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Abstract

In a general equilibrium framework, we develop a model of income taxation spanning
several types of incomes with multidimensional taxpayer heterogeneity. Starting from any
tax schedule, our framework allows one to decide which, of a more comprehensive or a
more schedular income tax, is more welfare- and efficiency -improving. We express the
effects of any tax reform as well as optimal tax formulas in terms of the usual sufficient
statistics plus some new ones including mean cross-base responses and general equilibrium
effects. These formulas are taken to French data to simulate optimal taxes with two main
sources of income, labor and capital. The optimal tax system consists in U-shape marginal
tax rates on the sum of both sources of income (without deduction) and a negative tax rate
on capital income.
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I Introduction

In the beginning of the twentieth century, a hot political debate shook the French Third

Republic, regarding the relevance of designing a unique, global, progressive income tax - in the

vein of the Prussian Einkommensteuer.1 First and foremost among the proponents of this reform

was French statesman Joseph Caillaux, whose first project was to replace the tax on financial

assets and the property tax (e.g., the window tax) by a single tax of the aforementioned type.

In 1907, in an effort to rally more supporters to his initial project, Caillaux proposed to add

proportional schedular taxes for a set of specific incomes. The project was adopted in 1909 by

the French Parliament, but due to lengthy debates in the French Senate, the final Law about
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Smart, Elina Tuominen and participants at various conferences and seminars for helpful comments and suggestions.
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the global tax was not adopted before July, 15th, 1914. Further delays induced mainly by the

start of the First World War led to the Law about complementary schedular taxes being voted

on July, 31st, 1917 only.

This hybrid of a tax system that applies the same tax schedule to the sum of all incomes–

hereafter a comprehensive tax system– and of a tax system where each type of income is sub-

ject to a specific tax schedule– hereafter a schedular tax system– still characterizes most current

tax systems in the world today. For instance, the United States have a mixed system with an

important comprehensive part where labor and capital incomes are taxed together according

to a nonlinear tax schedule, while schedular taxes are applied to e.g. dividends and capital

gains and losses.2 Another major example of a mixed tax system akin to a schedular one is the

(“Nordic") dual income tax system that prevails in many European countries, with its propor-

tional tax on capital income and its progressive tax schedule on other incomes together, capital

income being totally excluded from the the latter base (Boadway, 2004).3 As for the contro-

versy regarding the merits and flaws of comprehensive vs schedular systems, it is still ongo-

ing, among taxation scholars and practitioners alike (e.g., Burns and Krever (1998), Benoteau

and Meslin (2017), Bastani and Waldenström (2020)). Various arguments have been put for-

ward in favor of a more schedular or of a more comprehensive tax system, but so far they have

not been systematically studied within an integrated framework. In this paper, we provide

such a framework with multiple tax bases, nonlinear income tax schedules, multidimensional

heterogeneity in taxpayers and general equilibrium effects.

This framework allows us to define sufficient conditions for the optimal tax system to be

schedular or comprehensive. These conditions rely on strong hypotheses which point out to

a mixed tax system as being the most likely candidate for an optimal tax system in real-world

economies. We then determine the optimal mixed tax system – defined as a nonlinear tax on the

sum of all personal incomes, with income-specific discount rates, combined with (nonlinear)

income-specific taxes – in terms of sufficient statistics. We also derive closed-form formulas for

the first-order effects of arbitrary local perturbations of the mixed tax system on government

revenue and welfare. We obtain a sufficient condition, written in terms of sufficient statistics,

to determine whether any local budget-balanced tax reform is socially desirable or not.

Despite the mathematical difficulties that arise in multidimensional screening models, we

are able to solve the tax problem with a tax perturbation approach using the fact that the set of

available tax instruments is a finite sum of one-dimensional tax schedules. Methodologically,

2See Ordower (2014) for an exposition of the embedded schedularity in the U.S. federal income tax.
3Denmark was the first to introduce the dual tax system in 1987. Sweden did it in 1991, Norway in 1992, Finland

in 1993, Spain in 2006, Germany in 2008 and finally France, first from 2008 to 2012, and again from 2018 onwards.
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on top of this first contribution, we also build up a general equilibrium model and we define

new sufficient statistics.

We obtain a non-linear income tax formula that is valid for each income tax base and that

extends the Diamond (1998) and (Saez, 2001) ABC formula by showing that some of the usual

sufficient statistics need to be slightly modified and that new ones matter. First, due to mul-

tidimensional heterogeneity, each relevant sufficient statistic is obtained by an average across

taxpayers with the same amount of a given specific income. Second, we define sufficient statis-

tics for cross-base responses and for the impact of general equilibrium effects.

Our sufficient statistics for cross-base responses incorporate all cross-base responses what-

ever their micro-foundations. Our macroeconomic price spillover statistics capture the magnitude

of general equilibrium effects on government tax revenue and social welfare. General equi-

librium effects take place because any tax reform modifies the supply of production factors,

which impacts their marginal productivities, hence their prices according to the aggregate de-

mands of production factors. This in turn implies new changes in the supply of production

factors, and so on. In the tax formulas, the macro price spillover statistics are simply added to

the relevant marginal tax rates. The formula points out that a positive (negative) macro price

spillover statistic on a certain income tends to reduce (increase) the optimal marginal tax on

this income.4

Moreover, we characterize how a reduction of the level of a specific income in the personal

income tax base (because its deduction rate increases) impacts tax revenue and welfare. From

this, we can then provide a sufficient condition describing when one should move towards a

slightly more (or less) comprehensive budget-balanced income tax system. We show two new

channels that matter when one shifts towards a more or less comprehensive tax system. A

reduction of the personal tax base (i) automatically reduces the level of tax on personal income,

hence individual tax liability, and (ii) modifies the marginal tax rate on personal income, since

the personal income tax schedule is nonlinear. First, the reduction in tax liability generates

mechanical loss in tax revenue, mechanical gains in welfare and positive wealth responses from

every income source.5 Second, with a U-shape marginal personal income tax profile, taxpayers

with relatively low levels of personal income face an increase of their marginal personal income

tax rate while taxpayers with relatively high personal income face a reduction. Therefore, there

is a transfer of deadweight losses from high to low personal income earners. On top of this, for

4These macro price spillover statistics therefore include the redistributive “trickle-down" effects (Rothschild and
Scheuer, 2013).

5Wealth response is the usual income effect here with several sources of income. To avoid any confusion, we
choose the terminology “wealth response from a source of income" rather than “income effect/response from a
source of income".
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each source of income taxed both via the personal income tax and via a nonlinear schedular tax,

the marginal tax rate is also impacted by a change in the personal tax base. Extra behavioral

responses then occur. The sum of all these effects and responses on tax revenue an welfare is

ambiguous. Therefore, one needs to implement the condition and the optimal formulas on real

data to conclude.

We calibrate our model on French Enquête Revenus Fiscaux Sociaux (ERFS) data. We consider

two production factors, labor and capital and we group all source of income in two categories,

labor and capital income. We use estimates of Lefebvre et al. (2019) to calibrate the elasticity

of labor income to 0.1 and the elasticity of capital income to 0.65. We consider the mixed tax

system where the personal income, which is nonlinearly taxed, contains labor income plus

capital income, the latter being submitted to a linear deduction rate. Beside this, capital income

is also linearly taxed. One of the sub-cases of this mixed tax system is a schedular tax which,

more precisely in this case, is a dual tax. Another sub-case of this mixed tax schedule is a

comprehensive tax, when capital and labor income are entirely and exclusively taxed according

to the nonlinear personal income tax.

We find that the optimal tax system consists in entirely including capital and labor income

in the personal income tax base with U-shape marginal tax rates and to provide a subsidy to

capital income earners (i.e. a negative tax rate on capital income). In all our simulations, it is

always socially improving to include more and more capital income in the personal income tax

base. More precisely, all our simulations emphasize (i) a positive impact on tax revenue and

welfare implied by mechanical effects and wealth responses due to the increase in the level

of personal income tax and (ii) a negative impact from behavioral responses induced by the

change in the marginal personal income tax rates. All income sources are therefore taxed to-

gether according to the usual U-shaped marginal tax rates and to limit the deadweight loss

from capital income implied by the high marginal personal income tax rates, a negative tax

rate on capital income is optimal. This result is robust whatever the value of the capital-labor

elasticity of substitution. Including general equilibrium effects reduces the capital income sub-

sidy. Our results remain also valid with income-shifting (which increases the subsidy towards

capital earners).

We also compare the optimal tax system with the optimal dual tax (i.e. when one constraints

the personal income tax base to contain only labor income) and with the optimal comprehen-

sive tax system (i.e. when one constraints capital and labor income to be taxed exclusively

through the nonlinear personal income tax schedule).

Under a dual tax, the tax rate on capital income is positive and the optimal marginal tax
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rates on labor income are U-shaped and as high as the marginal tax rates that prevail on the

sum of labor and capital income in the optimal tax system. Intuitively, the optimal positive

tax rate on capital income prevails with a dual tax, contrary to the optimal tax system, because

capital income is taxed only once. With the optimal tax system, capital income is taxed twice:

once via the nonlinear personal income tax and a second time through the separate capital

tax. However, the latter is negative to compensate for too high marginal tax rates on personal

incomes with a large proportion of capital. With the dual tax, the U-shape profile of optimal

marginal tax rates (which are inversely related to the mean elasticities of income) can be as

high as in the optimal tax system because this profile does not apply to more elastic capital

income. This also explains why the dual tax does not need to provide a subsidy to capital

income earners.

When the tax system is comprehensive, the optimal marginal tax rates on high personal

income levels are up to 10 percentage points lower than in the optimal tax system and in the

optimal dual tax one. Intuitively, in the comprehensive system, including all incomes in the

personal income tax base increases the mean elasticities where personal income contains a large

share of capital.

Our article contributes to the literature on optimal taxation, where agents differ along mul-

tiple characteristics on which taxes cannot be conditioned (as in Jacquet and Lehmann (2021))

and where these agents earn several sources of income (as in Mirrlees (1976, 1986), Kleven et

al. (2007, 2009), Golosov et al. (2014), Hermle and Peichl (2018), Lehmann et al. (2020)).6 It

also builds up on a large literature on labor and capital taxation that sheds light on the fact

that multidimensional heterogeneity –i.e. heterogeneity in earnings abilities and in an addi-

tional attribute– makes capital taxation useful. Among the attributes that make capital taxation

optimal, the literature has emphasized returns on investments (Gahvari and Michelleto, 2016,

Kristjánsson, 2016, Gerritsen et al., 2020), time preferences for consumption (Saez, 2002, Di-

amond and Spinnewijn, 2011, Golosov et al., 2013) and endowments (Cremer et al., 2003).7

Intuitively, if these additional attributes correlate with individuals’ earnings abilities, taxes on

capital become useful as indirect means to tax people with high ability. We extend this analysis

by determining the optimal tax bases as well as the optimal nonlinear income tax schedule for

every tax base. The capital taxation literature has begun to connect theories of optimal capital

taxation and sufficient statistics, see Saez and Stantcheva (2018). We also follow an approach in

6Rothschild and Scheuer (2013) and Gomes et al. (2017) study the optimal sector-specific tax schedules where
agents also differ along several dimensions but they earn income from a single sector.

7Another argument for taxing capital is the uncertainty agents face about their labor productivity profiles over
time, e.g. Albanesi and Sleet (2006), Golosov et al. (2016).

5



terms of sufficient statistics and extend this analysis by determining the optimal tax bases and

structure of a tax system, the optimal nonlinear tax schedule for each tax base and by introduc-

ing general equilibrium effects.8 We also contribute to the tax incidence analysis (Sachs et al.

(2020) as well as Fullerton and Metcalf (2002), Kotlikoff and Summers (1987) for surveys) since

we also characterize the first-order effects on government revenue and social welfare of locally

reforming a given, potentially suboptimal, tax system.

II The Economy

II.1 Firms

We consider an economy with a unit-mass of taxpayers and a representative firm that pro-

duces a numeraire good using n inputs denoted (X1, ...,Xn). The production function is de-

noted by F : (X1, ...,Xn) 7→ F (X1, ...,Xn). The function F is increasing in its arguments, with

partial derivatives denoted by FXi . Its second partial derivatives are negative, i.e. FXiXi < 0.

Assuming perfect competition, the firm chooses its inputs to maximize its profit:

max
X1,...,Xn

F (X1, ...,Xn)−
n

∑
i=1

pi Xi

where pi ∈ R+ stands for the price of the ith input. From the first-order condition of this maxi-

mization, the price i is equal to the marginal productivity of the ith input, that is:9

pi = FXi (X1, ...,Xn) . (1)

The inverse (aggregate) demand function for input i is defined thanks to Equation (1). This

equation summarizes the (inputs) demand side of the economy. Prices are endogenous when-

ever production factors are imperfect substitutes. For instance, suppose a production function

with two inputs, capital and labor which are imperfectly substitute. A tax cut in capital income

will encourage effort to generate capital. Capital becomes more abundant, which reduces its

marginal productivity (due to the diminishing marginal productivities of input factors) and its

price (because of (1)). Whenever the second-order cross-derivative FXiXj is positive, this will

also raise the marginal productivity of labor, hence raise its price (because of (1)), .

An interesting limiting case is the one where the production function is linear, i.e.

F (X1, ...,Xn) =
n

∑
i=1

γi Xi

8General equilibrium effects have been studied in optimal nonlinear tax models in e.g. Rothschild and Scheuer
(2013), Scheuer (2014), Ales and Sleet (2016), Ales et al. (2017), Scheuer and Werning (2017), Sachs et al. (2020).

9We do not consider the taxation of intermediate inputs, which we think would be irrelevant given our assump-
tion of a representative firm.
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(with γi > 0), all inputs are perfect substitutes and prices become exogenous with pi = γi. In

this case, without loss of generality, we can normalize actions with γi = 1 (hence prices are also

normalized to one) so that:

F (X1, ...,Xn) =
n

∑
i=1
Xi. (2)

In appendix K, we show that incorporating the taxation of production factors does not

modify our results and it simply requires an adequate re-scaling of the income tax function

T (·). We therefore assume zero taxation of production factors without loss of generality.

II.2 Taxpayers

Each taxpayer is characterized by different individual characteristics summarized in their

vector of type w = (w1, ..., wn). Unless otherwise specified, n ≥ 2. Types are distributed

according to the continuously differentiable density function f : w 7→ f (w), which is defined

over the convex type space W.

Each taxpayer takes n ≥ 2 different actions denoted by x = (x1, ..., xn). These actions are,

for instance, the amount of effective units of labor, the amount of investment units in capital

and the amount of business income. The generation of each action xi, that are the n inputs of

the representative firm, comes with effort costs that depend on the vector of type w according

to the utility function (c, x; w) 7→ U (c, x; w), where c denotes after-tax income. The utility

function is assumed twice continuously differentiable over Rn+1
+ ×W, in the first argument,

with partial derivative denoted Uc > 0 and decreasing in each action, Uxi < 0.

The ith action xi generates income yi according to yi = pi xi where endogenous input prices

pi are taken as given by the taxpayers. The prices pi are the macroeconomic return of taxpayers’

ith actions and the prices the firm faces for its ith inputs. These prices are summarized by the

vector p = (p1, ..., pn). For instance, if x1 denotes effective labor, the price p1 denotes the wage

per unit of effective labor, then y1 denotes labor income. If x2 denotes savings and p2 denotes

the gross return of saving, then y2 denotes capital income, etc.

The government taxes incomes according to the nonlinear tax schedule that (possibly) de-

pends on the kind of income:

T : y = (y1, ..., yn) 7→ T (y) = T (y1, ..., yn) .

