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Abstract

The environmental regulations US firms are exposed to are often place-based, incentivizing

firms to move to less regulated counties or states. Consistent with this argument, multiplant

firms partially regulated under the ozone regulations of the US Clean Air Act offset regulation-

induced reductions among regulated plants with spillovers to unregulated plants and by mov-

ing plants out of regulated areas. Taken together, these leakage effects fully offset emissions

reductions at regulated plants. Effects are strongest among highly productive firms and those

operating in tradable industries.

1 Introduction

In the context of piecemeal environmental regulation, intrafirm leakage arises if multiplant firms
shift emissions from regulated to unregulated plants, or move entire facilities to unregulated ju-
risdictions. A policy that creates incentives for firms to behave in this way is the US Clean Air
Act (CAA). The CAA regulations are only applicable to industrial plants in the most polluted
US counties, creating sharp differences in environmental regulation across the US. In light of
the strongly negative effects on employment and productivity outcomes at plants under ozone
regulations (Greenstone, 2002; Greenstone, List, and Syverson, 2012; Walker, 2011), there are po-
tentially large payoffs for firms to relocate to unregulated areas.

Such relocations have the potential to challenge our understanding of the aggregate welfare ef-
fects of place-based environmental regulations like the CAA. On the one hand, emissions leakage
can attenuate the overall benefit of the policy by shifting emissions to otherwise less polluted
regions. However, if not only emissions, but also manufacturing jobs or entire plants move to un-
regulated counties, leakage may also lower the nationwide economic costs of the regulation. I will
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explore these hypotheses in the context of the largest expansion of the CAA in 2004, when about
200 additional counties became newly regulated for violation of a tightened ozone standard.

I guide the empirical analysis by taking a firm-level perspective on plant production choices. On
the intensive margin - defined as emissions leakage between existing plants - leakage may arise
if regulation induced cost increases make expansions at unregulated plants profitable. Provided
that outputs across plants are substitutes for the consumer, regulation leads to decreases in activ-
ity at regulated plants, (partially) offset by increases at other, unregulated plants. Theoretically,
this requires firm-level market shares to be partially inelastic with respect to the regulation in-
duced cost increase, for example because consumer preferences give firms some market power. If
so, resources shed at regulated plants are not reallocated to any firm in the economy, but remain
within the firm. Further, I consider the incentive to relocate plants to an unregulated area - the ex-
tensive margin. As in the offshoring literature (Antràs and Helpman, 2004), firms trade off lower
variable production cost of producing in an unregulated area and the fixed cost of moving there.
This trade off crucially depends on firm productivity. The least productive firms exit at regulated
plants, while high productivity firms relocate to take advantage of regulation-induced differences
in variable cost. More productive firms are larger in size and therefore benefit the most from the
variable cost saving potential of an unregulated plant.

To investigate the theoretical predictions, I construct a unique dataset of plant-level emissions
from the Toxic Release Inventory (TRI), matched to balance sheet information for listed compa-
nies from Compustat. The focus on large, publicly owned companies is motivated by previous
research showing that enforcement mostly ignores smaller plants (Becker and Henderson, 2000).
Consistent with this hypothesis, I find that privately owned plants are unaffected by the reg-
ulation in terms of their emissions behavior. Using a triple difference research design similar
to Greenstone (2002), I find that public firms either decrease emissions of volatile organic com-
pounds (VOC), a precursor to ozone, at regulated plants or shut them down altogether.

To test whether these emissions decreases were offset by intrafirm leakage, I first ensure that
firms’ internal plant network is accurately represented in my dataset. The issue is addressed in
the process of matching the plant-level data to Compustat using a state of the art search engine
algorithm (Autor, Dorn, Hanson, Pisano, and Shu, forthcoming). Based on the overlap in search
engine results across names, the matching algorithm serves to create a systematic and accurate
firm boundary within the TRI database. The TRI includes only unreliable parent company iden-
tifiers, such that plants may be listed as part of subsidiaries when they in fact belong to larger
conglomerates. Thus, I circumvent downward bias in my leakage estimates. Leakage effects are
then identified using a research design that compares outcomes at plants in unregulated areas
between firms that are regulated elsewhere and firms entirely unaffected by the regulation. Re-
sults show that multiplant firms increase emissions at plants in unregulated areas and increase
the number of plants they operate in these regions. Adding these effects up, I find that the com-
bination of extensive margin relocations and intensive margin increases at existing, unregulated
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plants amounts to a net increase in emissions at the firm-level. The balance sheet data allows me
to test whether extensive margin responses vary along the dimensions emphasized in the theory.
I confirm that only the most productive firms expand their operation in unregulated areas, while
low productivity firms exit at regulated plants.

I further investigate to what extent the intensive margin effects are consistent with my conceptual
framework. If leakage arises because firms can flexibly meet their demand using output from
different plants, only tradable goods producing firms should be observed to shift emissions. For
plants in some industries regulated under the CAA, such as cement, transportation costs mean
that firms are not flexible in this way (Syverson, 2008). Consistent with this intuition, emissions
spillovers to unregulated plants are entirely driven by firms in tradable industries. Additionally,
I find that leakage effects are only apparent when regulated plant and leakage candidate operate
in the same industry. Both findings support my hypothesis that interrelated demand is driving
the leakage estimates.

The results have important, but complex implications for cost-benefit analyses of environmen-
tal regulation. Prior literature suggests that my findings on plant relocations, in particular, can
have sizable negative effects on housing values and infant health outcomes (Currie, Davis, Green-
stone, and Walker, 2015). The redistribution of emissions among plants may similarly erode the
policy’s health benefits. These costs of intrafirm leakage need to be compared to the benefit of
allowing economic activity ro relocate within the US. Going forward, these findings are impor-
tant to assess the likely effects of recently implemented, further expansions of ozone regulations
(Friedman, 2017). By decomposing leakage into its two margins and substantiating the theoreti-
cal mechanisms, my findings become useful for policymakers concerned about intrafirm leakage
in other contexts, such as state-level initiatives to decrease carbon emissions that are becoming
increasingly prevalent in the US.

In many previous studies, the movement of economic activity towards unregulated jurisdictions
is estimated using cross-country or regional industry-level aggregates.1 I emphasize that correctly
evaluating the effects of piecemeal environmental regulation necessitates a focus on plant’s posi-
tion within the internal firm network of multiplant firms. In related work, Hanna (2010) provides
evidence that firms partially regulated under the CAA increase their FDI activity. Relative to her
study, and perhaps unsurprisingly, the shift into unregulated areas documented in this paper is
even larger at a national level. The welfare implications of my results may differ from her study in
light of the perception of environmental regulations as “job killers” domestically. Colmer, Martin,
Muûls, and Wagner (2018) consider within-firm leakage of carbon emissions under the European
Trading Scheme (ETS). In this context, firm-level emissions decrease significantly only for firms
that are regulated at each of their plants. They argue that this may reflect leakage, but effects
lack statistical significance. Finally, I build on important work by Gibson (forthcoming), who
shows that multiplant firms targeted under CAA regulation of particulate matter have directed

1See Brunnermeier and Levinson (2004) for a survey and Fowlie (2009) for a more recent study of between-firm
leakage in the US.
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their emissions towards unaffected plants. The current study differs in three aspects from Gib-
sons’s (forthcoming) prior work. First, I find significantly larger leakage rates. Both the focus
on particularly disruptive ozone regulations as well as a more accurately drawn firm boundary
may account for the difference in effect size. Second, I also consider plant relocations. Thus, I
emphasize that intrafirm leakage is not only associated with welfare lowering redistribution of
pollution within the US. Rather, I argue that the reallocation of economic activity may lower the
aggregate economic costs of this regulation. Third, I also study the mechanisms through which
leakage operates.

More broadly, this study is related to recent studies of intrafirm spillovers in response to local eco-
nomic shocks (Giroud and Mueller, 2015, forthcoming). I add to this literature by documenting a
novel channel for within-firm spillovers, that is based on demand, and not financial constraints.
Overall, my findings show that a full cost-benefit accounting of environmental regulation is faced
with issues recently highlighted in studies on business reallocation caused by cross-state differ-
ences in tax policy (Fajgelbaum, Morales, Suárez Serrato, and Zidar, 2018; Giroud and Rauh,
forthcoming).

This paper proceeds as follows. In section 2, I discuss whether intrafirm leakage is a plausible
outcome of piecemeal regulation. Section 3 gives a brief overview over aspects of ozone regula-
tion relevant to this study. In Section 4, I discuss sources and methods to construct the dataset as
well as the research designs to identify direct and leakage effects of ozone regulation. In Section
5, I apply this empirical framework to test the theoretical predictions. In Section 6, I discuss the
welfare implications of intrafirm leakage. Section 7 concludes.

2 Conceptual Framework

A substantial body of evidence suggests that ozone regulation under the original and amended
CAA decreases plant-level employment, productivity and output (Greenstone, 2002; Greenstone
et al., 2012; Walker, 2011). Under what circumstances should we expect firms to offset these reg-
ulation induced-downsizings by expanding production at unregulated plants?2 To a first order,
such incentives are small if the optimization problem the firm faces at each plant is independent
of its operating decisions elsewhere. This is for example the case in a setting where the firm sells
its output in a perfectly competitive market such that the optimal production decisions at each
plant are pinned down by each plant’s marginal cost. Regulation may increase this cost such that
firms decrease their production at regulated plants, but this leaves the optimality condition of
unregulated plants within the same firm unchanged.3 In general equilibrium, the resources set
free at the regulated plant may be reallocated to any of the unregulated plants in the economy.

2Emissions are thus thought of as a standard input in the firm production function. To offset output losses at
regulated plants, firms must increase emissions at unregulated plants.

3See Appendix A for discussion why CAA regulation is best thought of as increasing the variable, as opposed to
fixed, cost of production in the context of ozone regulation.
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Such reallocation effects would, however, be equally likely to apply to plants within and across
firms. Therefore, the perfectly competitive benchmark does not provide a distinct rationale for
intrafirm leakage as a likely outcome of piecemeal regulation.

To introduce a partial equilibrium mechanism for why firms may choose to shift production
among their plants, Appendix A.1 presents a stylized model of multiplant production. Multiplant
firms optimize at each of their plants under imperfect competition in the output market. Optimal
output choices are interdependent across plants within the same firm because a decrease in out-
put at a regulated plant will increase marginal revenue at unregulated plants. Higher marginal
revenue at unregulated plants implies a profit incentive to expand at unregulated plants. Intu-
itively, demand that was previously met with production from the regulated plant is now satisfied
by unregulated plants. The model described in the appendix shows that intrafirm leakage arises
whenever marginal revenue curves are sufficiently steep to offset potentially negative leakage
effects arising from complementarities across plants operated by the same firm. Depending on
the relative slope of marginal revenue at the regulated and unregulated plants, partial regulation
may even increase emissions at the firm-level.

In principle, this partial equilibrium mechanism for intrafirm leakage may also apply to between
firm leakage if plant-level output choices are strategic substitutes across firms (Bulow, Geanako-
plos, and Klemperer, 1985). Since goods produced by plants within the same firm and industry
are likely to be more substitutable than good produced by two competitors, intrafirm leakage
may nevertheless be the economically more plausible outcome. As a result of limited substitu-
tion by consumers across firms, the market share of the large firms in my sample may be fixed
in the short-run. Therefore, a cost shock to one plant primarily leads to within firm adjustments.
This framework fits the focus of CAA regulation on manufacturing industries, each producing
differentiated varieties. Fowlie (2009), in contrast, considers between firm leakage in the context
of electricity, a homogeneous good, such that leakage could equally arise within and between
firms. Overall then, this simple model of multiplant production provides an intuitive account
as to why unregulated plants within the same firm may increase their emissions under partial
regulation.

Regulation induced increases in the variable cost of producing at one plant can also serve as an
incentive to open up a plant in a unregulated area of the country. I analyze this possibility in
Appendix A.2 by assuming that firms can move plants to unregulated areas by paying an addi-
tional fixed cost. I embed this tradeoff in a parameterized version of the general set-up previously
outlined, with imperfect competition once again providing a profit incentive for relocation. The
relocation is modeled as a trade off between higher variable profits the firm can achieve by escap-
ing the costs of regulation and the fixed cost of moving to an unregulated area. Following Antràs
and Helpman (2004), I assume that firms are heterogenous in their productivity. Figure 1 de-
picts this situation graphically by plotting profits before and after regulation and under different
operating modes against a transformation of firm productivity, θ.
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Figure 1: FIRM PROFITS: OUTSOURCING VERSUS HOME-PRODUCTION
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The dotted line depicts the profit under home-production and in the absence of environmental
regulation. The straight line running parallel to it shows the profits under outsourcing. The
difference between them reflects the larger fixed cost under outsourcing ( fO > fH). After regu-
lation, profits under home-production shift down. The most productive firms (θ > θ̃) engage in
large-scale production such that the variable cost savings potential of an unregulated plant easily
outweighs the fixed cost. The contrary is true for firms with productivity below θ̂. Unable to
relocate, regulation forces these firms to shut-down their operations entirely. Firms at an interme-
diate level of productivity remain active in a regulated area. The interested reader is referred to
Appendix A.2 for further discussion of the model and a precise statement of which firms prefer
to move to an unregulated area.

3 Regulatory Background

3.1 Ozone Regulation under the Clean Air Act

The variation in the stringency of environmental regulation I exploit in this paper is provided by
the structure of the Clean Air Act (CAA). Title I of the landmark legislation stipulates rules for
the regulation of six criteria air pollutants (particulate matter (PM), ozone, sulfur dioxide, lead,
carbon monoxide and nitrogen dioxide (NOx)). According to the regularly updated National
Ambient Air Quality Standards (NAAQS), an area is regulated under the CAA for a pollutant if
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monitor readings in that area exceed the NAAQS thresholds. Counties where such violations are
detected are referred to as nonattainment counties and regulated accordingly. Counties can be
in nonattainment for several pollutants; the focus in this paper lies on the regulation of ground
level ozone and its effects on firm emissions of the ozone precursor volatile organic compounds
(VOC).

Regulation of ozone has become significantly more stringent since the original passing of the CAA
in 1970. Initially, counties were designated as nonattainment areas if the yearly maximum 1-hour
reading exceeded 0.12 parts per million (ppm) (EPA, 1997). Henderson (1996) demonstrates that
this strong focus on ozone peaks has mainly led to a narrowing of the empirical distribution
of ozone readings, without consistently lowering the mean or median of ozone pollution over
longer stretches. Since 2004, ozone regulation is determined based on rolling 3-year averages of
the fourth highest 8-hour county-level monitor reading. The switch from an 1-hour to an 8-hour
rule represents a significant tightening of regulation since, under the old rule, factories merely
needed to monitor emissions peaks, while still being able to emit relatively high levels on a con-
sistent basis. The EPA also tightened standards along a second margin by lowering the threshold
from 0.12 ppm to 0.08 ppm. The update to ozone standards was decided on in 1997, but imple-
mentation could only start in 2001 following the Supreme Court’s ruling in Whitman v. American
Trucking Associations ruling in favor of the EPA having the legal authority to follow up on the
proposed change (see Mills (2002) for legal background).

