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Abstract 

Climate change is likely to lead to more frequent and more severe droughts, with increased pressure for 

mitigation and management of the same. However, the measurement of drought and its socio-economic 

impact are poorly understood, questioning our ability to deal efficiently with future challenges. This analysis 

shows that the 2015 El Nino drought in Ethiopia was a severe meteorological and self-reported drought, with 

substantially less rainfall than average and a high share of households reporting drought. The drought was, 

however, not an agricultural drought, as vegetation indices did not diverge from average levels and 

agricultural production levels also remained normal.  This is supported by a multitude of data sources and is 

in part due to the meteorological drought hitting areas that were less important for overall agricultural 

production.  Drought indicators used to predict agricultural outcomes (rain and vegetation in growing season, 

and predicted agricultural losses) do not show any impact of drought on household consumption. In contrast, 

outcome-based indicators (self-reported drought exposure and harvest vegetation anomalies) do show a 

negative impact on household welfare. The negative drought impact observed for vegetation anomalies in 

the harvest seasons is, however, driven by high consumption among households that had normal to better 

vegetation anomalies. Households that were most exposed to drought did relative better than those that 

had a normal season. These results can be linked to the limited agricultural drought as well as large scale 

mitigation efforts with well-targeted distribution of food aid that covered more than twelve percent of 

households.  The results show that how drought is measured matters for results and indicate that mitigation 

efforts in response to the 2015 drought seem to have been effective. 

 
Keywords: Drought measurement, impact assessment, drought emergency response 
JEL Classification: I32, O13, Q1, R28 
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1. Introduction 
Climate change means increases in weather anomalies with socio economic impact and potential suffering, 

and an increased need for effective mitigation and management to alleviate the impacts of shocks . Drought 

is one climatic outcome that with climate change is likely to become more frequent and more severe (Dai, 

2012). Though the link between drought and socio-economic outcomes, including dire human outcomes, 

seems very intuitive, the link is not well understood, in part because drought in itself is defined in many ways. 

In a review of ways drought can be measured and defined, Bachmair et al. (2016) conclude that “A 

comprehensive synopsis of existing drought indicators is impractical given the vast (and growing) number of 

available indicators”. Given the multitude of drought indicators, the impact of droughts still is poorly 

understood, and there is little consensus on which drought indicators are most meaningful for impact on 

society (Bachmair et al. 2016).  This paper contributes to a better understanding of the link between drought 

measurement and socio-economic impact of drought by analyzing the impact of drought, defined in multiple 

ways, on household well-being measured by consumption. 

As a case study the analysis is based on Ethiopia, a country with a long history of severe droughts with, at 

times, catastrophic consequences.  Ethiopia is an interesting case study as it faces frequent spells of drought 

and has a long history of trying to cope with the socio-economic impacts of drought through a number of 

different policy instruments. The analysis centers around the 2015 drought that was reported as the worst 

in five decades with more than 10 million people estimated to be in need of emergency food aid, on top of 

the chronically food insecure of about eight million people (UNICEF 2015).  

Past assessments of droughts` impact on consumption in Ethiopia have typically relied on self-reported 

drought exposure.  This analysis includes more recent drought indicators, such as satellite-based vegetation 

(NDVI) and rain (CHIRPS), that are now standard use in meteorological analysis of weather and drought 

patterns in Ethiopia (Lewis 2017; Zewdie et al. 2017). However, until their inclusion in this paper, satellite-

based indicators have never, to the author’s knowledge, been used to measure impact of drought on 

households’ consumption in Ethiopia. Past assessments of drought impact on consumption in Ethiopia have 

used hydrological drought measures based on rainfall from ground measuring stations (Demeke et al. 2011; 

Dercon 2004; Porter 2012); self-reported exposure to rain and drought (Calvo and Dercon 2013; Demeke et 

al. 2011; Dercon et al. 2005; Dercon and Krishnan 2000; Fuje 2018; Lei Pan 2009; Little et al. 2006); as well as 

predicted agricultural losses (Hill and Porter 2016). Predicted agricultural losses does imbed rain satellite 

data, as these are used to predict specific crop losses. 
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2. Data  
2.1 Survey and Consumption Data 

The main sources of data for this impact assessment are the two rounds of Ethiopia Socioeconomic Survey 

(ESS) data from 2014 and 2016 (Ethiopia - Socioeconomic Survey 2017). The survey is a national 

representative panel of households observed before and after the 2015 drought. For this analysis, the data 

has been restricted to rural households that were observed in both rounds of data2.  

