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Abstract

Can a growing world be fed when the climate is changing? We develop a structurally

estimated model of the global economy focusing on the nexus of growth, climate change

and food security. The model includes an explicit agriculture sector, endogenous fertility, di-

rected technical change, fossil/renewable energy and multiple greenhouse gases. The model

can be used to construct a counterfactual past and provides a new approach to estimating

historical climate impacts. We also use the model to make future projections, with and with-

out taxing greenhouse gas emissions. Macro-economic adjustments, including agricultural

land expansion and R&D, substantially reduced climate damages in the past and would do so

in the future if emissions remain unpriced. Nonetheless climate change has already limited

output, food production and population. The welfare cost of not taxing emissions is large;

we estimate a high optimal carbon tax today.
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“[T]he existence of a problem in knowledge depends on the future being different

from the past, while the possibility of a solution of a problem of knowledge depends

on the future being like the past.” (Knight, 1921)

1 Introduction

The world population is projected to grow from around 7.6 billion currently to more than 11

billion by the end of this century and possibly more than 13 billion (United Nations, 2017).

Over the same time period, the consensus among forecasters of economic growth is that global

GDP per capita will increase several-fold.1 Since food consumption per capita is an increasing

function of income per capita (Tilman et al., 2011), the combination of population growth and

economic growth will greatly increase food demand. This is one reason why food security is a

leading global concern (e.g. FAO, 2017; World Economic Forum, 2018).

Another reason for concern about food security is climate change. Agriculture is among the

economic activities most exposed to climate change (Schelling, 1992; IPCC, 2014b; Carleton

and Hsiang, 2016). Weather is a direct input to agricultural production, affecting fundamental

biophysical factors such as plant development, photosynthesis/respiration, water availability,

and the prevalence of diseases and pests (Hertel and Lobell, 2014; IPCC, 2014b).2

This paper asks: can a growing world population be fed under changing climatic conditions?

The pessimistic, Neo-Malthusian perspective says no. It emphasizes limits to the availability of

natural resources that are essential inputs to agriculture, especially under climate change. The

optimistic view says yes. It foresees rapid technological progress in agriculture and substitu-

tion away from finite natural resources, enabling farmers and the agricultural system to adapt.

It follows from these contrasting perspectives that any structured assessment of the question

1 According to the expert survey by Christensen et al. (2018), for example, the median growth rate of global GDP
per capita will be 2% between 2010 and 2100, which implies that global GDP per capita in 2100 will be around
six times higher than in 2010. Christensen et al. also made statistical forecasts based on time-series data from the
20th century, using the Müller-Watson method (Müller and Watson, 2016). This yielded very similar estimates.
The uncertainty around these estimates is obviously very large.

2 Agronomic models suggest that crop yields are highly responsive to temperature, with a representative response
of -5% per ◦C (local) warming (Challinor et al., 2014). Crop yields also respond positively to rainfall, except at
very high levels (e.g. Schlenker and Roberts, 2009), and heightened atmospheric CO2 (also see Challinor et al.,
2014).
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must consider the joint evolution of the world economy and the climate, and integrate the key

drivers of food supply and demand, such as factor allocation, fertility choices and technological

progress. It must also consider the role of policies to internalize the climate-change externality.

Accordingly, we structurally estimate a dynamic, general-equilibrium model of the world

economy, which co-evolves with a model of the climate system. The model builds on a number of

seminal contributions to the economic growth literature. First, households have inter-temporal

preferences over consumption of non-agricultural goods and fertility, in the tradition of Barro

and Becker (1989). This means population growth is endogenous. Importantly, the evolution of

population is constrained by the availability of food produced by an explicit agriculture sector

(Strulik and Weisdorf, 2008; Vollrath, 2011; Sharp et al., 2012). Agricultural productivity, which

is affected by both climate change and agricultural R&D, is therefore a determinant of the cost of

children. A second important determinant of the cost of children is economy-wide technological

progress and the increasing requirements it places on education/skills, as emphasized in the

recent economic literature on demographic transitions (Galor and Weil, 2000; Galor, 2005).

The manufacturing sector, which produces the consumption good, uses fossil energy and

emits greenhouse gases (GHGs), but it can substitute this with carbon-free energy. Agricul-

tural production also emits GHGs, not just from the use of fossil energy, but also directly from

production and land-use change. GHG emissions accumulate in the atmosphere, which causes

climate damages to both agriculture and manufacturing. Damages differ between agriculture

and manufacturing, and have different welfare consequences, due to the role of food in sustain-

ing population via the food constraint.

Another important element of the model is endogenous technical progress in all four final

and intermediate goods sectors. In each, productivity growth is driven by R&D in the Schum-

peterian tradition (Aghion and Howitt, 1992), and R&D requires labor. This has several implica-

tions. First, CO2 emissions abatement is subject to directed technical change (Acemoglu et al.,

2012). Second, technical progress in manufacturing and agriculture can compensate for climate

damages (Fried, 2018). Third, technical progress increases the cost of educating children and

hence contributes to a population growth slowdown (Galor and Weil, 2000). Finally, because

agricultural production requires land and land is in finite supply, endogenous growth allows the

economy to escape an otherwise inevitable Malthusian trap (Lanz et al., 2017a).
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The model is structurally estimated on data from 1960 to 2015. It is able to closely repli-

cate observed trajectories for world population, GDP, agricultural land use and TFP, fossil and

clean energy use. The estimation is based on a simulated method-of-moments procedure devel-

oped in Acemoglu et al. (2016) and Lanz et al. (2017a). The model also reproduces stylized

facts relating to a number of untargeted moments, including agricultural yields, agriculture’s

share of GDP, per-capita consumption growth, sectoral and aggregate GHG emissions, and the

atmospheric GHG concentration.

As such, our structural model provides a flexible empirical framework to study counterfac-

tual experiments on both the past and future. First, we construct a counterfactual past sans

climate change. From this we can estimate what effect climate change has already had. We

find that it has inter alia reduced agricultural and manufacturing output, and world population,

while resulting in an increase in arable/crop land and agricultural innovation. Macro-economic

adjustments like crop land expansion and increased R&D have reduced climate damages sub-

stantially, but not wholly. Second, we use the model to make projections for the 21st century,

with and without Pigouvian carbon taxes. Without carbon taxation, the model is able to sus-

tain an increasing path of GDP and population. In that sense there is no climate catastrophe.

However, it is only able to do so through large-scale macro-economic adjustment, exemplified

by further agricultural expansion and more agricultural R&D. Moreover this comes at a high

welfare cost; the Pigouvian carbon tax is high and significantly reduces GHG emissions, so that

optimal global warming is held well below 2◦C in 2100.

We conduct a number of sensitivity analyses. We compare optimal climate policies, depend-

ing on how climate change affects welfare. In our main specification, climate change affects agri-

cultural productivity, and this constrains the supply of food and population expansion, which in

turn directly impacts welfare. We compare this set-up to the more standard approach in climate

economics of inflicting climate damages on economy-wide output, an approach that implicitly

treats food and other consumption goods as perfect substitutes. We find that modeling food

as a constraint on population expansion and welfare results in a much higher optimal carbon

tax, c. four times higher in 2019. We also compare optimal climate policies under endogenous

and exogenous population. Imputing a lower, exogenous population projection results in much

higher consumption per capita, as households compensate for fertility preferences unmet. This
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delivers a carbon tax path that starts lower, but increases much more steeply than in our main

specification, indicating modeling of fertility/population likely matters in this regard. Further

sensitivity analysis indicates that optimal carbon taxation is relatively robust to variations in key

parameters, except the intensity of damages.

1.1 Related literature

Our model of economic growth stands on three pillars. The first is growth models with endoge-

nous fertility/population, especially Barro and Becker (1989). The second is growth models

with endogenous technical change, in particular Schumpeterian models (Aghion and Howitt,

1992) and, within this class, Schumpeterian models that do not exhibit a population scale ef-

fect (Aghion and Howitt, 1998; Dinopoulos and Thompson, 1998; Peretto, 1998; Young, 1998;

Laincz and Peretto, 2006; Chu et al., 2013). Although economic growth has been positively

associated with the level and growth of world population on a millennial time-scale (Kremer,

1993), it is harder to find evidence of scale effects in more contemporary data (Jones, 1995) and

our question is contemporary in nature. With two final goods and two energy intermediates,

our model also relates to previous work on directed technical change and the environment, for

instance Acemoglu et al. (2012, 2016). The third pillar is unified growth theory, from which we

take the idea that falling birth rates in the latter stages of the demographic transition are fun-

damentally driven by technological progress, because technological progress increases human

capital requirements and the cost of educating children (Galor and Weil, 1999, 2000).

By combining a model of the world economy with a model of the climate, our paper is also

related to the literature in economics on integrated assessment models of climate change (so-

called IAMs) that has been pioneered by William Nordhaus (Nordhaus, 1991; Nordhaus and

Boyer, 2000; Nordhaus, 2017). Like most of this literature, we take a quantitative approach.

Unlike other IAMs, ours is structurally estimated on more than half a century of data, enabling us

to constrain key parameters with limited evidential bases, and conduct counterfactual analyses.

Our climate model is based on the benchmark simple climate models employed in the last report

of the Intergovernmental Panel on Climate Change (Geoffroy et al., 2013; Joos et al., 2013) and

thereby avoids the physically inconsistent climate dynamics recently identified in the leading
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IAMs (Calel and Stainforth, 2017; Rose et al., 2017). In view of our focus on agriculture,

we separately model emissions of CO2 and the two GHGs principally emitted in agricultural

production, methane and nitrous oxide.

