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Abstract

Cross-sectional earnings inequality has risen sharply since the late 1970s in the United States.
It remains an open question how this development has affected the insurance and income re-
distribution roles played by Social Security. The paper’s first question is: How have the gov-
ernment preferences over insurance and redistribution evolved during the past four decades?
I answer this question quantitatively by constructing a rich overlapping generations model.
My findings indicate that the government has become less willing to provide insurance to
young workers and redistribute from high-ability to low-ability households. Simultaneously,
it has become more willing to tolerate income redistribution from workers toward retired
households. To quantify the welfare consequences of the shift in government preferences, I
ask the second question: How should Social Security have responded to inequality had the
government preferences remained unchanged? Compared to the optimal policy, the current
system induces a welfare loss equal to 1.2 percent in consumption equivalent terms. Finally,
I show that each driving force of cross-sectional earnings inequality has a differential impact
on the optimal policy.
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1. Introduction

Cross-sectional earnings inequality has risen sharply since the late 1970s in the United
States.1 The optimal taxation literature has already addressed the question of how this
development has affected the redistributive nature of the overall tax and transfer system
in the United States.2 However, less attention has been devoted to the inequality’s impact
on distinct redistributive programs. This paper focuses on Social Security, the publicly
provided pension system. Social Security is an interesting system to analyze for two reasons.
First, it’s a large program that plays a vital role for many U.S. households.3 Second, Social
Security is a complex system. In contrast to other programs, such as income taxation that
redistributes incomes based on the individual’s current economic conditions, the individuals’
pension benefits depend on the entire history of their earnings.

The goal of the paper is twofold. In the first step, I study the actual Social Security system
and ask how the government preferences over insurance and redistribution have changed
since the 1970s when cross-sectional earnings inequality started to rise. I address this issue
quantitatively in a rich general equilibrium overlapping generations model. The main finding
is that the U.S. government has become more willing to tolerate redistribution from young
workers toward retired households. Moreover, it has become less willing to insure young
workers against uncertainty in their future earnings and redistribute incomes from high-
ability to low-ability households. Next, I ask the second closely related question. Suppose the
government tastes for insurance and redistribution have remained unchanged since the 1970s.
How should the system have responded to inequality? Compared to the optimal policy, the
existing system induces a welfare loss equal to 1.2 percent in consumption equivalent terms.
I show that each driving source of cross-sectional earnings inequality has a differential impact
on the effectiveness of the Social Security instruments and, therefore, the optimal policy.

Since one of the paper’s goals is to understand the actual Social Security policy, the
model’s central ingredient is the statutory replacement rate schedule.4 This schedule de-

1Heathcote et al. (2010a) and Heathcote et al. (2010b) provide extensive empirical evidence on the trends
in income inequality in the United States.

2Among others, Lockwood and Weinzierl (2016), Heathcote et al. (2020), and Wu (2020) have made
significant contributions in this field.

3Social Security’s payouts amount to 30 percent of total government outlays. According to Hosseini and
Shourideh (2019), Social Security benefits constitute as much as 40 percent of older people’s total income.

4The replacement rate schedule is the central piece in the Social Security legislation since the Social
Security Amendments of 1977 were adopted. The Amendments introduced a long-term strategy to stabilize
future replacement rates and give workers clarity about their future retirement benefits. These provisions
have remained essentially unchanged since 1977, but there have been several attempts to overrule them since
then.
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termines the individual’s pension benefit based on their average lifetime earnings, which is
essentially the average over the worker’s annual earnings below the maximum taxable earn-
ings threshold. I approximate the replacement rate schedule through a flexible function with
two critical variables. The first variable sets the replacement rate of a worker, whose average
lifetime earnings are equal to the economy-wide average taxable earnings. When the average
replacement rate increases, the entire replacement rate schedule shifts upward, raising every
current and future retiree’s pension benefit. This does not occur without a cost because
workers will have to pay higher payroll contributions. Hence, this policy variable generates
an inter-generational conflict between the current workers and retirees. The second variable
in the schedule controls its slope, i.e., the pension system’s statutory progressivity. When
the government reduces progressivity, all retirees whose average lifetime earnings are below
the economy-wide average taxable earnings receive a lower replacement rate. By contrast, re-
placement rates rise for all other retirees. Thus, the second variable generates a distributional
conflict between agents with high and low average lifetime earnings.

Each of the two variables in the replacement rate schedule plays a distinct role in the
government’s equity-efficiency tradeoff. The government can effectively use the average re-
placement rate to control the efficiency losses associated with the public provision of pension
benefits. Simultaneously, the schedule’s slope allows the government to provide insurance
against labor productivity risk and achieve a less unequal distribution of resources among
retired agents. However, when choosing progressivity, the government can only condition the
replacement rate on the retired agent’s average lifetime earnings. Therefore, the effectiveness
of the second instrument will depend on the correlation between the retired agents’ aver-
age lifetime earnings and their incomes. If both are highly correlated, the government can
effectively leverage the pension system’s progressivity to target disadvantaged groups. By
contrast, the schedule’s slope becomes a less effective instrument if the correlation is weak.
In this case, the government has to resort to the first instrument and raise every retiree’s
pension benefit at the cost of higher Social Security taxes.

The government chooses the replacement rate schedule optimally by maximizing the
weighted welfare of all agents who are alive.5 The Pareto weights in the government’s op-
timization problem add the necessary flexibility to help the model match the actual policy.
The government sets the schedule once-and-for-all, internalizing how it will affect households
along the economy’s transition. The new schedule applies to all agents in the economy, in-

5In the real world, governments seek reelection and, therefore, propose policies to gain the support of
current voters.
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cluding those who have already retired. Given the schedule, the Social Security tax rate
adjusts in each period to satisfy the government budget constraint.6

I calibrate two sets of parameters. The first set reflects the U.S. economy in 1979, char-
acterized by relatively low cross-sectional earnings inequality. The second set describes the
U.S. economy in 2017.7 It reveals the substantially higher dispersion in earnings. Besides
inequality, I account for population aging reflecting a divergent trend in mortality rates by
ability.8 Aging is important in the model’s context because it shifts social marginal welfare
weights toward older high-ability agents. Moreover, I control for changes in other aspects
of the overall tax and transfer system that might affect the government’s equity-efficiency
tradeoff: income, capital, Medicare taxation, normal retirement age, and maximum taxable
earnings threshold. Finally, I adjust the parameters that govern household preferences and
the representative firm’s production technology.

To address the paper’s first question of how the government’s preferences over redistri-
bution have changed over time, I identify Pareto weights consistent with the actual Social
Security policy in 1979 and 2017. I uncover a major disagreement between generations over
the average replacement rate in the calibrated model economy. At the same time, there is
large heterogeneity in welfare between high-ability and low-ability agents within each age
group over pension system progressivity. To exploit this heterogeneity, I specify the Pareto
weights as a function of the agent’s age and ability and identify two crucial parameters in the
Pareto weight function. I find that conditional on age, the relative Pareto weight on high-
ability agents almost doubles over time. This findings indicates that the U.S. government
has become less willing to provide insurance to young workers and redistribute incomes from
high-ability to low-ability households. Simultaneously, Pareto weights shift toward older
agents, conditional on their ability. More specifically, while the government in 1979 was
willing to trade off one util of a 25-year-old household against two utils of the 65-year-old
household of the same ability, this tradeoff is reversed in 2017. This finding suggests that
the U.S. government has become more willing to tolerate redistribution from young workers
toward retired households.

Although the model is salient regarding the underlying forces behind the identified shifts
in Pareto weights, I provide empirical evidence that corroborates the model predictions. I

6I allow Social Security to be unbalanced for the model to be consistent with the payroll tax rate in the
data.

7I choose 1979 and 2017 as these are the earliest and latest periods, respectively, for which the harmonized
data on income and earnings inequality are available.

8In the model, the drivers of cross-sectional earnings inequality and population aging are exogenous.
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specifically analyze voter turnout rates by household age and education in Congressional
elections between 1978 and 2018. I show that the turnout rate of college graduates relative
to high-school graduates of the same age has increased over time. The same observation
holds along the age dimension, conditional on the household’s education.

The paper’s second closely related question is how Social Security should have responded
to the economic changes had the government maintained the same preferences over insurance
and redistribution as in 1979. The answer to this question allows me to quantify the welfare
consequences of the shift in government preferences. In response to a combined change in all
model parameters, the government optimally chooses to reduce the average replacement rate
by 29 percent and increase progressivity by 2.8 times compared to 1979. This policy reduces
the Social Security tax rate by 1.8 percentage points in the long run compared to 1979. The
optimal policy leads to a welfare gain to the currently lived U.S. households equivalent to a
1.2 percent consumption increase. Qualitatively, the marginal effect of earnings inequality on
the optimal policy turns out to be the same as the combined effect of all model parameters.
Quantitatively, earnings inequality explains roughly 40 percent of the total decline in the
average replacement rate and one-third of the total increase in progressivity.

Finally, I conduct a set of decomposition exercises to quantify the impact of each driving
force of earnings inequality on the optimal policy. Rising college premium strengthens the
correlation between retired agents’ incomes and their average lifetime earnings. Therefore, the
government can effectively use pension system progressivity to redistribute incomes toward
income-poor retirees. The optimal progressivity increases by 18 percent compared to 1979.
Since pension benefits target precisely those who need them most in this case, the government
can reduce the average replacement rate by 11 percent to dampen the distortionary effect
of labor taxation. Similar to the college premium experiment, higher idiosyncratic labor
productivity risk leads to a substantial passthrough of cross-sectional earnings inequality into
income inequality during retirement. Contrary to the previous experiment, however, there
is a weaker correlation between retired agents’ incomes and their average lifetime earnings.
Even though the government increases progressivity by 24 percent to provide insurance to
workers, it optimally chooses to uphold roughly the same average replacement rate as in
1979. This choice allows the government to redistribute resources to those workers who
have relatively high average lifetime earnings but failed to accumulate sufficient savings for
retirement.
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Related literature

This paper relates to three strands in literature. The first strand applies the inverse opti-
mum approach to recover social preferences for redistribution. Several studies have inverted
government preferences by looking at the progressivity of the tax and transfer policy in the
United States. This literature’s appealing feature is that the notion of the tax and transfer
system comprises a very broad range of redistributive programs, such as income taxation, so-
cial security, Medicare, child support, etc. Moreover, the tax and transfer system is specified
powerfully as a function of two parameters only (the tax level and progressivity). Tsujiyama
and Heathcote (2015) and Chang et al. (2018) study the progressivity of the tax and transfer
system in the cross-sectional U.S. data and identify a relatively high Pareto weight attached
to more productive agents. Wu (2020) and Heathcote et al. 2020 analyze the time trends in
social preferences for redistribution. Wu (2020) estimates that the progressivity of the tax
and transfer system declined during 1978–2016.9 He constructs a rich quantitative model
according to which structural economic changes, including earnings inequality and popula-
tion aging, explain more than a half of the total decline in progressivity. Increased Pareto
weights on high-ability households rationalize the remaining portion of the drop. Heathcote
et al. 2020 challenge this finding. Their empirical investigation concludes that progressivity
has remained constant between 1980 and 2016. Moreover, a utilitarian government in their
model optimally chooses the actual policy in response to earnings inequality. The authors
emphasize the endogenous skill investment as the critical ingredient required to match the
data.

The broad view on redistribution taken by these studies poses two critical challenges.
Through the aggregation of various redistributive programs, it becomes impossible to under-
stand the exact mechanisms through which each of them affects the optimal policy. Further-
more, the mapping between the model’s predictions and policy implications is everything but
trivial. By focusing on Social Security, however, I can closely analyze its distinct role in pro-
viding insurance and redistributing incomes between and within generations. I identify the
evolution of government’s preferences over inter-generational and intra-generational income
redistribution. One cannot disentangle these motives in the existing literature. Moreover,
my model offers predictions that have straightforward policy implications.

Lockwood and Weinzierl (2016) study the statutory income tax policy and find a sig-
nificant increase in the average marginal social welfare weights for high-income households

9Note that his progressivity measure excludes Social Security benefits, as he focuses on the working age
population.
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during 1980–1990.10 In a closely related work that also focuses on Social Security (Brendler,
2020), I analyzed the inter -generational preferences for redistribution and inferred a trend
in age-dependent Pareto weights. One limiting feature of that study is that the government
was restricted to control the inter-generational income redistribution only. Hence, the pa-
per was unable to study the impact of rising earnings inequality on insurance provision and
intra-generational income redistribution. The current paper emphasizes the importance of
the joint distribution of Pareto weights by age and ability for the optimal policy because the
agents’ most preferred policies vary along these two dimensions.

The second strand in the literature asks a normative question of how a public pension
system should optimally look. Hosseini and Shourideh (2019) study Pareto optimal policy
reforms with heterogeneous mortality rates and time preferences. Ndiaye (2020) examines
lifecycle taxation with endogenous retirement. Moser and Olea de Souza e Silva (2019)
construct a model in which Social Security and income taxation arise as the decentralization
of an optimal policy that trades off savings adequacy (due to present bias heterogeneity) with
income redistribution (due to ability heterogeneity).11 As opposed to my work, these studies
primarily focus on the decentralization of the first-best policies. In a related study, Huggett
and Parra (2010) conduct a Social Security reform by optimally choosing the parameters of
the existing pension benefit function. While they find a small welfare gain in the model’s
version without idiosyncratic labor productivity risk, the welfare gain becomes substantial
once they add persistent and temporary earnings shocks into the model. The novel feature of
my work is to analyze the implications of the rising trend in cross-sectional earnings inequality
on the optimal Social Security reform.12

The third strand of related work has analyzed the macroeconomic and welfare conse-
quences of different retirement financing reforms. Conesa and Krueger (1999), Huggett and
Ventura (1999), Nishiyama and Smetters (2007), Fuster et al. (2007), Kitao (2014), McGrat-
tan and Prescott (2017), and Nishiyama (2019) have made significant progress in this field.

10Chang et al. (2021) provide an interesting insight that the discrepancy between the actual and the
utilitarian income tax policy reduces once one accounts for the ex-ante heterogeneity in workers’ ability and
income-dependent voter turnout rates.

11Contrary to Tsujiyama and Heathcote (2015), the authors recover a hump-shaped distribution of Pareto
weights that puts relatively more weight on the second ability quartile mostly because they match the
retirement savings system (which is fairly progressive) jointly with the income tax system (which is fairly
regressive). Qualitatively, this finding is similar to Jacobs et al. (2017), who apply the revealed preference
approach to the Netherlands’ income tax policy.

12There is a set of other important studies. Fehr and Habermann (2008) and Fehr et al. (2013) analyze
the optimal progressivity of the German pension system and show that progressivity matters quantitatively
for households’ welfare.
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This literature has studied exogenous and arguably politically infeasible reforms (e.g., com-
plete elimination of Social Security). By contrast, my paper rationalizes the existing Social
Security system. As argued by Lockwood and Weinzierl (2016) and Stantcheva (2016), the
distribution of Pareto weights captures feasibility constraints imposed on the political pro-
cess. Hence, the weights can be applied in policy analyses to shrink the set of all economically
feasible proposals to those that are also implementable from the political standpoint.

2. Model

2.1. Demographics

The economy is populated by overlapping generations of agents. Each period a continuum
of agents is born. The birth rate equals n. Age is denoted by j. Agents enter the economy and
start working at age j = 1, which corresponds to real-life age 25. The mandatory retirement
age is JR. When I calibrate the model below, this age will correspond to real-life age 65 in
the baseline version of the model. Each generation lives for J periods, which is 85 years in
real-life terms.

At any point in time, I normalize the total population size to 1. Let µW be the total mass
of working-age agents such that µR = 1 − µW is the share of retired agents. At birth, each
individual receives a realization of ability, which is a random variable z ∈ Z = {H,L}, where
H stands for high-ability and L – for low-ability. Once drawn, the ability remains constant
throughout agent’s life. The share of high-ability agents among the newborns is denoted by
λH, so that 1 − λH is the fraction of low-ability agents. When calibrating the model, high-
ability agents will correspond to household heads with at least a completed college degree in
the data, while low-ability agents will correspond to all the remaining households.