Consumption is c = ∑n
i=1 yi − T (y1, ..., yn). For a w-taxpayer, we denote her marginal rate of

substitution between the ith action and consumption by:

S i(c, x; w)
def≡ −Uxi(c, x; w)

Uc(c, x; w)
. (3)
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We assume that the indifference sets are convex. This implies that the matrix
[
S i

xj
+ S i

cS j
]

i,j
is

positive definite, as shown in Appendix A.10 A w-taxpayer chooses her actions x to solve:

U(w)
def≡ max

x=(x1,...,xn)
U

(
n

∑
k=1

pk xk − T (p1 x1, ..., pn xn) , x; w

)
(4)

For a w-taxpayer, this is equivalent to choosing incomes y to solve:

U(w)
def≡ max

y=(y1,...,yn)
U

(
n

∑
k=1

yk − T (y1, ..., yn) ,
y1

p1
, ...,

yn

pn
; w

)
(5)

We assume (see Assumption 3 discussed in Section IV) that for each taxpayer of type w ∈ W,

this program admits a single solution with actions denoted by X(w) = (X1(w), ..., Xn(w)) and

incomes denoted by Y(w) = (Y1(w), ..., Yn(w)) where Yi(w) = pi Xi(w). The utility achieved

by these taxpayers is U(w) = U (C(w), X(w); w) and the first order-conditions are:

∀i ∈ {1, ..., n} : 1− Tyi(Y(w)) =
1
pi
S i
(

C(w),
Y1(w)

p1
, ...,

Yn(w)

pn
; w
)

(6)

where C(w) = ∑n
i=1 Yi(w) − T (Y(w)). For each type i = 1, ..., n of income, the left-hand

side represents the marginal retention rate of the ith income that gives the gain in terms of

after tax income when the ith before tax income yi increases by one euro. The right-hand side

corresponds to the marginal rate of substitution between the ith action and after tax income, i.e.

the marginal cost in monetary terms of increasing by one euro the ith before tax income yi.

II.3 Equilibrium

Our equilibrium concept is defined as follows:

Definition 1 (Equilibrium). Given a tax schedule y 7→ T(y), an equilibrium is a set of price p =

(p1, ..., pn), of incomes Y(w) for each type w of taxpayers and of aggregate incomes (Y1, ...,Yn) such

that:

i) Given price p, incomes Y(w) maximize w-taxpayers utility according to (5).

ii) Aggregate incomes (Y1, ...,Yn) sum individual incomes according to:

Xi
def
≡
∫

w∈W
Xi(w) f (w)dw and Yi

def
≡
∫

w∈W
Yi(w) f (w)dw = pi Xi, (7)

that is the input markets clear.

iii) Prices are given by inverse demand functions (1) with Xi = Yi/pi.

We denote the joint income density of tax bases y = (y1, ..., yn) by h(y) and the uncondi-

tional density of the ith income by hi(yi).

10 Ai,j is a term of matrix A for which the row is i and the column is j.
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II.4 Two policy-relevant examples

The economy we have described is very general. It allows one to study any taxation prob-

lem where taxpayers can earn different kinds of income. To illustrate the generality of our

framework, we now provide two examples of tax problems that one can easily solve in our

framework: the two-period model with labor supply and savings and a model of income-

shifting between distinct tax bases. For each of these models, we explain what xi, yi and wi

(∀i) represent and how to reinterpret utility function U (c, x; w) so that the interpretation of the

results will be straightforward.

Example 1: The two-period model

It is useful to begin with an intertemporal setting in order to focus on capital taxation for

which the literature has largely emphasized the relevance of the Atkinson-Stiglitz theorem

(Atkinson and Stiglitz (1976) and Boadway (2012, Chapter 3), for a nice survey (see also Farhi

and Werning (2010) for the reinterpretation of the two period model to estate taxation). Adopt-

ing a two-period setting suffices to make the point. We denote the first period or stage by s and

the second period or stage by s + 1. Taxpayers are characterized by w = (w1, w2) where w1 is

their individual labor productivity (skill) and w2 is their individual inherited wealth.

In the first period, w-taxpayers inherit w2, save x2 and consume:

cs = w2 − x2

In the second period, taxpayers have capital income that is denoted by y2 with y2 = p2 x2

where p2 is the (endogenous) return of saving. In the second period, taxpayers also work.

They supply x1 efficient units of labor that depend on their productivity w1 with market wage

rate p1 so that labor income is y1 = p1 x1. The consumption in second period is the sum of both

capital and labor incomes minus taxes T(y1, y2), i.e.

cs+1 = y1 + y2 − T(y1, y2)

which corresponds to our definition of after-tax income c in the general framework. We denote

w-agents preferences over first period consumption ca, second period consumption cb and effi-

cient units of labor x1 by (ca, cb, x1) 7→ U (ca, cb, x1; w1). From this lifetime utility, we can retrieve

the utility function of the general framework, by a change of variables, as follows:

U (c, x1, x2; w)
def≡ U

w2 − x2︸ ︷︷ ︸
=ca

, c︸︷︷︸
=cb

, x1; w1

 . (8)
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Example 2: The income-shifting model

Our framework can be consistent with many form of income-shifting and cross-base re-

sponses. The example below exhibits one of them.

Consider linear production function (2) with two inputs so that γ1 = γ2 = p1 = p2 = 1

which implies that x1 = y1 and x2 = y2. Assume w-taxpayers have preferences (d, z1, z2) 7→

U (d, z1, z2; w) over consumption d, a first kind of income z1 and a second kind of income z2 with

Ud > 0 > Uz1 ,Uz2 . As an illustration, we may think of self-employed business-owners, where

z1 stands for their effective labor income and z2 stands for the return on their business. In this

context w = (w1, w2) where w1 is their labor productivity and w2 is their ability in generating

return on their business.

Assume that with some monetary cost S(σ; w), taxpayers can shift an amount of income

σ ≷ 0 from their first kind of income z1 to their second kind of income z2. Reported incomes

are then y1 = x1 = z1 − σ and y2 = x2 = z2 + σ. One subtracts the monetary cost S(σ; w) from

after-tax incomes c = y1 + y2− T(y1, y2) to obtain consumption d, i.e. d = c− S(σ; w). Assume

the cost function S is convex in σ for all w-taxpayers. The determination of how much income

to shift is a subprogram for which the value function enables us to retrieve the utility function

of the general framework as follows:

U (c, x1, x2; w)
def≡ max

σ
U (c− S(σ; w), x1 + σ, x2 − σ; w) (9)

where U (c− S(σ; w), x1 + σ, x2 − σ; w) = U (d, z1, z2; w). The indirect utility function associ-

ated to this program allows one to be back in our general framework.

Note that one can also interpret y2 as income invested in tax heavens, in which case this

income is constrained to induce no revenue for the domestic government.

II.5 Government

The government acts as a Stackelberg leader in choosing the tax policy, taking into account

how its choice is affecting the above-defined equilibrium. In doing so, the government faces

the following budget constraint:

E ≤ B
def≡
∫

w∈W
T (Y(w)) f (w)dw (10)

where B stands for the tax revenue and where E ≥ 0 is an exogenous amount of public expen-

diture to finance. The government evaluates social welfare by means of an increasing transfor-

mation Φ of taxpayers’ individual utility U(w) that may be concave and type-dependent:

W
def≡
∫

w∈W
Φ (U(w); w) f (w)dw. (11)
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This social objective includes many different specific social objectives. When the government

is utilitarian, the social transformation is linear with Φ(U, w) = U. When the government has

weighted utilitarian preferences, the social transformation takes the form Φ(U, w) = γ(w) U.

A particular case is the maximin (Rawlsian) social welfare where the weights are nil, except for

taxpayers with the lowest utility level. Finally, when the government has Bergson-Samuelson

preferences, the social transformation does not depend on type and is concave in U.

We assume the government maximizes a linear combination of tax revenue B and of social

welfare W that we call the government’s Lagrangian:

L
def≡ B +

1
λ

W (12)

where the Lagrange multiplier λ > 0 represents the marginal cost of public funds. It is worth

noting that we choose to express the Lagrangian in monetary units instead of utility units.

II.6 Taxation regimes

Given the focus of our paper, we consider three main tax regimes: the comprehensive in-

come tax, the separate income tax and a tax regime which is in between those two and that we

call the mixed income tax system.11

Comprehensive Income Tax system

The tax schedule T (y) is said to be comprehensive if it bears on the sum of all incomes, i.e.:

T (y) = T

(
n

∑
k=1

yk

)

where T(·) is defined on R+. The marginal tax rate on each income is then identical, so the

first-order conditions (6) simplify to:

1− T′
(

n

∑
k=1

Yk(w)

)
=
S1 (C(w), X(w); w)

p1
= ... =

Sn (C(w), X(w); w)

pn
(13)

Intuitively, since all incomes are put together, the comprehensive tax system does not distort

how taxpayers shift their effort among the different incomes. Indeed, the marginal rate of

substitution Uyi /Uyj = S i/S j between the ith and the jth income is equal to the relative price

pi/pj and it does not depend on taxation.

11In a different framework, "mixed taxation" is used to define commodity taxes in the presence of labor income
tax, as in Mirrlees (1976).
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Schedular Income tax system

The tax schedule T (y) is said to be schedular if different tax schedules bear on distinct kinds

of income, i.e.:

T (y) =
n

∑
k=1

Tk (yk)

where the Tk(·) schedules are defined on R+. The tax Tk(·) being specific to the kind of income

yk, the marginal tax rate on income yk depends only on this income (i.e. Tyiyj = 0 if i 6= j), so

the first-order conditions (6) become:

∀i ∈ {1, ..., n} 1− T′i (Yi(w)) =
S i (C(w), X(w); w)

pi
(14)

With a schedular income tax system, the marginal tax rate on one kind of income does not

depend on the tax on other incomes. With a schedular tax system, taxpayers face incentives to

shift some kind of income towards another kind of income that is less taxed.12

Mixed tax system

The mixed tax system incorporates both the comprehensive tax and the schedular tax sys-

tem. It consists in adding n income-specific tax schedules denoted Ti(·), specific to each income,

to a personal income tax schedule denoted T0(·). The personal income tax schedule applies to

the sum of all incomes with possible deductions. More specifically, we denote ai(yi) the ith tax-

able income, i.e. the ith income after deductions, with 0 ≤ ai(yi) ≤ yi.13 The net-of deduction

functions ai(.) are assumed increasing and differentiable. Hence, the personal income tax base

is equal to ∑n
k=1 ak(yk). The mixed tax schedule is:

T (y) = T0

(
n

∑
k=1

ak(yk)

)
+

n

∑
k=1

Tk(yk) (15)

where:

y0
def≡

n

∑
k=1

ak(yk) (16)

12An important tax issue around the world is how one should tax incomes from distinct members of the same
household. In this context, a comprehensive income tax corresponds to the regime of joint or family taxation systems
where the combined income of married couples and in some cases whole families is taxed as one single unit as
in e.g., France, Liechtensein, Luxembourg and Portugal. One can wonder whether the schedular tax system we
study in this paper corresponds to the individual taxation system which prevails in e.g., Belgium, the Netherlands,
Sweden and the UK and under which, the incomes of individuals are taxed separately regardless of marital status or
family circumstance. The separate tax system is distinct from the individual taxation system. Indeed the individual
taxation system has a unique tax schedule while the separate tax system allows one to apply a distinct income tax
schedule to the income of each member of the household (as advocated by (Alesina et al., 2011)). As far as we know,
no real tax system has distinct tax schedules for husbands and wives.

13There is a normalization issue here. For any λ > 0, one can reproduce the same personal income tax with
deduction functions âi(y) = λ ai(y) and personal income tax schedule y 7→ T̂0(∑n

k=1 âk(yk)) defined by y0 7→

T̂0(y0)
def≡ T0(y0/λ). Note that (17) would be unaffected by such a re-normalization.
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The personal income tax base y0
def≡ ∑n

k=1 ak(yk), personal income for short hereafter, can (par-

tially) exclude some incomes. Incomes that are totally excluded fall under ∑n
k=1 Tk(yk). “Partial

exclusion" means that part of the income is included in y0 thanks to the deduction functions

ak(·), whereas the part that is excluded may or may not fall under ∑n
k=1 Tk(yk). For instance,

in most OECD countries, it is not the cost of labor for the employers that enters the personal

income tax base but labor income after payment of social security contributions. Therefore, if

y1 denotes labor cost, a1(y1) denotes taxable labor income net of social security contributions.

Similarly, when dividends are included in the personal income tax base, these dividends are

net of corporate taxation. Denoting y2 before tax profits accruing to a shareholder, a2(y2) de-

notes taxable dividends net of corporate tax. Virtually, all sources of income can be subject to

this kind of deduction.

The mixed tax system encapsulates both the comprehensive and schedular tax systems as

specific cases. Indeed assuming a1(y) ≡ ... ≡ an(y) ≡ y and for all i, yi 7→ Ti(yi) ≡ 0 and

substituting them in (15) yields the comprehensive tax system while y0 7→ T0(y0) ≡ 0 yields

the schedular one.

When one derives both sides of (15) with respect to income yj, we can see that the marginal

tax rate on the jth income adds the marginal tax rate T′j (yj) of the schedule specific to this

income plus the marginal deduction rate that applies to this income a′j(yj) times the marginal

tax rate of the personal income tax schedule T′0(y0) that applies to the total personal income y0:

Tyj(y) = T′j (yj) + a′j(yj) T′0

(
n

∑
k=1

ak(yk)

)
. (17)

The jth marginal tax rate obtained from the schedule T (y) is then impacted by all incomes

through the determination of the taxable personal income y0 in (16).

III Self-clearing cases

In this section, we present specifications that directly lead to recommend either a separate

or a comprehensive tax schedule. These cases are the simplest frameworks that, for purposes

of illustration, lead to unambiguous policy recommendations.

III.1 Cases where the Optimal Income Tax is Schedular

In this subsection, we present two economic environments where the optimal tax is schedu-

lar.

Proposition 1. When i) the type space is one-dimensional W = [w, w] ⊂ R, ii) along the optimal allo-

cation, each income admits a positive derivative with respect to type and iii) preferences are quasilinear

13



and additively separable of the form:

U (c, x; w) = c−
n

∑
i=1

υi(xi; w) with υi
xi

, υi
xi ,xi

> 0 > υi
w, υi

xi ,w (18)

then, the optimal tax is schedular.

The proof can be found in Appendix B. Intuitively, when the unobserved heterogeneity is

one-dimensional and the different kinds of income are increasing in type w, redistribution is a

single dimension problem from high-types taxpayers, i.e. earning high amounts of each type

of income, to low-types taxpayers, who earn low amounts of each type of income. To say it

differently, a high income of any kind signals a high type since incomes are perfectly correlated.

Due to the separability in actions xi in the utility function (18), the tax rate on a specific income

yi impacts only the effort to generate this income. There is no cross-base substitution effects.

Moreover, due to the quasilinearity in consumption, there is no income effect. The government

can therefore simply shift distortions on the least responsive tax bases in the vein of an inverse

elasticity rule see e.g., Ramsey (1927) and Baumol and Bradford (1970). This is made possible

with a schedular income tax system.

Proposition (Atkinson-Stiglitz). When, in two-periods model with endogenous labor supply and

savings, the i) preferences (8) are weakly separable between efficient labor, x1, and consumption bundles

(cs and cs+1), i.e.:

U (cs, cs+1, x1; w1) = U (V(cs, cs+1), x1; w1) with UV , Vcs , Vcs+1 > 0

with V(·) twice continuously differentiable and increasing in each argument and ii) individuals have

the same initial wealth w2 and heterogeneous productivity w1, then the optimal tax is schedular.

In the above proposition, taxpayers are heterogeneous along a single dimension, their labor

productivity, w1. Combined with the weak separability of the utility function, all assumptions

of the Atkinson and Stiglitz (1976) theorem are satisfied. We know from the latter theorem that

capital should therefore not be taxed at the optimum. Indeed taxing capital will not improve

equity in comparison to the non-linear tax on labor earnings, while additionally distorting

savings. In our framework, this requires to exclude capital from the personal income tax base

so that a schedular tax system is optimal.

III.2 A case where the Optimal Income Tax is Comprehensive

In this subsection, we describe a situation where the optimal tax system is comprehensive.

The following Proposition is proved in Appendix C. Our proof is constructed on a similar

14



reasoning than in one found in Konishi (1995), Laroque (2005) and Kaplow (2008) but is valid

with general tax instruments and multidimensional incomes.14

Proposition 2. If preferences are weakly separable, i.e. the utility function U takes the form U (c, x; w) =

U (c,V(x); w) where Uc,Uwi > 0 > UV , V(·) is twice continuously differentiable, increasing in each

argument and convex and if the production function exhibits perfect substitution as in (2) then, the

optimal tax is comprehensive.

Since preferences are weakly separable, whatever their type, individuals choose how to

split their actions in getting the different kinds of income to minimize the same aggregation

V(·) of actions. Moreover, the government is only interested in the sum of all incomes earned

by each individual. Indeed actions being weakly separable from after-tax income in the utility

function, two taxpayers who have the same aggregate effort V(x) but differ in their type w

or in their consumption c will choose the same bundle of actions x. This will be the case for

a person of a given type mimicking the income vector y of a person with another type. This

incentive constraint cannot be weakened by imposing schedular taxation. It can only make all

taxpayers worse off. Indeed, the marginal rate of substitution between two different actions

does not depend on type as it verifies:

Uxi(c, x; w)

Uxj(c, x; w)
=
Vxi(x)
Vxj(x)

Therefore, a modification of the action vector X(w) assigned to w′-taxpayers affects their utility

in the same way as the utility of w-taxpayers mimicking w′-taxpayers. The government does

not need to distort the relative supply of each action. A comprehensive tax schedule is therefore

optimal.

