2.0 2.5 3.0 3.5 3.7 3.9 ≥ 4
g 0.359 0.341 0.267 0.190 0.118 0.053 0.029 0.006 0
π 16.89 4.39 2.56 1.84 1.44 1.175 1.091 1.018 1

For each value of σ reported in Table 1, a critical value of g is reported,
together with the associated value of the steady state inßation rate. At the
stated or larger values of g the steady state is indeterminate, there exist
Markov SSEs, and these SSEs are stable under adaptive learning. For lower
values of g the steady state becomes determinate and SSEs near the steady
state no longer exist. Note that for σ ≥ 4 any positive value of g is consistent
with stable Markov SSEs. However, for any σ in the range 1 < σ < 4 stable
Markov SSEs exist for high values of g but not for sufficiently low values.
In this region a reduction in g can bring about a double beneÞt by both
reducing steady state inßation and eliminating SSEs.19

19These results are quantitatively, but not qualitatively, sensitive to the choice of α. For
example, for α < 1 determinacy can be obtained, with sufficiently low g, for values of σ
less than an upper limit that now exceeds 4.
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In the model of this paper we have focussed on the seignorage case
in which government purchases are Þnanced entirely by printing money.
Seignorage models have been used most commonly as a potential explana-
tion of hyperinßation, and our numerical example indeed emphasized the
possibility of endogenous ßuctuations arising at high levels of inßation when
the level of seignorage is large. It is immediate from Table 1, however, that
stable Markov SSEs near indeterminate steady states can also arise at low
levels of inßation. We have made no attempt to calibrate the model to ac-
tual economies, and this would only be more appropriate with more elaborate
versions of the model. However, the theoretical results of this paper show
that monetary models of this type indeed have the power to explain business
cycle ßuctuations.

8 Conclusions
Indeterminacy of equilibria has been a major issue in both business cycle
analysis and monetary economics. Most of the applied research has examined
the question of the existence of self-fulÞlling ßuctuations in a neighborhood
of an indeterminate steady state. This paper has imposed the additional
discipline of asking whether there exist such RE solutions which are stable
under adaptive learning dynamics. If solutions are not learnable, they may
well be just theoretical artifacts. On the other hand, if they are stable under
learning dynamics, then agents could plausibly coordinate on such solutions.
We have examined these issues in the context of a standard inÞnite hori-

zon representative agent framework in which money demand is generated
by cash in advance constraints. The model has allowed for both cash and
credit goods as well as for a ßexible labor supply with exogenous government
spending Þnanced by seignorage.
Using numerical techniques, we have shown that, for some regions of the

parameter space, there do exist learnable sunspot equilibria in a neighbor-
hood of an indeterminate steady state. The learnable SSEs take a particular
form, namely the sunspot process is a Þnite state Markov chain with transi-
tion probabilities close to the resonant frequency property. The other types
of SSEs are not learnable. In our model, the case of learnable SSEs arises
for the regime in which there is a single steady state. In contrast, in the
often studied regime with two steady states the SSEs near the indeterminate
steady state are not learnable.
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The existence of learnable non-fundamental equilibria is a key question
for the endogenous ßuctuations approach in monetary economics. Finding
such solutions in models with indeterminacies is an additional desideratum
which narrows the set of acceptable equilibria. However, the results in this
paper indicate the potential of this line of thought for macroeconomics.

Appendix: Technical Details
Eliminating mt+1 and c1t from (7) and (8)-(10) and linearizing leads to

nt = −σ−1π̄−1(1− n̄)E∗t πt+1 − (1 + α−1/σ)(1− n̄)(c̄1)−1E∗t nt+1, and

πt =

µ
1

m̄− g
¶
(1 + α1/σ)B−1/σ[−σ−1π̄(1−σ)/σ(c̄1)E∗t−1πt − π̄1/σ(1 + α−1/σ)E∗t−1nt]

−
µ

m̄

(m̄− g)2
¶
×

{(1 + α1/σ)B−1/σ[−σ−1π̄(1−σ)/σ(c̄1)E∗t πt+1 − π̄1/σ(1 + α−1/σ)E∗t nt+1]− gt}.
Using the steady state relationships yields (14) and (15) with parameter
values (16).
To see that J1 is singular, note that

J1 = (1− m̄)
µ −(m̄− g)−1 −σ−1π̄−1(1 + α−1/σ)−1

π̄(1 + α−1/σ)(m̄− g)−2 π̄σm̄−1

¶
.