Ability plays two important roles in my model. First of all, it controls agent’s mortality
rates over the lifecycle. Denote by ψz,j the probability that an agent with ability z survives
up to age j+1, conditional on surviving up to age j. Second, ability controls the deterministic
and stochastic elements of agent’s labor productivity as explained below.

2.2. Production

A representative firm produces the final output good according to the production function:

Yt = K
θ
tNt

1−θ, (1)

where Kt – the aggregate capital stock, Nt – the aggregate effective labor input and θ ∈ (0, 1)

– the capital share in production. I explicitly show the dependence of model variance on
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time using the index t, since the transitional dynamics will be an essential part of the model
description.13 The output can be consumed or invested in capital. The depreciation rate of
capital is δ ∈ (0, 1). The firm produces output goods and sells them in a competitive market
at a price that is normalized to one. The rental price of capital, rt, and the wage per effective
unit of labor, wt, are determined competitively:

rt = θ (Kt/Nt)
θ−1

− δ and wt = (1 − θ) (Kt/Nt)
θ . (2)

2.3. Households

2.3.1. Overview

Agents are born with zero assets but can accumulate savings over time. Households hold
two types of assets: shares in the representative firm and government bonds. Both assets
bear no risk and generate a pre-tax rate of return rt defined in (2). Since households are
indifferent between investing in government bonds or firm shares, I denote the quantity of
either asset held by an agent in the current period by a and the amount saved for the next
period by a′.14 Borrowing is ruled out, i.e. a′ > 0.

Agents must pay a proportional capital tax τa on the asset income. By the no arbitrage
condition, both assets must be paying the same after-tax rate of return which I label by:

r̃t = (1 − τa)rt. (3)

Finally, all agents in the economy pay a proportional tax τc on consumption c.

2.3.2. Worker’s labor productivity

A worker is an agent of age j = 1, ..., JR − 1. Each worker is endowed with one unit of
productive time in each period, a fraction of which she supplies optimally to a competitive
labor market. Agent’s productivity is composed of a deterministic and a stochastic compo-
nent. Each of these two components will be essential in the experiment section of the paper,
when I model the rise in earnings inequality since the late 1970s.

The deterministic element of agent’s productivity is denoted by ζz,j. I will calibrate ζz,j
to match the wage profiles of each ability type in the data. Everything else equal, high-ability
agents receive a wage premium, ζH,j/ζL,j, over low-ability agents.

13In the next section, I will calibrate the model to two distinct steady states. Some of the parameters,
such as the share of high ability agents λH, will take on different values in each of the steady states. To
simplify notation, I avoid the time index for these parameters.

14Throughout the paper, I omit the time index for individual variables to simplify notation.
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The stochastic element of agent’s productivity is denoted by yi,z,j,t. It consists of a
persistent auto-regressive shock η and a transitory shock v:

yi,z,j,t = ηi,z,j,t + vi,z,t, (4)

The persistent shock follows an AR(1) process:

ηi,z,j,t = ρzηi,z,j−1,t−1 + γi,z,t with ηi,z,1,t = 0, (5)

where ρz is a constant persistence parameter and the error terms are distributed as follows:
vi,z,t ∼ N(0,σ2

v,z), γi,z,t ∼ N(0,σ2
γ,z). The conditional variance of ηi,z,j,t increases with age

according to:

Var(ηi,z,j,t) = σ
2
γ,z ×

j−1∑
h=0

ρ2h
z for j > 1. (6)

For |ρz| < 1, the expression above converges to σ2
γ,z/(1 − ρ2

z) which is the unconditional
variance of the AR(1) process in (5).

Observe that each ability group shares separate stochastic processes, which will allow
me in the calibration section to capture any potential effects of education on the stochastic
process for earnings.

To simplify notation below, I drop the individual index i and the time index t and stack
the realizations of ηz,j and vz into a vector y = yz,j ∈ Y. The stochastic process for y follows
a finite-state Markov process with stationary transitions over time:

π(y,Y) = Prob(yz,j+1 ∈ Y | yz,j = y). (7)

Let Πy denote the invariant probability measure of newborn agents with productivity y.
Summarizing, the total labor productivity (per unit of raw labor) of a worker with ability

z and of age j is given by ζz,j × exp(yz,j). To simplify notation, I denote agent’s total labor
productivity by ε.

2.3.3. Worker’s budget constraint

A worker supplies raw labor l ∈ [0, 1] to the competitive labor market and receives gross
earnings equal to:

e = wtεl,
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where wt is the wage rate per unit of effective labor defined in (2). Earnings are subject to
Social Security taxation. Define worker’s earnings taxable for the Social Security purpose as:

ẽSS = min(capSS,t, e),

where capSS,t is the maximum taxable earnings threshold above which earnings remain
untaxed. The Social Security tax burden borne by a worker is then given by τSS,tẽSS, where
τSS,t is a linear Social Security tax rate.15 As will become evident below, the government
sets the pension benefits, while τSS,t adjusts to balance the government budget constraint.
This explains the time index in τSS,t.

During working career, an agent accumulates average lifetime earnings, ē, that determine
her pension benefit during retirement, as will be explained below. The law of motion for
average lifetime earnings reads as follows:

ē′ =


[
(j− 1)× ē× Ẽt/Ẽt−1 + ẽSS

]
/j if j < JR

ē if j > JR
. (8)

where ē′ denotes the agent’s next period average lifetime earnings. The first line of the equa-
tion applies to workers. It reflects the still active provision of the Social Security Amend-
ments of 1977 according to which the individual’s average lifetime earnings are indexed to
the economy-wide average taxable earnings, Ẽt, one period prior to the agent’s retirement.
All workers enter the labor market with no prior earnings histories, i.e. ē = 0 for j = 1.
The second line states that the individual’s average lifetime earnings remain constant during
retirement.

Apart from Social Security contributions, all workers also pay a linear tax, τM, to finance
the Medicare’s hospital insurance program. Using similar notation as for Social Security
taxes, define worker’s Medicare-taxable earnings as:

ẽM = min(capM,t, e),

where no Medicare taxes are imposed on earnings above capM,t. In accordance with the So-
cial Security legislation, the taxable maximum in the Social Security and Medicare programs
are automatically adjusted to the growth in the average taxable earnings.16

15I abstract away from the disability insurance and therefore ignore disability taxes.
16See Appendix A for details.
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Furthermore, all workers pay income taxes according to an income tax function Λ that
depends on agent’s pre-tax earnings.17

Putting all the ingredients together, the worker’s budget constraint reads:

a′ + (1 + τc)c = (1 + r̃t)a+ e− τSS,tẽSS − τMẽM −Λ(e). (9)

2.3.4. Retired agents

At age JR, all agents enter compulsory retirement. During retirement, agents receive a
pension benefit Bt. I will explain the pension benefit function in more detail below. For now,
it is sufficient to note that it depends on a two dimensional vector of Social Security policy
variables αt.

Apart from the pension benefit, retirees receive a lump-sum Medicare transfer denoted
by TM,t. Similar to workers, retired agents must pay capital taxes and consumption taxes,
which I described above.18

Summarizing, the budget constraint of a retired agent reads:

a′ + (1 + τc)c = (1 + r̃t)a+ Bt + TM,t. (10)

2.3.5. Agent’s optimization problem

Let x and x′ denote the individual’s current and future states, respectively:

x = (z, j,y,a, ē) and x′ = (z, j+ 1,y′,a′, ē′).

Recall that by assumption agent’s ability z remains constant throughout agent’s life. The
laws of motion for y′ and ē′ are given by (7) and (8), respectively, while a′ is pinned down
by the budget constraint for workers in (9) and for retirees in (10). Furthermore, let Ft(x)
be the cumulative population density function of agents over state x at time t and ft(x) –
the corresponding density function.

Assume that at time t the government sets a constant future Social Security policy, α,
that becomes effective the following period (more details follow below). Taking (αt,α) as

17I allow income taxes to depend on the pre-tax earnings e to be consistent with how the parameters of
Λ are going to be estimated in the data. See section 3.

18I assume that pension benefits are not taxed.
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given, agents solve the following dynamic programming problem at time t:

V(x;αt,α, Ft) = max
c,l,a′

u(c, l) + β×ψz,j × E
[
Ṽ(x′;α, Ft+1) | (x, t)

]
(11)

+ (1 −ψz,j)× φ(a′) + 1j>35 × χ× ūj−34,t (12)

subject to the budget constraint for the working-age agent (9) and for the retired agent (10).
The solution to this problem generates the decision rules for consumption, labor and savings,
which I denote briefly by c?, l? and a′?, respectively. Worker’s pre-tax earnings are then
given by e? = wtεl

?.

In (11), u is agent’s instantaneous utility function, β – the discount factor, and E – a
conditional expectation operator. V denotes the discounted lifetime indirect utility of agent
in state x at time t when the current policy is αt and the future(constant) policy is α. The
value function on the right-hand side, Ṽt, represents the agents’ welfare associated with the
permanent policy α.19

If an agent deceases at time t, she receives an instantaneous “warm-glow” utility from
bequeathing her asset holdings denoted by φ(a′) in (11). This feature of the model will help
me better fit inequality at the upper tail of the wealth distribution in the data.

Even though I do not model families, I introduce a simple dynastic link between gener-
ations. Particularly, parents of model-age 35 and above (therefore, an indicator function in
11) receive additional utility from the average (instantaneous) utility of their children who
are assumed to be 34 years younger. The instantaneous utility of a child whose parent is j
years old at time t is given by ūj−34,t.20 Parameter χ governs the extent to which parents
care about their kids.

2.4. Government

The government runs three activities, each having its separate budget. First of all, the
government operates the Social Security program by collecting payroll contributions from
workers and paying pensions to the retirees. I allow the government to accumulate deficit

19The value function Ṽ is defined as follows:

Ṽ(x;α, Ft+1) = max
c,l,a′

u(c, l) + β×ψz,j×E
[
Ṽ(x′;α, Ft+2) | (x, t+ 1)

]
+ (1 −ψz,j)× φ(a′) + 1j>35 × χ× ūj−34,t+1.

Thus, starting from period t+ 1, the problem becomes recursive.
20See Appendix A for the definition of ūj−34,t.
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in the Social Security system by issuing government bonds to households. Second, the gov-
ernment collects consumption and capital taxes from all agents, pools them together with
the wealth left by deceased agents and net income taxes. It uses these resources to pay
for an exogenous government spending. Third, the government administrates a balanced
budget Medicare program by collecting hospital insurance taxes from workers and paying a
lump-sum Medicare transfer to the retirees.

Below I describe each of these three activities in detail.

2.4.1. Social Security

Replacement rate schedule

One of the central ingredients in the model is the replacement rate schedule that deter-
mines the agent’s pension benefit upon reaching the mandatory retirement age. I restrict the
replacement rate schedule to the class of policies defined by the function21:

R(ê;αt) = α1,t × [α2,t + (1 − α2,t)× ê] , (13)

where α1,t ∈ R+ and α2,t ∈ R are the two policy instruments introduced above, i.e. αt =
(α1,t,α2,t). I will elaborate on how each of these two variables affects the schedule after
introducing some additional ingredients.

The replacement rate is defined as a function of the agent’s average lifetime earnings
normalized by the economy-wide Social Security taxable earnings in the last period of this
agent’s working career, i.e. ê = ē/Ẽt−j+JR−1 for j > JR.22 Observe that once the agent
enters retirement, her normalized lifetime earnings ê remain unchanged, since Ẽ,t−j+JR−1 is
pre-determined and ē remains constant for j > JR according to (8). Thus, the replacement
rate of a retired agent remains unchanged as long as αt remains constant.

Given the schedule of replacement rates, the agent’s pension benefit reads:

Bt = ē× R(ê;αt). (14)

21Additionally, I require the replacement rates to be non-negative.
22Normalizing the average lifetime earnings by the economy-wide taxable earnings is consistent with one of

the key goals of the Social Security Amendments of 1977 which was to ensure that an individual’s replacement
rate only depends on this individual’s relative earnings position averaged over her working lifetime. Two
workers who enter retirement at different points in time but who have had the same growth-adjusted average
lifetime earnings relative to the economy-wide taxable earnings should receive the same replacement rate.
This idea is consistent with the replacement rate specification in (13) coupled with the law of motion for ē
in (8).
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Given Bt, the Social Security tax rate, τSS,t, adjusts period-by-period to satisfy the Social
Security budget constraint:23

τSS,tµ
WẼt +Dt+1 =

∫
x:j>JR

BtdFt(x) + (1 + r̃t)Dt. (15)

The left-hand side of this constraint shows the total government revenue at time t, where
µWẼt are the aggregate Social Security taxable earnings and Dt stands for government
debt issued in the previous period. I assume that the amount of outstanding debt in every
period must satisfy a fixed debt-to-GDP ratio: dSS = Dt/Yt. The right-hand side represents
the total government expenditure which consists of pension payments and the service of
outstanding debt at a no arbitrage borrowing cost r̃t defined in (3).

Each instrument in the replacement rate schedule (13) has an economic interpretation.
The variable α1,t controls the replacement rate of an individual whose average lifetime earn-
ings at retirement are precisely equal to the economy-wide average taxable earnings, i.e.
R(ê = 1;αt) = α1,t. For the sake of brevity, I will refer to α1,t as the average replacement
rate below. When α1,t = 0, the entire pension system shuts down. As the government
increases α1,t, the replacement rate schedule shifts upward, raising pension annuities of all
current and future retirees in the economy. Therefore, through the government’s budget
constraint in (15), α1,t will have a strong quantitative impact on the Social Security con-
tributions paid by the working-age population.24 Hence, this policy variable generates an
inter-generational conflict between the current workers and retirees.

The variable α2,t controls the pension system’s statutory progressivity. All else equal, an
increase in α2,t raises the replacement rate of all individuals whose average lifetime earnings
at retirement are below the economy-wide average (i.e., those with ê < 1) and lowers the
replacement rate for all individuals with ê > 1, without affecting the replacement rate at the
average economy-wide earnings. As I will illustrate in Section 4.3, changes in α2,t have only a
minor quantitative effect on the equilibrium level of the Social Security tax rate, τSS,t, in the
calibrated model economy because a rise in total pensions accruing to one group of retirees
is approximately offset by the drop in the total pension amount flowing to the other group.
The major role of α2,t is to control insurance provision and ex-post income redistribution
within the pool of retired agents. For this reason, this variable generates an intra-generational

23To simplify notation, I use the integral to sum over x throughout the paper. Note, however, that age
and ability are discrete variables.

24I will confirm this point in Section 4.1.
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conflict in the model.

Government maximization problem

At time t, the government faces a given replacement rate schedule αt. In the same period,
the government makes an unanticipated announcement that it will implement policy α? which
becomes effective in period t + 1 and remains constant in all subsequent periods. The new
schedule affects all agents in the economy, including those who have already retired.25 When
choosing α?, the government maximizes the weighted sum of expected discounted lifetime
utilities of all generations who are currently alive.26 Formally, the government solves in period
t:

α? = arg max
α

∫
x

ω(j, z;κt)V(x;αt,α, Ft)dFt(x), (16)

subject to the Social Security budget constraint in (15). Note that the distribution of agents
at time t, Ft, is given and does not depend on the choice of α.

In the objective function above, ω is the Pareto weight function specified as follows:

ω(j, z;κt) =

jκ1,t if z = L

jκ1,t × κ2,t if z = H
, (17)

where κ1,t ∈ R and κ2,t ∈ R+ are parameters. Below I refer to κ1,t as the age bias and κ2,t

– as the ability bias.
When κ1,t = 0 and κ2,t = 1, the government’s maximization problem boils down to a

utilitarian social welfare function. When κ1,t > 0, however, the government puts a higher
weight on older agents, conditional on their ability. The opposite is true when κ1,t < 0.
When κ2,t > 1, the government puts a larger weight on a high-ability agent compared with
a low type of the same age. The opposite is the case when 0 6 κ2,t < 1.