Violation of federal ozone standards remained widespread after the Amendments to the CAA
passed in 1990. In total, 520 counties were subject to CAA regulations between 1992 and 2014. To
illustrate how counties are designated as nonattainment areas, Figure 2 plots the average monitor
reading for the 207 counties that were newly regulated in 2004 over time. This large expansion
of the CAA follows the previously described tightening of ozone standards. The straight line
(“NA-Counties”) shows that in the years before 2004, ozone levels always exceed this threshold.
As a consequence of sustained violations of the 8-hour rule based standard, 207 counties were
designated nonattainment areas in 2004. For comparison, the dotted line depicts yearly average
monitor readings for counties that were unregulated throughout the period from 1992 to 2015.
While pollution levels are significantly higher in about to be regulated counties prior to 2004, this
gap largely disappears by 2015. For two thirds of the newly regulated counties, the achieved
reductions in ozone levels lead them to regain attainment status by 2015. Even for the counties
that remain regulated, average monitor readings in 2015 have dropped below 0.07 ppm.4

Compared to market based initiatives, such as cap-and-trade programs, the implementation of
the regulation more closely resembles a command-and-control regime. Together with the EPA,
state authorities develop State Implementations Plans (SIPs) that spell out how the nonattainment
areas within the state can effectively reduce pollution levels to bring the violating areas back into
attainment. The process leaves some discretion to local regulators over the types of abatement

4Based on independent calculation. Counties remain in regulation due to subsequent tightenings implemented
under President Obama.
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Figure 2: OZONE LEVELS IN REGULATED AND UNREGULATED COUNTIES

Notes: The figure plots the average of the 4th highest 8-hour reading of ozone across two sets
of counties. NA-Counties refers to the group of 207 counties that were in attainment in 2003
and are reclassified to nonattainment in 2004. A-Counties are in attainment throughout the
period.

procedures plants in their area have to adopt. While details of implementation are developed
with regard to its cost to industry (Gibson, forthcoming), the NAAQS determining nonattainment
in the first place are not to be revised with reference to the economic cost of regulation (Mills,
2002).

Ozone, not directly emitted by industrial facilities, is the result of ozone precursors VOC and NOx

reacting in the presence of sunlight and heat (EPA, 2014). To understand the effect of ozone reg-
ulation on environmental outcomes at the plant-level, I take advantage of detailed panel data on
VOC emissions. Cost constraints often lead to regulatory strategies intricately linked to patterns
of concentrations of a given pollutant within nonattainment counties (Auffhammer, Bento, and
Lowe, 2009; Gibson, forthcoming). As in previous research on ozone regulation, I assume that
cost-effective regulation is focused on major emitters within a county (Becker and Henderson,
2000; Greenstone, 2002). Likely reasons for why regulation takes this pattern are discussed in
Appendix B.1.
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4 Empirical Framework

4.1 Data Construction

Plant-Level Data.— To measure emissions at the plant-level, I obtain publicly available Toxic Re-
lease Inventory (TRI) datafiles from 1987-2014. These include detailed information on the chemi-
cals emitted by large industrial plants. According to the EPA, reporting is mandatory for plants i)
in any of the 6-digit NAICS industries targeted by the EPA under the TRI programme ii) employ-
ing more than ten full time employees and iii) manufacture/process 25,000 pounds or otherwise
use more than 10,000 pounds of any of the 600 chemicals covered by the TRI.5 I use a classification
by EPA (2013) that details which of these chemicals is classifiable as VOC and regulated under the
CAA.6 This gives me a panel dataset on plant-level VOC emissions. Plants enter and exit the TRI
database over the course of the sample frame. To study the impact of regulation on the extensive
margin, i.e. on plant entry and exit behavior, I balance the panel by creating the following dummy
variable: In plant-years where the plant is listed in the TRI the dummy takes the value one and
zero otherwise.

Both the emissions variable and the dummy variable indicating a plant’s operating status could
suffer from measurement issues.7 TRI emissions have been shown to contain measurement error
(de Marchi and Hamilton, 2006). Gibson (forthcoming) finds that reported emissions correlate
strongly with those listed in the National Emissions Inventory (NEI) dataset. Checks on accuracy
are more stringent in the construction of the NEI, implying that TRI reported emissions are sub-
stantially related to an accurate measure of emissions. Self-reporting can also bias the estimated
effects of regulations if plants aim to please regulators by reporting lower emissions. Emissions
decreases following regulation may thus be spurious. While difficult to disprove conclusively, I
will closely examine the dynamics of direct treatment and spillover effects. If they go in opposite
direction and coincide in timing, this should be interpreted as evidence against strategic reporting
at regulated plants. Leakage is unlikely to arise from reporting lower emissions in an attempt to
please regulators.

Inferring entry and exit behavior using the TRI data creates related measurement issues. Plants
may have been in operation before they are listed in the TRI because they only satisfy the size
requirements above which reporting becomes mandatory after several years in operation. Exits

5Due to reporting changes in 1990-91, leading to extreme spikes in reported emissions levels, I exclude observa-
tions from years prior to 1992. I further limit my analysis to the set of chemicals listed in the TRI data in the first
year of my sample. The list of covered chemicals has expanded considerably since 1992. Excluding these chemicals
ensures not confounding any estimated effects with changes in reporting requirements. In addition, TRI reporting
became mandatory for a number of additional industries in 1998. All results are robust to only focusing on the
industries already covered in 1992.

6Only some VOC chemicals contribute to ozone levels and are regulated accordingly. An alternative classification
is developed by Greenstone (2003). All results reported in this paper are robust to using this alternative concordance.
I thank Michael Greenstone for sharing his concordance.

7Both criticisms are for instance articulated in Currie et al. (2015). For applications using TRI derived measures of
plant openings and closings see Banzhaf and Walsh (2008) and Levine, Lin, and Wang (2018a).
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from the TRI dataset can similarly reflect reductions in plant size. The plant opening may also pre-
cede entry into the TRI dataset if plants do not immediately comply with reporting requirements.
The latter is certainly possible, especially in less closely monitored attainment counties. The
empirical analysis nevertheless proceeds under the assumption that entry and exit into the TRI
dataset over the course of the sample frame is informative about either plant openings/closings
or plants crossing a size threshold. Within each year, I winsorize non-binary dependent variables
(emissions and counts of operating plants) at the 2.5th and 97.5th percentile of their empirical
distribution to account for outliers.8

Match to Compustat and Construction of Internal Firm Network.— Previous research suggests
that regulation of ozone is mostly focused on larger plants part of multiplant firms (Becker and
Henderson, 2000). Thus, I hypothesize that the impact of regulation is more significant for pub-
licly traded firms than for smaller, privately owned ones. Appendix B.2 contains a discussion to
what extent this limits the external validity of my leakage estimates. To establish which firms
are listed, I use a matching algorithm to link the plant-level data to Compustat. A main payoff
of the particular algorithm I employ is that it not only reveals which firms are listed, but also
helps establish a consistent and accurately drawn firm boundary. Otherwise, estimates may be
attenuated due to misclassification of plants as stand alone, when they are in fact leakage candi-
dates within a partially regulated conglomerate. The starting point is using the parent company
identifiers (DUNS codes) included in the TRI data to identify plants’ parent company. There are
several inconsistencies in this variable, essentially boiling down to plants within the same com-
pany (according to the company’s name included in the TRI data) listing what is likely to be an
establishment, and not firm-level DUNS code. Plants are recorded as belonging to the same firm if
either the identifier from the raw data links them together or they share the same parent company
name.

The link to Compustat is constructed in two steps. First, I use simple matching on parent company
names. Companies frequently change names, which is problematic given the limited reliability
of the firm-level DUNS codes. To address this issue, I use historical name information for pub-
licly listed companies from the COMPHIST file from CRSP/Compustat. The file contains current
and historical name information for the universe of publicly listed firms. Second, I aim to limit
the number of false negatives, i.e. firms that have a true match, but cannot be linked because
of spelling differences or because they are in fact subsidiaries of larger, listed companies. To this
end, I implement a web-based string matching algorithm pioneered by Autor et al. (forthcoming).
Their idea is to leverage the machine-learning capabilities of the search engine Bing.com in pro-
ducing similar search results for the same firm regardless of the use of acronyms or other name
changes. Using scraped URLs as well as those provided for a subset of Compustat firms, I use the
exact matching algorithm outlined in Autor et al. (forthcoming). Beyond increasing the sample
of matched firms, matching on URLs leads to a considerable number of plants being assigned
to the same company that were previously recorded as being part of different parent companies.

8Results are robust to using other thresholds or not winsorizing the data.
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Inspection of these duplicate matches revealed that the algorithm accurately detects which firms
are in fact subsidiaries of larger corporations. Web-based matching also proves to be reliable in
that it detects essentially no outright false positives.9

The link to Compustat further allows me to add in firm observables, such as productivity and
financial constraints. These allow me to test through which channels leakage operates. Table 1
presents correlations between the firm-level variables used in the analysis below. Consistent with
prior research, pollution intensive firms, i.e. those with higher (log) levels of emissions over sales,
are less productive and more financially constrained (Levine, Lin, Wang, and Xie, 2018b; Shapiro
and Walker, 2018). These correlations are relatively small, however.

The data on county-level nonattainment status comes from the EPA Greenbook. Further variables,
their sources and methods used in their construction are discussed as they are brought into the
analysis.

4.2 Research Design

4.2.1 Estimating Equations

Effects of Air Regulation on Regulated Plants.— To set the stage for the estimation of within-firm
leakage, I study whether nonattainment designation for ozone leads plants to decrease their air
emissions of VOC. Since ozone regulation varies across counties and, importantly, within counties
across years, a natural way of identifying these effects is to exploit these within-county changes
using a difference-in-differences research design.

Consistent with prior literature, I assume that regulators only target plants in heavily polluting
industries. I follow Greenstone et al. (2012) and classify plants in the industries ”Petroleum refin-
ing”, ”Pulp and Paper”, ”Organic chemicals”, ”Rubber and miscellaneous plastic products” and
”Stone, clay, glass, and concrete” as those likely to be targeted by ozone regulations.10 About one
fifth of the plants in my sample are classified as dirty using this classification. Combining within
county changes in nonattainment designations with across industry variation in emissions inten-
sity to determine the effects of environmental regulation leads to the triple difference estimator
popularized by Greenstone (2002):

Dijct = δi + δt + β1NAAct−1 + β2NAAct−1 × Dirtyj + εijct. (1)

9One complication that did arise among the subset of non-unique matches was the issue of spin-offs and merg-
ers. For each non-unique match, i.e. for each non-unique link from DUNS code to Compustat identifier gvkey, I
checked the Wikipedia page of the companies involved to look for potential M&A activity. The final matches account
for mergers and spin-offs in that these firms carry time-varying parent company identifiers reflecting the timing of
acquisitions.

10See Table 1 in Greenstone et al. (2012). In robustness checks, I use the more expansive set of industries used
in Greenstone (2002). Greenstone et al. (2012) find particularly disruptive effects of ozone nonattainment using this
classification. It is therefore adopted to maximize the potential to detect regulatory effects.
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The dependent variable, Dijct, is the log of total onsite air emissions of VOC chemicals of plant i in
industry j, located in county c, in year t. NAAct takes the value one in years a county is part of a
nonattainment area and zero otherwise, while Dirtyj is an indicator for whether the plant belongs
to one of the aforementioned dirty industries. Since nonattainment designations are published in
July of year t, I lag this variable by one period. δi and δt are plant and year fixed effects. In
this simple fixed effects set-up, β1 is identified from within plant changes in air emissions taking
place when the county the plant is located in transitions in and out of attainment. β2 adds a third
difference, by further considering differences in this quantity across plants in industries either
classified as dirty or clean according to the criterion by Greenstone et al. (2012). Standard errors
are clustered at the county-level to adjust for correlation in the residuals within plants in the same
county and for autocorrelation between periods.11

Intrafirm Leakage Effects.— To test the intensive margin of within-firm leakage I estimate the
following difference-in-differences specification for (log) air emissions.12

Di f jt = δt + δi + β1other treated f jt + εi f jt. (2)

The dependent variable and fixed effects are defined as in equation (1). other treated f jt is a
dummy equal to one for plants part of a firm f that is exposed to environmental regulation at
one of its other plants in year t in the same 5-digit NAICS industry j. Leakage candidates are thus
required to be within the same firm-segment f j as the regulated plant. A positive coefficient β1

would reflect higher emissions among plants whose parent company operates a regulated plant
in the same industry.

I test for plant relocation effects by studying whether firms subject to environmental regulations
via the CAA at one of their plants are more likely to start up plants in unregulated counties. I
organize the panel as a plant-year dataset, listing all VOC-emitting plants that eventually locate
in attainment counties. The birth year of a plant is determined by its entry into the Toxic Release
Inventory (TRI). For years prior to its birth the plant is recorded as not in operation. Plant-year
observations where there are no active plants within the firm-segment are excluded. This is done
to avoid confounding the relocations of existing firm-segments with the segment’s entry decision.
Organizing the data in this way, I regress the plant’s operating status on the independent variable
used in equation (2).

Activei f jt = δt + δi + β1other treated f jt + εi f jt. (3)

The dependent variable Activei f jt is a dummy variable taking the value one in all years a plant
is listed in the TRI as an emitter of VOC and zero otherwise. A linear probability framework is

11Results are robust to alternative clustering schemes, such as two-way clustering at county and four-digit NAICS-
level, or clustering at the county-polluting industry-level (i.e. including two clusters per county).

12This specification for intrafirm spillovers closely matches those used by Giroud and Mueller (2015) and Gibson
(forthcoming).
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chosen since the inclusion of a large number of fixed effects leads to well known biases in non-
linear probability models such as the probit. The coefficient β1 indicates whether plants part of
firms regulated elsewhere have a higher probability to start operating/remain active. Results
thus not only reflect plant openings, but also the higher value partially regulated firms may place
on continued operation of unregulated plants. This is sensible here because firms operating a
regulated plant, on average, already own an unregulated plant. The firm can use such plants to
outsource particularly pollution intensive production steps only feasible under a lenient regula-
tory regime.

I impose the restriction on the estimation sample that leakage candidates are never subject to
regulation.13 Plants that are currently regulated or were regulated in the past are likely to present
poor leakage candidates given the monitoring they face. The criterion I use is stricter in that
it excludes plants that are eventually regulated. On the one hand, the pre-treatment years are
particular given possible expansions of the polluting sector in those years. Anticipation of future
regulation, a possibility given the legal back and forth that preceded the 2004 expansion of ozone
regulations, may produce a countervailing effect on plant emissions in pre-treatment years. To
circumvent these potential biases, I include these plants in my main specifications and test the
robustness of the results to using broader samples.

