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Abstract

This paper provides a spatial general equilibrium model to quantify the im-

pact of climate change on the economy and migration. The model can capture the

role of trade networks and agricultural suitability on the distribution of popula-

tion and GDP accounting for endogenous adjustments of crop choice and trade.

I use detailed geospatial data from 42 countries in sub-Saharan Africa (SSA) to

simulate the impact of climate using forecasts of agricultural productivity in 2080

from FAO–GAEZ. Climate change is estimated to displace 12 percent of the SSA

population and reduce real GDP by 4 percent. The capacity of switching crops,

urbanizing, or trading goods reduces the impact of climate change in terms of

population outflows. Finally, the adoption of modern inputs in agriculture re-

verses considerably the negative impacts of climate change.
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1 Introduction

One of the most concerning potential consequences of climate change is population
displacement, recently coined as the Great Climate Migration (Lustgarten, 2020). Sub-
sistence agricultural economies, like the sub-Saharan African (SSA henceforth) coun-
tries, lie at the center of this issue. These are highly agriculture–dependent economies,
which are expected to be amid the fastest–growing zones, in terms of population, dur-
ing the next decades (United Nations and Social Affairs, 2019). Understanding how
these economies will adjust to a climate–changing world, in which crop yields will
be different than today, is key to uncover where this growing population will be geo-
graphically reallocated.

Assessing which could be the decisions of economic agents when adapting to
climate change is challenging, especially in an agricultural context like SSA. If facing
changed agricultural yields, farmers could switch their production towards different
crops, remaining however in the agricultural sector. Alternatively, these agents could
switch to a non–agricultural sector, potentially moving geographically. Trade would
have a crucial role in the extent to which a specialization into agricultural and non–
agricultural sectors could take place. Therefore, understanding how these forces –
production switching, trade, and migration – will respond to climate change is key to
evaluate the effect of climate change on migration and the economy.

In this paper, I develop a quantitative spatial model that accounts for these forces
and can be used to quantify how their response to climate change translates into
population displacement and economic losses. The model is calibrated with a rich
geographical dataset that I assemble, covering 42 countries of SSA. By simulating
it for a future scenario of climate change in 2080, I find that about 12 percent of
the SSA population could be displaced. The results are very heterogeneous across
countries and subnational locations: the median country(location)–level population
change is about -12 (-9) percent, while the 10th and 90th percentiles are -22 (-28)
and 8 (3) percent, respectively. Moreover, a key finding is that urbanization, crop–
switching, and access to trade are relevant margins along which the economy adjusts
so to dampen the impact of climate change.

I begin my analysis by showing that the future changes in agricultural yields are
expected to be spatially heterogeneous across locations and crops. As a consequence,
they would consist of a shock to comparative advantages in the agricultural sector.
Informed by this empirical evidence, I develop a multi-sector Ricardian spatial trade
model with partial labor mobility. The model’s spatial units are 1◦x1◦ grid–cells,
where farmers and firms can produce goods of multiple agricultural sectors (crops)
and a non-agricultural sector, respectively. Differences in total factor productivity and
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market access generate trade, shaping the spatial pattern of the sector–specialization.
Relative sectoral prices determine consumers’ expenditure shares, allowing for struc-
tural transformation. Migration frictions and other congestion forces counteract the
agglomeration forces in the model.

The advantages of my framework are manifold. First, my general equilibrium
approach considers the long–term adjustments of the economy along many dimen-
sions as the climate changes. Second, the multi–sector feature of the model allows
me to predict future sectoral expenditure shares in counterfactuals so that the results
speak closely to the recent literature on urbanization and structural transformation in
SSA. Third, my setup allows for the simulation of policy-relevant experiments, such
as the adoption of modern inputs in agricultural production. Fourth, my quantifi-
cation strategy requires only data on the distribution of the economic activity and
population within countries, similar to Desmet et al. (2018). As such, it overcomes the
main limitation in the migration literature, which is the need of observing within and
cross-country bilateral migration flows.

In terms of empirics, I assemble a rich micro spatial (1◦x1◦ degree) dataset on pop-
ulation, economic activity, transportation infrastructure, and agricultural production
and suitability. The latter is a core element of this paper: climate change is modeled
to impact the economy as a shock to the suitability for growing crops. In practice,
I draw on the work of agronomists and climatologists from the GAEZ (IIASA and
FAO, 2012) project, and use their estimates of crop-specific potential yields for several
grain crops for recent, past, and future – under a climate change scenario – periods.1

These potential yields are calculated based exclusively on natural characteristics (e.g.
topographic and climatic), providing a measure of geographical natural advantages
for each crop.2 Importantly, as I focus on subsistence agriculture in SSA, I consider
the main staple crops that are grown and consumed in the region: cassava, maize,
millet, rice, sorghum, and wheat.3

A key insight obtained with the GAEZ forecasts is that agricultural suitability is
not expected to change uniformly. Figure 1 illustrates this idea with the potential
yields of cassava in SSA for 2000 and 2080. Several locations are expected to become
much less productive as a consequence of climate change. Surprisingly perhaps, the
opposite is expected for a handful of locations (e.g. in Ethiopia, Southern Kenya,

1To my knowledge, my paper is the first one to exploit the variation of the GAEZ estimates over
time for past periods. Therefore, it contrasts with related research which uses the long–term averages
(1960–1990) of the GAEZ estimates.

2Hereafter, I refer to the GAEZ potential yields as natural or fundamental productivities/advantages
indistinctly.

3These grain crops account for about 80% of the total production, in tonnes, of the main staple
and cash crops (cassava, coffee, cotton, groundnut, maize, millet, palm oil, rice, sorghum, soybean,
sugarcane, and wheat; see Table C.2) and for about 50% of the caloric intake in SSA (Porteous, 2019a).

3



Figure 1: FAO–GAEZ Agro-climatic yields of cassava in 2000 (left) and 2080 (right).

Notes: The two graphs above depict average potential yields of cassava, within 1◦x1◦ grid cells,
drawn from the GAEZ database for 2000 (left) and 2080 (right). The potential yields stand for the
average production, in tonnes/hectares, that could be achieved in each cell (conditional on natural
characteristics only). Somalia is not considered due to the unavailability of data from other sources.
See Section 2 and Appendix B for details.

and Northern Tanzania), contrasting with the idea of climate change as a negative–
only shock to agriculture. The same pattern is observed for other crops, though
differently in terms of spatial distribution. Therefore, the presented evidence suggests
that the changes in the climate will be a heterogeneous shock to the spatial degree of
comparative advantages within the agricultural sector.

The model is calibrated to fit the SSA economy in 2000. To do that, I first use
the GAEZ yields for 2000 as the measure of the fundamental productivities in each
agricultural sector (crops). Second, I use comprehensive data on transportation infras-
tructure in SSA to build an optimal trade network between all locations pairs of my
empirical setup. The resulting bilateral distances between location pairs are used to
estimate trade frictions. Third, I quantify the unobserved fundamentals and param-
eters: the sets of fundamental productivities of the non–agricultural sector, location–
specific productivity shifters of all sectors, and amenities. This last step requires the
inversion of the spatial equilibrium so that the model achieves an exact fit of the data
in terms of GDP distribution, sectoral output, and population in 2000.

I validate my calibrated model with a backcasting exercise. In particular, I simu-
late my calibrated model with crop suitabilities for 1975 and compare its outcomes
with observable data. The model achieves a very good fit when predicting the grid
cell–level changes in population between 2000 and 1975, reassuring its capacity of pro-
viding similar numbers for future periods. As an additional overidentification test, I
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find that the model identifies well the degree of specialization in agriculture across
countries.

My main counterfactual exercise consists of simulating a climate changed SSA in
2080. I draw the estimates for agricultural productivities in 2080 for that scenario4,5

and simulate my model with these values, keeping all other fundamentals unchanged.
The results are striking: compared to a scenario with no climate change, more than
300 million people could be displaced6 (about 12 percent of SSA’s total population),
and real GDP drops by about 4 percent. As previously mentioned, the results are very
heterogeneous across countries and locations.

Subsequently, I evaluate the mechanisms of the model at play by investigating the
heterogeneity of my results. My findings suggest a decrease in the non–agricultural
employment, on aggregate, and heterogeneous changes across countries. The median
country experiences an increase in the non–agricultural labor of 1 percent, and the
10th and 90th percentiles are -3 and 5 percent, respectively. The mechanism driving
this result is sectoral specialization: while the most severely hit locations (and coun-
tries) specialize out of agriculture, the opposite takes place for the least hit locations.
Indeed, the capacity of moving the production towards the non–agricultural sector
mitigates the impacts of climate change in terms of population losses at the grid–cell
level. Along the same lines, crop–switching and access to trade are likewise impor-
tant. Among the locations severely hit by climate–change, those able to reshuffle their
agricultural production mix, or better connected to markets, exhibit lower rates of
population outflows.

Finally, I perform a policy experiment centered on technology adoption in agri-
culture. In particular, I simulate a climate changed SSA where farmers exogenously
adopt more modern inputs in the production, such as animal traction, mechanization,
usage of high yielding varieties, and fertilizers. In such a scenario, the estimated GDP
losses of climate change are considerably reversed. However, population flows remain
considerably large, mainly because more productive inputs in agricultural production
intensify the geographical specialization between the non-/agricultural sectors.

This paper contributes to several strands of the economic literature. First, to a
large set of reduced–form studies that establish a causal relationship between weather

4The GAEZ estimates are available for different hypothetical scenarios for the future – I pick the
one that compares the closest to the standards, according to climatologists, for a severe scenario: the
Representative Concentration Pathway (RCP) 8.5 (see Appendix B.1).

5To account for the uncertainty around the estimates for the future climate, I test the robustness of
all results with respect to different climate models and/or RCP scenarios used to generate the GAEZ
data. That provides confidence intervals for the estimated results. See Section 6.3 for details.

6Population displacement is defined as the difference between the model–implied population, at the
grid–cell level, of two simulations: with and without climate change in 2080. Grid–cells with positive
(negative) values experience population inflows (outflows). See Section 6.1 for a careful discussion.
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anomalies and migration,7 especially in subsistence agricultural economies like SSA.8

However, by mostly focusing on short term climate events for identification, this litera-
ture does not provide the means for assessing the resulting migration of the long–term
changes entailed by climate change (Burzyński et al., 2019a). I add to this literature
by using a spatial general equilibrium approach to assess migration flows caused by
the climate change shock to agriculture.

As such, I also contribute to the literature that investigates the relationship between
population displacement and climate change with quantitative spatial models. Within
this literature, Desmet et al. (2020) quantify the reshaping of the world’s economy and
population upon coastal flooding with a one–sector spatial framework that embeds
land losses in the spatial dynamics of the economy. Desmet and Rossi-Hansberg
(2015); Conte et al. (2020); Nath (2020) embed global warming into a spatial general
equilibrium setup where temperature changes dynamically shape the evolution of
sectoral productivities. Unlike these papers, I focus on the heterogeneous impact of
climate change within the agricultural sector, allowing for within (switching crops)
and across (agriculture–urban) sector adjustments. In my results, I show that the
capacity for such an adaptation is a quantitatively relevant margin that mitigates the
impact of the climate shock in terms of migration at the grid–cell level.