The government chooses the replacement rate schedule once-and-for-all. This assumption
is in line with the spirit of the Social Security Amendments of 1977, which were adopted as a
long-term policy intended to give current young generations clarity about their future retire-
ment benefits. Furthermore, the government chooses a constant replacement rate schedule
instead of a constant Social Security tax rate. Again, this assumption is consistent with the

25This assumption is consistent with the fact that the contributors have, in principle, no legal entitlement
to receive a certain pension benefit in the United States.

26One of the paper’s goals is to understand the actual policy. In the real world, governments seek reelection
and propose policies to gain the support of current voters.
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Social Security Amendments’ intention to stabilize future replacement rates.
The choice of the Pareto weight function in (17) requires a justification. First of all,

the chosen specification allows me to identify the parameter vector κt in the data. As I
will show below, α1 in the data identifies the age bias in the model because older agents,
on average, prefer a higher level of the replacement rate schedule. At the same time, the
pension system’s progressivity, α2, identifies the ability bias in the model because, conditional
on age, high-ability agents prefer, on average, a less progressive pension system than low-
ability agents. Second, both arguments of the Pareto weight function – age and ability
– are part of the agent’s state space x and, therefore, do not depend on policy α, which
drastically simplifies the identification of Pareto weights.27 Third, one could include other
dimensions of heterogeneity among households as arguments of the Pareto weight function.
This is a promising approach because it may uncover additional dimensions of heterogeneity
and, therefore, distributional conflicts among the households. This approach’s major obstacle
is computational intensity because identification requires that the number of parameters in
the weighting function is at least as large as the number of instruments available to the
government. I leave this direction to future research.

2.4.2. Income transfer program

Apart from running Social Security, the government administrates a balanced budget
income transfer program. More specifically, the government collects net income taxes from
workers according to the income tax function Λ. Besides, the government collects capital
taxes and consumption taxes from all agents in the economy and confiscates wealth left by
deceased agents. These resources are pooled together and used in the same period to pay for
government spending, Gt, which is wasted in the context of this model.

Summarizing, the government budget constraint in period is given by:

Gt =

∫
x:j<JR

Λ(e?)dFt(x) + τcCt + τartAt +Φt, (18)

where Ct,At and Φt denote aggregate consumption, savings and bequests, respectively.

27This would not be the case if the agent’s Pareto weight would be a function of her current earnings, her
expected average lifetime earnings at retirement, etc.
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2.4.3. Medicare

Finally, the government administrates in each period the Medicare program by collecting
hospital insurance taxes from workers and paying a lump-sum transfer, TM,t, to retirees:

τM ×
∫
x:j<JR

ẽMdFt(x) = TM,t × µR. (19)

2.5. Competitive equilibrium

Appendix A defines the competitive equilibrium of the model.

3. Calibration

3.1. Overview

I calibrate two sets of parameters. The first set reflects the U.S. economy in 1979, whereas
the second describes the economy in 2017. I choose these time periods because they are the
earliest and latest periods, respectively, for which the harmonized Current Population Survey
(CPS) data are available (see below). I assume that the economy is in a steady state in 1979
and 2017. Below, I will refer to the model economy calibrated under either set of parameters
as the baseline model. To simplify notation, I drop time index t throughout this section.
One model period equals one year. Agents enter the model at age 1 which corresponds to a
real-life age 25. The maximum possible age is J = 61 (real-life age 85).

Table 1 shows the parameters of the model that remain constant in both steady states.
Table 2 displays the parameters that take on different values in each steady state. These
parameters are divided into six subgroups: 1) Inequality, 2) Social Security, 3) Utility and
technology, 4) Aging, 5) Income taxes, and 6) Other taxes. The parameters marked by
an asterisk in the table were calibrated inside the model. Other parameters were either
calibrated outside the model or assigned values from external sources. I will next describe
the calibration strategy in detail.

3.2. Calibration strategy

Inequality

I use the harmonized time series data from the CPS to compute empirical moments of
inequality.28 An agent in the model corresponds to a household in the data. I use household-

28The CPS extracts harmonized across all years during 1979–2018 are publicly available at http://
ceprdata.org/cps-uniform-data-extracts/march-cps-supplement/march-cps-data/.
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Table 1: Constant Parameters of the Model.

Parameter Description Value

J Life span 61 (real-life age 85)
σ Risk aversion 2
χ Degree of altruism 0.5
(φ1,φ2) Bequests (−9.5, 11.6)
ρ AR(1) coefficient 0.97

Notes: The parameter values shown in the table remain constant across the steady states. The values for
(J,σ,χ) are fixed, while the values for (φ1,φ2, ρ) are borrowed from external sources.

level data as opposed to individual-level data to account for the insurance against idiosyn-
cratic labor productivity risk among household members, the research of which has demon-
strated to be quantitatively important (see Fuster et al., 2007). My CPS sample includes
both male- and female-headed households age 25–64 for 1979 and 25–65 for 2017, where the
difference in the range is due to the difference in the calibrated mandatory retirement age JR

(see below). A high-ability agent corresponds to a household head with at least a completed
college degree in the CPS. Otherwise, the household head is a low-ability agent. I keep only
those household heads who work at least 260 hours.29 In the model, I drop all agents who
supply less than 5 percent of their unitary time endowment to be consistent with this sample
selection criterion.30

The age-efficiency profile, {ζz,j}J
R−1
z,j=1, controls the deterministic portion of agent’s earnings

over her lifecycle. Following Hansen (1993), I construct ζz,j as follows. First, I compute mean
hourly earnings by age separately for high school graduates and college graduates using the
1980 CPS extract. Second, I apply a quadratic polynomial curve to each profile to extract
age-dependent variation in earnings. Finally, I normalize the fitted profiles by the average
hourly earnings, computed on a pooled sample of households. I proceed similarly to the 2018
CPS extract.

I do not visualize the computed age-efficiency profiles. Instead, Figure 1 contrasts the im-

29My further restrictions on the sample are as follows. I drop a household if at least one of its members
reports strictly positive earnings but zero hours worked. I also drop all observations with non-positive
household earnings. Since a fraction of households reports earnings and hours worked, which imply a wage
rate below the minimum wage rate, I drop all the households located in the bottom 1 percent of the household
earnings distribution in a given year.

30In the Time Use Surveys of 2003–2005, as documented by Carceles-Poveda and Abraham (Unpublished),
the household’s disposable time is 97 hours per week after deducting sleep and personal care, which sums up
to roughly 5,096 hours annually. The threshold of 5 percent is then computed as 260/5,096, which corresponds
to supplying fewer than 260 hours annually.
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Table 2: Time-Varying Model Parameters.

Parameter Description 1979 2017

1) Inequality:
{ζz,j}

JR−1
z,j=1 Age-efficiency profile Figure 1

(σ2
γ,H,σ2

γ,L) Persistent shock variance, 10−2 (0.58, 0.42) (1.26, 0.61)
(σ2?
v,H,σ2?

v,L) Transitory shock variance, 10−2 (0.56, 0.6) (0.7, 0.65)
λH Share of college graduates, % 25 43

2) Social Security:
α1 Statutory average replacement rate 0.45 0.5
α2 Statutory degree of progressivity 1.69 1.48
JR Retirement age 41 42
cap?SS Taxable maximum 1.11 1.64
dSS Government deficit in GDP, % 0.1 0.47

3) Utility and Technology:
γ? Weight on consumption 0.46 0.44
β? Discount factor 1.01 0.99
θ Capital share 0.43 0.46
δ Depreciation rate of capital, % 8 6

4) Aging:
{ψz,j}

J
z,j=1 Age-profile of survival rates Figures C.9–C.10

n Birth rate, % 0.62 1.3

5) Income Taxes:
τ?I Average level of taxation 0.22 0.14
τ̃I Degree of progressivity 0.19 0.14

6) Other Taxes:
τa Capital tax, % 38.4 33
τc Consumption tax, % 5.3 4.1
τM Hospital insurance tax, % 2.1 2.9
capM Taxable maximum in Medicare 1.11 −

Notes: The table shows the parameters that take on different values in each of the two steady states. The
parameters calibrated inside the model are marked with an asterisk.
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Figure 1: College Premium in the Data, by Age.
Notes: The figure displays the ratio of age-efficiency units between college graduates and high school
graduates (by age) computed for 1979 and 2017 in the CPS. See main text for details.

plied profiles of college premium, defined as ζH,j/ζL,j, in each year. Two observations emerge
from the figure. First, a college degree graduate received a wage premium over the high-school
graduate at each age in both periods. Admittedly, this premium was almost insignificant for
a 25-year-old college graduate in 1979. However, the wage differential increased steeply for
other age groups, with a 63-year-old college graduate receiving almost a 50 percent higher
wage. Second, the wage premium curve shifts upward in 2017. The largest increase (more
than 50 percent) experienced a 25-year-old college graduate. The documented shift in the
college premium will be one of the main drivers of earnings inequality in the model between
1979 and 2017.

I also account for the increased share of college graduates during 1979–2017. More specif-
ically, the share of high-ability agents, λH, almost doubles from 25 percent in 1979 to 43

percent in 2017. These numbers are consistent with the rise of household heads with a
completed college degree in the CPS.

Next, I estimate the idiosyncratic component of labor productivity specified in (4) using
the residual variation in earnings (i.e., the variation that is left in the data after extracting
the age-dependent variation). I assume that the persistence parameter, ρ, is independent of
agent’s ability and constant over time. I borrow ρ = 0.973 from Heathcote et al. (2010b),
who estimate the stochastic process in (4) on a pooled PSID sample of high school and college
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graduates during 1967–2000.31 Then I estimate the variances of the persistent shock, σ2
v,z,

and the variances of the temporary shock, σ2
γ,z, outside the model by fitting the stochastic

process in (6) to the empirical profiles of earnings for each education type. For 1979, I obtain
σ̂2
v,H = 0.0058, σ̂2

v,L = 0.0042, σ̂2
γ,H = 0.162 and σ̂2

γ,L = 0.1732. I directly feed the estimated
variances of the persistent shocks, σ̂2

v,H and σ̂2
v,L, into the model and calibrate the variances

of the temporary shock inside the model to match the Gini index for cross-sectional earnings
equal to 0.30. When doing so, I impose an additional restriction that the ratio of the variances
between the two types remains at σ2

γ,H/σ
2
γ,L = 0.935, consistent with the empirical estimates

of σ̂2
γ,z obtained above. The calibrated variances of the temporary shock that follow from

this procedure are the following: σ2
γ,H = 0.0056 and σ2

γ,L = 0.006.
I proceed in the exact same way for 2017 (matching the Gini index for pre-tax earnings

equal to 0.39). I obtain σ2
v,H = 0.007, σ2

v,L = 0.0065, σ2
γ,H = 0.0126, σ2

γ,L = 0.061. These
estimates imply that the variance of the persistent component has increased by 2.17 times
for college graduates and 1.45 times for high school graduates between 1979 and 2017. The
corresponding numbers for the variance of the temporary component are 1.25 and 1.08.32

Social Security

Throughout the calibration section, I take the replacement rate schedule in (13) as given
and estimate its parameters α outside the model. While Appendix C.1 provides the reader
with all the details, I only report the obtained estimates: αdata1979 = (0.45, 1.69) and αdata1979 =

(0.50, 1.48). Figure 2 contrasts the implied replacement rate schedules in 1979 and 2017.
One can immediately detect a slight upward shift in the replacement rate of a household
whose average lifetime earnings at retirement are precisely equal to the economy-wide average
taxable earnings. This agent’s normalized average lifetime earnings are given by ê = 1,
marked by a vertical dashed line in the figure. Simultaneously, the replacement rates rise
for all workers whose average lifetime earnings are below 35 percent of the economy-wide
average taxable earnings, whereas the opposite occurs to the remaining retirees.

Regarding Social Security’s remaining parameters, the mandatory retirement age, JR, is
41 (real-life age 65) in the 1979 calibration. For 2017, the retirement age increases by one

31Also using the PSID, Guvenen (2009) estimates ρz separately for a sample of college graduates and a
sample of high school graduates and finds that the estimates between the two samples differ only slightly.
Particularly, he obtains ρH = 0.979 and ρL = 0.972.

32Using a pooled sample of households, Heathcote et al. (2010a) estimate that the variance of the persistent
component has increased by 2.83 times between 1979 and 2000 (their most recent estimates), while the same
number for the temporary component is 1.49. See their online appendix for more details.
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Figure 2: Calibrated Replacement Rate Schedule.
Notes: The figure shows the calibrated replacement rate schedule in 1979 and 2017. The replacement rate
schedule in the data is approximated using the specification in (13) and its parameters are estimated using
a non-linear least squares estimator. Appendix C.1 elaborates on the estimation procedure.

year.33 Furthermore, I calibrate capSS to match the ratio of the maximum taxable earnings
threshold (adjusted for the number of earners in a household, see Appendix C.1) and the
average taxable earnings in the data. Whereas this ratio was 1.79 in 1979, it increased to 2.32

in 2017. The equilibrium value of the Social Security tax rate, τSS, which was not a calibration
target, is 8.99 percent in 1979 and 10.45 percent in 2017. Its empirical counterpart is the
Old-Age and Survivors Insurance tax (sum of employers and employees’ portions). With 8.66

percent in 1979 and 10.03 percent in 2017, it comes surprisingly close to the model-generated
values.34 Finally, I set the fraction of the Social Security deficit in GDP, dSS, to 0.1 percent
in 1979 and 0.47 percent in 2017, consistent with the data.35

33There are roughly 80 percent of retired household heads whose age is above or equal JR in the 1980 and
2018 CPS extracts.

34See Table 4.B4 in Social Security Administration (2019) on the time series data for the Old-Age and
Survivors Insurance tax.

35The data are publicly available at https://www.ssa.gov/oact/STATS/table4a1.html. As for the
Social Security Trust Fund’s expenditures, I take benefit payments and exclude the administrative expenses
and transfers to the Railroad Retirement program. As for the Trust Fund’s revenues, I take payroll tax
contributions and exclude income from taxation of benefits, General Fund Reimbursements, and net interest.
The data for the nominal GDP comes from FRED available at https://fred.stlouisfed.org.
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Utility and technology

The capital share in production, θ, is chosen to match the average ratio of capital income
in GDP, whereas the depreciation rate of capital, δ, is calibrated to match the average ratio
of investment relative to GDP. I calibrate the discount factor, β, inside the model to match
the capital-to-output ratio of 3.2 and 3.7 in the initial and final steady states, respectively.
The respective targets were computed using National Income and Product Accounts.36

The instantaneous utility function u(c, l) in (11) is a constant relative risk aversion func-
tion:

u(c, l) =
[cγ(1 − l)1−γ]1−σ

1 − σ
, (20)

where σ controls the degree of relative risk aversion and γ is the relative weight on con-
sumption. I keep σ = 2 throughout all experiments. I calibrate γ inside the model, so that
working-age agents spend, on average, 42 percent of their discretionary time endowment in
1979 and 43 percent in 2017 on work.37

The bequest motive is modeled as in De Nardi (2004) with the following functional form:

φ(a) = φ1(1 + a/φ2)
1−σ,

where φ1 reflects the agent’s concern about leaving bequests, whereas φ2 measures the extent
to which bequests are a luxury good. Following De Nardi (2004), I set φ1 = −9.5 and
φ2 = 11.6 and keep it fixed across the steady states.

I set the degree of altruism to χ = 0.5 and keep it fixed throughout all experiments.
The choice of χ does affect the level of the estimated Pareto weights in each steady state.
However, it does not affect the relative change in the Pareto weights across time.38

Aging

The key parameter that drives the longevity dynamics in the model is the conditional
survival probability rate, ψz,j. Apart from rising earnings inequality, improved longevity

36I follow the procedure described in Hosseini and Shourideh (2019) (see their online Supple-
ment, section S5, which is available at https://www.econometricsociety.org/sites/default/files/
ecta200042-sup-0001-Supplement.pdf). For the initial steady state, I compute the averages of the relevant
variables over the period 1970–1980 and for the final steady state I compute the averages over the period
2010–2018.