Thus det(J1) = (1 − m̄)σ−1(m̄ − g)−1 (−π̄m̄−1 + (m̄− g)−1) = 0 using π̄ =
m̄/(m̄− g).

Proof of Proposition 1: The model has no predetermined variables.
Therefore indeterminacy prevails if at least one of the eigenvalues of Ω =
(I − J0)

−1J1 lies outside the unit circle., and otherwise the steady state is
determinate. The matrix is given by

Ω =

µ
1 0

−βn0 1− βπ0

¶−1 µ
δn δπ
βn1 βπ1

¶
=

Ã
δn δπ

δnβn0+βn1

1−βπ0

δπβn0+βπ1

1−βπ0

!
.
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Because J1 is singular, det(Ω) = 0 and the conditions for determinacy sim-
plify to the single condition |tr(Ω)| < 1. Since

tr(Ω) =
δn − δnβπ0 + δπβn0 + βπ1

1− βπ0

,

the indeterminacy condition |tr(Ω)| > 1 is just the condition given in the
statement of the proposition.

Proof of Proposition 3: The method of proof for Proposition 11.3 in
(Evans and Honkapohja 2001c), which deals with the same situation of mixed
datings of expectations, can be easily modiÞed to the multivariate linear
setting in this paper. Compare also Chapter 10 of (Evans and Honkapohja
2001c). Thus E-stability is equivalent to stability under learning.
The E-stability condition is that all the eigenvalues of J0 + J1 have real

parts less than one, or equivalently that the eigenvalues of J0 + J1 − I have
real parts less than zero. For 2× 2 matrices this condition can be written as

tr(J0 + J1) < 2 and det(J0 + J1 − I) > 0.

Given the form of the matrices in (18) we have

J0 + J1 =

µ
δn δπ

βn0 + βn1 βπ0 + βπ1

¶
.

Using δnβπ1 − δπβn1 = 0 from det(J1) = 0 yields the condition stated in the
proposition.

Proof of Proposition 4: For the VAR solutions one starts with PLM
of the form (20) and computes that, under the PLM

E∗t−1yt = a+ byt−1 + c1ut−1 + d1ηt−1

E∗t yt+1 = a+ b(a+ byt−1 + c1ut−1 + d1ηt−1) + c1ut + d1ηt,

where it is assumed that the current values ut, ηt of the exogenous shocks,
but not the endogenous variable yt are in the information set for period t.20

20This assumption is commonly made, see Chapter 10 of (Evans and Honkapohja 2001c)
for a discussion.
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Substituting these into the linear model (17) yields the mapping from PLM
to ALM, which, component by component, is given by

a → ξ + J0a+ J1(1 + b)a

b → J0b+ J1b
2

c0 → K + J1c1

c1 → J0c1 + J1bc1

d0 → J1d1

d1 → J0d1 + J1bd1.

The matrix quadratic in b in general has multiple solutions. The noisy steady
state corresponds to the solution b = 0, and in the determinate case this is
the unique stationary solution. Following the methodology of (Blanchard
and Kahn 1980), (Farmer 1999) and (Evans and Honkapohja 2001c), Section
10.8, a solution b 6= 0 can be computed in the indeterminate case in which
(I − J0)

−1J1 has a root outside the unit circle. Because (I − J0)
−1J1 always

has one root inside the unit circle (speciÞcally 0), imposing the condition
that the solution be nonexplosive leads to a linear restriction between nt, πt
and exogenous innovations dated t and t − 1. The solution b 6= 0 has one
eigenvalue of 0, corresponding to this linear restriction, and an eigenvalue
equal to the inverse of the nonzero root of (I − J0)

−1J1. The necessary E-
stability conditions in Proposition 4 are the local stability condition of the
differential equations for the a and b components of the E-stability differential
equation. Their formal derivation is analogous to those in Section 10.2 of
(Evans and Honkapohja 2001c).

25



References
Azariadis, C. (1981): �Self-FulÞlling Prophecies,� Journal of Economic
Theory, 25, 380�396.

Barnett, W., J. Geweke, and K. Shell (eds.) (1989): Economic Com-
plexity: Chaos, Sunspots, Bubbles, and Nonlinearity. Cambridge Univer-
sity Press, Cambridge.

Benhabib, J., and R. E. Farmer (1999): �Indeterminacy and Sunspots in
Macroeconomics,� in (Taylor and Woodford 1999), chap. 6, pp. 387�448.

