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Abstract

We analyze optimal monetary policy in a New Keynesian model with het-

erogeneous firms. Firms differ in their productivity and net worth and face

collateral constraints that cause capital misallocation. TFP depends on the

time-varying distribution of firms. We introduce a new algorithm to compute

optimal policies in continuous-time heterogeneous-agent models. Our results

show that a central bank without pre-commitments engineers an unexpected

monetary expansion to increase the profits of high-productivity firms, allowing

them to relax their financial constraints. This reduces capital misallocation and

increases TFP. Contrary to the case with complete markets, in the event of a

cost-push shock, the central bank leans with the wind to increase demand and

reduce misallocation. We provide empirical evidence based on Spanish granular

data supporting the main mechanism at play, that is, that high-productivity

firms increase their investment relatively more following an expansionary mon-

etary policy shock.
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1 Introduction

Monetary policy affects capital allocation. If real interest rates decrease, low produc-

tivity projects can turn into profitable firms due to their lower costs of capital. In

an economy with financial frictions and sticky prices, this mechanism may lead to

scarce capital being redirected towards less productive firms after a monetary expan-

sion, thus reducing average productivity. If this is the case, the central bank faces

a non-trivial trade-off between short-term inflation/output stabilization and aggre-

gate productivity. What does this trade-off imply for the optimal design of monetary

policy? Should the central bank renounce to stabilize the economy after a negative

shock on the grounds that it would decrease allocative efficiency? Do concerns about

fueling misallocation justify a more hawkish monetary policy stance? These are the

important questions that we try to answer in this paper.

To this end, we propose a continuous-time New Keynesian model with heteroge-

neous firms. The model features a continuum of firms operated by entrepreneurs with

idiosyncratic time-varying productivity levels and subject to borrowing constraints.

Each entrepreneur decides whether to operate a firm or not: if her idiosyncratic pro-

ductivity is above a certain threshold, the entrepreneur hires workers and rents capital

in order to produce, otherwise she does not operate. Due to financial frictions, a con-

tinuum of firms at the top of the productivity distribution will operate, introducing

dispersion in the marginal product of capital (MPK), i.e. capital misallocation.

Firm heterogeneity and incomplete markets change the behavior of the economy

relative to its complete-market representative-agent New-Keynesian (RANK) counter-

part in a meaningful way.1 The borrowing constraint implies that only self-financing

can undo financial frictions, such that the distribution of net worth across firms

matters for allocative efficiency. While in the RANK economy aggregate TFP is ex-

ogenous, in our economy TFP evolves endogenously as a result of the heterogeneous

investment decisions of firms. Due to nominal rigidities, by changing nominal rates

the central bank can influence the cut-off level of productivity above which operat-

ing a firm is profitable. We call this mechanism the productivity threshold channel

of monetary policy. The central bank also affects firms’ profits and net worth, thus

relaxing or tightening the borrowing constraint and changing the dynamics of the

1Kaplan et al. (2018) refer to HANK and RANK to distinguish between heterogeneous and
representative household models. Here we use the same names to differentiate between heterogeneous
and representative firms.
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firm distribution, in what we call the net-worth distribution channel of monetary pol-

icy. The net impact of these two channels constitutes the ’misallocation channel ’ of

monetary policy.

Finding the optimal monetary policy in models with heterogeneous firms is a

challenge, as the productivity-capital distribution is an infinite-dimensional object.

To overcome this problem, we propose a novel methodology to compute optimal

policies in models featuring non-trivial heterogeneity. We approximate the original

continuous-time, continuous-space problem by a discrete-time, discrete-space prob-

lem using a finite difference method similar to the one introduced in Achdou et al.

(2017). Then we compute the first-order conditions of the Ramsey planner on the

modified, finite-dimensional, problem using standard software packages for symbolic

differentiation. Finally, we solve the resulting system of nonlinear equilibrium con-

ditions in the sequence space using a Newton solver. We provide a proposition that

shows how this methodology can be applied to a general class of Ramsey problems

in heterogeneous-agent models. Our algorithm is easy to code using Dynare, for

instance.

We first analyze time-0 Ramsey optimal policy and uncover a new source of time

inconsistency. Though zero inflation is optimal in the long run, the central bank

engineers a temporary monetary expansion in the short run.2 This policy surprise

increases the profits of high-productivity firms, allowing them to accumulate more

capital and thus to grow. This, in turn, reduces capital misallocation and increases

TFP in the medium term. Firm heterogeneity thus represents a new source of time in-

consistency that is absent in the complete-market representative-firm New Keynesian

model. In order to understand this result, we decompose the effects of monetary pol-

icy on misallocation into direct effects, i.e., those operating through interest rates, and

indirect or general equilibrium effects, i.e. those operating through product prices and

wages. We show how, ceteris paribus, a reduction in real rates increases misallocation

by reducing the cut-off, thus allowing low-productivity firms to start operating (the

productivity threshold channel). However, when all prices are allowed to change, the

general equilibrium effects increase the cut-off and shift the firm distribution towards

high-productivity firms, thus decreasing misallocation. We decompose the relative

impact of the two channels on aggregate TFP and find that the net-worth distribu-

2We introduce taxes and subsidies such that optimal policy in the RANK model is time consis-
tent.
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tion channel accounts for the bulk of TFP dynamics. The threshold channel is thus

negligible in general equilibrium.

We turn next to optimal monetary policy from a ’timeless perspective’ (Woodford,

2003), in which the central bank has to honor its pre-commitments when the economy

is hit by a shock. We consider a cost-push shock. The prescription in the RANK model

is that the central bank should lean against the wind (Gali, 2008) – by tightening

the monetary policy stance but tolerating some inflation to minimize the reduction

in output. In the case of firm heterogeneity, the central bank should instead lean with

the wind. It loosens monetary policy despite the rise in inflation, as the increase in

demand boosts firms’ profits and increases TFP, amplifying the expansionary demand

effect on output. The misallocation channel of monetary policy thus makes optimal

policy more dovish.

Finally, we present empirical evidence supporting the main mechanism through

which optimal monetary policy operates in our model: we show how high-productivity

firms invest more relative to low-productivity ones in response to an expansionary

monetary policy shock. We use micro panel data for the quasi-universe of Spanish

firms during the period 2000-2016, and construct the monetary policy shocks using the

high-frequency event-study approach of Jarociński and Karadi (2020). Our empirical

estimation follows closely that of Ottonello and Winberry (2020), with the difference

that we focus on the heterogeneous impact of monetary policy depending on firms’

productivity, proxied by the marginal revenue product of capital (MRPK). We find

that having one standard deviation higher MRPK implies a further 20 pp increase in

capital in response to a 100 bp cut in interest rates.This confirms the main mechanism

of the model, and reinforces the messages that the optimal policy exercises deliver.

Related literature. This paper contributes to several strands of the literature.

First, three recent papers have focused on the role of financial frictions and firm het-

erogeneity in monetary policy transmission. Ottonello and Winberry (2020) analyze

the effect of monetary policy on firm investment in a model with endogenous default.

They find that expansionary monetary policy causes an increase in investment both

because it affects the cost of capital and because it relaxes the borrowing constraint

for riskier firms. Jeenas (2020) analyzes the role of firms’ balance sheet liquidity in

the transmission of monetary policy to investment. Koby and Wolf (2020) study the

conditions under which the lumpiness of firm-level investment matters for aggregate

investment dynamics and, as an application, analyze monetary policy transmission
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with heterogeneous firms. We contribute to this nascent literature on two fronts.

First, we focus on capital misallocation. Second, and more importantly, our paper

is normative, not positive. We analyze optimal monetary policy in a model with

non-trivial firm heterogeneity.3

Second, we add to the literature analyzing optimal monetary policies in models

with heterogeneous agents. First, Nuño and Thomas (2016) employ calculus of vari-

ations to analyze optimal monetary policy in a model with heterogeneous agents,

incomplete markets and Fisherian redistribution through long-term nominal debt.

Bhandari et al. (2021) analyze optimal monetary and fiscal policies in a HANK model

using perturbation techniques. Bilbiie and Ragot (2020), Acharya et al. (2019), and

Le Grand et al. (2020) analyze optimal monetary policy in HANK models in which

the wealth distribution is finite-dimensional, and hence tractable using standard tech-

niques. Beyond the fact that we focus on heterogeneous firms and not households, the

key difference with these papers is that we introduce a new method that is both easy

to code and can deal with relatively complex models with heterogeneous agents, in-

cluding exogenous borrowing limits or other nonlinear features that cannot be tackled

with perturbation techniques.

Finally, our model is related to the extensive literature on capital misallocation,

and the different channels that may affect it, such as Hsieh and Klenow (2009) or

Midrigan and Xu (2014) – see Restuccia and Rogerson (2017) for a review on this

literature. Our paper builds on Moll (2014), who introduces a heterogeneous-firm

model to study how the nature of the idiosyncratic shocks impacts the speed of

transitions. We enrich his model by introducing a New Keynesian monetary block,

since our focus is to understand how monetary policy affects aggregates through its

impact on heterogeneous firms.4 Focusing on the impact of lower interest rates in a

small open economy, Reis (2013), Gopinath et al. (2017) and Asriyan et al. (2021)

analyze how an exogenous increase in the availability of cheap foreign funds or an

exogenous decrease in real interest rates may increase capital misallocation among

firms facing financial frictions. Here, instead, we focus on a closed-economy general

3Other strands of the literature have analyzed the links between monetary policy and firm
heterogeneity through heterogeneity in markups and entry-exit (e.g. Meier et al., 2020, Bilbiie
et al., 2014, Zanetti and Hamano (2020), Andrés et al., 2021, Nakov and Webber, 2021 or Baqaee
et al., 2021), in cyclicality (David and Zeke, 2021) or in firm-level productivity trends (e.g, Adam
and Weber, 2019).

4Buera and Nicolini (2020) employ a discrete-time version of Moll (2014) with cash-in-advance
constraints to analyze the impact of different monetary and fiscal policies after a credit crunch.
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equilibrium setting where real rates depend on the endogenous reaction of the central

bank.

2 Model

We propose a New Keynesian closed economy model with heterogeneous firms based

on Moll (2014). Time is continuous and there is no aggregate uncertainty. The

economy is populated by five types of agents: households, the central bank, input

good firms, retail, and final goods producers. The representative household is com-

posed by two type of members: workers and entrepreneurs. Workers rent their labor

whereas entrepreneurs operate the input good firms, which combine capital and la-

bor to produce the input good. Entrepreneurs are heterogeneous in their net worth

and productivity. The input good is differentiated by imperfectly competitive retail

goods producers facing sticky prices, whose output is aggregated by the final goods

producer. The latter two firms are standard in New Keynesian models.

2.1 Heterogeneous input good firms

There is a continuum of entrepreneurs. Each entrepreneur owns some net worth,

which they hold in units of capital. They can use this capital for production in

their own input-good producing firm – firm for short – or rent it out to other firms.

Similar to Gertler and Karadi (2011), we assume that entrepreneurs are members of

the representative household, to whom they may transfer dividends.5

Entrepreneurs are heterogeneous in two dimensions: their net worth at and in

their idiosyncratic productivity zt.
6 Each entrepreneur owns a technology which uses

capital kt and labor lt to produce input good yt:

yt = ft(zt, kt, lt) = (Γztkt)
α(lt)

1−α. (1)

5This assumption is the only relevant difference between the real side of our model and the
model of Moll (2014). We consider it to avoid having to deal with redistributive issues between
households and entrepreneurs when analyzing optimal monetary policy. It can be shown that the
general equilibrium outcomes of these two models are equivalent when the discount factor of the
entrepreneurs in Moll (2014), ρent, equals (1− ψ)η in our model.

6For notational simplicity, we use xt instead of x(t) for the variables depending on time. Fur-
thermore, we suppress the input goods firm’s index.
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The labor share α ∈ (0, 1) and the aggregate productivity level Γ are the same across

entrepreneurs. Idiosyncratic productivity zt follows a diffusion process,

dzt = µ(zt)dt+ σ(zt)dWt, (2)

where µ(z) is the drift and σ(z) the diffusion of the process.

Entrepreneurs can use their technology to produce or not. If they do, we say

they run a firm and call them active. If they do not, they lend their net worth to

firms owned by other entrepreneurs. Firms hire workers at the real wage wt, and rent

capital at the real rental rate of capital Rt. Capital is rented from the agents which

save, i.e. both households and inactive entrepreneurs. Firms sell the input good at

the real price mt = pyt /Pt, which is the inverse of the gross markup associated to

retail products over input goods, being pyt the nominal price of the input good and Pt

the price of the final good, i.e. the numeraire. Entrepreneurs uses the return on their

activities to distribute (non-negative) dividends dt to the household and to invest in

additional capital at the real price qt. Capital depreciates at rate δ. An entrepreneur’s

flow budget constraint can be expressed as follows

ȧt =
1

qt

mtft(zt, kt, lt)− wtlt −Rtkt︸ ︷︷ ︸
Firm’s profits

+ (Rt/qt − δ)︸ ︷︷ ︸
Return on net worth

qtat − dt︸︷︷︸
Dividends

 . (3)

Note that we have rearranged the budget constraint to yield the law of motion of net

worth in units of capital.

Entrepreneurs can borrow additional capital bt = kt − at for use in production.

However, they face a collateral constraint, such that the value of capital used in

production cannot exceed γ > 1 of their net worth,

qtkt ≤ γqtat. (4)

Entrepreneurs retire and return to the household according to an exogenous Pois-

son process with arrival rate η. Upon retirement they pay all their assets, valued

qtat, to the household, and they are replaced by a new entrepreneur. Entrepreneurs
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maximize the discounted flow of dividends, which is given by

V0(z, a) = max
kt,lt,dt

E0

ˆ ∞
0

e−ηtΛ0,t

 dt︸︷︷︸
Dividends

+ η qtat︸︷︷︸
Terminal value

 dt, (5)

subject to the budget constraint (3), the collateral constraint (4), and the process fol-

lowed by productivity (2). Future profits are discounted by the household’s stochastic

discount factor Λ0,t . Below we show that Λ0,t = e−
´ t
0 rsds, where rt is the real interest

rate.

We can split the entrepreneurs’ problem into two parts: a static profit maxi-

mization problem and a dynamic dividend-distribution problem. First, entrepreneurs

maximize firm profits given their productivity and net worth,

max
kt,lt
{mtft(zt, kt, lt)− wtlt −Rtkt} , (6)

subject to the collateral constraint (4). Since the production function has constant

returns to scale, entrepreneurs find it optimal to operate a firm at the maximum scale

defined by the borrowing constraint whenever their idiosyncratic productivity is high

enough. Else they remain inactive, because they cannot run a profitable firm given

their low productivity. Factor demands and profits of operating firms are thus linear

in net worth, and there exists a productivity cut-off z∗t below which entrepreneurs

remain inactive. Firm’s demand for capital and labor is :

kt(zt, at) =

γat, if zt ≥ z∗t ,

0, if zt < z∗t ,
(7)

lt(zt, at) =

(
(1− α)mt

wt

)1/α

Γztkt(zt, at). (8)

Firm’s profits are then given by

Φt(zt, at) = max {Γztϕt −Rt, 0} γat, where ϕt = α

(
(1− α)

wt

)(1−α)/α

m
1
α
t , (9)
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and the productivity cut-off, above which firms are profitable, is given by

Γz∗tϕt = Rt. (10)

Second, entrepreneurs decide the dividends dt that they pay to households. The

law of motion of an entrepreneur’s net worth (in units of capital) (3) can be rewritten

as

ȧt =
1

qt
[Φt(zt, at) + (Rt − δqt)at − dt]

=
1

qt
[(γmax {Γztϕt −Rt, 0}+Rt − δqt)at − dt] . (11)

The solution to this problem is shown in Appendix A.1. There we show how

entrepreneurs never distribute dividends until retirement, when they bring all their

capital home to the household. The intuition is simple: one unit of capital in the hands

of the entrepreneur receives at least a return of (Rt − δqt), while for the household

the return of this unit of capital is exactly (Rt − δqt). Since the terminal value is all

their net worth, qtat, it is always worthwhile for entrepreneurs to keep their funds.

The household collects all these funds as dividends once the entrepreneur retires. To

keep things simple, we assume the representative household uses a fraction ψ of these

dividends to finance the net worth of the new entrepreneurs, so net dividends are (1-

ψ) of the net worth of retiring entrepreneurs.