37According to the CPS data, household heads worked, on average, 2,161 hours in 1979. Given the
total annual disposable time of 5,096 hours (see footnote 30), we have: 2,162/5,096 ≈ 42 percent. The
corresponding target for 2017 is 2,075/5,096 ≈ 41 percent.

38See footnote 53.
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is one of the most significant structural transformations that the United States economy
experienced during the past four decades. According to Bell et al. (1992), the life expectancy
of a Social Security covered worker increased at all ages during 1970–2010. Most significantly,
longevity increased for a 25-year-old worker (7 years).39 However, there is large heterogeneity
in life expectancy. More specifically, the empirical literature documents a very robust finding
that mortality rates tend to drop with income, education, and other socioeconomic status
measures in the United States.40 Moreover, the literature has argued that these differentials
have been rising over time. Elo and Preston (1996), Meara et al. (2008), and Bound et al.
(2014) find this pattern for educational differentials, while Waldron (2007) finds this pattern
for earnings using Social Security Administrative data.41

In this paper, I incorporate the ability-specific differences in mortality.42 However, I am
unaware of any consistent data for the 1970s.43 Hence, I assume that no such differences exist
in the 1979 calibration. To parameterize the conditional survival rates, I directly feed into the
model the data from Bell et al. (1992) for 1970. For the 2017 calibration, I rely on the data
by Bound et al. (2014). The authors use the data from the National Vital Statistics System
and the Census for 1990–2010 to compute life expectancies for a 25-year-old individual by
education at five-year intervals (25, 30, etc). I focus on their most recent estimates calculated
for 2010. Their results imply that a 25-year-old individual with a college degree or higher
expects to live, on average, 54 years. In contrast, the same statistic for an individual with
a lower education level is only 51 years. The way I utilize these data in the model is as
follows. Appendix C.2 provides all the necessary details, so I summarize the procedure only
briefly. I specify each ability group’s survival rates as a Gompertz force of mortality function.

39See their Table 6. The authors report life expectancy separately for female and male Social Security
covered workers. Since my model is agnostic about household’s gender, I compute the weighted average
between the reported life expectancy using the population share of female heads consistent with the CPS. I
apply this procedure to all the estimates I report from Bell et al. (1992) in the paper.

40See Bound et al. (2014) for references.
41Meara et al. (2008) provided one potential explanation for the observed trends. They show empirical

evidence that smoking rates and death rates caused by smoking-related diseases drop more significantly over
time for higher socioeconomic groups than for the lower ones.

42In my model, income is an endogenous variable. Letting mortality depend on income is problematic
because agents will find it optimal to affect their expected lifespan by adjusting their behavior. By contrast,
the ability is a characteristic outside of the agent’s control in the model.

43The only available empirical evidence I am aware of is Meara et al. (2008). The authors use the National
Longitudinal Mortality Study (NLMS), which follows the March CPS households through subsequent deaths
during 1981–85. According to their estimates, life expectancy at age 25 (averaged across gender) is 77 years
for an individual with a high school degree or below and 79 years for an individual with at least some college
education. Given that this evidence points to minor differences in mortality, I ignore them in the 1979
calibration.
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I estimate the parameters of the Gompertz function by matching several empirical targets.
First, I require that the model-based profile of survival rates averaged across the two ability
types matches the life expectancy profile reported by Bell et al. (1992). Second, I require the
type-specific age profiles of survival rates in the model to match the empirical counterparts
reported by Bound et al. (2014).

Given the estimates of ψz,j, I calibrate the birth rate, n, outside the model to match the
dependency ratio in each steady state consistent with the CPS data. I target the dependency
ratio of 21 percent and 23 percent for 1979 and 2017, respectively. These numbers imply a
reduction in the number of working-age households per retired household from 5 to 4.44

Income taxes

I take the specification of the income tax function from Heathcote et al. (2017):

Λ(e) = e− (1 − τI)e
1−τ̃I , (21)

where e is pre-government income and τI, τ̃I are parameters. τ̃I determines the progressivity
of the income tax schedule, whereas τI governs the overall level of income taxation.45 To
parameterize (τI, τ̃I), I rely on Wu (2020). The author uses the CPS data processed through
the NBER’s TAXSIM calculator to estimate the same income tax function as in my paper
for two separate sample periods: 1978–1980 and 2014–2016. He finds that income tax pro-
gressivity, as measured by τ̃I, declines from 0.187 in the 1970s to 0.137 in the 2010s. I feed
into the model the corresponding estimate of τ̃I in each steady state. His estimated values
of τI (0.155 in 1978–1980 and 0.078 in 2014–2016) correspond to the average tax rates faced
by a median-income household. Hence, I calibrate τI inside the model to match the average

44To compute the dependency ratio in the CPS, I define a working-age household as a household whose
head is of real-life age 25–64 in 1979 and 25–65 in 2017. A retired household is a household whose head is of
age 65–85 in 1979 and 66–85 in 2017. These numbers are consistent with the choice of JR and J.

45The income tax schedule is referred to as progressive (regressive) if the ratio of marginal to average tax
rates is larger (smaller) than 1 for every level of income e. When τ̃I > 0, marginal income tax rates always
exceed average rates, and the income tax system is progressive. Conversely, the tax system is regressive
when τ̃I < 0. Given τ̃I, the second parameter, τI, shifts the tax function and determines the average level of
taxation in the economy. The case with τ̃I = 0 implies that marginal and average tax rates are equal: the
system is a flat tax with the tax rate 1 − τI.
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Table 3: Targeted Moments.

Moment 1979 2017
Gini index earnings 0.30 0.39
Cap-to-earnings ratio 1.78 2.31
Average labor supply, % 42.41 40.72
Capital-to-output ratio 3.23 3.66
Dependency ratio, % 21.00 23.00
Income tax (median worker), % 15.05 7.80

Notes: The table displays the moments that the model matches exactly in each steady state (1979 and
2017). Gini index for earnings refers to the pre-tax earnings distribution. Cap-to-earnings is the ratio of the
maximum taxable earnings threshold, capSS, to the economy-wide average taxable earnings, Ẽ. Dependency
ratio shows the share of retired households to the working-age population. Income tax refers to the average
tax rate faced by the household with median pre-government income.

income tax rate of a working-age agent with median labor income.46

Other taxes

I borrow the estimates for capital tax, τa, and consumption tax, τc, from Wu (2020) who
applies the methodology developed by Mendoza et al. (1994) and Trabandt and Uhlig (2011).
According to these estimates, τa falls from 38.4 percent in the late 1970s to 33.0 percent in
the recent data. Congruently, τc declines from 5.3 percent to 4.1 percent.

The hospital insurance tax, τM, is 2.1 percent in 1979 and 2.9 percent in 2017, which is the
sum of the employers’ and employees’ portions of the tax.47 Consistent with the data, I set
the maximum taxable earnings threshold for Medicare, capM, equal to capSS in the initial
steady state. There has been no limitation on taxable earnings in the Medicare program
starting from 1994, so I set capM to infinity, virtually eliminating the cap.

3.3. Model fit

As a first passthrough for how the model matches the data, Table 3 summarizes all
the moments that I directly targeted during the calibration exercise. These moments were
matched exactly.

46His definition of a worker’s pre-government income comprises the wage and self-employment income;
the capital income tax is estimated separately. This approach is consistent with my theoretical model’s
assumptions because only the labor income is subject to income taxation. Furthermore, Wu (2020) estimates
the income tax function parameters using a sample of household-level data with household heads aged 23–62.
In my model, the observation unit is also a household, though my sample selection criterion is less restrictive,
as I keep all household heads of age 25–64.

47Table 4.B4 in Social Security Administration (2019).
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Figure 3: Fit of Earnings and Income Inequality in 1979.
Notes: The figure compares the fit of the Lorenz curves for the earnings distribution (left panel) and the
income distribution (right panel) in 1979. The empirical Lorenz curves are computed using the household-
level data from the 1980 CPS extract. The model-implied Lorenz curves are computed based on the steady
state distribution under the 1979 calibration. Earnings and income are measured before taxes and government
transfers.

By construction, the model matches the Gini index for pre-government earnings in both
steady states. The earnings Gini rises from 0.30 in 1979 to 0.39 in 2017. To assess the model’s
ability to capture inequality in the data beyond the Gini index, I compute the model-based
Lorenz curves for pre-government earnings and pre-government income and compare them
with the CPS data.

The results are shown in Figure 3 for 1979 and Figure 4 for 2017. The left panel in
both figures describes the earnings concentration, whereas the right panel displays the in-
come concentration. One can see that the model fits the earnings inequality in both years
very accurately. However, the model slightly overestimates the economic well-being of those
households located in the lower tail of the income distribution. Nevertheless, the model’s
overall performance matching income inequality is surprisingly good, given that I did not
target the Lorenz curves.

The final assessment of the model focuses on the distribution of college graduates by
earnings. The joint distribution of education and earnings is essential because it controls the
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Figure 4: Fit of Earnings and Income Inequality in 2017.
Notes: The figure compares the fit of the Lorenz curves for the earnings distribution (left panel) and the
income distribution (right panel) in 2017. The empirical Lorenz curves are computed using the household-level
data from the 2018 CPS extract. The model-implied Lorenz curves are computed based on the steady state
distributions under the 2017 calibration. Earnings and income are measured before taxes and government
transfers.
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Table 4: Share of College Graduates per Earnings Quartile in the Model and Data.

Quartile 1979 2017

Model Data Model Data
Q1 14.2 12.9 20.5 21.9
Q2 21.6 19.7 40.8 34.7
Q3 25.4 25.0 34.5 46.1
Q4 38.8 40.8 77.2 68.2

Notes: The table compares the shares of college graduates by quartiles of the earnings distribution in the data
with the corresponding shares of high-ability agents in the model. The empirical moments are computed using
the household level data from the 1980 and 2018 CPS extracts. The moments in the model are computed
using the steady state distributions under the 1979 and 2017 calibrations.

forces that drive inequality (luck versus permanent ability differences). Table 4 conducts the
assessment. Given that I did not directly target any of the moments presented in the table,
the model achieves a fairly good fit.

4. Findings

The paper’s findings are presented in the following order. Section 4.1 uncovers substantial
heterogeneity in agents’ preferences over the replacement rate schedule and builds intuition
behind the results obtained in the remaining part of the paper. Section 4.2 addresses the
paper’s first question of how the government’s preferences over redistribution have changed
during the past four decades. Section 4.3 quantifies the welfare cost of the shift in government
preferences by answering the paper’s second question: How should Social Security have
responded to earnings inequality, had the government’s preferences remained constant?

4.1. Heterogeneity in preferences over replacement rate schedule

Consider the government’s maximization problem in (16) and its first-order optimality
conditions with respect to αi with i ∈ {1, 2}:∫

x

ω(j, z;κt)
∂Vt(x;αdatat ,α, Ft)

∂αi
dFt(x) = 0. (22)

The equation above shows that the government’s optimal choice in a given time t depends
on three objects: the Pareto weights governed by the parameter vector κt, the distribution
of households over states x, ft(x), and the first-order derivative of the household’s value
function with respect to policy αi, ∂Vt/∂αi. The last object is the focus of the current
section.
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Recall that the paper’s first goal is to rationalize the actual replacement rate schedule.
Therefore, I am interested in the derivative of the agents’ value function evaluated at the
existing policy, αdatat . The sign and the magnitude of this derivative have an important
economic interpretation. Consider first the derivative’s sign. In all my simulations, the
agents’ value function is strictly concave in each of the two policy variables.48 This means
that if the derivative of the agent’s value function with respect to αi turns out to be negative,
then the agents’ most preferred policy αi must lie below the observed policy. The opposite is
true if the derivative is positive. Hence, the sign of the derivative allows me to detect agent
groups that have major disagreements over αi. Consider next the derivative’s magnitude. It
shows the size of the welfare gain (if the derivative is positive) or the size of the welfare loss
(if the derivative is negative) to an agent induced by slightly increasing policy αi. All else
equal, the higher the derivative’s magnitude for a given agent, the closer the government will
move the policy toward this agent’s most preferred policy.

Since the model exhibits multiple dimensions of heterogeneity, it is not feasible (but also
not necessary) to explore the variations in welfare along each of these dimensions. Instead,
I focus on two dimensions: age and ability. I argue that they are strong determinants of
agents’ preferences over the replacement rate schedule. Not coincidently, the Pareto weights
in the government optimization problem are specified as a function of the same agent’s
characteristics.

My analysis proceeds as follows. After computing ∂Vt/∂αi for each individual state, x, I
calculate the average value within pre-specified subgroups. Along the age dimension, I build
three groups of agents: young (real-life age 25–39), middle-aged (40–64), and retired (64
and older).49 Concerning ability, there are only two groups. Table 5 displays the average
derivative for each subgroup for the 1979 calibration.50 Qualitatively, all the arguments
presented in this section hold also for the 2017 calibration.

4.1.1. Marginal welfare effects of α1

Consider first the derivative of the agent’s welfare function with respect to α1, evaluated
at the true policy αdata1979 (middle column of Table 5). Observe that there is no disagreement
between high-ability and low-ability agents inside each age group regarding which direction

48I do not have a formal proof of the strict concavity of the agent’s value function with respect to policies
α1 and α2; however, in the calibrated economy that I solve numerically, I check that the indirect utility
function satisfies this property for every state x.

49This partitioning choice is not crucial for the results since it only serves the illustrative purpose.
50Appendix B.3 describes the numerical procedure to compute ∂Vt/∂αi.
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Table 5: Marginal Welfare Effects.

Policy α1 Policy α2

Young:
– High-ability -4.35 -0.42
– Low-ability -2.66 0.50

Middle-aged:
– High-ability 2.35 -0.55
– Low-ability 3.88 0.38

Retired:
– High-ability 3.39 -0.30
– Low-ability 4.31 0.23

Notes: The table shows the partial derivatives of the value function V1979 with respect to the average
replacement rate, α1, and progressivity, α2. V1979 is obtained from solving the model for the steady state
equilibrium associated with αdata1979 under the 1979 calibration. After obtaining the individual derivatives
for each state x, I calculate the average derivative for subgroups defined by age and ability. Along the age
dimension, I build three groups: young (real-life age 25–39), middle-aged (40–64), and retired (above 64). I
use the initial steady state distribution, f1979, to average the individual derivatives within each subgroup.

to shift α1 because the derivatives’ signs are identical for both ability types. Next, the value
function for the young as a group must be downward sloping because the derivative is negative
for each ability type. This observation indicates that the young agents’ most preferred average
replacement rate must lie below the data’s actual level. The opposite is true for middle-aged
and retired agents, for whom the derivative has a positive slope. Thus, there is a disagreement
between the young, on the one hand, and middle-aged and retired agents, on the other hand,
regarding the average replacement rate level. This inter-generational conflict over α1 will
allow me to identify the age bias parameter κ1,1979 in the next section.

What economic forces drive this inter-generational conflict? To answer this question, I
inspect how the key determinants of the agent’s welfare depend on policy α1. I start with
the model economy calibrated for 1979 and analyze how the equilibrium interest rate, wage
rate, and the Social Security tax change when I vary α1. Throughout the experiment, I fix
the pension system progressivity at αdata2,1979. Besides prices and the Social Security tax, I
also analyze the redistributive effect of pension benefits. More specifically, I ask: By how
much percent do pension benefits reduce the market income inequality (measured by the Gini
index) among retired agents?