Blanchard, O., and C. Kahn (1980): �The Solution of Linear Difference
Models under Rational Expectations,� Econometrica, 48, 1305�1311.

Bray, M., and N. Savin (1986): �Rational Expectations Equilibria, Learn-
ing, and Model SpeciÞcation,� Econometrica, 54, 1129�1160.

Cass, D., and K. Shell (1983): �Do Sunspots Matter?,� Journal of Polit-
ical Economy, 91, 193�227.

Chiappori, P., and R. Guesnerie (1991): �Sunspot Equilibria in Se-
quential Market Models,� in (Hildenbrand and Sonnenschein 1991), pp.
1683�1762.

Chiappori, P. A., P.-Y. Geoffard, and R. Guesnerie (1992):
�Sunspot Fluctuations around a Steady State: The Case of Multidimen-
sional, One-Step Forward Looking Economic Models,� Econometrica, 60,
1097�1126.

Evans, G. W. (1989): �The Fragility of Sunspots and Bubbles,� Journal of
Monetary Economics, 23, 297�317.

Evans, G. W., and S. Honkapohja (1994): �On the Local Stability of
Sunspot Equilibria under Adaptive Learning Rules,� Journal of Economic
Theory, 64, 142�161.

(1999): �Learning Dynamics,� in (Taylor and Woodford 1999),
chap. 7, pp. 449�542.

(2001a): �Existence of Adaptively Stable Sunspot Equilibria near
an Indeterminate Steady State,� mimeo.

26



(2001b): �Expectational Stability of Resonant Frequency Sunspot
Equilibria,� mimeo.

(2001c): Learning and Expectations in Macroeconomics. Princeton
University Press, Princeton, New Jersey.

Evans, G. W., S. Honkapohja, and R. Marimon (2001): �Conver-
gence in Monetary Inßation Models with Heterogeneous Learning Rules,�
Macroeconomic Dynamics, 5, 1�31.

Evans, G. W., S. Honkapohja, and P. Romer (1998): �Growth Cycles,�
American Economic Review, 88, 495�515.

Farmer, R. E. (1999): The Economics of Self-FulÞlling Prophecies, Second
edition. MIT Press, Cambridge, Mass.

Guesnerie, R., and M. Woodford (1992): �Endogenous Fluctuations,�
in (Laffont 1992), chap. 6, pp. 289�412.

Hildenbrand, W., and H. Sonnenschein (eds.) (1991): Handbook of
Mathematical Economics, Vol. IV. North-Holland, Amsterdam.

Honkapohja, S., and K. Mitra (2001): �Are Non-Fundamental Equilib-
ria Learnable in Models of Monetary Policy?,� Working paper, University
of Helsinki.

Howitt, P., and R. P. McAfee (1992): �Animal Spirits,� American Eco-
nomic Review, 82, 493�507.

Laffont, J.-J. (ed.) (1992): Advances in Economic Theory: Sixth World
Congress. Volume 2. Cambridge University Press, Cambridge, UK.

Marcet, A., and T. J. Sargent (1989a): �Convergence of Least Squares
Learning and the Dynamic of Hyperinßation,� in (Barnett, Geweke, and
Shell 1989), pp. 119�137.

(1989b): �Convergence of Least-Squares Learning Mechanisms in
Self-Referential Linear Stochastic Models,� Journal of Economic Theory,
48, 337�368.

27



McCallum, B. (1983): �On Nonuniqueness in Linear Rational Expecta-
tions Models: An Attempt at Perspective,� The Journal of Monetary
Economics, 11, 134�168.

Packalén, M. (1999): �On the Learnability of Rational Expectations Equi-
libria in Three Business Cycle Models,� mimeo, University of Helsinki.

Taylor, J., and M. Woodford (eds.) (1999): Handbook of Macroeco-
nomics, Volume 1. Elsevier, Amsterdam.

Van Zandt, T., and M. Lettau (2001): �Robustness of Adaptive Expec-
tations as an Equilibrium Selection Device,� Macroeconomic Dynamics,
forthcoming.

Weder, M. (2001): �On the Plausibility of Sunspot Equilibria,� mimeo.

Woodford, M. (1990): �Learning to Believe in Sunspots,� Econometrica,
58, 277�307.

(1994): �Monetary Policy and Price Level Determinacy in a Cash-
in-Advance Economy,� Economic Theory, 4, 345�380.

28


