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Abstract

The aim of this paper is to study the concept of separability in multiple nonstationary
time series displaying both common stochastic trends and common stochastic cycles.
When modeling the dynamics of multiple time series for a panel of several entities such
as countries, sectors, firms, imposing some form of separability and commonalities is
often required to restrict the dimension of the parameter space. For this purpose we
introduce the concept of common feature separation and investigate the relationships
between separation in cointegration and separation in serial correlation common
features. Loosely speaking we investigate whether a set of time series can be
partitioned into subsets such that there are serial correlation common features in the
sub-groups and that there do not exist linear combinations of the common cycles which
are white noise. The paper investigates three issues. First, it provides conditions for
separating joint cointegrating vectors into marginal cointegrating vectors as well as
separating joint short-term dynamics into marginal short-term dynamics. Second,
conditions for making permanent-transitory decompositions based on marginal systems
are given. Third, issues of weak exogeneity are considered. Likelihood ratio type tests
for the different hypotheses under study are proposed. An empirical analysis of the link
between economic fluctuations in the U.S. and Canada shows the practical relevance
of the approach proposed in this paper.
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1 Introduction

When modeling multiple time series, for instance for a panel of countries, sectors or firms, it

is often appropriate to cluster the series into groups of variables which have strong intragroup

relationships and weak or no intergroup interactions. For the analysis of high dimensional

multiple time series, such a grouping can be sensible and very appealing from both a theo-

retical and practical point of view to deal with the ”curse” of dimensionality. For example,

Abadir, Hadri and Tzavalis (1999) and Gonzalo and Pitirakis (2000) show that an increase

in the dimension of a cointegrated VAR model can lead to very undesirable properties for

both the usual test statistics and estimators. Empirical studies in macroeconomics or in-

ternational finance aimed to detect (dis)similarities across countries face the dimensionality

problem once the study involves several variables and several countries. The solution that

is usually adopted is to carry out a country by country analysis, e.g. extract the common

stochastic trends components on a country by country basis. These ”national” common

stochastic trends are then compared in a subsequent stage of the analysis - see for example

Banerjee, Marcellino and Orbat (2001), Haffner, Kutan and Zhou (1997), Hoffman (1999).

While this seems the most practical solution given the problems mentioned above, this also

raises issues as to whether the extracted components and time series properties are affected

by these marginalizations. Ideally, one would like to cluster the series into groups of variables

so that no loss of information occurs if the components extraction is based on single country

analyses.

The concept of separation in cointegration provides a useful way of formally describing

such a situation. Separation in cointegration, introduced by Konishi (1993), Konishi, Ram-

sey and Granger (1994), Konishi and Granger (1993) and later extended by Granger and

Haldrup (1997) implies that common trends can be extracted from sub-systems of I(1) time

series. These authors consider situations where subsets of cointegration relationships exist

between economic time series which have no variables in common. Examples considered by

these authors are the presence of long-run relationships between real sector variables only,

and between monetary variables only. Other examples arise in panel data for several coun-

tries when sets of variables for countries taken separately are cointegrated. Under complete

separation, the common trends extracted from a sub-group in a sub-system analysis do corre-
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spond to those that would have been extracted from the complete system. Useful conditions

for empirical work under which this correspondence holds are given in Granger and Haldrup

(1997). These authors however limit their attention to Permanent-Transitory (P-T) decom-

positions à la Gonzalo-Granger (1995) and are essentially interested in the extraction of the

common stochastic trend components. In the presence of common stochastic cycles, see Engle

and Kozicki (1993) or Vahid and Engle (1993), and/or when other P-T decompositions are

considered, their results need to be extended and generalized.

The major aim of this paper is to study the concept of separability in multiple time series

displaying both common stochastic trends and common stochastic cycles.

The paper investigates three issues. First, it provides conditions for separating joint coin-

tegrating vectors into marginal cointegrating vectors as well as separating joint short-term

dynamics into marginal short-term dynamics. Second, conditions for making permanent-

transitory decompositions based on marginal systems are given. Third, issues of weak ex-

ogeneity under separation are considered. For these purposes we introduce the concept of

common feature separation and investigate the relationships between separation in cointegra-

tion and separation in serial correlation common features. We provide conditions under which

a set of time series can be partitioned into subsets with subset-specific common features only

(see e.g. Engle and Kozicki, 1993). While complete separation provides conditions under

which common trends and common cycles can be extracted on a sub-system basis, these con-

ditions do not yet ensure that extraction based on these (marginal) sub-systems will be fully

efficient. In this paper we provide a set of sufficient conditions under which valid inference

can be conducted in marginal separated systems.

The paper is organized as follows. Section 2 defines common features in the context of a

cointegrated VAR(p). Section 3 recalls the notion of separation in cointegration, shows the

implications that separation in cointegration has in terms of common features and reversely. A

similar definition of separation for the common features matrix is introduced. The conditions

under which maximum likelihood (ML) inference within a separated sub-system is as efficient

as ML inference based on the joint system are analyzed in Section 4. Section 5 presents a

set of likelihood ratio type statistics useful for testing particular separation hypotheses. In

Section 6, an empirical analysis shows the usefulness of the concepts discussed in this study
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when we analyze the presence of distinct common factors in consumption functions for the

US and Canada. Section 7 concludes.

2 VAR Models with Cointegration and Common Features

Consider a Gaussian Vector Autoregression of finite order p (VAR(p)) model for an n-

dimensional I(1) vector time series {xt}:

xt =
p∑

i=1

Πixt−i + εt, t = 1, . . . , T, (1)

with fixed initial values of x−p+1, ..., x0 and where εt is a n-dimensional homoskedastic Gaus-

sian mean innovation process relative to Xt−1 = {xt−1, xt−2, . . . , x0} with nonsingular co-

variance matrix Ω. Let L denote the lag operator and define Π(L) = In −
∑p

i=1 ΠiL
i. We

make the following assumption

Assumption 1. (Cointegration): In the VAR model (1), we assume that

1. rank(Π(1)) = r, 0 < r < n, so that Π(1) can be expressed as Π(1) = −αβ
′
, with α and

β both (n× r) matrices of full column rank r;

2. the characteristic equation |Π(ξ)| = 0 has n − r roots equal to 1 and all other roots

outside the unit circle.

Assumption 1 implies (see Johansen, 1995) that the process xt is cointegrated of order (1,1).

The columns of β span the space of cointegrating vectors, and the elements of α are the corre-

sponding adjustment coefficients or factor loadings. Decomposing the matrix lag polynomial

Π(L) = Π(1)L+Γ∗(L)(1−L), with Γ∗(L) = In−
∑p−1

j=1 ΓjL
j = In−Γ(L), Γj = −∑p

k=j+1 Πk

(j = 1, . . . , p − 1) and defining ∆ = (1 − L), we obtain the vector error-correction model

(VECM):

∆xt = αβ
′
xt−1 +

p−1∑

i=1

Γi∆xt−i + εt, t = 1, . . . , T. (2)

Throughout this paper we will also assume that p is known.

Serial correlation common features (SCCF, see Engle and Kozicki, 1993) hold for the
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VECM (2), if there exists a (n × s) matrix β̃, called common feature or cofeature matrix,1

whose columns span the cofeature space, such that β̃′∆xt = β̃′εt is a s-dimensional vector

mean innovation process with respect to the information available at time t.

Consequently, serial correlation common features hold if the cofeature matrix β̃
′
satisfies

the following two conditions:

Assumption 2: β̃
′
Γj = 0(s×n), j = 1 . . . p− 1 (3)

Assumption 3: β̃
′
Π(1) = −β̃

′
αβ

′
= 0(s×n) (4)

Assumption 2 implies that β̃′ must lie in the intersection of the left null spaces of the matrices

describing the short-run dynamics Γj , j = 1 . . . p − 1. Given that Γj = −∑p
k=j+1 Πk ,

j = 1, . . . , p − 1 and Π(1) = In −
∑p

j=1 Γj , Assumption 3 implies that β̃′(In − Π1) = 0(s×n),

e.g. Π1 must have eigenvalues equal to one with multiplicity equal to s and the corresponding

eigenvectors must lie in the intersection of the left null spaces of the Γj matrices. Cointegrated

VAR models satisfying both Assumptions 2 and 3 are considered in detail in Vahid and Engle

(1993). To distinguish between models that satisfy either both Assumptions 2 and 3 or

Assumption 2 only, Hecq, Palm and Urbain (2001) introduce the two following definitions:

Definition 1 (Strong Form Reduced Rank Structure) If in addition to Assumption 1

(cointegration) both Assumptions 2 and 3 hold then implied reduced rank structure of the

VECM (2), will be labelled a strong form reduced rank structure (SF). Under SF, there exists

a (n × s) matrix β̃ , whose columns span the cofeature space, such that β̃′∆xt = β̃′εt is a

s−dimensional vector mean innovation process with respect to Xt−1.

Definition 2 (Weak Form Reduced Rank Structure) If in addition to Assumption 1

(cointegration) only Assumption 2 holds then implied reduced rank structure of the VECM

(2), will be labelled a weak form reduced rank structure (WF). Under WF, there exists a

(n× s) matrix β̃, whose columns span the cofeature space, such that β̃′(∆xt−αβ
′
xt−1) = β̃′εt

is a s−dimensional vector mean innovation process with respect to Xt−1.

The implications of these two classes of models in terms of the nature of the dynamic

common factors are discussed in more detail in Hecq, Palm and Urbain (2000a, 2001) where

1Notice that we will use indifferently the terms common features or cofeature in the sequel of this paper.
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inferential issues are investigated and a mixed form is also proposed. At this stage it is

already useful to note an important difference between SF and WF. In the latter case, the

possible number of cofeature vectors s may be greater than n− r but has to remain ≤ n− 1

and the corresponding n − s common factors consist of linear combinations of the lagged

first differences only. Notice that we could easily extend these definitions to the case where

only part of the short-run components of the models are annihilated when premultiplied

by β̃′. This type of reduced rank structures has been previously mentioned by a.o. Ahn

and Reinsel (1988) for stationary processes, Tiao and Tsay (1989) for vector-autoregressive

moving average models and by Reinsel and Ahn (1992) and Ahn (1997) for cointegrated VAR

processes. Remark that the WF restrictions are generally not invariant to alternative vector

error-correction representations such as that where xt−p appears in levels instead of xt−1. The

implications of the lack of invariance are discussed in more details in Hecq et al. (2001).