Even if the realism of the cases presented in 1-2 is questionable,15 they are helpful to em-

14These authors show that a linear indirect tax is useless when a nonlinear labor income tax prevails. Indeed,
despite the fact that the agents choose the same allocation under both tax systems, the government’s revenue is
proven to be larger with a zero indirect tax rate than with a positive one.

15Proposition 1 builds upon taxpayers who differ along a single dimension as standard in the Mirrlees (1971)
literature. This is not very convincing empirically, in particular with different kinds of income. Under the weakly
separable preferences used in Proposition 2, people who earn the same taxable income v = ∑n

i=1 xi choose the same
actions (x1, ..., xn). Taxpayers who earn the same level of one kind of income must earn the same levels of income
for all other sources of income, which is also not very convincing empirically. Indeed the program of individuals
of type w can be decomposed into two consecutive stages. In the first stage, taxpayers choose how to split their
actions x to earn a given taxable income v = ∑n

i=1 xi:

min
x s.t:

n
∑

i=1
xi=v

V(x).

In the second stage, taxpayers choose what taxable income to choose:

max
v

U

v− T (v), min
x s.t:

n
∑

i=1
xi=v

V(x); w

 .

15



phasize the mechanisms that lead to recommend either a schedular or a comprehensive tax

system.

IV Computing the effects of tax reforms

In this section, we characterize how the equilibrium (See Definition 1) is impacted by tax

reforms. For this purpose, we first study in subsection IV.1 taxpayers’ responses to a set of tax

reforms and to price changes. These responses – that we decompose into wealth responses,

compensated responses and price responses – take into account that a tax reform or a price

change can simultaneously impact several income bases. We compute taxpayers’ responses to

any possible tax reform by differentiating taxpayers’ first-order conditions associated to pro-

gram (5). We hence obtain micro responses that occur when prices are taken as given, as in the

usual framework.16 We also obtain responses to price changes.

Second, in subsection IV.2, we characterize, using the firms’ demand equations (1), how

any micro response to tax reforms impulses general-equilibrium effects through changes in the

input prices. Micro responses change aggregate actions, that change input prices through (1),

which in turn induce taxpayers responses to price changes, and so on. We then define suffi-

cient statistics, which we call macro spillover statistics, that summarize this process. Starting

from a given initial, potentially suboptimal, tax schedule, we then give a general formula de-

scribing the impact of tax reforms on welfare taking into account general equilibrium effects.

This formula is expressed in terms of behavioral responses and sufficient statistics which are

empirically meaningful.

IV.1 Taxpayers’ responses to tax reforms and price changes

We begin by defining a tax reform.

Definition 2. A tax reform replaces the tax schedule y 7→ T (y) by a new twice continuously differ-

entiable tax function (y, t) 7→ T̃ (y, t) defined over Rn
+ × I, where the scalar t ≷ 0 is a measure of the

magnitude of the tax reform and I is an open interval containing 0 such that for all y ∈ Rn
+, one has

T̃ (y, 0) = T (y) so that T̃ (y, 0) is the initial tax schedule.

Consider an arbitrary reform that replaces the initial tax schedule by y 7→ T̃ (y, t). We

denote the utility level of w-taxpayers by Ũ(w, t), their ith income by Ỹi(w, t) and the ith price

The first stage’s problem is type-independent so that taxpayers who earn the same ith income also receive the same
jth income.

16We call them micro responses (see also Kroft et al. (2020)) because in microeconometrics, if a tax reform affects
only a treatment group and not a control group and both groups face the same prices, the usual empirical strategies,
such as difference-in-differences, would only identify micro responses ignoring the effects of changes in prices.
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by p̃i(t). Incomes generated by a w-taxpayer Ỹ(w, t) = (Ỹ1(w, t), , ..., Ỹn(w, t)) solve:

Ũ(w, t)
def≡ max

y=(y1,...,yn)
U

(
n

∑
i=1

yi − T̃ (y, t),
y1

p̃1(t)
, ...,

yn

p̃n(t)
; w

)
(19)

In a similar way, we denote B̃(t), W̃ (t) and L̃ (t)
def≡ B̃(t) + 1

λW̃ (t), the government’s tax

revenue (defined in (10)), the social objective (defined in (11)) and the government’s Lagrangian

(defined in (12)) when the tax schedule is perturbed according to (y, t) 7→ T̃ (y, t).17

We now explain how the economy adjusts to tax reforms by presenting, for each type of

taxpayers w, the responses of each kind of income that are due to (i) behavioral responses and

(ii) endogenous prices. As in the case of exogenous prices and a single kind of income (Saez,

2001), any tax reform can imply wealth responses, compensated responses and uncompensated

responses. It is worth stressing that all these responses are total responses of incomes, as in

Jacquet et al. (2013), Scheuer and Werning (2017) and Sachs et al. (2020). They take into account

the nonlinearity of the tax schedules hence the circular process that occurs with nonlinear tax

schedules: A change in income by w-taxpayers creates endogenously a change in the marginal

tax rate on their income so that they further adjust their income.

IV.1.a Behavioral responses

Wealth responses

We define the wealth responses as the behavioral responses to a small change ρ in the tax

liability of w-taxpayers so that the tax schedule becomes:

T̃ (y, ρ) = T (y)− ρ. (20a)

We denote ∂Yi(w)
∂ρ how w-taxpayers modify their ith income after this lump-sum tax perturbation

and call it wealth responses.

Compensated responses

We now study a tax reform that impacts the individual first-order conditions only through

substitution effects, shutting down wealth responses. We denote ∂Yi(w)
∂τj

the compensated response

of a w-taxpayer in terms of her ith income Yi(w) to a change in the jth marginal net-of-tax rate

by a constant amount τj around income Yj(w), while leaving unchanged the level of tax at

initial incomes Y(w). That is, after a compensated tax reform, the tax schedule becomes:

T̃ (y, τj) = T (y)− τj
(
yj −Yj(w)

)
. (20b)

17Note that we define the perturbed Lagrangian L̃ (t), keeping unchanged the weight 1/λ put on the social
objective W̃ (t). This will appear convenient in Proposition ?? below.
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The response and reform are said compensated in the sense that the tax level is unchanged at

y = Y(w), whatever the magnitude τj.

Due to substitution effects, this change in the jth marginal tax rate can modify every kind of

income Yi(w) (i = 1, ..., n). Indeed, as in the Mirrleesian model (with a single kind of income),

due to substitution effects, when one modifies the marginal tax rate on income j, the taxpayer

modifies her effort to earn the jth-income, hence the level of Yj(w). Differing from the single

kind of income model, substitution effects can also take place between the distinct kinds of

incomes, e.g. because of income shifting. Due to these cross-income responses, a reform of the

jth marginal tax rate can possibly impact every other income i = 1, ..., n.

Uncompensated responses

We denote ∂Yu
i (w)
∂τj

the uncompensated response of the ith income to a change in the jth marginal

net-of-tax rate by a constant amount τj, when one relaxes the assumption of constant tax liabil-

ity. After an uncompensated tax reform, the tax schedule becomes:

T̃ (y, τj) = T (y)− τj yj, (20c)

As one can expect, if prices are held constant, the compensated and uncompensated responses

of the ith income to the jth marginal tax rate are related by the Slutsky equation according to:

∂Yu
i (w)

∂τj
=

∂Yi(w)

∂τj
+ Yj(w)

∂Yi(w)

∂ρ
, (20d)

where, in the right-hand side, the compensated response of a w-taxpayer in terms of income i

is added to her wealth response times her chosen quantity of income j.

Price responses

Finally, let ∂Yi(w)
∂log pj

denote the taxpayer’s behavioral response in terms of her specific income

Yi caused by a 1% increase in the jth price. Any change in the price of a given input can impact

individual effort to generate this input hence the level of aggregate income associated to this

input. The change in the price of this input can also impact the effort to generate another input

(hence the level of associated aggregate income) whenever inputs are not perfect substitutes

(since, when they are, the marginal productivities and input prices are fixed).

IV.1.b Effects of tax reforms

Effects on incomes

We now detail the behavioral adjustments of each kind of income to a tax reform of mag-

nitude t. We denote ∂A
∂t

∣∣∣
t=0

, the partial derivative of an economic variable A along the tax
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perturbation y 7→ T̃ (y, t) at t = 0. Using the behavioral responses defined above, we can

explicit ∂Ỹi(w,t)
∂t

∣∣∣
t=0

. As shown in Appendix D, this leads to the following expression:18

∂Ỹi(w, t)
∂t

∣∣∣∣∣
t=0

= −
n

∑
j=1

∂Yi(w)

∂τj

∂T̃yj(Y(w), t)
∂t

∣∣∣∣∣
t=0︸ ︷︷ ︸

Compensated responses

− ∂Yi(w)

∂ρ

∂T̃ (Y(w), t)
∂t

∣∣∣∣∣
t=0︸ ︷︷ ︸

Wealth responses

+
n

∑
j=1

∂Yi(w)

∂log pj

∂log p̃j(t)
∂t

∣∣∣∣
t=0︸ ︷︷ ︸

Prices responses

(21)

From the individual first-order conditions (6), a tax perturbation affects these conditions through

three channels. First, changes in the marginal tax rates Tyj in the left-hand side of (6) create

compensated responses from all income sources. Second, the change in the tax liability induces

wealth responses. Third, prices responses ∂Yi(w)
∂log pj

occur as soon as the price of an input changes

due to behavioral responses. In our framework, prices changes result from general equilib-

rium effects which will be detailed in Section IV.2. As long as one focuses on micro responses

only, ∂log p̃j(t)
∂t

∣∣∣
t=0

= 0. Equation (21) highlights the extent to which our model encompasses all

possible behavioral responses.

Effects on tax liability

The impact of a tax reform on the tax liability of w-taxpayers T̃
(

Ỹ(w, t), t
)

can be decom-

posed into mechanical and behavioral effects, as follows:

dT̃
(

Ỹ(w, t), t
)

dt

∣∣∣∣∣∣
t=0

=
∂T̃ (Y(w), t)

∂t

∣∣∣∣∣
t=0︸ ︷︷ ︸

Mechanical effects

+
n

∑
i=1
Tyi(Y(w))

∂Ỹi(w, t)
∂t

∣∣∣∣∣
t=0︸ ︷︷ ︸

Behavioral effects

. (22)

The first term on the right hand side of (22) is the mechanical effect of the tax reform, i.e.,

the mechanical change in individual tax liability assuming that the individual decisions in the

levels of the different kinds of income as well as the different input prices remain constant (in

other words, assuming that individual total income Y(w) remains constant). The second term

is the behavioral effects of the reform. Each behavioral response that modifies a kind of income

induces a change in tax liability proportional to the associated marginal tax rate Tyi(Y(w)).

Plugging Equation (21) into (22) allows one to decompose the impact of a tax perturbation

in terms of the effects induced by the changes in tax liabilities (i.e. mechanical effects and

wealth effects), by the changes in marginal tax rates (compensated effects) and by the (log of)

18We derive (21) using the implicit function theorem thanks to Assumption 3 in Appendix D.
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price changes.

dT̃
(

Ỹ(w, t), t
)

dt

∣∣∣∣∣∣
t=0

=

[
1−

n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂ρ

]
∂T̃ (Y(w), t)

∂t

∣∣∣∣∣
t=0

(23)

− ∑
1≤i,j≤n

Tyi(Y(w))
∂Yi(w)

∂τj

∂T̃yj(Y(w), t)
∂t

∣∣∣∣∣
t=0

+ ∑
1≤i,j≤n

Tyi(Y(w))
∂Yi(w)

∂log pj

∂log p̃j(t)
∂t

∣∣∣∣
t=0

.

Effects on welfare

Since λ > 0 denotes the shadow cost of public funds, the marginal social welfare weight in

monetary units associated with taxpayers w, is defined as:

g(w)
def≡ ΦU(U(w); w) Uc (C(w), X(w); w)

λ
(24)

The marginal social welfare weight is the social value of giving one extra unit of consumption

to taxpayers with type w, assuming prices are held constant.

The effects, in monetary terms, of a tax reform on the social welfare of a w-taxpayer can

be obtained by adding the mechanical effects on her tax liability to the effects of the reform on

individual utilities, weighting the sum by the marginal social welfare weights g(w), as follows:

1
λ

∂Φ
(

Ũ(w, t); w
)

∂t

∣∣∣∣∣∣
t=0

=

(
− ∂T̃ (Y(w), t)

∂t

∣∣∣∣∣
t=0

+
n

∑
j=1

(
1− Tyj(Y(w))

)
Yj(w)

∂log p̃j(t)
∂t

∣∣∣∣
t=0

)
g(w) (25)

The proof, where the envelope theorem is applied to the individual maximization program

(19), is relegated to Appendix D. For each taxpayer, the tax reform has a direct effect on welfare

through the change in tax liability as the term − ∂T̃ (Y(w),t)
∂t

∣∣∣
t=0

points out. On top of this me-

chanical effect, the tax reform can also modify behaviors and prices. Changes in behaviors only

induce second-order effects on welfare. Indeed taxpayers’ decisions are perturbed from their

optimum and since they choose their incomes y to maximize their utility, they are indifferent

to small changes in their incomes y to a first-order approximation. This “envelope” argument

is well understood since Saez (2001). However, it does not apply to prices changes because tax-

payers take prices as given. Applying the envelope theorem to (4), a one-percent increase in the

jth price, ∂log p̃j(t)
∂t

∣∣∣
t=0

, has an impact on the taxpayer’s utility that is identical to a mechanical

increase of consumption by the amount (1− Tyj(Y(w)))Yj(w) (see Appendix D for details).

20



Effects on government’s Lagrangian

We now obtain the impact of a tax reform on the government’s Lagrangian (12). We sum,

across all types w, the impact on their tax liability (23) and on their welfare (25). This yields:

∂L̃

∂t
=

∫
w∈W

{[
1− g(w)−

n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂ρ

]
∂T̃ (Y(w), t)

∂t

∣∣∣∣∣
t=0

(26)

− ∑
1≤i,j≤n

Tyi(Y(w))
∂Yi(w)

∂τj

∂T̃yj(Y(w), t)
∂t

∣∣∣∣∣
t=0

+
n

∑
j=1

[(
1− Tyj(Y(w))

)
Yj(w) g(w) +

n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂log pj

]
∂log p̃j(t)

∂t

∣∣∣∣
t=0

}
f (w)dw.

This formula expresses in terms of empirically estimable sufficient statistics and social wel-

fare weights whether a given tax reform is socially desirable. We now study how this formula

has to be modified to take into account the endogenous changes in prices.

IV.2 General equilibrium

We now focus on the impact of a tax reform on the equilibrium (see Definition 1)In general

equilibrium, taxpayers’ decisions depend on prices, and prices are determined by firms’ inverse

demand equations. A tax reform impacts this general equilibrium because it impacts taxpayers

decisions, through what we call micro responses. Combining Equations (7) and (21) where one

has put to zero the term that contains the prices responses ∑n
j=1

∂Yi(w)
∂log pj

∂log p̃j(t)
∂t

∣∣∣
t=0

, the micro

responses of the ith aggregate income to tax reforms are defined by:

∂Ỹi(t)
∂t

∣∣∣∣∣
Micro

t=0

= −
∫

w∈W

{
∂Yi(w)

∂ρ

∂T̃ (Y(w), t)
∂t

∣∣∣∣∣
t=0

+
n

∑
j=1

∂Yi(w)

∂τj

∂T̃yj(Y(w), t)
∂t

∣∣∣∣∣
t=0

}
f (w)dw. (27)

With endogenous prices, these micro responses of the aggregate incomes Yi(t) modify all

input levels, thereby the marginal products of each input, and eventually the factors’ prices, ac-

cording to aggregate input demand equations (1). In turn, each taxpayer responds to these price

changes according to (21). Therefore, all aggregate incomes (Ỹ1(t), ..., Ỹn(t)) are impacted,

which in turn feeds back into the prices, and so on. At equilibrium, for each reform’s magni-

tude t, prices ( p̃1(t), ..., p̃n(t)) have to verify the following fixed-point conditions in the prices’

adjustment:

∀t, ∀j ∈ {1, ..., n} p̃i(t) = FXi

(
Ỹ1(t)
p̃1(t)

, ...,
Ỹn(t)
p̃n(t)

)
. (28)

Let Ξ denote the matrix of inverse demand elasticities in which the term in the ith line and jth

column is the inverse input’s demand elasticity of the ith price pi with respect to the jth input

factor Xj:

Ξi,j
def≡
Xj FXiXj

FXi

. (29a)
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Let Σ denote the matrix of ith aggregate income elasticity with respect to price pj, i.e. the matrix

in which the term in the ith line and the jth column is given by:

Σi,j
def≡ ∂logYi

∂log pj

∣∣∣∣
t=0

=
1
Yi

∫
w∈W

∂Yi(w)

∂log pj
f (w)dw. (29b)

The percentage change in aggregate income i when the price pj changes is made of the sum,

across taxpayers, of the percentage changes of the individual incomes i generated by all tax-

payers when price j is modified. We denote In the n-identity matrix and we make the following

assumption:

Assumption 1. The matrix In + Ξ− Ξ · Σ is invertible.