Consumption data is seven day recall data and a comparable consumption per adult equivalent aggregate is 

included with the survey data (Ethiopia - Socioeconomic Survey 2017). The consumption data was collected 

in February through April in 2014 and again in same months in 2016. The timing of the survey is such that a 

minimum of three months have passed since completion of the last harvest. Hence, it should capture both 

the direct effects of the drought (on household agricultural production) and some indirect equilibrium effects 

working through prices and other channels. Descriptive statistics shows that average consumption levels fell 

between 2014 and 2016, while durable assets and livestock did not change significantly over time. The 

pattern is consistent with a negative shock impacting consumption, though it has not resulted in changes in 

savings yet. The analysis will show if the drought can explain this pattern.  

2.2 Drought indicators  

Droughts can be hard to quanitify as onset and ending can be unclear. This analysis uses four standard types 

of drought indicators: 1) rain anomalies based on satellite images (CHIRPS), 2) predicted crop losses from the 

“Livelihoods, Early Assessment, and Protection” (LEAP) project, 3) vegetation anomalies based on satellites 

(Normalized Differenced Vegetation Index - NDVI), and 4) households’ self-reported exposure to drought.  

The above indicators are all commonly used drought indicators, but they differ in key aspects and type of 

indicator (Wilhite and Glantz, 1985). Rain anomalies is a meteorological drought indicator and is usually the 

first and primary source of drought monitoring. Predicted crop losses builds on the rain data and transfers it 

into an agricultural drought indicator. Vegetation anomalies in the growing season is usually also seen as an 

agricultural drought indicator. Self reported drought on the other hand is not clearly defined as a type of 

drought.  Households could report lack of rains (meteorological drought), lack of vegetation (agricultural 

drought), or even the direct loss of consumption (a socio-economic drought), and the reported drought 

exposure might differ by household. However, self-reported drought exposure is included because much of 

                                                           
2 2.8 percent of rural households present in 2014 were not found in 2016. The attritional households have similar 
means to non-attritional households for four out of five drought indicators. Only rain anomalies have a significantly 
(5%) different means across attritional and non-attritional households. 
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the past work on drought impact has used this indicator, usually due to the lack of better alternatives. 

Further, self-reported drought exposure is likely endogenous to consumption, as households that fared 

worse are more likely to report a drought than households that suffered less for same drought exposure.  

Rain anomalies during growing season, predicted crop losses, as well as vegetation anomalies are also 

predictors of agricultural outcomes, as opposed to self-reported drought exposure and vegetation anomalies 

for the harvest season, which can be seen as agricultural outcome measures. The former is critical for 

mitigation efforts, while the latter likely more important for socio economic impact. 

Rain anomalies is based on the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 

(Funk et al. 2015). Mean monthly rainfall is merged with the survey data based on households’ GPS locations. 

The value for each household is set to be the weighted value of the four nearest grid areas, with weights 

being the inverse distance from the households’ GPS locations and the center point of the grid. In Ethiopia’s 

Upper Blue Nile Basin, the monthly CHIRPS data have been shown to be highly correlated with rainfall from 

weather stations (Bayissa et al. 2017). Following Bayissa et al. (2017), rain anomalies are defined by a z-score 

for accumulated rain during the main growing season (June to August) based on values for each household 

between 2000 and 2016.  