In essence, the models in equations (2) and (3) compare plants exposed to environmental regu-
lations through the internal firm network of their parent company to plants whose parent com-
pany is entirely unaffected by the regulation. The effect is identified from within-firm-segment
variation in the exposure to regulation. To correct for the correlation of standard errors across
plants in the same firm and industry, standard errors are double clustered at the firm and five
digit NAICS-level in both specifications (2) and (3). This mimics the recommendation of Abadie,
Athey, Imbens, and Wooldridge (2017) to cluster at the level of the treatment variable.14

Going beyond the plant-level, it is of additional interest estimate leakage of emissions at the
segment-level to for emissions increases in the form of extensive margin expansions. In contrast
to plant-level regressions, these can account for the fact that firms with many leakage candidates
may only target a subset of plants in their leakage activities. Aggregating yearly emissions across
unregulated and regulated plants to the segment-level, I can easily determine whether leakage
effects outweigh the direct effects of regulation for partially regulated firms, taking into account
both plant opening and closings.15 Analogously to the plant-level regressions, I use segment-level
emissions across all never regulated plants as the dependent variable in a specification otherwise
equivalent to (2).

Motivated by the fact that there is little variation in a dummy for presence in attainment counties

13Using the definition of regulation as i) belonging to one the Greenstone et al. (2012) dirty industries and ii) being
located in a nonattainment county according to the standard for ozone.

14Plausible alternatives are to two-way cluster at the county and firm-level or to cluster separately at the level of
the firm-segment. Results are robust alternative choices.

15The dependent variable is D f jt = ∑i Di f jt.
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given the large firms in my the sample, the extensive margin analogue of (3) asks: Do partially
regulated firms increase the number of plants they operate in unregulated areas in response to
being regulated? This is done via the following specification:

#Plants f jt = δ f j + δt + β1other treated f jt + ε f jt. (4)

#Plants f jt is a count of the number of plants a firm-segment operates that are not affected by CAA
regulation. I estimate (4) using both OLS as well as a fixed effects Poisson framework, adopted to
account for the use of a count variable as the dependent variable (Hausman, Hall, and Griliches,
1984). These segment-level specifications complement the plant-level in that the estimates allow
us draw conclusions about whether partial regulation reduces emissions at the firm level. The
more granular specifications (2) and (3) have the benefit of allowing me to control for a wider
range of confounders.

4.3 Internal Validity

Differences-in-Differences.— By including a varying set of fixed effects, I can account for a range
of omitted variables that could otherwise bias the estimates. I discuss the underlying rationale
and outstanding threats to identificiation. The plant fixed effects control for time-constant dif-
ferences across plants, such as persistent differences in input use or other level differences in
emissions, productivity or plant size. Greenstone et al. (2012) find that estimates of the impact
of regulation on plant-level outcomes are often of opposite sign without plant fixed effects, so
I include them throughout. The year dummies purge the estimates of common shocks to air
emissions from the dependent variable. These partly account for the secular clean-up of US man-
ufacturing documented in Shapiro and Walker (2018). Industry-year effects are used to derive
estimates from comparison to an equally pollution intensive set of control plants. At baseline, I
include separate year effects for each of the seven dirty industries identified by Greenstone et al.
(2012) as well as a set of year effects for the remaining clean industries.

Importantly, the plant-level specifications allow me to tightly control for the disparate effects of
various shocks on US counties. Over the sample period from 1992 to 2014, manufacturing in the
US has been affected by a series of disruptive shocks such as the phase-in of NAFTA, the rapid
increase of import competition from China or the shale-gas boom and a variety of environmental
regulations beyond those considered in this paper.16 The impact of these shocks displays enor-
mous spatial variation and determines how suitable a plant is as a leakage candidate as well as
its exposure to regulation. This is because regulation is a function of local pollution which in

16Cherniwchan (2017) (also focusing on a sample of TRI plants) and Autor, Dorn, and Hanson (2013) are examples
of the heterogenous effects of trade shocks across US regions, Feyrer, Mansur, and Sacerdote (2017) estimate the
highly localized and large effects of the shale-gas boom. Shapiro and Walker (2018) quantify the aggregate effects of
these many, locally overlapping environmental regulations on pollution levels.
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turn depends on the size of the manufacturing sector. By including county-year fixed effects I can
account for these confounders.

Idiosyncracies within the enforcement of the CAA across counties are a further potential source
of bias. Zou (2018) and Grainger, Schreiber, and Chang (2018) both show that, at a local level,
regulators often try to circumvent enforcement via strategic monitoring efforts. Such meddling
efforts are particularly problematic, if they are conducted with plants’ potential outcomes under
regulation in mind. Thus, county-year effects also control for the fact that there is substantial vari-
ation in the stringency of environmental laws across the US, far exceeding the variation created
by the CAA.

Common Trends.— While fixed effects credibly control for a number of omitted variables, other
confounding factors remain. Nonattainment is strongly influenced by past emissions in a county,
creating the possibility of selection into treatment. To evade treatment, regulated firms may have
also preemptively shifted production into counties unlikely to be affected by the CAA expan-
sion, biasing my leakage estimates. To examine possible selection and anticipation effects, I es-
timate the dynamics of plant emissions in the years prior to treatment. Differences in emissions
trends between treatment and control group prior to treatment further provide a useful diagnostic
whether these between group differences would have remained constant in the absence of treat-
ment, i.e. the common trends assumption. Panels (a), (b) and (c) in Figure 3 show that differences
in trends are small and statistically insignificant prior to the regulatory/leakage treatment. Over-
all, I interpret these results as providing support for the common trends assumption. Common
trends, however, remain an assumption of the research design since confounders, such as some
of the ones discussed, may still bias results if they closely covary with the onset of treatment.
The post-treatment dynamics also provide some preliminary support for the proposed hypothe-
sis: Leakage and emissions reductions occur simultaneously, indicating that firms aim to actively
shift emissions between plants as local factors change.17

Stable Unit Treatment Value.— A final set of concerns revolve around potential violations of the
stable unit treatment value assumption (SUTVA) (Rubin, 1980). SUTVA would be violated if treat-
ment indirectly affects the control group via within-firm spillovers as in this paper, or in the form
of reallocations to other firms in the economy. Along these lines, Hafstead and Williams (2018)
argue that difference-in-differences estimators of environmental regulation like mine are substan-
tially biased if resources are absorbed by unaffected firms in the economy. A relative decrease in
emissions among regulated plants may hence not reflect an absolute decrease but rather a shifting
of emissions between control and treatment group. Leakage estimates, on the other hand, may
be biased downwards if plants without regulated affiliates also increase emissions. In robust-
ness checks, I therefore estimate the direct effects of regulation on sub-samples excluding parts

17Borusyak and Jaravel (2017) point out that if the dynamic effects are heterogenous, as appears to be the case here,
the coefficient β1 in equations (1), (2) and (3) need not identify a convex combination of the individual effects βk for
k = 0, 1, ..., 5. In the presence of a large control group of never treated units, such as in the present setting, the bias
they describe plays a quantitatively small role, however.
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Figure 3: COMMON TRENDS

(a) Direct Effects (b) Leakage: Intensive Margin

(c) Leakage: Extensive Margin

Notes: The figure plots coefficients on indicators βk of years relative to the regulatory/leakage treatment obtained
from estimating Yict = δi + δct + ∑−1

k=−10 βk1{Kit = k}+ ∑5
k=0 βk1{Kit = k}+ α1{k > 5}+ εict, where δi and δct are

plant and county-year effects, respectively and α absorbs the long-run effects. Only coefficients within 5 years of the
the treatment dates are plotted. The dependent variable is the log of VOC air emissions ((a) and (b))/ the dummy
variable Activei f jt as defined in the text. Standard errors are clustered on the county (a)/ double-clustered on firm
and five-digit NAICS-level ((b) and (c)). ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01.

of the control group that may be most likely to benefit from the negative effects regulation has
on directly affected plants, such as plants within the same firm or geographically proximate com-
petitors of regulated firms. These results are briefly summarized in the subsequent section.

Summary Statistics.— Table B.1 presents descriptive statistics of the sample, by regulatory status
of the plant (firm). While treatment is more likely to affect larger and pollution intensive firms,
this is intuitive given that operating more plants increases the likelihood of being exposed to CAA
regulation. The size differences are not apparent when considering sales per plant. The higher
pollution intensity similarly follows from the industry based definition of treatment. The sample
appears balanced on covariates such as productivity or financial constraints, which is reassuring
as the incidence of the regulation should not disproportionately fall on firms that stand out in
these dimensions.
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5 Results

This section presents the main results of applying the estimation framework outlined in the previ-
ous section to the dataset. First, the main results for the triple difference or difference-in-difference
estimators of the regulatory effects and associated within-firm leakage effects are shown. Robust-
ness checks are presented at the end of this section

5.1 Triple Difference Estimates of Regulatory Effects

Table 2 shows the results of estimating the model in equation (1), with each column differing in
the set of included fixed effects. The coefficients for the effect of nonattainment indicate that clean
industries are unaffected by regulation. The negative and significant interaction effect shows that
dirty industries, on the other hand, react strongly to changes in regulation. Across columns, I
add industry-year, state-year and county-year effects to account for geographically isolated as
well as industry-level shocks. In column (4), for example, the effects of regulation are identified
from comparing outcomes for plants that experience a change in regulation, holding constant
their exposure to other county and industry-level shocks. The point estimates remain stable and
precisely estimated regardless of which combination of fixed effects is employed. Specification
(4), estimated using county and industry-year fixed effects, may in particular be taken as a sign
of robustness. This specification may, however, also be particularly vulnerable to spillovers to
the control group if resources are reallocated within the county. Effects are essentially identi-
fied by comparing plants in dirty and clean industries within the same county without any cross
county comparisons. Such specifications also considerably restrict the information used to iden-
tify the coefficient since the level of policy variation comes at the county industry-level. With
these caveats in mind, the robustness to the inclusion of county-year effects is encouraging in the
sense that results do not appear to be driven by time varying differences in enforcement or local
shocks which influence the probability of treatment.

In terms of magnitude, Table 2 suggests that ozone regulation reduces emissions of VOC by be-
tween 19% (3) and 24% (1).18 The effect is half as large as the effect of PM regulation estimated by
Gibson (forthcoming). The smaller effect of ozone regulation is perhaps to be expected given the
focus on a small set of plants in nonattainment counties under PM regulation.

I briefly discuss the results of some further sensitivity checks. First, I have checked whether re-
sults are robust to the inclusion of lags of the dependent variable. While there are no significant
pre-trends, these tests may be underpowered. If there were some undetected increases prior to
treatment, the negative triple difference estimate may reflect mean reverting dynamics (Green-
stone, 2002). All specifications are robust to the inclusion of one lag, and columns (1) and (2)
continue to be significantly different from zero in the presence of two lags. These results are

18Estimates derived using exponentiated coefficients.
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available upon request. It is also possible that the results are driven by leakage between and
within-firms, instead of (only) reflecting reductions at treated plants. Table B.2 shows that the ef-
fects of regulation are essentially equivalent within sub-samples more likely to satisfy the SUTVA.
Specifically, Panel A in Table B.2 presents estimates of the effects of ozone regulation on the sam-
ple of the 660 plants that are subject to regulation at some point between 1992-2014.19 Using only
plants eventually regulated, or regulated in the past, as the control group may limit the scope
of between-firm leakage given firms ability to anticipate regulation under the CAA. In Panel B,
I exclude all plants identified as within-firm leakage candidates, i.e. plants that are themselves
not treated, but within the same firm and industry as a treated plant. Effects in either sub-sample
are similar in terms of statistical precision and size as those reported in Table 2. It may seem sur-
prising that results are insensitive to excluding leakage candidates from the estimation sample.
This robustness likely stems from the fact that they are just one subset of a relatively large control
group. Thus, the leakage effects are averaged out within the large control group of unregulated
plants.

5.2 Leakage Effects: Intensive Margin

In Table 3, I test whether partially regulated firms shift emissions towards unregulated plants.
Plants are subject to the spillover treatment if the firm is regulated at a different plant in the same
five digit NAICS industry (firm-segment). The sample consists of plants that never receive the
regulatory treatment (defined as NAAct × Dirtyj = 1). I separately estimate the effect of having
at least one, exactly one or more than one plants regulated within the firm-segment. Applying the
model in equation (2) to this sample shows that within-firm leakage effects are small and insignif-
icant in specifications with only plant and year fixed effects (columns (1) and (4)). Once county-
year effects are accounted for (columns (2)-(3) and (5)-(6)), effects increase by factor of six and
are statistically significant (the standard error remains roughly constant). The coefficient becomes
slightly larger, but remains similar in magnitude once I additionally control for industry-year ef-
fects. These much larger effects, emerging from specifications that tightly control for changes in
local economic conditions, may indicate that shocks to US manufacturing co-determine plants’
attractiveness as leakage candidates. Another explanation is that many other changes to local
environmental regulations are uncontrolled for in column (1) and (4), biasing the effect down-
ward.20 Conceptually, models including county-year effects have an attractive interpretation.
Effects in those specifications are derived from comparing plants within the same county, but
who differ in their exposure to environmental regulation via the internal firm network of their

19Since all eventually regulated plants (NAAct × Dirty = 1 for some t) are in nonattainment counties, the effect
of nonattainment as well as well the county-year effects are not separately identified here. I have also estimated the
effects of the regulation within a sample of both dirty and clean plants located in eventual nonattainment counties.
In that case, both are identified and their inclusion makes essentially no difference.

20A prominent example of a policy change occurring simultaneously to the expansion of ozone regulation under
the CAA in 2004, is the NOx budget trading program, which had sizable impacts on the industrial sector, directly or
via increased energy prices (Curtis, 2018).
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parent company. This identification strategy is sensible here as the spillover treatment is firm-
segment specific, making such comparisons quite informative. In terms of magnitude, emissions
increase between and 28-30%, which is around three times the size of leakage effects found by
Gibson (forthcoming). Columns (5)-(6) show that leakage effects are larger, but similar, for firms
regulated at more than one plant.

In robustness checks, I have estimated models including firm-year effects, essentially comparing
plants within the same firm, but in segments that are differentially exposed to the regulation.
Similar to the inclusion of county-year effects in (1), this is highly restrictive, relying on within
multisegment firm comparisons. Including these fixed effects produces results similar in terms
of precision and size compared to the ones reported in Table 3, with the exception that large and
marginally significant effects obtain even in the absence of county-year effects. These results are
available upon request. In Table B.3, I present estimates derived from a slightly larger sample,
only excluding plants regulated in the past (Panel A) or currently regulated plants (Panel B).
Coefficients in Panel B imply around five percentage points smaller leakage effects, but estimates
in Table B.3 are otherwise similar to those in Table 3.

5.2.1 Leakage Effects: Intensive Margin - Mechanisms

I have proposed that leakage arises because output at different plants is equally suitable to sat-
isfy the demand facing the firm. To probe the extent to which my results are consistent with
this mechanism, I consider two simple extensions to validate this hypothesis and one alternative
explanation based on financial constraints.

Tradability.— The conceptual framework describes firms as using different plants interchange-
ably to meet their demand. Firms in non-tradable industries can only do so at high transportation
cost, making them less likely to engage in intrafirm leakage. To measure tradability, I employ
two indices, constructed following work by Giroud and Rauh (forthcoming) and Mian and Sufi
(2014). Both are based on the geographic distribution of four-digit NAICS industries within the
US. Roughly, they both capture the intuition that non-tradable industries will be geographically
dispersed to be able to reach consumers everywhere despite high transportation cost. Appendix
B.3 provides more details.