3 Separation in Cointegration and in Cofeature

3.1 Definitions

The notion of separation put forward by Konishi (1993), Konishi and Granger (1993) helps

to identify sub-systems that could be investigated independently from each other, reducing

thereby substantially the complexity and size of the modeling problem at hand.

Definition 3 Consider the n dimensional cointegrated vector time series xt = (x′1t, x
′
2t)

′

generated by the VECM (2), with x1t and x2t are distinct sub-vectors of dimension n1×1 and

n2 × 1 respectively with n1 + n2 = n. If the matrix −Π(1) = αβ′ can be factorized such that

the matrix of cointegrating vectors β′ is block-diagonal:

β′ =


 β11 0

0 β22



′

,

where the sub-matrices β11 and β22 are respectively n1 × r1 and n2 × r2 full column rank

matrices, with 0 < ri < ni, i = 1, 2, r = r1 + r2, then the system is said to be subject to

separate cointegration.
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Under separate cointegration,2 the VECM (2) specialises to become:


 ∆x1t

∆x2t


 =


 Γ11(L) Γ12(L)

Γ21(L) Γ22(L)





 ∆x1t

∆x2t




+


 α11 α12

α21 α22





 β11 0

0 β22



′
 x1t−1

x2t−1


 +


 ε1t

ε2t


 , (5)

with the partitioning of the matrices being conformable with that of xt.

Granger and Haldrup (1997) further refined the idea of separation by considering other

parameter restrictions that may arise on the remaining matrices of the systems. The following

definitions can be introduced for a VECM under separate cointegration.

Definition 4 (Complete Separation in the long-run) If α12 = 0, α21 = 0,Γ12(1) =

0, Γ21(1) = 0 then the system (5) is said to be completely separated in the long-run.

For the case where the system is not completely separated in the long-run, Granger and

Haldrup (1997) introduce two different mutually exclusive forms of partial separation that

depend on the structure of the parameter matrices of (5):

Definition 5 (Partial separation of Type A) If α12 6= 0 and/or α21 6= 0 but Γ12(1) =

0, Γ21(1) = 0, then the system (5) is said to be (partially) separated of Type A.

Definition 6 (Partial separation of Type B) If α12 = 0, α21 = 0 but Γ12(1) 6= 0 and/or

Γ21(1) 6= 0 then the system (5) is said to be (partially) separated of Type B.

Note that Type B partial separation in (5) implies block-diagonality of
∑p

i=1 Πi due to the

block-diagonality of αβ′ = −(I −∑p
i=1 Πi). This does however not imply block-diagonality

of the Γj ’s since Γj = −∑p
k=j+1 Πk. In the sequel our common feature analysis will require

additional conditions of short-run Granger non-causality Γ12(L) = 0, Γ21(L) = 0 so that we

also define:

Definition 7 (Partial separation of Type C) If α12 6= 0 and/or α21 6= 0 but Γ12(L) ≡
0, Γ21(L) ≡ 0 then the system (5) is said to be (partially) separated of Type C.

2Notice that by considering separate cointegration we exclude cases where r = n− 1 or r = 1.
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Note that in the sequel we shall delete the word partial and use the wording separation

of Type A, B or C respectively. We call a system completely separated if and only if β12 = 0,

β21 = 0, α12 = 0, α21 = 0, Γ12(L) ≡ 0,Γ21(L) ≡ 0. If in addition to complete separation,

Ω12 = 0 the subsystems are independent.

Once we allow for the existence of reduced ranks of the short-run dynamics matrices, we

may in analogy to separation in the long-run define the concept of serial correlation common

features separation or cofeature separation:3

Definition 8 (Cofeature Separation) Consider a s × n cofeature matrix β̃′ that satisfies

either β̃′∆xt = β̃′εt or β̃′(∆xt − αβ
′
xt−1) = β̃′εt where β̃′εt is a s−dimensional vector mean

innovation process with respect to Xt−1. For the partitioning of xt in x1t and x2t, we say that

the vector process xt has separate SF cofeatures (or separate WF cofeatures) if the cofeature

matrix β̃′, partitioned conformably to that of xt, can be written as

β̃′ =


 β̃11 0

0 β̃22



′

,

with β̃′ii being full row rank (si×ni) matrices, 0 < si ≤ ni− ri (SF) or 0 < si ≤ ni− 1 (WF),

i = 1, 2, s = s1 + s2.

Notice that separation in common features as defined above only requires α and Γ(L)

to have a particular reduced rank structure. Remark that the rank conditions we impose of

the β̃ii matrices again imply the presence of at least one common features vector for each

sub-system, so that separation in common features can only occur when s = s1 + s2 satisfies

2 ≤ s ≤ n− r, with n− r = (n1 − r1) + (n2 − r2) (SF), or when 2 ≤ s ≤ n− 2, (WF). Since

one of the goals of this paper is to find conditions under which distinct sub-systems can be

analyzed separately for the purpose of common trend-common cycle decompositions, we will

consider separation in cointegration as a maintained assumption in the sequel, i.e. we shall

assume that the matrix of cointegration β is block-diagonal.

3Alternative forms of cofeature separation could be considered but they are not investigated in this paper.
For instance, when eβ′ = [eβ1 0], only the first subsystem of the VECM is subject to cofeatures. When eβ′ is
lower block-triangular, some cofeatures are present in the first subsystem, whereas other cofeatures are present
in the complete system.
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3.2 Relation between cointegration separation and cofeature separation

Under separation in common feature and under a WF reduced rank structure, the VECM (2)

satisfies: 
 β̃11 0

0 β̃22



′
 Γ11(L) Γ12(L)

Γ21(L) Γ22(L)


 = 0, (6)

while under a SF assumption we have in addition to (6)


 β̃11 0

0 β̃22



′
 α11 α12

α21 α22


 = 0. (7)

These sets of restrictions (6)-(7) form the basis of the analysis in this section. Note that the

conditions (6) and (7) have to hold for separation in common features whether or not there

is separation in cointegration present in (2), i.e. whether or not β is block-diagonal. In order

to clarify the implications of cofeature separation in terms of restrictions on the matrices of

the VECM (2) and the relation between cofeature and cointegration separation, we will first

consider a simple cointegrated VAR(1) since this model is actually useful to illustrate the

important characteristics we are interested in:

∆xt = α∗β∗′xt−1 + εt. (8)

We parametrize it in terms of the matrices α∗ and β∗ which are of the order n× r and r× n

respectively and of rank r. We first impose the restrictions under separation in cointegration.

Next, we impose the restrictions from separation in SF common features. Provided that α∗

is unrestricted, separation in cointegration implies (see also Hansen and Johansen, 1998) that

the cointegration relations can be expressed as linear combinations of β′11x1t−1and β′22x2t−1,

that is there exist (r× ri), i = 1, 2 and r1 + r2 = r full column rank matrices Fi, i = 1, 2 such

that α∗β∗′xt−1 = α∗[F1β
′
11x1t−1 + F2β

′
22x2t−1] = αβ′xt−1 with

β∗′ = (F1, F2)


 β11 0

0 β22



′

= Fβ′, α = α∗F,
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where F = (F1 : F2) is a r× r full rank matrix. The notation β∗′ is used to stress that under

separation in cointegration β∗ needs not to be block-diagonal as long as it can be factorized

into the product of F times a normalized block-diagonal cointegrating matrix β′. In (8), there

exist by definition n − r serial correlation common feature vectors (or SF common features)

given by the rows of α′⊥ where α′⊥ is the orthogonal complement4 of α - see for example

Vahid and Engle (1993). By definition, SF common feature separation for s = n− r requires

block-diagonality of α′⊥ :

α′⊥ =


 α11⊥ 0

0 α22⊥



′

.

with α′ii⊥ being a (ni − ri)× ni matrix of rank ni − ri. Since rank(α) = r by Assumption 1,

for SF common features separation with s = n− r to occur, it is sufficient that one can find a

full rank r× r square matrix D such that the loading matrix α can be written as the product

of a (n× r) block-diagonal matrix α0 of rank r times D :

α = α0D with α0 =


 α0

11 0

0 α0
22


 . (9)

Consequently, under separation in common features for s = n − r and in cointegration, the

VECM (8) can be rewritten as

∆xt = α∗β∗′xt−1 + εt = αβ′xt−1 + εt = α0Dβ′xt−1 + εt, (10)

where the matrices β, α0 and α⊥ are block-diagonal and D is an (r × r) matrix of full rank.

Notice that α itself need not be block-diagonal. Also notice that for SF common feature

separation for s = n − r implies SF common features separation for s < n − r. The matrix

−Π(1) = αβ′ = α0Dβ′ will not be block-diagonal unless D is block-diagonal. If complete

separation in the long-run part is assumed −Π(1) is block-diagonal and hence D has to be

block-diagonal too.

For the VAR(1), when D is block-diagonal and therefore α is block-diagonal, Type B

separation implies SF common feature separation with s = n − r common features and

4We denote the orthogonal complement of any n × s-dimensional matrix B, with n > s and rank(B) = s,

by the n× (n− s) matrix B⊥ such that B
′
B⊥ = 0 with rank(B⊥)= n− s and rank(B : B⊥)= n.
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si = ni − ri common features per block. The reverse, that is common features separation

with s = n−r common features and si = ni−ri common features per block implies separation

of Type B, if D is block-diagonal. Results for VAR(p) are presented in the Propositions 1

and 2.