Predicted crop losses are from the Livelihoods, Early Assessment and Protection Project (LEAP) system, 

developed in 2006 by the Government of Ethiopia in collaboration with the World Food Programme. LEAP 

uses crop-modeling approaches to estimate the likely rainfall-induced crop losses in districts (woredas) 

throughout Ethiopia based on water balance (Hill and Porter 2016). The data is estimated as percentage crop 

loss in the main season (the main growing season in Ethiopia) at woreda level. Woreda is the third 

administrative level, below the zone, and there are 670 rural woredas in Ethiopia, of which 238 are found in 

ESS.  

Self-reported drought exposure is found in both the community and the household questionnaire in ESS 

surveys. Here, 21 percent of households live in communities that report a drought in 2015 as one of maximum 

of four negative events. In the household questionnaire, 28 percent of households report a drought within 

the last year, leaving 46 percent of households as having been exposed to drought according to either the 

community or household question. The community reporting includes an estimate of how many households 

were hit by the drought. Here, 39 percent of communities report that 50 percent or less of households were 

hit by the drought. In a country where almost all households rely on rain-fed agriculture, it is unlikely that 

meteorological drought will expose households within same community vastly differently, indicating that the 

self-reported drought exposure also reflects socio-economic drought, and not just meteorological or 
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agricultural drought. The 39 percent of communities that report 50 percent or less of households were hit by 

the drought is a clear indication of endogeneity in self-reported drought exposure. Such endogeneity would 

give a severe upward-bias in impact analysis using regression analysis. The drawbacks of self-reported 

drought exposure are major concerns that should warrant caution when used for analytical purposes, 

including impact assessments. 

Vegetation anomalies is measured through the Vegetation Condition Index (VCI) (Kogan 1995), based on the 

Normalized Difference Vegetation Index (NDVI) from the MODIS Terra satellite. VCI values are expressed as 

a percentage reflecting the historical best and worst vegetation for each location. VCI is used in two different 

ways. VCI is included based on its values in the growing season (June to August) and for the main harvest 

season (August to October). The former is the value when VCI is used as a monitoring tool, while the latter is 

the actual vegetation outcome, reflecting agricultural production. VCI is also being used as a monitoring tool 

in Ethiopia (Eshetie et al. 2016; Tagel Gebrehiwot 2016). The index is merged with the household survey data 

based on households’ GPS locations, using inverse distance to center points as weights. 

3. Method 
The key interest is the impact of drought on households’ well-being, where well-being is measured by 

consumption. Agricultural production is a direct transition mechanism between drought and households’ 

well-being in Ethiopia, as around 98 percent of the rural households report agricultural activity and only 7 

percent have anyone working in any kind of employment outside the household (ESS, 2016). However, the 

net impact from crop or pasture failures is not necessarily negative for those most dependent on agriculture. 

For instance, crop failures can lead to higher prices, which could increase farm income of net producers 

despite the lower harvest; a few farmers are insured against weather-induced crop-losses, and losses can 

also give access to external assistance. Further, there are likely to be both market and non-market indirect 

effects with different time lags impacting households (Ya et al. 2011). 

Drought impact is estimated via a first difference regression with households being the unit of observation 

as in Equation 1.                                                                    

Equation 1     ∆lnY𝑖𝑖𝑖𝑖 = 𝛿𝛿𝛿𝛿𝑖𝑖 + 𝜃𝜃∆H𝑖𝑖𝑖𝑖 + 𝑈𝑈𝑖𝑖𝑖𝑖 
                                             
 

Where ∆ lnY is change in log consumption between the two survey rounds, D is the drought indicator for 

drought exposure in the 2015 season, and the impact of drought is captured in 𝛿𝛿, while U is the error term. 

Following the discussion in section 2.2, Equation 1 is estimated with D being: 1) z-scores for rainfall during 
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the main growing season, 2) estimated crop losses as a percentage of expected output , 3) vegetation 

anomalies measured through VCI in the main growing season, 4) self-reported drought exposure at 

household level, and 5) vegetation anomalies measured through VCI in the main harvest season. A first-

difference regression controls for all unobserved time-invariant factors, while  ∆H is time-variant household 

characteristics. The control variables include household size, household size squared, highest education level 

in household, and change in gender of household head. All regressions are done in stata using the svy 

commands taking survey designs into effect and using the household weights from the 2014 round of the 

data. Any household changes not included in ∆H will be included in U. 