To investigate, how effects vary across industries, I sort the 110 four-digit NAICS industries into
four quartiles according to the respective tradability measure. Effects are estimated separately for
each quartile using the following model:

Dijt = δtj + δi + βk

4

∑
k=1

Qk × other treatedijt + εijt. (5)
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where δtj are previously defined industry-year effects.21 Since only plants in dirty industries are
subject to spillovers in the models previously estimated, the spillover candidates are not equally
distributed across quartiles. There is only a low number of observations in the highest quartile
of tradability (according to either measure). The few leakage candidates in the fourth quartile
are assigned to the third quartile. I additionally estimate models similar to (2), where I add an
interaction of the dummy variable other treated f jt with the continuous tradability indices.22

Table 4 presents the results of estimating both sets of models using the respective indices. Some
of the coefficients are only marginally significant or generally imprecisely estimated, especially
in specifications where the continuous tradability measures are used. Granting this uncertainty,
leakage effects for non-tradable (bottom quartile) industries are either negative or close to zero.
Columns (1) and (5) indicate that previous null results (e.g. in column (1) of Table 3) are driven by
offsetting effects across quartiles. Zero effects resulted from negative effects for bottom quartile
plants and positively estimated leakage effects for plants in tradable industries. The negative
effects in non-tradable industries, however, are neither significant nor robust to the inclusion of
my preferred set of fixed effects. I therefore interpret these results as providing evidence of zero
leakage in non-tradable industries.

The differences in effect size across quartiles are sensible given the ranking of industries. Plants in
the lowest quartile belong to industries such as concrete or petroleum, whereas the third quartile
is comprised of industries like pharmaceutical manufacturing or synthetic rubber. High transport
costs in the former set of industries makes it unprofitable for firms to substitute across plants in
order to meet their demand. A simple F-test of the null hypothesis of equal effects for the bottom
and top quartile does not, however, consistently reject the null hypothesis of equal effects (the p-
values are reported in the Table). Table 4 nevertheless paints a relatively consistent picture. There
is no leakage in non-tradable industries, while plants in tradable industries increase emissions if
their parent company is regulated.

Different Industries.— Second, I estimate the leakage effects by defining the spillover treatment
at the firm and not the firm-segment-level. If interrelated demand is in fact the driving mech-
anism, leakage effects should be small or zero if plants produce different goods. I test this hy-
pothesis in Table B.4. The specifications used are otherwise equivalent to those presented Table
3. The estimated effects are close to zero across columns (1)-(6). Together, results in Tables 4 and
B.4, corroborate the idea that demand interdependencies are a prerequisite for leakage effects to
arise. These appear to be absent across plants in different industries and for plants in tradable
industries. That leakage effects vary along these dimensions also highlights the importance of

21Replacing these with four-digit NAICS year dummies to identify the triple difference effect within industries
that are equally tradable has little to no effect on the results. I therefore report estimates using the coarser industry
classification, as specifications using county and industry-year effects become very demanding otherwise.

22The model in equation (5) has two advantages over those using more standard continuous interaction terms
(Hainmueller, Mummolo, and Xu, forthcoming): For one, it does not restrict the effects to be linear across industries.
Second, it is less susceptible to measurement error as it only exploits a limited amount of ordinal information to rank
industries.
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estimating leakage affects within firm-segments.

Financial Constraints.— Financial constraints are an alternative explanation for these results. In
a recent set of papers, Giroud and Mueller (2015, forthcoming) show that financial constraints
can act as a powerful propagator of shocks within internal firm networks. In their theory, only
resource constrained firms, not able to finance the desired, first best allocation at each of their
plants, distribute the effects of local shocks across establishments. Plants part of financially un-
constrained firms do not absorb the resources set free by the shock since they are already at the
first best allocation. This is a different explanation for within-firm spillovers.

To consider the role of financial constraints, Table B.5 shows estimates conceptually similar to the
ones in Table 4. Columns (1)-(4) display estimates using the Hoberg and Maksimovic (2014) mea-
sure, while columns (5)-(8) re-estimate those same specifications using the Kaplan and Zingales
(1997) index. They suggest that - if anything - effects are larger and more precisely estimated for
firms in the lower quartiles of the text-based index. Results derived from specifications using the
KZ index are slightly different, in that financial constraints do not appear to affect the intensity of
leakage effects in either direction. Taken together, the estimates in Tables 4, B.4 and B.5 support
the demand based mechanism for within-firm leakage.

5.3 Leakage Effects: Extensive Margin

Table 5 reports the results from estimating (3). The explanatory variable is not lagged in this case
to account for the immediate response on the extensive margin observed in Figure 3. Recall that
the dependent variable is one in years a plant is in operation and zero otherwise, with years where
a firm-segment is not active anywhere excluded from the estimation. Estimated coefficients across
columns (1)-(3) are small and statistically indistinguishable from zero. This contrast somewhat
with the event study specification shown in Panel c) of Figure 3, which showed some significant
post treatment dynamics. The identifying variation is, however, somewhat different here in that
i) both moves in and out of treatment are used to estimate the effects ii) effects are identified rela-
tive to all periods where the plant is not treated and not to a particular pre-treatment year. Results
for using the binned treatment variables in columns (4)-(6) show larger and significant effects on
the probability of operating a unregulated plant for firms regulated at more than one plant. This
result is broadly consistent with the idea that the fixed cost of relocation is worth paying only for
firms particularly affected by the regulation. This is shown analytically in Appendix A.2. Esti-
mates indicate that exposure to more than one regulated plant through the internal firm network
increases the probability of a plant going into or remaining in operation by 8-10 percentage points.
In contrast to the results on the intensive margin, results are generally insensitive to the inclusion
of county or industry-year effects.
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5.3.1 Leakage Effects: Extensive Margin - Mechanism

Productivity.— Figure 1 shows that high productivity firms benefit most from the cost saving
potential of an unregulated plant. To test this hypothesis, I use the Compustat data to estimate
total factor productivity (TFP) by regressing (log) real sales on firm and year fixed effects, (log)
real capital and the (log) number of employees:23

ln(yit) = δt + µi + β1ln(empit) + β2ln(kit) + εit. (6)

Since the focus is on estimating time constant differences between-firms, the objects of interests
are the firm fixed effects µi. To estimate equation (6), I use data from 1980-2016 since µi is asymp-
totically consistent only for large T. The estimated firm fixed effects are then demeaned by sub-
tracting the three-digit SIC industry average. This removes variation in the fixed effect due to
differences in factor use across industries. These demeaned estimates of µi are sorted into four
quartiles.

In Table 6, I present estimates where I either separately estimate effects for each TFP quartile
(columns (1)-(3)) or use the TFP measure as a continuous interacting variable (columns (4)-(6)).
Across columns, I include a successively more stringent set of fixed effects. The effects for firms in
the highest TFP quartile are indeed positive, large and precisely estimated. Results consistently
reject the hypothesis that results are equal for the least and most productive firms. Specifications
using the continuous TFP variable confirm this, with the coefficient on the interaction being pos-
itive and significantly estimated across columns (4)-(6). For firms low in productivity, effects are
either insignificant or estimated to be significantly negative.

To probe the robustness of these results, I include firm-year effects in columns (3) and (6). Effects
are thus identified by comparing segments within the same firm that are differentially exposed
to environmental regulation. By restricting the estimates to be derived within the firm, I mitigate
concerns that high productivity firms may generally exhibit differential entry and exit dynam-
ics. Effects continue to be positive and precisely estimated for firms in the highest productivity
quartile.

5.4 Leakage Effects: Firm-Level

To test for leakage at the firm-level, I aggregate the emissions across plants within the same
firm-segment and year. Columns (1) and (2) of Table 7 show estimates of regulatory effects on
emissions stemming from never regulated plants. Both are derived from models including firm-

23The method of estimating productivity is taken from Fromenteau, Schymik, and Tscheke (forthcoming). I follow
their approach to construct the capital stock and use the same deflators.
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segment and industry-year fixed effects.24 In column (1), the explanatory variable is a dummy for
whether the segment is exposed the environmental regulation at one of its plants. Effects are small
and not significantly different from zero. This is in line with the results on the intensive margin,
which were derived from specifications accounting for county-year effects. Once a binned count
of plants is used as the explanatory variable, as in column (2), the effects of having more than one
plant regulated is positive and significant. Leakage to unregulated plants thus also obtains on the
segment-level, even without controlling for local shocks.

The results so far have shown that there are reductions in emissions at regulated plants and leak-
age to unregulated plants. What do these countervailing effects amount to? In columns (3) and
(4), I approach this question by aggregating emissions across all plants, regulated and unregu-
lated, and re-estimate the models in columns (1) and (2). Estimates in column (3) indicate that on
average, firms exposed to CAA regulations of ozone have not decreased their emissions. Column
(4) shows that firm-segments that were regulated at more than one of their plants have in fact
increased their total emissions. Sensibly, the estimates in column (4) are lower than in column
(2) as positive leakage effects are partially offset by the direct, negative effects of regulation. The
implication is that firms that are particularly strongly affected by the regulation increase their
emissions at unregulated plants even more.

Two factors might be responsible for these disproportionate leakage effects for firm-segments
with two or more regulated plants. First, segments with many regulated plants also tend to
operate many plants that are suitable leakage candidates because they are large in general. The
regulation-induced decreases at the treated plants are thus associated with increases in emissions
across a large number of plants. More importantly, however, strong exposure to regulation is
associated with extensive margin expansions in unregulated areas, as shown in Table 5 (see below
for further evidence). These shifts are factored in when estimating leakage at the segment level,
but are not considered when estimation is conducted at the plant-level. A back-of-the-envelope
calculation based on the plant-level estimates of direct and leakage efects also implies an increase
in emissions at the segment-level.25

In columns (5)-(8), I estimate the extensive margin of leakage at the firm-segment-level. To do so, I
use the count of plants never subject to regulation as the dependent variable. The count takes the
value zero in years where the segment does not yet operate an unregulated plant. Analogously to

24The industry with the highest number of plant-year observations within a firm-segment is used as that segment’s
industry for the purposes of constructing industry-year effects.

25 Consider the following back-of-the-envelope calculation (Gibson, forthcoming): The average, partially regulated
firm-segment operates about 1.4 regulated plants and 1.6 unregulated plants. Pre (spillover)-treatment emissions are
similar across either set of plants (171,060 pounds (leakage plant) vs. 158,681 pounds (regulated) plants. (Exponenti-
ated) coefficients in column (4) of Table 2 and column (3) of Table 3 imply spillover and treatment effects of 30% and
-21% respectively. On net, leakage effects are:

1.6× 171, 060× 0.3︸ ︷︷ ︸
Spillover

− 1.4× 158, 681× 0.21︸ ︷︷ ︸
Treatment

≈ 35, 000
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the estimation of extensive margin effects at the plant-level, I exclude firm-segment-years where
the segment has no active TRI plants anywhere in the country. To estimate the model specified
in equation (4), I employ either Poisson or standard OLS regression frameworks. For the Poisson
regressions, the segment’s industry is either dirty or clean, to limit the number of industry-year
fixed effects to be estimated. Standard errors for the Poisson regressions are adjusted for overdis-
persion.

Estimates using both the binary spillover dummy as well as the dummies for the binned counts
suggest that partial regulation leads segments to expand into unregulated areas. The effects are
sizable and statistically significant. The coefficient in column (5), for example, implies that the
number of never regulated plants increases by 8%. For firm-segments that are observed before
they are regulated at one of their plants, the pre-treatment mean of the dependent variable is
1.96. The coefficient thus implies an increase of 0.15 establishments. The coefficient in column
(7), where I estimate the same specification using OLS, implies roughly the same magnitude. The
extensive margin effects are about twice as large for segments that are regulated at more than one
of their establishments, potentially explaining the large leakage rates among this set of firms.

5.5 Extensions and Robustness

In this section, I briefly discuss additional results as well robustness checks reported in the Ap-
pendix.

Plant Exit.— In Table B.6, I test whether plants exposed to environmental regulation are more
likely to exit. To do so, I define a dummy variable that takes the value one in the last year the
plant is observed in the TRI and zero otherwise. The last year of the sample is excluded as mea-
suring exits requires knowledge of plant’s operating status in the future. Years before the plant
enters are similarly excluded. In columns (1)-(3), this dependent variable is employed in a speci-
fication otherwise equivalent to (1). Column (1) implies about a 2 percentage point increase in the
likelihood of exiting. Effects are not robust to controlling for more granular local and industry-
year shocks (columns (2)-(3)). In columns (4)-(6), I test whether the least productive firms are
most likely to exit in response to the cost-shock - as implied by the heterogenous firm model pre-
sented in the appendix. Consistent with the theory, column (4) shows that regulation increases
the likelihood of exit by around 6 percentage points for plants whose parent company is below
the median in productivity, with no effect on more productive firms. Column (5), controlling
controlling for state and industry shocks, confirms this pattern, with negative, insignificant esti-
mates for the most productive firms. The exit effects are no longer apparent and even negative
(marginally significant) for the latter set of firms if I control for county-year effects in column (6).
Given that these results only obtain in a specification that severely restricts the information in the
independent variable, I refrain from interpreting the negative effects on more productive firms
and take columns (4) and (5) as providing a reasonable empirical case that plants within the least
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productive firms exit. A prediction that is clearly not borne out by the data is that the most pro-
ductive firms open new plants and shut down regulated plants. Rather, low productivity firms
exit at regulated plants, and high productivity firms expand.

Broader Treatment Definition.— To test the robustness of my results to using a more expansive
definition of polluting industries, I expand this set so that it includes other less polluting sectors
as in Greenstone (2002). Many more plants are potentially the target of regulations using this
classification. In Table B.7, I re-estimate the direct effects of regulation as in equation (1) using
this alternative definition of Dirty Industry to determine a plant’s regulatory status. Results in
columns (1)-(2), show that the regulatory effects are attenuated compared to those found in Table
2, but remain statistically significant. In columns (3)-(4), I drop all plants at the intersection of
the classifications by Greenstone (2002) and Greenstone et al. (2012). Thus, I separately estimate
treatment effects for marginal industries. The effect of county nonattainment status is essentially
zero for the plants in these relatively less polluting industries.

In Table B.8, I re-estimate the intensive and extensive margin of leakage at the plant-level using
the models in equation (2) and (3), but with spillover dummy variables adjusted to reflect the
wider definition of treatment. On the intensive margin (columns (1)-(3)), this produces similar
but slightly larger leakage rates than in Table 3. Coefficients still double in size once county-year
effects are included, but are marginally significant without. While these plants do not appear to be
affected in terms of their emissions patterns, they appear to have nevertheless shifted emissions
out of regulated counties. Results on the extensive margin are very similar to those in Table 5 and
merit no further discussion.