Focusing on agriculture, we contend the existing literature takes a narrow view of the wel-

fare cost of climate change. Existing estimates of agricultural impacts are calibrated on studies

imposing climate change as a supply-side shock and tracing through how this affects the mar-

ket exchange of agricultural commodities (Kane et al., 1992; Darwin et al., 1995; Rosenzweig

and Parry, 1994). The resulting estimates of the change in surplus are then typically combined

with other climate impacts in a model with a single consumption good, implying perfect sub-

stitutability of food and other goods in individual utility. However, agriculture plays a basic

role in sustaining the population: we have to eat to survive. The impacts of climate change

on agriculture are therefore a potential constraint on the expansion of the human population.

Previous models miss this link, because they lack a mechanism whereby agricultural production

affects the size of the population (Millner, 2013). The size of the population is inherently valued

in growth models with endogenous population. This also links our work with the literature in

social choice on population ethics (Blackorby et al., 2005; Asheim and Zuber, 2014). Our model

can be interpreted as an application of these ideas.

Our model is also related to a strand of literature in agricultural economics, which is con-

cerned with building quantitative economic models of global agriculture (von Lampe et al.,

2014; Cai et al., 2014). A feature of these models is that they are exceptionally detailed, e.g.

spatially. But they are partial equilibrium models in which food demand is taken as given,

whereas in our model it is endogenous. Our model also relates to a strand of literature in

macro-economics concerned with stylized natural resource constraints on long-run economic

and population growth (e.g. Bretschger, 2013; Peretto and Valente, 2015). In comparison, we

take a quantitative approach and study climate change and agricultural land availability as spe-

cific natural resource constraints.

The remainder of the paper is set out as follows. In Sections 2 and 3, we lay out the model

and describe our structural estimation procedure respectively. In Section 4, we evaluate the

model’s goodness of fit and use it to produce counterfactual estimates of the historical impact

of climate change. In Section 5, we make projections for the 21st century, both under a laissez
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faire scenario and when GHG emissions are optimally controlled. Section 6 provides sensitivity

analysis, including a focus on the role of our novel food-population damage pathway. Section

7 provides a discussion. Details of the model implementation and a range of further results are

contained in the appendices.

2 A structural economic model of global climate change

This section presents a canonical framework to study global climate change, including produc-

tion, energy and land use, sectoral technical change, fertility decisions and welfare, emissions

and climate dynamics. In the next section, we explain how we take the model to the data.

The model is cast as a discrete-time planning problem. This is natural given our focus on

optimal climate policies. It is also computationally efficient: our simulated method-of-moments

procedure requires running the model very many times and doing so as a decentralized equi-

librium is computationally infeasible.3 Nonetheless it is important to appreciate that, although

we solve a planning problem, the fact that our model is conditioned to fit the last half century

of data on a number of aggregates means the baseline trajectory, which does not internalize

climate-change damages, is a projection of the previously observed laissez-faire equilibrium.

2.1 Production in manufacturing

Aggregate manufacturing output at time t, denoted Yt,mn, is described by a constant-returns-to-

scale, Cobb-Douglas production function that combines capital Kt,mn, labor Lt,mn, and energy

Et,mn:

Yt,mn = At,mnK
ϑK
t,mnE

ϑE
t,mnL

1−ϑK−ϑE
t,mn · exp(−Ωmn

[
St − S

]
) , (1)

3 With a planning approach, we can make a number of simplifications, including reducing the number of variables
that need to be computed and using efficient solvers for non-linear programs. We use a primal formulation, so
that we only compute quantities. Prices are implicitly given by Lagrange multipliers and can be retrieved at the
solution point.
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where At,mn is an endogenous, Hicks-neutral technology index and ϑi ∈ (0, 1), i ∈ {K,E}, are

technology parameters satisfying Σiϑi < 1.4

Manufacturing output is also a function of the climate state variable St, the atmospheric

GHG concentration (Golosov et al., 2014). As we describe below, GHG emissions from energy,

agricultural production and land use increase St and this in turn reduces TFP in manufacturing.

The scale of climate damages in manufacturing is measured by the parameter Ωmn > 0.

2.2 Production in agriculture

In our model, the agricultural sector produces food, the sole purpose of which is to sustain

contemporaneous population, as in e.g. Strulik and Weisdorf (2008). Agricultural output Yt,ag is

described by a constant-returns-to-scale and constant-elasticity-of-substitution (CES) production

function that combines land Xt with a Cobb-Douglas composite of non-land inputs (e.g. Ashraf

et al., 2008):

Yt,ag = At,ag

[
(1− θX)

(
KθK
t,agE

θE
t,agL

1−θK−θE
t,ag

)σX−1

σX + θXX
σX−1

σX
t

] σX
σX−1

· exp(−Ωag
[
St − S

]
) , (2)

where non-land inputs include capital Kt,ag, labor Lt,ag and energy Et,ag. At,ag is endogenous

agricultural TFP and θi, i ∈ {K,E} are technology parameters again satisfying θi ∈ (0, 1) and

Σiθi < 1. In our main specification, we assume the elasticity of substitution between land and

the capital-energy-labor composite σX is below unity, reflecting long-run empirical evidence

(Wilde, 2013).5 As in manufacturing, climate change affects aggregate productivity through the

parameter Ωag.

4 This is a plausible representation of substitution patterns in the long run (conditional on Hicks-neutral techno-
logical progress; see Antràs, 2004). For short- and medium-run analyses, it may be more appropriate to use
a constant-elasticity-of-substitution function, in which the elasticity of substitution between energy and other
inputs is less than unity (Fried, 2018; Hassler et al., 2016). Baqaee and Farhi (2018) show that complementarity
between energy and non-energy inputs in the short run can be used to explain the disproportionate macroeco-
nomic impact of the 1970s oil shock.

5 The Cobb-Douglas (σX = 1) formulation is used in applied work (e.g. Mundlak, 2000; Hansen and Prescott,
2002). However, it implies land is asymptotically inessential for agricultural production, which is problematic
for long-run analysis.
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2.3 Clean and dirty energy intermediates

Final energy Et is used as an input in both manufacturing and agriculture. We characterize

an energy sector that produces Et by combining clean and dirty/fossil energy intermediates

(denoted respectively by Et,cl and Et,dt) in a CES function (Acemoglu et al., 2016):

Et =

[
(1− ϑD)E

σE−1

σE

t,cl + ϑDE
σE−1

σE

t,dt

] σE
σE−1

, (3)

where ϑD ∈ (0, 1) represents the relative efficiency of clean and dirty energy sources in final

energy production, and σE is the elasticity of substitution between clean and dirty energy inter-

mediates. In our main specification, we assume that σE is greater than unity.

The production of clean and dirty intermediates is a function of labor (respectively Lt,cl and

Lt,dt):

Et,cl = At,clLt,cl and Et,dt = At,dtLt,dt (4)

where At,cl and At,dt are endogenous technology indices. We assume that dirty energy is in finite

supply, and denote global reserves by R > 0. This yields the following fossil resource constraint:

R ≥
T∑
0

Et,dt (5)

where T > 0 is the time at which reserves are exhausted.

2.4 Land input

Land used in agriculture has to be converted from a finite reserve stock of natural land X and

slowly reverts back to its natural state if left unmanaged. As in Lanz et al. (2017a), the evolution

of land available for agricultural production is given by

Xt+1 = Xt(1− δX) + ψt , X0 given , (6)
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where δX > 0 is a depreciation rate and ψt represents additions to the agricultural land area

(subject to the constraint that Xt ≤ X, ∀t). Land conversion is a function of labor Lt,X:

ψt = ψ · Lεt,X, (7)

where ψ > 0 and ε ∈ (0, 1) are productivity parameters.

Note that linear depreciation, which allows agricultural land to revert back to its natural

state over time, together with decreasing labor productivity in land conversion as measured by

ε, implies that the marginal cost of land conversion increases with the total agricultural land

area, in the spirit of Ricardo.

2.5 Innovations

Innovations drive the evolution of sectoral TFP. We formulate a simple discrete-time version

of the model of Aghion and Howitt (1992, 1998), in which the use of labor determines the

arrival rate of new innovations. In each sector j ∈ {mn, ag, cl, dt}, we denote productivity

improvements of each innovation by sj > 0, and, without loss of generality, we assume there is

a maximum of Ij > 0 innovations in each time period. This implies the sectoral TFP growth rate

in each period is bounded above by λj = (1 + sj)
Ij − 1.6 It follows that the evolution of sectoral

TFP can be written as:

At+1,j = At,j · (1 + λj · ρt,j) , (8)

where ρt,j is the endogenous arrival rate of innovations in the sector and represents the fraction

of maximum growth λj that is achieved over the course of each time period.

Further, the arrival rate of innovations is assumed to be an increasing function of labor

6 In the model by Aghion and Howitt (1992), sj represents the size of an innovation required to obtain a patent,
and the firm that holds the most productive technology has a monopoly until a new innovation arrives. In
continuous time, the arrival of innovations is modeled as a Poisson process, and our discrete-time representation
uses the law of large numbers to integrate out the random nature of short-term growth over discrete time
intervals. Thus λj can be interpreted as the maximum growth rate of sectoral TFP in each period.
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employed in sectoral R&D, Lt,Aj :

ρt,j =

(
Lt,Aj
Nt

)µj
, (9)

where µj ∈ (0, 1) is a labor productivity parameter that captures the duplication of ideas among

researchers (Jones and Williams, 2000). One important feature of this representation is that we

dispose of the population scale effect by dividing the labor force in R&D by total population Nt.