4. Analysis 
4.1 The 2015 drought according to different drought indicators 

Though widely reported to be a historical drought, different drought indicators come to different conclusions. 

Household self-reported data from ESS indicate that the 2015 season was worse than previous years. This is 

true for the 28 percent of households that reported a drought, compared to only 9 and 14 percent in the 

2013 and 2011 seasons, as well as for the 21 percent of households that lived in communities that reported 

a drought in 2015, compared to the little more than one percent reporting it in 2011 and 2013 (Fig. 1a). 

Similarly, the share of households that reported to be food insecure in the months immediately following the 

end of the main harvest season (November through January) increased to more than 5 percent in 2015/16, 

compared to around 2 percent in 2011/12 and 2013/14 (Fig. 1a).  

Meteorologically, rain anomalies also show 2015 to be a drought year with low rainfall in the growing season, 

even worse in 2015 than in previous historical drought years (2009 and 2002/2003) (Fig. 1b).  

Agriculturally, anomalies in vegetation, on the other hand, show 2015 in general being an average or even 

better-than-average year for most of the country (Fig. 2a). Agricultural production data indicate that 2015 

was below the trend, but only one percent below production levels of the year before and above the level 

produced two years prior (Fig.2b). Estimated crop loss data show that crop losses were about the mean for 

the 2005-2016 period. Estimated crop losses and measured crop harvests are data-independent as estimated 

crop losses is based on meteorological data and crop-specific models, while crop harvests are based on field 

harvest samples. Hence, on average, the crop production prediction models in 2015 seem to adequately take 

into account the specificities of weather patterns and crop production and estimate agricultural production 

consistently with the measured harvests. Other data related to agriculture also support that 2015 did not 

have a widespread agricultural drought, as both food prices and wages were remarkably stable from 2014 to 

2016 (Bachewe 2016). 
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Fig. 1a  Self reported drought exposure 2011-

2015  

Fig. 1b Rain anomalies 2000-2016  

 
 

Fig. 1a Self-reported drought exposure and food insecurity is survey data (ESS 2012, 2014 and 2016). Fig 1b Rain anomalies are z-
scores based on CHIRPS presented as box-plots for each year.  The white stripe in the middle of the solid grey box is the median 
value, the upper hinge of the solid grey box is the 75th percentile of distribution, while the lower one is the 25th percentile  

 

Fig. 2a Vegetation Anomalies 2000-2016 Fig. 2b Grain production and predicted crop losses 

 
  

Fig.2a: Vegetation anomalies are VCI values presented in box-plots for each year for the growing season.  The white stripe 
in the middle of the solid grey box is the median value, the upper hinge of the solid grey box is the 75th percentile of 
distribution, while the lower one is the 25th percentile. Fig 2b: Total grain production is from CSA(CSA, 2014, 2015, 2016, 
2016. ). Estimated crop losses are from Hill and Porter (Hill and Porter, 2016).  

Hence, the indicators point to a severe meteorological and self-reported drought in 2015, but not a severe 

agricultural drought. Looking at the correlation between these indicators for each household in ESS, it is 

positive that all have a significant correlation with the expected signs (Table 1). However, the correlation 

between self-reported drought exposure and rain anomalies is very weak. Previous work based on farmers 

in northern in Ethiopia has also found that actual rainfall and perceived rainfall do not correlate well (Meze-

Hausken 2004).  