Public and Private Firms.— In the main analysis, I have focused on plants belonging to large
publicly traded companies. Public firms are larger than private firms, and should therefore corre-
spond more closely to the set of ”corporate” plants most affected by ozone regulation (Becker and
Henderson, 2000).26 To test this hypothesis, I re-estimate the regulatory effects first on the sample
of publicly and privately owned plants as well as on the subset of plants owned by private compa-
nies. Table B.9 displays the results. Regulatory effects are attenuated and vary in significance for
the whole sample. Columns (3)-(4) show that ozone regulation had no effects within the sample
of privately owned plants, consistent with the argument in Becker and Henderson (2000).

Regarding leakage effects for the whole sample, intensive margin estimates, reported in Table
B.10, are attenuated in size and statistically insignificant. Including the smaller set of private
plants unaffected by the regulation attenuates intensive margin leakage estimates since these
plants face little incentive to engage in pollution shifting activities in the first place. Extensive
margin results are similar to the public firm sample.

General Equilibrium Effects.— A salient concern for the identification of treatment and spillover

26Consistent with these hypothesized differences in size, plants part of publicly listed firms emit roughly 45 %
more VOC emissions than their privately listed counterparts. Emissions likely understate the differences in size
since smaller facilities are often particularly pollution intensive (Becker and Henderson, 2000).
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effects are emissions increases within the control group. If between-firm spillovers are large, as
argued by Hafstead and Williams (2018), regulatory effects are biased upwards and spillover
effects downwards. Unregulated plants located in close vicinity to regulated plants may be par-
ticularly likely to benefit from regulation of their competitors. This idea is related to Gibson
(forthcoming)’s test for between firm spillovers. To test this hypothesis, I use a sample of plants
in attainment counties and regress (log) emissions of plant i on the number of regulated plants
within 100, 200 or 500 km of plant i as well as plant and year fixed effects. Results are shown in
columns (1)-(3). While there are some statistically significant spillover effects at greater distances,
the effect size is economically small. In column (2), for example, a one standard deviation increase
in the explanatory variable means 9.3 more regulated plants within 200 km. The coefficient thus
implies a modest increase in emissions of about 0.9% per 10 additional regulated plants within
200 km. Effects are small and indistinguishable from zero if I employ counts of regulated plants in
the same five-digit NAICS industry as the explanatory variable (columns (4)-(6)). I conclude that
between-firm leakage effects, at a local level, are quantitatively small or insignificant, providing
some tentative support for the identifying assumption of no direct effects on the control group.
Since general equilibrium effects are difficult to pin down in reduced form analysis, results do not
imply no reallocation of activity to the control group.

Heterogeneity in Regulatory Effects.— A point not considered so far is heterogeneity in the
strength of direct regulatory effects. Larger spillover effects along any of the dimensions consid-
ered in this study may simply be the flip side to higher intensity of treatment at the regulated
plants. If so, interpreting this heterogeneity through the lens of my theoretical framework would
be misleading. In Table B.12, I estimate models similar to specification (5) for the four main inter-
acting variables used for the intensive and extensive margin estimates. The models include plant
and county-year fixed effects. Effects are essentially equivalent using other fixed effect schemes.
While effects vary between quartiles in some cases, I cannot reject the hypothesis that effects are
equal for plants in the top and bottom quartile.

6 Discussion

These results call for a potential reassessment of both the benefit and cost to industry of ozone reg-
ulation as well as its contribution to emissions reductions achieved by US manufacturing (Levin-
son, 2009). Taking a quantitative approach, Shapiro and Walker (2018) identify stringent environ-
mental regulation as the main driver of this clean-up. My reduced form estimates, by contrast,
suggest that ozone regulations under the CAA may not have facilitated these reductions.

The benefits of the CAA are thought to arise from improved health outcomes by way of decreased
population exposure to air pollution. Ozone pollution has significant mortality cost in the short
and long-run (Bell et al., 2004; Di et al., 2017) as well as detrimental effects on worker productivity
(Graff Zivin and Neidell, 2012). VOC chemicals, the ozone precursors studied in this paper, are
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known carcinogens (Villeneuve et al., 2013; Zhao et al., 2004) and adversely affect infant health
outcomes (Agarwal, Banternghansa, and Bui, 2010; Currie and Schmieder, 2009).27 As a result,
decreasing VOC emissions became an independent priority under the 1990 Amendments to the
CAA (Portney, 1990).28 Whether the CAA, by shifting the incidence of VOC pollution from more
to less polluted counties rather than reducing its level in the aggregate, has improved health
outcomes depends on whether reductions in polluted areas are more significant than increases in
less affected ones. The dose-response relationship between pollution and health outcomes in the
aforementioned studies is found to be linear, implying that merely shifting emissions does not
improve health outcomes.

An important caveat is that one cannot easily determine how regulation-induced changes in VOC
emissions affect ozone levels. While I have focused on VOC chemicals which the EPA considers to
be major contributors to ozone levels, other environmental factors co-determine how much VOC
emissions contribute to ozone levels. VOC emissions are, however, direct threats to human health,
such that leakage of VOC offsets at least some of the benefits of ozone regulation. The welfare
losses associated with extensive margin relocations are more straightforward: Currie et al. (2015)
show that the presence of a TRI plant increases the probability of low birth weight by 3 percent
within 1 mile of the plant and lowers housing values by 11% within 0.5 miles. The expansions
into unregulated areas documented here thus have significant negative impacts on health and
wealth outcomes.

On the cost side, an evaluation of the CAA that ignores intrafirm leakage may overstate the na-
tional loss caused by the policy. If regulation-induced changes in emissions are symmetrically
accompanied by corresponding changes in employment, these negative economic effects of the
CAA may be smaller than the direct effects documented in previous literature (e.g. Becker and
Henderson (2000); Greenstone et al. (2012)). The results on firm-level expansions into unregulated
areas provide some direct evidence that the relocations are not just in terms of emissions, but also
come in the form of tangible economic activity. It is significant that this reallocation takes place
at the firm-level where adjustment processes are plausibly less frictional than between firms or
industries. As a counterpoint, Becker and Henderson (2000) argue that reallocation of economic
activity within the US may lead to ”spatial distortions”. If these distortions are large, the ag-
gregate cost of ozone regulation may not be substantially lower when factoring in intensive and
extensive margin leakage effects.

27Compared to the long literature on the health effects of criteria air pollutants, the health effects of toxic pollutants
like VOC are less well understood (Currie et al., 2015).

28The increased focus was reflected in the creation of Title III, specifying a list 189 particularly toxic chemicals,
many of which can be classified as VOCs.
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7 Conclusion

I have analyzed whether firms’ internal network is an important margin of adjustment to piece-
meal environmental regulation. The empirical results, based on a newly assembled dataset, show
that firms both rely on existing unregulated plants as well as the creation of new ones to offset
the direct effects of regulation. Strikingly, these leakage effects fully offset the direct effects on
regulated plants. By themselves, these results imply that expanded ozone regulation under the
CAA has not contributed to the clean-up of US manufacturing, in contrast with results by Shapiro
and Walker (2018). By testing for heterogeneous effects, these results are revealed to be consistent
with a simple framework of multiplant production.

Notably, these effects were identified by differencing out possible general equilibrium adjust-
ments across firms, sectors and regions. At a local level, these effects appear insignificant in that
unregulated plants in proximity to regulated regions do not take up market share. A fuller in-
vestigation of these adjustments across labor markets and industries may well reveal even larger
reallocative effects of piecemeal regulation.

Future research could further quantify the implications of (intrafirm) leakage of economic activity
(plants) as well as emissions for cost-benefit evaluations of ozone regulation. First, it is important
to investigate whether emissions spillover are accompanied by increases in employment at un-
regulated plants. Given the large leakage rates documented in this study, it would be important
to better understand how much this leakage of VOC emissions erodes the health benefits of ozone
regulation. Progress could be made by disaggregating the VOC chemicals by their contribution
to ozone levels, as in Auffhammer and Kellogg (2011). Finally, it would be a valuable exercise to
exploit the CAA-induced reductions of VOC emissions to determine the direct health effects of
toxic pollution. Such quasi-experimental evidence is so far missing from the literature.

28



References

Abadie, Alberto, Susan Athey, Guido W. Imbens, and Jeffrey Wooldridge (2017). When Should
You Adjust Standard Errors for Clustering? NBER Working Papers 24003, National Bureau
of Economic Research, Inc

Agarwal, Nikhil, Chanont Banternghansa, and Linda T.M. Bui (2010). Toxic exposure in Amer-
ica: Estimating fetal and infant health outcomes from 14 years of TRI reporting. Journal of
Health Economics 29(4), pp. 557–574
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Colmer, Jonathan, Ralf Martin, Mirabelle Muûls, and Ulrich J. Wagner (2018). Emissions Trad-

ing, Firm Behavior, and the Environment: Evidence from French Manufacturing Firms.
Working Paper

Currie, Janet, Lucas Davis, Michael Greenstone, and Reed Walker (2015). Environmental health
risks and housing values: evidence from 1,600 toxic plant openings and closings. American
Economic Review 105(2), pp. 678–709

Currie, Janet and Johannes F. Schmieder (2009). Fetal Exposures to Toxic Releases and Infant
health. American Economic Review 99(2), pp. 177–83

Curtis, E. Mark (2018). Who Loses under Cap-and-Trade Programs? The Labor Market Effects of
the NOx Budget Trading Program. The Review of Economics and Statistics 100(1), pp. 151–166

de Marchi, Scott and James T. Hamilton (2006). Assessing the accuracy of self-reported data: an
evaluation of the toxics release inventory. Journal of Risk and Uncertainty 32(1), pp. 57–76

Di, Qian, Yan Wang, Antonella Zanobetti, Yun Wang, Petros Koutrakis, Christine Choirat,

29



Francesca Dominici, and Joel D. Schwartz (2017). Air Pollution and Mortality in the Medi-
care Population. New England Journal of Medicine 376(26), pp. 2513–2522

EPA (1997). National Ambient Air Quality Standards for Ozone. Federal Register 62(138), pp.
38856–38896

——— (2013). 2008 National Emissions Inventory: Technical Support Document (v.3). Technical
report, Environmental Protection Agency

——— (2014). Regulatory Impact Analysis of the Proposed Revisions to the National Ambient
Air Quality Standards for Ground-Level Ozone. Technical report, Environmental Protection
Agency

Fajgelbaum, Pablo D., Eduardo Morales, Juan Carlos Suárez Serrato, and Owen Zidar (2018).
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Table 1: CORRELATION MATRIX

Pollution Intensity Financial Constraints Productivity

Pollution Intensity 1
Financial Constraints 0.0942*** 1
Productivity -0.112*** 0.0157 1

The table displays pairwise correlation coefficients. Pollution Intensity is the (log) ratio of VOC
air emissions to real sales. Financial constraints, taken from Hoberg and Maksimovic (2014),
are measured based on the analysis of 10k forms. For both variables, the median value across
firm-years is used. Productivity is estimated by i) obtaining the firm fixed effects µi from the
regression model ln(yit) = δt + µi + β1ln(empit) + β2ln(kit) + εit ii) regressing µi on industry
dummies (3-digit SIC). The residuals from step ii) are used as the measure of Productivity. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: EFFECT OF OZONE NONATTAINMENT

(1) (2) (3) (4)

NAA 0.0428 0.0233 -0.00854
(0.0465) (0.0473) (0.0513)

NAA x Dirty Industry -0.275∗∗∗ -0.207∗∗ -0.194∗∗ -0.228∗∗

(0.0854) (0.0873) (0.0879) (0.103)
Plant F.E. yes yes yes yes
Year F.E. yes no no no
State-Year F.E. no no yes no
Industry-Year F.E. no yes yes yes
County-Year F.E. no no no yes
Observations 66891 66835 66833 54997

An observation is a plant-year. Standard errors, clustered on the county-level, are reported in parentheses. The
dependent variable is the natural logarithm of plant-level air emissions of VOC. NAA equals one in all years a county
is classified as part of a nonattainment area for ozone according to the EPA Greenbook data and zero otherwise. Dirty
Industry is a binary indicator equal to one for plants in industries classified as heavy emitters of ozone precursors by
Greenstone et al. (2012). The independent variables are lagged by one period. Industry-Year F.E are separate year
dummies for each of the seven dirty industries, in addition to one set of year dummies for the remaining clean
industries. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table 3: INTRAFIRM LEAKAGE: INTENSIVE MARGIN

(1) (2) (3) (4) (5) (6)

1+ other treated plants 0.0418 0.248∗∗∗ 0.273∗∗∗

(0.112) (0.0901) (0.0917)

1 other treated plant 0.0409 0.241∗∗ 0.261∗∗∗

(0.111) (0.0970) (0.0979)

2+ other treated plants 0.0518 0.340 0.502∗∗

(0.185) (0.206) (0.228)
Plant F.E. yes yes yes yes yes yes
Year F.E. yes no no yes no no
County-Year F.E. no yes yes no yes yes
Industry-Year F.E. no no yes no no yes
Observations 59034 47137 47078 59031 47137 47078

An observation is a plant-year. Standard errors, double clustered at the firm and five-digit NAICS-level, are reported
in parentheses. The dependent variable is the natural logarithm of plant-level air emissions of VOC. In columns
(1)-(3), the independent variable, lagged by one period, is a dummy for plants that are part of a firm and industry
(5-digit NAICS) that is regulated elsewhere. Columns (4)-(6) display estimates for binned counts of treated plants.
Industry-Year F.E are separate year dummies for each of the seven dirty industries, in addition to one set of year
dummies for the remaining clean industries. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table 4: MECHANISM FOR INTRAFIRM LEAKAGE: TRADABILITY

Tradbility Index: Co-Location Index Geographical Herfindahl Index

(1) (2) (3) (4) (5) (6) (7) (8)

Q1× other treated -0.126 0.122 -0.0930 -0.0149
(0.0831) (0.255) (0.0625) (0.241)

Q2× other treated -0.169∗∗ 0.105 -0.0316 0.331∗∗

(0.0766) (0.156) (0.121) (0.164)

Q3× other treated 0.300∗∗ 0.384∗∗∗ 0.266 0.318∗∗∗

(0.141) (0.0946) (0.174) (0.0783)

1+ other treated plants 0.177 0.360∗∗∗ 2.214∗ 1.552
(0.139) (0.124) (1.307) (1.589)

Tradable Index × other treated 0.741 0.734 0.400∗ 0.244
(0.478) (0.735) (0.233) (0.304)

p-value: Q1 = Q3 0.0126 0.3738 0.0552 0.1927
Plant F.E. yes yes yes yes yes yes yes yes
Year F.E yes no yes no yes no yes no
County-Year F.E. no yes no yes no yes no yes
Industry-Year F.E. no yes no yes no yes no yes
Observations 57982 46148 57982 46148 57982 46148 57890 46148