In particular, along a balanced growth path in which the share of labor allocated to each sector

is constant, the size of the population does not affect the growth rate of output. As shown by

Laincz and Peretto (2006), the R&D employment share can be interpreted as a proxy for average

employment hired to improve the quality of a growing number of product varieties, a feature

that is consistent with micro-founded firm-level models by Dinopoulos and Thompson (1998),

Peretto (1998), and Young (1998), among others.7

2.6 Population dynamics

Population, described by stock variable Nt, is endogenous in the model. We make the usual

assumption that population equals the total labor force,8 and consider three drivers of the cost

of incremental labor units. First, child rearing and education are time-intensive and compete

with other labor-market activities, so the opportunity cost of time affects fertility (Becker, 1960).

Second, there is a trade-off between child quantity and quality, because the cost of educating

children increases with technological progress in the economy (Galor, 2005). Third, the popula-

tion needs food produced by the agricultural sector. We introduce a constraint to the population

trajectory by requiring that the market for food clears each period (Strulik and Weisdorf, 2008;

Vollrath, 2011; Sharp et al., 2012). We now discuss each of these in turn.

7 Dinopoulos and Thompson (1999) show that a model in which aggregate TFP growth increases with the share
of labor allocated to R&D is equivalent to Schumpeterian growth models in which R&D firms hire workers and
entry of new firms is allowed. See also Chu et al. (2013).

8 See Mierau and Turnovsky (2014) for a growth model with age-structured population, albeit with exogenous
population dynamics.
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The evolution of population over time is given by

Nt+1 = Nt(1 + nt − δN ) , N0 given , (10)

where nt is the endogenous fertility rate (see below for its determination and δN > 0 is the

mortality rate, so that 1/δN can be interpreted as the expected working lifetime. Therefore,

since we do not explicitly model human capital, ntNt captures net increments of effective labor

units, which are an increasing function of Lt,N, the time spent rearing and educating workers:

ntNt = χt · Lt,N , (11)

where 1/χt measures the time-cost of workforce increments (as per Becker, 1960).

The second driver of population dynamics in our model is technology. In particular, com-

plementarity between skills and technology (Goldin and Katz, 1998) implies that the cost of

incremental workers increases with the level of technology in the economy (proxied by the TFP

index in manufacturing, At,mn):

χt = χLζ−1
t,N /Aωt,mn , (12)

where χ > 0 and ζ ∈ (0, 1) are labor productivity parameters. With this representation, techno-

logical progress increases the cost of children through the parameter ω > 0. This is intended as

a reduced-form representation of the model of Galor and Weil (2000), in which technological

progress induces an increase in the demand for human capital and education. Our model can

therefore generate a gradual decline in fertility reflective of the trade-off between child quantity

and quality, without the need to explicitly model human capital.9

The final component of population dynamics is the food constraint, which requires that

agricultural output is used to meet the demand for food by contemporaneous population. This

constitutes a constraint on the development of population over time, making food production

9 Note also that, combining (11) and (12), the parameter ζ captures possible scarce factors in child-rearing and
education, so that the cost of incremental labor units is convex (see Barro and Sala-i Martin, 2004, p.412, Moav,
2005, and Bretschger, 2013).
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– and the impact of climate change on food production – a key driver of the cost of fertility.

Formally, clearing of the food market links agricultural output to aggregate food consumption:

Yt,ag = Nt · ξt (13)

where ξt is per-capita food demand. This formulation is in line with Strulik and Weisdorf

(2008), Vollrath (2011) and Sharp et al. (2012). However, while these models assume con-

stant per-capita food demand, we account for empirical evidence suggesting that diets evolve

with affluence, such that the demand for calories is increasing and concave in per-capita income

(e.g. Subramanian and Deaton, 1996; Thomas and Strauss, 1997):

ξt = ξ

(
Yt,mn

Nt

)κ
, (14)

where ξ > 0 is a scale parameter and κ ∈ (0, 1) is the income elasticity of food consumption.

Note that for simplicity per-capita income is measured by manufacturing output, which implies

food and the manufactured good are complementary and a declining food expenditure share as

consumption per capita grows.

2.7 Intertemporal preferences

The representative household/agent has preferences over own consumption of the manufac-

tured good ct, the number of children it produces nt, indexed by k, and the total future utility

of their children
∑

k Uk,t+1. All children are assumed identical, so that
∑

k Uk,t+1 = ntUt+1, and

parents care equally about their own future utility (conditional on survival probability 1 − δN)

and the future utility of their children (see Jones and Schoonbroodt, 2010), so the number of

agents entering utility at t+ 1 is ñ = (1− δN ) +nt. Using the recursive formulation of Barro and

Becker (1989), the utility function in period t is then

Ut = u(ct) + βb(ñt)[ñt]Ut+1 , (15)

where β ∈ (0, 1) is the discount factor. Per-period utility from consumption is assumed to be

isoelastic u(ct) =
c1−γt −u

1−γ , where γ is the inverse of the intertemporal elasticity of substitution and
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u > 0 represents the consumption level at which per-period utility becomes positive. Similarly,

we follow Barro and Becker (1989) and assume fertility preferences are isoelastic b(ñt) = ñ−η,

where η ∈ (0, 1) determines how fast marginal utility declines as ñ increases.

Under these assumptions, we can exploit the recursive nature of Barro-Becker preferences to

derive the intertemporal welfare function of a dynastic household head:10

W =

∞∑
t=0

βtN1−η
t

(Ct/Nt)
1−γ − u

1− γ
. (16)

Because population is endogenous in our model and one of our core aims is to evaluate the

Pigouvian carbon tax that optimally internalizes the climate-change externality, (16) can be

interpreted as a social welfare function (SWF) and therefore implies a position on popula-

tion ethics. Specifically, equation (16) belongs to the class of (discounted) number-dampened

critical-level utilitarian SWFs (Asheim and Zuber, 2014). The critical level u is the level of con-

sumption that makes the life of an additional person worth living. Number-dampened critical-

level utilitarian SWFs multiply average utility, minus the critical level, by a positive valued func-

tion of population size. In the limit as η → 1, the special case of discounted average utilitar-

ianism is obtained, whereby social welfare depends only on average utility in the population.

Conversely in the limit as η → 0 the special case of discounted classical/total utilitarianism is ob-

tained, whereby social welfare is the sum of the utilities of each member of the population and

is increasing in population size. Appendix B provides further discussion of the ethical properties

of number-dampened critical-level utilitarian SWFs.

Aggregate consumption Ct = ctNt in equation (16) is produced by the manufacturing sector.

Manufacturing output (only) can be either consumed Ct or invested It into a stock of capital:11

Yt,mn = Ct + It . (17)

10 This is obtained though sequential substitution in U0 = u(c0) + βb(ñ0)ñ0U1, yielding U0 =∑∞
t=0 β

tu(ct)Π
t
τ=0b(ñτ )ñτ . Further, noting that equation (10) can be rewritten as Nt+1 = Ntñt, we have

Πt
τ=0b(ñτ )ñτ = (Nt/N0)(1 − η).

11 See Ngai and Pissarides (2007) for a similar treatment of savings and capital accumulation in a multi-sector
growth context.
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In turn,

Kt+1 = Kt(1− δK) + It , K0 given , (18)

where δK > 0 the capital depreciation rate. In this setting, aggregate consumption Ct (or equiv-

alently the savings rate It/Yt,mn) is one of the key decision variables, along with the allocation

of capital, labor and energy across sectors, which is discussed next.

2.8 Sectoral allocation of capital, labor and energy

The allocation of capital, labor and energy across activities is driven by relative marginal pro-

ductivities and constrained by feasibility conditions. For all three inputs, we take a long-run

perspective and assume that these inputs can be moved from one sector to another at no cost.

Capital is used in either manufacturing or agriculture, Kt = Kt,mn + Kt,ag, as is final energy,

Et = Et,mn + Et,ag. The allocation constraint for labor is extended to include R&D activities,

land clearing and fertility, as well as the clean and dirty energy sectors:

Nt = Lt,mn + Lt,ag + Lt,cl + Lt,dt +
∑
j

Lt,Aj + Lt,X + Lt,N .

2.9 Emissions and climate

We include three GHGs – CO2, methane and nitrous oxide – which have four sources: (i) CO2

emissions from burning fossil fuels, (ii) methane and nitrous oxide emissions associated with

burning fossil fuels (primarily methane emissions as a waste product of fossil-fuel extraction

and distribution), (iii) CO2 emissions from expanding agricultural land (e.g. deforestation), and

(iv) methane and nitrous oxide emissions from agricultural production. Total GHG emissions at

time t are given by

GHGt = (πE,CO2 + πE,NCO2)Et,dt + πX (Xt −Xt−1) + πag

(
KθK
t,agE

θE
t,agL

1−θK−θE
t,ag

)
, (19)

where πE,CO2 is CO2 emissions per unit of dirty energy, πE,NCO2 is non-CO2 emissions per unit of

dirty energy (i.e. methane and nitrous oxide), πX is CO2 emissions per unit of agricultural land
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expansion, and πag is methane and nitrous oxide emissions per unit input of the capital-labor-

energy composite in agriculture.12 πE,NCO2 and πag are expressed in units of CO2-equivalent.