0%

5%

10%

15%

20%

25%

30%

Food insecurity
November-
January

HHs drought
exposure

Communities
drought exposure

-4
-2

0
2

4
D

is
tri

bu
tio

n 
Z-

sc
or

es
 R

ai
n

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
20112012

2013
2014

2015
2016

0
20

40
60

80
10

0
Ve

ge
ta

tio
n(

VC
I)

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016

0

5

10

15

20

25

0
5

10
15
20
25
30
35

M
ill

io
ne

n

Total grain
production in
tons (left axis)

Predicted
crop losses
(right axis)



9 
 

Table 1 Correlation between drought indicators in 2015 

 

 
Self-

reported 
Rain 

anomalies 
Vegetation anomalies 

growing season 
Vegetation anomalies 

harvest season 
Predicted 
crop loses 

Self-reported 1.00     

Rain anomalies -0.07*** 1.00    

Vegetation anomalies growing 
season -0.41*** 0.29*** 1.00   

Vegetation anomalies harvest season -0.43*** 0.25*** 0.69*** 1.00  

Predicted crop loses 0.34*** -0.30*** -0.54*** -0.53*** 1.00 
Note that Vegetation and rain anomalies are continuous variables with observations for each household in ESS, while self-reported 
drought exposure is a dummy for same households.  Predicted crop losses is a value for each woreda. 

 

A focus on the spatial distribution provides further details on the vegetation anomalies and the limited impact 

on agricultural production. Spatially, poorer-than-normal rains in the main growing season are observed for 

all of central and northern Ethiopia (Fig. 3a). Worse-than-normal vegetation, on the other hand, was mostly 

concentrated in a smaller area in the northeast of the country (Fig.3b and Fig. 3c). Importantly, the vegetation 

drought was mostly observed in areas that have limited agricultural production (Fig. 3d). 

Fig. 3a Rain anomalies growing season 2015 Fig. 3b Vegetation anomalies growing  
season 2015 

  

Fig. 3c Vegetation anomalies harvest season 
2015 

Fig. 3d Average grain production   
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Fig. 3a: Z- scores for rain anomalies in the main growing season. Fig. 3b: VCI for the main growing season. Fig. 3c: VCI for the 
main harvest season Fig. 3d: Share of total agricultural grain production by zone, averages for 2011-2015 (CSA, 2011, 2012, 
2013, 2014, 2015). Black dots are locations of household survey points in the ESS survey. 

Interestingly, the divergence between rain and vegetation anomalies (Fig. 1-3) is not just driven by a time lag, 

as illustrated by the relatively persistent spatial patters in vegetation anomalies in the growing and harvest 

seasons (Fig. 3b and Fig. 3c).  Analysis of rain and vegetation anomalies, from 2000 to 2016, in all of East 

Africa also highlights large discrepancies between rain and vegetation anomalies in 2015 (Winkler et al, 

2017). Here, large discrepancies between rain and vegetation anomalies are found in Ethiopia, but especially 

so in Zimbabwe, Zambia, Malawi and Mozambique. This divergence might explain why other research has 

also recently identified a missing link between rainfall variability and food security in Ethiopia (Lewis 2017), 

as well as a missing link between rain variability and crop yield in the Amhara region of Ethiopia (Bewket 

2009). 

4.2 Impact of drought on consumption 

Table 2 shows the 𝛿𝛿 coefficients from Equation 1 with and without the household control variables (H). As 

expected for panel data, there is a limited impact from controlling for time-varying household characteristics, 

indicating that results are robust. Regressions with an extended set of controls, including log of an asset 

index, log of holdings of livestock measured in Tropical Livestock Unites (TLU), if someone in the household 

entered or exited the Productive Safety Net Program (PSNP), if the household received food aid, or if the 

household obtained lines of credit during the 2015 season, give almost identical results, further indicating 

that results are robust. Using similar data, Hirvonen et al. also find that there is no overall impact  of the 2015 

drought measured by rain anomalies on child malnutrition (Hirvonen, 2018. )  

None of the drought predictors (rain and vegetation anomalies in the growing season and predicted crop 

losses) show an impact on consumption (Table 2). In contrast, drought outcome measures (self-reported and 

VCI for harvest) show a significant negative impact of drought on consumption. Household self-reported 

exposure indicates that consumption levels are 17 percent lower due to the drought, a large impact. Drought 

impact on consumption based on vegetation anomalies, on the other hand, indicates a much smaller impact 

of 7 percent lower consumption at the mean for a one standard deviation worse VCI score (VCI SD is 34, 

34*0.002=7 percent). This is in line with expectations, given an expected upward-bias in the self-reported 

drought exposure. 