2.2 Final good producers

As usual in new Keynesian models, a competitive representative final goods producer

aggregates a continuum of output produced by retailer j ∈ [0, 1],

Yt =

(ˆ 1

0

y
ε−1
ε

j,t dj

) ε
ε−1

, (12)

where ε > 0 is the elasticity of substitution across goods. Cost minimization implies

yj,t (pj,t) =

(
pj,t
Pt

)−ε
Yt, where Pt =

(ˆ 1

0

p1−ε
j,t dj

) 1
1−ε

.
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2.3 Retailers

We assume that monopolistic competition occurs at the retail level. Retailers pur-

chase input goods from the input good firms, differentiate them and sell them to final

good producers. Each retailer j chooses the sales price pj,t to maximize profits sub-

ject to price adjustment costs as in Rotemberg (1982), taking as given the demand

curve yj,t (pj,t) and the price of input goods, pyt . We assume the government pays

a proportional constant subsidy τ on input good, so that the net real price for the

retailer is m̃t = mt(1− τ). This subsidy is financed by a lump-sum tax on the retailer

Ψt.
7 The adjustment costs are quadratic in the rate of price change (ṗj,t/pj,t) and

expressed as a fraction of output (Yt),

Θt

(
ṗj,t
pj,t

)
=
θ

2

(
ṗj,t
pj,t

)2

Yt,

where θ > 0. Suppressing notational dependence on j, each retailers chooses {pt}t≥0

to maximize the expected profit stream, discounted at the stochastic discount factor

of the household, ˆ ∞
0

Λ0,t

[
Πt (pt)−Θt

(
ṗt
pt

)]
dt, (13)

where

Πt (pt) =

(
pt
Pt
− m̃t

)(
pt
Pt

)−ε
Yt −Ψt

are per-period profits gross of price adjustment costs.

The symmetric solution to the pricing problem yields the New Keynesian Phillips

curve (see Appendix A.2), which is given by(
rt −

Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε
. (14)

where πt denotes the inflation rate πt = Ṗt/Pt. Here again we exploit the fact that,

given the lack of aggregate risk, the household’s stochastic discount factor can be

expressed as Λ0,t = e−
´ t
0 rsds. The total profit of retailers, net of the lump-sum tax,

7This fiscal scheme is introduced to eliminate the distortions caused by imperfect competition
in steady state, as common in the optimal policy literature.
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which is transferred to the households lump sum, is

Πt = (1−mt)Yt −
θ

2
π2
t Yt. (15)

2.4 Capital producers

A representative capital producer owned by the representative household produces

capital and sells it to the household and the firms at price qt, which he takes as

given. His cost function is given by (ιt + Φ (ιt))Kt where ιt is the investment rate

and Φ (ιt) is a capital adjustment cost function. He maximizes the expected profit

stream, discounted at the stochastic discount factor of the household. Profits are paid

to the household.

Wt = max
ιt,Kt

E0

ˆ ∞
0

Λ0,t (qtιt − ιt − Φ (ιt))Ktdt. (16)

s.t. K̇t = (ιt − δ)Kt. (17)

The optimality conditions imply (see Appendix A.3)

rt = (ιt − δ) +
q̇t − Φ′′ (ιt) ι̇t
qt − 1− Φ′ (ιt)

− qtιt − ιt − Φ (ιt)

qt − 1− Φ′ (ιt)
.

We assume adjustment costs are quadratic, i.e.,

Φ (ιt) =
φk

2
(ιt − δ)2 . (18)

2.5 Households

There is a representative household, composed of workers and entrepreneurs, that

saves in capital Dt or in nominal instantaneous bonds whose real value is denoted

by BN
t .Nominal bonds BN

t are in zero net supply. Workers supply labor Lt. The

household maximizes

Wt = max
Ct,Lt,BNt ,Dt

E0

ˆ ∞
0

e−ρ
h
t tu(Ct, Lt)dt. (19)
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s.t. Ḋtqt +ḂN
t + Ct = (Rt − δqt)Dt + (it − πt)BN

t + wtLt + Tt, (20)

and Tt are the profits received by the household, which is the sum of the profits of the

capital producer (
[
ιtqt − ιt − φk

2
(ιt − δ)2

]
Kt), the profits from retail goods producers

(Πt from equation 15) and net dividends received from entrepreneurs ((1− ψ)ηAt).

We assume separable utility of CRRA form, i.e., u(Ct, Lt) =
C1−ζ
t

1−ζ −Υ
L1+ϑ
t

1+ϑ
. Solving

this problem (see Appendix (A.4) for details), we obtain the Euler equation, the labor

supply condition and the Fisher equation, respectively:

Ċt
Ct

=
rt − ρht
ζ

, (21)

wt =
ΥLϑt

C−ζt
, (22)

rt = it − πt, (23)

where, for convenience, we have made use of the following definition of the real rate

rt ≡
Rt − δqt + q̇t

qt
. (24)

Integrating the Euler equation (21), we can verify that the stochastic discount factor

results in

Λ0,t ≡ e−
´ t
0 ρ

h
t ds

u′c (Ct)

u′c (C0)
= e−

´ t
0 rsds.

2.6 Distribution

We assume that for each entrepreneur returning to the household, a new entrepreneur

arrives operating the same technology, that is, with the same productivity level. This

new entrepreneur receives a startup capital stock from the household in a lump-sum

fashion. As previously explained, we assume that the initial net worth of each new

entrepreneur is equal to a fraction ψ < 1 of the net worth of the entrepreneur she

replaces. The evolution of the joint distribution of net worth and productivity gt(z, a)

is then given by the Kolmogorov Forward equation

∂gt(z, a)

∂t
= − ∂

∂a
[gt(z, a)st(z)a]︸ ︷︷ ︸

Retained earnings

− ∂

∂z
[gt(z, a)µ(z)] +

1

2

∂2

∂z2
[gt(z, a)σ2(z)]︸ ︷︷ ︸

Productivity changing randomly
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−ηgt(z, a)︸ ︷︷ ︸
Entrepreneurs retiring

+
η

ψ
gt(z,

a

ψ
))︸ ︷︷ ︸

Entrepreneurs entering

, (25)

wherest(z) is the entrepreneurs’ investment rate (11)

st(z) ≡ 1

qt
(γmax {Γztϕt −Rt, 0}+Rt − δqt), (26)

and 1/ψgt(z, a/ψ) is the distribution of new entrepreneurs entering.

Note that we can express the distribution also in terms of net worth shares defined

as ωt(z) ≡ 1
At

´∞
0
agt(z, a)da. Given this definition and the structure of the problem,

wealth shares are non-negative, continuous, once differentiable everywhere and they

integrate up to 1. The law of motion of net worth shares is given by (see in Appendix

A.5)

∂ωt(z)

∂t
=

[
st(z)− Ȧt

At
− (1− ψ)η

]
ωt(z)− ∂

∂z
µ(z)ωt(z) +

1

2

∂2

∂z2
σ2(z)ωt(z). (27)

2.7 Market Clearing and Aggregation

Borrowing of an input good firm is the extra capital used for production in excess of

their net worth, bt = kt − at, where bt > 0 if the firm is borrowing and bt < 0 if it is

saving. Adding up, we get

ˆ
kt(z, a)dGt(z, a)︸ ︷︷ ︸
Agg. capital Kt

=

ˆ
bt(z, a)dGt(z, a)︸ ︷︷ ︸
Firms’ net debt Bt

+

ˆ
atdGt(z, a)︸ ︷︷ ︸

Firms’ net worth At

, (28)

Asset market clearing requires that net borrowing of entrepreneurs, Bt, equals net

savings of the household, Dt,

Bt = Dt. (29)

Let Ω(z) be the cumulative distribution of net-worth shares, i.e. Ωt(z) =
´ z

0
ωt (x) dx.

By combining equations (28), (29), aggregating capital used by firms (7), and solving

for At, we obtain

At =
Dt

γ(1− Ωt(z∗t ))− 1
. (30)
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Labor market clearing implies

Lt =

ˆ ∞
0

lt(z, a)dGt(z, a). (31)

Aggregating up firms, one can express output as a function of aggregate factors

and aggregate TFP

Yt = Z̃tK
α
t Lt

1−α, (32)

where aggregate TFP Z̃t is an endogenous variable given by

Z̃t = (ΓE [z | z > z∗t ])
α =

(
Γ

´∞
z∗t
ωt (x)xdx

1− Ωt(z∗t )

)α

(33)

This highlights that in terms of output the model is isomorphic to a standard rep-

resentative agent model with TFP Z̃t. The financial frictions faced by entrepreneurs

imply that capital is not optimally allocated. The entrepreneur operating the most

productive firm does not have enough net worth to operate the whole capital stock,

hence less productive firms operate as well. The degree to which capital is misallo-

cated is endogenous and implies that aggregate TFP, Z̃t, fluctuates over time and,

importantly, depends on monetary policy.8

Factor prices are

wt =(1− α)mtZ̃tK
α
t Lt

−α, (34)

Rt =αmtZ̃tK
α−1
t Lt

1−α z∗t
E [z | z > z∗t ]

. (35)

Finally, the law of motion of aggregate wealth of entrepreneurs is given by

Ȧt
At

=
1

qt

[
γ(1− Ωt(z

∗
t ))
(
αmtZ̃tK

α−1
t Lt

1−α −Rt

)
+Rt − δqt − qt(1− ψ)η)

]
. (36)

Appendix A.6 derives step by step these aggregate formulas.

8This mechanism linking aggregate TFP and monetary policy differs from the one in Benigno
and Fornaro (2018) or Moran and Queralto (2018), who focus instead on endogenous R&D.
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2.8 Central Bank

The central bank controls nominal interest rates it on nominal bonds held by house-

holds. The central bank solves the following Ramsey problem

max
{ωt(z),st(z),wt,rt,qt,ϕt,Kt,At,Lt,Ct,Dt,Z̃t,Et[z|z>z∗t ],Ωt,z∗t ,ιt,πt,mt,m̃t,it,Yt,Tt}∞t=0

E0

ˆ ∞
0

e−ρ
htu(Ct, Lt)dt

subject to the private equilibrium conditions derived above and listed in Appendix

A.7 and initial conditions. The private equilibrium conditions include the law of

motion of the productivity-net worth distribution (equation 27). Notice that ωt(z)

and st(z) not only depend on time, but also on the idiosyncratic state variables. This

poses some difficulties when solving optimal monetary policy. In the next section we

deal with them in a general environment.

3 Computing optimal policies in heterogeneous-

agent models

Solving for the optimal policy in models with heterogeneous agents poses a certain

challenge since the state in such a model contains a distribution, which is an infinite-

dimensional object. In this section, we explain how such models can be solved in

a relatively straightforward manner. Our approach relies on three main conceptual

ingredients: (i) finite difference approximation of continuous time and continuous

idiosyncratic states, (ii) symbolic derivation of the planner’s first-order conditions,

and (iii) use of a Newton algorithm to solve the optimal policy problem non-linearly

in the sequence space.

We start by reviewing the three existing approaches to analyze optimal monetary

policy in models with non-trivial heterogeneity. Le Grand et al. (2020) employ the

finite-memory algorithm proposed by Ragot (2019). It requires changing the original

problem such that, afterK periods, the state of each agent is reset. This way the cross-

sectional distribution becomes finite-dimensional. Bhandari et al. (2021), instead,

make the continuous cross-sectional distribution finite-dimensional by assuming that

there are N agents instead of a continuum. They then derive standard first-order

conditions (FOCs) for the planner. In order to cope with the large dimensionality of

their problem, they employ a perturbation technique. This precludes the use of their
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algorithm to problems with kinks, such as the one presented here, or with exogenous

borrowing limits, as in the standard Aiyagari-Bewley-Hugget framework. Nuño and

Thomas (2016) deal with the full infinite-dimensional problem in continuous time.

This implies that the continuous Kolmogorov forward (KF) and the Hamilton-Jacobi-

Bellman (HJB) equations form part of the constraints faced by the central bank. They

derive the planner’s FOCs using calculus of variations, thus expanding the original

problem to also include the Lagrange multipliers, which in this case may take the

form of distribution and (social) value functions. They then solve the problem using

the upwind finite-difference method of Achdou et al. (2017). The problem with this

approach is that it requires solving by hand the first-order conditions, which can be

demanding in medium-scale models such as the one presented in this paper.

The algorithm proposed here is distinct from the previous ones. If any, it can be

seen as the mirror image of Nuño and Thomas (2016). Instead of first computing

by hand the planner’s FOCs and then discretizing them using finite differences, we

propose to first discretize the private equilibrium conditions using finite differences,

and then to find the planner’s FOCs by symbolic differentiation. This avoids the

cumbersome mathematical derivations and allows us to solve the dynamic problem

nonlinearly in a few seconds using Dynare.

(i) Finite difference approximation A continuous-time, continuous-space heterogeneous-

agent model discretized using an upwind finite-difference method becomes a discrete-

time, discrete-space model. In this discretized model the dynamics of the (now finite-

dimensional) distribution µt at period t are given by

µt =
(
I−∆tAT

t

)−1
µt−1, (37)

where ∆t is the time step between periods and At is a matrix whose entries depend

nonlinearly and in closed form on the idiosyncratic and aggregate variables in period

t.9 Similarly, the HJB equation is approximated as

ρvt+1 = ut+1 + At+1vt+1, − (vt+1 − vt) /∆t. (38)

9Technically, this matrix results from the discretization of the infinitesimal generator of the
idiosyncratic states. In the example of Section 2, µt = ωt and At = Bt.
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Together with additional static equations, such as market clearing conditions or bud-

get constraints, and aggregate dynamic equations, including the Euler equations of

representative agents (if any) and the dynamics of aggregate states, they define the

discretized model.

Though we have ended up with a discrete-time approximation, casting the original

model in continuous time is central to our method. The discretized dynamics of the

distribution (37) and Bellman equation (38) present two advantages compared to their

counterparts in the discrete-time continuous-state formulation typically employed in

the literature. First, the analytical tractability of the original continuous-time model

implies that the agents’ optimal choices in the discretized version are always “on the

grid”, avoiding the need for interpolation, and are “one step at a time” making the

matrix Πt sparse.10 Second, the private agent’s FOCs hold with equality even at

the exogenous boundaries (see Achdou et al. (2017) for a detailed discussion of these

advantages).

(ii) Symbolic derivation of planner’s FOCs Once we have a finite-dimensional

discrete-time discrete-space model, we can derive the planner’s FOCs by symbolic dif-

ferentiation using standard software packages. For convenience, we rely on Dynare’s

toolbox for Ramsey optimal policy to do this task for us. To this end, we simply pro-

vide the discretized version of our model’s private equilibrium conditions to Dynare

(the discretized counterpart to the equations in Appendix A.7), making use of loops

for the heterogeneous-agent block, as in Winberry (2018). We furthermore provide

the discretized objective function, and Dynare then takes symbolic derivatives to

construct the set of optimality conditions of the planner for us.

A natural question at this stage is under which conditions the optimal policies of

the discrete-time, discrete-space problem coincide with those of the original problem.

The following proposition shows that, if the time interval is small enough (the stan-

dard condition when approximating continuous-time models), then the two solutions

coincide.

Proposition 1 : Provided that the Lagrange multipliers are continuous, the solu-

tion of the "discretize-optimize" and the "optimize-discretize" algorithms converge to

each other as the time step ∆t goes towards 0.

Proof : See Appendix D.

10The introduction of Poisson shocks would not change the sparsity of matrix Πt.

16



The proposition guarantees that both strategies coincide when ∆t goes towards

zero and provides an error bound that depends on the value of the maximum change

in the Lagrange multipliers. This proposition is quite general, as most continuous-

time, perfect-foresight, general equilibrium models do not feature discontinuities for

t > 0.

The model presented in Section 2 is arguably simpler than the general heterogenous-

agent model covered by Proposition 1, as it features an analytic solution for the HJB

equation. To get an idea of the performance of our method in a case in which the

HJB is also a constraint in the planner’s problem, as well as to showcase its generality

in dealing with different problems, we compute the optimal monetary policy in the

HANK model of Nuño and Thomas (2016) using our method in Dynare (see Appendix

D). We compare our results with those using their "optimize-discretize" algorithm at

monthly frequency4t = 1/12. We conclude that both approaches essentially coincide.

(iii) Newton algorithm to solve the optimal policy problem non-linearly in

the sequence space Finally, we use the discretized optimality conditions of the

planner to compute non-linearly the optimal responses a temporary change in param-

eters (an "MIT shock") using a Newton algorithm. Instead of time iterations over

guesses for aggregate sequences, as is common in the literature, we use a global relax-

ation algorithm. This approach has been made popular in discrete-time models by

Juillard et al. (1998) thanks to Dynare, but it is somewhat less common in continuous-

time models (e.g. Trimborn et al., 2008). This approach helps to overcome the curse

of dimensionality since in the sequence space the complexity of the problem grows

only linearly in the number of aggregate variables, whereas the complexity of the

state-space solution grows exponentially in the number of state variables. Recently

Auclert et al. (2019) have exploited a particularly efficient variant of this approach in

the context of heterogeneous-agent models.11 We build on these contributions when

we compute the optimal transition path. Again we make use of Dynare. We use its

nonlinear Newton solver to compute both the steady state of the Ramsey problem

and the optimal transition path under perfect foresight.12 Our hope is that the con-

11Compared to Auclert et al. (2020), who break the solution procedure into two steps, first solving
for the idiosyncratic variables given the aggregate variables, we solve for the path of all aggregate
and idiosyncratic variables at once. Note that, besides the nonlinear perfect foresight method we
refer to here (see their Section 6), they also propose a linear method.

12To find the steady state, we provide Dynare with the steady state of the private equilibrium
conditions as a function of the policy instrument.
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venience of using Dynare will make optimal policy problems in heterogeneous-agent

models easily accessible to a large audience of researchers.