Proposition 1 In the VECM (2) under both separate cointegration and a strong form reduced

rank structure,

(i) For p > 1, si < ni − ri, Type B separation does not imply common feature separation.

For si = ni−ri, i = 1, 2, or p = 1, Type B separation implies common feature separation.

(ii) For p > 1, Type C separation does not imply common feature separation for s ≤ min(n−
r, n − s∗j ; j = 1, 2, . . . , p − 1), where s∗j is the rank of Γj except if s = n − s∗j∗ =

argmin(n− s∗j ; j = 1, 2, . . . , p− 1).

(iii) For p > 1, Type A separation does not imply common feature separation.

(iv) For p > 1, complete separation does not imply common feature separation for s <

min(n − r, n − s∗j ; j = 1, 2, . . . , p − 1) where s∗j is the rank of Γj. For s = argmin(n −
r, n− s∗j ; j = 1, 2, . . . , p− 1), complete separation implies common feature separation.

Proof:

(i) Under SF, there exists an (s × n) matrix β̃′ of rank s, 2 ≤ s ≤ n − 2 such that

β̃′α = 0, β̃′Γj = 0; j = 1, 2, . . . , p− 1. As the rank of α is r, there exists an (n− r)× n

matrix D of rank(n − r) such that D′α = 0. Under separation of Type B, α is block-

diagonal. We therefore have

D′α = 0 ⇔

 D′

11α11 D′
12α22

D′
21α11 D′

22α22


 = 0

which the partitioning of D being commensurate with that of α. As α11 has rank r1,

there are n1 − r1 independent linear relationships

F ′
11α11︸ ︷︷ ︸

(n1−r1)×n1

= 0 ⇔

 D′

11

D′
21


α11 = 0
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(similarly for α22). Therefore D can be expressed as D = A


 F ′

11 0

0 F ′
22


 = AF ′,

with A being a (n − r) × (n − r) matrix of rank (n − r), and F ′α = 0. The matrix

β̃′ which annihilates α can be expressed in terms of linear combinations of D, i.e.

β̃′ = GD = GAF ′, G being an s × (n − r) matrix of rank s. The same arguments can

be applied to β̃′Γj = 0, j = 1, 2, . . . , p − 1. The matrix β̃′ is not block-diagonal, except

in the case where si = ni − ri and s = n− r, where GA is an (n− r)× (n− r) full rank

matrix, so that we can take F ′ as the cofeature matrix, which is block diagonal. ¤

(ii) Under Type C separation (note that it is only defined when p > 1) Γ(L) is block-

diagonal,

Γj =


 Γj 11 0

0 Γj 22




with Γj ii being an ni × ni matrix of rank s∗j(i), i = 1, 2. Under a SF reduced rank

structure, there exists a (s×n) matrix β̃′ of rank s, s < min(n−r, n−s∗j ; j = 1, 2, . . . , p−
1), s∗j being the rank of Γj , such that β̃′α = 0 and β̃′Γj = 0; j = 1, 2, . . . , p − 1. As Γj

has rank s∗j = s∗j(1) + s∗j(2), there exists an (n− s∗j )×n matrix Dj with rank n− s∗j , such

that D′
jΓj = 0; j = 1, 2, . . . , p− 1. As Γj is block-diagonal, for Γj ii, i = 1, 2, there exists

a (ni − s∗j(i))× ni matrix F ′
j ii of rank ni − s∗j(i), such that F ′

j iiΓj ii = 0.

Therefore, D′
j can be expressed as D′

j = AjF
′
j with

F ′
j︸︷︷︸

(n−s∗j )×n

=


 F ′

j 11 0

0 F ′
j 22


 ,

where Aj is an (n−s∗j )×(n−s∗j ) matrix of rank n−s∗j . We therefore have D′
jΓj = 0 ⇔

AjF
′
jΓj = 0 with F ′

j being block-diagonal. As α has rank r, there exists an (n− r)× n

matrix D0 of rank n−r such that D′
0α = 0. Any set of linearly independent row vectors

annihilating α and Γj , j = 1, 2, . . . , p− 1, must be linear combinations of the matrices

Dj , j = 0, 1, . . . , p− 1 respectively. Therefore, there exists s× (n− s∗j ) matrices Gj of

rank s and a s × (n − r) matrix G0 of rank s as well such that the (s × n) cofeature
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matrix β̃′ can be expressed as

β̃′ = G0D
′
0, β̃′ = GjAjF

′
j , j = 1, 2, . . . , p− 1.

The matrix β̃′ will in general not be block-diagonal except when for at least one j =

1, 2, . . . , p− 1, denoted by j∗, s = n− s∗j∗ = argmin(n− r, n− s∗j ; j = 1, 2, . . . , p− 1), so

that β̃′ premultiplied by the inverse of Gj∗Aj∗ yields the block-diagonal matrix F ′
j∗ . If

j∗ is not unique, the resulting block-diagonal matrix β̃′ may not be unique. ¤

(iii) Type A separation is only relevant for a VAR(p); with p > 1. It arises if Γ(1) is

block-diagonal. Under SF (and under WF) reduced rank structure, we have β̃′Γj =

0, j = 1, 2, . . . , p− 1, implying that β̃′Γ(1) = 0. Under block-diagonality of Γ(1), this is

equivalent to 
 β̃′11Γ11(1) β̃′12Γ22(1)

β̃′21Γ11(1) β̃′22Γ22(1)


 = 0.

As there are no restrictions on the ranks of the Γii(1), from


 β̃′11

β̃′21


Γ11(1) = 0


 β̃′12

β̃′22


Γ22(1) = 0,

(s× n1)(n1 × n1) (s× n2)(n2 × n2)

we can not infer that β̃′21 (and β̃′12) have to be zero. ¤

(iv) The proof is similar to that of statement (ii), except that the block-diagonality of α

under complete separation, can imply common feature separation when s = argmin(n−
r, n− s∗j ; j = 1, 2, . . . , p− 1). ¤

Proposition 2 In the VECM (2), with p > 1, under both separate cointegration and weak

form reduced rank structure,

(i) Type B separation does not imply separation in common features.

(ii) Type C separation (and complete separation) does not imply common feature separation

for s < min(n − s∗j ; j = 1, 2; . . . , p − 1) where s∗j is the rank of Γj. For s = n − s∗j∗ =

argmin(n − s∗j ; j = 1, 2; . . . , p − 1), Type C separation (complete separation) implies

common feature separation.
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(iii) Type A separation does not imply separation in common features.

Proof:

(i) The statement is obvious, as Type B separation implies restrictions on α but not on

Γj , j = 1, 2, . . . , p− 1. ¤

(ii) The proof follows the same lines as the proof of Proposition 1 (ii). ¤

(iii) The proof is similar to that of Proposition 1 (iii). ¤

Note, as pointed out when discussing the example of a VAR(1) above, that under the

conditions of the Propositions 1 and 2, separation in common features is compatible with

but it does not imply separation of Type A,B or C, but only restrictions on some parameter

matrices.

It is important to observe that the above results hinge on a crucial assumption that the

separation in cointegration and cofeature hold for the same partition of xt = (x′1t, x
′
2t)

′. This

assumption may be realistic in dynamic panel data. Of course, one can imagine cases where

separation holds in cointegration for a given partitioning of xt, while cofeature separation

holds for another partitioning of the same xt vector. An example would be an analysis

of 4 different times series related to real consumption and real income for two countries

1 and 2 (see the empirical applications below) where (i) cointegration separation holds so

that consumption and income cointegrate only within a country, but (ii) separate cofeature

relationships exist that relate the two changes in consumption or the changes in real income

only, reflecting for instance a common business cycle. It is easily seen that in this situation,

the results presented in the Propositions just mentioned no longer hold. In particular, under

a WF reduced rank structure separation in cofeature is then only compatible with Type B

separation in cointegration while separate cofeature in a VECM with a SF reduced rank

structure is incompatible with cointegration separation of any form.

3.3 Separation and P-T decomposition

While the preceding subsection clarified the relationships between separation in cointegration

and separation in common features we now briefly reconsider the issue from a Permanent-
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Transitory (P-T) decomposition point of view and summarize the conditions under which

common trends and common cycles may be extracted from separated sub-systems. Although

such P-T decompositions are not unique, most of them take the form:

xt = GxP
t + AxT

t , (11)

where G and A are loading matrices, xP
t is the common stochastic trend or permanent com-

ponents and xT
t the (possibly common) transitory or cyclical component.

Granger and Haldrup (1997) focus on the Gonzalo and Granger (1995) [GG] P-T decom-

position which, in the absence of common features, is given by

xt = β⊥(α′⊥β⊥)−1

︸ ︷︷ ︸
G

α′⊥xt︸ ︷︷ ︸
xP

t

+α(β′α)−1

︸ ︷︷ ︸
A

β′xt︸︷︷︸
xT

t

. (12)

This decomposition requires the matrix (β
... α⊥) to be invertible. While this always holds in

a VAR(1) cointegrated model, it generally does carry over to higher order cointegrated VAR

systems (see for example Exercise 4.3 in Johansen, 1995). In this decomposition the common

trends are given by α
′
⊥xt while the transitory component is simply β′xt.

Alternative decompositions exist. An appealing alternative is the Beveridge-Nelson-Stock-

Watson [BNSW] decomposition [see King, Plosser, Stock and Watson, 1991; Proietti, 1997;

Hecq et al, 2000a] that is valid under less restrictive conditions. As shown by Proietti (1997),

Hecq et al. (2000a), this decomposition takes the form (11) with

GxP
t = (I − P )(Γ∗(1)− αβ

′
)−1α⊥(α

′
⊥α⊥)−1α

′
⊥Γ∗(L)xt, (13)

AxT
t = Pxt − (I − P )(Γ∗(1)− αβ

′
)−1Γ∗∗(L)∆xt, (14)

with

P = (Γ∗(1)− αβ
′
)−1α[β

′
(Γ∗(1)− αβ

′
)−1α]−1β

′

being a (n× n) matrix satisfying a number of interesting properties given in Proietti (1997),

Hecq et al. (2000a). The matrix polynomials Γ∗∗(L) and the matrix Γ∗(1) are obtained from

the decomposition of Γ∗(L) = Γ∗(1) + (1 − L)Γ∗∗(L), where Γ∗(L) = In −
∑p−1

j=1 ΓjL
j =

16



In − Γ(L), Γj = −∑p
k=j+1 Πk are given in (2) and Γ∗∗(L) =

∑p−2
j=0 Γ∗∗j Lj , Γ∗∗j =

∑p−1
i=j+1 Γ∗j .