Table 2 First-difference regression for impact of drought on consumption by drought indicator 

Type of indicator Predictor  Outcome  

Drought indicator 
Rain in growing 

season 
Predicted crop 

losses 
Vegetation during growing 

season 
Self-reported 
households 

Vegetation in harvest 
season 
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Impact on log 
consumption 

-0.01 -0.02 -0.00 -0.00 0.00 0.00 -0.169*** -0.164** 0.002** 0.002** 

(0.03) (0.03) (0.00) (0.00) (0.00) (0.00) (0.062) (0.064) (0.001) (0.001) 

Household covariates  x  x  x  X  x 

Observations 2822 2745 2833 2756 2822 2745 2833 2756 2833 2756 

R square 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.02 

Notes: Table shows the 𝛿𝛿 coefficient from Equation 1. Standard errors in parentheses * p<0.10, ** <0.05, *** p<0.01 

 

Fig 4. Local polynomial smoothing between change in 

consumption expenditures between 2014 and 2016 and VCI 

harvest anomalies in 2015. Grey areas are 95 percent 

confidence intervals. Graph use household weights. 

A closer look at the bivariate relationship between change in consumption and harvest vegetation anomalies 

(Fig. 4) shows that the positive coefficient in Table 2 seems to be driven by VCI values in the range 40 to 100 

(Fig. 4). This shows that households that had better-than-normal vegetation were relatively better off (the y-

scale is negative, as all households on average had lower consumption). Meanwhile, for those that had the 

worst harvest vegetation anomalies (VCI values 0 to 40) the correlation runs the other way (Fig. 4). That is, 

those households exposed to the worst vegetation drought were relatively better off than those that were 

exposed to a moderate drought. Including squared and cubic terms for drought in Regression 1, also indicate 

a non-linear impact (Table 3). Further, splitting the sample into to those with a VCI below or above 40 result 

in a significant impact of drought on consumption for both groups, but with opposite signs. Thus, this 

confirms the bivariate results in Fig. 4 in regressions with control variables.  Hence, for those most exposed 

to drought there is a negative coefficient, indicating that more drought is associated with better welfare level, 

while those above 40 have a positive coefficient indicating that less drought (or greener) is better for welfare 

(Table 3)3. 

Table 3 First-difference regression for impact of drought on consumption different specifications 

                                                           
3 Quantile regressions work for different parts of the dependent variable (here change in log consumption) and would 
therefore not be the relevant method for this situation. 



12 
 

Drought indicator First difference  
Full sample 

First difference 
VCI<=40 

First 
difference 

VCI>40 

Impact VCI 
functional forms 

Impact VCI 
functional forms 

Impact VCI 
functional forms 

Vegetation in harvest 
season 

0.002*** -0.004*** 0.004*** -0.004*** -0.014*** -0.010 

(0.001) (0.001) (0.000) (0.000) (0.000) 0.000) 

Vegetation in harvest 
season squared 

   0.000*** 0.000*** 0.000 
   (0.000) (0.000) (0.000) 

Vegetation in harvest 
season cubic 

    -0.000*** 0.000 
    (0.000) (0.000) 

Vegetation in harvest 
season quartic 

     0.000 
     (0.000) 

Household covariates x x x x x x 

Observations 2745 887 1858 2745 2745 2745 

R square 0.02 0.03 0.02 0.02 0.03 0.03 

. Notes: Table shows the beta coefficient from Equation 1. Standard errors in parentheses * p<0.10, ** <0.05, *** p<0.01. Regression use 
household survey weights, but not design effects at cluster level as some clusters have too few observations for the regressions in column two and 
three.  
 