The solution to the perfect foresight problem can be easily adapted to the case with

aggregate shocks. As Boppart et al. (2018) show, the perfect-foresight transitional

dynamics to an "MIT shock" coincides with the solution of the model with aggregate

uncertainty using a first-order perturbation approach. We follow this approach to

analyze the optimal response to a cost-push shock below.

Finally, it is important to highlight that our solution approach is different from

the one in Winberry (2018) or Ahn et al. (2018). These papers expand the seminal

contribution by Reiter (2009), based on a two-stage algorithm that (i) first finds the

nonlinear solution of the steady state of the model and (ii) then applies perturbation

techniques to produce a linear system of equations describing the dynamics around

the steady state. Winberry (2018) illustrates how this can be also implemented using

Dynare and Ahn et al. (2018) extend the methodology to continuous-time problems.

However, these methods were not created to deal with the problem of finding the

optimal policies, the focus of our algorithm, as the first stage requires the computation

of the steady state, which in our case is the steady state of the problem under optimal

policies. Our algorithm finds the steady state of the planner’s problem, including the

Lagrange multipliers. Naturally, this steady does not need to coincide with the steady

state that can be found by looking for the value of the planner’s policy that maximizes

steady-state welfare.

4 Calibration

We solve the model using the method described above. Table 1 summarizes our

calibration. We work at quarterly frequency (time period ∆t = 1/4). The rate of

time preference of the household ρh is 0.025, which targets an average real rate of

return of 2.5 percent. The capital depreciation rate δ is set at 0.065, equal to the

aggregate depreciation rate in NIPA. The fraction of assets of exiting entrepreneurs

reinvested (ψ) is 0.1, so that the average size of entrants is 10 percent of that of

incumbents, in line with US data (OECD, 2001). Entrepreneurs’ exit rate (η) is 0.12

which, together with ψ, implies an average real return on equity of 11 percent, the

return of the S&P500 from 2009 to 2019. The borrowing constraint parameter γ is

1.43, implying that entrepreneurs can borrow up to 43% of their net worth, which
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Table 1: Calibration

Parameter Value Source/target

ρhh Rate of time preference of HH 0.025 Av. 10Y bond return of 2.5% (FRED)

δ Capital depreciation rate 0.065 Aggregate depreciation rate (NIPA)

ψ Fraction firms’ assets at entry 0.1 Av. size at entry 10% (OECD, 2001)

η Firms’ death rate 0.12 Av. real return on equity 11% (S&P500)

γ Borrowing constraint parameter 1.43 Corporate debt to net worth of 43% (FRED)

α Capital share in production function 0.3 Standard

ζ Relative risk aversion parameter HH 1 Log utility in consumption

ϑ Inverse Frisch Elasticity 1 Kaplan et al. (2018)

Υ Constant in disutility of labor 0.71 Normalization L = 1

φk Capital adjustment costs 10 VAR evidence

ε Elasticity of substitution retail goods 10 Mark-up of 11%

θ Price adjustment costs 100 Slope of PC of 0.1

Γ SS Aggregate Productivity 1 Normalization

ςz Mean reverting parameter 0.8 Persistence Gilchrist et al. (2014)

σz Volatility of the shock 0.30 Volatility Gilchrist et al. (2014)

targets the level of aggregate US corporate debt as a percentage of net worth from

2009 to 2019. The capital share α is set at a standard value of 0.3. We assume

log-utility in consumption (ζ = 1) and the inverse Frisch elasticity ϑ is also set to 1,

standard values in the literature. We set the constant multiplying the disutility of

labor Υ such that aggregate labor supply in steady state is equal to one. Capital

adjustment costs, φk, are set to 10, such that the peak response of investment to

output after a monetary policy shock is around 2, in line with the VAR evidence of

Christiano et al. (2016).

Regarding the New Keynesian block, the elasticity of substitution of retailer goods

ε is set to 10, so that the steady state mark-up is 1/(1 − ε) = 0.11. The Rotemberg

cost parameter θ is set to 100, so that the slope of the Phillips curve is ε/θ = 0.1 as

in Kaplan et al. (2018)

The aggregate productivity term Γ is normalized to 1 in SS. We assume that

individual productivity z follows an Ornstein-Uhlenbeck process in logs

d log(z) = −ςz log(z)dt+ σzdWt. (39)
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By Ito’s lemma, this implies that z in levels follows the diffusion process

dz = µ(z)dt+ σ(z)dWt, (40)

where µ(z) = z
(
−ςz log z + σ2

2

)
and σ(z) = σzz. We calibrate the productivity

process using the estimates from Gilchrist et al. (2014), who find quarterly persistence

of 0.8 and volatility of 0.15 (0.3 annualized).

5 Optimal monetary policy

We now analyze optimal policy under commitment, i.e. we solve the central bank’s

Ramsey problem. We compare the optimal responses in our heterogeneous-firm

(HANK) problem to the responses in the representative-agent version (RANK). The

RANK economy is the standard New Keynesian model with capital. It is a special

case of the HANK economy where the borrowing constraint is set to infinite, so that

the productivity-net worth distribution becomes irrelevant and only the most pro-

ductive firm operates. In this case, capital allocation is efficient (no misallocation)

and TFP is exogenous. This contrasts with the HANK economy, in which the distri-

bution across firms matters due to financial frictions and determines the endogenous

component of TFP (see Appendix A.8 for more details regarding the RANK versus

HANK model). We stress the fact that the central bank’s only instrument is the

nominal interest rate. The way monetary policy affects real allocations is through its

impact on prices in the New Keynesian Phillips curve. For simplicity, we calibrate

the tax/subsidy τ such that it undoes the New Keynesian mark-up distortion in the

steady state of both economies.

We start by analyzing how the central bank would behave if it is allowed to

re-optimize without pre-commitments, starting at the steady state of the Ramsey

solution. This is the "time-0 optimal policy" (Woodford, 2003). Next, we analyze the

optimal policy response when an unexpected (MIT) mark-up shock hits the economy

that was previously in its steady state. In this case, we adopt a "timeless perspective".

The timeless perspective means that the central bank cannot exploit the initial state

of the economy, but rather stick to its pre-commitments, implementing the policy

that it would have chosen to implement if it had been optimizing from a time period

far in the past. This is a concept that only makes sense in the presence of aggregate
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Figure 1: Net worth shares in steady state.
Notes: The figure shows the net-worth distribution ω (z) in steady state.

risk. As discussed above, building on the argument by Boppart et al. (2018) one

can reinterpret the timeless response to MIT shocks as a first order approximation

to the response in a model with aggregate uncertainty under the ex-ante optimal

time-invariant state-contingent policy rule.

Before we get to the dynamics, we analyze the steady state of the Ramsey prob-

lem. It is well known that the RANK economy features zero inflation in steady state

under the optimal policy, since the zero inflation steady state is first best. We find nu-

merically that, for our calibration and several robustness checks, the HANK economy

also features zero inflation in the steady state of the Ramsey problem. This result

mirrors a similar result from the textbook New Keynesian model with a distorted

steady state (Woodford, 2003, Gali, 2008). Though the long-run Phillips curve allows

monetary policy to affect misallocation in the long run through positive inflation,

the benefits of this policy are compensated for by the cost of the anticipation of this

policy. The net worth share distribution in steady state is shown in Figure 1, with a

dashed vertical line showing the productivity cut-off z∗. Entrepreneurs at the left of

z∗ remain inactive and rent out their net worth to active entrepreneurs at the right

of the cut-off (those in the shaded area).
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Figure 2: Time 0 optimal monetary policy.
Notes: The figure shows the deviations from steady state of the economy when the planner is allowed to re-optimize
with no pre-commitments in response to no shock. RANK is red dashed line, HANK is the solid blue line. The dotted
yellow line is the response of the HANK model in general equilibrium to a monetary policy shock of 500 basis points,
where the central bank follows the Taylor rule di = −υ

(
it −

(
ρht + φ (πt − π̄) + π̄

))
dt, with υ = 0.8, which implies

a quarterly persistence of 0.8, and φ = 1.25. In panel h, the green dotted line shows the change in endogenous TFP
due to the net-worth distribution channel.

5.1 Time-0 optimal policy

Aggregate dynamics. Firm heterogeneity causes a time inconsistency problem

that does not exist in the standard RANK. Figure 2 shows this time-inconsistency

problem: starting at the steady state of the Ramsey problem, if the central bank

is allowed to re-optimize, it takes advantage of the lack of pre-commitments and

engineers a monetary expansion. It does so by reducing the nominal rate (not shown)

which leads to a reduction in the real rate (blue solid line, panel e) and an increase in

inflation and output (panels a and i) through the standard New Keynesian channels.

In the RANK, absent capital misallocation, the steady state is first best, so the central

bank does nothing. But why exactly is it optimal to engineer an expansion in HANK?

The surprise expansion is socially optimal because it shifts factor prices in such a

way that the allocation of resources improves, which leads to a temporary increase in
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aggregate TFP (panel g). This improvement is the result of two channels. First, the

threshold z∗ moves up (panel g), making the least productive entrepreneurs abstain

from producing. This is what we call the productivity threshold channel. Second,

firms’ profits increase (panel f), such that firms can accumulate more net worth,

partially undoing financial frictions. This is the net-worth distribution channel. The

net effect of these two channels, which we call the misallocation channel of monetary

policy, leads to an increase in endogenous TFP (panel h), which amplifies the boom

generated by the initial monetary policy expansion.

Quantitatively, the net-worth distribution channel explains almost all of the move-

ment in TFP. We isolate the contribution of this channel as follows. We plug the

simulated path of z∗ and ω(z) into the derivative dZ̃
dz∗

(see equation 41) to compute

the contribution of changes in the threshold to the dynamics of endogenous TFP. We

subtract this contribution from the simulated path for Z̃t to obtain a counterfactual

path for TFP that is purely driven by the net-worth distribution channel. The green

dotted line in panel h of Figure 2 plots this counterfactual path. It is evident that

the effect of the threshold channel is negligible.

Notice how the optimal monetary policy can be described as an expansionary

monetary policy shock. The yellow dotted line in Figure 2 displays the dynamics

after an expansionary monetary policy shock in the case of a central bank following

a Taylor rule. These results almost coincide with those under the Ramsey policy.

Heterogeneity in the response. Next, we dig into the heterogeneity of the

responses that drive the aggregate responses just explained. We define the firm’s

excess return on capital Φ̃t(z) as

Φ̃t(z) ≡ Φt

kt
= max

Γztα

(
(1− α)

wt

)(1−α)/α

m
1
α
t − (qt (rt + δ)− q̇t)︸ ︷︷ ︸

Rt

, 0

 ,

where the latter equality comes from equation (9). We speak of the excess return

here since it is the return that a firm makes net of the cost of capital Rt. Since en-

trepreneurs do not distribute dividends until they retire, these returns are reinvested.

Hence we can understand this excess return as the investment rate of firm with pro-

ductivity z in excess of the investment rate of the marginal firm with productivity

z∗.13 Because of this, we refer to Φ̃t(z) as the excess investment rate from now on.

13Note that the investment rate of the marginal firm with productivity z∗ is equal to the risk free
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Panel 1 - Excess investment rate
Φ̃1(z) after 1 year

Panel 2 - Deviations of net-worth
shares after 1 year

Figure 3: Heterogeneity one year after the shock hits.
Notes: Panel a): Idiosyncratic productivity is shown on the X-axis, the excess investment rate Φ̃(z) on the Y-axis.
The solid blue line is the excess investment rate function in the SS, and the solid green line is the same function in
year 1. The rest of the lines show the excess investment rate function when only one price is changed at a time to its
year 1 value, keeping the rest of the prices constant to the SS value. Panel b): deviations from steady state of the

net-worth shares for each idiosyncratic productivity level z 1 year after the shock, i.e.
ωt=1(z)−ωss(z)

ωss(z)
.

The blue solid line of panel a) in Figure 3 shows the excess investment rate Φ̃SS(z)

in steady state. For low values of productivity, this value is 0, since entrepreneurs

with such low productivity prefer to remain inactive. From z∗ onwards, entrepreneurs

operate firms, and their profits increase linearly in productivity. The green solid line

shows the excess investment rate one year after the implementation of the time-0

optimal policy. The cut-off z∗1 moves to the right. However, as already discussed,

the impact of this threshold channel on TFP is quantitatively negligible. More im-

portantly, the slope of the excess investment rate Φ̃1(z) increases with the monetary

policy shock. This implies that investment increases relatively more the more produc-

tive an entrepreneur is. That is, as high-productivity firms accumulate more profits

they can undo financial frictions faster and operate at a larger scale, which improves

the allocation of resources through the net-worth distribution channel. Panel 2 of

Figure 3 displays the percent deviations of net-worth shares, [ω1(z)− ωss(z)] /ωss(z),

after 1 year. Firms with productivities slightly above one see their shares increase,

whereas those below that threshold experience a decline. As a result, production now

concentrates more on high-productivity firms.

Direct versus indirect effects. We decompose the impact of monetary policy

return on the net worth of the firm.
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into direct and indirect effects, following Kaplan et al. (2018). Direct effects are those

directly operating through the real interest rate. We discuss them first.

Holding everything else constant, a decrease in real interest rates increases mis-

allocation on impact: a lower cost of capital makes production cheaper, but since

the most productive entrepreneurs are constrained by the borrowing constraint, this

reduction can only stimulate investment by entrepreneurs that would otherwise find

it unprofitable to operate. This is the direct effect of monetary policy through the

productivity threshold channel. A similar result was first illustrated numerically by

Gopinath et al. (2017). In our simpler framework, we can prove it analytically: a

fall in real interest rates decreases the productivity cut-off z∗, which, in turn, induces

a decline in aggregate TFP. To see this, we plug the definition of z∗ (equation 10)

into the definition of TFP (equation 33), and take the partial derivative of TFP with

respect to rt, holding the other prices constant (ϕt = ϕ, qt = q, q̇ = 0):

∂Z̃t
∂rt

=
∂Z̃t
∂z∗t

∂z∗t
∂rt

=

∂Z̃t
∂z∗t︷ ︸︸ ︷

αΓ (ΓE [z | z > z∗t ])
α−1 ω (z∗t )

(1− Ωt (z∗t ))
(E [z | z > z∗t ]− z∗t )

∂z∗t
∂rt︷︸︸︷
q

ϕΓ
≥ 0.

(41)

The derivative of TFP with respect to the interest rate is always non-negative, and

it is strictly positive as long as the distribution ω(z) is non-zero for z > z∗t . This

means that, ceteris paribus, if interest rates decrease so does TFP. Note that the term

(E [z | z > z∗t ]− z∗t ) is a measure of the dispersion of productivity of active firms: the

larger the difference between the average productivity of active firms and the cut-off

productivity, the larger the impact of a change in interest rates is.

The previous result concerns the direct effect of monetary policy on TFP through

the threshold channel, which operates exclusively through changes in the cut-off z∗t .

At impact, this is the only direct effect, since the net-worth distribution cannot change

at impact. However, over time monetary policy may also have a second direct effect

through the net-worth distribution channel, if it changes the net-worth distribution

ωt (z). It is easily verified that a real rate reduction increases the excess profit rate

and hence the excess investment rate. However it does so by the same amount for

all firms. Hence the real rate does not change the shape of the distribution of active

firms. The direct effect of monetary policy on TFP though the net-worth distribution
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channel thus turns out to be 0.

Panel 1 of Figure 3 shows a decomposition of the partial-equilibrium impact of

each of the prices on the excess investment rate Φ̃(z) one year after the shock. The

red dotted line illustrates the two direct effects of monetary policy just discussed: The

decrease in the real rate rt shifts the excess investment rate function parallel to the left.

The reduction in the real rate ceteris paribus makes capital cheaper and stimulates

investment across all firms. This leads to no change in the average productivity among

the firms above the steady state productivity threshold indicated by the vertical blue

dashed (net-worth distribution effect) but crowds in less productive firms (threshold

effect). The direct effect monetary policy is thus an increase in misallocation or,

equivalently, a reduction in TFP.

In general equilibrium, the response of TFP depends not only on the direct effects

of monetary policy through the real rate rt explained above, but also on the indirect

effects coming from changes in the other factor prices, namely the wage wt, the

price of capital qt, and that of the input good mt. Direct and indirect effects work

both through the threshold channel and the net-worth distribution channel. Under

our calibration, the change in the price of capital qt (yellow dashed line in 3) has the

exact opposite partial equilibrium effect to that of real rates. The increase in wages wt

(purple dashed-dotted line) both shifts the kink of the excess investment rate function

to the right and decreases its slope, ∂Φ̃
∂w

< 0. This reflects the reduction in returns

as wages increase. However, the increase in the price of the input good mt shifts z∗

to the left and increases the slope of the return function significantly, ∂Φ̃
∂m

> 0 (light

blue dashed line). As the input-good price increases, firms’ returns and investment go

up, especially those of high-productivity firms. Which of these channels prevails is a

quantitative question. For our particular calibration, the result (green solid line) is a

tilt to the right, implying a rise in the threshold z∗t and an increase in the slope of the

profit function. Expansionary monetary policy thus reduces misallocation.14 This

quantitative result is robust to alternative realistic calibrations of the model. The

bottom line is that, by expanding demand through a more accommodative monetary

policy stance, the central bank increases the share of production carried out by high-

productivity firms, reducing misallocation and increasing TFP. We test this model

prediction below.