In this decomposition, the permanent part is taken as a multivariate random walk process,

the common trends are thus given by α
′
⊥Γ∗(L)xt (see inter alia Johansen, 1995) and the

corresponding loadings are (I − P )(Γ∗(1) − αβ
′
)−1α⊥(α

′
⊥α⊥)−1. The cyclical component

AxT
t has two components. A first part of the transitory component which is linked to the

process of adjustment to equilibrium has the cointegrating relationships as cycle generators

Pxt = (Γ∗(1) − αβ
′
)−1α[β

′
(Γ∗(1) − αβ

′
)−1α]−1β

′
xt. A second component linked to the

short-run fluctuations in a stricter sense is given by −(I − P )(Γ∗(1) − αβ
′
)−1Γ∗∗(L)∆xt.

Hecq et al. (2000a) show how on can further refine these decompositions in the presence of

cofeatures, but the details can be omitted here since the presentation above is sufficient to

discuss the conditions under which common trends and common cycles may be extracted from

separated sub-systems. Note also that, as shown by Proietti (1997) and Hecq et al. (2000a), a

decomposition in the sense of Gonzalo-Granger (1995) is obtained by adding the second part

of the cyclical component to the permanent component, which yields xt = (I − P )xt + Pxt.

The common trends are then given by α
′
⊥Γ∗(1)xt and not by α

′
⊥xt as in Gonzalo-Granger

(1995), for details see Hecq et al (2000a). Once we introduce SF common feature restrictions

with s+r = n, both expressions coincide since the columns of β̃′ and α⊥ span the same space

and hence β̃′Γ∗(1)xt = β̃′xt = α′⊥xt . Consequently, the BNSW decomposition (13)-(14) and

Gonzalo-Granger (1995) decompositions coincide under SF when s + r = n. Both then also

corresponds to the decomposition proposed in the presence of common features by Vahid and

Engle (1993). For the cases where s + r 6= n, either under SF or WF, one has to rely on

(13)-(14) which, although related to the GG decomposition, exists under weaker conditions.

From these decompositions and the results mentioned above a number of conclusions can

be drawn:

• Complete separation in cointegration as defined by Granger and Haldrup (1997), im-

plying that I − P is block-diagonal, is a sufficient condition for sub-group common

stochastic trend extraction based of GG. In the presence of common features, complete

separation is also sufficient for sub-group common stochastic trend extraction based on

BNSW if and only if the common features are of the strong form with s + r = n.

• Common features separation, while necessary to ensure that the common cycles for each
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sub-group are linearly independent, is not sufficient to sustain sub-group extraction of

common trends and common cycles (BNSW), [see the Section 6 for an illustration].

• In the presence of SF common features with s + r < n, necessary conditions for sub-

group extraction of common trends and common cycles based on BNSW are given by

the conditions of Granger and Haldrup (1997), (e.g. β12 = 0, β21 = 0, α21 = 0, α12 =

0,Γ12(1) = 0 and Γ21(1) = 0), to which we have to add the further condition of Granger

Noncausality in both directions in order to achieve the block-diagonality of Γ∗(L) and

Γ∗∗(L), -see (13)-(14) .

• In the presence of WF common features, necessary conditions for sub-group extraction of

common trends and common cycles based on BNSW are again cointegration separation

and Granger Noncausality in both directions (Type C).

To briefly summarize, when common features are present, common features separation

ensures that the common stochastic cycles are group-specific while cointegration separation

ensures that the common trends are group-specific but to ensure that these only involve

variables from the individual sub-groups, the condition of Granger Noncausality in both

directions is the additional requirement which constitutes a rather strong requirement from a

practical point of view, at least much stronger than the one derived in Granger and Haldrup

(1997). While common feature separation implies the existence of independent common cycles

between the two separated sub-groups it does however generally not imply that these can be

derived independently from each other unless two-direction Granger Noncausality holds.

4 Separated cointegrated versus partial systems

In the previous section we have pointed out that common trends and common cycles can

only be extracted from a subsystem under rather stringent conditions on the dynamics of

the complete system. To compute these components, which, when based on a Gonzalo-

Granger decomposition or on a Beveridge-Nelson-Stock-Watson decomposition, are expressed

explicitly in terms of observable variables, consistent and preferably efficient estimates of

the different parameter matrices entering both components are required. Hence, while at

the model representation level the aforementioned conditions appear to be useful for the
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extraction on a group by group basis, they do not yet enable us to assess whether this

extraction can be done efficiently. The efficiency issue is obviously closely related to (weak)

exogeneity conditions in this extended class of cointegrated models. Since the concept of weak

exogeneity is specific to well-defined parameters of interest and is basically a statement about

the parameter space of a given statistical model, see Engle, Hendry and Richard (1983), the

standard conditions for weak exogeneity in cointegrated systems need to be adapted to cover

VAR models with separate cointegration and common feature restrictions to make sure in

these cases that the analysis of conditional subsystems can be carried out without loss of

information.

In their discussion of separation in cointegrated systems, Granger and Haldrup (1997,

p.453) claim that the block-diagonality of the loading matrix α implied by complete or Type

B separation is equivalent to weak exogeneity of x1t (resp. x2t) w.r.t. β′22 (resp. β′11), [see

inter alia Johansen, 1992, 1995, Urbain, 1992], and hence that efficient maximum likelihood

(ML) inference based on the partial systems can be achieved under complete (or Type B)

separation in cointegration. This claim overlooks the model specific nature of weak exogeneity

conditions. As pointed out in Hansen and Johansen (1998), their statement is not true unless

we have block-diagonality of the covariance matrix of the errors of the VECM (2). This

naturally also carries over to cointegrated systems with both separate common features and

complete separation in cointegration. Indeed, under block-diagonality of the disturbance

covariance matrix, complete separation implies that the likelihood function factorizes into

the product of the likelihood functions of the marginal processes. This is naturally a very

stringent condition.

Let us illustrate this issue with a simple VAR(2) model, results for higher model being

easily derived from this simple case. We will first derive sufficient conditions for weak exo-

geneity in the case of a VECM with a WF reduced rank structure but without assuming any

form of separation. This will enable us to derive sufficient conditions for weak exogeneity

for the cases of separation of various forms. Finally, conditions under which the conditional

model reduces to a marginal model will be mentioned.
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4.1 Weak exogeneity in cointegrated VAR with common features

We first consider the case of cointegrated systems with r cointegration relations and s common

features restrictions and partition xt = (x′1t, x
′
2t)

′ where xit are (ni × 1), i = 1, 2 with n1 +

n2 = n. We assume that the partition has been chosen such that n1 ≥ max(r, n − s). This

dimensionality assumption is required to ensure that the coefficients of the cointegrating and

common feature relationships can be identified from the partial systems only. For the sake of

simplicity of the notation and without loss of generality,5 we assume that order p of the VAR

(1) is 2 so that in VECM form it reads as :


 ∆x1t

∆x2t


 =


 Γ1

Γ2


∆xt−1 +


 α1

α2


β′xt−1 +


 ε1t

ε2t


 (15)

with 
 ε1t

ε2t


 ∼ N





 0

0


 ,


 Ω11 Ω12

Ω21 Ω22





 .

We first study the presence of WF common feature vectors and reparametrize the VECM

in terms of β̃⊥, with β̃′⊥β̃ = 0, where β̃ denotes the cofeature matrix and β̃⊥ denotes the

orthogonal complement of β̃, and in terms of the common factors ft = C∆xt−1 where C is a

(n − s) × n full row rank matrix (see Ahn, 1997; Hecq et al, 2001, Vahid and Engle, 1993).

For the identification of β̃⊥ and C from Γ = β̃⊥C a normalization has to be imposed. Usually

a (n− s)× (n− s) submatrix of C is set equal to In−s. Partitioning β̃⊥ and α in accordance

with the partitioning of xt, we get:


 ∆x1t

∆x2t


 =


 β̃1⊥

β̃2⊥


C∆xt−1 +


 α1

α2


β′xt−1 +


 ε1t

ε2t


 . (16)

As above, let Xt−1 denote the information set containing all information available up to

period t − 1. Notice that if the dimensionality assumption n1 ≥ max(r, n − s) holds, after

imposing the normalization, the number of parameters in β̃1⊥ and C to be estimated [i.e.

(n1 + s)(n − s)] is smaller than that in Γ1 [i.e. n1 × n]. Similarly, in this case, the number

of parameters to be estimated in α1 and β [ i.e. (n + n1 − r)r] is smaller than the number

5The generalization to the VAR(p) is straightforward by replacing Γ by Γ(L) =
Pp−1

i=1 ΓiL
i.
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of parameters in the unrestricted matrix α1β
′. A necessary condition for identification of the

parameters in the first subsystem from that subsystem is therefore satisfied.

Conditions for weak exogeneity of a given set of variables require that the parameters of

interest are specified. We first assume that the parameters of interest ψ0 are given by the

parameter matrices (α, β′, β̃⊥, C). From the joint model, the partial (conditional) model for

∆x1t|∆x2t, Xt−1, θc is easily obtained from these equations:

∆x1t = π0∆x2t + [β̃1⊥ − π0β̃2⊥]C∆xt−1 + [α1 − π0α2]β′xt−1 + ε1.2t,

where π0 = Ω12Ω−1
22 , ε1.2t = ε1t − π0ε2t.

The marginal subsystem for ∆x2t reads as

∆x2t = β̃2⊥C∆xt−1 + α2β
′xt−1 + ε2t.