My paper is close to the work of Costinot et al. (2016), who quantify future GDP
losses due to climate change as a shock to agricultural suitability. I contribute to their
work by allowing for labor mobility and quantifying the migration consequences of
the climate shock in a spatial general equilibrium framework. As a consequence, my
work also relates to Shayegh (2017); Burzyński et al. (2019a,b), who study climate
migration in an OLG model where migrations decisions respond to temperature and
sea levels. My contribution is to explicitly model the geography of the economy
and the impact of climate change throughout its locations, making migration (within
and across countries) a key mechanism of the long–run structural adjustment of the
economy to climate change.9

7See Berlemann and Steinhardt (2017); Cattaneo et al. (2019) for the most recent surveys, and Baez et
al. (2017); Gröger and Zylberberg (2016); Cai et al. (2016) for two examples of Latin America, Southeast
Asia, and worldwide studies, respectively.

8The lack of technological adoption in SSA’s agriculture is argued to be among the main causes
of underdevelopment (Porteous, 2019b; Sheahan and Barrett, 2017) and vulnerability with respect to
weather shocks (FAO, 2015). Indeed, Barrios et al. (2006); Henderson et al. (2017) show that changes
in the rainfall patterns during the past decades played a determinant – and causal – role in the high
urbanization rates of SSA.

9Indirectly, I also add to a rich and growing modern spatial economics literature on developing
contexts. A non–exhaustive list include Donaldson and Hornbeck (2016); Morten and Oliveira (2018);
Donaldson (2018); Pellegrina and Sotelo (2019); Ducruet et al. (2019); Balboni (2019); Sotelo (2020) on
the relevance of transportation infrastructure, Desmet et al. (2018) on the dynamic effects of the spatial
diffusion of ideas, Nagy (2020); Allen and Donaldson (2018) on city location and historical dependence,
Allen et al. (2019) on border walls, and Pellegrina (2019); Moneke (2019) on technology adoption.
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Importantly, my paper also adds to the current policy debate about potential cli-
mate migration. Policy circles have been stressing the concerns with climate refugees
for several years (IPCC, 2007, 2012, 2018). More recently, several institutions have
produced quantitative studies to guide policymakers in this matter. Worth noting
are, among others, the World Banks’ (Rigaud et al., 2018), and the Pulitzer Center’s
(Lustgarten, 2020) projects, which use the gravity–based spatial framework of Jones
and O’Neill (2016) to estimate climate migrant flows. The closest result to the context
of my paper is the estimate of about 100 million migrants by 2050 in SSA (Rigaud
et al., 2018). I contribute to this debate by providing results with a richer quantita-
tive framework. In particular, my model considers the interconnection of production,
trade, and residence decisions by agents within and across countries, accounts for the
heterogeneity of the climate change shock within the agricultural sector, and allows
for the simulation of real–world policies.

Finally, I also contribute to the broader economics of climate change literature,
based on the seminal work of William Nordhaus (1992, 2013, 2018, 2019). His DICE/
RICE integrated assessment model (IAM) became a standard tool to quantify the
potential economic impacts of global warming by endogenizing the global climate to
economic activity. While not allowing such relation,10 my framework is capable of
accounting for the economic consequences of climate change as well as many other
aspects not contemplated in IAM studies, such as production, trade, and migration
decisions.11,12

The remaining of the paper is organized as follows. Section 2 describes the main
sources of data used and Section 3 documents a number of empirical facts that il-
lustrate the potential impact of climate change on the agricultural economy of SSA.
Section 4 presents the theoretical framework. Section 5 details how the model is
brought to the data, and Section 6 the results of the climate change counterfactuals,
policy experiments, and several robustness checks. Section 7 concludes.

2 Data

This study builds upon several sources of geographical data. These are aggregated at
1◦x1◦ degree grid cells (about 100 x 100 km at the equator), the unit of observation for
this study. The set of cells covering 42 countries of SSA contains 2,032 cells. Below, I

10Africa contributes with about 3 percent of total CO2 emissions as of 2015, which allows me to
assume climate change to be exogenous to economic activity in my framework.

11An exception is Benveniste et al. (2020), who integrates cross–country migration within an IAM.
12Other studies that exploit past weather changes to evaluate the economic impacts of global warm-

ing are Burke et al. (2015); Burke and Emerick (2016); Dell et al. (2009, 2014); Schlenker et al. (2005);
Schlenker and Lobell (2010).
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describe the collection and aggregation of the main data sources; further details are
documented in Appendix B.

GDP. I obtain data on GDP disaggregated in areas within countries from the Global
Gridded Geographically Based Economic Data v4 (G-Econ, Nordhaus et al., 2006). It
consists of a dataset with gross cell product; i.e. gross product of grid cells of 1 square
degree. The data spans from 1990 to 2005 in intervals of five years.

Population. Information on the distribution of the population is gathered from sev-
eral sources. First, the G-Econ database provides the population count for the periods
from 1990 to 2005. I complement it with gridded population of 1975 from the Global
Human Settlement Project (GHSP, Florczyk et al., 2019). Finally, I collect projections
for future population, at the country level, from United Nations and Social Affairs
(2019) for the period of 2021 to 2100.

Agricultural suitability. I construct a time-varying, geographically disaggregated
data set of crop–specific suitabilities from the Food and Agriculture Organization’s
Global Agro-Ecological Zones (GAEZ, IIASA and FAO, 2012) database. This data
built with a state-of-the-art agronomic model that combines fine–grained data on ge-
ographic characteristics (e.g. soil, elevation, etc.) and yearly climatic conditions to
produce several agricultural-related outputs disaggregated at the 5 arc-minutes (about
0.083 degrees) resolution from 1960 to 2000. Among these, I collect and aggregate es-
timates of agro-climatic potential yields for the 6 crops of interest for 1975 and 2000.
These potential yields, measured in tonnes/hectares, refer to the yield that a certain
cell would obtain if its surface was fully devoted to a specific crop. Moreover, the
GAEZ database provides this data for a climate–changed world in 2080, which I also
collect. The final data is a panel, at the cell-crop level, of agro-climatic yields for 1975,
2000, and 2080.

Agricultural production. Actual crop production is obtained from two sources of
data. First, GAEZ provides actual values (tonnes) of production and harvested land
(in hectares) for 2000. Moreover, FAOSTAT provides crop production, in current US$,
at the country level for 2000–2010.

Transportation network. In order to build up a network connecting all grid cells
of SSA, I first collect the African extract of the Global Roads Open Access Data Set
(gROADS v1, CIESIN, 2013), which combines the best available public domain road
data by country into a global roads coverage database. The date range for the road
network representations is from the 1980s to 2010 depending on the country, as their
data is gathered from different sources. In order to overcome potential missing roads
in some particular country, and to capture links between locations not necessarily
through roads, I explore the transportation friction surface from the Accessibility to
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Cities’ project (Weiss et al., 2018). This high–resolution surface (0.01 degrees reso-
lution) provides the instantaneous cost of passing through a cell conditional on geo-
graphical features (e.g. type of terrain, steepness) as well as on infrastructure (whether
the cell is on a road, railroad, river, etc.).

3 Motivating Facts

This section documents two facts about the potential impacts of climate change in
SSA. I show first that these effects are expected to be strong and heterogeneous. Sec-
ond, I document that as such climate change could be determinant in the future
organization of the SSA economy. Overall, they provide empirical support for my
Ricardian approach when modelling how climate change could affect SSA.

Fact 1: Climate change is expected to bring substantial, and spatially heteroge-

neous, changes to agricultural suitability in SSA.

I use GAEZ estimates of agro-climatic potential yields for 2000 and 208013 to stress
out how severe and heterogeneous the impact of climate change is expected to be. I
define ΔAk

i as the changes in the yields of crop k in location i between the two periods,
and ΔAi as the change in average crop yields in every location i.

Panel A of Figure 2 shows that the average climate change shock to agricultural
yields is very heterogeneous. In terms of levels, several locations are estimated to
become less suitable to agriculture, with average yields reducing by 50% or more.
Impressively perhaps, a handfull of location are expected to become more suitable
if compared to 2000, and the magnitude of such gains are likewise substantial. This
finding goes against the general sense of climate change as a homogeneous negative
shock to agriculture.

To illustrate how heterogeneous these effects are across crops, Panel B of Fig-
ure 2 documents the dispersion of the climate change effects at the location level
(in standard deviations of Ak

i at the location i level). It can be observed that the
changes in yields are not homogenous across crops so that the relative ranking of
crop–suitabilities will be differently shifted. As such, climate change will consist of a
shock to the geographical comparative advantage for each crop.

Therefore, several locations of SSA could potentially cope with the climate change
shock in terms of agricultural loss by adjusting their crop choices. Alternatively, the
economy could also reshuffle its factors to the non–agricultural sector. The degree of
natural advantages on all sectors, interacted with market access, would determine the

13The 2080 forecasts from GAEZ are calculated assuming a hypothetical scenario for the future
evolution of the world climate. Appendix B.1 describes how I choose the scenario to draw my data from
so that my numbers compare the closest possible to the standards from the climatologist community.
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Figure 2: Expected impact of climate change to average crop yields (left) and standard
deviation of crop–yield changes (right) in SSA between 2000 and 2080.

Panel A: Change in average suitability to
agriculture.

Panel B: Standard deviation of changes in crop
suitabilities at the location level.

Notes: The potential yields stand for the production, in tonnes/hectares, attained within 1◦x1◦ grid–
cells conditional on natural characteristics. Panel A documents the estimated change (truncated for
easiness of visualization) in average potential yields between 2000 and 2080. Panel B shows the
standard deviation of the crop–level yield changes within locations. Grey areas stand for cells in with
zero potential yields for all crops in both time periods. See Section 2 and Appendix B for details.

patterns of sector–specialization upon the climate change shock through comparative
advantages.

The extent to which such Ricardian economic adjustments could take place in
SSA depends on the strength of comparative advantages on shaping the agricultural
production and trade in the continent. The next empirical fact provides evidence for
such a mechanism holding in reality and emphasize the importance of embedding it
into my theoretical framework.

Fact 2: Natural suitability to grow crops explains a large degree of crop-specialization

and trade in SSA.

I next document how natural advantages for growing crops explain the spatial pat-
terns of agricultural production and trade in SSA. To do that, I first match the yields
data with effective production at the grid–cell level. Second, I average out the yields at
the country level and match them with bilateral crop trade data from COMTRADE.14

Figure 315 how production and trade correlate with with the GAEZ yields. In
particular, Panel A plots the crop production against the yields at the location–crop
level. The raw data values are first net out of location and country–crop fixed effects,

14Refer to Appendix B.2 for details on the collection and aggregation of the trade data.
15Appendix C.1 provides the details of the econometric models that generate the graphs of Figure 3

and several robustness checks.
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Figure 3: Comparative advantage and the organization of the SSA economy: relation-
ship of crop yields with production and trade.

Panel A: Crop production (in tonnes). Panel B: Bilateral crop trade (in US$).