Figure 5 shows the results. The values of all variables, except the pre-tax wage, are shown
as percentage point deviations from the initial steady state in 1979; deviations in the pre-tax
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Figure 5: Model Variables as a Function of α1.
Notes: The figure shows the relationship between the key model variables and the average replacement rate
α1. To construct the figure, I solve the model for a set of steady state equilibria under the 1979 calibration
of all parameters, except for α1. In all computations, pension system progressivity is fixed at αdata2,1979. On
the vertical axis, I plot the equilibrium values of the pre-tax wage w, the pre-tax return on saving r, the
Social Security tax rate, τSS, and the redistributive effect of pensions. The latter statistic is defined as
the percentage reduction in market income inequality, measured by the Gini index, due to pension benefits.
Values for w are shown in percent deviations, whereas the values of all other variables are shown in percentage
point deviations from the baseline model in 1979. By construction, all variables are equal to zero at αdata1,1979.

wage are measured in percent. By construction, all depicted variables are equal to zero at
αdata1,1979 (marked by a dot in the figure). Note that there is an entire transitional path of all
endogenous variables from the initial steady state associated with αdata1,1979 to a new steady
state under a given policy choice α1. The figure shows the values of the variables in the final
steady state.

Consider an increase in α1. As the entire replacement rate schedule shifts upward, each
retiree in the economy enjoys a larger pension annuity. As total pension entitlements rise, the
Social Security tax rate (bottom-right panel) has to adjust upward to satisfy the government
budget constraint. Since the public pension system crowds out private savings, the aggregate
capital stock and capital intensity (not shown in the figure) decline. This leads to a reduction
in the pre-tax wage w (top-left panel) and an increase in the pre-tax interest rate r (bottom-
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left panel). The after-tax wage, (1 − τSS)w, declines, as well.
As previously pointed out, the young would like to reduce α1 below the actual level. Two

motives explain this fact. First, a smaller size of the pension system would result in higher
pre-tax and after-tax wages through the general equilibrium. The young like the prospect of
having higher after-tax labor incomes throughout their working careers since these agents rely
substantially on earnings as their main source of income. Second, the economy is dynamically
efficient in all my simulations, meaning that the young would receive a higher after-tax return
on their savings than the Social Security’s implicit return. Note, however, that the young
agents’ most preferred policy α1 is strictly above zero. Workers face uncertainty in their
future earnings, so they value the insurance against low realizations of earnings shocks that
Social Security provides.

Contrary to the young, retired agents would benefit from raising the average replacement
rate above the actual level because this would immediately increase retirees’ pension bene-
fits. Furthermore, the after-tax return on saving would become higher through the general
equilibrium, making retired agents even happier, given that savings are their only source of
market income. Middle-aged agents have to trade off falling after-tax wages against higher
future replacement rates. Given my partitioning choice for the middle-aged group, which
includes agents aged 40–64, the marginal welfare effect from increasing the policy turns out
to be positive for this group, indicating that the benefit side dominates the cost.

As I have shown above, the Social Security tax rate is sensitive to the changes in the av-
erage replacement rate. For this reason, the policy variable α1 controls the inter-generational
redistribution in the model, i.e., the redistribution between workers and retired agents. As
I will illustrate immediately, pension system progressivity has an insignificant impact on the
Social Security tax rate and prices in the calibrated model economy.

4.1.2. Marginal welfare effects of α2

Next, I discuss the marginal welfare impact of the pension system progressivity. The last
column of Table 5 summarizes the marginal welfare effects of policy α2. It is immediately
noticeable that there is a disagreement between low-ability and high-ability agents within
each group regarding which direction to shift policy α2. Particularly, low-ability agents
prefer, on average, to increase progressivity above the actual level, whereas the opposite is
true for high-ability agents. The distributional conflict between high-ability and low-ability
agents over policy α2 will allow me to identify the ability bias parameter κ2,1979.

What economic forces determine the agents’ most preferred choice? Before answering
this question, it is instructive to consult Figure 6, which plots the steady state values for
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the key model variables as a function of pension system progressivity. As one can see from
the figure, variable α2 has a relatively small quantitative impact on the Social Security tax
rate and prices compared to policy α1.51 Instead, it controls the distribution of pension
benefits within the pool of retired agents while roughly maintaining the overall fixed size of
the pension system. Hence, α2 governs the degree of intra-generational income redistribution
in the model, i.e., the redistribution from retired agents with high average lifetime-earnings
to the retirees with low average lifetime earnings.

Agent’s preferences over intra-generational redistribution depend on the position of this
agent’s average lifetime earnings, ē, relative to the economy-wide average taxable earnings,
Ẽt, in the last period before the agent’s retirement. Since there is no aggregate risk in the
model, all agents know Ẽt with certainty at any point in time. Moreover, ē remains constant
during retirement, as can be seen from its law-of-motion in (8). Thus, the retired agent’s
relative position in the distribution of lifetime earnings, ê = ē/Ẽt, remains constant and
known over time. As we can see from the replacement rate schedule in (13), an increase in α2

reduces pensions of all agents with ê > 1. Thus, all retirees with ê > 1 must prefer α2 < 1.
The opposite is true for retirees with ê < 1. Contrary to retirees, working-age agents face
idiosyncratic labor productivity risk. Hence, their most preferred progressivity depends on
the expected relative position in the distribution of lifetime earnings when these agents enter
retirement.

What do these observations imply for the agents’ most preferred policy by their age and
ability? In the calibrated model economy, almost all low-ability retired agents (90.3 percent)
turn out to have average lifetime earnings below the economy-wide average earnings. The
ability composition changes substantially in the pool of retirees with average lifetime earnings
above the economy-wide average earnings, where the share of low-ability agents drops to 58.6

percent. Hence, on average, low-ability retirees prefer a more progressive pension system (i.e.,
a higher α2) than high-ability retirees because most of these agents are poor in terms of their
lifetime earnings. Since high-ability workers face a deterministic wage premium during their
entire working careers, the agent’s ability becomes a dominant predictor of her expected
lifetime earnings at retirement. Thus, high-ability agents can expect to enter retirement with
average lifetime earnings above the economy-wide average with higher probability. Ex-post,
i.e., after the realization of idiosyncratic risk, this is indeed what happens in the model.
This intuition explains the nature of the intra-generational conflict between low-ability and

51The elasticity of the Social Security tax rate with respect to policy α1 is 1.08, whereas it is −0.03 for
α2.

35



Figure 6: Model Variables as a Function of α2.
Notes: The figure shows the relationship between the key model variables and the statutory progressivity
α2. To construct the figure, I solve the model for a set of steady state equilibria under the 1979 calibration
of all parameters, except for α2. In all computations, the average replacement rate is fixed at αdata1,1979. On
the vertical axis, I plot the equilibrium values of the pre-tax wage w, the pre-tax return on saving r, the
Social Security tax rate, τSS, and the redistributive effect of pensions. The latter statistic is defined as
the percentage reduction in market income inequality, measured by the Gini index, due to pension benefits.
Values for w are shown in percent deviations, whereas the values of all other variables are shown in percentage
point deviations from the baseline model in 1979. By construction, all variables are equal to zero at αdata2,1979.
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high-ability agents highlighted in Table 5.

4.2. How have the government’s preferences changed?

Based on my calibration (Table 2), the actual average replacement rate increased by 11

percent, whereas actual progressivity declined by 12 percent between 1979 and 2017. In the
model, two distinct forces are capable of rationalizing this development. Conditional on the
calibrated model parameters for 2017, the government might find it optimal to adjust the
replacement rate schedule because its tastes over redistribution have changed over time. This
is the first force which I will discuss in the current section. Simultaneously, the government
might find it optimal to adjust the replacement rate schedule in 2017 because it faces a new
set of model parameters, conditional on its preferences over redistribution from 1979. This
is the second force that I will turn my attention to in the next section.

Recall that in the model, government tastes for redistribution are captured by the Pareto
weights ωt (eq. 17) specified as a function of two parameters: the age bias (κ1,t) and the
ability bias (κ2,t). In the previous section, I showed that there is a major disagreement between
generations over the average replacement rate in the calibrated model economy. At the same
time, there is large heterogeneity in welfare between high-ability and low-ability agents within
each age group over the degree of pension system progressivity. In the current section, I
will exploit these two distributional conflicts to identify the Pareto weight parameters κt
consistent with the actual Social Security policy in 1979 and 2017.

Table 6 summarizes this section’s main findings. Columns Baseline document the cal-
ibrated parameters of the replacement rate schedule under each calibration. The last two
rows of the table show the estimated values of κt consistent with the government optimally
choosing the calibrated replacement rate schedule.52

For the 1979 calibration, I obtain a negative value for κ1,1979 and the estimate of κ2,1979

above one. These results have the following implication. For the model to rationalize αdata1979 ,
the government must have put a larger weight on younger agents, conditional on their ability.
Simultaneously, the government must have attached a larger weight on high-ability agents
compared with low-ability agents, conditional on their age. Under the 2017 calibration, the
age bias switches its sign and becomes positive, which suggests that the government in 2017
must have put a higher weight on older agents, conditional on their ability. At the same time,
the ability bias continues to be positive and increases in magnitude, which means that the
government must have assigned an even higher relative Pareto weight to high-ability agents,

52Appendix B.3 explains in detail the numerical algorithm.
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Table 6: Actual and Utilitarian Policies in 1979 and 2017.

1979 2017

Equal
weights

Baseline Baseline

Average rep. rate α?
1,t 0.58 0.45 0.50

Progressivity α?
2,t 1.90 1.69 1.48

Soc. Sec. tax τSS,t, % 11.6 9.0 10.5
Redistribution, % 62.1 53.0 31.0

Age bias κ1,t 0 −0.86 0.64
Ability bias κ2,t 1 2.77 5.73

Notes: The table shows a set of variables computed in different experiments. Equal weights refer to the
utilitarian policy in 1979. Baseline refer to the benchmark model economy under the 1979 or 2017 calibration.
For each experiment, the table records the optimal replacement rate schedule, α?

t , the Social Security tax
rate as well as the measure of income redistribution, and the Pareto weight function parameters, κt, that give
rise to α?

t . The Social Security tax and the redistribution statistic are computed based on the final steady
state associated with a given optimal policy α?

t . The redistribution measure shows the percent that pension
benefits reduce market income inequality (measured by the Gini index) among retired agents.

conditional on their age, compared with the one in 1979.
It is helpful to put the estimates of κt into perspective. Figure 7 visualizes the shift in

the age bias estimate κ1,t. More specifically, it contrasts the implied age-profile of Pareto
weights in 1979 and 2017, keeping the agent’s ability fixed. To ease the comparison across
periods, I normalize the Pareto weights by the weight attached to a 65-year-old agent in each
period. As one could expect from the sign of the obtained estimates, the Pareto weights
decrease in the agent’s age in 1979, while the opposite happens in 2017. Next, consider a
25-year-old household. In 1979, the government was willing to trade off one util of this agent
against more than two utils of a 65-year-old household with the same ability. This tradeoff
is virtually reversed in 2017. Overall, the estimates of κ1,t suggest that the government has
become more willing to tolerate redistribution from young workers toward retired households.

Since the ability bias, κ2,t, enters multiplicatively into the Pareto weight function in (17),
its estimate directly captures the Pareto weight that the government assigns to a high-ability
agent relative to a low-ability agent of the same age. Thus, κ2,1979 = 2.77 means that the
Pareto weight on a high-ability household is roughly three times larger than the weight on
a low-ability household of the same age. Since κ2,t increases from 2.77 to 5.73, the Pareto
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Figure 7: Pareto Weights By Age.
Notes: The figure shows the age-profile of Pareto weights, jκ1,t , conditional on the agent’s ability, in 1979
and 2017. The weights are normalized by the Pareto weight attached to a 65-year-old agent in each period.
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weight on a high-ability household almost doubles over time.53 According to this finding, the
government has become less willing to redistribute from high-ability to low-ability households.

Admittedly, the model is salient about the forces underlying the identified changes in
the government’s preferences. In Appendix D, I present empirical evidence regarding the
changes in the voter turnout rates by education and age in Congressional elections in the
United States. This evidence is largely in congruence with the model predictions.

The remaining part of this section provides some intuition behind the results obtained
above. Consider the 1979 calibration of the model. Qualitatively, all the arguments to follow
also apply for the Pareto weights identification in the 2017 calibration of the model. To
establish a useful benchmark for comparison, I compute and report in column Equal weights
in Table 6 the optimal utilitarian replacement rate schedule in 1979.54

As we can see from the table, the utilitarian government chooses the average replacement
rate equal to 0.58 and the degree of pension system progressivity equal to 1.9. Hence, the
utilitarian solution implies a 29 percent higher level of replacement rates and a 12 percent
higher progressivity compared to the actual policy. The discrepancy between the two so-
lutions can be summarized using the consumption equivalent variation (CEV) measure. It
shows how much (in percent) the agents’ consumption has to be increased in all future pe-
riods and contingencies (keeping their leisure unchanged) in the baseline model under the
1979 calibration so that their expected utility equals that under the utilitarian policy. Con-
sistent with the government optimization problem, I compute this measure among all living
agents in 1979. The utilitarian policy leads to a welfare gain equivalent to a 0.98 percent
consumption increase.

To further quantify the discrepancy between the two policies, I also report the Social
Security tax rate and the redistributive effect of pensions associated with each policy, where
the latter statistic measures the percent reduction in market income inequality (measured
by the Gini index) due to pension benefits. Similar to the remark made in the previous
section, there is an entire transitional path of all endogenous variables from the initial steady
state with policy αdatat to the final steady state associated with the optimal utilitarian
policy. Therefore, in the table, I report the values of the Social Security tax rate and the
redistribution measure obtained in the final steady state.

53As already pointed out in the calibration section, the estimates of Pareto weights depend on the degree
of altruism, χ. I conducted a robustness exercise setting χ = 0. The obtained estimates of the Pareto weight
function are: κ1979 = (−3.70, 1.60) and κ2017 = (−2.14, 3.53). Thus, χ does not affect, qualitatively, the
detected shift in the Pareto weights toward older and high-ability households.

54Appendix B.4 describes in detail how the utilitarian solution is obtained.
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One can see that the steady state value of the Social Security tax rate implied by the
utilitarian solution is 2.6 percentage points higher compared with the data. This difference
is explained by the fact that the utilitarian government sets a higher average replacement
rate which requires additional financing due to the government budget constraint (15). Con-
currently, income redistribution among retired agents rises by 9 percentage points compared
with the data because the utilitarian government chooses a more progressive pension system.

By construction, any discrepancy between the utilitarian and the actual policies is ab-
sorbed by the Pareto weights ωt. In the previous section, I demonstrated that the young are
the only group in favor of reducing α1 below the actual level in the data; hence, the Pareto
weight attached to this group must be higher than in the utilitarian case for the model
to match αdata1,1979. Furthermore, the utilitarian solution leads to the degree of progressivity
above the empirically observed level in 1979. Compared with the utilitarian case, a larger
Pareto weight on high-ability agents is required because, as we saw in the previous section,
high-ability agents prefer a less progressive pension system than in the data.

4.3. How should have Social Security responded to inequality?

As opposed to the previous discussion, this section assumes that the government’s prefer-
ences over insurance and redistribution have not changed over time. I maintain this assump-
tion throughout this section to disentangle the government’s optimal response to parameter
changes from any shifts in the government’s preferences. This allows me to quantify the
welfare cost of the shift in government preferences.

The economy is assumed to be in a steady state equilibrium at time t = 2017. The initial
Social Security policy is αdata1979 and the initial distribution of agents is given by the steady
state distribution that arises in the steady state equilibrium under policy αdata1979 and the
following calibration of parameters. As already mentioned, I keep the Pareto weights fixed
at their 1979 levels.55 I compute the optimal replacement rate policy under two alternative
calibrations. In the first case, I update all the model parameters to their calibrated values
for 2017. In the second case, I update only those model parameters which drive earnings
inequality, while leaving all the remaining parameters constant at their calibrated levels for
1979. This experiment allows me to quantify the relative contribution of earnings inequality
to the optimal policy.

Table 7 displays the results. The values for α? are shown in percent deviations relative to
the baseline model in 1979, whereas the long-term values of the Social Security tax rate and

55The values of κt are taken from the column Baseline for 1979 in Table 6.
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Table 7: Optimal Policy in 2017 in Counterfactual Experiments.