An observation is a plant-year. Standard errors, double clustered at the firm and NAICS-level, are reported in paren-
theses. The dependent variable is the natural logarithm of VOC air emissions. other treated is a dummy, lagged by
one period, for plants that are part of a firm and industry (5-digit NAICS) that is regulated elsewhere. The industry-
level tradability index in columns (1)-(4) is constructed similar to one proposed by Giroud and Rauh (forthcoming).
An index close to the one suggested by Mian and Sufi (2014) is used in columns (5)-(8). Both are time-constant and
constructed at the four-digit NAICS level. In columns (1)-(2) and (5)-(6), leakage effects are estimated separately for
each quartile of the tradability index. Very few within-firm leakage candidates fall within Q4 for both indices. These
plants are therefore added to the third quartiles. The p-values are for an F-Test of equality of coefficients for the top
and bottom quartile. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table 5: INTRAFIRM LEAKAGE: EXTENSIVE MARGIN

(1) (2) (3) (4) (5) (6)

1+ other treated plants 0.00955 0.00927 0.00769
(0.0211) (0.0219) (0.0230)

1 other treated plant 0.00151 0.00285 0.000785
(0.0217) (0.0218) (0.0233)

2+ other treated plants 0.0781∗∗ 0.0775∗ 0.0917∗∗

(0.0336) (0.0427) (0.0449)
Plant F.E. yes yes yes yes yes yes
Year F.E. yes no no yes no no
County-Year F.E. no yes yes no yes yes
Industry-Year F.E. no no yes no no yes
Observations 109450 96569 96526 109450 96569 96526

An observation is a plant-year. Standard errors, double clustered at the firm and five-digit NAICS-level, are reported
in parentheses. The dependent variable equals one in all years a plant operates and zero otherwise. Plant-year
observations where the firm-segment is not listed in the Toxic Release Inventory are excluded. In columns (1)-(3),
the independent variable is a dummy for plants that are part of a firm and industry (5-digit NAICS) that is regulated
elsewhere. Columns (4)-(6) display estimates for binned counts of treated plants. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table 6: EXTENSIVE MARGIN: BY PRODUCTIVITY

(1) (2) (3) (4) (5) (6)

Q1× other treated -0.108∗∗ -0.107 -0.149
(0.0475) (0.0648) (0.0935)

Q2× other treated -0.0750∗∗ -0.0393 -0.0570
(0.0318) (0.0437) (0.0557)

Q3× other treated -0.0248 -0.0150 -0.0543
(0.0262) (0.0373) (0.0368)

Q4× other treated 0.150∗∗∗ 0.155∗∗∗ 0.204∗∗∗

(0.0450) (0.0400) (0.0503)

1+ other treated plants -0.0112 -0.00194 -0.0347
(0.0223) (0.0198) (0.0329)

TFP Interaction 0.265∗∗∗ 0.298∗∗∗ 0.345∗∗∗

(0.0727) (0.0550) (0.124)
p-value: Q1 = Q4 0.00003 0.00010 0.00190
Plant F.E. yes yes yes yes yes yes
Year F.E. yes no no yes no no
County-Year F.E. no yes no no yes no
Industry-Year F.E. no yes no no yes no
Firm-Year F.E. no no yes no no yes
Observations 99762 86740 94968 99762 86740 94968

An observation is a plant-year. Standard errors, double clustered at the firm and five-digit NAICS-level, are reported
in parentheses. The dependent variable equals one in all years a plant operates and zero otherwise. Plant-year
observations where the firm-segment is not listed in the Toxic Release Inventory are excluded. other treated is a
dummy, lagged by one period, for plants that are part of a firm and industry (5-digit NAICS) that is regulated
elsewhere. The p-values are for an F-Test of equality of coefficients for the top and bottom quartile. In columns
(4)-(6), the treatment variable is interacted with the continuous TFP measure. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table 7: INTRAFIRM LEAKAGE: FIRM-LEVEL

Intensive Margin Extensive Margin
Unregulated Emissions All Emissions # Unregulated Plants

(1) (2) (3) (4) (5) (6) (7) (8)

1+ other treated plants 0.0876 0.0646 0.0804∗∗ 0.189∗∗

(0.106) (0.0887) (0.0403) (0.0939)

1 other treated plant 0.0616 0.0439 0.0608∗ 0.153∗

(0.104) (0.0882) (0.0352) (0.0839)

2+ other treated plants 0.441∗∗ 0.372∗∗ 0.242∗∗∗ 0.584∗∗∗

(0.192) (0.157) (0.0887) (0.218)
Firm-Industry F.E yes yes yes yes yes yes yes yes
Industry-Year F.E. yes yes yes yes yes yes yes yes
Observations 29725 29725 32695 32695 34069 34069 34069 34069

An observation is a firm-segment-year. Standard errors, clustered on the firm-level, are reported in parentheses
(columns (1)-(4); (7)-(8)). In columns (1)-(2), the dependent variable is the natural logarithm of the (log) total of all
VOC related air emissions that a firm-segment emits at never regulated plants. (Log) Total VOC emissions across all
plants within a firm-segment serve as the dependent variable in columns (3)-(4). In columns (5)-(8), the dependent
variable is a count of never regulated plants within the firm-segment. Firm-segment-year observations where the
segment is not listed in the Toxic Release Inventory are dropped in columns (5)-(8). Estimation is carried out by
means of a Poisson regression in columns (5)-(6), with standard errors robust to overdispersion. The independent
variables are dummy variables indicating whether there are at least one, exactly one or more than one regulated
plants within the firm-segment. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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A Theoretical Framework

This appendix presents a simple framework, informally described in section 2 of this paper, of
multiplant production. I first describe the general set-up I use to analyze firms’ incentives to
shift emissions between regulated and unregulated plants (intensive margin) and relocate plants
from unregulated to regulated areas (extensive margin). On the extensive margin, I add a simple
fixed cost and make additional functional form assumptions about demand and technology. This
allows me to precisely describe the role of factors that are known to shape exit and relocation
decisions of firms, such as firm productivity. I analyze the intensive margin in the general set-up
to highlight the importance of market power and technological complementarity.

General Setup.— Each firm operates at most two plants, located in different areas, and employs a
polluting input di ∈ R+ at plant i = 1, 2. Input di is supplied competitively at price pid. The firm
employs both inputs to produce output q using the production technology f (d1, d2). The pro-
duction function f (d1, d2) is assumed to be twice differentiable and to exhibit weakly decreasing
returns in the use of each input ( f ′(di) > 0, f ′′(di) ≤ 0). Consistent with the empirical analysis of
plant-level emissions, and not input use, I assume that di is expressed in terms of its contribution
to emissions. By increasing its use of polluting inputs, the firm also increases its emissions. The
firm sells the output q at price p(q). The role of price taking behavior in the output market is dis-
cussed below, but I assume that inverse demand p(q) is (weakly) downward sloping (p′(q) ≤ 0),
with p′(q) = 0 corresponding to perfect competition in the output market. If the firm has market
power (p′(q) < 0), this demand function is assumed to be sufficiently elastic such that the firm’s
first-order conditions for optimal input choices identify a profit maximum.29

Environmental Regulation.— In the context of the regulation of VOC emissions in ozone pol-
luted areas, EPA guidelines mandate substitutions towards cleaner inputs or the implementation
of technical changes in the manufacturing process.30 Since input di is expressed in terms of its
contribution to emissions, this input switching amounts to a reduction in di. A reduced-form
mechanism with the same effect as these input switching requirements is therefore to simply as-
sume that the price of input di increases.

A.1 Intensive Margin

I first analyze how firms operating two plants change their use of dirty inputs in response to
environmental regulation at one of those plants. Multiplant firms face the following optimization
problem:

29Under perfect competition, an interior solution for profit maximizing input choices is only guaranteed if there are
decreasing returns to scale in the use of each input ( f ′′(di) < 0). Since I allow the market for q to be either perfectly
or imperfectly competitive on the intensive margin, I additionally impose f ′′(di) < 0 for that part of the analysis. To
analyze the extensive margin, I assume constant returns to scale - for tractability reasons - and imperfect competition.

30See Appendix 4A.4 in EPA (2014) for an overview.
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max
d1,d2

π = p(q)q− d1p1d − d2p2d

s.t. f (d1, d2) ≥ q.
(7)

Modeling multiplant firms in this way can be interpreted in two ways: One is that each plant the
firm owns carries out a distinct step in the production process of the final good q. According to
this interpretation, multiplant firms feature an internal supply chain from plant 1 to plant 2 (or
vice versa). For such firms, the production function satisfies ∂2 f (d1,d2)

∂d1∂d2
> 0, a property referred to as

normal (Rader, 1968). If firms’ plants are not integrated in this way, we can write q = f (d1, d2) =

g(d1) + h(d2) = q1 + q2. Both plants can thus also be thought of as producing output goods
that are directly sold to consumers. If the production function takes this form, consumers treat
outputs sold by the two plants within the firm as perfect substitutes, implying that they are sold
at the same price p(q). Allowing for a more general demand interdependency leads to similar
qualitative implications as long as consumers substitute between outputs.31

With this clarification in place, we can proceed to solve for the optimal input choices by taking
first-order conditions with respect to d1 and d2. The two first-order conditions are:

∂π

∂di
=

∂ f (d1, d2)

∂di︸ ︷︷ ︸
MP(di)

[p(q) +
∂p(q)

∂q
q]︸ ︷︷ ︸

MR

−pid = 0, i = 1, 2.
(8)

Each input di is chosen such that its marginal revenue product is equal to its cost pid. Since
environmental regulation is akin to an increase in the price of an input, the object of interest is the
cross-effect on the use of dirty inputs at the unregulated plant.

To fix ideas, suppose that environmental regulation of plant 1 leads to a rise in p1d. To find the
effect this has on the unregulated plant, we apply the implicit function theorem to the first-order
conditions (8). We obtain that

∂d∗1
∂p1d

=

∂2 f (d1,d2)

∂d2
2

MR + ∂ f (d1,d2)
∂d2

∂MR
∂d2

det(Hd)
(9)

∂d∗2
∂p1d

= −
∂2 f (d1,d2)

∂d1∂d2
MR + ∂ f (d1,d2)

∂d2
∂MR
∂d1

det(Hd)
, (10)

where det(Hd) > 0 is the determinant of the Hessian associated with the optimization problem
in (7). Since marginal revenue curves (weakly) slope downwards and the production function is

31Assuming that non-integrated firms ( ∂2 f (d1,d2)
∂d1∂d2

= 0) produce two outputs that are perfect substitutes is convenient
because the behavior of these firms can then be analyzed within the same framework as that of vertically integrated

firms ( ∂2 f (d1,d2)
∂d1∂d2

> 0).
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assumed to satisfy f ′′(di) < 0, the own price effect, as given by (9), is negative. The sign of (10)
is ambiguous because d1 has a negative effect on the marginal product of d2 (first term), but a
positive effect on its marginal revenue product (second term). Based on these equations we can
describe the effects of regulation in this set-up as follows:
Proposition 1. Assume the production function satisfies f ′′(di) < 0. After regulation, partially
regulated firms

(a) decrease their use of polluting input d1 at the regulated plant.

(b) increase their use of polluting input d2 at the unregulated plant whenever | ∂
2 f (d1,d2)
∂d1∂d2

MR| <
| ∂ f (d1,d2)

∂d2
∂MR
∂d1
|.

To provide further economic intuition for part (b), I discuss two special cases of the model, where
no positive leakage arises, as well as the general case.

Special Case 1: Perfect Competition and Independent Marginal Products. In terms of the me-
chanics of the model, perfect competition and independent marginal products imply that the
optimality conditions for d1 and d2 are entirely independent of one another. The two assumptions
are akin to assuming that plants are operated by different firms. In the partial equilibrium context
considered here, cost shocks to one plant leave the other plant the firm operates unaffected. Leak-
age effects are thus zero at the firm-level. I abstract from leakage based on general equilibrium
reallocations for reasons outlined in the main text.

Special Case 2: Perfect Competition and Normal Production. Consider now the case where
inputs are complementary ( ∂2 f (d1,d2)

∂d1∂d2
> 0), while maintaining the assumption of perfect compe-

tition. In that case, input use at the unregulated plant declines in response to regulation at the
firm’s other plant, making the inputs gross complements (Rader, 1968). Complementarity across
plants implies that the regulation hurts the firm twice. It forces the firm to cut back at the reg-
ulated plant, which in turn negatively affects the profitability of employing d2. The model thus
predicts negative leakage, i.e. emissions decreases at not directly affected plants, for perfectly
competitive firms whose production technology features a complementarity in input use across
plants.

General Case: Imperfect Competition and Normal Production. In the present set-up, d2 can
only increase at unregulated plants if the firm has market power ( ∂MR

∂q < 0). The price increase
of d1 decreases the firm’s ouput q and increases marginal revenue, providing a profit incentive
to expand the use of d2. Input use at the unregulated plant increases if this substitution effect is
larger in absolute terms than the countervailing effect of technological complementarity.

Part (a) and (b) of Proposition (1) are explored in Tables 2 and 3 respectively.
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We can combine (9) and (10) to get the effect of an increase in p1d on total input use:

∂(d∗1 + d∗2)
∂p1d

=

(
∂2 f (d1,d2)

∂d2
2
− ∂2 f (d1,d2)

∂d1∂d2

)
MR +

(
∂MR
∂d2
− ∂MR

∂d1

)
∂ f (d1,d2)

∂d2

det(Hd)
. (11)

The sign of (11) is ambiguous. If marginal revenue is more sensitive to d1 than to d2 (second term
is positive), then any given regulation-induced reduction in d1 requires a more pronounced off-
setting increase in d2. Total use of polluting inputs increases if this effect outweighs the negative
effect of diminishing returns and potential complementarities in input use (first term). This is
stated in Proposition 2.
Proposition 2. Assume the production function satisfies f ′′(di) < 0. After regulation, partially
regulated firms increase their total use of polluting inputs whenever |

(
∂2 f (d1,d2)

∂d2
2
− ∂2 f (d1,d2)

∂d1∂d2

)
MR| <

|
(

∂MR
∂d2
− ∂MR

∂d1

)
∂ f (d1,d2)

∂d2
|.

Recall that changes in the use of polluting inputs are assumed to vary directly with emissions.
Proposition 2 thus implies that the offsetting effects of partial regulation may amount to an in-
crease in emissions at the firm-level. This possibility is explored in Table 7.

A.2 Extensive Margin

Increases in the variable cost of producing at one plant can also serve as an incentive to open up a
plant in a unregulated area of the country. To analyze this possibility theoretically, I assume firms
can move plants to unregulated areas by paying an additional fixed cost. I embed this tradeoff
in a parameterized version of the general set-up previously outlined. By assuming that firms are
monopolists and face constant elasticity demand, the model becomes a simplified version of the
sourcing model introduced by Antràs and Helpman (2004).

The model aims to describe the relocation choice from the perspective of a firm eventually ex-
posed to regulation at one of its plants. I assume firms only operate one plant to produce output
q using the technology f (di) = θdi. θ is the firm’s productivity level. Constant returns to scale
allow me derive intuitive, parametric expressions for firm profits which I use to illustrate the role
of productivity and cost differences (robustness to alternative functional form assumptions is dis-
cussed below). The firm can employ the input di at a potentially regulated plant (i = 1) under
production mode H (home-production), or abandon this plant and move to an unregulated area
under production mode O (outsourcing).