Notes: Panel A (B) plots the correlation between GAEZ potential yields and effective production
(bilateral crop trade) at the location–crop (country–pair) level. The blue line stands for an estimated
polynomial regression, and grey–shaded areas the 95% confidence bands. See Appendix C.1 for
details.

so that confounding factors at both levels are controlled for. There is a strong correla-
tion between the natural advantages and effective production. Analogously, Panel B
shows a strong correlation between bilateral crop exports and relative yields between
countries. In this case, the raw data is net out of exporter, importer, and crop fixed
effects, as well as of controls at the country–pair level. These two facts are statistical
significant if estimated with fixed effects regressions (see Appendix C.1).

Overall, the data conveys a sound message: crop–specialization happens both
across and within countries, and country trade flows reflect that. To generate this
pattern, my general equilibrium model will take the perspective of subnational units
that specialize in (and trade) crops based on comparative advantage.

4 Model

This section outlines a spatial model16 that allows for a credible quantification of the
general equilibrium impact of future climate change. The model provides a tractable
framework to account for the role of several dimension of heterogeneity (fundamental
productivities across many sectors, market access, factor productivities, among oth-

16Further details and derivations of the model are documented in the Appendix A.
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ers) across geographical locations on the spatial distribution of the economic activity.

4.1 Environment

The economy is composed by N locations i ∈ S = {1, ..., N} and populated by
L = ∑i∈S Li workers who supply their labor inelastically. There are K sectors k ∈ K =

{1, ..., K} in the economy: K − 1 agricultural sectors (crops) and a non-agricultural
composite K sector. Locations (can) produce a locally differentiated variety of the
goods of each of these sectors. Each location has a sector-specific fundamental pro-
ductivity parameter Ak

i ∈ A = {A1
1, ..., AK

N} which drives the degree of comparative
advantage between locations in each sector. Moreover, each location provides an
amenity value ui ∈ {ui}i∈S ≡ U for workers residing in it.

Goods and labor units are mobile in S, subject to frictions. As standard in the
literature, T = {τij}i,j∈S is the bilateral trade frictions’ matrix; τij = τji ≥ 1 stand for
the amount of units of the good required to ship 1 unit from location i to j. Frictions
in labor mobility are instead driven by an idiosyncratic taste shock to the choice of
living in a certain location i. The dispersion of the distribution of these shocks drives
the extent of frictions to labor mobility.

The geography of the economy is the set G(S) = {L,A,U , T }: the spatial fun-
damentals that interact with the economic forces of the model and determine the
distribution of the economic activity over S. In the following, I describe how the eco-
nomic component is structured.

Technology and Market Structure. In every location i, a representative firm pro-
duces goods of each sector k with labor as the unique input of the following linear
production function

qk
i = bk

i Ak
i Lk

i , (1)

where bk
i stands for a location–sector efficiency parameter unrelated to the natural

advantage of that location in producing goods of sector k (e.g. degree of technology
adopted in the production). The output can be locally consumed or traded with
other locations. Trade takes place in a perfectly competitive framework with full
information, which implies no arbitrage in the trade between locations. Such market
structure implies that the price of the sector k variety produced in i and shipped to
(thus, consumed at) location j is

pk
ij = (wi/bk

i Ak
i )× τij, (2)

where the first (second) subscript stands for the location of production (consump-
tion/shipment). wi stands for the wages in location i.
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Preferences. Each location is populated by a continuum of heterogeneous workers.
Their welfare is determined by a component related to the consumption of varieties
and an amenity component. The latter is determined by their heterogeneous taste
with respect to the location of living. Workers choose where to live and how much to
consume so to maximize welfare; a v worker in location i has the following welfare
function:17

Wi(z) =
(

∑
k∈K

(
Ck

i
) η−1

η

) η
η−1

× εi(v); (3)

εi(v) is the location taste shock the worker draws and η > 1 the elasticity of substitu-
tion between consumption of bundles of different sectors. Ck

i is the CES aggregate of
the consumption of all varieties of goods from a sector k, defined as

Ck
i =

(
∑
j∈S

(
qk

ji
) σ−1

σ

) σ
σ−1

, (4)

where qk
ji is the per-capita quantity of the variety of sector k produced in j that is

consumed in i and σ > 1 is the Armington CES.

Consumption choice. Each worker earns wage wi, thus ∑j∈S ∑k∈K pk
jiq

k
ji = wi is the

budget constraint for workers conditional on living in i. Welfare maximization with
respect to consumption of varieties implies that the share of i’s spending on j’s variety
of sector k is

λk
ji =

(
pk

ji/Pk
i
)1−σ, where (5)

Pk
i =

(
∑
j∈S

(
pk

ji
)1−σ

) 1
1−σ

(6)

is the Dixit-Stiglitz price index of sector k. An analogous result holds for the share of
the expenditure on sector aggregates:

μk
i =

(
Pk

i /Pi
)1−η and (7)

Pi =

(
∑

k∈K

(
Pk

i
)1−η

) 1
1−η

(8)

are the share of location i’s expenditure in goods from sector k and the overall price

17I set preferences with a double-nested CES structure to allow for structural transformation. Differ-
ently from assuming preferences with a lower-tier CES and an upper-tier Cobb-Douglas aggregate, my
set up allows for sector shares to be endogenous, rather than fixed and set by the Cobb-Douglas shares.
Moreover, it provides an empirical advantage, as consumption shares do not need to be calibrated. Re-
lated literature usually does so with household consumption data, which might be unfeasible to obtain
for all the countries my study is covering.
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index in i, respectively. Thus, the equilibrium per capita demand for j variety of sector
k goods in i is qk∗

ji = λk
jiμ

k
i wi. By inserting it in eq. (4), one finds that

(
∑

k∈K

(
Ck

i
) η−1

η

) η
η−1

=
wi

Pi
∀i, (9)

i.e. the per capita consumption in location i equals real wages. Moreover, the overall
expenditure in i for goods produced in j, Xji, is defined as

Xji = ∑
k∈K

λk
jiμ

k
i wiLi

= ∑
k∈K

(Pk
i /Pi)

1−η

(
wjτji

bk
j Ak

j Pk
i

)1−σ

wiLi. (10)

Bilateral expenditures take a gravity-like form: for a given sector k, it is decreasing
with respect to marginal cost of shipping from j to i (wjτji/bk

j Ak
j ). Besides, the (partial)

elasticity of trade with respect to trade frictions τij is driven by the CES parameter in
the format of 1 − σ < 0.

Location choice. Workers choose where to live so to maximize welfare. The choice is
subject to a location taste shock ε j. Formally, a v worker chooses location j to solve

max
j

Wj(v) =
wj

Pj
× ε j(v). (11)

Following Redding (2016), I assume that the taste shock is drawn independently
(across workers and locations) from an extreme-value (Fréchet) distribution with
shape parameter θ > 0 and scale parameter uiL−α

i . That is,

εi ∼ Gi(z) = e−z−θ×(ui L−α
i ). (12)

The assumption above means that the workers’ heterogeneity with respect to their lo-
cation tastes (and the dispersion forces in the economy) is driven by the parameter θ.
Higher values imply that agents are more homogeneous and that the economic com-
ponents of welfare (real wages wi/Pi) play a stronger role in the location decisions
in Equation (11). In this case, there are weak dispersion forces in the economy. In
contrast, lower values of θ imply more heterogeneous agents, who more likely draw
higher values of taste shocks for every location. In this case, there are strong disper-
sion forces. The average of the preference draws are disciplined by

(
uiL−α

i
)
; ui stands

for the fundamental amenity of location i and α > 0 determines the extent to which
population density diminishes the life quality in i.
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The distributional assumption on the taste preference allows one to obtain closed-
form solutions for the location choice of workers. As there is a continuum of workers
in every location, the probability that a worker chooses to live in i is equivalent to the
share of workers living in i in equilibrium. Following Eaton and Kortum (2002), one
can show that the latter, defined as Πi, is equivalent to

Πi = P

(
Wi(v) ≥ max{Wj(v)}s 	=i

)
=

(wi/Pi)
θuiL−α

i

∑
j∈S

(wj/Pj)θujL−α
i

. (13)

Therefore, the number of workers that will choose to live in i is

Li = Πi ×L. (14)

The result above is quite intuitive: locations with higher real wages (wi/Pi) and/or life
quality

(
uiL−α

i
)

will have, in equilibrium, a higher share of workers. The magnitude
of it is partially driven by θ, which is the elasticity of the location choice with respect
to real wages.

4.2 Spatial Equilibrium

Given the geography G(S) and the exogenous parameters {θ, η, σ}, a spatial equilib-
rium is a vector of factor prices and labor allocations {wi, Li}i∈S such that eqs. (2),
(6), (8), (10) and (14) hold, and markets for goods clear. Market clearing, formally,
requires that total GDP in i equals total exports to and total imports from all locations
j ∈ S, including itself, i.e.

wiLi = ∑
j∈S

Xij = ∑
j∈S

Xji. (15)

This condition is equivalent trade balancing in all locations. Note that factor markets
clearing is determined by eq. (14), as ΣiΠi = 1 in by construction. Moreover, by using
eq. (10) on (15), one can characterize the spatial equilibrium with the system of 4 × N
equations and 4 × N unkowns below:
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wiLi = ∑
j∈S

∑
k∈K

(Pk
j /Pj)

1−η

(
wiτji

bk
i Ak

i Pk
j

)1−σ

wjLj

(16)

Li =
(wi/Pi)

θuiL−α
i

∑
j∈S

(wj/Pj)θujL−α
j

L (17)

Pk
i =

(
∑
j∈S

(wjτji/bk
i Ak

j )
1−σ

) 1
1−σ

(18)

Pi =

(
∑

k∈K

(
Pk

i
)1−η

) 1
1−η

(19)

To solve this high-dimensional, non-linear system of equations, I apply an iterative
algorithm whose intuition works as follows.18 Given an initial guess for wages, I
solve for prices and labor distribution. I then use the market clearing condition to
solve for optimal wages conditional on its initial guess and the values calculated. I
iterate this process until convergence.

Existence and Uniqueness. My model is not isomorphic to the general set up of
Allen and Arkolakis (2014) and, as a consequence, the existence and uniqueness of
the equilibrium cannot be guaranteed. The reason for that is the additional non-
linearity introduced by the upper-level CES structure. I address that by solving my
model for several parametric choices, starting from many different initial guesses. The
equilibrium found is invariant across all cases.

4.3 Illustration of the spatial equilibrium

I illustrate how changes in the economy’s fundamentals shape the distribution of the
economic activity and population on the geography by representing it as a line with
a discrete number of locations. I assume that locations are homogeneous with respect
to amenity values (ui = u ∀i) and sector productivities (Ak

i = Ak ∀i, k). Bilateral trade
frictions are parametrized as

τij = eτ×|i−j|,

where τ = 0.05. I set two sectors for the economy and assume that A2 > A1. I solve for
equilibrium wages and labor allocations as described in Section 4.2; the distribution
of Li is plotted in Figure 4. In particular, Panel A shows that more central locations
are those where most of the labor – thus economic activity – is allocated. The reason
is that they are the most evenly distant from all other locations in the economy. Thus,
shipping prices in these locations are lower due to the lower trade costs accrued in
the trade with the other locations. There is more labor allocated to the second (more

18Appendix A.4 provides a detailed description of the algorithm.
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Figure 4: Equilibrium values for {Li, L1
i , L2

i }i∈S in the spatial model represented on a
line.