The matrix In + Ξ− Ξ · Σ shows up when one log-differentiate (28). Thanks to Assumption

1, Equation (28) is invertible and one can apply the implicit function theorem to ensure that

equilibrium prices are differentiable with respect to the magnitude t of the tax perturbation.

When the production function is linear (as in (2)), matrix Ξ is nil hence Assumption 1 is au-

tomatically verified. Therefore, by continuity, Assumption 1 remains satisfied as long as the

elasticities of substitution between input factors are sufficiently high.

IV.2.a Macroeconomic price spillovers

In Appendix D, we describe how a tax reform impacts prices. A tax reform first implies

micro responses at given prices. These responses induce prices’ changes through the demand

side of the economy that depend on matrix Ξ. These prices’ changes in turn induce prices’

responses through the supply side of the economy, according to matrix Σ, which in turn imply

prices’ responses from the demand side, and so on. We thus have:

∂log p̃j(t)
∂t

∣∣∣∣
t=0

=
n

∑
i=1

Πj,i
∂Ỹi(t)

∂t

∣∣∣∣∣
Micro

t=0

where : Π = (In + Ξ− Ξ · Σ)−1 · Ξ ·
(

1
Y1

0
0 1

Y2

)
(30)

with Matrix [A]−1 the inverse of matrix A. Matrix Πj,i describes how micro responses to tax

reforms translate into a log-change of prices through this process (see Appendix D). We refer to

Π as the matrix of price multipliers. The term Πj,i provides the relative change in the jth price

to an aggregate micro response of the ith income to any tax reform. As a limit case, under the

linear production function (2), the matrix of inverse demand elasticities Ξ simplifies to the nil

matrix according to (29a), in which case the price multiplier Πj,i are also nil and the process of

prices’ adjustments vanishes.

For each type i ∈ {1, ...n} of income, we now define a sufficient statistic, µi, which indicates

how any micro response of the ith income impacts the Lagrangian (12) through changes in

prices, whatever the tax reform that triggers this micro response, and whatever the types of

22



workers who respond. We call it macroeconomic price spillover statistic, hereafter macro price

spillover statistic. On top of the general equilibrium aspect, the term macro emphasizes that

the impact of this change is not specific to a particular tax reform, nor to a type of taxpayers

w. The terms price spillover stresses that the tax reform impacts prices via firms’ decisions and

taxpayers’ responses to prices’ changes. We get: ∀i ∈ {1, ..., n}:

µi
def≡

n

∑
j=1

Πj,i

∫
w∈W

[(
1− Tyj(Y(w))

)
Yj(w) g(w) +

n

∑
k=1
Tyk(Y(w))

∂Yk(w)

∂log pj

]
f (w)dw (31)

From (30), the price multipliers Πj,i capture how micro responses in incomes result in changes

in prices in general equilibrium. According to (26), the integral in (31) corresponds to the im-

pact on the Lagrangian of a one-percent increase in the jth price. Plugging Equations (27), (30)

and (31) into (26) leads to the impact of a tax reform on the government Lagrangian formulated

as:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

w∈W

{[
1− g(w)−

n

∑
i=1

(
Tyi(Y(w)) + µi

) ∂Yi(w)

∂ρ

]
∂T̃ (Y(w), t)

∂t

∣∣∣∣∣
t=0

− ∑
1≤i,j≤n

(
Tyi(Y(w)) + µi

) ∂Yi(w)

∂τj

∂T̃yj(Y(w), t)
∂t

∣∣∣∣∣
t=0

}
f (w)dw. (32)

This tax formula is expressed as a function of behavioral responses, the macro price spillover

statistic µi and other sufficient statistics that can be estimated empirically, as we show with

French data in Section VI. Being easily implementable empirically, this formula can be used to

evaluate the impact of any tax reform in terms of tax revenue and welfare. We now provide

economic intuitions for each of its terms.

Absent any behavioral response, the tax reform mechanically impacts the government tax

receipts and the social welfare weight as reflected by 1− g(w) in the first line of Equation (32).

Then, for each w-taxpayer and each type i of income, behavioral responses and price responses

have to be taken into account. First behavioral (wealth and compensated) responses modify

Yi(w) by ∆Yi(w) so that tax liability is affected by Tyi(Y(w))∆Yi(w).

In addition, the presence of endogenous prices and the implied general equilibrium effects

encompassed in µi modify prices along the process described by Equation (30). Incorporating

these price spillover effects amounts to correcting (i.e. increasing or decreasing) the marginal

tax rates Tyi(Y(w))dµi. When µi > 0 (µi < 0), the change in aggregate incomes Yi, implied by

the tax reform and all individual behavioral responses, increases (decreases) the government

Lagrangian, via the above-mentioned process.

More intuition on µi can be obtained in the classical general equilibrium context, with cap-

ital indexed by 1 and labor indexed by 2, and with tax revenue and social welfare mainly fed
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by labor income y1. Lowering marginal tax rates on capital income will encourage to supply

more capital, which will reduce the marginal productivity of capital (assuming diminishing

marginal returns) and its price p2. Assuming capital and labor are imperfect substitutes, it will

also raise, the marginal productivity of labor and its price p1. Therefore, to guarantee this posi-

tive spillover effect, one expects a positive macro spillover statistic for capital µ2 > 0 to correct

downwards the marginal tax rate on capital income Ty2(Y(w)). Symmetrically, one expects a

negative macro spillover statistic for labor µ1 < 0 to correct upwards the marginal tax rate on

labor income Ty1(Y(w)). Thanks to this correction, the detrimental reduction of the labor price

p1 induced by spillover effects (from micro responses which increase Y1) will be limited.

In this context, in general equilibrium, lowering marginal tax rates on capital income (with

a positive macro price spillover statistic) will encourage to supply more capital, which will

reduce the marginal productivity of capital (assuming diminishing marginal products returns)

and its price. Assuming capital and labor are imperfect substitutes, it will raise, the marginal

productivity of labor and its price.

In an economy where labor is the main source of income, as in France for instance, the

aggregate amount of labor income being larger than the aggregate amount of capital, a change

in capital has a stronger impact on input prices than a change in labor. Hence, we can expect,

in absolute terms, µ1 to be lower than µ2. Although these results are obtained under very

simplifying assumptions, the mechanisms we highlight are more general and will help us to

understand the values obtained in the numerical simulations.

IV.2.b Effects of balanced tax reforms

Equation (32) allows policy advisers to determine the effects of a tax reform. However,

let us stress that these tax reforms are not budget-balanced, unless ∂B̃
∂t

∣∣∣
t=0

= 0. It is very

important for policy makers to be able to choose the best tax reform among those that are self-

financed. It is well known that one way to easily balance any tax reform is to use a (positive or

negative) lump-sum transfer, see Sandmo (1998) and Jacobs (2018). In the next proposition, we

characterize the impact in terms of welfare of any tax reform balanced in a lump-sum way.

The effects on social welfare of a lump-sum transfer to every taxpayer corresponds to the

shadow cost of public funds λ. Applying Equation (32) to the lump-sum reform (20a), the
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shadow cost of public funds is pined down by:19

0 =
∫

w∈W

[
1− g(w)−

n

∑
i=1

(
Tyi(Y(w)) + µi

) ∂Yi(w)

∂ρ

]
f (w)dw, (33)

with λ included into g(w), see Equation (24).

Proposition 3. If the shadow cost of public funds verifies (33) and if ∂L̃
∂t

∣∣∣
t=0

defined in (32) is positive

(negative), then reforming the tax schedule to y 7→ T̃ (y, t) with a small positive t (a small negative

t) and rebating the net budget surplus in a lump-sum way is a budget-balanced reform that is socially

desirable.

According to Proposition 3, which is proved in Appendix E, the welfare impact of a tax

reform balanced thanks to a lump-sum transfer has the same sign as the effect of the initial

tax reform on the government’s Lagrangian. In light of the tax formula (32), one can describe

how to self-finance any tax reform (in a lump-sum way) and conclude whether this reform is

socially desirable or not.

In the rest of the paper, in order to define income densities, we make the following assump-

tion on preferences:

Assumption 2. For each bundle (c, x), the mapping w 7→
(
S1(c, x; w), ...,Sn(c, x; w)

)
is invertible

This assumption on preferences extends the usual single-crossing condition to the multidi-

mensional context. It is for instance verified when preferences are additively separable of the

form:

U (c, y; w) = u(c)−
n

∑
i=1

υi(yi, wi) with : u′, υi
yi

, υi
yiyi

> 0 > υi
wi

, υi
yiwi

Assumption 2 implies that the mapping y 7→ Y(w) is globally invertible.20 Let
[

∂Yi(w)
∂wj

]
i,j

denote

the Jacobian matrix of this mapping for w-taxpayers. We thus get the following relationship

between the joint income density and the type density:

h(Y(w)) =
f (w)∣∣∣∣det
[

∂Yi(w)
∂wj

]
i,j

∣∣∣∣ . (34)

19We need to assume that, taking into account all behavioral responses, one has:

1−
n

∑
k=1

∫
w∈W

(
Tyk (Y(w)) + µk

) ∂Yk(w)

∂ρ
f (w)dw > 0

i.e. that a lump-sum transfer to taxpayers reduces government’s tax revenue.
20Assume by contradiction the existence of two types w, w′ such that that Y(w) = Y(w′) = y and therefore

X(w) = X(w′) = x. We thus get C(w) = C(w′) = ∑n
k=1 Yk(w) − T (Y(w)) = c. According to the first-order

conditions (6), we get:(
1− Ty1 (y), ..., 1− Tyn (y)

)
=
(
S1(c, x; w), ...,Sn(c, x; w)

)
=
(
S1(c, x; w′), ...,Sn(c, x; w′)

)
Assumption 2 therefore implies that w = w′, which ends the proof that y 7→ Y(w) is globally invertible.
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V Optimal Taxation under mixed tax schedules

Having illustrated in Section III that a comprehensive or a schedular tax system is hardly

optimal in reality, we can now study the effects of tax reforms within the family of mixed

tax functions described in Equations (15) and (16). We first study the effects of reforming the

income-specific tax schedules Ti(·) and personal income tax schedules T0(·) to derive optimal

tax schedules’ formulas. Second, we consider reforms of the personal income tax base to dis-

cuss whether or not it is socially desirable to reform the system towards a slightly more or a

slightly less schedular tax system.

V.1 Optimal mixed Tax schedules

Effect of tax reforms on personal income

We first describe wealth responses, compensated responses, uncompensated responses and

price responses (described in Subsection IV.1.a) of the personal income y0 defined in (16). Each

of these responses is the weighted sum of the responses of each specific income yk, for k ∈

{1, ..., n}, the weights being the marginal deduction rates a′k(yk). We first characterize how

behavioral responses to a tax reform modify the personal income tax base y0 defined in (16).

We combine the taxpayers’ responses (20a), (20b), (20c) and the changes in prices induced by

general equilibrium described in (30) with the definition of personal income in (16). For any

reform, the impact on personal income y0 consists in the sum of the induced changes in each

specific income k, each of these income changes being multiplied by its marginal deduction

rate a′k(yk). Formally, the wealth response is:

∂Y0(w)

∂ρ

def≡
n

∑
k=1

a′k(yk)
∂Yk(w)

∂ρ
. (35a)

The compensated response of personal income tax base to a (compensated) tax change in the

jth marginal tax rate is given by:

∂Y0(w)

∂τj

def≡
n

∑
k=1

a′k(yk)
∂Yk(w)

∂τj
. (35b)

The uncompensated response of personal income tax base to an (uncompensated) tax change

in the jth marginal tax rate is:

∂Yu
0 (w)

∂τj

def≡
n

∑
k=1

a′k(yk)
∂Yu

k (w)

∂τj
, (35c)

and the price response of personal income tax base to a relative change in the jth price is:

∂Y0

∂log pj

def≡
n

∑
k=1

a′k(yk)
∂Yk

∂log pj
. (35d)

Note that, since personal income tax y0 does not correspond to an input factor, we normalize

p0 = 1 and µ0 = 0.
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Effect of reforming the tax that applies to a specific income

Consider a reform of the tax schedule on a specific income i, for any i ∈ {1, ..., n}. This

reform replaces the initial tax schedule by the new tax function T̃ (y, t) = T (y) − t Ri(yi)

where Ri(·) is the direction of the reform. This reform modifies the individual tax liability by:

∂T̃ (Y(w), t)
∂t

∣∣∣∣∣
t=0

= −Ri(Yi(w)). (36)

It does modify the ith marginal tax rate by:

∂T̃yi(Y(w), t)
∂t

∣∣∣∣∣
t=0

= −R′i(Yi(w)). (37)

Note that it does not modify the other marginal tax rates. Substituting (36) and (37) in (32), we

obtain that the effect, on the Lagrangian, of reforming the tax schedule that prevails on the ith

income, is:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

w∈W

{[
g(w)− 1 +

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

]
Ri(Yi(w)) (38)

+

[
n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τi

]
R′i(Yi(w))

}
f (w)dw.

The economic intuition behind Equation (38) is similar to the one we gave for Equation (32).

However, Equation (38) is expressed in terms of the n + 1 marginal tax rates T′k(Yk(w)) associ-

ated to the one-dimensional schedules yk 7→ Tk(Yk(w)) and not in terms of the partial deriva-

tives Tyk(Y1(w), ..., Yn(w)) of the overall n-dimensional tax schedule (y1, ..., yn) 7→ T (y1, ..., yn).

Thus, for individuals of type w, a reform of the taxation of the ith income induces a change

−Ri(Yi(w)) in tax liability and a change −R′i(Yi(w)) in the ith marginal tax rate. The change in

tax liability induces a mechanical effect on tax revenue and on the government’s objective, the

latter being weighted by the social welfare weight g(w). Hence the mechanical effect is equal

to −(1− g(w))Ri(Yi(w)) times the density of taxpayers of type w. The change in tax liability

also induces wealth responses ∂Yk
∂ρ Ri(Yi(w)) for all incomes k ∈ {0, ..., n}.

Behavorial responses then come into play: the change R′i(Yi(w)) in the ith marginal net-of-

tax rate creates compensated responses ∂Yk
∂τi

R′i(Yi(w)) for all incomes k ∈ {0, ..., n}. All these

responses modify tax liability by a factor equal to the marginal tax rate T′k(Yk(w)) and modify

also prices through changes in the kth input factor in the production process.

The latter channel is taken into account by the macro spillover sufficient statistic µk. Ag-

gregating these effects for all types leads to Equation (38). Importantly, not only does Equation

(38) take into account compensated and wealth responses of the ith income, it also encompasses

cross-base responses that are denoted by ∂Yk(w)
∂τi

for k 6= i.
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Effect of reforming the personal income tax schedule

We now investigate the effects of any reform of the personal income tax schedule T0(·). This

reform replaces the initial tax schedule by T̃ (y, t) = T (y)− t R0(∑n
k=1 ak(yk)) , where R0(·) is

the direction of the tax reform. This reform modifies individual tax liability by:

∂T̃ (Y(w), t)
∂t

∣∣∣∣∣
t=0

= −R0(Y0(w)). (39)

It changes the marginal tax rate on the jth income by:

∂T̃yj(Y(w), t)
∂t

∣∣∣∣∣
t=0

= −a′j(Yj(w)) R′j(Y0(w)) (40)

In Equation (40), one can see that the marginal deduction rate that applies to the jth income

shows up when one reforms the personal income tax. This differs from (37), which was ob-

tained from reforming a specific income tax schedule.