Let us denote the parameters of the conditional by θ
′
c = (π0, [β̃1⊥−π0β̃2⊥], C, [α1−π0α2], β′, Ω11.2)

and those of the marginal model by θ
′
m = (β̃2⊥, C, α2, β

′, Ω22), with Ω11.2 = Ω11−Ω12Ω−1
22 Ω21.

It is seen that β and C enter both the conditional and the marginal models so that, whether

or not β is block-diagonal, valid maximum likelihood inference on the parameters of interest

from the conditional model can only be achieved under some rather restrictive conditions

stated in proposition 3.

Proposition 3 In the VECM (2) with WF reduced rank structure, then x2t is weakly exoge-

nous for the parameters of interest ψ0 = (α, β′, β̃⊥, C) if and only if α2 = 0 and β̃2⊥ = 0.

The proof follows the line of arguments presented in the case of a cointegrated system

without common features and is omitted here to save space (see inter alia, Johansen, 1995,

Urbain, 1992). It is obvious that the two conditions are sufficient for weak exogeneity. They

are also necessary as the condition β̃2⊥C = 0 implies that β̃2⊥ = 0 as C is by assumption of

full rank n− s. Notice that, as the rank[β̃] = n− s, β̃2⊥ = 0 can only hold for n2 such that

n1 ≥ n − s. Similarly, as rank[α] = r, α2 = 0 can only hold for n2 such that n1 ≥ r. Note

that weak exogeneity of ∆x2t implies that x2t is a random walk.

Consider now the same specification but with a SF reduced rank structure. The only

difference in the analysis is that the loading (error-correction) matrix α has the form α = β̃⊥B,
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with B being a (n− s)× r full column rank matrix. Under a SF reduced rank structure, the

model (15) can be expressed as


 ∆x1t

∆x2t


 =


 β̃1⊥

β̃2⊥


 C∆xt−1 +


 β̃1⊥

β̃2⊥


Bβ′xt−1 +


 ε1t

ε2t


 . (17)

Hence the standard condition for weak exogeneity of variables in a cointegrated systems

for the long-run parameters α2 = 0 may be equivalently be written as β̃2⊥B = 0 which can

only occur when β̃2⊥ = 0. Note that the parameters of interest are ψ0 = (α, β′, β̃⊥, C) or

equivalently (β′, β̃⊥, C,B) since the parameter α = β̃⊥B under a SF. Hence:

Proposition 4 In the VECM (2) with SF reduced rank structure, if β̃2⊥ = 0, then x2t is

weakly exogenous for the parameter of interest ψ0 = (β′, β̃⊥, C,B).

The proof is similar to that of Proposition 3 and hence is also omitted here to save space.

4.2 Weak exogeneity and separability

Under WF, the model (16) can be expressed as:


 ∆x1t

∆x2t


 =


 β̃11⊥ β̃12⊥

β̃21⊥ β̃22⊥




︸ ︷︷ ︸eβ⊥ ,(n×n−s)


 C11 C12

C21 C22




︸ ︷︷ ︸
C,(n−s×n)


 ∆x1t−1

∆x2t−1




+


 α11 α12

α21 α22




︸ ︷︷ ︸
α, (n×r)


 β′11 β′12

β′21 β′22




︸ ︷︷ ︸
β′,(r×n)


 x1t−1

x2t−1


 +


 ε1t

ε2t


 , (18)

where β̃ij⊥ is ni× (nj − sj), Cij is (ni− si)×nj , αij is ni× rj , β
′
ij is ri×nj . We again denote

Ω12Ω−1
22 by π0 so that the partial (conditional) model for ∆x1t|∆x2t, Xt−1, θc is easily obtained

from these equations:

∆x1t = π0∆x2t +
[
(β̃11⊥ − π0β̃21⊥)C11 + (β̃12⊥ − π0β̃22⊥)C21

]
∆x1t−1

+
[
(β̃11⊥ − π0β̃21⊥)C12 + (β̃12⊥ − π0β̃22⊥)C22

]
∆x2t−1

+
[
(α11 − π0α21)β

′
11 + (α12 − π0α22)β

′
21

]
x1t−1

+
[
(α11 − π0α21)β

′
12 + (α12 − π0α22)β

′
22

]
x2t−1 + ε1.2t, (19)
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where ε1.2t = ε1t − Ω12Ω−1
22 ε2t. Similarly, the marginal subsystem for ∆x2t reads as

∆x2t = (β̃21⊥C11 + β̃22⊥C21)∆x1t−1 + (β̃21⊥C12 + β̃22⊥C22)∆x2t−1

+(α21β
′
11 + α22β

′
21)x1t−1 + (α21β

′
12 + α22β

′
22)x2t−1 + ε2t.

From this specifications we are able to derive the different cases of interest under the assump-

tion of WF and SF reduced rank structures respectively. These different cases will depend on

(i) the parameters of interest and (ii) the type of separation that underlies the model. We

will now consider various cases of separability in cointegration and for each of these sufficient

conditions will be derived. The results are summarized in Table 1.

A few words of explanation are in order. In the first column of Table 1 the restrictions

imposed on the VECM (19) are given. For instance, in the case III.b, in addition to the

restrictions imposed on the VECM (19) in the case III.a. (i.e. separation in cointegration

and WF reduced rank structure), we also impose separation of Type C. For the WF and

SF, we first consider the model without separation in cointegration. Next, in addition to

separation in cointegration, separation of Type C and complete separation are considered

respectively. Sufficient conditions for weak exogeneity of x2t for the parameters of interest

are given in the third column. The cases I and II correspond to the models considered in

Propositions 3 and 4. These conditions follow directly when the corresponding restrictions

are imposed on the model in the form (19). The necessary and sufficient conditions for weak

exogeneity given in Proposition 3 appear to be overly strong when for instance only part of the

cointegrating vectors are parameters of interest (for a similar analysis, albeit in a different

set-up, see Hendry and Mizon, 1993; Ericsson, 1995; Ericsson, Hendry and Mizon, 1998).

Under the conditions presented in (III.a) the marginal model for ∆x2t becomes a VECM of

the form

∆x2t = β̃22⊥C21∆x1t−1 + β̃22⊥C22∆x2t−1 + α22β
′
22x2t−1 + ε2t

= β̃22⊥C2∆xt−1 + α22β
′
22x2t−1 + ε2t,
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Table 1: Conditions for Weak Exogeneity

Restrictions on VECM
Parameters of

interest ψ0

Conditions implying
weak exogeneity of x2t

Absence of separation in cointegration

I. WF α, β, β̃⊥, C
1. α2 = 0
2. β̃2⊥ = 0

II. SF and r + s ≤ n

α = β̃⊥B
β, β̃⊥, B, C β̃2⊥ = 0

Separation in cointegration
β12 = 0, β21 = 0

III.a. WF α11, β11, β̃1⊥, C1
1. α21 = 0, α12 − Ω12Ω−1

22 α22 = 0
2. β̃21⊥ = 0, β̃12⊥ − Ω12Ω−1

22 β̃22⊥ = 0
III.b. WF and separation of Type C:
β̃11⊥C12 + β̃12⊥C22 = 0
β̃21⊥C11 + β̃22⊥C21 = 0

α11, β11, β̃11⊥, C11
1. α21 = 0, α12 = 0
2. Ω12 = 0

III.c. WF and complete separation:
α12 = 0, α21 = 0
β̃11⊥C12 + β̃12⊥C22 = 0
β̃21⊥C11 + β̃22⊥C21 = 0

α11, β11, β̃11⊥, C11 Ω12 = 0

IV.a. SF β11, β̃1⊥, C1, B11

1. β̃22⊥B21 = 0,

(β̃11⊥B12 + β̃12⊥B22)
−Ω12Ω−1

22 β̃22⊥B22 = 0
2. β̃21⊥ = 0, β̃12⊥ − Ω12Ω−1

22 β̃22⊥ = 0
IV.b. SF and separation of Type C:
β̃11⊥C12 + β̃12⊥C22 = 0
β̃21⊥C11 + β̃22⊥C21 = 0

β11, β̃11⊥, C11, B11

1. β̃21⊥B11 + β̃22⊥B21 = 0
β̃11⊥B12 + β̃12⊥B22 = 0

2. Ω12 = 0
IV.c. SF and complete separation:
β̃11⊥B12 + β̃12⊥B22 = 0
β̃21⊥B11 + β̃22⊥B21 = 0
β̃11⊥C12 + β̃12⊥C22 = 0
β̃21⊥C11 + β̃22⊥C21 = 0

β11, β̃11⊥, C11, B11 Ω12 = 0
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while the conditional model reads as

∆x1t = π0∆x2t + β̃11⊥C11∆x1t−1 + β̃11⊥C12∆x2t−1 + α11β
′
11x1t−1 + ε1.2t

= π0∆x2t + β̃11⊥C1∆xt−1 + α11β
′
11x1t−1 + ε1.2t,

where Ci = (Ci1 : Ci2), i ∈ {1, 2}, so that no cross-equation restrictions remain. Remark

that these are conditions concerning the efficiency of an analysis based on a conditional sub-

system but do not yet enable one to consider separated marginal systems as x1t−1 and x2t−1

both appear in this sub-system. Also note that these are sufficient conditions and show that

the conditions in Proposition 3 are not necessary once the parameters of interest are only

sub-matrices of α, β
′
and β̃⊥. Alternative sets of conditions could be derived. For example,

if Ω12 = 0 (conditional independence), then both α and β̃⊥ have to be block-diagonal. The

cases (III.b) and (III.c) summarize these implications. If in addition to complete separation

in the Granger-Haldrup sense (III.c), Ω12 = 0,Γ12(L) ≡ 0, Γ21(L) ≡ 0, the block-diagonality

of β̃⊥ results and conditions for weak exogeneity (III.c) are satisfied.