Either operating mode entails a fixed cost, with the fixed cost under outsourcing, fO, being strictly
greater than the one for continuing to produce at the same plant fH. These higher fixed costs
capture additional expenses related to moving and starting up a new plant. The cost functions
for each operating mode are

CH(q, p1d) = fH +
q
θ

p1d (12)
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and
CO(q, p2d) = fO +

q
θ

p2d. (13)

The pricing decision is made tractable by assuming that firms face a CES inverse demand func-
tion

p(q) = βq−
1
σ (14)

with elasticity of substitution σ > 1. In models of monopolistic competition, β depends on an
aggregate of other firms’ prices as well as consumer spending. I maintain a partial equilibrium
approach and treat β as a constant.

Unregulated Economy.— Assume first that there are no regulatory differences, so that the vari-
able cost pid of using polluting input di are the same everywhere. Since relocation entails a fixed
cost fO > fH, a firm would only pay this fixed cost in the model to escape regulation. No firm
therefore relocates in the absence of environmental regulation.

Having chosen H as its preferred production mode, firms maximize their profits subject to the
consumer’s demand function (14). As a function of the parameters of the model and prices, the
profits are

πH = Bθσ−1p1−σ
1d − fH, (15)

where B = 1
σ (

σ
σ−1)

1−σβσ.
Regulated economy.— CAA regulation is again assumed to increase the price of employing dirty
inputs at plant 1, p1d. Once a firm is regulated, p1d > p2d. If a firm continues to operate within a
regulated area, its profits are as in equation (15). Alternatively, it can outsource its production to
an unregulated area, where it pays the lower price p2d on the input that is now regulated at plant
1. This requires paying a fixed cost fO > fH, but brings the benefit of evading the higher price
on polluting inputs. The maximized profit function associated with this problem, conditional on
choosing to outsource is:

πO = Bθσ−1p1−σ
2d − fO. (16)

Results.— Within this set-up, we can ask how environmental regulation affects firms’ outsourcing
behavior on the extensive margin. Thus, the extensive margin of sourcing in this model is defined
as the decision to open a plant in an unregulated county. To analyze the economic forces shaping
this decision, I take the difference in profit between an O firm and a H firm after p1d has increased
due to regulation.

πO − πH = Bθσ−1
[

p1−σ
2d − p1−σ

1d

]
− ( fO − fH). (17)

The necessary and sufficient conditions for firms to open a new plant are that this difference
is positive and profits are weakly positive under outsourcing. Environmental regulation lowers
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profits overall, either through higher variable or fixed cost, such that it will lead some firms to exit
(see below). The two terms in (17) are easily interpreted. The first term captures the difference in
variable profits. A sufficient condition for it to be positive is that σ > 1 (as required for the firm’s
first-order condition) and that input prices are higher in regulated areas (p1d > p2d). The second
term is related to the difference in fixed cost between the two sourcing modes and is also greater
than zero. Deciding between home-production and outsourcing, firms trade off higher variable
profits with higher fixed costs. Proposition 3 shows that such differences in variable profits can
lead firms to relocate.
Proposition 3. After regulation, all firms that remain profitable relocate whenever p1d >

(
1

pσ−1
2d
−

fO− fH
Bθσ−1

) 1
1−σ

.

Proposition 3 follows from solving πO − πH > 0 for p1d. If regulation results in a sufficiently
large increase in p1d, firms relocate. Firms may prefer outsourcing O over home-production H,
even though neither operating mode is profitable. Firms only relocate, however, if they are able to
operate profitably given the larger fixed cost under outsourcing. I test for such relocation effects
in Table 5.

Further comparative statics can be derived by considering how productivity shapes the outsourc-
ing decision. Graphically and intuitively this was illustrated in Figure 1.

Proposition 4 describes this more formally.

Proposition 4. After regulation and whenever
(

p1d
p2d

)σ−1
< fO

fH
,

(a) high productivity firms with θ > θ̃, where θ̃ =
(

fO− fH
B[p1−σ

2d −p1−σ
1d ]

) 1
σ−1

, relocate.

(b) previously active, low productivity firms with θ < θ̂, where θ̂ =
(

fh
B

) 1
σ−1

p1d, exit.

(c) firms with an intermediate level of productivity, θ̃ > θ > θ̂, neither exit nor relocate.

The predictions made in Proposition 4 are explored in Tables 6 and B.6.

While the nature of these selection effects appears intuitive, they do depend on the shape of the
demand function. It is not necessarily the case that only the most productive firms select into
outsourcing if utility is not CES (Mrázová and Neary, forthcoming; Mukherjee, 2010). Further
analysis would also be required to consider whether more productive firms profit the most from
lower input prices under decreasing returns to scale in the production function. Similar to the
case of non-CES demands, decreasing returns imply that it may not generally be possible to write
ex-post profits as a linear function of a transformation of productivity. The absence of such a
convenient functional form complicates the analysis. Proposition 3, by contrast, also hold under
decreasing returns to scale.
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B Empirical Background

B.1 Regulatory Strategy

In principle, the CAA creates transparent variation in the stringency of environmental regulation
across counties. This variation could, for instance, be exploited via difference-in-differences re-
search designs, comparing VOC emissions of plants in attainment and nonattainment counties
before and after regulation comes into place. Such an approach to evaluate the CAA is only valid
if regulators target pollution sources in nonattainment counties uniformly. Many studies suggest
that effects across monitor stations, plants or industries in nonattainment counties are very het-
erogeneous (Greenstone, 2002; Auffhammer et al., 2009; Gibson, forthcoming). Constrained by
limited available resources, regulators aim for emissions reductions at the sources that were most
likely to have pushed the county into nonattainment in the first place. This has clear implication
for studying the within-firm leakage consequences of regulation. Leakage refers to the realloca-
tion of activity from regulated to unregulated unit, which can only be studied if there are well
defined differences in exposure to regulation. Accurately assessing the effects of CAA regulation
thus becomes the task of distinguishing between targets and non-targets within nonattainment
areas.

A further complication is that enforcement procedures differ across pollutants. In the case of regu-
lation of PM, Gibson (forthcoming) shows that regulators only target the areas within in a county
that are in close vicinity to the monitoring station that forced the county into nonattainment. They
argue that this is partially explained by PM remaining concentrated around the source of emis-
sion. An intuitive metric for this concentration is the share of monitors within nonattainment
counties that violate the NAAQS. If pollution is limited to certain spots within nonattainment
counties, there should remain a significant fraction of monitors that does not record a violation of
the pollution threshold. For PM, only about 31% of all monitors detect pollution levels above the
threshold. In ozone nonattainment counties, 76% of all operating monitors detect violations of the
NAAQS according to the 8-hour rule.32 These differences in concentration have consequences for
enforcement. For PM, regulators can bring a county into attainment by only targeting plants close
to the violating monitor (Gibson, forthcoming). High levels of ozone, by contrast, appear to be
pervasive throughout a county, so that a narrow geographical focus is unlikely to bring counties
back into attainment.

Considering the density of ozone pollution within nonattainment counties, cost-effective regula-
tion is more likely to focus on major emitters within a county.

32Both figures based on own calculation.
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B.2 External Validity

The sampling criteria used by the TRI combined with the focus on publicly listed companies are
clear threats to the external validity of the findings presented in this paper. Reporting to the
TRI is only mandatory for relatively large and heavily polluting industrial plants. The focus on
publicly listed firms furthers this emphasis. Compared to their private counterparts, listed firms
are known to be significantly larger on average and display differential investment behavior.33

I argue that there are empirical reasons to focus on this sample to estimate regulatory effects of
ozone regulation as well as spillovers.

Becker and Henderson (2000) find that regulators in ozone nonattainment counties focus on a set
on larger plants that are part of multiplant conglomerates. Plants underneath the size threshold
for inclusion in the TRI are hence unlikely to face significant regulatory barriers. The effect of
regulation on plants belonging to smaller, private firms can easily be investigated using the main
sample. As I show below, within the sample of non-listed firms, county nonattainment status is
not associated with emissions reductions. Choosing a sample of public firms is thus also appro-
priate for the estimation of within-firm leakage effects. This is because leakage only arises in the
model if regulation negatively affects directly affected plants. I therefore take it to be a sensible
point of departure to consider spillovers from treated to untreated units for a set firms measurably
affected in their emissions behavior.

Beyond differences in the direct effect of regulation, the focus on large firms may have distinct
consequences for within-firm leakage. These follow straightforwardly from the simple theory
of multiplant input choice. In that framework, substitutability requires interdependent demand
across plants. Shifting emissions is thus more feasible for public firms since they are less depen-
dent on local demand than their smaller, private counterparts. Second, Traina (2018) shows that
larger firms, within the Compustat universe, also charge significantly higher mark-ups. Under
the assumption that this positive association holds across public and private firms, one would
expect public firms to be more likely to shift dirty production between plants. This relation holds
in the theory because high mark-up firms face a low elasticity of demand, which increases the
degree of strategic substitutability between plants’ input choices.34

In sum, I test whether regulation that curbs emissions as intended leads to within-firm leakage.
The particular enforcement of the CAA, with regulators focusing on larger plants that are often
part of firms with greater ability to shift production between plants should additionally be kept
in mind. My findings may be externally valid in this limited sense.

33See the recent study by Feldman, Kawano, Patel, Rao, Stevens, and Edgerton (2018) and references therein.
34The potential for leakage may also shape the direct response to regulation. To the extent firms know they can

shift emissions elsewhere, they may, more readily, reduce them to evade costly regulations. While plausible, this
hypothesis is hard to disentangle empirically from the previously raised possibility of CAA enforcement focusing on
large plants that are often part of public firms.
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B.3 Details on Tradability Indices

Two tradability indicies are employed in Table 4. One is the geographical Herfindahl index by
Mian and Sufi (2014). For industry j, this index is formally defined as ∑c θ2

cj, where c indexes
counties and θcj is the number of establishments in county c and industry j divided by the total
number of industry j establishments in the US. Geographically concentrated industries depend on
agglomeration economies, whereas dispersed industries, with a low value of this index, rely on
local demand. In Mian and Sufi (2014), the authors mainly use this index to distinguish tradable
manufacturing establishments from non-tradable services. There remains, however, substantial
variation after excluding industries not listed int the TRI. This is evidenced by the similar mean
and standard deviation the index has within the subsample of 110 four-digit NAICS industries
in the TRI (Mean: 0.0084 vs. 0.0081; Standard Deviation is equal at 0.013) as across all 294 indus-
tries.

Giroud and Rauh (forthcoming) propose an index with a stronger focus on transportation cost and
local demand. Their index is defined as ∑p |spj − sp|, where spj is the number of establishments
in industry j and state p divided by the number of establishments in state p. sp is the number
of establishments in state p divided by the number of establishments in the US economy. If an
industry has high transportation costs, it will be distributed proportionally to the demand in each
market. Non-tradable industries should hence have a low value of this index. Descriptively, these
measures have a rank correlation of 0.23 (p-value: 0.016).

Both indices are constructed using County Business Patterns (CBP) data on the number of es-
tablishments in each county (state) and industry. The establishment counts are disaggregated by
industry. The median value of the indices across years 1998-2014 is taken. 1998 is the first year
NAICS classifications are in active use in the CBP.
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B.4 Additional Tables

Table B.1: DESCRIPTIVE STATISTICS AND BALANCE

Unregulated Regulated

Variable Observations Mean Std. Deviation Observations Mean Std. Deviation

Plant-Year Level
Air Emissions 74,784 84,836 277,202 6,667 101,676 266,786

Firm-Year Level
(Real) Sales ($100 Mio.) 9954 77 204.8 2122 154 403

# Plants 15,872 3.2 5.4 3243 9.2 11.3

Firm-level
Productivity 1037 -0.006 0.41 200 0.013 0.44

Emissions Intensity 913 6.95 3.06 182 8.0 2.3

Financial Constraints 771 0.02 0.04 151 0.02 0.048

Regulated plants are those active in a dirty industry and who are exposed to CAA ozone regulation in the county
they operate in at some point over the sample frame. Firms are classified as regulated if they operate one such plant.
See main text and Table 1 for definitions of the variables.

Table B.2: EFFECT OF OZONE NONATTAINMENT: SUB-SAMPLES

(1) (2) (3) (4)

Panel A: Exclude Never Regulated Plants
NAA -0.200∗∗ -0.207∗∗∗ -0.251∗∗∗

(0.0798) (0.0762) (0.0841)

Observations 7860 7804 7708

Panel B: Exclude Spillover Plants
NAA 0.0345 0.0205 -0.0223

(0.0487) (0.0495) (0.0537)

NAA × Dirty Industry -0.272∗∗∗ -0.215∗∗ -0.203∗∗ -0.238∗∗

(0.0864) (0.0873) (0.0874) (0.109)
Plant F.E. yes yes yes yes
Year F.E. yes no no no
State-Year F.E. no no yes no
Industry-Year F.E. no yes yes yes
County-Year F.E. no no no yes
Observations 60297 60250 60234 48813

An observation is a plant-year. Standard errors, clustered on the county-level, are reported in parentheses. The
dependent variable is the natural logarithm of plant-level air emissions of VOC. NAA equals one in all years a county
is classified as part of a nonattainment area for ozone according to the EPA Greenbook data and zero otherwise. Dirty
Industry is a binary indicator equal to one for plants in industries classified as heavy emitters of ozone precursors by
Greenstone et al. (2012). The independent variables are lagged by one period. Industry-Year F.E are separate year
dummies for each of the seven dirty industries, in addition to one set of year dummies for the remaining clean
industries. In Panel A, I exclude all plants never subject to regulation. In Panel B, I exclude all plants subject to the
spillover treatment (leakage plants). p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table B.3: INTENSIVE MARGIN LEAKAGE: LARGER SAMPLE

(1) (2) (3) (4) (5) (6)

Panel A: Unregulated In the Past
1+ other treated plants 0.0365 0.229∗∗ 0.254∗∗∗

(0.111) (0.0916) (0.0940)

1 other treated plant 0.0362 0.224∗∗ 0.245∗∗

(0.110) (0.0968) (0.0988)

2+ other treated plants 0.0405 0.298 0.442∗∗

(0.173) (0.182) (0.200)

Observations 59644 47776 47713 59641 47776 47713

Panel B: Currently Unregulated
1+ other treated plants 0.0199 0.204∗∗ 0.221∗∗

(0.108) (0.0851) (0.0883)

1 other treated plant 0.0185 0.198∗∗ 0.212∗∗

(0.104) (0.0901) (0.0931)

2+ other treated plants 0.0350 0.289∗ 0.415∗∗

(0.163) (0.161) (0.165)
Plant F.E. yes yes yes yes yes yes
Year F.E. yes no no yes no no
County-Year F.E. no yes yes no yes yes
Industry-Year F.E. no no yes no no yes
Observations 60924 49041 48975 60921 49041 48975

An observation is a plant-year. Standard errors, double clustered at the firm and five-digit NAICS-level, are reported
in parentheses. The dependent variable is the natural logarithm of plant-level air emissions of VOC. In columns
(1)-(3), the independent variable, lagged by one period, is a dummy for plants that are part of a firm and industry
(5-digit NAICS) that is regulated elsewhere. Columns (4)-(6) display estimates for binned counts of treated plants.
Industry-Year F.E are separate year dummies for each of the seven dirty industries, in addition to one set of year
dummies for the remaining clean industries. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.