The state variable St represents the atmospheric GHG concentration. The evolution of St is

based on the carbon-cycle model of Joos et al. (2013) used extensively in the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change (IPCC). This model was built to repli-

cate the behavior of more complex carbon-cycle models and it conforms better with them than

the carbon cycles used in some key economic models (Dietz and Venmans, 2019; Mattauch et

al., 2018). In the model, atmospheric CO2 is divided into four reservoirs, indexed by r, with

St = ΣrSt,r, each of which decays at a different rate:

St =
3∑
i=0

St,i (20)

St,0 = a0 [πE,CO2Et,dt + πX (Xt −Xt−1)] + (1− δS,0)St−1,0 (21)

St,i = ai [πE,CO2Et,dt + πX (Xt −Xt−1)]

+
ai∑3
i=1 ai

[
πE,NCO2Et,dt + πag

(
KθK
t,agE

θE
t,agL

1−θK− +etaE
t,ag

)]
+(1− δS,i)St−1,i, i = 1, 2, 3. (22)

Since methane and nitrous oxide emissions are converted into CO2-equivalent using their 100-

year Global Warming Potential, we exclude them from the first reservoir. Doing so ensures these

two gases are approximately completely removed from the atmosphere 100 years after their

emission.13

2.10 Optimization

The model is solved as a constrained non-linear optimization problem. The intertemporal wel-

fare function (16) is maximized by selecting aggregate consumption, as well as the allocation

of capital, energy and labor across sectors, subject to the various technological constraints. Ap-

pendix A contains a formal statement of the primal optimization problem.

12 We assume net radiative forcing from other GHGs and aerosols is zero, which has been approximately true in
recent years (IPCC, 2013).

13 A more complete model would have fully independent climate dynamics for methane and nitrous oxide, but this
would add excessive complexity.
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3 Implementation and empirical strategy

Our approach to disciplining the trajectories simulated by the model builds on Acemoglu et al.

(2016) and Lanz et al. (2017a) and proceeds in three steps. First, a set of parameter values

is imposed, based on values used in other studies and in some cases on our own judgment.

A second set of parameters can be calibrated on empirical data, including initial values of the

stock variables; the model is initialized on observed data for 1960. For the last set of parameters

(µj , ω, χ, ζ, ψ, and ε), there exist no direct observations or estimates in the literature. We use

the flexibility offered by these parameters to fit the model to observed data from 1960 to 2015.

We report a selection of the most important parameter choices in Table 1. These choices are

motivated in Appendix A, which also reports values of the full set of parameters.

Table 1: Selected parameter values (values used in sensitivity analysis reported in parenthesis)

Parameter/values Definition Source
β = 0.99 (0.97) Discount factor Drupp et al. (2018)

Giglio et al. (2015)
γ = 2 (≈ 1) Elasticity of marginal utility of consumption Guvenen (2006)
η = 0.001 (0.5) Elasticity of utility w.r.t. population increments Assumed
u = 1 Critical level of utility Assumed
Ωag = 0.000207 Agricultural damage intensity Nelson et al. (2014)
(0.00015, 0.000415)
Ωmn = 1.66E−5 Manufacturing damage intensity Nordhaus and Moffat (2017)
(-0.8E−5, 3.73E−5)
σX = 0.6 (0.2) Elasticity of substitution between land and Wilde (2013)

capital-labor-energy in agriculture
σE = 1.5 (0.95) Elasticity of substitution between clean Stern (2012)

and dirty energy
κ = 0.25 Income elasticity of food consumption Thomas and Strauss (1997)

Beatty and LaFrance (2005)

The structural estimation procedure targets the following quantities over the period 1960 to

2015, all defined at the global level.14 First, we use population from the United Nations (2017)

to identify the parameters determining the cost of incremental labor units, χ and ζ. Second, we

use aggregate GDP data from the World Bank (2018) to pin down both µmn and ω, the latter

being identified from co-variations in both technology and population (i.e. the drivers of the

14 The choice of estimation period is mainly driven by the availability of consistent data. Below we check the model
approximates a number of non-targeted quantities, which are observed only during the more recent past.
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demographic transition). Third, the parameters determining labor productivity in land clearing

for agriculture (ψ and ε) are based on data on crop land from FAO (2018). Fourth, empirical

evidence on agricultural productivity growth reported in Martin and Mitra (2001), Fuglie (2012)

and Alston and Pardey (2014) are used to estimate the parameter µag.15 Finally, we estimate

parameters determining the speed of technological progress in the production of dirty and clean

energy intermediates using data from BP (2017) on global fossil versus non-fossil energy use,

converted into units of oil equivalent.

The simulated method-of-moments procedure involves minimizing a measure of the dis-

tance between trajectories simulated with the model and those observed in the data (see Ap-

pendix A). This approach implies that the estimands ‘rationalize’ observed trajectories with the

model.16 One implication is that the trajectories derived from the estimated model account for

pre-existing market imperfections in the economy, such as tax distortions. It also follows that

carrying out sensitivity analysis on some of the imposed parameters (see Section 6) requires the

model to be re-estimated in order to provide a good fit of the 1960-2015 trajectories that we

target.

The observed trajectories targeted by our estimation procedure are the outcomes of a laissez

faire equilibrium, specifically in which climate damages have not been internalized.17 This

implies climate damages over the estimation period were exogenous to the planner’s decision

problem in our model. This creates a challenge, which we solve through an iterative procedure

(Böhringer et al., 2007). The first step is to solve the model assuming the stock of GHGs entering

the damage function is exogenous.18 This implies the planner cannot reallocate resources to

15 More specifically, we assume that global agricultural TFP has growth at 1.5 percent per annum over the first
twenty years of the estimation period (1960 to 1980), 1.2 percent in the subsequent twenty years (1981 to
2000), and at 1 percent in the recent past (2001 to 2015). For further discussion see (see Lanz et al., 2017a).

16 Given the planning approach and the presence of externalities, the estimated parameters cannot be interpreted
as the technology of a representative firm. In a related setting, Lanz et al. (2017a) provide evidence that the
value of parameters estimated via a planning approach should not be very different from those obtained via a
decentralized equilibrium. In any case, we are not interested in the interpretation of the value of the estimands,
or in statistical inference. Instead, these parameters are used for their their ability to fit observed trajectories on
a number of important dimensions.

17 Towards the end of the estimation period, prototypical climate policies such as the Kyoto Protocol and the
European Union Emissions Trading System were introduced. However, these attempts have had a trivial effect
on total global GHG emissions.

18 Note that to solve the model we require a first guess as to the trajectory of emissions over the entire model
horizon. To obtain this, we first estimate the model without climate damages, which gives a good approximation
of the trajectory of GHG emissions. In turn, the climate module delivers the entire path for GHG concentrations.
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reduce climate damages. However, doing so creates a discrepancy between the emissions that

solve the planner’s problem and those consistent with the exogenous atmospheric GHG stock

entering the damage functions. Therefore, the second step is to update the exogenous stock

entering the damage functions with the GHG stock from step one, and re-estimate the model

to ensure consistency between the GHG stock implied by emissions along the solution path and

that entering the sectoral damage functions.

4 Estimation results and counterfactual analysis

This section focuses on the period from 1960 to the present. First, we document how well the

model is able to track the evolution of observed outcomes. Second, we use the model to provide

evidence on the impact of climate change over the estimation period.

4.1 Estimated model: goodness of fit

Figure 1 reports model estimates of the variables targeted in our structural estimation: popula-

tion; GDP; crop land; agricultural TFP (net of climate damages, i.e. At,ag · exp(−Ωag
[
St − S

]
));

and global fossil and non-fossil energy use. We also include observed trajectories of these vari-

ables in the figure. The comparison shows the model is able to replicate observed trajectories

quite closely.

World population has grown arithmetically over the last half century; the population growth

rate has halved. GDP has grown more than arithmetically, but the GDP growth rate has also

decreased. Global crop land has expanded only marginally (and this expansion has been con-

centrated in certain parts of the world, e.g. tropical developing countries), while agricultural

TFP has roughly doubled. Energy use has grown several-fold, both fossil and non-fossil.
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Figure 1: Estimation results for targeted variables
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(d) TFP in agriculture net of climate damages
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A better test of the model’s goodness of fit is provided by comparing its estimates with un-

targeted quantities. Figure 2 panel (a) reports historical estimates from the model of the growth

rate of agricultural yields, defined as the ratio of agricultural output to land area, together with

observed data from FAO (2018). Using data from the World Bank (2018), panel (b) compares

the share of agriculture in total GDP estimated by the model with observations, panel (c) makes
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the same comparison for per-capita consumption growth, and panel (d) does so for investment

(gross fixed capital formation).19

Figure 2: Estimation results: Untargeted variables
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In general, the model fits the untargeted moments reasonably well, without of course cap-

turing the short-run volatility inherent in the growth time series especially. The slowdown in

agricultural yield growth, which has resulted in an approximately linear trend in absolute yields,

is discussed at length in the literature (e.g. Alston and Pardey, 2014). The model also produces

a declining trend. The historical decrease in agriculture’s share of GDP is also qualitatively

replicated by the model, although the decline is somewhat underestimated. The model exhibits

the declining per-capita consumption growth found in the data, but the growth rate itself is

19 Note that, by construction, some of these variables indirectly relate to the targeted moments. For example, given
the definition of agricultural yields, declining yield growth partly results from a slowdown in agricultural land
expansion (Figure 1, panel c) and from agricultural TFP growth (Figure 1, panel d). Agricultural output itself is
not targeted in the estimation, however.
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somewhat underestimated. This is related to the model somewhat overestimating the historical

increase in investment.