Now, according to (17), the marginal tax rate on the jth income depends not only on the

marginal tax rate of its specific tax schedule T′j (·) but also on the marginal tax rate of the per-

sonal income tax schedule discounted by the marginal discount factor a′j. Therefore, as shown

in Appendix H, a compensated personal income tax reform generates responses equal to the

weighted sum of the compensated responses of the ith income to a change in the jth marginal

net-of-tax rate, the weights being the jth marginal discount rates a′j:

∀i ∈ {0, ..., n} ∂Yi

∂τ0
=

n

∑
j=1

a′j(Yj(w))
∂Yi(w)

∂τj
. (41)

Given these definitions, the effect of a personal income tax reform in the direction R0(·) on the

government’s Lagrangian is also given by Equation (38) with i = 0, as shown in Appendix H.

Equation (38) therefore summarizes the first-order effects, on the government’s Lagrangian, of

a reform of both the personal income tax and a specific income tax.

Optimal specific or personal income tax schedule

The tax schedule specific to the ith income is optimal if its reform does not imply first-order

effects on the Government’s Lagrangian, whatever the direction Ri(·) of the tax perturbation

and whatever the other tax schedules. This reasoning also applies to the optimal personal

income (i = 0) tax profile. To obtain the optimal tax formulas either for the personal or any

specific income, we then equalize (38) to zero. In preamble, to make this tax formula easy to

implement on data, we define a set of sufficient statistics that one can substitute in it.

For any variable Z(w) and for any i = 0, ..., n, we denote Z(w)|Yi(w)=yi
the mean of Z(w)

among types w for which Yi(w) = yi. We denote ε i(yi) the mean compensated elasticity of
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the ith income with respect to its own marginal net-of-tax rate. This mean is calculated among

w-taxpayers who earn their ith income equal to yi. We formally define this elasticity as:

ε i(yi)
def≡

1− T′i (yi)

yi

∂Yi

∂τi

∣∣∣∣
Yi(w)=yi

. (42)

We denote ε0(y0) the mean compensated elasticity of personal income with respect to the

personal marginal net-of-tax rate τ0. This mean is calculated among w-taxpayers for which

Y0(w) = y0. Mathematically, combining (35b) and (41) allows us to define this elasticity as:21

ε0(y0) =
1− T′0(y0)

y0

∂Y0

∂τ0

∣∣∣∣
Y0(w)=y0

=
1− T′0(y0)

y0
∑

1≤i,j≤n
a′i(Yi(w)) a′j(Yj(w))

∂Yi(w)

∂τj

∣∣∣∣
Y0(w)=y0

.

(43)

The compensated elasticity of the personal income tax with respect to its own net-of-marginal

tax rate depends on all incomes compensated responses ∂Yi(w)
∂τj

to changes in all net-of-marginal

tax rates τj for i, j ∈ {1, ..., n}, weighted by the net-of-marginal discount rates a′i(Yi(w)) and

a′j(Yj(w)).

Proposition 4. Under a mixed tax schedule, and for all i ∈ {0, ..., n}:

i) A tax perturbation specific to the ith income in the direction Ri(·) with a positive (negative) t

combined with a lump-sum rebate is socially desirable if (38) is positive (negative).

ii) Given the other (arbitrary or optimal) tax schedules and deduction functions ak(·), the optimal

nonlinear tax schedule specific to the ith income is provided by:

T′i (yi) + µi

1− T′i (yi)
ε i(yi) yi hi(yi) + ∑

0≤k≤n,k 6=i

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

hi(yi)(44)

=
∫ ∞

z=yi

{
1− g(w)|Yi(w)=z −

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=z

}
hi(z)dz.

iii) Given the other (arbitrary or optimal) tax schedules and deduction functions ak(·), the optimal

linear tax rate denoted ti specific to the ith income is provided by:

ti + µi

1− ti

∫
w∈W

εu
i (w) Yi(w) f (w)dw +

∫
w∈W

n

∑
k=0,k 6=i

(
T′k(Yk(w)) + µk

) ∂Yu
k (w)

∂τi
f (w)dw

=
∫

w∈W
[1− g(w)]Yi(w) f (w)dw. (45)

where εu
i denotes the uncompensated elasticity of the ith income with respect to 1− ti, i.e.:

εu
i (w)

def
≡ 1− ti

Yi(w)

∂Yu
i (w)

∂τi
.

21As the matrix
[

∂Yi(w)
∂τj

]
i,j

of compensated responses is positive definite, the compensated elasticity of taxable

income is positive unless a1 = ... = an = 0.
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The proof of (i) and (ii) can be found in Appendix G for i = 1, ..., n and in Appendix H for

i = 0. The proof of (iii) is in Appendix I. Equation (44) generalizes to an economy with many

incomes, multidimensional types and general equilibrium effects, the optimal ABC tax formula

derived by Diamond (1998) and Saez (2001) with a single income. Equation (44) relates optimal

marginal tax rates to empirically estimable sufficient statistics which are behavioral responses,

income density, macro spillover statistics and welfare weights.

To grasp the intuition behind each term of the above tax formula, one can heuristically

derive it as in Saez (2001). To do so, consider the effects of a small increase in the marginal

tax rate on the ith income around income yi and a uniform increase in tax liability for all ith

income above yi.22 Given the other tax schedules, the tax schedule specific to the ith income is

optimal if these reforms do not imply first-order effects on the Lagrangian. The left-hand side

of Equation (44) describes the impact of the change in the marginal tax rate and its right-hand

side details the effects due to the change in tax liability.

A rise in the ith marginal tax rate around income yi implies compensated responses ∂Yk(w)
∂τi

.

First, there is a direct response of the ith income, ∂Yi(w)
∂τi

, which is proportional to the mean

compensated elasticity ε i of the ith income with respect to its own marginal net-of-tax rate (as

emphasized in Equation (42)). This response is encapsulated into the first term of Equation

(44) left-hand side. On top of this response, which is already present in Saez (2001), prevail the

(compensated) cross-base tax responses of all other tax bases ∂Yk(w)
∂τi

for k ∈ {0, ..., n} \ {i}. These

responses are in the second term of Equation (44) left-hand side. Another difference with the

standard one-dimensional formula is that all these compensated responses have to be averaged

across all taxpayers with the same ith income yi so that composition effects take place (Jacquet

and Lehmann, 2021).23 A third difference is that these compensated responses not only have

a direct impact on the Lagrangian by modifying the tax revenue proportionally to marginal

tax rates T′k(yk), but also induce prices’ changes in general equilibrium. All micro compensated

responses produce prices’ changes (see (1)) which imply responses of taxpayers to these price

changes, and so on. The sufficient statistics that summarize these general equilibrium effects

through prices’ changes are given by µk which are equal to zero in Saez (2001).

A rise in the tax liability above income yi implies mechanical gains in terms of tax revenue

and mechanical welfare losses that are emphasized by the aggregation of 1− g(w)|Yi(w)=z for

22The effects are obviously symmetric when the tax marginal rate and tax liability are reduced.
23Saez (2001) conjectures his optimal tax formula can be extended to the case with multidimensional unobserved

heterogeneity. This has been formally proved only recently (Hendren, 2020, Jacquet and Lehmann, 2021). In our
framework with heterogeneous types of income, when one needs to take the mean of a variable, the latter is aver-
aged across taxpayers who earn the ith income at level yi. This differs from the model with a single income and
multidimensional types where the means are taking across sufficient statistics of agents who earn the same level of
the unique income y.
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all z ≥ yi in the right-hand side of (44). It also creates wealth responses ∂yi(w)
∂ρ . Another key

difference compared to the Mirrleesian framework is that these wealth responses not only have

a direct impact on the Lagrangian by modifying the tax revenue proportionally to marginal tax

rates T′k(yk), they also create macro spillover effects which show up in the formula thanks to

the sufficient statistics µk. An additional difference with the single-income, one-dimensional

framework lies in in the averaging of the mechanical losses and responses to wealth change

across all taxpayers with the same ith income.

We now heuristically discuss the determinants of optimal marginal tax rates. First, the

optimal marginal tax rate on the ith income at income yi is decreasing in the average of the

welfare weights assigned to taxpayers earning an ith income above yi, since all these incomes

are mechanically impacted by any change in the optimal marginal tax rate on the ith income.

It also depends on the ith income distribution. Ceteris paribus, it decreases with the product

of income and income density, since the larger yihi(y), the larger the impact of compensated

responses. It also, ceteris paribus, increases with the number of taxpayers 1 − Hi(yi)) with

ith incomes larger than yi since the larger this number, the larger the mechanical and income

effects.

Second, the optimal marginal tax rate on the ith income at income yi is, ceteris paribus, in-

creasing when the mean compensated elasticity ε i decreases. The inverse elasticity rule remains

valid. From Equations (43) and (44), this implies that the optimal marginal tax rate on personal

income T′0(y0) decreases when incomes which are the most responsive to tax reforms are with-

drawn from the definition of the personal income tax base. For instance, if the most responsive

tax base is capital income, then, the mean compensated elasticity of personal income ε0 is lower

with a separate tax on capital income than with a more comprehensive tax system. This leads

to a more progressive personal income tax schedule with a more schedular tax system. This

might explain why Scandinavian countries have implemented the dual tax system (Boadway,

2004, Sørensen, 2009) in the early nineties.

Third, our formula also highlights the role played by cross-base responses ∂Yk
∂τi

for k 6= i.

Consider a rise ∆T′yi
in the ith marginal tax rate around income level yi. This induces com-

pensated responses of each kth income that is given by ∆Yk = −∆T′yi
∂Yk
∂τi

(where the increase

∆T′yi
corresponds to a reduction ∆τi of the ith marginal net-of-tax rate which explains the mi-

nus sign). Each compensated cross-base response, impacts the government’s Lagrangian by

−(T′(Yk) + µk)
∂Yk
∂τi

∆T′yi
. Hence, whenever T′(Yk) + µk > 0, the less positive or the more neg-

ative is the cross-base response ∂Yk
∂τi

, i.e. the lower the reduction of the personal income tax

basis due to ∆Yk, the less costly or the more beneficial is the response of the kth income for the
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government. In this context, one can then recommend a higher ith optimal marginal tax rate.

In particular, lower income-shifting leads to more negative cross-base responses ∂Yk
∂τi

and so to

higher optimal marginal tax rate on the ith income, provided that T′(Yk) + µk > 0. This leads

Saez and Zucman (2019) to argue in favor of a comprehensive tax system.

Fourth, the macro spillover statistics µk magnify the compensated responses and the wealth

responses. In particular, a larger macro spillover statistic on the ith income µi tends to, ceteris

paribus, reduce the ith optimal marginal tax rate. To understand why, consider a rise in the

ith marginal tax rate around income yi. This induces compensated responses that reduce the

ith income of taxpayers concerned by this tax reform. These responses imply a detrimental

reduction in tax liability (whenever T′(yi) > 0) in terms of tax revenue. Moreover, these com-

pensated responses, by decreasing the ith aggregate income Yi in turn induce change in price

that affects the government’s Lagrangian. The larger the macro spillover statistics µi on the ith

income, the more detrimental are the consequences of these compensated responses through

changes in prices, so the lower the ith optimal marginal income tax rate. In particular, in an

economy with capital income and labor income, the more positive is the macro spillover statis-

tic on capital, the lower are the optimal marginal tax rates on capital income. Intuitively, the

micro responses that increase aggregate capital income increase, in general equilibrium, the

marginal productivity of labor hence its price. These “trickle down” effects reduce optimal

capital tax rates.

When the tax schedule on the ith income is restricted to be linear, with no restriction on the

other tax schedules, similar intuitions apply, with the following particularities. First, under a

linear tax schedule, wealth effects and compensated effects can be combined and substituted

with the uncompensated responses, as can been verified using the Slutsky Equations (20d).

Second, in the optimal linear tax formula (45), the means of sufficient statistics over the whole

population appear instead of the means of sufficient statistics at a given income level. Last, as

expected from the optimal linear tax formula (see e.g. Piketty and Saez (2013)), the means of

welfare weights and uncompensated elasticities are income-weighted. Conversely, the mean

of uncompensated cross-base responses ∂Yu
k

∂τi
for k 6= i are not income-weighted because these

responses are expressed in terms of derivatives and not in terms of elasticities.

V.2 Toward a more or less schedular tax system

V.2.a How much of each type of income in the personal tax base?

Moving toward a more schedular (a more comprehensive) tax system with taxpayers hav-

ing less income yi which is part of their personal income is equivalent to increasing (decreasing)
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the discounting of the ith income ai(yi), as follows:

T̃ (y, t) = T0

(
n

∑
k=1

ak(yk)− t yi

)
+

n

∑
k=1

Tk(yk) (46)

with t > 0 (t < 0). The jth marginal tax rate, for j 6= i, is now equal to:

T̃yj(y, t) = a′j(yj) T′0

(
n

∑
k=1

ak(yk)− t yi

)
+ T′j (yj). (47)

The ith marginal tax rate is equal to:

T̃yi(y, t) =
(
a′i(yi)− t

)
T′0

(
n

∑
k=1

ak(yk)− t yi

)
+ T′i (yi). (48)

When the tax system becomes more schedular, thanks to an increase of the discounting of the

ith income ai(yi), the personal tax base y0(w) is reduced by Yi∆t. Proposition 5 describes the

impact on the Lagrangian and states when this budget-balanced reform is socially desirable.

Proposition 5. (i) Under a mixed tax schedule, a small reduction of the personal income tax base,

described by (48), modifies the government’s Lagrangian as follows:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

w∈W

{[
(g(w)− 1) Yi(w) +

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yu
k (w)

∂τi

]
T′0(Y0(w))

+
n

∑
k=0

(T′k(Yk(w)) + µk)
∂Yk(w)

∂τ0
Yi(w) T′′0 (Y0(w))

}
f (w)dw. (49)

ii) A reform that consists in combining a discount of the ith income from the taxable income according

to (46) (with t > 0) with a lump-sum transfer that makes the overall perturbation budget-balanced

is socially desirable if Equation (49) is positive.

The proof is in Appendix J. This result allows us to highlight arguments that have been

ignored until now but need to be taken into account in the debate on schedular versus com-

prehensive tax systems. A reduction of the personal tax base automatically reduces the level

of tax on personal income T0(·) hence individual tax liability and modifies the marginal tax

rate on personal income, since T0(·) is nonlinear. The impact of a reduction of y0(·) is twofold:

there are effects conveyed by T′0(·) in the first line of Equation (49) and other effects are propa-

gated with T′′0 (·) in the second line of Equation (49). These two channels had hitherto not been

studied in the literature.

First, the amount of income yi which is withdrawn from the personal tax base is not taxed

anymore through T0(·). The reduction in the amount of tax paid is equal to T′0(Y0(w))Yi(w)∆t.

This reduction of tax liability generates a mechanical loss in tax revenue and a mechanical wel-

fare gain,
∫

w∈W [g(w)− 1]T′0(Y0(w))Yi(w)∆t f (w)dw that are in the first line of Equation (49).
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This reduction in tax liability also creates wealth responses from all income sources. Indeed

this reduction in tax liability is equivalent to a lump-sum transfer to every worker who earns

the source of income yi. These wealth responses, that occur for each source of income, modify

tax revenue and welfare (due to general equilibrium effects) as follows:∫
w∈W

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ
Yi(w) T′0(Y0(w))∆t f (w)dw, (50)

where price general equilibrium effects are encapsulated into the sufficient statistics µk. More-

over, the withdrawal of some income yi from the personal tax base modifies the marginal tax

rate of the ith income Tyi(·) since the latter not only depends on T′i (·) (which is not modified)

but also on T′0(·), as emphasized in Equation (48). The ith marginal tax rate is reduced by

T′0(Y0(w)) ∆t. This reduction in the ith marginal tax rate creates (cross-base and within-base)

compensated responses from all sources of income. These responses increase tax revenue and

also welfare (due to general equilibrium effects in µk) by∫
w∈W

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τi
T′0(Y0(w))∆t f (w)dw. (51)

Using the Slutsky equation (20d), the impact, on welfare and government tax revenue, of these

wealth and compensated responses is equivalent to the impact of uncompensated responses

on welfare and tax revenue, i.e.∫
w∈W

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yu
k (w)

∂τi
T′0(Y0(w))∆t f (w)dw, (52)

that one can see in the first line of Equation (49).

Second, because of the nonlinearity of the personal income tax schedule, the jth marginal

tax rate Tyj(·) is also modified by a′j(Yi(w))Yi(w)T′′0 (Y0(w))∆t (from (47)) where the curvature

of the personal income tax matters as emphasized by T′′0 (Y0(w)). This change in the marginal

personal income tax rate T′0(Y0(w)) creates compensated responses from the ith income that

modify tax revenue and welfare by∫
w∈W

(
T′i (Yi(w)) + µi

) ∂Yi(w)

∂τ0
Yi(w) T′′0 (Y0(w))∆t f (w)dw.

where (41) has been used. On top of this, the modification of T′0(Y0(w)) also modify all other

marginal tax rates, ∀j ∈ {1, ..., n} (j 6= i), by

a′j(Yk(w)) Yi(w) T′′0 (Y0(w))∆t.