All Changes Inequality Premium Risk Graduates

Average rep. rate α?
1, % −28.9 −11.1 −11.1 +2.2 −8.9

Progressivity α?
2, % +184.0 +59.8 +18.3 +24.3 −5.3

Soc. Sec. tax τSS, pt. pt. −1.80 −1.84 −1.32 −0.09 −0.81
Redistribution, pt. pt. −0.20 +4.86 +1.45 +4.37 −6.47

Notes: The table shows the optimal policy in 2017 in counterfactual experiments. All policies are computed
under the identified Pareto weights from 1979 (Table 6, third column). The values for α?

1 and α?
2 are shown

in percent deviations, whereas the values for the Social Security tax rate and redistribution are displayed in
percentage point deviations from their respective values under the baseline calibration for 1979. All policies
are computed under the Pareto weight parameters κ1979. The reference values for 1979 are displayed in
the second column of Table 6. Redistribution measures the percent reduction in the Gini index for market
income inequality due to pension benefits. τSS and the redistribution measure are both computed in the
final steady state equilibrium associated with a given optimal policy. In each counterfactual, all parameters
are fixed at their calibrated values for 1979, except for the following parameters that take on values from
2017: the age-efficiency profiles, {ζz,j}J

R−1
z,j=1 (Premium), the variances of the persistent and temporary shocks,

{σ2γ,z,σ
2
v,z}z (Risk), and the share of high ability agents, λH (Graduates). Inequality combines all the changes

from the previous three counterfactuals. All Changes update all the model parameters. See Table 2 for
parameters updated.

the redistribution measure associated with the optimal policy are displayed in percentage
point deviations relative to the same benchmark.

Before evaluating the marginal impact of earnings inequality on the optimal policy, I
investigate Social Security’s optimal response to a combined change in all model parameters
(column All Changes). Under this scenario, the optimal average replacement rate declines
by 28.9 percent. This measure allows the government to reduce the Social Security tax rate
by 1.8 percentage points in the long run. Concurrently, the optimal progressivity skyrockets
by 2.84 times. Despite this substantial increase, however, the government can only sustain
roughly the same degree of redistribution as in 1979.

Next, I evaluate the welfare gain associated with this optimal policy. More specifically,
I ask the following question. By how much percent does consumption of the agents in
the baseline economy under the 2017 calibration have to increase in all future periods and
contingencies (keeping their leisure unchanged) so that their expected utility equals that
under the optimal policy reform? Consistent with the government optimization problem, I
consider only those agents who are alive in 2017. The resulting welfare effect is 1.16 percent.
This is the welfare cost that the agents in the baseline model would be willing to pay to move
to an economy in which the government’s preferences over insurance and redistribution have
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remained unchanged.
In the next step, I re-compute the optimal policy after updating only those model param-

eters responsible for the increased dispersion in earnings (column Inequality in Table 7).56

According to the table, the government optimally chooses to reduce the average replacement
rate by 11.1 percent and increase progressivity by 59.8 percent compared to 1979. Hence,
qualitatively, the marginal effect of earnings inequality on the optimal policy in 2017 is the
same as the combined effect of all model parameters that I described above. Quantitatively,
the increased earnings dispersion explains 38.5 percent of the total decline in the average
replacement rate and 32.5 percent of the total increase in progressivity.57

Below I will zoom onto the marginal impact of earnings inequality. To uncover the
economic mechanisms that drive the results, I conduct a set of counterfactual experiments.
Each experiment’s set-up is identical to the Inequality exercise explained above with one
important modification. Instead of updating all the parameters that drive inequality, I split
them into three subgroups and study the marginal contribution of each subgroup to the
optimal policy. In the first experiment, I update the deterministic age-profile of return to
experience governed by ζz,j. For the sake of brevity, I will refer to this case as Premium
in the tables. The second experiment (Risk) accounts for the changes in the persistent and
temporary shocks’ variances, {σ2

γ,z,σ
2
v,z}z, only.58 In the final experiment, I adjust the share

of high ability agents, λH, only.

College premium

Consider the first counterfactual, in which I only update the profile of age-efficiency units,
ζz,j. Recall that this variable controls the deterministic portion of the agent’s earnings.
Conditional on all other characteristics, high-ability workers receive a wage premium over
low-ability workers given by ζH,j/ζL,j. In the calibration section, Figure 1 illustrated that
the wage premium shifts upward at each age between 1979 and 2017.

This development is responsible for a substantial rise in the dispersion of cross-sectional
earnings. According to Table 8, the earnings Gini rises from 0.310 to 0.324. Given that the
earnings Gini under the 2017 calibration is 0.389, the college premium counterfactual alone
accounts for 18 percent of the total change in cross-sectional earnings inequality between 1979

56Table 2 (the first block) lists these parameters and their corresponding values.
57Appendix E shows the marginal contribution of the remaining model parameters to the optimal policy.

Among all model primitives, household utility and representative firm technology have the most significant
quantitative impact on the optimal policy.

58See Table 2 (the first block) for the parameter values used in each experiment.
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Table 8: Inequality Moments in Counterfactual Experiments.

Gini(e) Gini(y) Corr(ē,y)

Baseline (1979) 0.310 0.296 0.76
Counterfactuals (2017):
– Premium 0.324 0.346 0.84
– Risk 0.353 0.357 0.77

Notes: Gini(e) refers to pre-tax earnings. Gini(y) refers to incomes before taxes and government transfers.
Corr(ē,y) is the correlation between average lifetime earnings and pre-government incomes. The last two
statistics are calculated based on the sample of agents who enter retirement (i.e., agents of age j = JR).
All numbers are computed based on the pre-reform steady state distribution in 2017 with αdata1979 . In each
counterfactual, all parameters are fixed at their calibrated values for 1979, except for the following parameters
that take on values from 2017: the age-efficiency profiles, {ζz,j}J

R−1
z,j=1 (Premium) and the variances of the

persistent and temporary shocks, {σ2γ,z,σ2v,z}z (Risk).

and 2017. Since ζz,j permanently shifts wages of high-ability workers upward, the disparity
in cross-sectional earnings propagates into an unequal distribution of incomes at retirement.
One can see this by studying the inequality in market incomes among those agents who
enter retirement (i.e., all agents of age JR).59 Recall that the retired agents’ only source of
income (apart from government transfers) is the return on their savings. Hence, the market
income inequality measures the dispersion in the accumulated wealth among retired agents.
According to the table, the Gini index for market income rises by 17 percent (from 0.296 to
0.346), indicating a larger disparity in the agents’ ability to provide for their retirement.

Table 9 shows the distribution of ability among retired agents and confirms the simple
hypothesis that these are the ability differences in wages that drive inequality at retirement.
More specifically, the table reports the share of high-ability agents per each quartile of the
market income distribution. Whereas the fraction of high-ability agents in the top quartile
of the market income distribution was 51.0 percent in 1979, it rises to 71.8 percent solely
due to the college premium shift. Simultaneously, the same share in the bottom quartile falls
from 13.3 to 2.7 percent. Hence, the distribution of high-ability agents has become more
concentrated at higher incomes, compared to 1979.

Naturally, the government will seek ways to counteract inequality by intensifying redis-
tribution from income-rich toward income-poor retirees. However, the government can only

59Qualitatively, none of the arguments presented in this section change if I instead focus on the full sample
of retired agents. However, studying the agents who are just entering retirement draws a clearer picture of
the retired agents’ economic well-being because all agents, regardless of their financial status, reduce their
assets as they approach the terminal period J.
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Table 9: Shares of High-Ability Agents, per Income Quartile

Q1 Q2 Q3 Q4

Baseline (1979) 13.3 12.6 23.2 51.0
Counterfactuals (2017):
– Premium 2.7 4.4 21.3 71.8
– Risk 17.9 17.6 14.8 49.7

Notes: The table displays the shares of retirees with average lifetime earnings above the economy-wide
average (i.e., retirees with ê > 1), by quartiles of the pre-government income distribution. The statistics are
calculated based on the sample of agents who enter retirement (i.e., agents of age j = JR). All numbers are
computed based on the pre-reform steady-state distribution in 2017 under the Social Security policy αdata1979 .
In each counterfactual, all model parameters are fixed at their calibrated values for 1979, except for the
following parameters that take on values from 2017: the age-efficiency profiles, {ζz,j}J

R−1
z,j=1 (Premium) and the

variances of the persistent and temporary shocks, {σ2γ,z,σ2v,z}z (Risk).

employ the replacement rate schedule, which conditions the agent’s pension benefit on this
agent’s average lifetime earnings. Hence, the question is whether the income-poor retirees
are those agents who have also accumulated low lifetime earnings during their working ca-
reers. Table 8 confirms that this is indeed the case. The correlation between pre-government
incomes and average lifetime-earnings among retired agents jumps from 0.76 to 0.84. Table
10 draws a more detailed picture. It displays the share of agents at age JR whose average life-
time earnings are above the economy-wide average taxable earnings (i.e., those agents with
ê > 1) per quartile of the market income distribution. In the baseline model under the 1979
calibration, the share of these agents in the first, second, and third quartile are 4.7, 25.4, and
66.0 percent, respectively. By contrast, these shares plummet by roughly four, three, and two
times, respectively, in the college premium counterfactual. Hence, the individual’s average
lifetime earnings become a better indicator of their economic well-being in this experiment.

Since the individual’s average lifetime earnings become more indicative of their economic
status, the government can effectively use the pension system progressivity to target pension
benefits at the income-poor retirees. This explains why α2 rises by 18.3 percent in the college
premium counterfactual (Table 7). As pension benefits become more precisely targeted at
the disadvantaged groups, it would be inefficient to grant income-rich retirees high replace-
ment rates. This explains why the average replacement rate, α1, declines by 11 percent.
This measure benefits the entire working-age population because it reduces the distortions
associated with labor taxation.
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Table 10: Shares of Retirees With Average Lifetime Earnings Above Economy-Wide Average
Earnings, per Income Quartile.

Q1 Q2 Q3 Q4

Baseline (1979) 4.7 25.4 66.0 97.1
Counterfactuals (2017):
– Premium 1.2 9.2 38.9 90.1
– Risk 5.9 23.7 63.3 97.7

Notes: The table displays the shares of retirees with average lifetime earnings above the economy-wide
average (i.e., retirees with ê > 1), by quartiles of the pre-government income distribution. The statistics are
calculated based on the sample of agents who enter retirement (i.e., agents of age j = JR). All numbers are
computed based on the pre-reform steady-state distribution in 2017 under the Social Security policy αdata1979 .
In each counterfactual, all model parameters are fixed at their calibrated values for 1979, except for the
following parameters that take on values from 2017: the age-efficiency profiles, {ζz,j}J

R−1
z,j=1 (Premium) and the

variances of the persistent and temporary shocks, {σ2γ,z,σ2v,z}z (Risk).

Idiosyncratic risk

In the next counterfactual, I adjust the variances of the idiosyncratic labor productivity
risk, while keeping all other model parameters fixed at the 1979 levels. Based on my calibra-
tion results reported in Table 2, the persistent shock’s variance doubles, whereas the variance
of the temporary shock increases by 25 percent for a high-ability agent. The corresponding
numbers for a low-ability agent are 45 percent and 8 percent, respectively.

Ex-post, i.e., after the idiosyncratic risk has been realized, the inequality in cross-sectional
earnings rises substantially. According to Table 8, the earnings Gini jumps from 0.310 in 1979
to 0.353 in 2017. Quantitatively, this amounts to 54 percent of the total rise in inequality
between 1979 and 2017. Similar to the college premium counterfactual, there is a substantial
passthrough of inequality from the working stage into retirement. Indeed, the same table
shows that the income Gini surges from 0.296 to 0.357.

However, there are some notable differences from the previous experiment. First, the
distribution of high-ability agents by income shifts to the left, as shown in Table 9. More
specifically, the shares of high-ability agents in the top two income quartiles fall, whereas the
opposite happens at the bottom two quartiles. The most pronounced drop occurs at the third
quartile, where the share of high-ability agents reduces from 23.2 to 14.8 percent. Second,
contrary to the previous experiment, there is a weaker correlation between retired agents’
incomes and their average lifetime earnings (0.77 compared to 0.84). Table 10 sheds more
light on this observation by zooming onto the retired agents with average lifetime earnings
above the economy-wide average earnings. The table shows that the distribution of these
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agents by income remains almost unchanged, compared to 1979.
The optimal policy shown in Table 7 reflects these two major differences from the college

premium experiment. In response to more volatile labor productivity, high-ability workers
can expect a higher probability of falling into the lower tail of the average lifetime earnings
distribution at retirement. As their demand for publicly provided insurance increases, the
government optimally chooses to increase progressivity (by 24.3 percent) compared to 1979.
However, it has to uphold roughly the same average replacement rate to redistribute to those
retirees who have been lucky to accumulate relatively high average lifetime earnings but failed
to save a sufficient amount of wealth.

College graduates

In the final counterfactual, the only parameter updated is the share of high-ability agents,
λH. Recall that it increased from 25 percent in 1979 to 43 percent in 2017. As opposed to the
previous two counterfactuals, the mechanism in this experiment operates through the density
function, f2017, in the government’s optimality condition (22). As previously established
(Section 4.1), high-ability agents across all age groups prefer a less progressive system than
in the data. Hence, as their population size increases, the government’s optimal response
should be to reduce progressivity to cater to these agents’ preferences. Indeed, Table 7 shows
that α2 goes down by 5.3 percent compared to 1979. The government complements this
choice by reducing the average replacement rate by 8.9 percent. As the same table reveals,
this measure dampens the distortionary pressure of labor taxation by reducing the Social
Security tax rate by 0.8 percentage points in the long run. This benefits all working-age
agents, especially those with high-ability because their pre-tax wages are higher, on average.

Summarizing, the available instruments allow the government to respond effectively to
the increased college premium, while this ability is limited in the case of idiosyncratic risk.
Overall, the effect of college premium and idiosyncratic risk on the optimal policy dominates
quantitatively. Hence, the government optimally chooses to reduce the average replacement
rate and increase progressivity.

5. Outlook

The analysis in this paper is subject to several critique points. I mention two of them
below. Addressing each of these points opens exciting new avenues for future research.

First, I identify the shift in government preferences over insurance and redistribution but
abstain from exploiting this information in further analysis. There could be a benefit from
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doing so. As already mentioned in the introduction, a large strand of economic literature
studies the macroeconomic and welfare consequences of different retirement financing reforms.
It remains unclear, however, to what extent the discussed reforms are feasible from a political
standpoint. The identified distribution of Pareto weights can be applied in policy analyses
to restrict all economically feasible proposals to those that are also politically viable.

Second, the shift in government preferences is one explanation for why Social Security has
not adjusted to rising earnings inequality. Admittedly, there are alternative justifications.
One such explanation is political gridlock. It describes a situation in which politicians fail to
reach an agreement during the post-election bargaining stage. As a consequence, the policy
remains at status-quo. Piguillem and Riboni (2016) have an interesting application of this
mechanism to capital taxation. Their paper’s mechanism might provide micro-foundations
for the persistence of particular policies, including Social Security, despite the change in
fundamentals.
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Appendix A. Competitive equilibrium

First, I define the competitive equilibrium with an exogenous policy. Then I define the
equilibrium, in which Social Security arises endogenously.