Panel A: Homogeneous {Ak
i } Panel B: Heterogeneous {Ak

i }

Notes: Equilibrium labor allocations for a simplified version of the model as described in Section 4.3.
Panel A describes the allocation of workers (total and sector specific) if sector productivities do not
change across locations (A1

i = A1 < A2 = A2
i ∀i). Panel B plots how the sector specific labor demands

change if the right (left) most locations are the most productive ones in the first (second) sector.

productive) sector; however, the economy also produces goods for the first sector as
the love for varieties’ feature of the CES demand creates demand for it.

Panel B describes how the spatial equilibrium changes by altering the geography
of the economy. In particular, it shows the equilibrium allocation of workers when the
right (left)-most locations as the most productive in the first (second) sector. The equi-
librium allocation becomes skewed accordingly, showing that the model implicitly
determines that the most productive regions are those in which the economic activity
is going to be agglomerated in each sector.

5 Calibration and goodness of fit

I calibrate my model to match SSA in the year of 2000. To do so, I use a mix of calibra-
tion and parametrization methods to map the model above to observable features of
the SSA economy. The goal is to calibrate the exogenous parameters {σ, η, θ, {bk

i }i,k}
and the geography fundamentals {L,A,U , T }. Table 1 summarises the methods and
sources used and Appendix A.5 the numerical algorithms used.

5.1 CES and Frèchet dispersion

The exogenous parameters {σ, η, θ} are drawn from related literature. The lower-tier
CES is set as σ = 5.4 following Costinot et al. (2016), who estimate it with similar
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Table 1: Fundamentals, parameters, estimation methods and sources from the literature

Parameters Description Method Reference

η = 2.5 Upper-tier CES Literature Sotelo (2020)
σ = 5.4 Lower-tier CES Literature Costinot et al. (2016)
θ = 3.4 Workers (inv.) Literature Monte et al. (2018)

heterogeneity

Parameters Subset Description Data source / Moment matched

L – SSA’s population Population data
endowment

{bk
i }i∈S – Sectoral shifters Matched to location–sector

production data in US$

A {Ak
i }i∈S,k 	=K Agricultural produc– GAEZ data

tivities
{AK

i }i∈S Non–agricultural pro– Matched to GDP data in US$
ductivities

U – Amenities Matched to population data

T dist(i,j) Bilateral travel Transportation data
distance

δ = 0.3 Distance elasticity Moneke (2019)
of τ

τF
ij = 1.15 Trade friction to Baum-Snow et al. (2020)

foreign markets

data of mine at the same period, and for a geographical area comprising many SSA
countries. The upper-tier CES is drawn from Sotelo (2020), i.e. η = 2.5. This value
is estimated for the 1990’s Peru, which is not a far-fetched approximation of the SSA
economy in 2000. Finally, I set θ = 3.4 following Monte et al. (2018) (the estimates for
long term elasticities in development economies range between 2 and 4; see Morten
and Oliveira (2018)).

5.2 Transportation network and trade costs

Trade frictions between locations are assumed to be proportional to the travel distance
that separates them. In particular, I follow related research in the literature (e.g.
Pellegrina and Sotelo, 2019; Donaldson, 2018, among others) by assuming that the
trade costs of shipping goods from i to j take the following parametric format:

τij = distance(i, j)δ × τF
ij , (20)
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Figure 5: Estimated trade network for SSA – Western and Eastern Africa.

Notes: Estimated trade network for Western (left) and Eastern (right) Africa. The network is built by
finding the shortest path between all neighboring cells over the road infrastructure with an optimal
path algorithm. τij stands for the estimated iceberg trade costs with respect to the capitals (black dots)
of Nigeria (left) and Kenya (right). See Section 5.2 for details.

where distance(i, j) stands for the bilateral shortest distance between two locations
and τF

ij > 1 for an additional trade friction in case the location pair refers to places
in different countries (i.e. τF

ij = 1 if i, j belong to the same country). To calculate
the bilateral distances between all location pairs, I proceed as follows. I overlay the
roads’ network data from gROADS onto the Accessibility to Cities’ friction surface
and set the pixels over the roads’ data to be ”cheapest” ones to be passed through.19

I then use a pathfinding algorithm to calculate the shortest routes and respective
distances between all neighboring cells.20 With these distances in hand, I use the
Dijkstra algorithm to calculate the shortest distance between all location pairs. The
final step involves using these distances to build T following eq. (20): I set δ = 0.3
following Moneke (2019), and τF

ij = 1.15 following Baum-Snow et al. (2020). The
result of it is a 2,032 x 2,032 matrix of trade costs; Figure 5 illustrates a subsample of
this matrix. It can be seen that the trade network is very complex and reflects well the
existing transportation infrastructure within and across countries. Moreover, it shows

19The advantage of my ”two-input” strategy is that it provides additional information for my
pathfinding algorithm when looking for the route between two coordinates that are not over a road.
In such a case, the path would ”go” to a road through an optimal route (i.e. considering the local
geography) and then ”move” over the road. This approach provides a more realistic outcome than if
assuming a linear path to the closest road.

20The coordinates of each cell are obtained from the longitude and latitude of the most populated
settlement/city in each cell. See Appendix B for more details and fig. C.4 for the results.
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that further and/or foreign locations are those whose trade with is subject to a higher
degree of frictions.

5.3 Fundamental productivities and sectoral shifters

I build the set of natural advantages and efficiency productivity parameters by par-
tially drawing it from observable data; the remaining parameters are obtained with
a calibration technique. In particular, I use the agro-climatic yields from GAEZ as
the fundamental productivities of the agricultural sectors, i.e. {Ak

i }i∈S,k 	=K.21 The
rationale for using the GAEZ estimates is that they measure the potential yield a cer-
tain location would obtain should its area be fully employed to grow a certain crop.
Therefore, as the yield variation across location-crops are driven by each location’s
natural characteristics (such as soil and climate), it provides a reasonable measure for
the parameters I am interested in.

The remaining elements to be quantified is the set of non–crop productivities
{AK

i }i∈S, as well as the sectoral shifters {bk
i }i,k. I back them out with a standard

inversion of my model conditional on observed endogenous variables in 2000: I solve
for {{bk

i }k, AK
i }i∈S that makes the model to simultaneously match GDP and sectoral

production, in US$, in all locations. This step is done by inverting the spatial equi-
librium with numerical methods, carefully explained in Appendix A.5. Importantly,
since I am not able to separately identify bK

i from AK
i , what I estimate is their product,

which suffices for simulating the model.

5.4 Fundamental amenities

With these fundamentals and parameters in hand, I can solve for prices in the econ-
omy (eqs. (18) and (19)) and then solve for {ui}i∈S by matching the model-implied
population with the observed one from the data. In practice, I take advantage of the
fact that my identification of the fundamentals holds up to scale and invert Equa-
tion (17) to obtain a closed–form solution for {ui}i∈S as follows:

Li =
(wi/Pi)

θuiL−α
i

∑
j∈S

(wj/Pj)θujL−α
j

L ∝ (wi/Pi)
θuiL−α

i → ui ∝
L1+α

i
(wi/Pi)θ

(21)

21To be consistent with the SSA context, I draw the agro–climate potential yields calculated for
rainfed agriculture with low usage of modern inputs; see Appendix B.1 for details.
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5.5 Discussion of the inversion results

Figure 6 documents the results of the model inversion. First, wealthier locations are
estimated to be particularly more productive in the non–agricultural sector. Moreover,
densely populated locations with low income are estimated to have a higher value of
amenities. In this case, however, the fundamental amenity parameter would be cap-
turing not only intrinsic quality of life in locations, but also cultural and institutional
characteristics that hinder the population in some locations to not be allocated therein.

Figure 6: Comparison between the results of the model inversion and observed en-
dogenous variables.

Panel A: Quantified non–agric. productivities

Panel C: Observed wages in 2000

Panel B: Quantified amenities

Panel D: Observed population in 2000

Notes: All results are shown in deciles, where 1 (10) stands for the bottom (top) decile of each sample.
Each panel documents, respectively, the spatial distribution of the quantified non–agricultural
productivities, quantified amenities, observed nominal wages and observed population.
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DR Congo and Ethiopia illustrate this feature. Being among the poorest countries
in SSA, but densely populated, is rationalized by the model as a consequence of high
amenities. It is likely, however, that barriers to individuals to outmigrate from these
countries also explain such an agglomeration of population. Therefore, the amenities
I backout must be interpreted as a combination of the fundamental amenities and
these other aspects, which will be held constant in my counterfactuals.

5.6 Model fit

Equipped with the calibrated model, I am able to test its capacity to replicate observed
moments. I start with a backcasting exercise: I simulate the model after replacing the
agricultural productivities and population endowments with their estimates for 1975.
The result allows me to check whether my model replicates well the population distri-
bution in SSA for that period. In addition to that, I check how well the model predicts
the population displacement (differences) between 2000 and 1975 with respect to the
observed values from the data, obtained from GHSP dataset.22

Figure 7 reports the results – the model is able to replicate closely the overall
distribution of the population of 1975 within and across countries. Moreover, Panel A
of Figure 8 documents the changes in the population counts between 1975 and 2000
are very well explained by the model (slope/R2 of an OLS regression of 0.83/0.92).

Figure 7: Model goodness of fit with backcasting: population distribution in 1975.

Panel A: Observed population in 1975 Panel B: Estimated population in 1975

Notes: Panels A and B show the observed (from GHSP dataset) and model–implied population
distribution in SSA for 1975, respectively. The values are shown in deciles; 1 (10) stands for the bottom
(top) decile of each sample.

22As the data source for the population in 1975 (GHSP) comes from a different source than the data
used in the calibration (G–Econ), I check their compatibility with the correlation of population in 2000
(available in both datasets) at the grid–cell and country level; see fig. C.1.
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Figure 8: Model goodness of fit: backcasting results for differences in population and
labor shares in agriculture for 2000.

Panel A: Population changes, ΔLi
Panel B: Agricultural employment (%)

Notes: Panel A and B document the fit (observed versus model–implied) of the model for the changes
in population (in thousands) between then and 2000, and 1975 and the country–level labor shares,
respectively.

Importantly, the only change used in this exercise is on the agricultural suitabilities
between the two periods. According to the GAEZ estimates, between 2000 and 1975
there have been already a substantial degree of changes in agricultural suitability –
about 75% of the locations of my empirical setup experienced a decrease in average
crop yields. Therefore, the fact that such changes can explain well the changes in
population between periods in my model reassures its capacity of providing reliable
numbers for the future.

As an additional overidentification test, I check the model’s capacity to replicate
sectoral employment shares. I focus on comparing the model implied agricultural
shares (i.e. all crops) at the country level. I gather the agricultural share of em-
ployment in 2000 from the World Bank and compare with the shares generated by the
model; Panel B of Figure 8 displays the results. The model does a good job when iden-
tifying the rank of countries with respect to agricultural employment shares, though
underestimating their levels. On aggregate, the model predicts 20% of employment
in agriculture compared to 58% in the data. This discrepency can be explained by the
fact that I am only modeling a small fraction of the value generated by agricultural
production.