Therefore, all compensated responses from other sources of income modify tax revenue and

welfare by ∫
w∈W

n

∑
k 6=i,k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τ0
Yi(w) T′′0 (Y0(w))∆t f (w)dw.
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In summary, the compensated responses from the ith income and the compensated responses

from other incomes are equal to:∫
w∈W

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τ0
Yi(w) T′′0 (Y0(w))∆t f (w)dw, (53)

an expression that one can find in the last line of (49).

With a U-shape personal income marginal tax schedule, T′′0 (Y0(w)) is negative for relatively

low personal incomes Y0(w) and positive for relatively high Y0(w). When one withdraws some

income yi from the personal income tax base, it therefore increases the marginal personal in-

come tax rates of low earners of income y0 (whose T′′0 (Y0(w))<0) and decreases the ones of

richer earners (whose T′′0 (Y0(w))>0). The deadweight losses associated to compensated re-

sponses due to the change of T′0(Y0(w)) are therefore transferred from high to low personal

income earners.

Adding Equations (50), (52) and (53), we obtain the effect on the Lagrangian described in

(49).

VI Numerical Illustrations

In this Section, we numerically implement the optimal mixed tax formula, so as to verify, on

real data, whether it is desirable to tax distinct sources of income comprehensively or schedu-

larly or whether a compromise between both tax systems is preferable as one may expect from

our theory. We emphasize the relative magnitude of the mechanical and behavioral effects,

highlighted in Equation (49), that matter when determining the optimal size of the personal

income tax base. We illustrate that it is the impact in the level of the marginal tax rates T′0(·)

(second line of (49)) that offsets the impact of a change in the levels of the personal income tax

T0(·) (first line of (49)).

For our numerical exercises, we assume two production factors and group income from

different sources we observe, in the administrative tax return data for France, into two cate-

gories: (1) labor income, y1 and capital income, y2. For simplicity, labor income includes all

incomes we have in our data set except incomes from capital. In labor income, there are all

wages earned in France (and abroad, whenever applicable) by French taxpayers, two-third of

each income self-employed individuals report from their business activity24 as well as unem-

ployment benefits and copyrights. Capital income comprises interests (from bonds and other

sources), dividends, financial gains and one-third of self-employed reported income.

24In the French Tax records, income of self-employed are declared either as Benefices Industriels et Commerciaux
(BIC), Benefices Non Commerciaux (BNC) or Benefices Agricoles (BA). We choose 2/3 to approximate the share of
these different sources of income that falls under the labor income tax since it is the usual and relatively stable
national income share for labor income vs capital income.
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Since in France, labor income is included, after possible deductions, into the personal in-

come tax base and since there is no other specific tax schedule on labor income, y1 is taxed

according to the nonlinear personal income tax schedule T0(·) and T1(y1) ≡ 0. Since a dual tax

prevails in France, we also consider a flat tax rate on capital income, T2(y2) = t2 y2. The mixed

tax schedule (15) becomes:

T (y1, y2) = T0(y1 + a2 y2) + t2 y2 a2 ∈ [0, 1]. (54)

On top of the nonlinear personal income tax schedule T0(·), the government has two instru-

ments a2 and t2. This simple framework is sufficiently rich to include, as specific cases, the

comprehensive tax system when a2 = 1 and t2 = 0 and the schedular tax system when a2 = 0.

The schedular tax system is the dual one since T2(y2) = t2 y2.

VI.1 Specification and calibration

We calibrate our model on French Enquête Revenus Fiscaux Sociaux (ERFS)) data available

through the Quetelet network.25 This dataset merges a part of the French Labor Force survey

with a set of variables extracted from the respondents’ tax records. We build our capital income

variable by summing the different sources of financial income included in the personal income

tax base, financial incomes taxed at a flat rate (“Prélèvement Forfaitaire Libératoire", which

applies essentially to life insurance and specific savings contracts known as PEA) and 1/3 of

the distinct sources of income from the self-employed. Importantly, we do not observe capital

gains and losses in ERFS. Moreover, we choose to exclude pensions and social transfers since

they are exogenous income levels. Since we focus on a two factor production function, we also

exclude rents and real estate income.

The sample consists of 27, 804 tax units with positive labor and capital income. Average

labor income equals e 36, 578 (with the median at e 30, 398) and average capital income equals

e 3, 017 (with the median at e 310).

Utility is assumed quasilinear, which is standard since Diamond (1998), and with a constant

direct elasticity of (gross) income yi with respect to its net-of-marginal tax rate ei, as in Diamond

(1998) and (2001):

U (c, x1, x2; w1, w2) = c− ε1

1 + e1
x

1+e1
e1

1 w
− 1

e1
1 − e2

1 + e2
x

1+e2
e2

2 w
− 1

e2
2 (55)

We take the estimates of Lefebvre et al. (2019), who rely on an extended version of our dataset

(POTE), to calibrate the direct elasticity of labor income e1 = 0.10 and the direct elasticity of

25We have also calibrated our model with U.S. Current Population Survey (CPS) data and we have found similar
results to the ones we describe here.
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capital income e2 = 0.65. With this specification, w1 and w2 stand respectively for labor and

capital income in the no-tax economy.

Lefebvre et al. (2019) do not find any income-shifting26 so that we assume away cross-base

responses in our baseline scenario.

From the ERFS data and an approximation of the actual tax schedule, we recover for each

of observation, its labor w1 and capital w2 abilities. The income density is estimated using a

biweight kernel with a bandwidth of e 89, 028.27

The production function is a CES:

F (X1,X2) =
[

A1 X 1−γ
1 + A2X 1−γ

2

] 1
1−γ

(56)

where A1 and A2 are the scale parameters of inputs and 1/γ is the elasticity of substitution.

We take γ = 0 as the baseline value and conduct sensitivity analysis with respect to γ. Without

loss of generality, we normalize the price p1 and p2 to be equal to 1 in the no-tax economy in

order to pin down A1 and A2.

We consider a maximin social objective which is equivalent to maximizing tax revenue.

VI.2 The optimal system

In our numerical simulations, we determine the optima under three distinct tax regimes:

the comprehensive tax system by setting a2 = 1 and t2 = 0 in (54), the (schedular) dual tax

system by setting a2 = 0 and the mixed tax system by letting a2 and t2 being optimized.

We first present the results in the benchmark case, i.e. with ε1 = 0.10, ε2 = 0.65, γ = 0 and

no income-shifting. In Figure 1, we compare the optimal marginal tax rates on personal income

under the comprehensive tax system (dashed red line), the dual tax system (alternate blue lines)

and the mixed tax system (black lines). Whatever the tax regime, the optimal marginal tax

profile is U-shaped. The optimal marginal tax rate decreases with income from zero to about

e 100, 000 and then increases with income.

We directly see that the optimal mixed tax system is neither comprehensive, nor dual since

the optimal mixed tax does coincide neither with the dual tax schedule nor with the mixed tax

schedule. In our simulations, the mean elasticity ε0 of personal income y0 is smaller under the

dual tax regime (See (43)) than under the comprehensive tax regime, so the optimal marginal

tax rates are higher (See (44)) under the dual tax. The difference is especially important for

26Lefebvre et al. (2019) find this result using the suppression, in 2013, by the newly elected Hollande government,
of the optional flat tax for dividends that was available, forcing all dividends to be taxed under the progressive tax
schedule.

27The biweight kernel K(x) = (15/16)(1− x2)2 eases the computation (since it is a 4th degree polynomial) and
provides differentiable estimated densities, since K(·) is differentiable with zero derivatives at x = −1, 0, 1).
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income levels above e 100, 000 since the share of capital income in total income is larger for

these levels of income.

(a2=0) 

(a1=1, t2=0) 

Optimal 

Figure 1: Optimal marginal tax rates T′0(y0) under the comprehensive income tax regime
(where a = 1, t2 = 0), under the dual tax regime (where a = 0, optimal t2 = 60.6%), and
under the mixed tax regime (optimal a = 1, optimal t2 = −22.8%)

The capital income net-of-discount rate, a2, that gives the proportion of capital income in-

cluded into the personal income tax base, is constrained under both the comprehensive and

the dual tax regimes. When a2 increases, the cross-base responses imply a reduction in capital

income. To countervail this reduction, the optimal tax rate on capital income decreases with a2.

In our simulations, when a2 increases from 0, which is required under the dual tax system, to its

optimal value a2 = 1 in the mixed tax system, the linear tax rate t2 decreases from t2 = 60.6%28

to a negative value of −22.8%. This result is rather unexpected yet intuitive.

With a comprehensive tax, the tax base consists in a very unelastic tax base (labor income

y1) and a very elastic tax base (net-of-discount rate capital income a2y2). In order to keep a large

enough personal income tax base y0, the government can only impose relatively low marginal

tax rates T′0 at the top of the distribution of y0 (i.e., above e 100, 000, a point from which the

share of capital income in total income increases with total income),29 otherwise the loss in

tax revenue due to the high elasticity of y2 may overcome the gain obtained by increasing the

marginal tax on the inelastic income y1. In contrast, when all instruments are unconstrained,

the marginal tax rates T′0 bear on the full capital income y2 as the optimal value of a2 is 1. In

28This optimal Laffer rate with a dual tax is obtained from (45) which, in the baseline scenario, is t2 = 1/(1− ε2).
29When the total income is lower than e 100, 000, the average share of capital income in total income is around

7.4% whereas it is around 14.4% when the total income is higher than e 100, 000.
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this situation, the government raises the marginal tax rates T′0 to a high level at the top of the

distribution, which extracts a high tax revenue from labor income and would also extract a

high tax revenue from capital income if it were less elastic. To counterbalance the behavioral

responses that reduce y2, the government offers a transfer toward capital earners t2y2 < 0 with

t2 = −22.6%. This transfer is high, but does not offset the gains derived from the raise in T′0

when moving from the comprehensive tax system to the mixed tax system.

Let us first describe why all capital income enters the personal income tax base, i.e. a2 = 1,

at the optimum. We know from (49) that increasing a2 implies two main and ambiguous effects

on the Lagrangian.

First, increasing a2, i.e. increasing personal income y0 = y1 + a2y2, automatically increases

the level of tax on personal income T0(·). This generates a mechanical gain in tax revenue. This

increase in tax liability also creates wealth responses from all sources of income which reduce

tax revenue. Moreover, the inclusion of some extra capital income in the personal income

tax base modifies the marginal tax rate of capital income, the latter depending on T′0(·), as

emphasized in Ty2 = a2 T′0(y0) + t2. The increase in a2 creates (within-base) compensated

responses from capital incomes that reduces tax revenue. In our simulations, the impact of all

these effects on the Lagrangian, that are identified by the first line of (49), are positive.

Second, because of the nonlinearity of T0(·), increasing a2 also modifies the marginal tax

schedule on capital income Ty2(y1, y2) = a2 T′0(y1 + a2 y2) + t2 because Ty2y2(·) = a2
2 T′′0 (.).

Due to the U-shape of the tax function (see Figure 1), increasing a2 increases the marginal tax

rates T′0(y0) for taxpayers with personal income above e 100, 000. This rise in their marginal

personal income tax rates increases their marginal tax rate on capital income Ty2(·). This in-

duces compensated responses from rich earners who reduce their capital income hence, their

personal tax base. Moreover, due to the U-shaped T0(·), the same increase of a2 reduces the

marginal tax rate on capital income Ty2(·) of taxpayers with personal income below e 100, 000

which, in turn, increases their capital income hence, their personal tax base. The second line

of Equation (49) add up these effects. In our simulations, This second line is negative and the

sum of both lines of (49) is also negative. Therefore the effect on the Lagrangian of increasing

a2 is negative in all our simulations.

At the optium, this negative impact of a2 = 1 is counterbalanced by a negative tax on

capital income t2 < 0, in all our simulations. The tax authority taxes heavily capital income

with a2 = 1 and relatively large marginal tax rates on high personal income levels where the

proportion of capital income is larger and, at the same time, prevents an erosion of capital

income with subsidies t2y2 that target capital earners. This optimal negative t2 allows to more
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than offset the loss in welfare and government tax revenue implied by having increased a2 until

a2 = 1.

Calibration Dual System Optimal system
t2 a2 t2

(1) Baseline scenario 60.6% 100% – 22.8%
(2) γ = 0.75 58.5% 100% – 25.2%
(3) With income shifting 62.3% 100% – 21.4%

Table 1: Optimal t2 under the optimal dual tax and optimal a2 and t2 in the optimal tax system,
w/o and w/ general equilibrium effects (γ = 0.75) and w/o and w/ income shifting.

VI.3 Sensitivity analyses

General equilibrium effects

For our sensitivity analyses, we first depart from the baseline calibration by assuming that

labor and capital are imperfect substitutes so that general equilibrium effects can occur. Instead

of γ = 0 in (56), we experiment the case where γ = 0.75, i.e. a capital/labor elasticity of 1.33.

The personal income tax schedules obtained under our three tax regimes are very close to those

displayed in Figure 1 for the baseline case. In contrast, t2, with the dual tax, is reduced by 2.1

percentage points (see Row (2) of Table 1). In the optimal scenario, the transfer t2 (taken in

absolute value) increases by 2.3 percentage points (see Row (2) of Table 1). This is due to the

influence of macro price spillover statistics on capital income which do not exist in the baseline

scenario and are now equal to 5.4% under the Dual Tax system and to 6.5% under the optimal

tax system.30 Compared to the baseline scenario, the introduction of general equilibrium effects

makes socially desirable to decrease the tax on capital income in order to boost capital income,

thereby the marginal product of labor, hence, labor supply and eventually labor income.

Cross-base responses

Second, we emphasize the impact of cross-base responses in making income-shifting pos-

sible. We use the linear technology (in (2)) of our benchmark and add a quadratic cost of

income-shifting to the utility function (55). Using (9), the utility function is:

U (c, y1, y2; w1, w2)
def≡ max

x1,x2,σ
c− e1

1 + e1
x

1+e1
e1

1 w
− 1

e1
1 − e2

1 + ε2
x

1+e2
e2

2 w
− 1

e2
2 − σ2

2 Γ(w1, w2)

s.t : y1 = x1 + σ and y2 = x2 − σ,

which implies that the amount of shifted income verifies σ = Γ(w1, w2)(Ty2 − Ty1). Row (3)

of Table 1 corresponds to an economy where we calibrate the scale parameter Γ to 10% of

30Macro price spillover statistics on labor are equal to −0.4% under the dual tax system and −0.5% under the
optimal tax system.
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the minimum between labor income and capital income, in the no-tax scenario. When ones

allows for income-shifting, there is little effect on marginal tax rates that apply on personal

income, in the optimal case. In contrast, under the dual tax (where only labor income enters

the personal income tax base), the capital income tax rate is relatively lower than the marginal

tax rates on personal income –i.e. labor income–. Due to income-shifting, the Laffer tax rate on

capital income (from Equation (45)) increases by 1.7 percentage points to give more incentives

to supply labor. In the fully optimal system, for the same reason, the subsidy towards capital

is reduced by 1.4 percentage points (Row 3 of Table 1).

VII Conclusion

[to be completed]
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A Convexity of the Indifference Set

Let C (·, x; w) denote the reciprocal of U (·, x; w). Tax payers of type w making actions x
should get consumption c = C (u, x; w) to enjoy utility u = U (c, x; w). Using (3), we obtain:

Cu(u, x; w) =
1

Uc (C (u, x; w), x; w)
Cxi(u, x; w) = S i (C (u, x; w), x; w) (57)

For each type w ∈ W and each utility level u, we assume the indifference sets: y 7→
C (u, y1

p1
, ..., yn

pn
; w) to be strictly convex. The ith partial derivative of y 7→ C (u, y1

p1
, ..., yn

pn
; w) being

S i(C (u, y1
p1

, ..., yn
pn

; w), y1
p1

, ..., yn
pn

; w)

pi
, the Hessian is matrix

[
S i

xj
+ S i

cS j

pi pj

]
i,j

=

[
−

Uxixj + S jUc,xi + S iUcxj + S iS jUcc

pi pj Uc

]
i,j

which is symmetric. Finally, the latter matrix is obviously positive definite if and only if matrix[
S i

xj
+ S i

cS j
]

i,j
is positive definite as well.