Table B.4: MECHANISM FOR INTRAFIRM LEAKAGE: EFFECTS ACROSS ALL PLANTS

(1) (2) (3) (4) (5) (6)

1+ other treated plants -0.0722 -0.0297 -0.0256
(0.0660) (0.0498) (0.0501)

1 other treated plant -0.0663 -0.0311 -0.0312
(0.0602) (0.0500) (0.0500)

2+ other treated plants -0.0978 -0.0233 -0.00143
(0.0726) (0.0587) (0.0588)

Plant F.E. yes yes yes yes yes yes
Year F.E. yes no no yes no no
County-Year F.E. no yes yes no yes yes
Industry-Year F.E. no no yes no no yes
Observations 59034 47137 47078 59031 47137 47078

An observation is a plant-year. Standard errors, double clustered at the firm and five-digit NAICS-level, are reported
in parentheses. The dependent variable is the natural logarithm of plant-level air emissions of VOC. In columns
(1)-(3), the independent variable, lagged by one period, is a dummy for plants that are part of a firm that is regulated
elsewhere. Columns (4)-(6) display estimates for binned counts of treated plants. Industry-Year F.E are separate year
dummies for each of the seven dirty industries, in addition to one set of year dummies for the remaining clean
industries. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table B.5: MECHANISM FOR INTRAFIRM LEAKAGE: FINANCIAL CONSTRAINTS

Measure of Financial Constraints: Text-based Measure KZ Index

(1) (2) (3) (4) (5) (6) (7) (8)

Q1× other treated 0.349∗∗ 0.582∗∗ 0.198 0.416∗∗

(0.138) (0.229) (0.354) (0.175)

Q2× other treated 0.209 0.304∗ 0.164 0.613∗∗∗

(0.199) (0.156) (0.157) (0.219)

Q3× other treated -0.206 -0.161 0.0892 0.147
(0.165) (0.286) (0.119) (0.140)

Q4× other treated 0.0267 0.117 -0.347∗∗ -0.279
(0.150) (0.215) (0.148) (0.207)

1+ other treated plants 0.184 0.355∗∗∗ 0.138 0.491∗∗∗

(0.133) (0.129) (0.159) (0.165)

FC (Text) × other treated -2.775 -4.394∗∗

(1.880) (2.057)

FC (KZ) × other treated -0.126 -0.446∗∗∗

(0.150) (0.171)
p-value: Q1 = Q4 0.1560 0.1527 0.1349 0.0307
Plant F.E. yes yes yes yes yes yes yes yes
Year F.E. yes no yes no yes no yes no
County-Year F.E. no yes no yes no yes no yes
Industry-Year F.E. no yes no yes no yes no yes
Observations 42898 31487 42898 31487 48234 36504 48234 36504

An observation is a plant-year. Standard errors, double clustered at the firm and five-digit NAICS-level, are reported
in parentheses. The dependent variable is the natural logarithm of VOC air emissions. other treated is a dummy,
lagged by one period, for plants that are part of a firm and industry (5-digit NAICS) that is regulated elsewhere.
Columns (1)-(4) use a measure of financial constraints constructed by Hoberg and Maksimovic (2014) based on text-
analysis of 10k forms. Models in columns (5)-(8) use the Kaplan and Zingales (1997) measure of financial constraints.
In columns (1)-(2) and (5)-(6), leakage effects are estimated separately for firms in each quartile of the financial con-
straints variable. The p-values are for an F-Test of equality of coefficients for the top and bottom quartile. The interac-
tion term in column (3)-(4), FC (Text)× other treated, is defined as the product of the continuous, text-based measure
of financial constraints and the treatment dummy. Columns (7)-(8) use an interaction of the treatment variable and
a dummy variable equal to one for firms in the upper tercile of the empirical distribution of the Kaplan-Zingales
measure (FC (KZ) × other treated). p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table B.6: PLANT EXIT

Treatment Effects By TPF Quartile

(1) (2) (3) (4) (5) (6)

NAA 0.000126 -0.000951
(0.00604) (0.00621)

NAA× Dirty Industry 0.0226∗ 0.00805 -0.0111
(0.0116) (0.0141) (0.0132)

Q1× NAA × Dirty Industry 0.0685∗∗∗ 0.0427∗ 0.00544
(0.0205) (0.0229) (0.0214)

Q2× NAA × Dirty Industry 0.0619∗∗∗ 0.0467∗ 0.0279
(0.0189) (0.0250) (0.0265)

Q3× NAA × Dirty Industry -0.00580 -0.0341 -0.0421∗

(0.0183) (0.0238) (0.0223)

Q4× NAA × Dirty Industry 0.00827 -0.0163 -0.0304∗

(0.0155) (0.0181) (0.0177)
p-value: Q1 = Q4 0.0065 0.0183 0.1255
Plant F.E. yes yes yes yes yes yes
Year F.E. yes no no yes no no
County-Year F.E. no yes yes no yes yes
Industry-Year F.E. no no yes no no yes
Observations 77911 65912 65845 70779 58717 58631

An observation is a plant-year. Standard errors, clustered at county-level, are reported in parentheses. The dependent
variable equals one the last year the plant is observed. The last year of the sample is excluded. NAA equals one in
all years a county is classified as part of a nonattainment area for ozone according to the EPA Greenbook data and
zero otherwise. Dirty Industry is a binary indicator equal to one for plants operating in industries classified as heavy
emitters of ozone precursors by Greenstone et al. (2012). Columns (4)-(6) show estimates of the treatment effect across
quartiles Qi of the empirical distribution of TFP, as defined in the text. The p-values are for an F-Test of equality of
coefficients for the top and bottom quartile. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table B.7: EFFECT OF OZONE NONATTAINMENT: ALTERNATIVE INDUSTRY CLASSIFICATION

Dirty Industry Definition: Wider Set Only Marginal Industries

(1) (2) (3) (4)

NAA 0.0492 0.0325
(0.0461) (0.0477)

NAA × Dirty Industry -0.168∗∗ -0.181∗∗ -0.0378 -0.0421
(0.0726) (0.0880) (0.108) (0.107)

Plant F.E. yes yes yes yes
Year F.E. yes no yes no
Industry-Year F.E. no yes no yes
County-Year F.E. no yes no yes
Observations 66891 55069 50881 39782

An observation is a plant-year. Standard errors, clustered on the county-level, are reported in parentheses. The
dependent variable is the natural logarithm of plant-level air emissions of VOC. NAA equals one in all years a county
is classified as part of a nonattainment area for ozone according to the EPA Greenbook data and zero otherwise. In
columns (1)-(2), Dirty Industry is a binary indicator equal to one for plants in industries classified as heavy emitters
of ozone precursors by Greenstone (2002). In columns (3)-(4), all plants in industries at the intersection of the Dirty
Industry definitions by Greenstone (2002) and Greenstone et al. (2012) are dropped. The independent variables are
lagged by one period. Industry-Year F.E are separate year dummies for each of the 18 dirty industries, in addition to
one set of year dummies for the remaining clean industries. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table B.8: INTRAFIRM LEAKAGE: ALTERNATIVE INDUSTRY CLASSIFICATION

Intensive Margin Extensive Margin

(1) (2) (3) (4) (5) (6)

Dummy Variable:
1+ other treated 0.168∗ 0.325∗∗∗ 0.349∗∗∗ 0.00744 0.0140 0.0150

(0.0884) (0.0688) (0.0725) (0.0199) (0.0200) (0.0187)

Binned Counts:
1 other treated 0.169∗ 0.324∗∗∗ 0.347∗∗∗ 0.000298 0.00776 0.00886

(0.0903) (0.0735) (0.0781) (0.0198) (0.0197) (0.0185)

2+ other treated 0.162 0.341∗ 0.397∗∗ 0.0818∗∗∗ 0.0835∗∗ 0.0901∗∗∗

(0.144) (0.175) (0.171) (0.0302) (0.0361) (0.0340)

Plant F.E. yes yes yes yes yes yes
Year F.E. yes no no yes no no
County-Year F.E. no yes yes no yes yes
Industry-Year F.E. no no yes no no yes
Observations 54233 42248 42238 101135 88020 88000

An observation is a plant-year. Standard errors, double clustered at the firm and five-digit NAICS-level, are reported
in parentheses. In columns (1)-(3), the dependent variable is the natural logarithm of plant-level air emissions of
VOC. In column (4)-(6), the dependent variable equals one in all years a plant operates and zero otherwise. Plant-
year observations where the firm-segment is not listed in the Toxic Release Inventory are excluded in columns (4)-(6).
In the upper panel, the independent variable is a dummy for plants that are part of a firm and industry (5-digit
NAICS) that is regulated elsewhere. The lower panel displays estimates for binned counts of treated plants. The
difference to estimates in Tables 3 & 5 is that a wider set of industries is classified as Dirty. p < 0.1 ∗, p < 0.05 ∗∗,
p < 0.01 ∗∗∗.
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Table B.9: EFFECT OF OZONE NONATTAINMENT: ALL FIRMS

Firm Sample: Public and Private Private

(1) (2) (3) (4)

NAA 0.0534 0.0635
(0.0344) (0.0474)

NAA × Dirty Industry -0.181∗∗∗ -0.0730 -0.0597 0.0663
(0.0665) (0.0755) (0.0804) (0.0990)

Plant F.E. yes yes yes yes
Year F.E. yes no no no
County-Year F.E. no yes no yes
Industry-Year F.E. no yes no yes
Observations 119239 105552 51963 39187

An observation is a plant-year. Standard errors, clustered on the county-level, are reported in parentheses. The
dependent variable is the natural logarithm of plant-level air emissions of VOC. NAA equals one in all years a county
is classified as part of a nonattainment area for ozone according to the EPA Greenbook data and zero otherwise. Dirty
Industry is a binary indicator equal to one for plants in industries classified as heavy emitters of ozone precursors
by Greenstone et al. (2012). In columns (1)-(2), all VOC emitting plants are used to estimate regulatory effects. The
sample in columns (3)-(4) is limited to plants whose parent company has never been publicly listed. The independent
variables are lagged by one period. Industry-Year F.E are separate year dummies for each of the 7 dirty industries, in
addition to one set of year dummies for the remaining clean industries. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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Table B.10: INTRAFIRM LEAKAGE: ALL FIRMS

Intensive Margin Extensive Margin

(1) (2) (3) (4) (5) (6)

Dummy Variable:
1+ other treated -0.0425 0.0501 0.0516 0.0327 0.0365 0.0319

(0.0868) (0.0845) (0.0913) (0.0256) (0.0269) (0.0250)

Binned Counts:
1 other treated -0.0437 0.0427 0.0418 0.0212 0.0282 0.0233

(0.0875) (0.0863) (0.0930) (0.0249) (0.0266) (0.0249)

2+ other treated -0.0286 0.159 0.219 0.129∗∗∗ 0.113∗∗∗ 0.120∗∗∗

(0.162) (0.152) (0.161) (0.0377) (0.0363) (0.0313)
Plant F.E. yes yes yes yes yes yes
Year F.E. yes no no yes no no
County-Year F.E. no yes yes no yes yes
Industry-Year F.E. no no yes no no yes
Observations 104733 90925 90850 183880 170218 170138

An observation is a plant-year. Standard errors, double clustered at the firm and five-digit NAICS-level, are reported
in parentheses. In columns (1)-(3), the dependent variable is the natural logarithm of plant-level air emissions of
VOC. In column (4)-(6), the dependent variable equals one in all years a plant operates and zero otherwise. Plant-
year observations where the firm-segment is not listed in the Toxic Release Inventory are excluded in columns (4)-(6).
In the upper panel, the independent variable is a dummy for plants that are part of a firm and industry (5-digit
NAICS) that is regulated elsewhere. The lower panel displays estimates for binned counts of treated plants. The
difference to estimates in Tables 3 & 5 is that private and public firms are included in the sample. p < 0.1 ∗, p < 0.05
∗∗, p < 0.01 ∗∗∗.

55



Table B.11: BETWEEN-FIRM LEAKAGE

(1) (2) (3) (4) (5) (6)

# Regulated Plants within:
100 KM 0.00719

(0.00906)

200 KM 0.00815∗∗

(0.00319)

500 KM 0.00518∗∗∗

(0.00105)
# Regulated Plants in same industry within:
100 KM ¡ 100 KM -0.0262

(0.0372)

200 KM 0.0130
(0.0286)

500 KM -0.00947
(0.00953)

Plant F.E yes yes yes yes yes yes
Year F.E. yes yes yes yes yes yes
Observations 46703 46703 46703 46703 46703 46703

An observation is a plant-year. Standard errors, clustered on the county-level, are reported in parentheses. The de-
pendent variable is the natural logarithm of plant-level air emissions of VOC Sample consists of plants in attainment
counties. Independent variables are counts of regulated plants within varying distance thresholds. In column (4)-(6),
the counts are defined over regulated plants in the same five-digit NAICS industry. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01
∗∗∗.
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Table B.12: EFFECT OF OZONE NONATTAINMENT: HETEROGENEITY

Firm Sample: TFP Fixed Cost FC Tradability
(1) (2) (3) (4)

Q1× NAA × Dirty -0.330∗∗∗ -0.365 -0.208 -0.753∗∗∗

(0.127) (0.291) (0.147) (0.262)

Q2× NAA × Dirty -0.202 -0.231 0.128 -0.0577
(0.132) (0.253) (0.224) (0.0818)

Q3× NAA × Dirty 0.0107 -0.173 -0.273 -0.332∗∗

(0.155) (0.128) (0.169) (0.140)

Q4× NAA × Dirty -0.474∗∗ -0.407∗∗ -0.697∗

(0.195) (0.179) (0.416)

p-value: 0.4641 0.8793 0.2331 0.1236
Plant F.E. yes yes yes yes
County-Year F.E. yes yes yes yes
Observations 48971 46106 37185 53908

An observation is a plant-year. Standard errors, clustered on the county-level, are reported in parentheses. The
dependent variable is the natural logarithm of plant-level air emissions of VOC. NAA equals one in all years a county
is classified as part of a nonattainment area for ozone according to the EPA Greenbook data and zero otherwise.
Dirty is a binary indicator equal to one for plants in industries classified as heavy emitters of ozone precursors
by Greenstone et al. (2012). Across columns (1)-(4), effects are estimated separately for each quartile of the set of
variables used in the analysis of leakage mechanisms. Column (1) estimates effects separately by quartile of TFP, (2)
by quartile of Equipment Intensity, (3) by quartile of the Kaplan and Zingales (1997) measure of financial constraints
and (4) by quartile of a measure of tradability, similar to one constructed by Giroud and Rauh (forthcoming). In the
last column, the fourth quartile features too few regulated plants to estimate effects separately. The F-Test for equality
of coefficients is thus conducted for Q1 = Q3. p < 0.1 ∗, p < 0.05 ∗∗, p < 0.01 ∗∗∗.
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