6 Climate Change and Migration: The 2080 Forecast

I use my calibrated model to quantify potential climate migration with a series of
counterfactual exercises. The benchmark counterfactual consists of solving for the
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spatial distribution of the economic activity and population in 2080 after replacing
the natural agricultural productivities with their estimates for 2080. The goal of this
exercise is to quantify population reallocation with respect to a counterfactual SSA in
2080 in the absence of climate change.

Subsequently, I explore in detail the role that urbanization, crop–switching, and
trade have in the resulting outcomes, and then perform a number of policy experi-
ments to understand how technology adoption in agriculture may alter the estimated
impact of climate change. I end by checking the robustness of my results to the de-
gree of frictions in the economy, as well as to the climate model and climate change
scenario underlying the data GAEZ data.

6.1 Benchmark counterfactual

I solve my model using the estimates of total population and natural agricultural pro-
ductivities for 2080,23 obtaining the spatial distribution of the economic activity and
of the population. As forecasts point towards large population increases for 2080,
a simple comparison with 2000’s population in levels yields increases nearly every-
where. To address that, my metric for population displacement measures how the
counterfactual population for 2080, Li, compares with the model–implied distribution
for 2080 without climate change, L̃i. I define this metric ΔLi, formally calculated in
percentual changes as follows:

ΔLi =
(

Li/L̃i
)
− 1 (22)

The results is shown graphically in Panel A of Figure 9. The first striking fact is the
large number of locations – about 80% – whose population in 2080 are expected to
be lower vis–à–vis a hypothetical scenario with no climate change. There is a large
degree of heterogeneity, both within and across countries and locations. The median
of the location–level population change is -9.3 percent, and the bottom and top deciles
are -28 and 3 percent, respectively. Analogously, the median country experiences a
-12 percent change in population, and the bottom and top deciles are of -22 and 8
percent change, respectively.

A comparison with Figure 3 (motivating fact 1) reveals a strong relationship be-
tween the intensity of climate change effects on productivities and the population
movements. The fact that some locations, highly spatially clustered in Eastern Africa,
are expected to become relatively more suitable to grow certain crops translates into

23When drawing the data for future periods, I choose the scenario that compares the closest to
Representative Concentration Pathway (RCP) 8.5, a standard in the climatologist literature for a severe
future (see Appendix B.1). I check the robustness of my results to less severe scenarios in Section 6.3.

24



Figure 9: Results of simulations of the SSA economy in a climate changed world in
2080.

Panel A: Population changes Panel B: Changes in non-crop employment

Notes: Results of counterfactual simulations for 2080 using agricultural productivity for 2080
estimated by GAEZ under a climate change scenario. The black dots stand for the main cities of
countries. Panels A shows the changes in the cells’ population compared to a scenario had the
population distribution remained the same as in 2000. Panel B documents the difference between the
within country population shares of the two scenarios.

higher specialization into agriculture inside my model. Such a pattern allows the
SSA to adjust to climate change such that the overall supply of grain crops is not
substantially affected, which would not be the case should climate change entail only
productivity losses.24

Indeed, in terms of structural transformation, the aggregate employment share
in the agricultural sector increases by 6 percentual points. This effect is very het-
erogeneous within and across countries, as shown in Panel B of Figure 9. Some
countries (e.g. Ethiopia, Kenya, or Tanzania) go through an uneven process of sector–
specialization, where some locations specialize more in agriculture and others in the
non–agricultural sector. Other countries instead specialize more homogeneously. As
a result, at the country level, the median change in non–agricultural employment in-
creases by 1 percent, and the bottom and top deciles changes are of -2.8 and 5 percent,
respectively.

Importantly, the results do not imply that all agricultural production would take
place in Eastern Africa only. Indeed, it remains substantially spread out throughout
SSA, and the most populated countries produce the highest bulk of grain production;
see Figure C.2. Moreover, by comparing the least and most hit locations in terms of
population loss, I find that they do not systematically differ in terms of fundamentals

24Indeed, if simulating a climate change scenario with suitability losses only, the magnitudes of the
population displacements and agricultural production changes both decrease.
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such as non–agricultural productivities, amenities, and market access. Such a fact,
shown in Figure C.3, is very important to reject the hypothesis that the fundamentals
that remain unchanged in my counterfactuals are the drivers of my results. Instead, a
complex combination of several economic mechanisms and the climate change shock
drives the population displacements, which I show next.

Heterogeneity of the results. I investigate how the economic mechanisms of my
model interact with the estimated population displacements with a heterogeneity
study. In particular, I focus on the locations expected to experience an outflow of
people and investigate how, in the intensive margin, being able to urbanize, switch
crops, and trade with other locations alters the observed climate change–migration
relationship.

In order to do that, I estimate the relationship of several data moments and coun-
terfactual outputs with a set of regressions. I begin with urbanization: I standardize
the climate change–shock metric ΔAi

25 and the estimated fundamental productivity
in the non–agricultural sector, AK

i , and use it to estimate the following regression:

ΔLi = β × ΔAi × AK
i + β1ΔAi + β2AK

i + εi, (23)

where ΔLi stands for the estimated population displacement in cell i in percentual
terms. Standard errors are clustered at the country level. The coefficient of interest, β,
estimates how much ΔLi, in a location where the climate change shock is one standard
deviation large, changes if being one standard deviation more productive in the non–
agricultural sector. Therefore, it is informative of the role that the advantages in the
non–agricultural sector have on the adjustment of the severely hit locations in terms
of population changes.

The results are documented in Table 2, column 1. It shows that, on average, a large
urban sector protects against the migration effects of climate change. This is shown by
the point estimate of β: conditional on suffering a climate change shock one standard
deviation high, being one standard deviation more productive on the urban sector
decreases the outflow of people by 2.6 percentual points, one average. That stands for
about one–fifth of the median estimated displacement of people in percentual points.

Next, I show that the ability to switch crops very strongly protects against climate
change. To do that, I identify in the counterfactual results the locations that switch
the main crop produced if compared to the 2000’s portfolio. I replace that for AK

i , as
a dummy, in Equation (23), so that β has an analogous interpretation but with respect

25The measure ΔAi stands for the changes in the average potential yields due to climate change in
cell i; see Section 3 for details. However, to make the econometric interpretations more intuitive in
this application, I calculate it in losses, such that positive values stand for an estimated decrease in the
average suitability between 2000 and 2080.
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Table 2: Population displacement induced by climate change: sensitivity to advantages in the
non–agricultural sector, crop switching and market access.

(1) (2) (3)

CΔ Impact −8.547∗∗∗ −6.913∗∗∗ −7.889∗∗∗

(0.948) (1.233) (1.260)

Non–agric. productivity 1.921∗∗

(0.870)

CΔ Impact × non–agric. productivity 2.638∗∗∗

(0.929)

Switch crops 6.412∗∗∗

(1.414)

CΔ Impact × switch crops 3.645∗

(2.062)

Market access −0.574
(0.453)

CΔ Impact × market access 1.136∗∗∗

(0.378)

Observations 1,784 1,784 1,784
R2 0.315 0.265 0.244

Notes: The dependent variable in all specification are the estimated population outflows, in percentual points, as
of Equation (22). Urban productivity stands for the estimated fundamental productivity in the non–agricultural
sector, in standard deviations. Switch crops stands for a dummy for switching the main crop of the production
portfolio in 2080 vis–à–vis the production mix of 2000. Market access refers to a standard measure of market
access in standard deviations. Standard errors are clustered at the country level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

to effectively changing the production mix as a consequence of climate change. The
results, shown in column 2 of Table 2, provide qualitatively similar results: by switch-
ing crops, locations hit by climate change have population outflows 3.6 percentual
points lower.

To conclude, I focus on the role of acces to trade, and find that it is an insufficient
insurance against climate change. To show that, I calculate the degree of market
access of every location in 2000, using a standard measure from the trade literature
(Donaldson and Hornbeck, 2016; Pellegrina, 2019), and replace it in Equation (23)
as before. Therefore, the coefficient of interest measures the average change in the
population displacement in a location hit by climate change but with access to markets
one standard deviation higher, which is estimated to be of about 1.2 percentual points
(column 3).

Overall, these three exercises provide a sound message: the capacity of urbanizing,
switching crops, or trading plays an important shock coping role among the locations
severely hit by climate change. Therefore, they emphasize the importance of account-
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ing for these mechanisms when understanding potential climate migration, and the
limitation of quantitative frameworks that do not do so. Another novel feature of my
framework is the feasibility of policy experiments, which I perform next.

6.2 Policy Experiment – Technology Adoption in Agriculture

An issue on which the policy debate and academic research center is the low level
of modern input usage in agriculture in low–income countries.26 I explore the most
of the GAEZ database to investigate how my results, in terms of population dis-
placement and aggregates, change should the degree of technological inputs used in
agriculture increase during the next decades.

As the benchmark simulation resorts to the GAEZ data that assumes production
at the lower technological frontier (subsistence level), I perform two additional exper-
iments using the 2080’ crop suitabilities that assume the usage of intermediate and
high modern inputs in production.27 Moreover, to isolate the effects of climate change
under these two scenarios, I also simulate the SSA economy by 2080 in the absence of
climate change but with these higher degrees of technology. Therefore, I can estimate
the climate change effects on two hypothetical worlds – with and without modern
inputs in agriculture.

The results are documented in Table 3. Compared to the climate change effects
in a low–input SSA (benchmark results, column 1), the usage of intermediate or high
inputs reverse considerably the negative baseline setbacks. In particular, the real GDP
losses are fully compensated in the intermediate case, and even become gains in the
extreme scenario in which the entire SSA adopts high technology in agriculture in
all sectors. While perhaps counterintuitive at first glance, such a result is driven by
specialization. As shown in Figure 2, one of the results of climate change is that
the more suitable locations for agriculture are more spatially clustered (especially in
Eastern Africa). Therefore, the economy benefits of agglomerating the production
around these locations (as average marginal production costs decrease). Indeed, SSA
specializes even more in agriculture if adopting higher degrees of technology, which
is seen in the changes in the labor shares and the amount of population displaced.

26See Osborne (2005); Restuccia et al. (2008); Sheahan and Barrett (2017), or Dethier and Effenberger
(2011); Brenton et al. (2014); FAO (2015) for related policy studies.

27The subsistence level assumes that production is based on the use of traditional cultivars, labor
intensive techniques, and no application of nutrients, no use of chemicals for pest and disease control.
The intermediate level assumes that production is based on improved varieties, on manual labor with
hand tools and/or animal traction and some mechanization, and uses some fertilizer application and
chemical pest, disease and weed control. The high technological level assumes production at the tech-
nological frontier, i.e. a farming system that is mainly market oriented and commercial production is
a management objective. Production is based on improved high yielding varieties, is fully mechanized
with low labor intensity and uses optimum applications of nutrients and chemical pest, disease and
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Table 3: Aggregate and disaggregated results of the policy experiments with respect
to technology adoption.