14It does so through both channels the threshold and the net-worth distribution channel, though
the latter dominates as we showed before.
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Figure 4: Optimal monetary policy response to a cost-push shock.
Notes: The figure shows the optimal response from a timeless perspective (in deviations from steady state) to a 10%
decrease in the elasticity of substitution ε that is mean reverting with a yearly persistence of 0.8. RANK is the
dashed red line, HANK is the blue solid line, the response of the HANK model when fed exogenously the path of π
obtained in the optimal policy of RANK is the yellow dotted line. In panel h, the green dotted line shows the change
in endogenous TFP due to the net-worth distribution channel.

5.2 Timeless optimal policy response to a cost-push shock

We turn next to the timeless optimal response to shocks. Figure 4 shows the opti-

mal timeless response of the central bank to a cost-push shock caused by a sudden

unexpected temporary decrease in the elasticity of substitution (ε) of 10% that is

mean-reverting with yearly persistence of 0.8. This shock increases retailers’ markup,

reducing the price of the goods sold by heterogeneous firms. Each panel shows the

response of different equilibrium variables. The dashed red line in Figure 4 shows the

optimal response in the RANK economy to this cost-push shock. This shock induces

inflationary pressures due to the increase in markups (panel a). This induces a trade

off between inflation and output gap stabilization. The central bank reacts optimally

by driving output below its efficient level to dampen inflation (panels a and i). This

is the well-known policy of leaning against the wind (Gali, 2008).

The optimal response of the monetary authority is, however, very different in the
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HANK economy. In addition to the short-run trade-off between inflation and output

gap, the central bank also influences misallocation and TFP in the medium run.

This motivates the central bank to adopt a leaning with the wind policy. Instead of

containing inflation at the cost of a fall in output, the central bank allows inflation to

rise well above the optimal level in the RANK (solid blue line panel a). Thus, output

increases (panel i). By increasing inflation, the central bank generates a demand

expansion, increasing input good prices, wages, and real rental rates (panels b, c and

d). This, in turn, increases the excess returns to capital (panel f), particularly for

the most productive firms, allowing them to undo financial frictions faster, which

increases endogenous TFP (panel h), aggregate capital and aggregate output.

To isolate the difference driven by the difference in policy from that driven by the

different model structures of RANK and HANK, we also consider a scenario where

the central bank in the HANK economy targets the suboptimal path for inflation of

the RANK (dashed yellow dotted line). The behaviour of the economy in this case

differs significantly from that under the optimal policy and is very similar to the

RANK economy. Instead of an expansion, aggregate output falls below its steady

state value, and so do profits, capital, and endogenous TFP. The policy conclusion

is that the misallocation channel of monetary policy calls for a more dovish policy

stance in the presence of cost push shocks.

6 Empirical evidence on the main mechanism

As outlined in Section 5.1, the difference in the optimal conduct of monetary policy

relative to the RANK model is driven by the effect of monetary policy on misalloca-

tion, and thus on endogenous TFP. According to our model, a monetary expansion

increases the profits of high-productivity firms relatively more than the profits of low-

productivity ones. This net-worth distribution channel allows the most productive

firms to increase their investment relatively more, which reduces misallocation and

increases TFP. This result is, however, of quantitative nature: the overall effect of a

monetary expansion on firm profitability and investment depends on the responses of

different equilibrium prices, whose individual effects can be positive or negative. For

the calibration considered here, the net effect is positive. Since this is the mechanism

that drives our policy prescriptions, we now test empirically whether, in response to

a monetary expansion, high-productivity firms indeed increase investment relatively

28



more compared to low-productivity ones.

To address this question we consider an empirical application to the case of Spain,

combining firm-level panel data with a time series measure of exogenous monetary

policy shocks. We use yearly balance-sheet and cash-flow data of Spanish firms from

2000 to 2016 from the Central de Balances Integrada (see Appendix B.1 for further

details on the data). This dataset covers the quasi-universe of Spanish firms, including

large firms with access to stock and bond markets, but especially medium and small

firms more reliant on bank credit and internal financing.

We use the marginal revenue product of capital (MRPKj,t−1) as a proxy for firm

level productivity. Note that, in our model,

MRPKt =
∂mtft(z, k, l

∗)

∂k
=

[
Γ

(
1− α
wt

) 1−α
α

m
1
α
t

]
z ∝ z.

Since m and w are the same for all firms in our model, ranking firms according to

MRPK is equivalent to ranking firms according to raw productivity z. We use MRPK

for two reasons. First, it is a measure directly linked to capital productivity, and hence

to investment in capital. Second, its computation from the data is straightforward

and it does not rely on estimation.

The monetary policy shock εMP
t is taken from Jarociński and Karadi (2020). They

use high-frequency data and sign restrictions in a SVAR to identify monetary policy

shocks in the Euro area at the monthly level. The key idea behind their identifica-

tion strategy is that movements of interest rates and stock markets within a narrow

window around monetary policy announcements can help disentangle monetary pol-

icy shocks from information surprises. While an unexpected policy tightening raises

interest rates and reduces stock prices, a positive central bank information shock (i.e.

unexpected positive assessment of the economic outlook) raises both. We need to ag-

gregate their shocks to yearly frequency, as in our data. We follow the methodology

employed by Ottonello and Winberry (2020) to aggregate at a quarterly frequency.

Appendix B.2 provides more details on the construction of the monetary policy shock.

In order to test whether productive firms’ investment is more responsive, we follow

the same specification as Ottonello and Winberry (2020), but focusing on heterogene-

ity in productivity instead of leverage,

∆log kj,t = αj + αs,t + β (MRPKj,t−1 − Ej [MRPKj ]) ε
MP
t + Λ′Zj,t−1 + uj,t. (42)
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The dependent variable ∆log kj,t is the log increase in the capital stock of firm j

from t − 1 to t. The key parameter of interest in equation (42) is the coefficient β

multiplying the interaction term between productivity and the monetary policy shock

. We demean MRPKj,t−1 by the firm average across time Ej [MRPKj] to ensure that

the results are not driven by permanent heterogeneity in responsiveness across firms,

as suggested in Ottonello and Winberry (2020). We lag MRPKjt−1 to address reverse

causality concerns. A positive value of β indicates that investment responds more to

a monetary expansion in the case of high-productivity firms. We also include firm

fixed effects (αj) to capture permanent differences in investment patterns, sector-year

fixed effects (αs,t) to control for aggregate shocks at the sector level, and a vector of

controls Zj,t−1 that includes the demeaned MRPK measure, total assets, sales growth,

net financial assets as a share of total assets, and the interaction of demeaned MRPK

with lagged GDP growth. The specification and the cleaning of the data is done

following very closely Ottonello and Winberry (2020), see Appendix B.1 for further

details.

Table 2: Heterogeneous responses of investment to monetary policy in
MRPK

(1) (2)

εMP
t x MRPKt−1 0.141∗∗ 0.201∗∗

(0.06) (0.08)

Observations 5567706 3532022
R2 0.267 0.304
MRPK control YES YES
Controls NO YES
Time-sector FE YES YES
Time-sector clustering YES YES

Notes: The table shows the coefficient β that results of estimating equation (42). Column (1) only includes the
standardized demeaned MRPK as control, while column (2) introduces the all the controls Zj,t−1 (standardized
demeaned MRPK, total assets, sales growth, and net financial assets as a share of total assets; and the interaction of
demeaned MRPK with lagged GDP growth). Standard errors are clustered at the sector-year level. We have
normalized the sign of the monetary shock εMP

t so that a positive shock corresponds to a decrease in interest rates.
We have standardize (MRPKjt−1 − Ej [MRPK]) over the entire sample.

Table 2 shows the main results of the estimation. We perform the same normal-

ization as in Ottonello and Winberry (2020), so that the coefficient of interest, β,

is easily interpretable. First, we standardize (MRPKjt−1 − Ej [MRPK]) over the

entire sample, which implies that the units are standard deviations in our sample.
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Second, we normalize the shock, so that the interpretation of β can be read as the

response to an expansionary monetary policy shock of 100bps (or in other words,

a decrease of 100bps in the EONIA rate). Results show that firms with high pro-

ductivity, proxied by high MRPK, respond more to expansionary monetary policy

shocks. Our baseline specification, column (2), shows that an expansionary monetary

policy shock implies a 0.2 higher semi-elasticity of investment when it affects a firm

one standard deviation more productive than the average in our sample (in terms of

MRPK). When we do not include firm controls (column 1), this effect is still positive

and significant, although of lower magnitude. Appendix B.3 shows that this result

is robust to several alternative specifications. It is worth noticing that this heteroge-

neous response is not driven by changes in the composition of firms in the data, since

keeping a balanced sample of firms, we finding even larger results (see Appendix B.3).

This points at the heterogeneous changes in investment of incumbent firms being the

main driver of the results.

Summing up, the empirical evidence supports the prediction that the impact of

monetary policy on investment is increasing in the productivity of the firms, which

is the key mechanism behind our optimal policy results.

7 Conclusions

This paper analyzes optimal monetary policy in a model with heterogeneous firms,

financial frictions, and nominal rigidities. The model features a link between monetary

policy and capital misallocation.

We identify a new source of time-inconsistency in monetary policy: though zero in-

flation is optimal in the long run, a benevolent central bank without pre-commitments

engineers a temporary surprise expansion. It does so because the surprise expansion

modifies equilibrium prices in such a way that capital misallocation is reduced. This

is even though a drop in the real rate has an unambiguously negative direct effect

on capital misallocation by crowding in low-productivity firms on impact (threshold

channel). However, the associated general equilibrium changes in other factor prices

favor high-productivity firms, allowing them to increase investment and grow faster

(net-worth distribution channel). Overall the latter indirect effects dominate, and the

capital allocation becomes more efficient. Using granular information about Spanish

firms, we provide empirical evidence that this mechanism is also present in the data:
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high-productivity firms are more responsive to monetary policy shocks. We illustrate

how, when faced with a cost-push shock, the optimal prescription from a timeless

perspective is to lean with the wind, tolerating more inflation in exchange for a boom

in demand that will raise TFP further down the road.

The model presented in this paper abstracts from several relevant mechanisms

driving firm dynamics, such as endogenous default, size-varying capital constraints,

or decreasing returns to scale, among many others. This helps us to provide a clear

understanding of the different forces shaping optimal monetary policy, as well as

highlighting the similarities and differences with the standard representative agent

New Keynesian model. A natural extension would be to add more of these features

to study their impact on the optimal conduct of monetary policy.

The paper also makes what we deem as an important methodological contribution.

It introduces a new algorithm to compute optimal policies in heterogeneous-agent

models. The algorithm leverages on the numerical advantages of continuous time

and will allow researchers to solve optimal policy in heterogeneous-agent models with

or without aggregate shocks in an efficient and simple way using Dynare. It is our

hope that this will spur a new wave of research on the normative implications of

heterogeneous-agent models in the years to come.
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Online appendix

A Further details on the model

A.1 Entrepreneur’s intertemporal problem

The Hamilton-Jacobi-Bellman (HJB) equation of the entrepreneur is given by

rtVt(z, a) = max
dt≥0

dt + sat (z, a, d)
∂V

∂a
+ µ(z)

∂V

∂z
+
σ2(z)

2

∂2V

∂z2
+ η (qtat − Vt(z, a)) +

∂V

∂t
.

We guess and verify a value function of the form Vt(z, a) = κt (z) qta. The first order

condition is

κt (z)− 1 = λd and min{λd, dt} =0,

where λd = 0 if κt(z) = 1. If κt(z) > 1 ∀z, t, then dt = 0 and the firm does not

pay dividends until it closes down. If this is the case, then the value of κt (z) can be

obtained from

(rt + η)κt (z) qt =

ηqt + (γmax {Γztϕt −Rt, 0}+Rt− δqt)κt (z) +µ(z)qt
∂κt
∂z

+
σ2(z)

2
qt
∂2κt
∂z2

+
∂ (qtκt)

∂t
.

(43)

Lemma. κt (z) > 1 ∀z, t
Proof. The drift of the entrepreneur’s capital holdings is

sat =
1

qt
[(γmax {Γztϕt −Rt, 0}+Rt − δqt] ≥

Rt − δqt
qt

which is expected to hold with strict inequality eventually if ∃ P (zt ≥ z∗t ) > 0 (which

is satisfied in equilibrium since z is unbounded), and hence

E0at = E0a0e
´ t
0 s

a
udu > a0e

´ t
0
Rs−δqs
qs

ds. (44)

The value function is then

κt0 (z) qt0at0 = Vt0(z, at0)

= Et0
ˆ ∞

0
e
−
´ t
t0

(rs+η)ds
(dt + ηqtat) dt
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≥ Et0
ˆ ∞

0
e
−
´ t
t0

(rs+η)ds
ηqtatdt = Et0

ˆ ∞
0

e

−
´ t
t0


rs︷ ︸︸ ︷

Rs − δqs + q̇s
qs

+η

ds
ηqtatdt

= Et0
ˆ ∞

0
e
−
´ t
t0

(
Rs−δqs
qs

+η
)
ds−log

qt
qt0 ηqtatdt = Et0

ˆ ∞
0

e
−
´ t
t0

(
Rs−δqs
qs

+η
)
ds
ηqt0atdt

> Et0
ˆ ∞

0
e
−
´ t
t0

(
Rs−δqs
qs

+η
)
ds
ηqt0at0e

´ t
0
Rs−δqs
qs

ds
dt =

ˆ ∞
0

e−ηtηqt0at0dt = qt0at0 ,

where in the first equality we have employed the linear expression of the value func-

tion, in the second equation (5), in the third the fact that dividends are non-negative,

in the fourth the definition of the real rate 24 and in the last line the inequality (44).

Hence κt0 (z) > 1 for any t0.

A.2 New Keynesian Philips curve

The proof is similar to that of Lemma 1 in Kaplan et al. (2018). The Hamilton-

Jacobi-Bellman (HJB) equation of the retailer’s problem is

rtV
r
t (p) = max

π

(
p− P y

t (1− τ)

Pt

)(
p

Pt

)−ε
Yt −

θ

2
π2Yt + πp

∂V r

∂p
+
∂V r

∂t
,

where where V r
t (p) is the real value of a retailer with price p. The first order and

envelope conditions for the retailer are

θπYt = p
∂V r

∂p
,

(r − π)
∂V r

∂p
=

(
p

Pt

)−ε
Yt
Pt
− ε

(
p− P y

t (1− τ)

Pt

)(
p

Pt

)−ε−1
Yt
Pt

+ πp
∂2V r

∂p2
+
∂2V r

∂t∂p
.

In a symmetric equilibrium we will have p = P , and hence

∂V r

∂p
=

θπYt
p

, (45)

(r − π)
∂V r

∂p
=

Yt
p
− ε

(
p− P y

t (1− τ)

p

)
Yt
p

+ πp
∂2V r

∂p2
+
∂2V r

∂t∂p
.
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Deriving (45) with respect to time gives

πp
∂2V r

∂p2
+
∂2V r

∂t∂p
=
θπẎ

p
+
θπ̇Y

p
− θπ2Y

p
,

and substituting into the envelope condition and dividing by θY
p

we obtain(
r − Ẏ

Y

)
π =

1

θ

(
1− ε

(
1− P y

t (1− τ)

p

))
+ π̇.

Finally, rearranging we obtain the New Keynesian Phillips curve(
r − Ẏ

Y

)
π =

ε

θ

(
1− ε
ε

+ m̃

)
+ π̇.

A.3 Capital producers

The problem of the capital producer is

Wt = max
ιt,Kt

E0

ˆ ∞
0

e−
´ t
0 rsds (qtιt − ιt − Φ (ιt))Ktdt. (46)

K̇t = (ιt − δ)Kt, (47)

We construct the Hamiltonian

H = (qtιt − ιt − Φ (ιt))Kt + λt (ιt − δ)Kt

with first-order conditions

(qt − 1− Φ′ (ιt)) + λt = 0 (48)

(qtιt − ιt − Φ (ιt)) + λt (ιt − δ) = rtλt − λ̇t (49)

Taking the time derivative of equation (48)

λ̇t = − (q̇t − Φ′′ (ιt) ι̇t)
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which, combined with (49), yields

(qtιt − ιt − Φ (ιt))− (qt − 1− Φ′ (ιt)) (ιt − δ − rt) = (q̇t − Φ′′ (ιt) ι̇t)

Rearranging we get

rt = (ιt − δ) +
q̇t − Φ′′ (ιt) ι̇t
qt − 1− Φ′ (ιt)

− qtιt − ιt − Φ (ιt)

qt − 1− Φ′ (ιt)
.