The first-order condition of (5) is given by:

0 = (1− Tyi(y)) Uc

(
n

∑
k=1

yk − T (y) ,
y1

p1
, ...,

yn

pn
; w

)
+

1
pi

Uxi

(
n

∑
k=1

yk − T (y) ,
y1

p1
, ...,

yn

pn
; w

)

Therefore, using (6), the matrix of the second-order condition is:[
Uxixj + S jUcxi + S iUcxj + S iS jUcc

pi pj
−UcTyiyj

]
i,j

= −Uc

[
S i

xj
+ S i

cS j

pi pj
+ Tyiyj

]
i,j

Hence, for taxpayers of type w, the second-order condition holds strictly if and only if the

matrix

[
S i

xj
+ S i

cS j

pi pj
+ Tyiyj

]
i,j

is positive definite, i.e. if and only if the indifference set y 7→

C (U(w), y1
p1

, ..., yn
pn

; w) is strictly more convex than the budget set y 7→ ∑n
k=1 yk − T (y) at y =

Y(w).
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B Proof of Proposition 1

The proof contains two steps. Under the assumptions of Proposition 1, we first characterize
the separate income tax system y 7→ T (y) = ∑n

i=1 Ti(yi) that is necessary to decentralize the
allocation w 7→ (C(w), Y1(w), ..., Yn(w)). Second, we proof that this tax schedule is sufficient to
decentralize the optimal allocation w 7→ (C(w), Y1(w), ..., Yn(w)).

Under the assumptions of Proposition 1, for each i ∈ {1, ..., n}, the function Yi : w 7→ Yi(w)
is invertible with a reciprocal denoted Y−1

i and defined on [Yi(w), Yi(w)]. Under quasilinear
and additively separable utility function (18), the ith marginal rate of substitution defined in (3)
simplifies to S i (c, x; w) = υi

xi
(xi, w). Using the first-order condition (6) on each income, we can

recover for each type w and each i ∈ {1, ..., n}, the ith marginal tax rate from the ith marginal
rate of substitution. We have:

T′i (yi) = 1− 1
pi

υi
xi

(
yi

pi
; Y−1

i (yi)

)
(58)

To determine the separate tax schedule that decentralizes the optimal allocation, one simply
needs to integrate (58). Let w? be a given skill level. If the allocation w 7→ (C(w), (Y1(w), ..., Yn(w)))
can be decentralized by a separate income tax, this tax schedule has to verify:

T (y) =

(
n

∑
i=1

Yi(w?)

)
− C(w?) +

n

∑
i=1

Ti(yi) (59)

where : Ti(yi) =


yi∫

Yi(w?)

[
1− 1

pi
υi

xi

(
z
pi

; Y−1
i (z)

)]
dz if yi ∈ [Yi(w), Yi(w)]

+∞ if yi /∈ [Yi(w), Yi(w)]

This tax schedule assigns to taxpayers earning (y1, ..., yn) = (Y1(w?), ..., Yn(w?)) a level
of tax liability equal to ∑n

i=1 Yi(w?) − C(w?), which corresponds to the tax intended for w?-
taxpayers. For all other income levels y = (y1, ..., yn) that are reached by the optimal allocation
to decentralize, (i.e. for which yi ∈ [Yi(w), Yi(w)]) , the tax liability is computed by integrating
for each type i of income the marginal tax rate in (58) between Yi(w?) and yi. Otherwise, the
tax liability is infinite.

We now show that the separate tax schedule (59) is sufficient to decentralize the alloca-
tion w 7→ (C(w), Y1(w, ..., Yn(w)). As (59) is separate and preferences are additively separable,
the n−dimensional program (5) of w-individuals can be simplified into the following n one-
dimensional programs:

n

∑
i=1

{
max

yi
yi − Ti(yi)− υi

(
yi

pi
; w
)}

.

Whenever yi ∈ [Yi(w), Yi(w)], we get from (59) that:

yi − Ti(yi) = Yi(w?) +
1
pi

yi∫
Yi(w?)

υi
xi

(
z
pi

; Y−1
i (z)

)
dz.

So, we have:

yi−Ti(yi)− υi
(

yi

pi
; w
)
= Yi(w?)− υi

(
Yi(w?)

pi
; w
)
+

1
pi

yi∫
Yi(w?)

[
υi

xi

(
z
pi

; Y−1
i (z)

)
− υi

xi

(
z
pi

; w
)]

dz.

The derivative of the latter expression with respect to yi is:

∂

(
yi − Ti(yi)− υi

(
yi

pi
; w
))

∂yi
=

1
pi

[
υi

xi

(
yi

pi
; Y−1

i (yi)

)
− υi

xi

(
yi

pi
; w
)]

.
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Since w 7→ Yi(w) is strictly increasing and υi
xi ,w < 0, this derivative is nil for yi = Yi(w),

positive for yi < Yi(w) and negative for yi > Yi(w). Hence, under the tax schedule defined in
(59), a w-taxpayer chooses yi = Yi(w) which ends the proof of Proposition (1).

C Proof of Proposition 2

The proof consists in stating that for any tax schedule y 7→ T (y) there exists a mapping
T (·) defined on the positive real line such that each taxpayer makes the same decision and
gets the same utility under the initial tax schedule y 7→ T (y) and under the comprehensive tax
schedule y 7→ T (∑n

i=1 yi), but the government’s revenue is larger under the comprehensive
tax system y 7→ T (∑n

i=1 yi) than under y 7→ T (·). The reasoning is similar to the one found
in Konishi (1995), Laroque (2005) and Kaplow (2008)31 Our proof is constructed on a similar
reasoning but is valid with general tax instruments and multidimensional incomes.

Under the linear production function (2), the inverse demand equations (1) simplify to pi =
1. Let X(w) = Y(w) be the solution to:

max
y

U
(

n

∑
i=1

yi − T (y),V (y1, ..., yn) ; w

)
. (60)

Let C(w)
def≡ ∑n

i=1 Yi(w) − T (Y(w)), let V(w)
def≡ V(X(w)) be the “subdisutility” and let

U(w)
def≡ U (C(w), X(w); w) = U (C(w), V(w); w).

We first note that if there exist two types w? 6= w′ such that V(w?) = V(w′), then one
need to have C(w?) = C(w′). If by contradiction C(w?) > C(w′) (the argument for C(w?) <
C(w′) is symmetric), then type w′ would obtain a higher utility by choosing Y(w?) than Y(w′)
as in such a case: U (C(w?), X(w?); w′) = U (C(w?), V(w?); w′) > U (C(w′), V(w?); w′) =
U (C(w′), V(w′); w′) = U (C(w′), X(w′); w′) which would contradict that y = Y(w′) solves
(60) for individuals of type w′.

Next, we define the expenditure function R(·) such that, for each subdisutility level v,
either there exists w such that v = V(w), in which case we define R(v) = C(w), or R(v) =
−∞. Note also that R is increasing over the set of attained subdisutility. Otherwise, there
would exist w and w′ such that v = V(w) < v′ = V(w′) and R(v) = C(w) ≥ R(v) = C(w′).
This would lead to U (C(w), V(w); w′) > U (C(w′), V(w′); w′), which would contradict that
y = Y(w′) solves (60) for individuals of type w′.

For individuals of type w solving (60) amounts to solve

max
v

U (R(v), v; w). (61)

As V(·) is convex, the program:

V(g)
def≡ min

y
V (y1, ..., yn) s.t :

n

∑
i=1

yi = g (62)

is well defined and so is its value V(·). In particular, V(·) is increasing since V is increasing in
each argument. In (62), g is the sum of the different kinds of income yi (i = 1, ..., n) when these
income levels are chosen to minimize the subdisutility V of all actions together. We then define
T (·) by:

T : g 7→ T (g)
def≡ g−R (V(g)) .

31These authors show that a linear indirect tax is useless when a nonlinear labor income tax prevails. Indeed,
despite the fact that the agents choose the same allocation under both tax systems, the government’s revenue is
proven to be larger with a zero indirect tax rate than with a positive one.
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which is g minus the value of consumption reached when the subdisutility of all actions is
minimized. Under the comprehensive tax schedule y 7→ T (∑n

i=1 yi), one has

n

∑
i=1

yi −T

(
n

∑
i=1

yi

)
= R

(
V

(
n

∑
i=1

yi

))
.

Hence, under the tax schedule y 7→ T (∑n
i=1 yi), taxpayers of type w solve:

max
y

U
(
R
(

V

(
n

∑
i=1

yi

))
,V (y1, ..., yn) ; w

)
.

This problem can be solved sequentially. First, one solves the dual program of (62)

max
y

n

∑
i=1

yi s.t : V (y1, ..., yn) = v

for a given level of subdisutility v since R and V are increasing mappings. Second, one solves
Program (61). The tax schedule y 7→ T (∑n

i=1 yi) therefore leads each type of taxpayer to make
the same decisions and to reach the same V(w) as well as the same utility U(w) than under the
tax schedule y 7→ T (y).

However, the tax revenue is under under the initial tax schedule, since Y(w) is solving

max
y

n

∑
i=1

yi − T (y) s.t. : V (y1, ..., yn) = V(w)

instead of solving:

max
y

n

∑
i=1

yi s.t. : V (y1, ..., yn) = V(w)

the latter program having the same solution as:

min
y

V (y1, ..., yn) s.t. :
n

∑
i=1

yi =
n

∑
i=1

Yi(w).

D Responses to tax reforms

To be able to apply the implicit function theorem to the first-order condition associated to
the individual maximization program, we make the following assumption.

Assumption 3. The initial tax schedule y 7→ T (y) is such that:

i) The initial tax schedule is twice continuously differentiable.

ii) The second-order condition associated to the individual maximization program (5) holds strictly,

i.e. the matrix

[
S i

xj
+ S i

cS j

pi pj
+ Tyiyj

]
i,j

is positive definite.

iii) For each type w ∈W, program (5) admits a unique global maximum.

Part (i) of Assumption 3 ensures that first-order conditions (6) are differentiable in incomes
y. It rules out kinks in the tax function, thereby bunching.32 Parts (i) and (ii) of Assumption 3

32In practice, most of real world tax schedules are piecewise linear. In theory, bunching should occur at convex
kink points and gaps in the income distribution should occur at concave kink points. In practice, bunching is very
rare (with the noticeable exception of Saez (2010)) and gaps as well. This discrepancy between theory and reality
is plausibly due to the fact that taxpayers do not optimize with respect to the exact tax schedule but with respect
to some smooth approximation of it, e.g. y 7→

∫
T (y + u)dΨ(u) where u is an n-dimensional random shock on

incomes with joint CDF Ψ, which does verify part i) of Assumption 3.
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together ensure that the implicit function theorem can be applied to first-order conditions (6)
to ensure that each local maximum of y 7→ U

(
∑n

k=1 yk − T̃ (y, t), y1
p1

, ..., yn
pn

; w
)

is differentiable
in type w, in price p and in the tax perturbation’s magnitude t. If this mapping admits several
global maxima among which taxpayers are indifferent, any small tax reform may then lead to a
jump in taxpayer’s choice from one maximum to another one. Part (iii) prevents this situation
and ensures the allocation changes in a differentiable way with the magnitude of the tax reform
and with types.

Because the indifference set is convex (See Appendix A), Assumption 3 is automatically
satisfied when the tax schedule is linear, or when the tax schedule is weakly convex. It is also
satisfied when the tax schedule is not “too” concave, so that function y 7→ ∑n

k=1 yk − T (y)
is less convex than the indifference set with which it has a tangency point in the (y, c)-space
(so that Part (ii) of Assumption 3 is satisfied) and that this indifference set lies strictly above
y 7→ ∑n

k=1 yk − T (y) for all other y (so that Part (iii) of Assumption 3 is satisfied). In the
same spirit as the first-order mechanism design approach of Mirrlees (1971, 1976), we presume
the optimal tax schedule verifies Assumption 3.33 We derive optimality conditions and verify
ex-post whether this presumption is validated by the obtained solution.

Derivation of Equation (21) with exogenous and endogenous prices and of Equations (20d)
and (30)

Since taxpayers take the price p = ( p̃1(t), ..., p̃n(t)) as given, they solve, under the tax
schedule y 7→ T̃ (y, t), the following program which depends on the magnitude t of the tax
perturbation and on the price vector p:

Û(w; t, p)
def≡ max

y=(y1,...,yn)
U

(
n

∑
i=1

yi − T̃ (y, t),
y1

p1
, ...,

yn

pn
; w

)
. (63)

This individual maximization programs summarizes the supply side of our model since it gives
all individual supplies of income. The first-order conditions are:

∀i ∈ {1, ..., n} :
1
pi
S i

(
n

∑
k=1

yk − T̃ (y, t),
y1

p1
, ...,

yn

pn
; w

)
= 1− T̃yi(y, t). (64)

Let Ŷ(w, t, p) = (Ŷ1(w, t, p), ..., Ŷn(w, t, p)) denotes the solution, i.e. the individual supply of
income. At equilibrium where pj = p̃j(t), one obviously has Ỹi(w, t) ≡ Ŷi(w, p̃(t)) for all
i ∈ {1, ..., n} and Ũ(w, t) ≡ Û(w, p̃(t)).

Under Assumption 3, the implicit function theorem ensures that the solution Ŷ(w, t, p)
to program (63) is differentiable with respect to t and to p and its partial derivatives at p =
( p̃1(0), ..., p̃n(0)) and t = 0 can be obtained by differentiating Equations (64) at y = Y(w). This
leads to, ∀i ∈ {1, ..., n}:

n

∑
j=1

[
S i

xj
+ S i

cS j

pi pj
+ Tyiyj

]
dyj =

[
−

∂T̃yi

∂t
+
S i

c
pi

∂T̃
∂t

]
dt +

n

∑
j=1

(
1i=j(1− Tyi) +

S i
xj

yj

pi pj

)
dpj

pj
.

This differentiation can be rewritten in matrix form as:[
S i

xj
+ S i

cS j

pi pj
+ Tyiyj

]
i,j

· dyT =

−
[

∂T̃y1

∂t
, ...,

∂T̃yn

∂t

]T

i

+

[
S1

c
p1

, ...,
Sn

c
pn

]T

i

∂T̃
∂t

dt (65)

+

[
1i=j(1− Tyi) +

S i
xj

yj

pi pj

]
i,j

·
(

dp1

p1
, ...,

dpn

pn

)T

.

33Conversely, Golosov et al. (2014) do assume that the income function is locally Lipschitz continuous in tax
reforms, while Hendren (2020) does assume that aggregate tax revenue varies smoothly in response to changes in
the tax schedule.
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where superscript T denotes the transpose operator
[
Ai,j
]T

i,j =
[
Aj,i
]

i,j and "·" denotes the matrix

product. Under a compensated tax reform of the jth marginal tax rate at income y = Y(w), as

defined in (20b), one gets ∂T̃
∂t = 0 and

∂T̃yk
∂t = −1j=k. Hence, according to (65), the matrix of

compensated responses is given by:

[
∂Yi(w)

∂τj

]
i,j
=

[S i
xj
+ S i

cS j

pi pj
+ Tyiyj

]
i,j

−1

. (66a)

Under the lump-sum tax reform defined in (20a), one has ∂T̃
∂t = −1 and

∂T̃yk
∂t = 0. Hence,

according to (65), the vector of wealth responses is given by:

[
∂Yi(w)

∂ρ

]T

i
= −

[S i
xj
+ S i

cS j

pi pj
+ Tyiyj

]
i,j

−1

· (S1
c , ...,Sn

c )
T. (66b)

Finally, according to (65), the responses to changes in log prices are given by:

[
∂Yi(w)

∂log pj

]
i,j
=

[S i
xj
+ S i

cS j

pi pj
+ Tyiyj

]
i,j

−1

·
[
1i=j(1− Tyi) +

S i
xj

yj

pi pj

]
i,j

. (66c)

Consider a tax perturbation as defined in Definition 2, plugging (66a) and (66b) into (65)
yields:

∂Ŷi(w, t = 0, p)
∂t

= −∂Yi(w)

∂ρ

∂T̃ (Y(w), 0)
∂t

∣∣∣∣
t=0︸ ︷︷ ︸

Wealth responses

−
n

∑
j=1

∂Yi(w)

∂τj

∂T̃yj(Y(w), 0)
∂t

∣∣∣∣∣
t=0︸ ︷︷ ︸

Compensated responses

(67)

which, with exogenous prices, leads to (21).
Under an uncompensated tax reform of the jth marginal tax rate as defined in (20c), one gets

∂T̃
∂x = −Yj(w) and

∂T̃yk
∂x = −1j=k. So, Equation (67) leads to the Slutsky Equation (20d).