We next consider the fit of the model to the emissions/climate variables, also untargeted.

Figure 3 reports total GHG emissions, agricultural GHG emissions, the share of GHG emissions

from fossil fuels, and the atmospheric GHG stock. Observed emissions data are taken from Bo-

den et al. (2017), FAO (2017), Janssens-Maenhout et al. (2017) and Le Quéré et al. (2018),

while estimates of the GHG stock are from Meinshausen et al. (2011). The model closely tracks

observed quantities. Aggregate GHG emissions almost triple over the estimation period (panel

a), an increase captured well by our representation. The model tracks agricultural GHG emis-

sions well until after 2000, when it misses out on a jump in observed emissions from land-use

change (panel b). It is uncertain whether this is a transitory phenomenon. However, because

the share of emissions from burning fossil fuels increased significantly over the estimation pe-

riod (panel c), this does not translate into a significant deviation in total GHG emissions. One

implication is that the trajectory of the GHG stock estimated by our model closely aligns with

the data (panel d).
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Figure 3: Estimation results: Climate dynamics
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4.2 Counterfactual analysis: an evaluation of global climate impacts

Anthropogenic GHG emissions have already caused c. 1◦C global warming relative to pre-

industrial levels (IPCC, 2018). Simulation models of climate impacts, as well as empirical stud-

ies looking mainly at short-run climate variability (see Carleton and Hsiang, 2016; Dell et al.,

2014), imply this observed warming has already affected productivity in agriculture and the rest

of the economy, but by how much, and what have the consequences been for the economy and

population?

Our structural estimation approach enables us to provide an answer to these questions by

creating a counterfactual global economy in the absence of climate change. We construct the

counterfactual by first structurally estimating the model including climate damages to agricul-

ture and manufacturing. The model run we just evaluated on goodness of fit was estimated in

this way. We then re-run the model – without re-estimating it – with climate damages ‘turned
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Figure 4: Climate damages since 1970; reduction in TFP relative to counterfactual
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off’, that is when Ωag = Ωmn = 0.

Figure 4 plots historical climate damages, that is, historical estimates of Ωag and Ωmn. It

is important to remember these estimates constitute the ‘gross’ productivity loss from climate

change, before adaptation through factor re-allocation and (dis)investment. Therefore they can

be compared, as we do below, with ‘net’ productivity, which means we can also provide estimates

of the effects of adaptation. With that caveat in mind, we estimate climate damages equal to a

3.2% reduction in agricultural TFP in 1970,20 relative to a counterfactual world without climate

change. This is within a range of 1.8% to 6.4%, estimated by running the model with Ωag set

to its lower and upper bounds respectively (see Appendix A for further details of the parameter

values). By 2018, rising temperatures caused damages to rise to 8.2%, with a range of 4.6-

16.0%. In the rest of the economy, climate damages amounted to a 0.3% reduction in TFP in

1970, with a range of a 0.1% increase to a 0.6% reduction, obtained by setting Ωmn to its lower

and upper bounds respectively. By 2018, damages in the rest of the economy rose to 0.7% of

TFP (range -0.3-1.5%).

In Figure 5, we compare various aspects of the world in a changing climate with the coun-

terfactual world absent climate change, taking adaptation into account. The top row examines

differences in two key inputs: land and agricultural innovation/technology. We see that the

world agricultural system has responded to reduced yields as a result of climate change by em-

20 Although the model is structurally estimated on data from 1960, our comparison here focuses on the period from
1970 onwards, because we want the effect of initial conditions on variables such as land, output and population
to be eliminated.
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ploying more agricultural land. We estimate that by 2018 an additional 19 million hectares of

arable/crop land had been brought into use just to cope with climate change (with a range of 11

to 36 million ha), which is 1.2% above the counterfactual level, or in the ballpark of the amount

of arable land currently in use in France.21 Climate change has also stimulated an increase in

agricultural innovation, as measured by the growth rate of the gross technology index At,ag. We

estimate that in 1970 the innovation rate for global agriculture was 5.4% higher than in the

absence of climate change (range 3.0-11.0%). To put this in context, the counterfactual innova-

tion rate was 1.5% in 1970, so this equates to an absolute increase of 0.08 percentage points.

By 2018, the difference in the agricultural innovation rates with and without climate change

had risen to 10.3% (range 5.6-21.4%). This equates to an absolute increase of 0.09 ppts. on the

counterfactual innovation rate of 1.0%. Beginning in 1970, this additional innovation would

have cumulatively raised the level of agricultural productivity by about 5.1% by 2018 (range

2.8-10.8%).

However, as the middle left panel shows, the additional R&D has not fully compensated

the negative effect of climate damages on overall agricultural productivity. Instead, this net

agricultural technology index was 2.4% lower than in the counterfactual in 1970 (range 1.4-

4.8%) and 3.6% lower in 2018 (2.0% to 6.8%). Nonetheless, this estimate should be compared

with damages from Figure 4 of 8.2% in 2018 to demonstrate the effectiveness of innovation as

an adaptation mechanism in our model, reducing the impact of climate change on agricultural

productivity/yields.

Even after taking into account the adaptation mechanisms available in our model, we es-

timate that climate change has depressed agricultural output (middle right panel). In 2018,

we estimate that it was about $63 billion (1.2%) lower than the counterfactual (range $27 to

$132 billion; 2010 prices). The bottom row examines effects on world population and economy-

wide GDP respectively. World population is lower as a result of climate change. In particular,

we estimate that by 2018 world population was reduced by 82 million (1.1%) relative to the

counterfactual (range 38 to 171 million). In our model, the mechanism bringing this about is

an increase in the cost of feeding children, which affects fertility choices. World GDP was re-

21 36 million ha is closer to the amount of arable land currently in use in Argentina. Data on France and Argentina
both from World Bank (2018).
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Figure 5: Historical estimates of key model variables relative to counterfactual with no climate
damages
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duced by $1.1 trillion in 2018 (1.4%) relative to the counterfactual, with a range of $0.4 to $2.4

trillion.
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5 Future projections

We now use the model to simulate the system over the rest of the 21st century. Our first set

of projections is an extension of the comparison made in the previous section between the

world in a changing climate and the counterfactual world absent climate change. This is under

a continued, laissez faire emissions scenario, in which the climate-change externality is left

uncorrected. Our second set of projections is of the optimal policy that internalizes climate

damages.

5.1 Laissez faire equilibrium

Figure 6 reports our estimates of laissez faire output (both aggregate output and agricultural

output specifically) and population in a changing climate. Panels (a), (c) and (e) plot the

level of each. Despite climate change, baseline GDP increases nearly four-fold over the course

of the century, from around $80 trillion currently to $277 trillion in 2100 (in year 2010 $US).

Agricultural output also increases, but only by a factor of two. Population increases from around

7.7 billion currently to 12.8 billion in 2100. Consistent with our previous work, population does

not reach a steady state in the 21st century, but is on a path to do so after 2100 (Lanz et al.,

2017a). Our estimate for 2100 is within the 95% confidence interval of the United Nations

(2017) projections, which do not factor in future climate change. Panels (b), (d) and (f) report

the differences in output and population with respect to the counterfactual and also include

low and high damage specifications. We estimate that climate change will reduce GDP by $3.8

trillion in 2100 relative to the counterfactual (-1.4%), with a range of $0.4 to $8.2 trillion (-0.1%

to -2.9%). It will reduce agricultural output by $138 billion in 2100 relative to the counterfactual

(-1.3%), with a range of $44 to $298 billion (-0.4% to -2.7%). The corresponding reduction in

population due to climate change is 157 million in 2100 (-1.2%), with a range of 62 to 338

million (-0.4% to -2.6%).

Figure 7 reports our estimates of laissez faire crop land and agricultural innovation (that

is, the gross agricultural TFP index). Again, panels (a) and (c) report the level of each, while

panels (b) and (d) report differences with the counterfactual, including low and high damage

specifications. There is a modest amount of further crop land expansion over the course of the
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Figure 6: Future estimates of baseline GDP and population, including relative to counterfactual
with no climate damages
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century, reaching 1.7 billion ha in 2100. In order to adapt to the changing climate, however, this

constitutes a non-trivial 80 million ha increase relative to the counterfactual scenario (+4.9%),

with a range of 46 to 162 million ha (+2.8% to +9.8%). Moreover panel (d) shows that

much more effort is expended on agricultural R&D in a changing climate compared with the

counterfactual, such that by 2100 gross agricultural TFP is more than 15% higher, with a range
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of 8-35%. This does not fully compensate climate damages, however, such that net TFP is lower

than in the counterfactual (not shown).