A.4 Household’s problem

We can rewrite the household’s problem as

Wt = max
Ct,Lt,Dt,BNt ,S

N
t

E0

ˆ ∞
0

e−ρ
h
t t

(
C1−ζ
t

1− ζ
−Υ

L1+ϑ
t

1 + ϑ

)
dt. (50)

s.t. Ḋt =
[
(Rt − δqt)Dt + wtLt − Ct − SNt + Πt

]
/qt, (51)

ḂN
t = SNt + (it − πt)BN

t , (52)

The Hamiltonian is

H =

(
C1−ζ
t

1− ζ
−Υ

L1+ϑ
t

1 + ϑ

)
+%t

[(
(Rt − δqt)Dt + wtLt − Ct − SNt + (qtιt − ιt − Φ (ιt))Kt + Πt

)
/qt
]

+ ηt
[
SNt + (it − πt)BN

t

]
The first order conditions are

C−ζt − %t/qt = 0 (53)

−ΥLϑt + %twt/qt = 0 (54)

− %t/qt + ηt = 0 (55)

%̇t = ρht %t − %t (Rt − δqt) /qt (56)
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η̇t = ρht ηt − ηt [(it − πt)] (57)

(53) and (54) combine to the optimality condition for labor

wt =
Lϑt
C−ηt

,

(53) can be rewritten as

%t = C -η
t qt

Now take derivative with respect to time

%̇t = −ηC -η-1
t Ċtqt + C -η

t q̇t

and plug this into (56) and rearrange to get the first Euler equation

Ċt
Ct

=

Rt−δqt+q̇t
qt

− ρht
η

(55) can be rewritten as

ηt = %t/qt

Now take derivative with respect to time

η̇t =
%̇tqt − %tq̇

q2
t

Use these two expressions and the definition of %̇t in (57) to get the second Euler

equation
Ċt
Ct

=
(it − πt)− ρht

η

Combining the two Euler equations, we get the Fisher equation

Rt − δqt + q̇t
qt

= (it − πt)

Finally using the definition of rt ≡ Rt−δqt+q̇t
qt

we can rewrite the first Euler equation

and the Fisher equation as in the main text.
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A.5 Distribution

The joint distribution of net worth and productivity is given by the Kolmogorov

Forward equation

∂gt(z, a)

∂t
= − ∂

∂a
[gt(z, a)st(z)a]− ∂

∂z
[gt(z, a)µ(z)]+

1

2

∂2

∂z2
[gt(z, a)σ2(z)]−ηgt(z, a)+η/ψgt(z, a/ψ),

(58)

where 1/ψgt(z, a/ψ) is the distribution of entry firms.

To characterize the law of motion of net-worth shares, defined as ωt(z) = 1
At

´∞
0
agt(z, a)da,

first we take the derivative of ωt(z) wrt time

∂ωt(z)

∂t
= − Ȧt

A2
t

ˆ ∞
0

agt(z, a)da+
1

At

ˆ ∞
0

a
∂gt(z, a)

∂t
da. (59)

Next, we plug in the derivative of gt(z, a) wrt time from equation(58) into equation

(59),

∂ωt(z)

∂t
= − Ȧt

A2
t

ˆ ∞
0

agt(z, a)da+
1

At

ˆ ∞
0

a

(
− ∂

∂a
[gt(z, a)st(z)a]

)
da

− ∂

∂z
µ(z)

1

At

ˆ ∞
0

agt(z, a)da+
1

2

∂2

∂z2
σ2(z)

1

At

ˆ ∞
0

agt(z, a)da

− 1

At

ˆ ∞
0

ηagt(z, a)da+
1

At

ˆ ∞
0

ηa/ψgt(z, a/ψ)da.

Using integration by parts and the definition of net worth shares, we obtain the second

order partial differential equation that characterizes the law of motion of net-worth

shares,

∂ωt(z)

∂t
=

[
st(z)− Ȧt

At
− (1− ψ)η

]
ωt(z)− ∂

∂z
µ(z)ωt(z) +

1

2

∂2

∂z2
σ2(z)ωt(z). (60)

The stationary distribution is therefore given by the following second order partial

differential equation,

0 = (s(z)− (1− ψ)η)ω(z)− ∂

∂z
µ(z)ω(z) +

1

2

∂2

∂z2
σ2(z)ω(z). (61)
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Remember that sat (zt, at, ct) = 1
qt

[Φt(zt, at) + (Rt − δqt)at], since entrepreneurs dis-

tribute zero dividends while active.

A.6 Market clearing and aggregation

Define the cumulative function of net-worth shares as

Ωt(z) =

ˆ z

0

ωt(z)dz. (62)

Using the optimal choice for kt from equation (7), we obtain

Kt =

ˆ
kt(z, a)dGt(z, a) =

ˆ ∞
z∗t

ˆ
γa

1

At
gt(z, a)dadzAt = γ(1− Ω(z∗t ))At. (63)

By combining equations (28), (29) and (63), and solving for At,we obtain

At =
Dt

(1− Ω(z∗t ))− 1
, (64)

Labor market clearing implies

Lt =

ˆ ∞
0

lt(z, a)dGt(z, a). (65)

Define the following auxiliary variable,

Xt ≡
ˆ ∞
z∗t

zωt(z)dz = E [z | z > z∗t ] (1− Ω(z∗t )). (66)

Using labor demand from (8) , Xt and using the definition of ϕt, we obtain

Lt =

ˆ ∞
0

(
ϕt
αmt

) 1
1−α

ΓztγatdGt(z, a) =

(
ϕt
αmt

) 1
1−α

γΓAtXt. (67)

Plugging in (8) into production function (1), and using again the definition of

shares, we obtain

Yt =

ˆ
Γztϕt
αmt

γa︸ ︷︷ ︸
yt(z,a)

dGt(z, a) = Γ
ϕt
αmt

XtγAt = ZtA
α
t Lt

1−α, (68)
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where in the last equality we have used equation (67), and we have defined

Zt = (ΓγXt)
α . (69)

Aggregate profits of retailers are given by

ΦAgg
t =

ˆ
γmax {Γztϕt −Rt, 0} atdGt(z, a) = [ΓϕtXt −Rt (1− Ω(z∗))] γAt. (70)

We can also write the aggregate production in terms of physical capital,

Yt = Z̃tK
α
t Lt

1−α, (71)

where the TFP term Z̃t si defined as

Z̃t =

(
ΓXt

(1− Ω(z∗t ))

)α
= (ΓE [z | z > z∗t ])

α . (72)

Aggregating the budget constraint of all input good firms, using the linearity of

savings policy (11) and using (64), we obtain

Ȧt =

ˆ
ȧdG(z, a, t)− η

ˆ
(1− ψ)atdG(z, a, t) =

=

ˆ ∞
0

1

qt
(γmax {Γztϕt −Rt, 0}+Rt − δqt − qt(1− ψ)η)atdG(z, a),

Dividing by At both sides of this equation, using the definition of net worth shares

and the fact that these integrate up to one, we obtain

Ȧt
At

=
1

qt
(γϕtΓXt −Rtγ(1− Ω(z∗t )) +Rt − δqt − qt(1− ψ)η). (73)

Using the definition of Xt, and substituting ϕt using equation (67), we can simplify

equation (73) as

Ȧt
At

=
1

qt
(αmtZtAt

α−1Lt
1−α −Rtγ(1− Ω(z∗t )) +Rt − δqt − qt(1− ψ)η). (74)

Finally, we can obtain factor prices
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wt =(1− α)mtZtAt
αLt

−α (75)

Rt =αmtZtA
α−1
t Lt

1−α z∗t
γX t

(76)

where wages come from substituting the definition of ϕt into equation (67); and

interest rates come from plugging in the wage expression (75) into the cut-off rule

(10) and using equation (64). We could equivalently write equation (76) in terms of

real rate of return rt :

rt =
1

qt

(
αmtZtA

α−1
t Lt

1−α z∗t
γX t

)
− δ +

q̇

qt
(77)

We can easily get these equations in terms of capital instead of net worth by simply

using equation (63), i.e. At = Kt
γ(1−Ω(z∗t ))

, and using that E [z | z > z∗t ] = Xt
(1−Ω(z∗t ))

=´∞
z∗t
zωt(z)dz

(1−Ω(z∗t ))
(see equation (69) and (72)).

A.7 Full set of equations

The competitive equilibrium economy is described by the following 22 equations, for

the 22 variables
{
ω(z), s(z), w, r, q, ϕ,K,A, L,C,D, Z̃,E [z | z > z∗t ] ,Ω, z

∗, ι, π,m, m̃, i, Y, T
}

.

Remember that µ(z) = z
(
−ςz log z + σ2

2

)
and σ(z) = σzz, and that government

bonds are in zero net supply (BN
t = 0, hence Xt = 0). Except from the last equa-

tion (Taylor rule), the other 21 equations are the constraints of the Ramsey problem

described in Section 2.8.
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∂ωt (z)

∂t
=

(
st(z)− (1− ψ)η − Ȧt

At

)
ωt (z)− ∂

∂z
[µ(z)ωt (z)] +

1

2

∂2

∂z2

[
σ2(z)ωt (z)

]
st(z) =

1

qt
(γmax {Γztϕt −Rt, 0}+Rt − δqt)

Ωt(z
∗) =

ˆ z∗

0

ωt (z) dz

ϕt = α

(
(1− α)

wt

)(1−α)/α

m
1
α
t

m̃t = mt(1− τ)

wt = (1− α)mtZ̃tKt
αLt

−α

Rt = αmtZ̃tK
α−1
t Lt

1−α z∗t
E [z | z > z∗t ]

Ȧt
At

=
1

qt

[
γ(1− Ω(z∗t ))

(
αmtZ̃tK

α−1
t Lt

1−α −Rt

)
+Rt − δqt − qt(1− ψ)η)

]
Kt = At +Dt

K̇t = (ιt − δ)Kt

At =
Dt

γ(1− Ω(z∗t ))− 1

Z̃t = (ΓE [z | z > z∗t ])
α

E [z | z > z∗t ] =

´∞
z∗t
zωt(z)dz

(1− Ω(z∗t ))

Ċt
Ct

=
rt − ρht
η

wt =
ΥLϑt
C−ηt

Ḋt = [(Rt − δqt)Dt + wtLt − Ct + Tt] /qt

rt = it − πt

rt =
Rt − δqt + q̇t

qt

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt))(
rt −

Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε
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Yt = Z̃tK
α
t Lt

1−α

Tt = (1−mt)Yt −
θ

2
π2
t Yt + (1− ψ)ηAt +

[
ιtqt − ιt −

φk

2
(ιt − δ)2

]
Kt

di = −υ
(
it −

(
ρht + φ (πt − π̄) + π̄

))
dt.
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A.8 RANK vs HANK

In this appendix we want to highlight the differences between the heterogeneous-agent

New Keynesian model (HANK ) presented in this paper and the standard represen-

tative agent New Keynesian model with capital (RANK). Note first that the HANK

economy collapses to the standard RANK economy if the borrowing constraint is

made infinitely slack (assuming that the support of entrepreneurs productivity distri-

bution is bounded above). In that case entrepreneurial net worth becomes irrelevant

and only the entrepreneur with the highest level of productivity zt produces, since

she can frictionlessly rent all the capital in the economy. Her productivity determines

aggregate productivity Z̃t = (zmaxt Γ)α.In contrast, in the HANK model with incom-

plete markets, entrepreneurs’ firms can only use capital up to a multiple γ of their

net worth , i.e. γat ≤ kt . Thus entrepreneurs need to accumulate net worth (in units

of capital) to alleviate these financial frictions. Hence, in the HANK model, the dis-

tribution of aggregate capital across entrepreneurs and the representative household

matters and aggregate productivity depends on the expected productivity of active

firms, Z̃ = (ΓE [z | z > z∗t ])
α. The rest of the agents (retailers, final good producers,

capital producers) are identical in both economies.

Below we report the equilibrium conditions in the RANK economy. Comparing

them with those of the HANK economy reveals that they are identical up to the fact

that in HANK Z̃t is endogenous (and determined by a bunch of extra equations) and

up to a term in the condition equating the rental rate of capital Rt with the marginal

return on capital.

The competitive equilibrium of the RANK model with capital consists of the fol-

lowing equations 16 equations, for the 16 variables
{
w, r, q, ϕ,K, L, C,D, Z̃, ι, π,m, m̃, i, Y, T

}
:
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ϕt = α

(
(1− α)

wt

)(1−α)/α

m
1
α
t

m̃t = mt(1− τ)

wt = (1− α)mtZ̃tKt
αLt

−α

Rt = αmtZ̃tK
α−1
t Lt

1−α

Kt = Dt

K̇t = (ιt − δ)Kt

Z̃t = (Γt)
α

Ċt
Ct

=
rt − ρht
η

wt =
ΥLϑt
C−ηt

Ḋt = [(Rt − δqt)Dt + wtLt − Ct + Tt] /qt

rt = it − πt

rt =
Rt − δqt + q̇t

qt

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt))(
rt −

Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε

Yt = Z̃tK
α
t Lt

1−α

Tt = (1−mt)Yt −
θ

2
π2
t Yt +

[
ιtqt − ιt −

φk

2
(ιt − δ)2

]
Kt

di = −υ
(
it −

(
ρht + φ (πt − π̄) + π̄

))
dt.
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B Empirical Appendix

B.1 Firm level data

The empirical exercise relies on annual firm balance-sheet data from the Central de

Balances Integrada database (Integrated Central BalanceSheet Data Office Survey).

Being a detailed administrative dataset, the main advantage is that it covers the

quasi-universe of Spanish firms (see Almunia et al., 2018 for further details on the

representativeness of this dataset). Our dependent variable, the investment rate,

is defined as the log difference of firm’s tangible capital between periods t and t −
1. Firm’s marginal revenue product of capital (MRPK) is the log of the ratio of

value added over tangible capital. Leverage is computed as total debt (short-term

plus long-term debt) divided by total assets. Net financial assets are constructed

as the log difference between financial assets and financial liabilities, where financial

assets include short-term financial investment, trade receivables, inventories and cash

holdings; and financial liabilities include short-term debt, trade payables and long-

term debt. We proxy for size using log total assets. Real revenue growth is defined

as the log difference of revenue in two consecutive years. Variables are deflated using

industry price level to preserve the firm’s level price changes and consider a revenue-

based measure of MRPK (Foster et al., 2008). We use the value-added price deflator

for value added and revenues, and the investment price deflator for capital and total

assets. Descriptive statistics are reported in Table 3.

Data is cleaned following closely Ottonello and Winberry (2020). In particular, (i)

observations with negative capital or value added are dropped; (ii) the investment rate

and MRPK are winsorized at 0.5%; (ii) we use net financial assets over as a share of

total assets to control for firms’ savings, following Armenter and Hnatkovska, 2017,

instead of net current assets (as Ottonello and Winberry (2020) do), and we drop

values in absolute terms greater than 10; and (iii) negative values of leverage are

dropped, as well as values higher than 10. While Ottonello and Winberry (2020)

drop firms for which the time spell is shorter than 10 years, we prefer to consider the

full sample of firms without imposing an arbitrary threshold, and we show that our

results are robust considering a balanced sample where we keep only firms that are

present in our dataset for the whole time period considered.
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Table 3: Descriptive statistics

mean sd min max

εMP
t -3.06 7.40 -17.99 7.94
εMP
t x MRPKt−1 -0.00 0.08 -1.60 1.82
MRPKt -0.00 1.00 -10.09 10.25
gtGDP x MRPKt−1 0.22 3.07 -40.36 46.81
MRPKt (lev) 0.51 2.09 -5.47 6.22
Sales growth 0.00 1.00 -17.84 13.56
Total assets 0.00 1.00 -5.57 7.07
Leverage -0.00 1.00 -0.57 25.95

Observations 9485676

Notes: The table shows the mean (column 1), standard deviation (column 2), minimum and maximum value
(column 3 and 4 respectively) of the main variables used in the analysis. εMP

t is the annualized monetary policy
shock, renormalized so that a positive value is an expansionary shock.MRPK stands for the demeaned measure of
MRPK explained in Section 6. MRPK, sales growth, total assets and leverage are standardized, as in Ottonello and
Winberry (2020). MRPK (lev) is the raw variable of MRPK. gGDPt stands for GDP growth.

B.2 Monetary policy shocks

We construct our yearly monetary policy shocks aggregating the monthly monetary

policy shocks of Jarociński and Karadi (2020). Since firms have less time to react

to shocks happening at the end of the year, ignoring this issue would lead to biased

estimates. Therefore, similar to Ottonello and Winberry (2020), but on a month-

year level instead of month-quarter, we apply a weighting scheme that aggregates the

shocks happening in the fourth quarter of the previous year with increasing linear

weight, and uses linear and decreasing weights in the current year. Namely, we add

them using decreasing weights within the year ωa(m), and increasing weights in the

last quarter of the previous year ωb(m), i.e.

εMP
t =

∑
m∈t

ωa(m)εMP
m +

∑
m∈q4t−1

ωb(m)εMP
m .

This is equivalent to say that a shock in January of period t has more weight than a

shock in December of the same year, exactly because firms take time to adjust their

investment plans. Panel 1 of Figure 5 shows the time series of the shock built in this

way.
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Figure 5: Monetary policy shocks at annual frequency.
Notes: The figure shows the monetary policy shocks at an annual frequency, applying a weighting scheme at aggre-
gation that includes the shock in the fourth quarter of the previous period with an increasing linear weight and uses
linear and decreasing weights in the current year.