 

4.3 Policy mitigation of drought 

That households with very poor harvest vegetation were relatively better off could be due to the massive 

distribution of food aid and the scale-up of the PSNP. As reflection of past drought experiences, Ethiopia 

monitors drought closely and alarm bells were ringing in 2015, resulting in both government and non-

government actors expanding drought mitigation programs. In the ESS data, this is seen in the share of 

households receiving external assistance increasing from 11 to 19 percent of all rural households from 2014 

to 2016. In particular, the free food program expanded dramatically (increased by 120 percent), while the 

PSNP program also expanded (Table 4). The PSNP program is designed to address chronic food insecurity and 

only operates in selected woredas and is not designed to be a drought emergency program. However, the 

program was expanded in reaction to the drought. Free food was a notable contribution to household welfare 

as it was valued at three percent of total food consumption for the year at the median, and seven percent at 

the mean, for those receiving it. 

Table 4 Share of rural households receiving external assistance by program type 

Year PNSP Free food Cash or food for work Inputs for work 
Other 

assistance 
PNSP 

employment 

2014 3,6% 5,5% 2,6% 0,0% 0,7% 7,2% 

2016 4,5% 12,1% 2,5% 0,3% 0,9% 8,9% 
Source ESS 2014 and 2016. 

Ideally, a combined regression analysis would assess both the impact from drought and mitigating impact 

from programs in response to the drought on households’ well-being. However, as the PNSP program and 

the free food distribution target households in need, presumably the poorest, the variables would be 

endogenous to consumption and results, therefore, biased (Puri et al. 2017).  
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Instead, we assess whether the support programs reached those most exposed to the drought. Equation 2 is 

used to test whether households’ entry into the assistance programs during the expansion was significantly 

driven by drought anomalies. Here, ∆ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  is households’ entry into any of the programs listed in Table 

4, given that they were not enrolled in the program in 2014, while 𝛿𝛿D is the harvest vegetation anomalies 

and 𝜃𝜃∆H is defined as in Equation 1. Equation 2 is estimated with a logistic regression and marginal effects 

are presented in Table 5. The regression does not consider exit of the program as the focus here is on 

targeting those exposed to drought. 

Equation 2                                                                 
∆ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛿𝛿D𝑖𝑖 + 𝜃𝜃∆H𝑖𝑖𝑖𝑖+𝜀𝜀𝑖𝑖𝑖𝑖                   

Results for Equation 2 shows that the distribution of free food and the PSNP program(s) did target locations 

with unusually poor vegetation (Table 5). At the mean, the coefficients are equivalent of a six percent higher 

chance of entering the free food program for one standard deviation worse VCI score. Similarly, for a one 

standard deviation worse VCI score there was a two percent higher chance of entering the PSNP or PSNP 

labor program.  

The bivariate relationship, using non-parametric smoothing, indicates that the significant result on drought 

targeting is highly concentrated in the lower end of the distribution (Fig. 5). Hence, the coefficients based on 

averages, in Table 5, might therefore underestimate the true likelihood of a household with very poor 

vegetation having received assistance. Both the free food program and the PSNP program seem well-targeted 

toward households with low vegetation (Fig. 5), as the likelihood of receiving these programs increased 

systematically with lower vegetation than normal, especially for those with the worst VCI score.  

Table 5 Regression for entry into program on harvest vegetation anomalies 

Drought indicator ∆ PNSP ∆Free food ∆ Cash or food for work ∆ Inputs for 
work 

∆ Other 
assistance 

∆ PNSP 
employment 

VCI harvest 
 

-0.0006*** -0.0017*** -0.0001 0.0000 -0.0001 -0.0006* 
(0.0003) (0.0006) (0.0001) (0.0001) (0.0001) (0.0004) 

Household covariates x x X x x x 

Obs 2839 2779 2911 2994 2972 2676 

Notes: Table shows the 𝛿𝛿 coefficient from Equation 2. Standard errors in parentheses * p<0.10, ** <0.05, *** p<0.01. 
Regression use survey weights and design. 