Finally, applying the envelope theorem to (63) leads to:

∂Û(w, t = 0, p)
∂t

= −Uc (C(w), X(w); w)
∂T̃ (Y(w), t)

∂t

∣∣∣∣∣
t=0

(68a)

∂Û(w, t = 0, p)
∂log pj

= −Uxj (C(w), X(w); w)
Yj(w)

pj

= Uc (C(w), X(w); w)
(

1− Tyj(Y(w))
)

Yj(w) (68b)

where the last equality follows from (3) and (6).

To compute the responses of prices to a tax reform, define the aggregate ith income as func-
tion of the price p and of the magnitude t of the tax perturbation y 7→ T̃ (y, t) as follows:

Ŷi(t, p)
def≡
∫

w∈W
Ŷi(w, t, p) f (w)dw

From the inverse demand equations (1), prices p̃(t) = ( p̃1(t), ..., p̃n(t)) have to solve:

∀t, ∀j ∈ {1, ..., n} pi = FXi

(
Ŷ1(t, p)

p1
, ...,
Ŷn(t, p)

pn

)
.
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Log-differentiating the latter equation leads to:[
dpi

pi

]
i

= Ξ ·
[

dXi

Xi

]
= Ξ

([
dYi

Yi

]
i
−
[

dpi

pi

]
i

)

(In + Ξ) ·
[

dpi

pi

]
i

= Ξ ·
[

dYi

Yi

]
i
= Ξ ·

 1
Yi

∂Ỹi(t)
∂t

∣∣∣∣∣
Micro

t=0


i

+ Σ ·
[

dpi

pi

]
i


(In + Ξ− Ξ · Σ) ·

[
dpi

pi

]
i

= Ξ ·


1
Y1

0

0
1
Y2

 ·
 ∂Ỹi(t)

∂t

∣∣∣∣∣
Micro

t=0


i

Hence, under Assumption 1, one can apply the implicit function theorem to ensure that the
vector of prices is differentiable with respect to t and that Equation (30) holds. Adding these
price responses to Equation (67) and using (66c) leads to Equation (21). Combining Equations
(24), (68a) and (68b) lead to (25).

E Proof of Proposition 3

Let y 7→ T̃ (y, t) be a tax perturbation and let `(t) be the lump-sum rebate such that the

tax perturbation y 7→ T̃ (y, t) + `(t) guarantees a balanced budget. Denote ∂A
∂t

∣∣∣?
t=0

the partial

derivative of A along the budget-balanced tax perturbation y 7→ T̃ (y, t) + `(t). We thus get
∂B̃
∂t

∣∣∣?
t=0

= 0 and so:

1
λ

∂W̃

∂t

∣∣∣∣∣
?

t=0

=
∂L̃

∂t

∣∣∣∣∣
?

t=0

Let ∂Aρ

∂t

∣∣∣
t=0

be the partial derivative of A along the lump-sum perturbation (20a). According to
(32), we get:

∂L̃

∂t

∣∣∣∣∣
?

t=0

=
∂L̃

∂t

∣∣∣∣∣
t=0

+ `′(0)
∂L̃ ρ

∂t

∣∣∣∣∣
t=0

.

Equation (33) implies:
∂L̃ ρ

∂t

∣∣∣∣∣
t=0

= 0.

Combing these three equations leads to:

1
λ

∂W̃

∂t

∣∣∣∣∣
?

t=0

=
∂L̃

∂t

∣∣∣∣∣
t=0

.

Since λ > 0, ∂W̃ (t)
∂t

∣∣∣?
t=0

is positive, i.e. the budget-balanced reform improves welfare if and only

if ∂L̃
∂t

∣∣∣
t=0

> 0.
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F Responses of taxable income under a mixed tax schedule

According to (16) and (21), we get:

∂Ỹ0(w, t)
∂t

∣∣∣∣∣
t=0

=
n

∑
k=1

a′k(yk)
∂Ỹk(w, t)

∂t

∣∣∣∣∣
t=0

= − ∑
1≤j,k≤n

a′k(yk)
∂Yk(w)

∂τj

∂T̃yj(Y(w), t)
∂t

∣∣∣∣∣
t=0

−
n

∑
k=1

a′k(yk)
∂Yk(w)

∂ρ

∂T̃ (Y(w), t)
∂t

∣∣∣∣∣
t=0

− ∑
1≤j,k≤n

a′k(yk)
∂Yk(w)

∂log pj

∂log p̃j(t)
∂t

∣∣∣∣
t=0

Equation (21) is thus also verified for taxable income with i = 0 as long as the income re-
sponse, the compensated responses and the response to relative price changes are respectively
defined by (35a), (35b) and (35d). Moreover, for z = ρ, τj, log pj, we obtain:

n

∑
i=1

(
Tyi(Y(w)) + µi

) ∂Yi(w)

∂z
=

n

∑
k=1

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂z
+ T′0(Y0(w))

n

∑
k=1

a′k(Yk(w))
∂Yk(w)

∂z

=
n

∑
k=1

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂z
+ T′0(Y0(w))

∂Y0(w)

∂z

=
n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂z

where the first equality is obtained by using Equations (16) and (17) and by inverting subscripts
i and k. The second equality is obtained using Equations (35a), (35b) and (35d). The last equality
holds because we have normalized µ0 = 0. Equation (32) then becomes:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

w∈W

{[
1− g(w)−

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

]
∂T̃ (Y(w), t)

∂t

∣∣∣∣∣
t=0

(69)

−
n

∑
j=1

(
n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τj

)
∂T̃yj(Y(w), t)

∂t

∣∣∣∣∣
t=0

}
f (w)dw.

G Reforms of the tax schedule specific to the ith income and its opti-
mal shape (with arbitrary or optimal other taxes)

We consider tax perturbations of the form:

T̃ (y, t) = T0

(
n

∑
k=1

ak(yk)

)
+

n

∑
k=1

Tk(yk)− t Ri(yi)

which implies (36) and (37). Plugging these equations into (69) leads to Equation (38). Apply-
ing our proof of Proposition 3 (Appendix E), it is therefore straightforward to proof part i) of
Proposition 4.

Using the law of iterated expectations to condition types w on Yi(w) = yi and using (42),
we obtain:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

yi∈R+

{[
T′i (yi) + µi

1− T′i (yi)
ε i(yi) yi + ∑

0≤k≤n,k 6=i

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

]
R′(yi)

−
[

1− g(w)|Yi(w)=yi
−

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=yi

]
R(yi)

}
hi(yi) dyi
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Integrating the latter equation by parts and using (33) leads to:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

yi∈R+

{
T′i (yi) + µi

1− T′i (yi)
ε i(yi) yi hi(yi) + ∑

0≤k≤n,k 6=i

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

hi(yi)

−
∫ ∞

z=yi

[
1− g(w)|Yi(w)=z −

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=z

]
hi(z)dz

}
R′(yi)dyi

If Ti(·) is optimal whatever the other tax schedules, any reform of the ith income should yield no
first-order effect, whatever the direction Ri(·), thereby, whatever R′i(·). Therefore, the integrand
in the preceding expression should be zero for all yi, which leads to (44) and thereby, to part ii)
of Proposition 4.

H Reforms of the personal income tax schedule

We consider tax perturbations of the following form:

T̃ (y, t) = T0

(
n

∑
k=1

ak(yk)

)
+

n

∑
k=1

Tk(yk)− t R0

(
n

∑
k=1

ak(yk)

)

which implies (39) and (40). Using (21), one obtains the impact of this type of reform of the
personal income tax on all types of income, ∀k ∈ {1, ..., n}:

∂Ỹk(w, t)
∂t

∣∣∣∣∣
t=0

=
n

∑
j=1

a′j(Yj(w))
∂Yk(w)

∂τj
R′0(Y0(w))+

∂Yk(w)

∂ρ
R0(Y0(w))+

n

∑
j=1

∂Yk(w)

∂log pj

∂log p̃j

∂t

∣∣∣∣
t=0

.

(70)
Combining T̃ (y, t) = T (y)− t Ri(yi) with a compensated tax reform of the personal income
described in Equation (20b), so that, in (70) one has R0(·) = 0, R

′
0(·) = −1 and ∂log p̃j

∂t

∣∣∣
t=0

= 0,

we obtain (41). Given (41), for k ∈ {1, .., n}, Equation (70) simplifies to:

∂Ỹk(w, t)
∂t

∣∣∣∣∣
t=0

=
∂Yk(w)

∂τ0
R′0(Y0(w)) +

∂Yk(w)

∂ρ
R0(Y0(w)) +

n

∑
j=1

∂Yk(w)

∂log pj

∂log p̃j

∂t

∣∣∣∣
t=0

.

Combining the latter equation with (16), (35a), (35b) and (41) for i = k = 0 leads to:

∂Ỹ0(w)

∂t

∣∣∣∣∣
t=0

= ∑
1≤k,j≤n

a′k(Yk(w)) a′j(Yj(w))
∂Yk(w)

∂τj
R′0(Y0(w))

+
n

∑
k=1

a′k(Yk(w))
∂Yk(w)

∂ρ
R0(Y0(w)) + ∑

1≤k,j≤n
a′k(Yk(w))

∂Yk(w)

∂log pj

∂log p̃j

∂t

∣∣∣∣
t=0

=
n

∑
j=1

a′j(Yj(w))
∂Y0(w)

∂τj
R′0(Y0(w)) +

∂Y0(w)

∂ρ
R0(Y0(w))

+ ∑
1≤k,j≤n

a′k(Yk(w))
∂Yk(w)

∂log pj

∂log p̃j

∂t

∣∣∣∣
t=0

.
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We can conclude that (21) also holds for j = 0, i.e. with taxable personal income tax reforms.
According to Equation (69), one gets:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

w∈W

{[
n

∑
k=0

(
T′k(Yk(w)) + µk

) ( n

∑
j=1

a′j(Yj(w))
∂Yk(w)

∂τj

)]
R′0(Y0(w))

+

[
−1 + g(w) +

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

]
R0(Y0(w))

}
f (w)dw

=
∫

w∈W

{[
n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τ0

]
R′0(Y0(w))

+

[
−1 + g(w) +

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

]
R0(Y0(w))

}
f (w)dw

where the second equality uses (41). We thus get (38) with i = 0. Part (i) of Proposition 4 is
therefore also valid for i = 0, thereby also its Part (ii).

I Optimal linear tax schedule

Rewriting Equation (38) with the uncompensated tax perturbation of the ith income defined
in (20c) (i.e. taking Ri(Yi(w)) = Yi(w) and R′(Yi(w)) = 1) and using the Slutsky equations
(20d) leads to:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

w∈W

{
[g(w)− 1]Yi(w) +

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yu
k (w)

∂τi

}
f (w)dw.

Assuming that the ith income is taxed at the linear rate ti, so that Ti(yi) = ti yi leads to:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

w∈W

{
[g(w)− 1]Yi(w) + (ti + µi)

∂Yu
i (w)

∂τi

+
n

∑
k=0,k 6=i

(
T′k(Yk(w)) + µk

) ∂Yu
k (w)

∂τi

}
f (w)dw.

Equating to zero the latter expression, where one substitutes the uncompensated elasticity

εu
i (w)

def≡ 1−ti
Yi(w)

∂Yu
i (w)
∂τi

, and rearranging terms, leads to (45).

J Proof of Proposition 5

The reform of the ith deduction rate defined in (46) implies:

∂T̃ (Y(w), t)
∂t

∣∣∣∣
t=0

= −Yi(w) T′0(Y0(w))

∂T̃yi(Y(w), t)
∂t

∣∣∣∣∣
t=0

= −T′0(Y0(w))− a′i(Yi(w)) Yi(w) T′′0 (Y0(w))

∀j ∈ {1, ..., n} , j 6= i
∂T̃yj(Y(w), t)

∂t

∣∣∣∣∣
t=0

= −a′j(Yk(w)) Yi(w) T′′0 (Y0(w)),
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where (48) and (47) have been used for the second and third equation, respectively. Combining
these expressions with (69) leads to:

∂L̃ (t)
∂t

∣∣∣∣∣
t=0

=
∫

w∈W

{[
g(w)− 1 +

n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂ρ

]
Yi(w) T′0(Y0(w))

+
n

∑
k=0

(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τi
T′0(Y0(w))

+

(
n

∑
j=1

n

∑
k=0

a′j(Yj(w))
(
T′k(Yk(w)) + µk

) ∂Yk(w)

∂τj

)
Yi(w) T′′0 (Y0(w))

}
f (w)dw.

Using the Slutsky equation (20d) and Equation (41), the preceding equation simplifies to (49),
which, combined with Proposition 3, ends the proof of Proposition 5.

K Input Taxation is superfluous

In this appendix, we show that the taxation of production inputs can be replicated by an
adequate re-scaling of the income tax function T (·). Hence our assumption that there is no tax
taxation of inputs is without loss of generality. Assume input i is taxed at rate αi < 1.

For each i ∈ {1, ..., n}, let pi denote producers’ input prices and let qi = pi(1 − αi) de-
note suppliers’ prices. The ith market income is yi = pi xi while the ith taxable income is
equal to qi xi = (1 − αi)xi. The tax schedule is a function of the vector of taxable income
(q1 x1, ..., qn xn) = ((1− α1)y1, ..., (1− αn)yn). Hence, after-tax income c verifies:

c =
n

∑
i=1

qi xi − T (q1 x1, ..., qn xn) =
n

∑
i=1

yi − αiyi − T ((1− α1)y1, ..., (1− αn)yn)

In the presence of input taxation, instead of (5), a w-taxpayer solves:

U(w)
def≡ max

y1,...,yn
U

(
n

∑
k=1

yk − αi yk − T ((1− α1)y1, ..., (1− αn)yn) ,
y1

p1
, ...,

yn

pn
; w

)
Definition 1 of the equilibrium is otherwise unchanged. Since the inverse demand equations
(1) and the market clearing conditions (7) are unchanged, the same equilibrium p = (p1, ..., pn),
w 7→ Y(w) and (Y1, ...,Yn) is obtained with input price vectors (α1, ..., αn) and income tax
T (·) or without any input taxation and the renormalized income tax schedule (y1, ..., yn) 7→
T ((1− α1)y1, ..., (1− αn)yn) + ∑n

i=1 αi yi.

L Numerical simulations

The algorithm iterates different operations on the “real” dataset made of 27, 804 observa-
tions from ERFS and a grid of 50 taxable income y0 levels between e 4, 000 and e 200, 000 that
we refer to the “virtual dataset”.

The real dataset initially contains for each observation a labor and a capital income level
from ERFS, the ERFS weight of the observation as well as an approximation of the marginal
tax rate on labor income and of capital income. We use taxpayers’ first order conditions (6) to
assign a type (w1, w2) to each observation of the real dataset.

Each node of the virtual dataset is made by a personal income tax level y0 and a marginal tax
rate of the personal income tax schedule T′0(y0). The personal marginal tax schedule y0 7→ T′0(·)
is approximated by a linear interpolation. To extrapolate marginal tax rate above e 200, 000,
we suppose marginal tax rate are constant above e 200, 000.

a2 is between a minimum of 0 the (dual case) and a maximum value of 1. The different steps
in the numerical process for a given a are the following.
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1. Given the linear interpolation of personal marginal tax rate obtained from the personal
income tax base and an intercept for the personal income tax schedule, compute for each
observation of the real dataset the solution of taxpayer’s program (5), i.e. their labor in-
come and capital income. Deduce from this solution compensated elasticities and utility
levels. Compute the macro spillover terms using (31). Compute the statistics that show
up in (44) (for i = 0) and in (45) (for i = 2).34

2. For each observation of the virtual dataset, we compute personal income density by a
kernel density estimation, and we compute the mean of the sufficient statistics that show
up in (44) by kernel regression on the real dataset.

3. Unlike for the comprehensive tax system, Evaluate (45) by summing the statistics that
show up in (45).

4. Go back to step 1

Once marginal personal income tax rates and linear tax rate across two successive iteration
differ by less than 0.1 percentage point, the algorithm Evaluate (49) on the real dataset. If
(49) is positive (negative), update a2 to be between its minimum (maximum) value and its
preceding one and update the bounds of a2. The program stops when the difference between
the minimum and maximum value of a2 is sufficiently low.

34Under Maximin one has g(w) = 0. Moreover, with quasilinear preferences, wealth effects are nil ∂Yk
∂ρ = 0.

Finally, we take a1(y1) = y1, so a′1(y1) = 1, T1(y1) = T′1(y1) = 0.
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