(1) (2) (3)

Benchmark Intermediate High
results technology technology

Panel A: Aggregate results

Population displaced 11.84% 22.16% 28.15%
Real GDP Change -4.24% 1.77% 13.32%
Change in non–agric. employment -6.43% -8.8% -9.69%

Panel B: Country–level results

Pop. displaced, bottom decile -21.81% -44.26% -56.28%
Pop. displaced, median -11.53% -23.15% -30.33%
Pop. displaced, top decile 7.93% 18.59% 16.19%
Real GDP change, bottom decile -17.8% -46.56% -60.07%
Real GDP change, median -9.47% -20.8% -26.33%
Real GDP change, top decile 11.39% 40.51% 40.32%

Panel C: Cell–level results

Pop. displaced, bottom decile -28.45% -45.36% -53.82%
Pop. displaced, median -9.38% -19.3% -25.24%
Pop. displaced, top decile 2.99% 1.02% -2.14%
Real GDP change, bottom decile -34.23% -52.23% -60.72%
Real GDP change, median -8.69% -17.91% -23.32%
Real GDP change, top decile 9.06% 12.12% 11.43%

Notes: Panel A documents the aggregate results, in terms of population displacement, real GDP
change, and changes in the non–agricultural labor shares, of the benchmark counterfactual (column
1) and of the policy experiments related to technology adoption in agriculture (columns 2 to 3). Panel
B provides moments of the country–level changes of each of these simulations, and Panel C of the
grid cell–level changes.

6.3 Robustness checks

I conclude my study with a sequence of robustness checks. I first focus on the sensitiv-
ity of my results, in terms of climate migrant flows and other aggregates, to the trade
frictions and the heterogeneity of workers’ location preferences (driven by the δ and θ

parameters, respectively). I check how my outcomes change if increasing/decreasing
these by 10%. However, to properly isolate the climate change effects under each sce-
nario, I proceed as in Section 6.2 by simulating also a scenario with no climate change
but subject to the new degrees of frictions. The difference between these two exercises
is the counterfactual to be compared with the benchmark results.

The results are reported in Table 4, Panel A (and in Figure C.5 at the grid–cell
level). Lower trade frictions reduce the shipping costs in the economy and generate

weed control.
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stronger agglomeration forces. Thus, the economic activity is more reshuffled if com-
pared to the benchmark exercise. The mechanism behind it are the higher incentives
for sectoral specialization between locations benefited/damaged by climate change
and, as a consequence, more population displaced. With lower trade costs, fewer
locations can produce and supply agricultural goods to a wider market (thus the de-
crease in the agricultural employment). The results in terms of real GDP changes also
reflect that: the frictionless the economy becomes, the lower the climate–induced real
GDP losses. The opposite holds for the case of higher trade frictions.

In terms of the degree of heterogeneity on workers’ location preferences (disper-
sion forces), I find that the climate migration flows monotonically increase the more
heterogeneous agents become. The reason is that agents choose where to live based
increasingly more on idiosyncratic reasons (i.e. in locations with higher amenities
rather than locations with higher real income). However, a large subset of the high–
amenity locations in SSA are among the regions benefited by climate change (mostly
Eastern Africa). As a consequence, higher dispersion forces pushes even more indi-
viduals into that region (see Figure C.5), which increases even more the employment
shares in the agriculture sectors (crops). Nevertheless, GDP losses become larger
because the economy does not organize as well, in terms of sectoral specialization
based on comparative advantages, as in the benchmark scenario (where workers put
a higher weight on the ”economic component” of the location choice). The opposite
holds should dispersion forces get weaker (workers become more homogeneous).

Finally, I verify the robustness of my results to changes in the climate models
generating the agricultural suitability data. As extensively discussed by Costinot et
al. (2016), the GAEZ forecasts are produced with climatic General Circulation Models
(GCM), which simulate the evolution of the global climate under an assumption of the
evolution of the world’s stock of carbon (climate change scenario). As mentioned in
Appendix B.1, the GCM from which my data is drawn is the Hadley CM3 model for
the RCP 8.5 scenario (a severe scenario in which carbon emissions increase throughout
the 21st and 22nd centuries). I test the sensitivity of my results to other GCM, under
the same scenario for climate change. The results, reported in Panel B of Table 4, are
qualitatively very similar. The range of the climate–led displacement of population
goes from 8 to 12 percent, roughly, which provides a ”confidence interval” for the
possible effects given the uncertainty around the estimates for the future climate.28

Moreover, I check the sensitivity of my results to the severeness of the underlying
climate change scenario, by using the forecasts for the RCP 4.5. scenario (which
assumes that carbon emissions will peak by mid–century and decrease thereafter, due

28The estimates for the Hadley CM3 model/RCP 8.5 (benchmark counterfactual) are the most ex-
treme (in terms of suitability losses) between all GCM models. That is the reason for the larger magni-
tudes of the results in terms of population displacement, real GDP losses, and sectoral specialization.
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Table 4: Robustness of the benchmark results with respect to trade frictions,
dispersion forces (workers’ heterogeneity), GCM models, and climate change
scenarios.

(1) (2) (3)

Population Changes in Changes in non–
displaced real GDP agricultural empl.

Benchmark results 11.84% -4.24% -6.43%

Panel A: Robustness to frictions

Lower trade frictions 12.33% -3.88% -6.28%
Higher trade frictions 11.46% -4.41% -6.46%
Lower worker’s heterogeneity 11.15% -2.13% -6%
Higher worker’s heterogeneity 12.01% -5.66% -6.55%

Panel B: Robustness to different GCM

CCCma 8.29% -3.61% -4.52%
CSIRO Mk2 9.52% -3.98% -5.26%
MPI ECHAM 9.69% -2.96% -4.29%

Panel C: Robustness to RCP 4.5 scenario

Hadley CM3 7.50% -3.79% -4.71%
CCCma 6.16% -2.13% -4.37%
CSIRO Mk2 8.02% -3.72% -5.20%
MPI ECHAM 7.32% -2.84% -5.43%

Notes: Panel A documents the aggregate effects of climate change to different degrees of trade
frictions and workers’ heterogeneity (dispersion forces), driven by the parameters δ and θ, respec-
tively. Panel B provides the results of the benchmark simulation using climate change data from
GAEZ generated by different GCM models. Panel C reports the sensibility of the benchmark
results to a less severe climate change scenario.

to developments in the implementation of climate–friendly technologies). I simulate
my model with the suitability data for this scenario produced by all GCM models
available; the results are documented in Panel C of Table 4. As expected, all aggregate
effects are attenuated under such a scenario.

7 Final remarks

The main message of this paper is that understanding (and quantifying) climate mi-
gration in agricultural economies is not straightforward. The forecasts by climatolo-
gists are spatially heterogeneous along many dimensions – e.g. along the geography
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and types of crops. As a consequence, the reactions of economic agents when adapt-
ing to such a shock could be numerous and interconnected.

Using a multi-sector spatial trade quantitative framework, I model climate change
as a spatially heterogeneous shock to agriculture crops. I draw on state–of–the–art cli-
mate data to measure how agricultural economies in SSA would be impacted. I find
that the expected changes in agricultural productivity could lead to large population
displacements, within and across countries, of about 12 percent of the SSA popu-
lation. I also discover that the adoption of technology in agriculture could reverse
dramatically the economic losses of climate change.

One of the main takeaways of my paper is the shock coping role of sectoral re-
allocations (structural transformation). In particular, the capacity of adjusting the
production mix towards other sectors – within agriculture or to non–agricultural sec-
tors – upon being hit by climate change is shown to weaken considerably the climate
shock–outmigration link. Trade is also found to be key when allowing for such mech-
anism.

However, some questions remain to be addressed. First, would exporting (cash)
crops be as affected as staple crops and, if so, which impact would that have in
the adaptation of SSA to future changes in the global weather? Which role would
international (i.e. out of Africa) trade play in such a scenario? Moreover, how would
frictions to sector switching – a fact in developing economies – alter the steady–state
equilibrium of SSA? Finally, how would other aspects of climate change – e.g. coastal
flooding, extreme weather events – interact with the agricultural suitability losses that
I account for in this project? Expanding my setup along these dimensions is left for
future research.
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, Dávid Krisztián Nagy, and Esteban Rossi-Hansberg, “The geography of devel-
opment,” Journal of Political Economy, 2018, 126 (3), 903–983.
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Gröger, André and Yanos Zylberberg, “Internal labor migration as a shock coping
strategy: Evidence from a typhoon,” American Economic Journal: Applied Economics,
2016, 8 (2), 123–53.

Henderson, J Vernon, Adam Storeygard, and Uwe Deichmann, “Has climate change
driven urbanization in Africa?,” Journal of development economics, 2017, 124, 60–82.

IIASA and FAO, “Global Agro-Ecological Zones (GAEZ v3. 0),” 2012.

IPCC, “IPCC Special Report,” 2000.

, “Contribution of working group III to the fourth assessment report of the inter-
governmental panel on climate change,” International Panel on Climate Change, 2007.

, Managing the risks of extreme events and disasters to advance climate change adaptation:
special report of the intergovernmental panel on climate change, Cambridge University
Press, 2012.

, “Global warming of 1.5 C,” An IPCC Special Report on the impacts of global warming
of 1.5 degrees, 2018, 1.

Jones, Bryan and Brian C O’Neill, “Spatially explicit global population scenarios
consistent with the Shared Socioeconomic Pathways,” Environmental Research Let-
ters, 2016, 11 (8), 084003.

35



Lustgarten, Abrahm, “The Great Climate Migration Has Begun,” The New York Times,
Jun 2020.

Moneke, Niclas, “Can Big Push Infrastructure Unlock Development? Evidence from
Ethiopia,” Technical Report, Mimeo 2019.

Monte, Ferdinando, Stephen J Redding, and Esteban Rossi-Hansberg, “Commut-
ing, migration, and local employment elasticities,” American Economic Review, 2018,
108 (12), 3855–90.

Morten, Melanie and Jaqueline Oliveira, “The effects of roads on trade and migra-
tion: Evidence from a planned capital city,” mimeo, 2018.
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Appendix

This appendix contains additional material related to the main text. In particular, ap-
pendix A documents theoretical derivations that support the main results of Section 4.
Appendix B provides more details about the data sources mentioned in Section 2 and
other data sources not mentioned therein. Appendix C contains additional figures
and tables.

A Theory Appendix

A.1 Derivation of shipping prices

The representative firm in location i uses labor as the unique input of a linear produc-
tion technology. Locations trade with one another; following the iceberg-like formula-
tion of trade costs, the quantity of a good from sector k produced by the representative
firm from i shipped to location j is

qk
ij =

bk
i Ak

i Lk
i

τij
.

Thus, the representative firm solves

max
Lk

i

pk
ij

bk
i Ak

i Lk
i

τij
− wiLk

i ∀k.