 

A. Non-linear correlation between receiving 
PSNP and vegetation anomalies 

B. Non-linear correlation between receiving 
free food and vegetation anomalies 
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Figure 5. A: Local polynomial smoothing between receiving PSNP assistance and VCI anomalies. B: Local polynomial smoothing 
between receiving free food assistance and VCI anomalies. Grey areas are 95 percent confidence intervals. To focus on the 
expansion, both A and B exclude households that received assistance in 2014. 

Households with a VCI score under 10 had a 40 percent chance of receiving food aid (Fig. 5b), which, at the 

median, was valued at three percent of annual consumption. Hence, it is plausible that support programs 

explain the observed lack of drought impact among households with the worst vegetation (Fig. 4). However, 

note that the data and analysis are insufficient to claim causality between the relatively successful targeting 

of support program towards poor harvest vegetation anomalies and the lack of a negative impact on 

consumption for this group. 

5. Discussion 
The analysis brings together several data sources and shows that mass suffering due to the El Nino drought 

in Ethiopia was likely avoided due to several factors. First, the drought as observed through vegetation 

anomalies was limited in spatial coverage and mostly hit areas with limited importance for agricultural 

production. Second, the massive policy response, supporting those that were worst hit by drought (measured 

by vegetation anomalies), likely limited its socio-economic impact. It is encouraging that the drought-

monitoring and targeting efforts used to distribute free food seems to have worked well. One could question 

if the program was too generous as those that were most-exposed to drought fared better than those less-

exposed. However, further conjectures should also consider that consumption, on average, was lower for all 

households, irrespective of vegetation state, in 2016 than in 2014, and that grain prices and wages were 

stable in the same period. Thus, the prevailing evidence from this analysis does not seem to add up to a 

complete understanding of the lower consumption observed in 2016. 

The analysis also raises questions. The divergence between rain and vegetation anomalies can indicate that 

agricultural production is resilient to weather, though this is generally not expected given Ethiopia’s low 

degree of irrigation (Worqlul et al. 2017). There is new literature pointing to increased resilience in grain 

prices in response to weather variability (Hill and Fuje 2017). The increased resilience of grain prices to 
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drought is attributed to both improvement in market access and better policy mitigation of drought impact. 

Though both aspects point to increased resilience, neither improved markets nor mitigation of socio- 

economic impact would explain the divergence in rain and vegetation anomalies observed in both Ethiopia 

and most of East Africa in 2015 (Winkler et al, 2017). In Ethiopia, others have also noted a missing link 

between rainfall variability and food security (Lewis 2017) and a missing link between rain variability and 

crop yield in the Amhara region (Bewket 2009), which, combined with this study, could question the 

sufficiency of rain variability based on satelites as a drougth indicator for socio economic impact. There are 

multiple potential reasons for such observed patterns. Change in land use, ground water levels, or maybe 

measurement issues, are but a few potential reasons. The smaller agriculture season (belg) coincides with 

the growing season of the main season (meher), which could impact the vegetation anomalies, but not the 

rain anomalies, and thereby generate some divergence. However, existing literature on drought monitoring 

does not seem to see this as an issue (Eshetie et al. 2016; Tagel Gebrehiwot 2016). Unfortunately, a full 

assessment of this topic is much beyond the scope of this work, though is seems key to understanding how 

drought is best measured in respect to socio-economic impact, as well as in other aspects. 

In addition to this, the work illustrates how impact assessment using subjective drought reporting is upwards-

biased. The use of predictor-based drought indicators compared to outcome-based indicators also shows 

that the predictor-based ones, in this case, are not powerful enough to detect a significant impact on 

consumption. However, the lack of impact can be because a standard first difference impact assessment as 

applied here, which in many settings is considered the gold-standard, is an insufficient analytical tool, as it 

does not include the mitigating impact of drought response. Instrumental variables techniques could 

potentially address this.  

All in all, the paper shows that the lack of a best practice for drought measurement and lack of a similar 

framework for understanding the socio-economic impact af drought, could be routed in several challenges 

both with measurement of drought as well as with assessment metholodology. 
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