Under the SF reduced rank structure assumption, as mentioned above, the matrix of

error-correction terms takes the form α = β̃⊥B, with B being a (n− s)× r full column rank

matrix, with here n ≥ s + r. With the partitioning introduced earlier this yields


 α11 α12

α21 α22


 =


 β̃11⊥ β̃12⊥

β̃21⊥ β̃22⊥





 B11 B12

B21 B22


 .

After substituting the resulting expressions for αij , i, j ∈ {1, 2} into the conditional model

for ∆x1t in (19) and the marginal model for ∆x2t, it is fairly straightforward to verify that

the conditions given in Table 1 for the cases II, IVa-IVc (SF reduced rank) indeed imply

weak exogeneity for the parameters of interest. Notice that the condition for weak exogeneity

under SF reduced rank structure β̃2⊥ = 0 implies that α2 = β̃2⊥B = 0, so that under Type B

separation and under complete separation when α12 = 0 too, r = r1 [of course we then have

to require that n1 ≥ max(r, n − s)]. Therefore, under SF reduced rank structure and under

Type B or complete separation, weak exogeneity requires that the cointegrating relationships

in the model include the variables x1t and appear only in the first subsystem.

Finally, notice that under separation of Type B part of the requirements for weak exogene-
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ity (e.g. α21 = 0) are satisfied by assumption, so that one has to check whether the remaining

requirements of case I (for the WF) or case II (for the SF) are also satisfied. Under separation

of Type A one has to proceed in a similar way. Note that if α12 = 0, weak exogeneity as

considered in cases I or II cannot hold because it requires α21 = 0, which would contradict

Type A separation.

The results presented in the preceding sub-sections summarize conditions for efficient

maximum likelihood (ML) based estimation and inference on the parameters of interest within

a partial model. It does not yet imply that the system may be split into two separated sub-

systems, i.e. independent marginal systems that can be treated independently. Indeed, let

us again consider the VECM (16) under separation in cointegration. In general even under

weak exogeneity of x2t, separation (here marginal systems in contrast to partial or conditional

systems) will only enable us to recover the parameters of interest if additional restrictions are

imposed such as the block-diagonality of C, i.e. when C12 = 0, C21 = 0 which corresponds

to Type C separation in cointegration. In that case, if in addition to α21 = 0, β̃2⊥ = 0

and α12 − Ω12Ω−1
22 α22 = 0 for the weak form for example, then the common cyclical factors

entering the partial, here marginal, system for ∆x1t are only made of linear combinations of

lagged ∆x1t and β
′
1x1t−1.

These results have to be related to the general discussion of conditioning vs. marginal-

ization in dynamic econometric models. Valid marginalization is much more demanding than

valid conditioning and requires that the joint likelihood of the complete system can be written

as the product of the marginal likelihoods of the subsystems which entails not only weak ex-

ogeneity but also Granger-Noncausality (given common feature restrictions) and conditional

independence. This last requirement of conditional independence is valid irrespectively of the

presence or absence of common feature restrictions in a VECM as also pointed out by Hansen

and Johansen (1998, page 68).

5 Inference on cofeature separation and modeling strategy

The results derived in Section 3 and 4 have obvious implications for the way in which sepa-

ration should be tested in a VAR model in practice. The following sequence of increasingly

restrictive hypotheses comes naturally to one’s mind.
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• Within a complete system (2) first test for the number of cointegration relationships r

and fix the cointegration rank to this value in subsequent analyses.

• Second, test for separation in cointegration, that is for the block-diagonality of β, e.g.

using tests proposed by Konishi and Granger (1993).

• Third, investigate whether α is block-diagonal (Type B separation).

• Fourth, test the WF reduced rank structure.

• Fifth, test the strong form.

• Sixth, test for separation in common features, i.e. block-diagonality of β̃.

• Seventh, if block-diagonality of β̃ is not rejected, check whether Γ(L) is block-diagonal

(Type C separation).

• Eight, check whether the findings are consistent with the implications of the Propositions

1 and 2:

– Under block-diagonality of β′, SF with si = ni − ri, Type B separation implies

common features separation. When p > 1, and s = argmin(n−s∗j ; j = 1, 2, . . . , p−
1), Type C separation implies common feature separation. When p > 1 and

s = argmin(n− r, n− s∗j ; j = 1, 2, . . . , p− 1), complete separation implies common

feature separation.

– Under block-diagonality of β′, for p > 1, WF with s = argmin(n − s∗j ; j =

1, 2, . . . , p−1), Type C separation (or complete separation) implies common feature

separation.

• Ninth, test for weak exogeneity by checking the appropriate conditions as given in Table

1.

• Tenth, test for complete separation including the block-diagonality of Ω.

The first three steps of our sequential testing strategy are standard and discussed in

detail in a.o. Johansen (1995). Johansen and Juselius (1990) give likelihood ratio tests for

linear restrictions on both α and β. Harbo, Johansen, Nielsen and Rahbek (1998) consider
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asymptotic inference on cointegration rank in partial systems. Johansen and Swensen (1999)

provide asymptotically χ2 distributed likelihood ratio tests based on canonical correlations

for nonlinear restrictions on α and linear restrictions on β. The remaining steps need to be

described in some detail.

Let us first consider test statistics for weak form common features in the VECM (2). Tests

carried out in this paper are based on the sample canonical correlations of two sets of random

vectors ∆X = (∆x1, . . . ,∆xT ), ∆Z = (∆X ′
−1, . . .∆X ′

−p+1)
′, both corrected for determinis-

tic components and cointegrating relationships β′X−1, where X−1 = (x0, . . . , xT−1), with β

known or superconsistently estimated. Assuming that the deterministic component is simply

specified as a set of functions of time t, including also an unrestricted constant term (and

possibly seasonal dummies) and denoted by g(t), we can summarize the procedure as follows:

CanCor(∆X, ∆Z | g(t), β′X−1)

Squared canonical correlations are found as solutions of the usual eigenvalue problem

| λI − S
∗−1/2
XX S∗XZS∗−1

ZZ S∗ZXS
∗−1/2
XX |= 0,

where S∗XZ denotes the covariance matrix between the elements of ∆X and ∆Z both cor-

rected by g(t) and long-run relationships. We denote these by ∆X∗ and ∆Z∗. Note that in

the SF model, the analysis consists in a canonical correlation analysis between ∆X and ∆W =

(∆Z ′, X ′
−1β)′ both sets corrected for the deterministic components g(t) , i.e.: CanCor(∆X, ∆W |

g(t)). The empirical squared canonical correlations λ̂w
i (for the WF), λ̂s

i (for the SF), ordered

as follows 0 ≤ λ̂w
1 ≤ λ̂w

2 ≤ . . . ≤ λ̂w
s ≤ 1 (similarly for SF) allow us to test the null that the

first s linear combinations are white noises using the statistics ξW = −T
∑s

i=1 log(1 − λ̂w
i ),

s = 1, ..., n and ξS = −T
∑s

i=1 log(1− λ̂s
i ), s = 1, ..., n− r which have asymptotic χ2 distri-

butions under the null (see Hecq et al., 2001 for details). The number of degrees of freedom

are s[n(p − 1) + r] − s(n − s) for the SF and sn(p − 1) − s(n − s) for the WF. If we define

S∗0.XX = S∗XX − S∗XZS∗−1
ZZ S∗ZX , the maximized (log-)likelihood for the WF case is given by:

LWF = −T

2

{
ln{det(S∗0.XX)} −

s∑

i=1

ln(1− λ̂w
i )

}
.
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The corresponding expression for the log-likelihood function of the strong form model (LSF )

is immediate.

To get intuitively into separation in common features let us reformulate the problem in

terms of moment restrictions. The existence of a strong form common feature space means

E[β̃
′
∆xt ⊗∆Wt] = 0, where ∆Wt is a set of instruments composed of the p− 1 lags of the n

variables of ∆xt and the cointegrating vectors. In the WF framework the condition becomes

E[β̃
′
∆x∗t ⊗∆Z∗t ] = 0, where ∆Z∗t is a set of instruments composed of the lags of all variables

in ∆xt. In the SF case the variables ∆xt and ∆Wt have to be detrended by g(t). In the model

under WF, ∆x∗t and ∆Z∗t have been concentrated on g(t) and on the error-correction terms

using super-consistent estimates of the cointegrating vectors obtained from a reduced rank

regression in a first step. Now, under separation in common features we know that under the

null the condition E[(β̃
′
1∆x1t + β̃

′
2∆x2t) ⊗ ∆Wt] = 0 or E[(β̃

′
1∆x∗1t + β̃

′
2∆x∗2t) ⊗ ∆Z∗t ] = 0,

where β̃1 and β̃2 are common feature vectors for the mutually exclusive n1 and n2 sets, should

also hold.

In order to determine whether β̃′ is block-diagonal we need a statistic to test different

restrictions on common feature vectors. To do so, along the line of Johansen (1995), Konishi

and Granger (1993) for cointegration a likelihood ratio test is computed using a switching

algorithm for the restrictions:

β̃ =
{

β̃1, β̃2

}
= {H1Ψ1,H2Ψ2} ,

where H1 and H2 are matrices of known constants respectively of dimension (n × n1) and

(n×n2), while Ψ1 and Ψ2 are matrices containing unknown parameters of dimension (n1×s1)

and (n2 × s2).

Example 1 With n1 = n2 = 2 and s1 = s2 = 1, r1 = r2 = 1, the situation we face in the

empirical section of this paper, these matrices can be parametrized such that:

β̃1 =




ϕ1

ϕ2

0

0




, β̃2 =




0

0

ϕ3

ϕ4




, H1 =




1 0

0 1

0 0

0 0




, H2 =




0 0

0 0

1 0

0 1




,
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Ψ1 =


 ϕ1

ϕ2


 , Ψ2 =


 ϕ3

ϕ4




The log-likelihood under common feature restrictions has been previously labelled LWF

or LSF . If convergence is achieved using a switching algorithm,6 the log-likelihood functions

under separate restrictions on different common feature vectors are labelled LWF
sep or LSF

sep. In

practice, as for Johansen’s analyssis of cointegration, we propose the following steps:7

Step 1. Choose an unrestricted vector β̃1,

Step 2. Given β̃1, solve CanCor(H ′
2∆X∗,∆Z∗ | β̃′1∆X∗) to obtain β̃2,

Step 3. Given β̃2, compute CanCor(H ′
1∆X∗,∆Z∗ | β̃′2∆X∗) to obtain a new β̃1,

Step 4. Continue this process until convergence to the maximum of the likelihood

function.