B.3 Robustness

In this section we check the robustness of our empirical results. We perform variations

of the main empirical specification explained in the main text, equation (42), which

we repeat here for the sake of completeness.

∆log kj,t = αj + αs,t + β (MRPKj,t−1 − Ej [MRPKj]) ε
MP
t + Γ′Zj,t−1 + uj,t.

Following Ottonello and Winberry (2020) and Eberly et al. (2012), we control for

the lagged of the dependent variable, i.e. firms’ lagged investment rate, since it has

been shown that it is a good predictor of a firm’s current investment. Columns (1)

and (2) in Table 4 show that results are robust to adding this variable, even stronger

in magnitude, and R2 does not change significantly. Columns (3) and (4) in Table

4 show the results using the baseline monetary policy shock εMP , but interacting

this shock with the lagged MRPK in levels, instead of the demeaned standardized

measure. We see that the coefficients are still positive and significant. Finally, we

estimate the baseline equation (42) considering the balanced panel, i.e. keeping only

firms that we observe during the entire time sample period, in order to focus on pure
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incumbents. Columns (5) and (6) in Table 4 not only confirm the baseline results,

but show that the effect can be even larger for incumbent firms. All these robustness

exercises point at a higher heterogeneous response of investment for high MRPK

firms.

Table 4: Robustness

(1) (2) (3) (4) (5) (6)

εMP
t x MRPKt−1 0.238∗∗∗ 0.332∗∗∗ 0.177∗∗ 0.250∗∗∗

(0.06) (0.10) (0.07) (0.09)
invt−1 -0.0310∗∗∗ -0.0280∗∗∗

(0.00) (0.00)
εMP
t x MRPKt−1 (lev) 0.419∗∗∗ 0.458∗∗∗

(0.05) (0.06)

Observations 4162114 3023427 5551870 3527360 283835 225976
R2 0.279 0.314 0.275 0.313 0.153 0.181
MRPK control YES YES YES YES YES YES
Controls NO YES NO YES NO YES
Time-sector FE YES YES YES YES YES YES
Time-sector clustering YES YES YES YES YES YES
Panel FULL FULL FULL FULL BALANCED BALANCED

Notes: Results of estimating equation (42), departing from some of the specifications of the estimation in the main text (Section 6).
Columns (1) and (2) include as control the lag of the investment rate (log(kt−1)− log(kt−2)). Columns (3) and (4) use MRPK in
levels, MRPK (lev), instead of the demeaned standardized value. Columns (1) , (3) and (5) use only MRPK as controls, while
columns (2), (4) and (6) include all the controls: MRPK, total assets, sales growth, and net financial assets as a share of total
assets; and the interaction of MRPK with lagged GDP growth. Columns (1),(2), (5) and (6) use the demeaned standardized
measure of MRPK explained in the main text, while columns (3)-(4) use MRPK in levels.
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C Numerical Appendix

C.1 Finite difference approximation of the Kolmogorov For-

ward equation

The KF equation is solved by a finite difference scheme following Achdou et al. (2017).

It approximates the density ωt (z) on a finite grid z ∈ {z1, ..., zJ}, t ∈ {t1, ..., tN} with

steps ∆z and time steps ∆t. We use the notation ωnj := ωn∆t(zj), j = 1, ..., J, n =

0, .., N. The KF equation is then approximated as

ωnj − ωn−1
j

∆t
=

(
sn(zj)−

Ȧn
An
− (1− ψ)η

)
ωn(zj)

−
ωnj µ(zj)− ωnj−1µ(zj−1)

∆z
+
ωnj+1σ̃

2(zj+1) + ωnj−1σ̃
2(zj−1)− 2ωnj σ̃

2(zj)

2 (∆z)2 ,

which, grouping, results in

ωnj − ωn−1
j

∆t
=

[(
sn(zj)−

Ȧn
An
− (1− ψ)η

)
− µ(zj)

∆z
− σ̃2(zj)

(∆z)2

]
︸ ︷︷ ︸

βnj

ωn(zj)

+

[
µ(zj−1)

∆z
+
σ̃2(zj−1)

2 (∆z)2

]
︸ ︷︷ ︸

%nj−1

ωnj−1 +

[
σ̃2(zj+1)

2 (∆z)2

]
︸ ︷︷ ︸

χnj+1

ωnj+1.

The boundary conditions are the ones associated with a reflected process z at the

boundaries:15

ωn1 − ωn−1
1

∆t
= (βn1 + χn1 )ωn(z1) + χn2ω

n
j+1,

ωnJ − ωn−1
J

∆t
= (βnJ + %nJ)ωn(zJ) + %nJ−1ω

n
j−1.

15It is easy to check that this formulation preserves the fact that matrix Bn below is the transpose
of the matrix associated with the infinitesimal generator of the process.
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If we define matrix

Bn =



βn1 + χn1 χn2 0 0 · · · 0 0 0

%n1 βn2 χn3 0 · · · 0 0 0

0 %n2 βn3 χn4 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · %nJ−2 βnJ−1 χnJ
0 0 0 0 · · · 0 %nJ−1 βnJ + %nJ


,

then we can express the KF equation as

ωn − ωn−1

∆t
= Bn−1ωn,

or

ωn =
(
I−∆tBn−1

)−1
ωn−1, (78)

where ωn =
[
ωn1 ωn2 ... ωnJ−1 ωnJ

]T
, and I is the identity matrix of dimension

J.

Extension to non-homogeneous grids Our model has been solved using a ho-

mogeneous grid and all the results presented in the paper have been computed using

homogeneous grids. However, in some robustness tests that we have performed to

assess the accuracy of the method, we have used non-homogeneous grid for the state

zto economize on grid points. . We could not find a universally applicable way to

implement non-homogeneous grids in the economics literature, so we propose the fol-

lowing discretization scheme.16 We have used this scheme to verify that our numerical

results are accurate in the sense that they do not change if we add additional grid

points to the ω grid – no matter whether we add them where most of the mass of

ω(z) is located or in the range in which z∗t moves.

Be z =
[
z1, z2, ... zJ−1 zJ

]
the grid. Define ∆za,b = zb − za and let ∆z =

16Our approach builds on the one in the appendix to Achdou et al., 2017. It differs from theirs in
two ways. First, it can be derived as a finite difference scheme to the KFE. Their approach delivers
a finite difference approximation for the HJB, but not for the KFE, and hence it requires the grid
to be constructed such that the step size to both sides of any grid point converge to one another.
Furthermore, our approach is not an upwind scheme and has only been tested in the current model,
which features no endogenous drift.
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1
2

[
∆z1,2, ∆z1,3, ∆z2,4, ..., ∆zJ−2,J ∆zJ−1,J

]
. We approximate the KFE (27)

using central difference for both the first derivative and the second derivative.

ωnj − ωn−1
j

∆t
=

(
sn(z)− (1− ψ)η − Ȧn

An

)
ωt (zj)−

[
µ(zj+1)ωt (zj+1)− µ(zj−1)ωt (zj−1)

∆zj−1,j+1

]
+

1

2

∆zj−1,jσ
2(zj+1)ωt (zj+1) + ∆zj,j+1σ

2(zj−1)ωt (zj−1)−∆zj−1,j+1σ
2(zj)ωt (zj)

1
2

(∆zj−1,j+1) ∆zj,j+1∆zj−1,j

which, grouping, results in

ωnj − ωn−1
j

∆t
=

[(
sn(z)− (1− ψ)η − Ȧn

An

)
ωt (z) +

σ2(zj)ωt (zj)

∆zj,j+1∆zj−1,j

]
︸ ︷︷ ︸

βnj

ωn(zj)

+

[
µ(zj−1)ωt (zj−1)

∆zj−1,j+1

+
σ2(zj+1)ωt (zj+1)

(∆zj−1,j+1) ∆zj,j+1

]
︸ ︷︷ ︸

%nj−1

ωnj−1

+

[
−µ(zj+1)ωt (zj+1)

∆zj−1,j+1

+
σ2(zj+1)ωt (zj+1)

(∆zj−1,j+1) ∆zj,j+1

]
︸ ︷︷ ︸

χnj+1

ωnj+1.

The law of motion of ω can equivalently be written in matrix form

ωn − ωn−1

∆t
= Bn−1ωn

where

Bn =



βn1 + χn1 χn2 0 0 · · · 0 0 0

%n1 βn2 χn3 0 · · · 0 0 0

0 %n2 βn3 χn4 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · %nJ−2 βnJ−1 χnJ
0 0 0 0 · · · 0 %nJ−1 βnJ + %nJ


,

Abstracting for brevity from the term
(
sn(z)− (1− ψ)η − Ȧn

An

)
, which is independent

of the grid, and spelling out Bn we have
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ωn − ωn−1

∆t
=



− µ(z1)
∆z1,2

− σ(z1)
∆z1,2∆z1,2/2

+ σ(z1)
∆z1,2∆z1,2

− µ(z2)
∆z1,2

+ σ(z2)
∆z1,2∆z1,2

0 · · ·
µ(z1)
∆z1,3

+ σ(z1)
∆z1,3∆z1,2

− σ(z2)
∆z1,2∆z2,3

− µ(z3)
∆z1,3

+ σ(z3)
∆z1,3∆z2,3

· · ·
0 µ(z2)

∆z2,4
+ σ(z2)

∆z2,4∆z2,3
− σ(z3)

∆z2,3∆z3,4
· · ·

0 0 µ(z3)
∆z3,5

+ σ(z3)
∆z3,4∆z3,5

· · ·
...

...
...

. . .


ωn.

We can rewrite this as follows

ωn − ωn−1

∆t
=



− µ(z1)
∆z1,2

− σ(z2)
∆z1,2∆z1,2

− µ(z2)
∆z1,2

+ ∆z2,3σ(z2)

∆z2,3(∆z1,2∆z1,2)
0 · · ·

µ(z1)
∆z1,3

+ σ(z1)
∆z1,3∆z1,2

− (∆z1,2+∆z2,3)σ(z2)

∆z1,3(∆z1,2∆z2,3)
− µ(z3)

∆z1,3
+ ∆z3,4σ(z3)

∆z3,4(∆z1,3∆z2,3)
· · ·

0 µ(z2)
∆z2,4

+ ∆z1,2σ(z2)

∆z1,2(∆z2,4∆z2,3)
− (∆z2,3+∆z3,4)σ(z3)

∆z2,4(∆z2,3∆z3,4)
· · ·

0 0 µ(z3)
∆z3,5

+ ∆z2,3σ(z3)

∆z2,3(∆z3,4∆z3,5)
· · ·

...
...

...
. . .


ωn.

Note that the bold terms in line i are equal to 1/∆zi. Thus the columns of Bn∆z sum

up to 1 and the operation is mass preserving, in the sense that the above relationship

guarantees that ∑
ωnj ∆zj =

∑
ωn−1
j ∆zj

where
∑
ωnj ∆zj is a trapezoid approximation of the integral

´
ωn(z)dz.

C.2 Finite difference approximation of the Integrals

To approximate the integrals in
´ z

0
ωt (z) dz and

´∞
z∗t
zωt(z)dz we use the trapezoid

rule. I.e. if f(z) is either ωt (z) or zωt(z) and zj ≤ z̄ ≤ zj+1 then the integral from

the closest lower gridpoint is given by

ˆ z̄

zj

f (z) dz =

[
f (zj) +

1

2
[f (zj+1)− f (zj)]

(z̄ − zj)
∆z

]
(z̄ − zj)

We use this formula to construct the integrals over a larger range piecewise. For
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example:

ˆ zN

z1

f (z) dz =
[

1
2

1 1 · · · 1 1
2

]

f (z1)

f (z2)
...

f (zN)


and

ˆ z∗

z1

f (z) dz =
[

1
2 1 1 · · · 1 1

2

]


f (z1)

f (z2)
...

f (zj∗)


+

[
f (zj∗−1) +

1

2
[f (zj∗)− f (zj∗−1)]

(z∗ − zj∗−1)

∆z

]
(z∗ − zj∗−1)

where j∗= arg min
j
{j ≤ J |zj∗ > z∗}

C.3 Algorithm to solve for the SS

Here we present how to solve for the SS of the private equilibrium, that is for the SS

when the central bank sets a certain level of the nominal interest rate in SS iss.

We know that in SS consumption does not grow, hence from (21)

rss = ρh. (79)

We also know that in SS, the investment rate is equal to the depreciation,

ιss = δ. (80)

This means that, from equation (??) and the functional form we assumed for the

capital adjustment costs (18),

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt)) (81)

(
qss − 1− φk(ιss − δ)

) (
ρhh − (ιss − δ)

)
= 0− φk ∗ 0−

(
qssιss − ιss − φk(ιss − δ)

)
58



ρhh(qss − 1) = δ(1− qss)

.From here we can solve for the steady state value of qss, which is given by

qss = 1. (82)

Furthermore, combining (79) with the fisher equation and the fact that the planner

sets a certain nominal rate iss we get that

πss = iss − ρh. (83)

In SS, π̇t = 0 and Ẏt = 0. Hence, from equation (14) we obtain

mss =

(
m∗ + ρhπss

θ

ε

)
. (84)

Using equation (35) and (79),

ρh =
1

qss

(
αmtZtA

α−1
t L1−α z∗t

γX t

)
− δ (85)

From equation (36) and (79),

Ȧt
At

= 0 =
1

qt
(αmtZtAt

α−1Lt
1−α −RtΓ(1− Ω(z∗t )) +Rt − δqt − qt(1− ψ)η). (86)

Plugging the latter equation into the former, using qSS = 1 and using the definition

of rt we obtain:

ρh + δ =
[
(ρh + δ) (γ(1− Ω(z∗t ))− 1) + (1− ψ)η + δ

] z∗

γX∗
. (87)

In the algorithm, we use a non-linear equation solver to obtain z∗ from this equa-

tion.

The Algorithm.

• Get rss = ρh, πss = π̄ and iss = ρh + πss and Rss = qss(ρh + δ) and mss =

m∗ + ρhπss θ
ε

.

• Given that our calibration target for Lss = 1, we “guess” Lss = 1
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• Let n now denote the iteration counter. Make an initial guess for the net worth

distribution ω0

1. Use a non-linear equation solver on equation (87) to obtain z∗ from equa-

tion (87).

2. Obtain Zn = (γΓnX
∗
n)α .

3. Find A from equation (34),

An =

[
qssρh + δqss

αmnZnLm1−α z∗t
γXt

] 1

α−1

.

4. Find the stocks Kn = γ(1− Ωn(z∗))An, Dn = Kn − An.

5. Compute wn = (1− α)mssZnAn
αLn

−α,ϕn = α
(

(1−α)
wn

)(1−α)/α

mss 1
α .

6. Get aggregate output Y = ZnA
α
nLn

1−α, transfers Tn = (1−mss)Yn −
θ
2

(πss)2 Yn + (1− ψ)ηAt , and consumption Cn = wnLm + rssDn + Tn.

7. Update ŝnj = 1
qss

(γmax {Γzϕn −Rn, 0}+Rn− δqss) and employ it to con-

struct matrix Bn−1.

8. Update ωn+1 using equation ωn+1−ωn
∆t

= Bnωn+1.

9. If the net worth distribution do not coincide with the guess, set n = n+ 1

and return to point 1

• Set Υ =
(
wL=1C

−η
L=1

)
to ensure our “guess” for Lss is correct.

D Proof of proposition 3

Proof: The proof has the following structure. First, we set up a generic planner’s

problem in a continuous-time heterogeneous-agent economy without aggregate uncer-

tainty. Second, we derive the continuous time optimality conditions of the planner’s

problem and discretize them. Third, we discretize the planners problem and the derive

the optimality conditions. Fourth, we compare the two sets of discretized optimality

conditions.
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1. The generic problem The planner’s problem in an economy with heterogeneity

among one agent type (e.g. households or firms) can be written as

max
Zt,ut(x),µt(x),vt(x)

ˆ ∞
0

exp(−%t)f0(Zt)dt (88)

s.t. ∀t

Ẋt = f1(Zt) (89)

U̇t = f2(Zt) (90)

0 = f3(Zt) (91)

Ũt =

ˆ
f4 (x, ut(x), Zt)µt (x) dx (92)

ρvt(x) = v̇t(x) + f5(x, ut(x), Zt) (93)

+
I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

I∑
k=1

(
σ(x)σ(x)>

)
i,k

2

∂2vt(x)

∂xi∂xk
, ∀x

0 =
∂f5

∂uj,t
+

I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi
, j = 1, ..., J, ∀x. (94)

µ̇t (x) = −
I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] (95)

+
1

2

I∑
i=1

I∑
k=1

∂2

∂xi∂xk

[(
σ(x)σ(x)>

)
i,k
µt (x)

]
, ∀x

X0 = X̄0 (96)

µ0 (x) = µ̄0 (x) (97)

limt→∞U = Ū∞ (98)

limt→∞v(x) = v̄(x)∞ (99)

where we have adopted the following notation:

• Variables (capitals are reserved for aggregate variables):

– x individual state vector with I elements

– u individual control vector with J elements

– v individual value function vector with 1 element

– u(x) control vector as function of individual state
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– µ(x) distribution of agents across states

– v(x) value function as function of individual state

– X aggregate state vector (other than µ)

– Û aggregate control vector of purely contemporaneous variables

– U aggregate control vector of intertemporal variables

– Ũ control vector of aggregator variables

– Zt =
{
Ũt, Ut, Ūt, Xt

}
vector of all aggregate variables

• Functions

– b function that determines the drift of x

– f0 welfare function

– f1, f2, f3 aggregate equilibrium conditions

– f4 aggregator function

– f5 individual utility function

Line (88) is the planner’s objective function.17 Equations (89)-(91) are the aggregate

equilibrium conditions for aggregate states, jump variables and contemporaneous vari-

ables. In our model, examples for each of these three types of equations are the law

of motion of aggregate capital, the household’s Euler equation and the household’s

labor supply condition, respectively. Equation (92) links aggregate and individual

variables, such as the definition of aggregate TFP in our model. Equations (93) and

(94) are the individual agent’s value function and first order conditions, which must

hold across the whole individual state vector x. In our model we do not have these

two types of equations since we can analytically solve the individual optimal choice.