Definition 1. Given initial policy, α1, the initial stock of capital, K1, the initial distribu-
tion of agents F1, the pre-existing maximum taxable earnings thresholds (capSS,0, capM,0)

and average taxable earnings Ẽ0, a competitive equilibrium with an exogenous policy
α is a sequence of individual functions for households, {Ṽt,Vt, c

?, l?,a′?, {ūj−34,t}
J
j=35}

∞
t=1,

a sequence of production plans for firms, {Kt,Nt, Yt}∞t=1, total wealth held by households,
{At}

∞
t=1, prices, {wt, rt}∞t=1, Social Security tax rate and deficit, {τSS,t,Dt}

∞
t=1, wasted govern-

ment spending {Gt}
∞
t=1, maximum taxable thresholds, {capSS,t, capM,t}

∞
t=1, taxable earnings

{Ẽt}
∞
t=1, Medicare transfers, {TM,t}

∞
t=1, distributions of agents, {Ft}∞t=2, such that the following

statements hold for all t:

• Functions (Ṽt,Vt, c
?, l?,a′?, {ūj−34,t}

J
j=35) solve agent’s optimization problem in (11),

where the average utility of children at age j̄ > 35 reads:

ūj̄,t =

∫
x:j=j̄ u(c

?, l?)dFt(x)∫
x:j=j̄ dFt(x)

. (A.1)

• Factor prices rt and wt are determined competitively from (2);

• Social Security budget constraint is given by (15);

• Government stock of debt in Social Security as a fraction of GDP remains constant:

dSS = Dt/Yt, (A.2)

where aggregate output Yt is given by (1).

• Government wasted spending follows from the government budget constraint (18).

• Aggregate consumption, aggregate stock of supplied assets and total bequeathed wealth
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are defined as follows:

Ct =

∫
x

c?dFt(x), (A.3)

At =

∫
x

adFt(x), (A.4)

Φt =

∫
x

(1 −ψj,z)a
′?dFt(x). (A.5)

• Medicare runs a balanced budget according to (19).

• Average taxable earnings, Ẽt, are given by:

Ẽt =

∫
x:j<JR

ẽSSdFt(x)

/
µW , (A.6)

• Maximum taxable earnings thresholds evolve according to:

capSS,t+1 = capSS,t × Ẽt+1/Ẽt, (A.7)

capM,t+1 = capM,t × Ẽt+1/Ẽt. (A.8)

• Capital, labor and goods markets clear:

Kt = At −Dt, (A.9)

Nt =

∫
x:j<JR

εl?dFt(x), (A.10)

Ct +Gt + Kt+1 = Yt + (1 − δ)Kt. (A.11)

• Law of motion for ft for j = 1, ..., J− 1 is given by:

ft+1(x
′) = ft+1(z, j+ 1,y′, ã′, ē′) =

ψj,z

1 + n

∫
x:j

1ã′=a′?
t
π(y′ | y)dFt(x) (A.12)

together with the distribution for age 1 agents:60

ft(z = H, 1,y, 0) = λHΠy

60Recall that agents enter the model at age j = 1 without any assets.
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and
ft(z = L, 1,y, 0) = (1 − λH)Πy

where λH is the measure of newborn agents with high-ability and Πy is the stationary
measure of newborn agents with productivity y.

Definition 2. A competitive equilibrium with an endogenous policy is:

• the paths of variables

{Vt, Ṽt, c
?, l?,a′?, {ūj−34,t}

J
j=35,Kt,Nt, Yt,At,wt, rt, τSS,t,Dt,Gt}

∞
t=1,

{capSS,t, capM,t, Ẽt, TM,t, Ft}
∞
t=1

and a policy vector (α1, ᾱ), which satisfy the definition of a competitive equilibrium
with an exogenous policy (definition 1);

• Pareto-weights ω, such that α = α?, where α? is the solution to the government’s
problem in (16).

Appendix B. Computational algorithm

Appendix B.1. Steady state equilibrium

Choose the grid points for asset holdings (a) with the number of grid points Na = 200.
The asset holdings are in the range [0, 22]. Using Tauchen (1986), create an age-dependent
grid of dimension (JR−1)×12 for the idiosyncratic productivity shock (y) taking into account
the age-dependent variance of the persistent shock ηi,j in (6). Make a guess on the age- and
ability dependent grid for the average lifetime earnings (ē). At each age and ability level, I
use 5 grid points for ē.

Follow the steps below to compute a steady state equilibrium with an exogenous policy
α.

1. Make initial guesses of the steady state values of aggregate capital stock K, aggregate
effective labor N, lump-sum Medicare transfer TM, Social Security tax rate τSS, taxable
earnings Ẽ and a vector of average instantaneous utilities {ūs−34}

J
s=35. Make a guess on

the grid for average lifetime earnings ē.
2. Given the guesses on K and N, compute prices w, r from (2) and total output Y

from (1). Given Y, compute the implied Social Security deficit D using the constant
government debt-to-GDP ration from (A.2).
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3. Compute household’s optimal labor and savings functions l? and a′?, respectively, start-
ing at age J and proceeding backwards.

4. Initialize the time-invariant distribution of agents F(x), given that agents enter the
model with zero assets and zero average lifetime earnings. Iterate the distribution
forward using (A.12).

5. Compute aggregate assets A from (A.4). Given A and the guess on D, compute K
using (A.9). Furthermore, compute N using (A.10), TM using (19), τSS from the Social
Security budget constraint in (15), Ẽ from (A.6) and {ūs−34}

J
s=35 using (A.1). Construct

a new grid for lifetime earnings, such that agents are equally distributed across the five
grid points at each age and ability level.

6. If the calculated values from the previous step are close to the guesses made in step 1,
we have found a steady state equilibrium. Otherwise, update the guesses and repeat
the steps until convergence.

7. To complete the solution, compute aggregate consumption C from (A.3), total bequests
Φ from (A.5), total net income taxes using (21) and wasted government spending G
from (18).

Appendix B.2. Transitional dynamics

At time t = 1, the government makes an unanticipated announcement that the policy will
change once-and-for all in the following period. The optimization problem of the government
in (16) requires solving for transitional dynamics from the initial steady state associated with
αdatat to a new steady state associated with α. To do so, proceed as follows.

1. Compute the initial steady state associated with αdatat following the steps described
in Appendix B.1. Proceed similarly to compute the final steady state associated with
the candidate policy α. Denote the initial steady state quantities with an lower bar,
e.g. K,C, etc. Denote the new steady state with an upper bar, e.g. K,C.

2. Assume that the transition is completed during T periods. Since the computation of
Pareto weights described in Appendix B.3 relies on computing numerical derivatives
evaluated at αdatat , α would be typically in a local neighborhood of αdatat , so that
T = 65 should be sufficient. Of course, for policies located further away from the initial
steady state, a larger T would be necessary.

3. Compute the transitional paths of the variables from the initial to the final steady state:

(a) Guess the paths of {Kt,Nt, TM,t, τSS,t, Ẽt, {us−34,t}
J
s=35}

T−1
t=1 with K1 = K and Ẽ0 =

Ẽ.
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(b) Given the guessed paths of Kt and Nt, compute the paths of wt, rt, Yt,Dt. Given
the guess on the paths of Ẽt, compute the paths of capSS,t, capM,t using (A.7)-
(A.8).

(c) Proceeding backwards from period T −1 to period 1, compute the path of optimal
savings and labor choices in all transition periods. Note that the continuation
value at T − 1 is VT = V .

(d) Using F and the paths of the decision rules computed in the previous step, find
the time-path of the distribution, {Ft}T−1

t=2 by iterating forwards.
(e) Compute the paths of At,Kt,Nt, TM,t, τSS,t, Ẽt and the path of instantaneous

utilities {ūs−34,t}
J
s=35.

(f) If the newly computed paths are sufficiently close to the guessed ones in each
period, we have found the solution. Otherwise, update the guesses and return to
step 3. Proceed until convergence.

(g) To complete the solution, compute the paths of Ct,Φt,Gt and the total net income
taxes.

4. Once the sequence has converged, check whether T from step 2 is sufficient by increasing
T and checking whether the equilibrium paths are affected.

Appendix B.3. Estimating Pareto weights

This section explains how to estimate a vector of Pareto weight parameters κt, such that
the optimal policy, α?, from (16) is equal to the actual policy, αdatat .

Before proceeding to the algorithm, note that κt must satisfy the following two first-order
conditions:

A ≡
∫
x

ω(j, z;κt)
∂Vt(x;αdatat ,α, Ft)

∂α1

dFt(x)

∣∣∣∣
α=αdata

= 0 (B.1)

B ≡
∫
x

ω(j, z;κt)
∂Vt(x;αdatat ,α, Ft)

∂α2

dFt(x)

∣∣∣∣
α=αdata

= 0. (B.2)

Also, note that we evaluate the first-order derivatives of the value function at the true policy
αdatat because this is what the solution has to be, by construction. Importantly, the initial
distribution of agents across states, Ft(x), does not depend on the choice of α, which simplifies
the analysis. Hence, once one obtains the two derivatives of the value function and the initial
distribution of agents, the parameter vector κt can be computed by solving the system
consisting of the two optimality conditions above.

Follow the steps below to compute κt:
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1. Solve the model for the initial steady state equilibrium and obtain the stationary dis-
tribution of agents, Ft(x) (Appendix B.1).

2. Solve the model with transitional dynamics from the initial steady state with αdatat

to a new steady state with α1 = (αdata1,t − h1,αdata2,t ) (Appendix B.2). h1 is a
sufficiently small step interval. I use h1 = 0.01. Store the resulting value function
Vt(x;αdatat ,α1, Ft).

3. Repeat the step above to solve the model with α2 = (αdata1,t + h1,αdata2,t ). Store the
resulting value function Vt(x;αdatat ,α2, Ft).

4. Compute ∂Vt/∂α1 numerically:

∂Vt(x;αdatat ,α, Ft)

∂α1

∣∣∣∣
α=αdatat

=
Vt(x;αdatat ,α2, Ft) − Vt(x;αdatat ,α1, Ft)

2h1

.

5. Proceeding similarly, compute numerically ∂Vt/∂α2. I use the step size h2 = 0.1.

6. Write down the following objective function:

(a) The function takes as arguments some arbitrary value of κt, the derivatives ∂Vt/∂α1

and ∂Vt/∂α2 computed in steps 2 and 3, respectively, as well as the distribution
of agents Ft computed in step 1.

(b) Given κt, the function first computes the set of Pareto weights ω(j, z;κt) using
(17). For convenience, I use the agent’s real-life age, j + 24, instead of the model
age j as an argument of the weighting function.

(c) Given ω(j, z;κt), the function then computes the terms A and B in (B.1)-(B.2).
(d) The output of the function is A2 + B2.

7. Pass the function constructed in the previous step to a standardized function minimiza-
tion routine (such as fmincon in Matlab) and let the routine optimize over κt.

Appendix B.4. Computing the utilitarian policy

This section explains how to compute the utilitarian policy reported in Table 6.
At time t (1979 or 2017), the economy is assumed to be in a steady state associated with

policy αdata1979 and the respective calibration of model parameters. Facing the initial steady
state distribution of agents, ft, the government makes an unanticipated announcement that
it will implement a new policy which becomes effective in the following period and remains
constant forever. When deciding on the policy, the government solves the maximization
problem in (16) assigning equal weights to all households. To find the optimal utilitarian
policy at time t, follow the steps below:
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1. Compute the initial steady state associated with αdatat following the steps described
in Appendix B.1. Store the distribution of agents, Ft.

2. Create an initial grid for the average replacement rate α1 ∈ R+ and the pension system
progressivity α2 ∈ R. This grid should be iteratively refined during the procedure.

3. For each combination of (α1,α2) from the grid, compute transitional dynamics from
the initial steady state associated with αdatat to the final steady state associated with
policy (α1,α2) following the steps described in Appendix B.2. For each transition,
store the agent’s value function Vt(x;αdatat , (α1,α2), Ft).

4. Compute the vector of the aggregate social welfare:∫
x

Vt(x;αdatat , (α1,α2), Ft)dFt(x).

5. Select the policy that leads to the highest welfare in the vector computed in the previous
step.

6. Make sure that the policy from the previous step does not lie on any of the bounds
of the grid. Refine the grids if necessary and return to step 3 until a given level of
accuracy is reached.

Appendix C. Calibration

Appendix C.1. Social Security

In the United States, an individual’s pension benefit depends on their average monthly
indexed earnings (AIME). The AIME is the average monthly earnings over the highest-
earning 35 years of an individual’s working career, indexed to the economy-wide taxable
earnings when the worker reaches age 62. A statutory replacement rate schedule maps
the worker’s monthly pension benefit to the worker’s AIME. The schedule comprises three
brackets with a constant marginal replacement rate of 90 percent, 32 percent, and 15 percent
in the lowest, intermediate, and highest bracket, respectively. The upper bound on AIME is
naturally given by the maximum taxable earnings threshold since only earnings below this
threshold flow into the AIME’s computation.

Figure C.8 shows the implied schedule of average replacement rates that applies to all
workers who turned 62 in 2017. When constructing the figure, I convert worker’s monthly
earnings and the bend points into their annual counterparts (multiplying each by 12) since
one period in my model corresponds to one year. The first two vertical dashed lines in the
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Figure C.8: Statutory Replacement Rate Schedule.
Notes: The figure visualizes the relationship between the individual’s average indexed annual earnings and
the statutory average replacement rate that applies to this individual. The figure is constructed based on the
statutory pension benefit formula from 2017 (see Table 2.A11 in Social Security Administration (2019) for the
formula and parameter values). The first two dashed lines in the figure separate the brackets. The statutory
marginal replacement rates in the lowest, intermediate, and highest bracket are 90 percent, 32 percent, and
15 percent, respectively. The last dashed line corresponds to the maximum taxable earnings threshold from
2017 equal to $127,200.
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figure separate the brackets. The third vertical line in the figure corresponds to the maximum
taxable earnings threshold from 2017 equal to of $127,200.

Since the adoption of the Social Security Amendments in 1977, the worker’s AIME, the
bracket limits, and the maximum taxable earnings threshold have been automatically indexed
to the economy-wide average taxable earnings. Moreover, the statutory marginal replacement
rates in each bracket have been constant since 1977. Consistent with these provisions, I adjust
the worker’s average lifetime earnings, ē, and the maximum taxable earnings threshold,
capSS, in the model to the growth in economy-wide taxable earnings according to (8) and
(A.7), respectively.61

I approximate the empirical replacement rate schedule using the specification from eq.
(13). When doing so, I conduct three transformations on the empirical schedule. First, I con-
vert worker’s monthly earnings and the brackets into their annual counterparts (multiplying
each by 12) since one period in my model corresponds to one year. Second, I normalize the
average indexed annual earnings by the economy-wide average taxable earnings. The latter
values can be easily computed from the CPS. This normalization avoids having to convert
dollar amounts into model units.

The last transformation concerns the observation unit. Whereas the statutory schedule
applies to individuals, the observation unit in my model is a household. I use household-level
data instead of individual-level data to account for the insurance against idiosyncratic labor
productivity risk among the household members. The literature showed this mechanism to
be quantitatively important (see Fuster et al., 2007).62 Hence, I adjust the brackets and
the maximum taxable earnings threshold to account for the average number of earners in
a household consistent with the CPS data. Below I explain the procedure for the 2017
calibration, but one can follow the same steps for 1979.

First of all, I compute the shares of households with more than one earner in the CPS.
Consistent with the sample selection criteria applied in the paper, I define earners as those
household members who work at least 260 hours per year. In 2017, there is less than 3 percent

61I deviate from the existing regulation in several ways. First, I compute earnings at an annual frequency.
Second, I calculate average earnings over the agent’s entire working career. Taking the average over the
agent’s 35 highest-earning years would be computationally infeasible. Finally, in the data, the worker’s
earnings are indexed to the economy-wide average taxable earnings in the year when the worker turns 62
years old. In the model, I index individual earnings to the period which precedes the worker’s mandatory
retirement.

62Without adjustment for household decomposition, the parameters of the statutory replacement rate
schedule, α, would be constant during 1979–2017 due to the provisions stipulated by the Social Security
Amendments of 1977. In this case, however, the paper’s main results (e.g., the estimated trend in Pareto
weights) would continue to hold qualitatively.
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of households with four or more earners. I disregard these households in the calculations
below. In the remaining sample, there is 47 percent of single-earner, 46 percent of two-
earner, and 7 percent of three-earner households.

Second, I adjust the two bend points and the maximum taxable earnings threshold for the
number of household earners. The bend points in the statutory replacement rate schedule are
$885 and $5,336 (in terms of 2017 dollars).63 I annualize these amounts to obtain $10,620 and
$64,032, respectively. The maximum taxable earnings threshold is $127,200. Adjusting the
first bend point for the household composition, I obtain: 10,620 × [0.47 + 2×0.46 + 3×0.07]
= $16,992. I proceed similarly with the second bend point and the cap to get $102,451 and
$203,520, respectively.