Under cofeature separation, the maximized log-likelihood is given by

LWF
sep = −T

2



ln{det(S∗0.XX)} −

s1∑

i=1

ln(1− λ̂w
i,eβ1

)−
s2∑

j=1

ln(1− λ̂w
j,eβ2

)



 ,

where S∗0.XX is defined above, λ̂w
i,eβ1

and λ̂w
j,eβ2

are the eigenvalues obtained after convergence

under respectively the restrictions β̃1 = H1Ψ1 and β̃2 = H2Ψ2. A likelihood ratio test for

separation in common features is then obtained by computing LRSF
sep = −2(LSF

sep − LSF ) for

the strong form model or LRWF
sep = −2(LWF

sep −LWF ) for the weak form. These statistics have

an asymptotic χ2 distribution under the null. The number of degrees of freedom is equal to

the number of restrictions (beyond those from normalization) imposed by separation. [see

e.g. Johansen, 1995, p.115, for more details on the computation of the number of degrees of

freedom]. In the example 1, after normalization, with n = 4, s = 2, the unrestricted matrix

β̃ contains (n × s) − s2 = 4 free parameters. After normalization, the restricted β̃ contains

two free parameters. The number of degrees of freedom equals 2.

6Note that due to the absence of cross-restrictions between the different common feature vectors, the
convergence is very fast.

7We describe the algorithm for WF, the results for SF differ only by the fact that we do not concentrate
with respect to the cointegrating vectors.
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The last two steps are more straightforward. Weak exogeneity analyses depend on the

chosen parameters of interest but are easily conducted once the system (with cointegration

and common features restrictions) is written in pseudo-structural form in terms of the matrix

β̃⊥, see Vahid and Engle (1993), and estimated by FIML. The last step, e.g. testing the block-

diagonality of the covariance matrix could be investigated by standard variable addition tests.

Note finally that a global LR test statistic of the independence of the subsystems can also

be conducted by comparing the log-likelihood of the complete model with the sum of the

log-likelihoods of the two marginal models. Such a LR type test has a χ2 distribution under

the null.8

It is worth making two remarks at this stage:

Remark 1 The major drawback of the analysis we propose here relates to the need of

specifying and estimating complete systems to assess the appropriateness (in terms of P-T

decomposition) and efficiency of the sub-group based analysis. While the purpose of the

aforementioned testing strategy is to sustain sub-systems analysis, it requires full system esti-

mation to compute the different test statistics. This is naturally the most important drawback

here but it is not specific to the analysis we propose and occurs in (weak) exogeneity and

Granger Noncausality analyses in general. Hence, while feasible, our testing strategy implic-

itly supposes a low number of variables and sub-groups.

Remark 2 An important final remark should be made concerning the restrictiveness of the

specifications we investigate here. While the class of models we consider may at the first sight

appear overly restrictive, it should be noted that the restrictions we propose to investigate

are actually systematically imposed without further investigation in the recent literature on

panel data cointegration (see the surveys by Phillips and Moon, 1999; Baltagi and Kao, 2000)

and panel common cycle analysis (Hecq et al., 2000b). While few papers allow for a non-

diagonal covariance matrix between the subgroups of the panels, cointegration separation is

8It is important to recognize that the sequential approach proposed above, while being appealing as we
consider the different restrictions sequentially, naturally raises the crucial issue of size distortion that is likely
to occur in any empirical application since the choice of the hypotheses tested is dependent on the outcome of
the tests of the previous hypotheses in the sequence.
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indeed systematically imposed by excluding cointegration across members of a panel. With

the exception of a few studies like Banerjee et al. (2001), Groen and Kleibergen(1999), Hall,

Lazarova and Urga (1999) and Larsson and Lyhagen (1999) this restriction is usually not

explicitly discussed and studied.

6 Empirical Analysis

To show the feasibility of the analysis we illustrate the testing strategy within a small dimen-

sional problem that is also used in Hecq et al. (2000b) where the notion of serial correlation

common features is introduced in a nonstationary panel data context.

6.1 The Economic Model

We focus on the permanent income hypothesis versus the heterogenous consumer model pro-

posed by Campbell and Mankiw (1990, 1991), also known as the ”λ” model. These authors

consider two groups of agents who receive respectively a disposable income Y1t and Y2t in fixed

proportions of the total income Yt, such that Y1t = λYt, Y2t = (1 − λ)Yt and Yt = Y1t + Y2t.

Agents in the first group are subject to liquidity constraints, consume their current income

while agents in the second group consume their permanent income. We get the following

system:





C1t = Y1t = λYt

C2t = Y P
2t = (1− λ)Y P

t

Y1t = Y P
1t + Y T

1t

Y2t = Y P
2t + Y T

2t ,

(20)

where Cit is the consumption of agent i and Y P
it and Y T

it are the permanent and transitory

components of income of the agent i and are assumed to be I(1) and I(0), respectively.

Aggregating over agents we get Ct = Y P
1t + Y T

1t + Y P
2t = Y P

t + Y T
1t , and thus:





Ct = Y P
t + λY T

t

Yt = Y P
t + Y T

t ,
(21)
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which shows that aggregate consumption and income share a common trend Y P
t . It is also

easily seen that if λ = 0 we get the permanent income model. In order to stress the common

cycle component let us take the first difference of aggregate consumption Ct = C1t + C2t.

By substituting the shares of income in the total income and taking first differences we

obtain ∆Ct = λ∆Yt + (1 − λ)∆Y P
t . Consequently, assuming that the permanent income

is a martingale, the consumption function can be tested by using the regression ∆Ct =

λ∆Yt + (1 − λ)εt, where εt is a martingale difference sequence which is not orthogonal by

construction to ∆Yt except under the hypothesis of common features between ∆Ct and ∆Yt

with [1 −λ] being the associated common features vector. Empirical studies have shown that

λ is usually significantly different from zero with a value in the range 0.3 to 0.5 for most

countries.

6.2 Empirical Results

For illustrative purpose, we confine our analysis to the ”λ model” for the USA and Canada

using annual data for the period from 1950 to 1992. The data are taken from the Penn World

Tables Mark 5.6 (see Summers and Heston, 1991) which due to their definition homogeneity

are extremely useful and have been extensively used in empirical cross-country studies. It is

interesting to note that Hoffman (1999)’s study points out that total permanent shocks seem

to be relatively unimportant for output volatility for both Canada and US which motivates

further analysis of short-run comovements between these two countries.

The data used are Y =”RGDPL: Real GDP per capita (Laspeyres index) in 1985 in-

ternational prices” and C = ”C: Real Consumption share of GDP in 1985 international

prices”×Y/100. This last operation is necessary to get the consumption in level and not in

percentage of income. Although we may expect some lack of power with this small sample

of annual data, the use of an annual frequency avoids the pitfalls that one would probably

encounter with seasonally adjusted monthly or quarterly data (see Hecq, 1998; Cubadda,

1999).

A first descriptive analysis using standard unit root tests and both Engle and Granger

(1987) and Johansen (1995) cointegration analyses reveals the existence of a single cointe-

grating vector for both countries taken separately. In both cases, the cointegrating vectors
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are close to the expected theoretical vectors, although the long-run unit income elasticity is

more plausible for the Canada (1.00) than for the US (1.15).

6.2.1 Separation in Cointegration

We first analyze cointegration separation at the level of the complete system for the two

countries. Using information criteria and the results from testing for the presence of residual

auto-correlations, heteroskedasticity and non-normality, a VAR of order four in the levels of

the time series is found to appropriately characterize the covariance structure of this four-

dimensional vector of variables. We then apply Johansen’s tests statistics with a deterministic

linear trend restricted to lie in the cointegration space. The results are reported in Table 2.

Table 2: Johansen’s ML Tests Statistics
λi Max.Eig.Test 95% cv Trace Test 95% cv

r = 0 0.71 48.64* 31.5 83.34* 63.0
r ≤ 1 0.43 21.98 25.5 34.70 42.4
r ≤ 2 0.22 9.87 19.0 12.72 25.3
r ≤ 3 0.07 2.85 12.2 2.85 12.2

Both the maximum eigenvalue and the trace test favor the existence of a single cointe-

grating vector. The smallness of our sample may however seriously affect the power of these

tests so that the analysis is complemented by both a visual inspection of cointegrating vectors

presented in Figure 1, and the analysis of the roots9 of (αβ′ − I) that lead us to retain two

cointegrating vectors.

The next step in our sequential analysis is to test for restrictions on the cointegrating

space as well as on the loading matrix in order to analyze separation in cointegration. The

results are presented in Table 3. The null hypothesis H0 : β12 = β21 = 0 corresponds to the

cointegration separation hypothesis that is tested using a LR test that is χ2(3) distributed

under the null of separation.10

9We obtain two pairs of complex roots whose moduli are respectively 1 and 0.207. For a formal discussion
of the usefulness of analyzing the roots of the companion form in cointegrated systems, see Johansen (2001).

10One should notice that the number of degrees of freedom of the different statistics is equal to the number
of restrictions imposed under the different forms of separation plus one since the linear trend coefficient is not
significant in the long-run relationship for Canada.
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Figure 1: Cointegrating Vectors
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The null H0 : β12 = β21 = 0 & α12 = α21 = 0 corresponds to separation of Type B while

the two remaining hypotheses are joint hypotheses of cointegration separation and block-

triangularity of the loading matrix. It appears that separation in cointegration cannot be

rejected.