Consistent with our historical estimates, adaptation to climate change through factor reallo-

cation is therefore effective in muting the impacts of climate change. This is exemplified by crop

land expansion and especially by agricultural innovation, which compensate for yield losses due

to climate change. It is striking that climate change has a smaller effect, in relative terms, on

agricultural output than on aggregate output (Figure 6), despite gross productivity damages

being much larger in agriculture according to the parametrization of Ωag and Ωmn. That popula-

tion is relatively impervious to climate change implies a strong preference for fertility in spite of

rising costs. Below we test the robustness of these predictions to weaker preferences for fertility,

lower substitutability of land in agriculture and lower substitutability of fossil/clean energy in

industry, inter alia.

Figure 7: Future estimates of crop land and agricultural innovation, including relative to coun-
terfactual with no climate damages

(a) Crop land baseline

 0

 0.5

 1

 1.5

 2

2015 2030 2050 2075 2100

B
ill

io
n 

he
ct

ar
es

Years

Baseline

(b) Crop land difference from counterfactual
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(c) Gross agricultural TFP baseline
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(d) Gross agricultural TFP difference from
counterfactual
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5.2 Optimal policy

Figure 8 shows projections of the Pigouvian carbon tax,22 resulting total GHG emissions, the

atmospheric concentration of GHGs, atmospheric temperature, and damages to agriculture and

manufacturing. The Pigouvian carbon tax is $66/tCO2eq in 2020 (in 2010 US dollars). This

increases in real terms to $81 in 2030 and $182 in 2100 (we comment on the shape of this

carbon tax trajectory in the following section). As a result, total GHG emissions are signifi-

cantly reduced relative the baseline, laissez faire equilibrium under climate change. By 2030,

optimal total GHG emissions are 7.3GtCeq, and emissions are held broadly constant at this level

throughout the century. By contrast, laissez faire emissions rise steadily from 15GtCeq in 2019 to

33GtCeq in 2100, which means our baseline is close to IPCC’s high-emissions ‘RCP8.5’ scenario

(IPCC, 2014c).

This large difference in emissions between the laissez faire equilibrium and the optimal

policy translates into large differences in the atmospheric stock of GHGs and atmospheric tem-

peratures. The optimal policy reduces the atmospheric stock of GHGs in 2100 by 40%. Although

temperature plays no explicit role in our model, here we use the IPCC’s two-box temperature

model (Geoffroy et al., 2013) to estimate what temperature increase these GHG stocks would

lead to.23 The optimal policy reduces warming from 3.3◦C in 2100 on the baseline path to only

1.8◦C on the optimal path. This means optimal warming in 2100 according to our model is

in agreement with the goal of the 2015 UN Paris Agreement on climate change to hold “the

increase in the global average temperature to well below 2◦C above pre-industrial levels”.

Panels (e) and (f) in Figure 8 show that the optimal policy significantly reduces climate dam-

ages to both agriculture and manufacturing. Taking the year 2050 as an example, agricultural

damages are equal to 13% of sectoral TFP in the laissez faire equilibrium, but only 8% on the

optimal path. Manufacturing damages are 1% in the laissez faire equilibrium in 2050 and 0.6%

22 This tax is implicitly levied not only on CO2, but also on methane and nitrous oxide in proportion to their
CO2-equivalence.

23 As we feed not only CO2 emissions into the model of Geoffroy et al. (2013), but also methane and nitrous oxide
(in tCO2eq), we make a bias correction of -0.372◦C to the level of temperature in all years, which corresponds
with the difference between the model projection of warming in 2005 relative to the 1850/1900 average, and
observations obtained from IPCC (2013). The 2005 temperature in the model is obtained by feeding historical
emissions of CO2, methane and nitrous oxide through our carbon cycle and the temperature model of Geoffroy
et al. (2013), starting in 1765.
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Figure 8: Baseline and optimal paths for carbon prices, emissions, concentrations, temperatures
and damages

(a) Carbon tax
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(e) Damages to agricultural TFP
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(f) Damages to manufacturing TFP
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on the optimal path. Below we test the sensitivity of the optimal path to alternative damage

intensities.

Figure 9 brings together projections of energy inputs and also shows agricultural GHG emis-

sions. Panel (a) shows that the carbon tax significantly reduces total global energy use. In 2050,

the baseline world economy uses 26Gt oil eq, while on the optimal path energy use is only 12
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Gt oil eq. Moreover panels (b) and (c) show that the carbon tax results in a significant shift

away from dirty/fossil energy towards clean energy. Panel (d) shows that total GHG emissions

from agriculture are significantly lower than on the baseline, about one third lower in 2030, for

instance.

Figure 9: Baseline and optimal paths for energy and agricultural emissions
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(c) Fossil GHG emissions
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(d) Agricultural GHG emissions
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Figure 10 looks at what the baseline and optimal paths mean for the configuration of the

agricultural system, and for population. On the optimal path, substantially less crop land is

used. The difference is 72 million hectares in 2050 and 137 million ha in 2100 (-8%). This

reflects two factors. First, land conversion results in CO2 emissions; limiting agricultural land

expansion thus avoids CO2 emissions and the carbon tax. Second, climate damages are lower

on the optimal path, necessitating less expansion in order to compensate for productivity/yield

losses. Agricultural innovation is also higher on the optimal path, as panel (b) shows. The

difference is about 12% in 2100. Under pressure from the carbon tax to use comparatively less

land and to abate emissions from the capital-labor-energy composite, the agricultural system

31



strives to increase productivity through R&D.

Panel (c) shows that agricultural output is initially lower on the optimal path than on the

baseline, by $16 billion in 2030 for instance, but around 2075 the situation is reversed and by

2100 agricultural output on the optimal path is $21 billion higher. In effect there is an optimal

investment in long-term agricultural production, with an up-front cost. Panel (d) shows that the

optimal path sustains a larger world population than the baseline path. The world population is

22 million higher in 2050 and 57 million higher in 2100.

Figure 10: The agricultural system and population on the optimal path relative to the baseline
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6 Sensitivity analysis of future projections

Table 2 reports a sensitivity analysis of our future projections, focusing on the optimal policy.

We report the sensitivity of four key variables: the carbon tax, total GHG emissions, crop land

and population, each for three representative points in time. We explore three issues. First,
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we compare our main damage specification with an alternative specification, in which total

economy-wide damages are the same, but climate change does not directly impact food supply,

and food and other consumption goods are implicitly perfect substitutes in welfare. This is a

way of imitating how climate damages are modeled in standard IAMs and allows us to examine

what difference it makes to optimal policies to incorporate a separate channel through which

agricultural damages impact welfare, namely via the role of food in sustaining population. To

construct this alternative, we set Ωag = 0 and Ωmn = 2.612E−4.24

It is clear that the specification of damages, specifically how damages to the agricultural

sector impact welfare, matters a great deal. Take the optimal carbon tax for instance. If the

impact of climate change is concentrated on the manufacturing sector, the optimal carbon tax

is only $18/tCO2eq in 2020, 72% lower than in our main specification. Consequently optimal

GHG emissions are significantly higher, roughly double in the second half of the century. With

increased substitution between food and other consumption goods, the difference in crop land

between the optimal policy and the baseline is small and without a food constraint the difference

in population is negligible.

Second, we compare our main specification, in which population is endogenous, with a

model run in which we impose exogenous population growth from 2015, based on the UN pro-

jections (United Nations, 2017, medium fertility variant). This generates a world population

in 2100 of 11.2 billion, compared with 12.8 billion in our main specification. Unable to satisfy

their preferences for fertility, households in this model variant increase their consumption of

manufactured goods instead (see Appendix C). This demand is met by expansion of the man-

ufacturing sector, and the resulting optimal carbon tax has a markedly different trajectory to

our main specification, starting lower but increasing at a much faster rate to end the century

more than 2.5 times higher. A corollary of this finding is that the relatively flat carbon tax path

in our main specification fundamentally derives from endogenous population and its prediction

of relatively strong population growth. Previous findings that carbon taxes increase rapidly, ei-

ther at or above the rate of growth of GDP per capita (Golosov et al., 2014; Rezai and van der

24 Using the estimated damages to agricultural and manufacturing output from the main specification of Ωag =
0.000207 and Ωmn = 1.66E−5 respectively, weighted by the respective shares of agricultural and manufacturing
(i.e. non-agricultural) output, 5% and 95%.
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Ploeg, 2016; Dietz and Venmans, 2019), may not be robust to assumptions about population

and preferences for population.

Third, we analyze the robustness/sensitivity of the optimal policy in our main damage spec-

ification to variation in seven parameters: the joint intensity of agricultural and manufacturing

damages Ωag and Ωmn; the elasticity of substitution between clean and dirty energy σE; the elas-

ticity of substitution between land and the capital-labor-energy composite in agriculture σX ; the

elasticity of marginal utility with respect to fertility η; the discount factor β; and the inverse of

the elasticity of intertemporal substitution γ.