The Kolmogorov Forward equation (25) determines the evolution of the distribution

of agents. Finally (96)-(99) are the initial and terminal conditions for the aggregate

and individual state and dynamic control variables. In our model these are the initial

capital stock and firm distribution and the terminal conditions for variables such as

consumption.

17Notice that the planner’s discount factor, %, can be different to that of individual agents, ρ.
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2. Optimize, then discretize First we consider the approach introduced in Nuño

and Thomas (2016), namely to compute the first order conditions using calculus of

variations and then to discretize the problem using an upwind finite difference scheme.

2.a The Lagrangian The Lagrangian for this problem is given by:18

L =

ˆ ∞
0

{
e−%t Jf0(Zt)

+ λ1,t

(
Ẋt − f1(Zt)

)
+ λ2,t

(
U̇t − f2(Zt)

)
+ λ3,t (f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ [
λ5,t(x)

(
−ρvt(x) + v̇t(x) + f5(x, ut(x), Zt) +

I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

σ2
i (x)

2

∂2vt(x)

∂2xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂f5

∂uj,t
+

I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−µ̇t (x) +

(
−

I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] +

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)µt (x)

]))]
dx

|}
dt

where λ1 to λ7 denote the multipliers on the respective constraints. For conve-

nience, we write the time derivatives in a separate line at the end. The Lagrangian

becomes:

L =

ˆ ∞
0

{
e−%t Jf0(Zt)

+ λ1,t (−f1(Zt))

+ λ2,t (−f2(Zt))

+ λ3,t (−f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ [
λ5,t(x)

(
−ρvt(x) + f5(x, ut(x), Zt) +

I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

σ2
i (x)

2

∂2vt(x)

∂2xi

)]
dx

18For simplicity, we assume that the Wiener processes driving the dynamics of the state x are in-
dependent, though the proof can be trivially extended to that case, at the cost of a more cumbersome
notation.
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+

J∑
j=1

ˆ [
λ6,j,t(x)

(
∂f5,t

∂uj,t
+

I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] +

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)µt (x)

])]
dx

|}
dt

+

ˆ ∞
0

{
e−%t

s
λ1,tẊt + λ2,tU̇t +

ˆ
[λ5,tv̇t(x)] dx−

ˆ
[λ7,tµ̇t (x)] dx

{}
dt.

We have ignored the terminal and initial conditions but we will account for them

later on. Now we manipulate the Lagrangian using integration by parts in order to

bring it into a more convenient form. We start with the last line. Switching the order

of integration, the last line becomes

ˆ ∞
0

e−%t
r
λ1,tẊt

z
dt+

ˆ ∞
0

e−%t
r
λ2,tU̇t

z
dt+

ˆ sˆ ∞
0

[
e−%tλ5,t(x)v̇t(x)

]
dt

{
dx

−
ˆ sˆ ∞

0

[
e−%tλ7,t(x)µ̇t (x)

]
dt

{
dx

Now we integrate this expression by parts with respect to time t, using

ˆ ∞
0

e−%t
r
atḃt

z
dt =

[
e−%tatbt

]∞
0
−
ˆ ∞

0

q
e−%t(ȧ1,t − %a1,t)bt

y
dt

= lim
t→∞

e−%tatbt − a0b0 −
ˆ ∞

0

q
e−%t(ȧt − %at)bt

y
dt

to get

lim
t→∞

e−%tλ1,tXt − λ1,0X0 −
ˆ ∞

0

e−%t(λ̇1,t − %λ1,t)Xtdt+ lim
t→∞

e−%tλ2,tUt − λ2,0U0

−
ˆ ∞

0

e−%t(λ̇2,t − %λ2,t)Utdtx

+

ˆ (
lim
t→∞

e−%tλ5,t(x)vt(x)− λ5,0(x)v0(x)
)
dx−

ˆ ˆ ∞
0

e−%t(λ̇5,t(x)− %λ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−%tλ7,t(x)µt(x)− λ7,0(x)µ0(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇7,t(x)− %λ7,t(x))µt (x) dtdx

Now we use the initial and terminal conditions to drop some limt→∞ and t = 0

terms,

+ lim
t→∞

e−%tλ1,tXt − λ2,0U0 −
ˆ ∞

0

e−%t(λ̇1,t − %λ1,t)Xtdt−
ˆ ∞

0

e−%t(λ̇2,t − %λ2,t)Utdt
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−
ˆ
λ5,0(x)v0(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇5,t(x)− %λ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−%tλ7,t(x)µt(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇7,t(x)− %λ7,t(x))µt (x) dtdx

Next we integrate lines 6 to 8 by parts with respect to x. This yields:

+

ˆ {[(
−ρλ5,t(x)vt(x) + f5(x, ut(x), Zt)−

I∑
i=1

∂bi (x, ut(x), Zt)λ5,t(x)

∂xi
vt(x)

)]
dx

+

ˆ [(
+

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

]
vt(x)

)]
dx

+
J∑
j=1

ˆ λ6,j,t(x)
∂f5,t

∂uj,t
−

I∑
i=1

∂
[
λ6,j,t(x) ∂bi

∂uj,t

]
∂xi

vt(x)

 dx
+

ˆ [( I∑
i=1

∂λ7,t(x)

∂xi
[bi (x, ut(x), Zt)µt (x)] +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2
µt (x)

)]
dx

}
dt

Putting this all together the Lagrangian has become:

L =

ˆ ∞
0

{
e−%t Jf0(Zt)

+ λ1,t (−f1(Zt))

+ λ2,t (−f2(Zt))

+ λ3,t (−f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ (
−ρλ5,t(x)vt(x) + λ5,t(x)f5(x, ut(x), Zt)−

I∑
i=1

∂ [bi (x, ut(x), Zt)λ5,t(x)]

∂xi
vt(x)

)
dx

+

ˆ (
1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

]
vt(x)

)
dx

+
J∑
j=1

ˆ λ6,j,t(x)
∂f5,t

∂uj,t
−

I∑
i=1

∂
[
λ6,j,t(x) ∂bi

∂uj,t

]
∂xi

vt(x)

 dx
+

ˆ ∞
0

[(
I∑
i=1

∂λ7,t(x)

∂xi
[bi (x, ut(x), Zt)µt (x)] +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2
µt (x)

)]
dx

|}
dt
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+ lim
t→∞

e−%tλ1,tXt − λ2,0U0 −
ˆ ∞

0

e−%t(λ̇1,t − %λ1,t)Xtdt−
ˆ ∞

0

e−%t(λ̇2,t − %λ2,t)Utdt

+

ˆ
−λ5,0(x)v0(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇5,t(x)− %λ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−%tλ7,t(x)µt(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇7,t(x)− %λ7,t(x))µt (x) dtdx.

2.b Optimality conditions in the continuous state space We take the

Gateaux derivatives in direction ht(x) for each endogenous variable x. These deriva-

tives have to be equal to zero for any ht(x) in the optimum. This implies the following

optimality conditions:

Aggregate variables:

Ut : 0 = −(λ̇2,t − %λ2,t) (100)

+
∂f0,t

∂Ut
− λ1,t

∂f1,t

∂Ut
− λ2,t

∂f2,t

∂Ut
− λ3,t

∂f3,t

∂Ut
− λ4,t

ˆ
∂f4,t

∂Ut
µt (x) dx(101)

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Ut
+

I∑
i=1

∂bi,t
∂Ut

∂vt(x)

∂xi

)]
dx (102)

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Ut
+

I∑
i=1

∂bi,t
∂uj,t∂Ut

∂vt(x)

∂xi

)]
dx (103)

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t
∂Ut

µt (x)

])]
dx, (104)

∀t > 0, (105)

0 = λ2,0. (106)

Xt : 0 = −(λ̇1,t − %λ1,t)

+
∂f0,t

∂Xt

− λ1,t
∂f1,t

∂Xt

− λ2,t
∂f2,t

∂Xt

− λ3,t
∂f3,t

∂Xt

− λ4,t

ˆ
∂f4,t

∂Xt

µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Xt

+
I∑
i=1

∂bi,t
∂Xt

∂vt(x)

∂xi

)]
dx
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+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Xt

+
I∑
i=1

∂bi,t
∂uj,t∂Xt

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t
∂Xt

µt (x)

])]
dx,

∀t ≥ 0,

0 = lim
t→∞

e−%tλ1,t(x).

Ût : 0 = 0

+
∂f0,t

∂Ût
− λ1,t

∂f1,t

∂Ût
− λ2,t

∂f2,t

∂Ût
− λ3,t

∂f3,t

∂Ût
− λ4,t

ˆ
∂f4,t

∂Ût
µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Ût
+

I∑
i=1

∂bi,t

∂Ût

∂vt(x)

∂xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Ût
+

I∑
i=1

∂bi,t

∂uj,t∂Ût

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t

∂Ût
µt (x)

])]
dx,

∀t ≥ 0.

Ũt : 0 = λ4,t

+
∂f0,t

∂Ũt
− λ1,t

∂f1,t

∂Ũt
− λ2,t

∂f2,t

∂Ũt
− λ3,t

∂f3,t

∂Ũt
− λ4,t

ˆ
∂f4,t

∂Ũt
µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Ũt
+

I∑
i=1

∂bi,t

∂Ũt

∂vt(x)

∂xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Ũt
+

I∑
i=1

∂bi,t

∂uj,t∂Ũt

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t

∂Ũt
µt (x)

])]
dx,

∀t ≥ 0.

Value function, distribution and policy functions
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vt (x) : 0 =

(
−λ5,t(x)ρ−

I∑
i=1

∂ [λ5,t(x)bi (x, ut(x), Zt)]

∂xi
+

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

])

−
J∑
j=1

I∑
i=1

∂

∂xi

(
λ6,j,t(x)

∂bi (x, ut(x), Zt)

∂uj,t

)
−(λ̇5,t(x)− %λ5,t(x)),

∀t > 0,

0 = λ5,0(x).

µt (x) : 0 = −λ4,tf4 (x, ut(x), Zt)

+λ7,t(x)

(
I∑
i=1

∂λ7,t(x)

∂xi
bi (x, ut(x), Zt) +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2

)
+(λ̇7t(x)− %λ7,t(x)),

∀t ≥ 0,

0 = lim
t→∞

e−%tλ7,t(x).

ul,t (x) : 0 = −λ4,t
∂f4

∂ul,t
µt (x)

+

=0︷ ︸︸ ︷[
λ5,t(x)

(
∂f5

∂ul,t
+

I∑
i=1

∂bi
∂ul,t

∂vt(x)

∂xi

)]

+
J∑
j=1

λ6,k,t(x)

(
∂2f5

∂ul,t∂uj,t
+

I∑
i=1

∂2bi
∂ul,t∂uj,t

∂vt(x)

∂xi

)

−

(
I∑
i=1

∂λ7,t(x)

∂xi

∂bi,t
∂ul,t

µt (x)

)
.
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2.c Discretized optimality conditions Now we discretize these conditions

with respect to time and idiosyncratic states.

The idiosyncratic state is discretized by a evenly-spaced grid of size [N1, ..., NI ]

where 1, .., I are the dimensions of the state x. We assume that in each dimension

there is no mass of agents outside the compact domain [xi,1, xi,Ni ]. The state step size

is ∆xi.We define xn ≡ (x1,n1 , ..., xi,ni , ..., xI,nI ), where n1 ∈ {1, N1} , ..., nI ∈ {1, NI}.
We are assuming that, due to state constraints and/or reflecting boundaries, the

dynamics of idiosyncratic states are constrained to the compact set [x1,1, x1,N1 ] ×
[x2,1, x2,N2 ] × .... × [xI,1, xI,NI ]. We also define xni+1 ≡ (x1,n1 , ..., xi,ni+1, ..., xI,nI ),

xni−1 ≡ (x1,n1 , ..., xi,ni−1, ..., xI,nI ) f
n
t ≡ f (xn, unt , Zt), f

ni−1
t ≡ f (xni−1, unt , Zt) and

fni+1
t ≡ f (xni+1, unt , Zt). I.e. the superscript n indicates a particular grid point and

the superscript ni + 1 and ni − 1 indicate neighboring grid points along dimension i.

To discretize the problem we now replace (i) time derivatives of multipliers by

backward derivatives, (ii) integrals by sums (iii) derivatives with respect to x by the

upwind derivatives ∇ or ∇̂ :

∇i [v
n
t ] ≡

[
Ibni,t>0

vni+1
t − vnt

∆xi
+ Ibni,t<0

vnt − v
ni−1
t

∆xi

]
,

∇̂i [µ
n
t ] ≡

Ibni+1
i,t <0

µni+1
t − Ibni,t<0µ

n
t

∆xi
+

Ibni,t>0µ
n
t − I

b
ni−1
i,t >0

µni−1
t

∆xi

 ,
for any discretized functions vnt , µ

n
t . We simplify the notation for sums

∑
n ≡∑

n1∈{1,..,N1},..,nI∈{1,..,NI} .We maintain the subscript t even if it refers now to discrete

time with a step ∆t, that is, Xt+1is the shortcut for Xt+4t. The second-order deriva-

tive is approximated as

4i [v
n
t ] ≡

[(
vni+1
t

)
+
(
vni−1
t

)
− 2 (vnt )

(∆xi)
2

]
.

We start with the optimality condition for Ut

Ut : 0 = −
(
λ2,t − λ2,t−1

∆t
− %λ2,t

)
(107)

+
∂f0

∂Ut
− λ1,t

∂f1

∂Ut
− λ2,t

∂f2

∂Ut
− λ3,t

∂f3

∂Ut
− λ4,t

N∑
n=1

∂fn4
∂Ut

µnt (108)
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+
∑
n

[
λn5,t

(
∂fn5
∂Ut

+
I∑
i=1

∂bni
∂Ut
∇i [v

n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Ut

+
I∑
i=1

∂bni
∂uj∂Ut

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Ut

µnt

]]
(109)

∀t ≥ 0.

The optimality conditions for the other aggregate variables look very much alike:

Xt : 0 = −(
λ1,t − λ1,t−1

∆
− %λ1,t)

+
∂f0

∂Xt

− λ1,t
∂f1

∂Xt

− λ2,t
∂f2

∂Xt

− λ3,t
∂f3

∂Xt

− λ4,t

∑
n

∂fn4
∂Xt

µnt

+
∑
n

[
λn5,t

(
∂fn5
∂Xt

+
I∑
i=1

∂bni
∂Xt

∇i [v
n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Xt

+
I∑
i=1

∂bni
∂uj∂Xt

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Xt

µnt

]]
∀t > 0.

Ût : 0 = 0

+
∂f0

∂Ût
− λ1,t

∂f1

∂Ût
− λ2,t

∂f2

∂Ût
− λ3,t

∂f3

∂Ût
− λ4,t

∑
n

∂fn4

∂Ût
µnt

+
∑
n

[
λn5,t

(
∂fn5

∂Ût
+

I∑
i=1

∂bni

∂Ût
∇i [v

n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5

∂uj∂Ût
+

I∑
i=1

∂bni

∂uj∂Ût
∇i [v

n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t

∂Ût
µnt

]]
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∀t ≥ 0.

Ũt : 0 = λ4,t

+
∂f0

∂Ũt
− λ1,t

∂f1

∂Ũt
− λ2,t

∂f2

∂Ũt
− λ3,t

∂f3

∂Ũt
− λ4,t

N∑
n=1

∂fn4
∂Ũt

µnt

+
∑
n

[
λn5,t

(
∂fn5
∂Ũt

+
I∑
i=1

∂bni
∂Ũt
∇i [v

n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Ũt

+
I∑
i=1

∂bni
∂uj∂Ũt

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t

∂Ũt
µnt

]]
∀t ≥ 0.