Table 3: Hypotheses Testing
H0 Test stat. Distr. P-values
β12 = β21 = 0 0.762 χ2(3) 0.858
β12 = β21 = 0 and α12 = α21 = 0 42.58 χ2(5) <0.001
β12 = β21 = 0 and α21 = 0 9.55 χ2(4) 0.048
β12 = β21 = 0 and α12 = 0 22.19 χ2(4) <0.001

On the contrary, we reject separation of Type B. Due to the small sample size we can however

not clearly decide whether the loading matrix is block-triangular, i.e. whether α21 is zero or

not but we guess that it is not. Indeed, the null hypothesis is clearly rejected when we do not

restrict the trend to zero in the equation for Canada or when we do not impose separation in

cointegration.

Assuming cointegration separation alone, e.g. only block-diagonality of β, we obtain:

αβ′xt =




1.262 −0.428

−0.075 0.805

1.280 −0.554

0.819 −0.847





 −0.981 1.000 0.000 0.000 0.000

0.000 0.000 −0.923 1.000 −0.004







Ca yt

Ca ct

USA yt

USA ct

trend




,

which yields the following long-run consumption function, ct = 0.98yt for Canada and ct =

0.92 yt + .004 trend for the USA. The estimated long-run income elasticity corresponds to

that obtained from individual cointegration analyses in the case of Canada. The result is

now more plausible for the USA. The possible explanation can be the omission of the trend

and as well as Canadian variables in the static regression. This trend partially accounts for

government spendings.
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6.2.2 Separation in Common Features

Fixing the two cointegrating vectors to their estimated values and using test statistics based

on canonical correlations proposed in Hecq et al. (2001), we determine the dimension of the

common feature space both in the WF and the SF model using the statistics ξW and ξS

presented in Section 5. Note that in the SF case the number of common feature vectors is

bounded by n− r, i.e. by 2 in this analysis. Table 4 presents the results.

Table 4: Common Feature Tests
r = 2 λ∗i df Pb > χ2

df Loglik

ξS ξW ξS ξW ξS ξW ξS ξW

s ≥ 1 − − − 729.25 729.25
s ≥ 2 0.401 0.217 11 9 0.045 0.386 719.245 724.467
s ≥ 3 0.491 0.366 24 20 0.004 0.124 706.056 715.552
s ≥ 4 0.523 0.498 39 33 (< 0.001) 0.011 691.588 702.084
s = 5 0.817 0.734 56 48 (< 0.001) < 0.001 658.378 676.245

Under the SF model we do not retain any common feature vectors. In contrast, we obtain

two weak form common features vectors. The normalized cofeature matrix is given by

β̃′∆x∗t =


 1 −0.671 0 0.257

0 0.047 1 −0.719







∆(Ca ct)∗

∆(Ca yt)∗

∆(USA ct)∗

∆(USA yt)∗




,

where the superscript ∗ indicates that variables have been taken in deviation from their

(long-run) error-correction terms. The short-run elasticities are plausible, namely 0.67 for

Canada and 0.72 for the US. Under common feature separation, the switching algorithm

proposed in the previous section yields a log-likelihood value of LWF
sep = 714.29 that should be

compared with the value of the log-likelihood under two unrestricted common feature vectors,

see Table 4, namely 715.55. The LR test for separation in common feature, χ2(2) under11

the null, follows directly and yields a value of LRWF
sep = 2.52. Consequently we cannot reject

11Indeed the 4× 2 normalized cofeature matrix contains two zeros. Separation in common feature adds two
zero restrictions.
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the hypothesis of separation in weak form common features so that there apparently exist

independent cycles in the short-run dynamics for the USA and Canada.

Finally, we estimate the complete system under the restrictions of separation in coin-

tegration and separation in weak form common features. FIML estimates and associated

asymptotic standard errors are given in Table 5. In the columns 2 and 4, we find the es-

timates of the coefficients of the equations for consumption premultiplied by the common

feature vectors which are (1 -0.475 0 0 ) and (0 0 1 -0.682) for Canada and the USA re-

spectively. Under separation in common feature, the short-run income elasticities for Canada

and the US are respectively 0.48 and 0.68, namely slightly less than for the unrestricted

model. In the columns 3 and 5, the estimates of the error-correction form of the equations for

income in resp. Canada and the USA are presented. Due to the significance of adjustment

to error-correction terms, e.g. a non-diagonal α matrix, a P-T decomposition (whether GG

or BNSW) cannot be extracted for each country separately (for more details see Granger and

Haldrup, 1997).

Statistics for various hypotheses of block-diagonality or triangularity of Γ(L) were com-

puted under the maintained hypotheses of separation in cointegration and separation in weak

form common features. The LR test for the null of block-diagonality of Γ(L), distributed as a

χ2(12) under the null, has a value of 44.83 which immediately shows that separation of Type

C is rejected at any reasonable significance level. The finding is consistent with Propositions

1 and 2 that common feature separation does not necessarily imply Type C separation. The

null hypotheses of upper or lower triangularity of Γ(L) are similarly rejected using LR test

statistics, with asymptotic χ2(6) distributions under the null. The computed value of the

statistic for upper triangularity (resp. lower) is 27.05 (resp. 33.64).
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Table 5: FIML Estimates under Separation in Cointegration and in Weak Form Common
Features

Dep.Var ∆(Ca ct) ∆(Ca yt) ∆(USA ct) ∆(USA yt)
Coef.(Std.Err.) Coef.(Std.Err.) Coef.(Std.Err.) Coef.(Std.Err.)

∆(Ca yt) .475(.107) - - -
∆(USA yt) - - .682(.103) -

Const −0.316(−) 0.613(−) −0.010(−) 0.606(−)
(Ca CI)t−1 −0.629(0.171) 1.378(0.497) −0.148(0.076) 1.355(0.394)
(USA CI)t−1 0.699(0.228) −1.075(0.551) −0.133(0.141) −1.012(0.502)
∆(Ca yt−1) 1.132(0.374) 1.044(0.282)
∆(Ca yt−2) 0.477(0.328) 0.767(0.271)
∆(Ca yt−3) 0.405(0.308) 0.725(0.149)
∆(Ca ct−1) −0.745(0.285) −0.939(0.231)
∆(Ca ct−2) −0.654(0.304) −1.017(0.234)
∆(Ca ct−3) −0.627(0.319) −0.642(0.245)
∆(USA yt−1) −2.514(0.583) −2.165(0.459)
∆(USA yt−2) −1.616(0.477) −1.321(0.403)
∆(USA yt−3) −.800(0.232) −0.909(0.216)
∆(USA ct−1) 2.833(0.610) 2.512(0.496)
∆(USA ct−2) 2.104(0.547) 1.728(0.456)
∆(USA ct−3) 1.253(0.268) 0.686(0.287)

• Notes

• The table reports FIML Estimates under Separation in Cointegration and in Weak Form
Common Features,

• Asymptotic standard errors are reported in parentheses,

• (Ca CI)t−1 denotes the cointegrating relationship found for the Canadian series,

• (USA CI)t−1 denotes the cointegrating relationship found for the US series,

FIML-estimates of the model under separation in cointegration and in the WF common

features are reported in Table 5. From the empirical results reported in Tables 3-5 and the

conditions derived earlier it is immediately seen that none of the weak exogeneity conditions

pointed out in Section 4 holds as the hypotheses of diagonality of the error-correction matrix

α is already rejected at usual significance levels. As a by product, efficient inference requires

estimation of the joint model and permanent-transitory decompositions may not be obtained

separately for each country. Although the block-diagonality of the common feature matrix β̃
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is not rejected by the data, so that the two common cycles appear to be country-specific, the

latter cycles may not be extracted country by country as they involve linear combinations of

the short-run dynamics for both Canada and the US.

Finally, the relevance of our analysis and the importance of satisfying separability condi-

tions can be illustrated by the computation of P-T decompositions from both the full system

and from the marginal sub-systems. If all the different separability conditions mentioned in

this paper hold, both analyses should yield very similar decompositions up to slight differ-

ences that could arise from not imposing separability restrictions when estimating the joint

system and from different normalizations when computing the P-T decompositions for the

joint system and for the two marginal systems respectively. We therefore did compute the

transitory components for each of the four series from both a complete system analysis and

from a marginal country by country analysis.

Figure 2 presents the decomposition based on a full system analysis while Figure 3 was

obtained from the decomposition of the marginal sub-systems. The surprising differences

in the graphical representation illustrate in a convincing way the importance of testing and

empirically validating separability restrictions before imposing them when computing P-T

decompositions.

7 Concluding remarks

In this paper, we have considered the issue of separation in cointegrated VAR models with

common features by extending the analysis proposed by Granger and Haldrup (1997). In

particular, we have pointed out that their analysis needed to be extended to cover the case

with common features. In this set-up, we have studied the relationships between various

forms of separation in VAR models and the presence and form of common features. From

this analysis, explicit testable parameter restrictions have been derived under which sub-

group P-T analysis is equivalent to full system P-T analysis. These conditions entail both

restrictions on the long-run matrices as well as more restrictive assumptions such as Granger

Noncausality and conditional independence.

We have also clarified the relationships between weak exogeneity and separability in this

class of cointegrated VAR models and pointed out that the standard conditions of weak
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exogeneity (w.r.t. to the long-run parameters) usually considered in cointegrated VAR models

need to be generalized in this class of models.

The separation restrictions considered arise in applications where panel data in the form

of sets of time series for several entities such as households, firms, sectors, regions or countries

are analyzed. Not only did we point out the implications between the existence of common

features and forms of separation, we have also proposed and adopted a modelling strategy

that allows an investigator to test these implications in a systematic way and to finally obtain

a model that is statistically validated and has restricted dynamics which can be interpreted

in terms of economic theory. The analysis has been illustrated using consumption and income

series for both Canada and the USA which are found to satisfy separation in cointegration

and which have two ”common ” cycles, but which are specific to each of the two countries

so that a country by country BN decomposition of the series could lead to very misleading

results.
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