As a constant returns to scale problem, the solution is straight-forward: at an interior
optimum, shipping prices will equal marginal shipping costs, i.e.

pk
ij =

(
wi

bk
i Ak

i

)
τij ∀i, j, k. (A.1)

A.2 Derivation of Bilateral Trade Shares

When maximizing welfare with respect to consumption of varieties, worker v solves

max
{qk

ji}j,k

(
∑

k∈K

(
Ck

i
)(η−1/η)

)η/η−1

εi(v) s. to ∑
j∈S

∑
k∈K

pk
jiq

k
ji ≤ wi ∀i,
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where Ck
i =

(
∑

j∈S

(
qk

ji
) σ−1

σ

) σ
σ−1

. Suppose first workers choose sector composites; i.e.

taking first order conditions with respect to Ck
i (μ stands for the Lagrange multiplier):

η

η − 1
w1/η−1

i
η − 1

η

(
Ck

i
)−1/η − μPk

i ≤ 0 ∀i, j, = 0 for interior solution. Assume so, then

(
Ck

i
)−1

η = μPk
i × w1−η

i ∀i, j, (A.2)

Then, one can write ratio of two sector consumptions as

Ck
i

Cs
i
=

(
Pk

i
Ps

i

)−η

→ Ck
i =

(
Pk

i
Ps

i

)−η

× Cs
i ∀i, j, s. (A.3)

Then, by defining μk
i as the share of i’s spending in k-sector goods and making use of

eq. (A.3),

μk
i =

Pk
i Ck

i
∑

k∈K
Ps

i Cs
i
=

Pk
i (Pk

i /Ps
i )

−ηCs
i

∑
k∈K

Pj
i (Pj

i /Ps
i )

−ηCs
i

=

(
Pk

i
Pi

)1−η

∀i, j,

where the last equation takes advatage of the definition of the price index from eq. (8).
By proceeding analogously for the choice of crop varieties (qk

ji), one finds that the
share of spending on each location variety is defined as eq. (5).

A.3 Derivation of Population Shares

Take the definition of the welfare attained by a worker v living in i and moving to j
as Wi(v) = (wi/Pi)εi(v), εi ∼ Gi(v) = e−v−θui .29 Following Eaton and Kortum (2002),
one can obtain the distribution of the welfare from one specific location i as

Ai(w) ≡ P(Wi ≤ w) = Gj(w × Pi/wi) = e−(w×Pi/wi)
−θui .

Thus, the joint distribution of welfare of all destinations from i can be derived as

A(w) = ∏
i∈S

e−(w×Pi/wi)
−θui = e−Φ×w−θ

, where Φ = ∑
i∈S

(Pi/wi)
−θui.

29For the sake of neatness, I omit the congestion forces present in the main model; i.e. I assume that
α = 0. The results are analogous if otherwise.
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Now, recalling the share of workers living in iis equivalent to the probability that the
welfare attained at i, w, is the highest among all other locations, one writes

Πi(w) = P

(
Wi(v) ≡ w ≥ max{Wj(v)}j 	=i

)
= ∏

j 	=i
P(Wj ≤ w) = e−Φ−i×w−θ

.

With that, it is possible to obtain the unconditional probability Πi by integrating over
all possible values of w ∈ R+, i.e.

Πi =
∫ ∞

0
Πi(w) dP(Wi ≤ w) dw

=
∫ ∞

0
e−Φ−i×w−θ ×

(
e(w×Pi/wi)

−θui(−θ)w−θ−1(Pi/wi)
−θui

)
dw

= ui

(
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)−θ

×
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(−θ)w−θ−1dw; multiply/divide by Φ

= ui

(
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)−θ 1
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×
∫ ∞

0
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Φ(−θ)w−θ−1 dw︸ ︷︷ ︸
=1

=
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θui

∑
j∈S

(wj/Pj)θuj
,

which is the equivalent of eq. (13) without congestion forces.

A.4 Numerical Algorithm for Solving the Model

To solve for the model’s spatial equilibrium, I use a fixed-point approach starting from
eq. (16). In particular, one can re-write it as

wiLi = ∑
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. (A.4)

Noting that prices and labor are all explicit function of wages (eqs. (17) to (19)), start-
ing from an initial guess of w, eq. (A.4) provides an updated, model implied value of
it. By iterating this procedure until the differences between steps are sufficient small,
I solve for optimal wages up to a normalization. I then use the values found to solve
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for optimal prices and labor distributions in Equations (17) to (19).

A.5 Model Inversion

I invert the spatial equilibrium of my model to back out the unobserved non-agricultural
productivities, AK ≡ {AK

i }i, and productivity shifters for all sectors, bk ≡ {bk
i }i,k.

First, to quantify AK, one can use eq. (16) to write
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(A.5)

i.e. an expression for AK
i as a function of all exogenous parameters, endogenous vari-

ables {wi, Li}i∈S, fundamental productivities, and producitivity shifters. Amenities
are not accounted conditional on observing labor distribution. Therefore, for an ini-
tial guess for AK, eq. (A.5) provides updated, model implied optimal values for AK

itself.
Subsequently, one can analogously solve Equation (10) for bk as follows:
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(A.6)

Equations (A.5) and (A.6) provide to fixed–point solutions for {AK, bk}, conditional
on observing endogenous variables {wi, Li, Xk

i }i,k. As they both depend on one an-
other, my algorithm consists of solving them sequentially, starting from an initial
guess, until they both hold (i.e. until the difference between left and right hand sides
are sufficiently small in both equations).

Importantly, given my model structure, I cannot separately identify in my estima-
tion bK

i from AK
i ; i.e. the fundamental producitvity and shifter of the non–agricultural

sector. Therefore, it requires me to normalize bK
i = 1 ∀i, so that the parameter that
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I identify in Equation (A.5) stands for the product of them. Moreover, the shifters I
quantify with Equation (A.6) have a relative interpretation, that is, with respect to the
shifter of the non–agricultural sector whose level I cannot pin down.

B Data Appendix

Several sources of data were put together for the purpose of this project. Here I
describe in some more detail some of the sources detailes in section 2, and provide
information of auxiliar data not mention thereof. A summary of all data sources used
and their temporal coverage is described in Table C.1.

B.1 GAEZ agro-climatic yields.

The GAEZ’s database provides estiamtes of agricultural potential yields for several
crops, in different time periods, and for different degrees of technology usage in
agriculture. As my interest in subsistence agriculture setup of SSA, I aim at building a
time varying dataset of potential yields over the entire subcontinent, for several crops,
at low usage of modern inputs: with rainfed water access, labor intensive techniques,
and no application of of nutrients, no use of chemicals for pest and disease control
and minimum conservation measures.

A challenge, however, is that the time varying potential yields from GAEZ are
available only for high usage of modern inputs (based on improved high yielding
varieties, fully mechanized with low labor intensity techniques, and usage of opti-
mum applications of nutrients and chemical pest, disease and weed control). The
estimates for different input levels are only available for the long–run estimates (av-
erages between 1960–1990).

Therefore, to obtain a time varying dataset of the agro–climatic yields at low input
usage, I first use the long–run values to calculate the GAEZ–implied ratio between
high inputs (Ak,h

i ) / low inputs (Ak,l
i ) yields for each crop. This procedures reveals

how the gains from adopting higher input levels differ across locations and crops –
Figure B.1 illustrates the results for two selected crops in deciles. I use the calculated
ratios to scale down the time varying estimates for high inputs that I collect.

Armed with the location–crop technology scales, I collect the time varying esti-
mates of agro–climatic yields for high input usage. For the estimates in the past,
retrieve those for 1971–1975 and 1996–2000. I average out the 5 years’ blocks so to
avoid year-specific outliers. The reason is to capture long term changes, which could
be contaminated if a certain year faces unusual climate conditions.

The yield estimates for future periods require another parametrical selection: the
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Figure B.1: Yield gains from adoption of high inputs in agriculture vis–à–vis low
inputs for selected crops.

Panel A: Gains for adoption of high inputs for rice Panel B: Gains for adoption of high inputs for sorghum

Notes: Panels A and B show the ratio of high/low input usage yields for growing two selected crops
according to GAEZ long–run estimates. The values are shown in deciles; 1 (10) stands for the bottom
(top) decile of each sample.

underlying scenario for which the data is produced and with which climatic (general
circulation) model (GCM) the data is produced. As carefully discussed by Costinot et
al. (2016), the GAEZ v3.0 database provides such estimates produced with four main
GCM, and for several future scenarios. The latter is of key importance: it contains the
underlying assumption on how the global carbon emissions are going to evolve in the
future so to produce the changes in the climate.

I choose the scenario A2 from the GAEZ database, which matches closely the
current standard of severe evolution of the global climate for the future: the Repre-
sentative Concentration Pathway (RCP) 8.5.30 This scenario assumes a steady increase
in carbon stocks in the atmosphere througout the 21st and 22nd centuries, becoming
stable by mid–23rd century. A milder scenario that I use for my robustness checks is
the B1, which is similar to the nowadays–standard RCP 4.5. It assumes that the global
stock of carbon will peak by late 21st century, becoming stable thereafter. Figure B.2
illustrates the equivalence between the SRES and RCP scenarios.

30Unfortunatelly, the GAEZ v3.0 database contains data produced under old standards for future
climate scenarios – those produced in the Special Report on Emission Scenarios (SRES; see IPCC, 2000).
The SRES scenarios were later updated by IPCC as the RCP scenarios, which are now the standards in
the climate community (IPCC, 2012).

43



Figure B.2: Equivalence between long and longer–run estimates of radiative forcing
(proportional to carbon emissions) between SRES and RCP scenarios.

Source: IPCC (2012), chapter 1, Figure 1.15 (left) and Chapter 12, Figure 12.3 (right).

B.2 COMTRADE data.

The trade data used in this paper is obtained from the COMTRADE database (COM-
TRADE, 2010). I collect bilateral trade flows, in current US$, for all crops of my study,
between all country–pairs of my empirical setup. To do that, I rely on the COM-
TRADE API system, which allows me to retrieve imports and exports trade flows
between country at standard HS product codes.

Consistent with good practice with trade data, I collect import flows rather than
exports. The reson for that is the usual discrepancy between total import and exports
at the country–pair–product level. While import flows are registered between country
of production and final country of shipment, export data usually register intermediate
countries on the trade chain as final destination, biasing the trade flows (Veronese and
Tyrman, 2009).

Finally, to transform the trade data to monetary unit of my study (US$ PPP from
G–Econ), I proceed as follows. First, I calculate the share of trade flows, at the
importer–exporter–crop–year levels, over the GDP of of the importing country in each
year, in current values. Subsequently, I average out the shares over the 2000–2010 pe-
riod, so to avoid outliers in the year of 2000. Finally, I multiply the shares at the
importer–exporter–crop level by the importer GDP of G–Econ for the year of 2000.

B.3 Building the agricultural production data.

To build a dataset for agricultural production at the location–crop level for 2000, I
combine the GAEZ data of production (in tonnes) with the FAOSTAT agricultural
production data (country–crop level) and World Bank country GDP data (both in
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current US$). First, I use the GAEZ data at the cell–crop level to calculate the share
that each cell is observed to produce, of each crop, over its country’s total production.
Second, I obtain with the FAOSTAT and WB data the share of each country crop
production for the years of 2000 to 2010. I average out such shares and multiply them
by the country GDP implied by the G–Econ data, so that the unit is consistent with
the monetary unit of the model (US$ PPP). Finally, I multiply the country–crop PPP
values by the location–crop shares. For very liitle locations, however, the outcome can
exceed the their total GDP. In these cases, I simply trim the value by 99.99% of its
GDP.