Table 2: Sensitivity of key variables to parameter variations

2020 2050 2100 2020 2050 2100

Carbon tax Total GHG
($/tCO2eq) emissions (GtCeq)

Main spec. 66.23 112.47 182.02 6.93 7.58 7.31
Alternative damages 18.27 32.56 63.98 11.92 14.45 16.13

Exogenous population 39.33 100.87 485.09 8.87 15.19 16.30
Parameter variations

Ωag, Ωmn low 26.04 41.83 61.54 10.63 13.23 16.67
Ωag, Ωmn high 127.03 220.14 353.19 3.55 4.26 3.92
σE = 0.95 66.28 114.23 190.15 7.09 8.68 10.68
σX = 0.2 73.16 124.20 198.52 7.31 7.43 6.63
η = 0.5 54.74 87.16 131.10 7.87 8.67 8.52
β = 0.97 37.07 64.25 115.59 9.62 11.94 12.82
γ ≈ 1 59.95 88.72 139.46 7.19 8.65 9.41

∆ crop land from ∆ population from
baseline (mn ha) baseline (mn)

Main spec. -13.52 -71.83 -136.72 3.43 22.12 56.56
Alternative damages -2.20 -11.60 -20.77 0.11 0.07 -2.39

Exogenous population -14.62 -83.63 -199.73 n/a n/a n/a
Parameter variations

Ωag, Ωmn low -5.11 -26.42 -48.16 1.24 7.19 14.45
Ωag, Ωmn high -31.62 -164.04 -300.88 8.07 56.04 149.84
σE = 0.95 -13.62 -71.31 -130.73 2.96 18.50 44.97
σX = 0.2 -9.52 -53.72 -126.93 3.90 26.76 66.85
η = 0.5 -13.19 -70.31 -132.99 3.31 29.33 88.68
β = 0.97 -14.38 -76.72 -157.76 3.03 24.76 90.29
γ ≈ 1 -14.92 -81.50 -151.75 5.47 36.11 90.73

One clear finding is that the optimal path is highly sensitive to the intensity of damages,

and generally less sensitive to variations in the other parameters. Higher damages imply much

higher carbon taxes, much lower GHG emissions, bigger differences in crop land and population
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relative to the baseline, and vice versa. By contrast, the optimal path is much less sensitive to

variation in σE and σX , although an exception to this is the difference in crop land relative to

the baseline initially. When land is less substitutable with other inputs in agriculture, it becomes

harder for the economy to adapt to changing climatic conditions by varying the amount of crop

land. Accordingly, the difference between the area of crop land on the baseline and optimal

paths is only 9.5 million hectares in 2020 when σX = 0.2, compared with 13.5 million ha when

σX = 0.6. However, by the end of the century this effect of lower substitutability of land is

greatly ameliorated, as the economy has had time to adapt.

With less weight placed on future utility, a higher utility discount rate (β = 0.97) yields

lower optimal carbon taxes, higher optimal GHG emissions, but little difference in crop land

and population. Increasing the elasticity of intertemporal substitution results in a somewhat

lower optimal carbon price than the main specification, higher GHG emissions, a slightly larger

difference in crop land relative to the baseline, and a large difference in population relative to

the baseline. Reducing γ reduces the marginal value of population relative to consumption,25

which results in higher consumption per capita, lower population and greater sensitivity of

population to climate policy.

Given the difficulty of calibrating this parameter, it is particularly noteworthy that the opti-

mal path is relatively robust to the value of η. Placing a lower value on fertility in household

decision-making does lead to a 17% reduction in the optimal carbon price initially, leading to

emissions that are 14% higher. As intuition would dictate, doing so also leads to smaller popu-

lation differences between the baseline and optimal paths, and in turn differences in crop land.

The effect of varying η on the difference in population and crop land is small, however.

7 Discussion

The aim of this paper has been to construct a model of the world economy that serves as a

laboratory for experiments on the relationship between climate change, population growth and

25 Supressing time subscripts,
∂MRS (N, c)

∂γ
= − t (η − 1) (c− ucγ)

(γ − 1)2N
− t (η − 1)ucγ ln (c)

(γ − 1)N
, which is positive over the

domains of c, N , η and γ that we consider when u = 1. So when γ is reduced from 2 to c. 1, MRS(N, c) falls.
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food security, both in the past and in the future. Our argument is that these need to be tightly

integrated in a dynamic modeling framework and one that emphasizes the role of growth and

innovation/technology. We build on a number of seminal contributions to economic thought,

including on fertility choice (Barro and Becker, 1989), the demographic transition (Galor and

Weil, 2000) and technical change (Aghion and Howitt, 1992; Acemoglu et al., 2012). This

ensure that key variables are endogenous, rather than exogenous as in many of the literatures

we span (e.g. population and technology in climate-economy models, and food demand in agro-

economic models). We include a climate model that follows best practice in the physical-science

literature on carbon stock dynamics (Joos et al., 2013).

The model structure, combined with our estimation approach using more than half a cen-

tury of data on key aggregates, constitutes a novel way of estimating damages from long-run

climate change. It may be compared with recent empirical work on ‘long differences’ (Dell et

al., 2012). The two approaches have advantages and disadvantages. One possible advantage of

our approach is that it its application to future climate change involves less – but still some –

extrapolation out of sample.26

In a nutshell, we estimate that the effects of climate change on the world economy and

population have been and will be large, particularly when it comes to the agricultural system.

We find climate change has already substantially depressed agricultural yields ceteris paribus

and would do so much more in a laissez faire future. However, we estimate that this has not

led to equivalently large reductions in agricultural output, or in turn population, mainly due to

macro-economic adjustments such as agricultural land expansion and R&D. In our model, mar-

ket mechanisms make the world economy highly adaptive to climate change. In turn this limits

the climate costs of agricultural and manufacturing production, so that household consumption

and fertility patterns are notably stable across scenarios.

This is not to say, however, that from the point of view of maximizing social welfare GHG

emissions should be left uncontrolled. On the contrary, we estimate a relatively high optimal car-

bon tax, which implies the welfare cost of a laissez faire future is large, despite the adjustments

26 While the structural estimation ensures future trajectories are to some extent conditioned on past trends, the
model is far from fully constrained to reproduce the past. Climate damages, for instance, are calibrated on
simulation models that explicitly look at future temperatures and their effects on crop yields (Nelson and Shively,
2014).
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projected to take place. Our estimates naturally rest to an extent on uncertain parameters, but

our sensitivity analysis implies these qualitative conclusions are fairly robust, notably to varia-

tions in the marginal utility of fertility.

We can sense-check some of our model projections by comparing them with others in the lit-

erature. The United Nations (2017) population projections are often regarded as the benchmark

in demography. Our population projections are within their 95% confidence interval, towards

the upper end. In any case, low population projections typically depend on the assumption of

relatively rapid convergence to replacement fertility levels, which the data do not clearly sup-

port (Strulik and Vollmer, 2015). Conversely we project average GDP per capita growth between

2015 and 2100 of around 1%. This is within the 90% confidence interval of expert forecasts re-

ported in Christensen et al. (2018), towards the lower end, but below the 10th percentile of

the statistical forecast reported in the same paper. We can generate much higher GDP growth

per capita in a scenario with an exogenous population projection based on the United Nations

medium fertility variant. Our projection of global crop land in 2050 is almost identical to that

of the FAO (Alexandratos and Bruinsma, 2012). As mentioned above, our laissez faire GHG

emissions scenario closely tracks the IPCC’s RCP8.5 scenario, as does our estimated atmospheric

GHG concentration.27

The high level of adaptability displayed by our model economy deserves further comment.

A number of elements are at play here, including endogenous innovation in agriculture and

manufacturing, which can compensate for climate damages. The model suggests this is partic-

ularly true of agriculture. On the other hand, our model does not include any adjustment costs

to re-allocating capital or labor, which may overstate the economy’s adaptability, particularly in

relation to labor and issues such as migration and re-skilling. The lack of explicit capital stocks

in the innovation sectors – for tractability reasons – also means that we are unable to interpret

the model’s labor shares literally and compare them with observed values.

While we estimate a high optimal carbon tax, our model still misses some elements that could

render it higher still. These include the fact that our damage functions are smooth and continu-

ous. Tipping points in the climate system or in the socio-economic response to climatic changes

27 This can be verified by comparing Figure 8 panel (c) with Figure 12.43 of Collins et al. (2013), noting that the
conversion rate between ppm and GtC is 2.13.
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would probably increase the optimal carbon tax. So would consideration of the consequences

of GHG emissions for air quality, and the consequences of climate change and agricultural land

expansion for biodiversity, so-called ‘co-benefits’ of reducing GHG emissions.
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Appendix A Optimization problem and quantitative implementation

The model optimization problem can be stated formally as:

max
Ct,Kt,·,Et,·,Lt,·

W =
∞∑
t=0

βtN1−η
t u(Ct/Nt)

s.t. Yt,mn = Ct + It

Yt,ag = Ntξ
(
Yt,mn
Nt

)κ
Et = Et,mn + Et,ag ,

∑T
0 Et,dt ≤ R

Xt = Xt−1(1− δX) + ψLεt−1,X , Xt ≤ X

At,j = At−1,j

[
1 + λj

(
Lt−1,Aj

Nt−1

)]µj
, j ∈ {mn, ag, cl, dt}

Nt = Nt−1(1− δN ) + χLζt−1,NA
−ω
t−1,mn

Kt = Kt−1(1− δK) + It−1

St =
∑3

i=0 St,i

St,0 = a0 [πE,CO2Et,dt + πX (Xt −Xt−1)] + (1− δS,0)St−1,0

St,i = ai [πE,CO2Et,dt + πX (Xt −Xt−1)]

+ ai∑3
i=1 ai

[
πE,NCO2Et,dt + πag

(
KθK
t,agE

θE
t,agL

1−θK−θE
t,ag

)]
+(1− δS,i)St−1,i, i = 1, 2, 3

Nt = Lt,mn + Lt,ag + Lt,cl + Lt,dt +
∑

j Lt,Aj + Lt,X + Lt,N

Kt = Kt,mn +Kt,ag

K0, N0, X0, S0,i, A0,j ∀i ∀j given

Direct optimization methods cannot explicitly accommodate an infinite horizon.28 Therefore we

approximate an infinite horizon with a long but finite horizon. For the structural estimation,

the model is initialized in 1960 and solved up to 2260. For future projections, the model is

initialized in 2015 and solved up to 2315. Our interest is in projections up to 2100, so this

28 An infinite horizon could be accommodated using dynamic programming, but dynamic programming is subject
to the curse of dimensionality and we have many state variables.
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approach ensures 21st century estimates are not unduly affected by agents anticipating the end

of the horizon.