The discretized optimality condition with respect to the value function vt (x), the

distribution µt (x) and the individual jump variable uj,t(x) are.

vt (x) : 0 = −λn5,tρ−
I∑
i=1

∇̂i

[
λn5,tb

n
i,t

]
(110)

+
1

2

I∑
i=1

I∑
k=1

∇i

[
σni,kλ

n
5,t

]
−

J∑
j=1

I∑
i=1

(
∇̂i

[
λn6,j,t

∂bni,t
∂unj,t

])
−(
λn5,t − λn5,t−1

∆t
− %λn5,t).

µt (x) : 0 = −λ4,tf
n
4,t (111)

+λ7,t(x)

(
I∑
i=1

bi (x, ut(x), Zt)∇i

[
λn7,t
]

+
1

2

I∑
i=1

(
σ2
i

)n42
i

[
λn7,t
])

+
λn7,t − λn7,t−1

∆t
− %λn7,t
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ul,t (x) : 0 = −λ4,t
∂f4

∂ul,t
µnt (112)

+
J∑
j=1

λn6,k,t

(
∂2fn5,t

∂unl,t∂u
n
j,t

+
I∑
i=1

∂2bni,t
∂unl,t∂u

n
j,t

∇i [v
n
t ]

)

−
I∑
i=1

∇i

[
λn7,t
] ∂bni,t
∂ul,t

µnt
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3. Discretize, then optimize We follow here the reverse approach, discretizing

first and optimizing next.3.a The discretized planner’s problem

Now first discretize the optimization problem with respect to time (time step ∆t)

and the idiosyncratic state (N grid points, grid step ∆xi). We define the discount

factor β ≡ (1 + %∆t)−1 .

max
Zt,unt ,µ

n
t ,v

n
t

∑
t

βtf0(Zt)

s.t. ∀t
Xt+1 −Xt

∆t
= f1(Zt) (113)

Ut+1 − Ut
∆t

= f2(Zt) (114)

0 = f3(Zt) (115)

Ũt =
N∑
n=1

f4 (xn, unt , Zt)µ
n
t (116)

ρvnt =
vnt+1 − vnt

∆t
+ f5(xn, unt , Zt) +

I∑
i=1

bi (x
n, unt , Zt)∇i [v

n
t ] (117)

+
1

2

I∑
i=1

(
σ2
i

)n42
i [vnt ] , ∀n

0 =
∂fn5,t
∂unj,t

+
I∑
i=1

∂bni,t
∂unj,t

∇i [v
n
t ] , ∀j, n. (118)

µnt+1 − µnt
∆t

= −
I∑
i=1

∇̂i

[
bni,tµ

n
t

]
(119)

+
1

2

I∑
i=1

4i

[
σ2
i µ

n
t

]
(120)

X0 = X̄0 (121)

µn0 = µ̄n0 (122)
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3.b The Lagrangian The Lagrangian is

L =
∑
t

βtf0(Zt)

+
∑
t

βtλ1,t

{
Xt+1 −Xt

∆t
− f1(Zt)

}
+
∑
t

βtλ2,t

{
Ut+1 − Ut

∆t
− f2(Zt)

}
+
∑
t

βtλ3,t {−f3(Zt)}

+
∑
t

βtλ4,t

{
Ũt −

∑
n

f4 (xn, unt , Zt)µ
n
t

}

+
∑
t

∑
n

βtλn5,t

{
−ρvnt +

vnt+1−vnt
∆t

+ f5(xn, unt , Zt) +
∑I

i=1 bi (x
n, unt , Zt)∇i [v

n
t ]

+
∑I

i=142
i [vnt ]

}

+
∑
t

∑
n

J∑
j=1

βtλn6,j,t

{
∂fn5,t
∂unj,t

+
I∑
i=1

∂bni,t
∂unj,t

∇i [v
n
t ]

}

+
∑
t

∑
n

βtλn7,t

{
−µnt+1−µnt

∆t
−
∑I

i=1 ∇̂i

[
bni,tµ

n
t

]
+1

2

∑I
i=14i [σ

2
i µ

n
t ]

}

3.c The optimality conditions The FOCs are

∂L

∂Ut
: 0 =

∂f0,t

∂Ut
− λ1,t

∂f1,t

∂Ut
+ λ2,t

{
− 1

∆t
− ∂f2,t

∂Ut

}
+ β−1λ2,t−1

1

∆t
− λ3,t

∂f3,t

∂Ut
− λ4,t

∑
n

∂fn4,t
∂Ut

µnt(123)

+
∑
n

λn5,t

{
+
∂fn5,t
∂Ut

+
I∑
i=1

∂bni,t
∂Ut
∇i [v

n
t ]

}

+
∑
n

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+
I∑
i=1

∂2bni,t
∂unj,t∂Ut

∇i [v
n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t
∂Ut

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t
∂Ut

µnt
∆xi

]}
∀t ≥ 0
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∂L

∂Xt

: 0 =
∂f0,t

∂Xt

− λ1,t

{
1

∆t
+
∂f1,t

∂Xt

}
+ β−1λ1,t−1

1

∆t
− λ2,t

∂f2,t

∂Xt

− λ3,t
∂f3,t

∂Xt

− λ4,t

∑
n

∂fn4,t
∂Xt

µnt

+
∑
n

λn5,t

{
∂fn5,t
∂Xt

+
I∑
i=1

∂bni,t
∂Xt

∇i [v
n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Xt

+
I∑
i=1

∂2bni,t
∂unj,t∂Xt

∇i [v
n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t
∂Xt

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t
∂Xt

µnt
∆xi

]}
∀t > 0

∂L

∂Ũt
: 0 =

∂f0,t

∂Ũt
− λ1,t

∂f1,t

∂Ũt
− λ2,t

∂f2,t

∂Ũt
− λ3,t

∂f3,t

∂Ũt
− λ4,t

∑
n

∂fn4,t

∂Ũt
µnt

+
∑
n

λn5,t

{
+
∂fn5,t

∂Ũt
+

I∑
i=1

∂bni,t

∂Ũt
∇i [v

n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Ũt
+

I∑
i=1

∂2bni,t

∂unj,t∂Ũt
∇i [v

n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t

∂Ũt

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t

∂Ũt

µnt
∆xi

]}
∀t ≥ 0

∂L

∂Ût
: 0 =

∂f0,t

∂Ût
− λ1,t

∂f1,t

∂Ût
− λ2,t

∂f2,t

∂Ût
− λ3,t

∂f3,t

∂Ût
− λ4,t

∑
n

∂fn4,t

∂Ût
µnt

+
∑
n

λn5,t

{
+
∂fn5,t

∂Ût
+

I∑
i=1

∂bni,t

∂Ût
∇i [v

n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Ût
+

I∑
i=1

∂2bni,t

∂unj,t∂Ût
∇i [v

n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t

∂Ût

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t

∂Ût

µnt
∆xi

]}
∀t ≥ 0
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∂L

∂vnt
: 0 = λn5,t

{
−ρ− 1

∆t
+

I∑
i=1

bni,t
Ibnt <0 − Ibnt >0

∆xi
−

I∑
i=1

2 (σ2
i )
n

2 (∆xi)
2

}
(124)

+λn5,t−1β
−1 1

∆t

+
I∑
i=1

λni−1
5,t bni−1

i,t

I
b
ni−1
i,t >0

∆xi
+

I∑
i=1

λni−1
5,t

(σ2
i )
n

2 (∆xi)
2

−
I∑
i=1

λni+1
5,t bni+1

i,t

I
b
ni+1
i,t <0

∆xi
+

I∑
i=1

λni+1
5,t

(σ2
i )
n

2 (∆xi)
2

+
J∑
j=1

I∑
i=1

{
λn6,j,t

{
∂bni,t
∂unj,t

Ibni,t<0 − Ibni,t>0

∆xi

}
+ λni−1

6,j,t

{
∂bni−1

i.t

∂uni−1
j,t

I
b
ni−1
i,t >0

∆xi

}
− λni+1

6,j,t

{
∂bni+1

i,t

∂uni+1
j,t

I
b
ni+1
i,t <0

∆xi

}}
∀t ≥ 0

∂L

∂µnt
: 0 = −λ4,tf

n
4,t (125)

+λn7,t

{
1

∆t
−

I∑
i=1

[(
Ibni,t>0 − Ibni,t<0

) bni,t
∆xi

]
−

I∑
i=1

−2 (σ2
i )
n

2 (∆xi)
2

}

+

{
−

I∑
i=1

λni−1
7,t

[Ibni,t<0b
n
i,t

∆xi

]
+

I∑
i=1

(σ2
i )
n

2 (∆xi)
2

}

+

{
−

I∑
i=1

λni+1
7,t

[−Ibni,t>0b
n
i,t

∆xi

]
+

I∑
i=1

(σ2
i )
n

2 (∆xi)
2

}

+β−1λn7,t−1

{
− 1

∆t

}
∀t > 0

∂L

∂unl,t
: 0 = −λ4,t

∂fn4,t
∂unl,t

µnt (126)

+βtλn5,t

{
∂fn5,t
∂unl,t

+
I∑
i=1

∂bni,t
∂unl,t
∇i [v

n
t ]

}
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+
∑
j

λn6,t

{
∂2fn5,t

∂unj,t∂u
n
l,t

+
I∑
i=1

∂2bni,t
∂unj,t∂u

n
l,t

∇i [v
n
t ]

}

+
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t
∂unl,t

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t
∂unl,t

µnt
∆xi

]
∀t ≥ 0

By the individual agents’ optimality condition, line 2 of this expression is equal to 0.

4. Compare Finally, by comparing the respective discretized optimality condi-

tions, we show that the two procedures yield the same equilibrium conditions in the

limit. Consider first the condition for Ut. The optimize-discretize condition is given

by (107), which we reproduce here

Ut : 0 = −
(
λ2,t − λ2,t−1

∆
− %λ2,t

)
+
∂f0

∂Ut
− λ1,t

∂f1

∂Ut
− λ2,t

∂f2

∂Ut
− λ3,t

∂f3

∂Ut
− λ4,t

N∑
n=1

∂fn4
∂Ut

µnt

+
∑
n

λn5,t

{
∂fn5
∂Ut

+
I∑
i=1

∂bni
∂Ut
∇i [v

n
t ]

}

+
∑
n

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+
I∑
i=1

∂2bnt
∂unj,t∂Ut

∇i [v
n
t ]

}

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Ut

µnt

]]
∀t ≥ 0

The discretize-optimize condition (123), rearranges to

∂L

∂Ut
: 0 = −

(
λ2,t − λ2,t−1

∆t
− β−1 − 1

∆t
λ2,t−1

)
+
∂f0,t

∂Ut
− λ1,t

∂f1,t

∂Ut
− λ2,t

∂f2,t

∂Ut
− λ3,t

∂f3,t

∂Ut
− λ4,t

N∑
n=1

∂fn4,t
∂Ut

µnt

+
N∑
n=1

λn5,t

{
∂fn5,t
∂Ut

+
I∑
i=1

∂bni
∂Ut
∇i [v

n
t ]

}
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+
N∑
n=1

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+
∂2bnt

∂unj,t∂Ut
∇i [v

n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t
∂Ut

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t
∂Ut

µnt
∆xi

]}
∀t ≥ 0

The second to fourth lines are evidently identical. The last lines also coincide once

we take into account the definition of ∇̂i

[
∂bni,t
∂Ut

µnt

]
=

I
b
ni+1
i,t

<0

∂b
ni+1
i,t
∂Ut

µ
ni+1
t −Ibn

i,t
<0

∂bni,t
∂Ut

µnt

∆xi
+

Ibn
i,t
>0

∂bni,t
∂Ut

µnt −Ibni−1
i,t

>0

∂b
ni−1
i,t
∂Ut

µ
ni−1
t

∆xi
.

Finally compare the first lines. Since β ≡ (1 + %∆t)−1 we have that β−1−1
∆t

= % .

The difference between these two equations hence is ‖% (λ2,t − λ2,t−1)‖. In the limit as

∆t → 0, and provided that λ2,t features no jumps for t > 0,this difference converges

to zero.The same argument applies to the optimality conditions with respect to Xt

with the difference now proportional to ‖% (λ1,t − λ1,t−1)‖. The optimality conditions

with respect to Ût and Ũt are identical, that is, there is no difference.

Next consider the two discretized optimality conditions with respect to vnt (110)

and (124). After some rearranging they are given by

vt (x) : 0 = −
I∑
i=1

Ibni,t>0λ
n
5,j,tb

n
i,t − I

b
ni−1
i,t >0

λni−1
5,j,t b

ni−1
i,t

∆xi
+

I
b
ni+1
i,t <0

λni+1
5,j,t b

ni+1
i,t − Ibni,t<0λ

n
5,j,tb

n
i,t

∆xi


+

1

2

I∑
i=1

(σ2
i )
ni+1

λni+1
5,t + (σ2

i )
ni−1

λni−1
5,t − 2 (σ2

i )
n
λn5,t

(∆xi)
2

−
J∑
j=1

I∑
i=1

Ibni,t>0λ
n
6,j,t

∂bni,t
∂unj,t
− I

b
ni−1
i,t >0

λni−1
6,j,t

∂b
ni−1
i,t

∂u
ni−1
j,t

∆xi
+

I
b
ni+1
i,t <0

λni+1
6,j,t

∂b
ni+1
i,t

∂u
ni+1
j,t

− Ibni,t<0λ
n
6,j,t

∂bni,t
∂unj,t

∆xi


−λn5,tρ− (

λn5,t − λn5,t−1

∆t
− %λn5,t)
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and

∂L

∂vnt
: 0 = λn5,t

{
I∑
i=1

bni,t
Ibnt <0 − Ibnt >0

∆xi
−

I∑
i=1

(σ2
i )
n

(∆xi)
2

}

+

{
I∑
i=1

λni−1
5,t bni−1

i,t

I
b
ni−1
i,t >0

∆xi
+

I∑
i=1

λni−1
5,t

(σ2
i )
n

2 (∆xi)
2

}

+

{
−

I∑
i=1

λni+1
5,t bni+1

i,t

I
b
ni+1
i,t <0

∆xi
+

I∑
i=1

λni+1
5,t

(σ2
i )
n

2 (∆xi)
2

}

+
J∑
j=1

I∑
i=1

(
λn6,j,t

∂bni,t
∂unj,t

Ibnt <0 − Ibnt >0

∆xi
+ λni−1

6,j,t

∂bni−1
i,t

∂uni−1
j,t

I
b
ni−1
t >0

∆xi
− λni+1

6,j,t
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i,t

∂uni+1
j,t

I
b
ni+1
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∆xi

)

−ρλn5,t −
(
λn5,t − λn5,t−1

∆t
− β−1 − 1

∆t
λn5,t−1

)
(127)

Again these, two expressions are identical up to the last time index in the last line

(λn5 ), and thus the difference is ‖% (λ5,t − λ5,t−1)‖ .
Next, consider the two discretized optimality conditions with respect to µnt (111)

and (125). After some rearranging they are given by

µt (x) : 0 = −λ4,tf
n
4,t (128)

+
I∑
i=1

bni,t

[
Ibni,t>0

λni+1
7,t − λn7,t

∆xi
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]
+

1

2

I∑
i=1

(
σ2
i
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2
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− %λn7,t

∂L
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n
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∆t
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which again differ in ‖% (λ7,t − λ7,t−1)‖ .
Finally, consider the two discretized optimality conditions with respect to unl,t (x),

(112) and (126). After some rearranging they are given by

ul,t (x) : 0 = −λ4,t
∂f4

∂ul,t
µnt (130)

+
J∑
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λn6,l,t
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∂2fn5,t
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n
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t
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−
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λni+1
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]
∂bni,t
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µnt

∂L
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µnt

+
∑
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{
∂2fn5,t
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t

∆xi
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+

[
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

1

∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0
1

∆xi

]]
∂bni,t
∂ul,t

µnt ,

which are identical.To summarize, whether one discretize the optimality conditions of

the planner and then discretizes them, or one discretizes the planner’s problem and

then derives the optimality conditions, one arrives to a set of optimality conditions

that coincide in everything but the timing of the multiplier in the term %λt. Provided

that multipliers experience no jumps, the difference between the two approaches goes

to 0 as ∆t→ 0. Note that this issue has nothing to do with heterogeneity.

D. Solving the Nuño and Thomas model using Dynare

Here we apply the “discretize-optimize” methodology outlined in Section 3 to the

heterogeneous-agent model introduced in Nuño and Thomas (2016). This is a model

à la Aiyagari-Bewley-Huggett with non-state-contingent long-term nominal debt con-

tracts. Finding the optimal policy in this problem requires that the central bank

takes into account not only the dynamics of the state distribution (given by the KF

equation) but also the HJB equation. Figure 6 displays the time-0 optimal policy (in-

flation) in this case, compared to the one obtained through the “optimize-discretize”
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methodology employed in Nuño and Thomas (2016). Optimal inflation coincides in

both cases, up to a numerical error that is reduced as we increase the number of grid

points and we reduce the time step.

Figure 6: Time-0 optimal monetary policy using the two approaches.
Notes: The figure shows the optimal path of inflation in the Nuño and Thomas (2016) model using the “discretize-
optimize” and “optimize-discretize” methods.
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