B.4 Additional data sources

Main populated places. I collect the coordinaes of the main populated places of SSA
from the Populated Places data set from Natural Earth. It consists of a geo-referenced
dataset with the coordinates of about 90% of all cities, towns and settlements in the
World. I use it to set coordinates for each of the cells of SSA. If a certain cell contains
more than one location, I pick the one with the highest population. If another does
not have any location to obtain the coordinates, I set them to be the cell’s centroid.
Finally, if any of the centroids are not located in the mainland (i.e. ocean, lakes), I set
it to be the closest coordinate to the centroid that is on the mainland. See fig. C.4 for
the result.

C Additional figures and tables

Table C.1: Main data sources

Type of data Coverage Source

GDP and Population 2000 G-Econ Project v4.0 (Nordhaus et al., 2006)
Population 1975, 2000 Global Human Settlements Project (Florczyk et al., 2019)
Population projections 2021 – 2100 United Nations and Social Affairs (2019)
Area Harvested/Crop 2000 GAEZ v3.0 (IIASA and FAO, 2012)
Agric. Productivities 1960–2000 GAEZ v3.0 (IIASA and FAO, 2012)
Climate Δ projections 2020, 2050, 2080 GAEZ v3.0 (IIASA and FAO, 2012)
Transportation data 2000 gROADS project (CIESIN, 2013)
Friction transportation surface 2000 Accessibility to Cities’ project (Weiss et al., 2018)
Bilateral crop trade data 2000–2010 COMTRADE (COMTRADE, 2010)
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Table C.2: Share of grain crop production (in
tonnes) over total production of the main staple and
cash crops in SSA.

Crop Share of production

Grain crops:
Cassava 56.65%
Maize 11.75%
Millet 4.59%
Rice 2.18%
Sorghum 6.15%
Wheat 1.13%
Total: 82.45%

Cash crops:
Coffee 1.13%
Cotton 1.14%
Groundnut 2.72%
Palm oil 4.93%
Soybean 0.33%
Sugarcane 7.31%
Total: 17,55%

Source: GAEZ production data for 2000 aggregated in over
the 42 countries of my empirical setup. SSA includes all sub–
Saharan African countries but Somalia.

Figure C.1: Correlations between populations from G–Econ and GHSP datasets for
the year of 2000.

Panel A Panel B

Notes: Panel A: Population counts in SSA from G–Econ (x axis) and GHSP (y axis) aggregate at
country level. Panel B: Population counts in SSA from G–Econ (x axis) and GHSP (y axis) aggregate at
1 degree grid cells.

46



Figure C.2: Model implied agricultural output in 2080 under climate change for two
selected crops.

Cassava Millet

Notes: Total crop output from the benchmark counterfactual simulation for cassava and millet, shown
in deciles of each sample. 1 (10) stands for the bottom (top) deciles.

Figure C.3: Kernel density estimates of most/least hit locations (in terms of popula-
tion loss) with respect to fundamental amenities, non–agricultural productivities, and
market access in 2000.

Amenities Fundamental urban productivity Market access in 2000

Notes: Densities with respect to the quantile of amenities, urban productivities and market access.
The most hit locations stand for the bottom quintile of the subset of locations that are estimated to
experience outflows of people, and account for about 17% of the total sample. The least hit locations
stand for all of those expected to receive inflows of population, and represent about 20% of the sample.
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Figure C.4: Coordinates for SSA grid cells (localities) for Western (left) and Eastern
(right) Africa.

Figure C.5: Differences in differences results in terms of climate change–induced pop-
ulation changes between scenarios with different degrees of frictions and the bench-
mark results at the grid–cell level.

Lower trade frictions Higher dispersion forces

Notes: Both plots document the disaggregated effect of different degree of frictions (trade led by δ

and dispersion forces by θ) on the estimated population changes induced by climate change. These
are obtained as a differences in differences; i.e. the differences between the population changes in
a scenario with lower trade frictions and those of the benchmark results (the same holds for the
dispersion forces’ plot).
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C.1 Regression results for production and trade explained by com-

parative advantage

I explain here how I use the GAEZ data to investigate the relation between advantages
to growing crops and the spatial patterns of agricultural production across and within
countries of SSA and trade.

Comparative advantages and production. I combine three sources of GAEZ data: the
agricultural production, in thousands of tonnes, the total harvested land, in thousands
of hectares, and the average agro-climatic potential yields, for each crop. Formally, I
define Xk

i as the dependent variable, standing for either total production/harvested
land of crop k in grid cell i. Moreover, Ak

i is defined as the degree of suitability to
grow k in cell i, in tonnes/hectares. I use it to estimate the following regression:31

log
(

Xk
i

)
= δ log

(
Ak

i

)
+ ak + εk

i . (C.1)

The parameter of interest, δ, estimates the average change in crop production (or
harvested land), in percentual points, associated with a one percent increase in the
crop suitability. Importantly, ak stands for a set of crop fixed–effects (dummies); thus,
the variation that identifies δ is within crops across geographical locations. Intuitively,
δ shows the degree of association, throughout the entire SSA, of being more suitable
to grow a certain crop and effectively producing it. That is, it provides evidence of an
association between natural comparative advantage and specialization in agriculture
at the crop level across SSA.

In order to understand whether such a relation holds at the country level, I replace
ak with a set of country–crop fixed effects. In that case, δ is identified with variation
within country–crop , and its interpretation analogous. It identifies the intensity of the
geographical clustering of agricultural activity on more suitable locations, according
to GAEZ, within countries.

The results are documented in Table C.3. It provides strong evidence for the hy-
pothesis in question. In particular, Panel A locations with potential yields one percent
higher are found to produce, on average, 0.75% percent more if compared with all
locations in SSA (column 1), and 0.62% if compared with locations from the same
country (column 2). The results for harvested land (Panel B) are qualitatively equiv-
alent. Overall, it conveys a sound message: crop–specialization happens both across
and within countries. To generate this pattern, my general equilibrium model will
take the perspective of subnational units that specialize in crops based on compara-
tive advantage.

31If not otherwise specified, the regression models throughout the paper omit the constant as of
neatness.

49



Importantly, the resuls shown in Figure 3 stand for the residuals of Xk
i and Ak

i
from a regression on location and crop–country fixed effects (the most demanding
possible). The estimated line stands for the results of a semi–parametric (polynomial)
regression of these two controlling for the same fixed effects.

Table C.3: Suggestive evidence for the relation between natural comparative advantage (relative
potential yields) and crop-specialization (effective production) in sub-Saharan Africa.

(1) (2) (3) (4)

Panel A: Crop production (in logs) Panel B: Harvest land (in logs)

Potential yields (logs) 0.753∗∗∗ 0.623∗∗∗ 0.694∗∗∗ 0.612∗∗∗

(0.057) (0.071) (0.053) (0.068)

Observations 12,192 12,192 12,192 12,192
R2 0.504 0.732 0.469 0.689
Crop FE Yes No Yes No
Country–crop FE No Yes No Yes

Notes: Estimation using GAEZ data (of year 2000) for agricultural production (thousands of tonnes), harvested land
(hectares), and potential yields of agriculture (agro-climatic potential yields, in tonnes/hectare). Panel A uses crop
production as the dependent variable; Panel B uses harvested land instead. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Comparative advantage and trade. I provide further evidence of the importance of
comparative advantage on economic outcomes in SSA by focusing on trade. In order
to do that, I collect the average bilateral crop trade, in US$, between all country pairs
of my empirical setup, from 2000 to 2010, from the UN Commodity Trade Statistics
Database (COMTRADE, 2010).32 By combining it with the GAEZ potential yields,
I learn whether trade flows are somehow determined by the degree of comparative
advantage between countries at the crop level.

I start by looking at aggregate flows. I sum up total exports at the country–crop
level, defining Xk

c as the total exports of crop k from country c. Next, I average out the
GAEZ yields at the country level, analogously defined as Ak

c , and use it to estimate
the following regression:

log
(

Xk
c

)
= δ log

(
Ak

c

)
+ ak + bc + εk

c, (C.2)

where ak and bc stand for crop and country set of fixed effects, respectively. Therefore,
the parameter of interest δ is identified with variation at the country–crop level, net
out of invariant country and crop characteristics.

Subsequently, I use the trade flows at the bilateral level to investigate further the
relation of interest. I first define bilateral exports at the country pair–crop level as
Xk

cc′ , where c and c′ stand for the exporting and importing countries, respectively. I

32Appendix B.2 describes carefully how I collect and aggregate the raw COMTRADE data for the
following empirical exercise.
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proceed by calculating a bilateral measure of comparative advantage across countries,
formally defined as Ak

cc′ = Ak
c/Ak

c′ ,
33 and use it to estimate the following regression:

log
(

Xk
cc′

)
= δ log

(
Ak

cc′

)
+ ak + bc + dc′ + εk

c. (C.3)

Equation (C.3) contains a set of crop, exporter and importer fixed effects, respectively
ak, bc, and dc′ . Therefore, the correlation of interested, δ, is estimated with variation
at the country pair–crop level, net out of the fixed effects. As of robustness, I add
to Equation (C.3) a set of controls at the country pair level, such as distance between
capitals, and dummies for geographical contiguity, common language, and ethnicity.
Finally, I exploit the most of the variation in the data by adding country pair fixed
effects, which net out all the variation in trade flows and comparative advantage at
the bilateral level.

The results are documented in Table C.4. First, Panel A shows that the country’s
natural suitabilities are strong correlates of their exports: countries 1% more produc-
tive to grow a certain crop are observed to export about 0.5% more of that crop, on
average. The same pattern holds at the bilateral level, shown in Panel B. The volume
of crop exports from countries 1% more suitable, relative to the importing country,
is about 0.4% higher, on average (column 2). The estimates become more precise
with the inclusion of controls, as seen in column 3. Moreover, the magnitude of the
estimates remains somehow stable even with the inclusion of more demanding (coun-
try pair) fixed effects, which absorb a substantial degree of the variation on relative
suitabilities due to the high degree of spatial correlation between crop yields.

The results shown in Figure 3 stand for a semi–parametric regression (polynomial)
of the specification of Table C.4, column 3. Moreover, the residuals plot are those
of a regression of the dependent and independent variables on all fixed effects and
controls.

33Defined as such, the data allows me to exploit the most of the trade flows, which contain exports
between the same countries pairs in both directions.
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Table C.4: Suggestive evidence for the relation between comparative advantages (rela-
tive potential yields) and crop exports in sub-Saharan Africa.

(1) (2) (3) (4)

Panel A: Total Panel B: Total bilateral crop exports

crop exports

Country potential yields 0.473∗∗

(Ak
c , in logs) (0.190)

Bilateral relative yields 0.360∗∗ 0.490∗∗∗ 0.257
(Ak

cc′ , in logs) (0.157) (0.148) (0.203)

Observations 198 924 924 924
R2 0.645 0.350 0.415 0.677
Crop FE Yes Yes Yes Yes
Exporter FE Yes Yes Yes No
Importer FE No Yes Yes No
Bilateral controls No No Yes No
Exporter–Importer FE No No No Yes

Notes: The dependent variable in Panel A is average country crop exports, in US$, between 2000 and
2010, and bilateral crop exports (average flows between 2000 and 2010, in US$) in Panel B. The trade data
is collected from COMTRADE, and the potential yields from GAEZ (as of year 2000). Refer to Appendix B
for details on the construction of the data. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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