As mentioned in Section 2, our parametrization of the model involves dividing parameters

into three classes. First, there is a class of imposed parameters, based on values used in other

studies, or on our own judgement. Second, there is a class of parameters that can be calibrated

on empirical data. Third, there is a class of parameters that are structurally estimated by fitting

the model to observed data from 1960 to 2015. All the parameter values are reported in Tables

3-5. Here we offer some additional commentary on some of the more important choices.

In agriculture, we take the elasticity of substitution between land and the capital-labor-

energy composite from long-run econometric evidence reported in Wilde (2013), which suggests

σX = 0.6. Because there is uncertainty about this parameter, and because land use is a potential

GHG abatement channel in our model, we consider σX = 0.2 as an alternative. In the energy

sector, we set the elasticity of substitution between clean and dirty intermediates σE = 1.5,

drawing on evidence from inter-fuel substitution by Stern (2012). We also use σE = 0.95 in

sensitivity analysis (following Golosov et al., 2014). The income elasticity of food consumption

is κ = 0.25, calibrated on econometric estimates reported in Thomas and Strauss (1997) and

Beatty and LaFrance (2005).

We set the discount factor β = 0.99, which corresponds with a utility discount rate of 1%,

consistent with the recent survey of economists by Drupp et al. (2018), as well as empirical work

on very long-run investments by Giglio et al. (2015). We also consider β = 0.97 in sensitivity

analysis. The inverse of the elasticity of intertemporal substitution γ = 2, consistent with the

macro-economic estimates reported in Guvenen (2006). For reasons of tractability, logarithmic

utility (γ ≈ 1) is often used instead. We consider this alternative as a robustness test.

The two remaining imposed preference parameters are η and u. We set η = 0.001, which

implies a strong preference for children. In previous work, we found the model was a better

fit of the targeted historical variables when η = 0.001 than when it took higher values (Lanz et

al., 2017a). With η = 0.001, we also approximate classical/total utilitarianism when the model

is given a social-planner interpretation,29 which has the benefit of being consistent with most

29 We avoid setting η = 0 to ensure that the problem remains convex, although numerically the difference is
negligible.
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previous integrated climate-economy modeling (e.g. Nordhaus’ DICE model), thereby aiding

comparability. However, we also consider η = 0.5 as a robustness test.30 We set the critical level

of utility u = 1. Given γ = 2, this implies the critical consumption level that makes incremental

population units desirable is 1,000 US dollars (2010 prices), and in fact all the solution points

we consider are above the critical level anyway.31

The extent of climate damages is determined by the parameters Ωag and Ωmn. We calibrate

Ωag on the major agricultural model inter-comparison exercise (AgMIP) reported in Nelson et al.

(2014). This work shows that baseline climate change (along the RCP8.5 emissions scenario by

IPCC, 2014a) reduces agricultural yields by an average32 of 15.4 per cent in 2050 (range 8.9 to

28.5 per cent), relative to a reference scenario without climate change. Using IPCC (2014a), we

estimate the atmospheric GHG concentration (CO2, methane and nitrous oxide) in the RCP8.5

scenario will be 1399 GtCeq in 2050, yielding Ωag = 0.000207 (range 0.000115 to 0.000415

). We calibrate manufacturing damages on the best estimate in the recent meta-analysis by

Nordhaus and Moffat (2017),33 giving Ωmn = 1.66E−5 (range −0.8E−5 to 3.73E−5).34

The structural estimation procedure for the class of unobserved parameters involves min-

imizing a measure of the distance between trajectories estimated with the model and those

observed in the data, for a set of variables Zτ,k, where τ ∈ [1960, 2015], k indexes the vari-

able (i.e. population, GDP, cropland area, agricultural TFP, dirty and clean energy use, total

GHG emissions and the atmospheric GHG concentration), and the vector of parameters to be

estimated is Θ.

For each variable, we compute the squared relative error between observed and simulated

30 We find a model solution does not exist for η > 0.5.
31 From a practical point of view, u = 1 also ensures our model is consistent with logarithmic utility as a limiting

case.
32 This is an unweighted average across the four combinations of global circulation models and crop models, seven

AgMIP models and 5 crop types.
33 We note there remains large uncertainty about this parameter and concern has been expressed that, in effect, all

estimates included in Nordhaus and Moffat (2017) may be biased downwards (Stern, 2013; Weitzman, 2013).
Implicitly the same criticism applies to the agricultural modeling estimates.

34 This is after having stripped out the contribution of agriculture, using the corresponding estimate of Ωag and
based on agriculture having a 5% share of global GDP currently.
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values:

ek,Θ =
∑
τ

[(Zmodel,Θ
τ,k − Zdata

τ,k )/Zdata
τ,k ]2. (23)

Our estimand Θ̂ then solves

min
Θ

∑
k

ek,Θ . (24)

Our estimation procedure defines bounds on all the parameters to be estimated and simulates

the model for randomly drawn vectors of parameters. Based on the ensuing relative error, we

gradually refine the bounds on the parameters to improve the objective.
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Table 5: Structurally estimated parameters

Parameter/value Definition
µmn = 0.298 Elasticity parameter for labor in manufacturing R&D
µag = 0.431 Elasticity parameter for labor in agricultural R&D
µcl = 0.077 Elasticity parameter for labor in clean energy R&D
µdt = 0.159 Elasticity parameter for labor in dirty energy R&D
ψ = 0.083 Scale parameter for labor in land conversion
ε = 0.254 Elasticity parameter for labor in land conversion
ω = −0.071 Elasticity parameter for technology in child-rearing
χ = 0.123 Scale parameter for labor in fertility and education
ζ = 0.509 Elasticity parameter for labor in fertility and education
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Appendix B A sketch of the ethical properties of number-dampened

critical-level utilitarianism

Our SWF is

W =
∞∑
t=0

βtN1−η
t

(Ct/Nt)
1−γ

1− γ
− u,

where η ∈ (0, 1). As such it is a so-called (discounted) number-dampened critical-level utilitarian

social welfare ordering (NDCLU: see Asheim and Zuber, 2014). An NDCLU SWF multiplies

average utility, minus the critical level, by a positive-valued function of population size.

A number of well-known SWFs are sub-classes of NDCLU. These include critical-level util-

itarianism (CLU) if η = 0, classical or total utilitarianism (CU) if η = u = 0, and average

utilitarianism (AU) if η = 1 and u = 0.

Here we sketch the ethical properties of NDCLU for 0 < η < 1, following closely the ex-

positional approach and terminology of Blackorby et al. (2005, chapter 5, part A). A formal

treatment has been provided by Asheim and Zuber (2014).

First, since average utility is multiplied by a positive-valued function of population size and

this function is increasing and strictly concave, NDCLU does not satisfy existence independence.

Existence independence requires that the ranking of any two social alternatives not depend on

the existence of individuals who ever live and have the same utility in both alternatives.

Second, NDCLU does not satisfy priority for lives worth living, which requires that all alterna-

tives in which each person has a utility above zero (neutrality; a life worth living) are preferred

to all those in which each person has negative utility. It is the existence of a positive critical level

that causes this. This is illustrated in Figure 1, which plots iso-value curves corresponding with

an average utility of 60, 30, 0 and -30 in a population of one individual. The NDCLU function

corresponds with our SWF, where β = 1, η = 0.5 and u = 30. The alternative in which one

person is alive with a utility of -30 is preferred to the alternative in which ten people are alive

and all have a utility of ten.
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Figure 11: Critical-level number-dampened utilitarianism

-40

-30

-20

-10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 u

ti
li

ty

Population size

Third, adding a positive critical level means that NDCLU satisfies both negative expansion

and avoids the repugnant conclusion. Negative expansion requires that when an individual with

utility below zero is added to the population, welfare is reduced. This is guaranteed by the

positive critical level. The repugnant conclusion is that any alternative, in which each member

of the population has positive utility, is ranked as worse than some alternative, in which a larger

population has an average utility above zero, but arbitrarily close to it. CU falls into this trap,

since the iso-value curve approaches an average utility of zero as population increases. Either a

positive critical level or strict concavity of the multiplying function avoid this (in the latter case,

because utility no longer increases without bound as population increases). NDCLU has both

features.

It is an impossibility theorem in population ethics that no SWF satisfies all four of these

axioms. See Blackorby et al. (2005) for a full discussion. CU satisfies existence independence,

negative expansion and priority for lives worth living, but does not avoid Parfit’s (1984) re-

pugnant conclusion. AU avoids the repugnant conclusion and satisfies priority for lives worth

living, but neither existence independence nor negative expansion. CLU avoids the repugnant

conclusion and satisfies existence independence as well as negative expansion, but now priority

for lives worth living is not satisfied.
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