Next, I construct an updated schedule of average replacement rates based on the results
obtained above. I apply the adjusted bend points and the cap and use the marginal replace-
ment rates of 90, 32, and 15 percent in each bracket, respectively. Then I normalize the
household’s average annual lifetime earnings by the economy-wide average taxable earnings.
In the CPS, the average household earnings capped at $203,520 are $87,837, which is the
normalizing factor I use.

Finally, I fit the function in (13) to the constructed schedule of average replacement rates.
The obtained estimates are αdata2017 = (0.5, 1.48), which are the values shown in Table2.

Given the calculations above, the maximum taxable earnings threshold (adjusted for the
number of earners) was $203,520, while the economy-wide average taxable earnings were
$87,837 in 2017. I calibrate capSS,2017 inside the model to match the ratio of maximum
taxable earnings threshold to the economy-wide average taxable earnings equal to 2.32. I
proceed similarly for the 1979 calibration, where I find that this ratio to be 1.79.

Appendix C.2. Education-specific mortality differences

For the initial steady state in 1979, I assume that agents of both ability types face the
same mortality rates at each age. I feed into the model the age-profile of conditional survival
rates for Social Security workers estimated by Bell et al. (1992) for 1970. These data imply
the age profile of life expectancy shown by the solid line in Figure C.9.

To calibrate ψz,j for 2017, I rely on the data reported by Bound et al. (2014) (their
Appendix 1). The authors use the data from the National Vital Statistics System and the
Census from 1990–2010. They compute survival probability rates for a 25 year-old individual

63The parameters of the pension benefit formula can be found in Table 2.A11 in Social Security Admin-
istration (2019).
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Figure C.9: Life Expectancy in the Data.
Notes: The figure displays the expected number of years of life remaining at a given real-life age for a Social
Security covered worker. The data are computed by Bell et al. (1992).

for 1990, 2000 and 2010. I take their estimates for the most recent year 2010. Bound et al.
(2014) report their estimates for 16 subsamples of individuals identified by gender, race, and
education. With respect to race, they distinguish non-hispanic black and white individuals.
Regarding education, they distinguish individuals with less than a high school degree, a
completed high school degree, some years of college, and a complete college degree or higher.

Given these inputs, I proceed as follows. First of all, I pool together all individuals with an
uncompleted college degree or lower. To compute the average profile of survival rates within
this sample, I weight the probabilities of a given demographic group by its population share
that I compute from the 2018 CPS extract. I proceed similarly to obtain the average profile
of survival rates for the sample of individuals with a completed college degree or higher. The
resulting empirical age profiles by education are shown in the lower panel of Figure C.10.

Since Bound et al. (2014) report survival probability rates for tabulated ages (25, 30,
etc.), I fit a Gompertz force of mortality (i.e., mortality hazard) function to each of the two
profiles of survival rates obtained above. This Gompertz function reads:

Mzj =
µ0

ϑz
× exp(µ1j)

µ1

. (C.1)

The Gompertz distribution is widely used in the actuarial literature and economics.64 The
second term in (C.1) controls how mortality changes with age, conditional on agent’s ability.
The first term determines the gradient of mortality in the cross-section. The key parameter

64See Hosseini and Shourideh (2019) and the references mentioned on p. 1224.
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Figure C.10: Survival Probability Rates in the Model and Data.
Notes: Both panels compare the fit of survival probability rates. The top panel shows the rates for a 25-year
old worker. The empirical rates (dashed line) were constructed based on the data by Bell et al. (1992) for
2010. These are the same data used to calculate empirical life expectancies in Figure C.9 (dashed line). The
bottom panel compares the fit of survival rates for a 25 year-old worker of each education type in the model
and data. The empirical moments (tabulated at 5-year intervals) are taken from Bound et al. (2014).
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is ϑz which shows how mortality varies with agent’s ability. Under this specification, the
probability that an individual of age 1 survives up to age j > 1 is given by:

Pzj = Π
j−1
i=1ψz,i = exp(−Mz,j). (C.2)

Thus, the conditional survival probability rate, i.e., the variable ψzj, can be computed as:
ψz,j = Pz,j+1/Pz,j with Pz,1 ≡ 1.

I normalize ϑH to one, so that the parameters to be estimated are (µ0,µ1, ϑL). I estimate
these parameters to match the following targets. First, I target the two education-specific
profiles of survival probability rates computed from Bound et al. (2014) at the tabulated ages
(shown in the lower panel of Figure C.10). Second, I target the average profile of survival
probability rates as of age 25 that I take from the period life table for the Social Security Area
from Bell et al. (1992) for year 2010.65 To compute the model counterpart of this profile, I
useMj = λHMH,j+(1−λH)ML,j, where λH is the cross-sectional shares of college graduates
in the 2018 CPS extract equal to 43 percent. This profile is shown in the upper panel of
Figure C.10.

The parameters that give the best fit are: µ0 = 0.0003, µ1 = 0.0893, ϑL = 0.6346 and
ϑH = 1.0.

The same Figure C.10 shows the quality of the fit of the empirical targets. The top panel
illustrates the fit of survival probability rates for a 25 year-old individual. The dashed line in
the figure is constructed based on the same empirical estimates that I used to compute life
expectancy in Figure C.9 (dashed line). The bottom panel shows the fit of education-specific
profiles of survival rates computed for a 25 year-old individual.

Appendix D. Empirical evidence

This section provides empirical evidence in favor of the identified shift in Pareto weights
toward older and high-ability agents (Table 6).

First of all, note that the social welfare function in (16) is equivalent to the micro-
founded probabilistic voting environment introduced by Lindbeck and Weibull (1987). In this
environment, two candidates maximize the probability of winning an election by proposing
simultaneously and independently a (potentially, multidimensional) policy. Voters differ in
their most preferred policies and other exogenous characteristics independent of the citizens’

65To compute this profile in the data, I weight equally the reported gender-specific profiles using as a
weight the share of female household heads which is 44 percent, consistent with the CPS in 2017.
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most preferred policies. The weight that both candidates attach to a given group is given by
a product of the group’s population size and its degree of homogeneity regarding exogenous
characteristics. One such important characteristic is the group’s turnout rate. The higher the
group’s propensity to vote, the higher the candidate’s incentive to shift the policy closer to
this group’s most preferred policy. In equilibrium, both candidates propose the same policy.

In my model, the Pareto weights in the social welfare function can be interpreted as the
weights that the candidates assign to electoral groups in the probabilistic voting environment.
With this interpretation of the Pareto weights, the qualitative predictions of my model are
as follows:

1. Conditional on age, the turnout rate of a college graduate relative to the high-school
graduate’s turnout must increase during 1979–2017.

2. Conditional on education, the turnout rate of older households relative to the young
households’ turnout must increase during 1979–2017.

To test these model predictions, I merge the CPS March Supplement with the survey data
on voting behavior from the Voting and Registration Supplement, which is part of the CPS.
It is most convenient to access the data through the Integrated Public Use Microdata Series
(IPUMS) project webpage.66

In line with the sample selection criteria explained in the calibration section, a household
head is a college graduate if she/he has a completed college degree. Otherwise, the household
head is a high school graduate. I drop all households whose educational level is missing. Fur-
thermore, I restrict the CPS sample to include only household heads aged 25–85, consistent
with the model. Finally, I restrict the same to those households who answer Yes or No to the
question: "Have you voted in the most recent November election?" (variable VOTED). Thus,
I remove all those households from the sample who refuse to answer the question or claim
they do not know the answer. When computing voter turnout rates, I weight observations
using the variable VOSUPPWT from the Voting and Registration Supplement.

I report voter turnout statistics for Congressional elections because Congress would imple-
ment a Social Security reform. The first available Congressional election is from 1978, while
the latest is from 2018. I split the data set into two subsamples: 1978–1986 and 2010–2018,
each comprising three Congressional election cycles. In each subsample, I split households
into four groups by household head’s age (25–44, 45–54, 55–64, and 65–85) and two groups

66See https://cps.ipums.org/cps-action/data_requests/download. To assemble the raw data set,
select the Basic March CPS data set and the Voting and Registration Supplement.
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Table D.11: Turnout Rates of College Graduates Relative to High-School Graduates, by
Age.

Age 1978–1986 2010–2018 % change

25–44 60.8 67.9 4.5
45–54 38.4 43.9 4.0
55–64 30.7 38.3 5.8
65–85 34.1 30.2 −2.9

Notes: The central two columns of the table show the turnout rates of college graduates normalized
by the turnout rates of high school graduates, by age (in percent). The last column shows the
percentage change in relative voter turnout rates between 1978–1986 and 2010–2018. The table is
constructed based on the CPS March Supplement merged with the survey data on voting behavior
from the Voting and Registration Supplement . The turnout rates are computed at the household
level. Each subsample comprises three Congressional election cycles.

by household head’s education.
To test the first model prediction, I proceed in three steps. First, I compute the average

turnout rate for every age and education subgroup in each subsample period. For the sake of
brevity, I do not report these results in the paper. Second, I ask: By how much percent does
the computed turnout rate for college degree graduates exceeds that for high school graduates
in a given age group in a given period? Table D.11 (second and third columns) reports the
results. Finally, the last column shows the percentage change in the relative turnout rate
across the two subsamples.

As one can see from Table D.11, college graduates vote at higher rates than high school
graduates, since all numbers in the second and third columns are positive. This is true
for all age groups and both subsample periods. Numerous empirical studies have already
documented that participation among households in almost any form of political activity
(including voting) rises with the households’ level of education in the United States.67 I
add to this finding in the literature how relative turnout rates have changed over time.
The last column of the table displays the percentage change in the relative turnout rate.
When comparing the numbers in the second and third columns, one can see that the relative
turnout rates increase for all age groups over time, except for the 65–85-year-olds. Overall,
the empirical evidence largely supports the model’s first qualitative prediction regarding the
shift in Pareto weights toward high-ability agents, conditional on their age.

67See, among many others, Rosenstone and Hansen (1993), Benabou (2000), Bartels (2009).
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Table D.12: Turnout Rates Relative to 25–44-year-olds, by Age and Education.

1978–1986 2010–2018 % change

COL HS COL HS COL HS

45–54 22.8 42.6 23.5 43.9 0.5 0.9
55–64 30.7 60.7 35.8 64.7 3.9 2.5
65–85 33.5 60.0 41.6 83.2 6.1 14.5

Notes: The table shows the normalized turnout rates of college graduates (COL) and high-school
graduates (HS ), by age. Within each education type and time period, the turnout rates are normal-
ized by the turnout rate of 25–44-year-olds of the same education level. All numbers are in percent.
The last two columns show the percentage change in relative voter turnout rates between 1978–1986
and 2010–2018. The table is constructed based on the CPS March Supplement merged with the
survey data on voting behavior from the Voting and Registration Supplement . The turnout rates are
computed at the household level. Each subsample comprises three Congressional election cycles.

To test the second model prediction, I start with the same data set constructed in the
first step above. Next, I ask: Conditional on household’s education, by how much percent
does the turnout rate of older households differ from the youngest (25–44) group? Table
D.12 reports the results (columns Col and HS) for each time frame. Finally, I calculate the
percentage change in the relative turnout rates across time within each education sample.

According to Table D.12, all three age groups (45–54, 55–64, and 65–85) voted at higher
rates than the youngest group (25–44). This observation holds at each education level and in
each time frame. These facts are well-known in the literature (see the sources cited above).
Next, observe that the relative turnout rates rise at a higher rate for older groups within each
education type over time. This empirical evidence supports the model’s second prediction
regarding the shift in Pareto weights toward older agents, conditional on their ability.68

Appendix E. Optimal policy in counterfactual experiments

The current section decomposes the parameters’ effect on the optimal policy in 2017. All
policies in this section are computed under the assumption that the Pareto weights remain
fixed at the 1979 level. I split all model parameters that take on different values between 1979
and 2017 into six subgroups listed in Table 2 on page 20: 1) Inequality, 2) Social Security,

68In my previous work (Brendler, 2020), I have documented the rise in relative turnout rates by age using
a pooled sample of college and high-school graduates. In the current work, I show that the results also hold
for each education group taken separately.
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3) Utility and technology, 4) Aging, 5) Income taxes, and 6) Other taxes. In the paper’s
main part (Section 3), I have already analyzed the combined effect of all parameters on the
optimal policy. Moreover, I have quantified the marginal impact of earnings inequality (i.e.,
the first subgroup) while keeping all the remaining parameters fixed at the 1979 levels. I
have established that, quantitatively, the increased earnings inequality explains 38.5 percent
of the total decline in the average replacement rate and 32.5 percent of the total increase in
progressivity. To investigate what model parameters account for the remaining portion of
the optimal policy change, I proceed as follows.

When analyzing the effects of Social Security parameters (i.e., the second subgroup),
I maintain the inequality parameters at their 2017 levels and additionally update those
parameters that control Social Security. All the remaining parameters remain constant at
the calibrated 1979 levels. Similarly, when studying the effect of utility and technology
parameters (i.e., the third subgroup), I keep the inequality and the income tax parameters
at the 2017 levels while leaving all other parameters at the 1979 levels. I proceed similarly
with the remaining subgroups. This procedure allows me to evaluate the combined effect of
inequality and other model parameters considering potentially complex general equilibrium
interactions.

Table E.13 shows the results. Note that the table displays the optimal policy as a percent
deviation from the calibrated policy in 1979. For the reader’s convenience, the second and
third columns replicate the results from the paper’s main part. The table generates a set of
interesting findings whose detailed exploration would go beyond this paper’s scope. Instead,
I will briefly highlight one observation only.

The combined effect of all model parameters leads to a reduction in the average replace-
ment rate level by 28.9 percent and increases progressivity by 184 percent. The table reveals
that the Social Security parameters and the utility and technology parameters explain the
major portion of the total effect. For example, augmenting inequality with the shift in the
Social Security parameters brings down α?

1 by 20 percent and pushes up α?
2 by 107 percent,

thus explaining roughly 70 percent of the change in α?
1 and 60 percent of the change in α?

2.
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Table E.13: Optimal Policy in 2017 in Counterfactual Experiments.

All Inequality
Inequality and

Social Utility and Aging Income Other
Changes Security Technology Taxes Taxes

α?
1, % −28.9 −11.1 −20.0 −53.3 −1.1 +5.6 −13.3
α?

2, % +184.0 +59.8 +107.1 +160.4 +30.2 +36.1 +65.7

Notes: The table shows the optimal policy in 2017 under the Pareto weights from 1979 in counterfactual
experiments. The table displays all policies in percent deviations from the baseline model calibrated for 1979.
All Changes reports the results when all model parameters take on values from 2017. Inequality updates
those parameters that are listed in the first block of Table 2 while leaving all the remaining parameters at
their calibrated levels for 1979. In all the remaining experiments, I keep the inequality parameters at their
2017 levels and additionally update the parameters from a given subgroup while keeping other parameters
at the 1979 levels. Table 2 shows the subgroups.

xviii


	Introduction
	Model
	Demographics
	Production
	Households
	Overview
	Worker's labor productivity
	Worker's budget constraint
	Retired agents
	Agent's optimization problem

	Government
	Social Security
	Income transfer program
	Medicare

	Competitive equilibrium

	Calibration
	Overview
	Calibration strategy
	Model fit

	Findings 
	Heterogeneity in preferences over replacement rate schedule
	Marginal welfare effects of 1
	Marginal welfare effects of 2 

	How have the government's preferences changed?
	How should have Social Security responded to inequality?

	Outlook
	Competitive equilibrium
	Computational algorithm
	Steady state equilibrium
	Transitional dynamics
	Estimating Pareto weights
	Computing the utilitarian policy

	Calibration
	Social Security
	Education-specific mortality differences

	Empirical evidence
	Optimal policy in counterfactual experiments

