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1 Introduction

Technology standards play a central role in networked industries.1 When the value of a

technology increases with the number of users, firms have an incentive to coordinate on

a single technology, the “standard,” to exploit the benefits of a larger network. However,

in the medium to long-run, standardization has costs: Once coordinated on a standard,

the industry may become reluctant to switch to new and superior technologies if they are

incompatible with the installed base. Can standardization prevent the efficient adoption of

new technologies? While the theoretical literature (Farrell and Saloner (1985, 1986)) has

shown that excess inertia can arise, attempts to empirically assess it remain scarce. This

paper studies a two-sided network’s decision to switch from the current technology standard

to a more efficient one and estimate the magnitude and sources of excess inertia.

Two sources of inefficiency lead to the adoption of the new technology being too slow.

First, network effects may give rise to adoption externalities: the marginal adopter benefits

other adopters (and may hurt non-adopters) so that the private costs and benefits may

not reflect the social ones.2 Second, incomplete information about other firms’ willingness

to adopt induces coordination failure: firms are unwilling to risk switching without being

followed, which creates delays in adoption.3 Appropriate policy intervention should account

for the type of inefficiency and the (potentially asymmetric) distribution of excess inertia

across firms on the two-sided network.

As an application, I study the conversion of movie distribution and exhibition from the

35mm film standard to digital cinema in France, between 2005 and 2013. Digital cinema

consists of distributing motion pictures to theaters over digital support (internet or hard

drives) as opposed to the historical use of 35mm film reels. To screen digital movies, theaters

must equip their screens with digital video projectors instead of film projectors.

Digital cinema is well suited for assessing excess inertia in standard adoption. First,

the movie distribution-exhibition industries constitute a hardware-software system with (in-

direct) network effects (Katz and Shapiro (1985)). Adoption of digital projectors—the

hardware—by theaters is contingent on the availability and variety of digital movies—the

1Examples include AC in electric power distribution, FedACH for wire transfers in banking, USB for data
transmission, MP3 and 3.5mm jack for music distribution, NTSC for color TV transmission, and 4G LTE
in broadband networks for mobile devices.

2When network effects are direct, adoption externalities always arise. When network effects are indirect,
such as in hardware-software systems, Church, Gandal, and Krauske (2008) show that, under some conditions,
software variety gives rise to (technological) externalities between hardware adopters.

3Another potential source of inefficiency, not considered in this paper, is market power in technology
provision. Externalities only arise when preferences are heterogeneous, and cannot be solved with joint
action without side-payments (subsidies). Coordination failure arises even with identical adopters, and it
can be solved without side-payments.

1



software—supplied by distributors. Conversely, software variety depends on the hardware

installed base. Second, 35mm film and digital are incompatible technologies.

Market forces may not have provided sufficient incentives for an efficient switch from

35mm film to digital. First, the adoption of digital projectors by a theater raises distributors’

incentive to release movies in digital. This increased number and variety of digital movies

is a positive externality on other theaters equipped with digital projectors, which is not

internalized by the adopter.4 Second, uncertainty about other distributors’ willingness to

release movies in digital can lead to coordination failure, with some distributors inefficiently

delaying their digital conversion.5 Indeed, it is optimal for a distributor to release a given

movie in digital only if sufficiently many theaters are equipped to screen it. The fraction of

equipped theaters will be high if sufficiently many distributors are releasing digital movies.

This chicken-and-egg problem can make a unilateral switch to digital suboptimal.6

The paper leverages four novel datasets: (1) a panel recording adoption of digital pro-

jectors at the theater-screen level, as well as information on local market conditions and

theater characteristics, (2) a time series of digital projector prices, (3) a time series report-

ing the share of movies distributed in digital, and (4) estimates of the average distribution

cost curves (printing, shipping and storage cost per movie print) under the film and digital

technologies.

To quantify the magnitude of excess inertia among downstream and upstream firms, I

specify a dynamic structural model and simulate two counterfactuals. Theaters’ technology-

adoption choices are modeled as a dynamic game played at the level of the French movie

industry, allowing for rich theater and market heterogeneity (e.g., type of programming, chain

affiliation, market size, number of rival’s screens, etc.). Every period, theaters choose the

number of screens to equip with digital projectors, given the adoption cost and availability

of digital movies. In turn, the availability of digital movies depends on the installed base of

digitally equipped screens in the industry.

Because network effects are at the industry level, with a few hundred theaters adopt-

ing, this framework generates a particularly high-dimensional state space. To alleviate the

computational burden, I exploit the fact that a single theater’s adoption decisions have

a negligible impact on aggregate software availability, which allows me to recast its prob-

lem as a single-agent dynamic problem. The model is estimated using a conditional choice

4A negative externality on non-adopters (due to decreased availability of film movies) is possible. But in
practice, multi-homing (i.e., dual distribution on film and digital) blunts this externality.

5Distributors’ willingness to switch depends on costs that vary widely across heterogeneous distributors
(large US studios vs. small French distributor) and are private information.

6In general, these two sources of inefficiency may arise both for upstream distributors and downstream
theaters. The focus on externalities among downstream theaters is motivated by the data and the institu-
tional framework.
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probability-based method (Hotz and Miller (1993), Hotz, Miller, Sanders, and Smith (1994))

combined with matrix inversion to obtain choice-specific value functions (Aguirregabiria and

Mira (2007), Pesendorfer and Schmidt-Dengler (2008)). The estimation approach exploits

differences in adoption behavior across theaters (e.g., differences in adoption times, units

of new technology acquired, and adoption costs) to estimate how exogenous theaters and

market characteristics affect the single-period profits from equipping a movie screen with

digital technology.

Using the estimated model, the paper simulates two counterfactuals. First, in the plan-

ner’s benchmark, I solve for the adoption path chosen by a planner maximizing aggregate

theater profits, taking as given upstream distributors’ equilibrium reaction function (fraction

of movies released in digital given the installed base of digital movies). In this counterfac-

tual, (positive) adoption externalities across theaters are internalized, leading to a steeper

adoption path. Differences in theaters’ surplus between the market outcome and the plan-

ner’s benchmark are attributed to adoption externalities across theaters (downstream excess

inertia). Second, in the coordination benchmark, I assume that the planner mandates coor-

dination on digital distribution upstream starting in 2005 and maximizes aggregate theater

profits. Differences in theater’ surplus between the coordination and the planner’s bench-

marks are attributed to upstream excess inertia.7

The adoption path under the equilibrium market outcome is delayed compared to the

coordination and planner’s benchmarks: by 1 to 3.5 years for the time to 10% adoption,

and 0.5 to 2.5 years for the time to 90% adoption. Additionally, inefficiencies in adoption

reduce surplus by 19% relative to under coordination. Adoption externalities across theaters

explain 29% of the surplus loss. The results indicate that, in the switch from 35mm to

digital, excess inertia is mainly due to slow adoption in the upstream distribution market.

A standard-setting organization would have been a beneficial instrument to coordinate firms

on the new technology and avoid delays.

The previous analysis focuses on theaters’ surplus due to a lack of data on upstream

distributors’ profits. However, it is not a priori clear whether upstream distributors benefit

under the two benchmarks. In the last section of the paper, I provide evidence that, given

estimates of distributors’ average distribution cost curves (under film and digital respec-

tively), distributors’ surplus also increases under the counterfactual scenarios. The trade-off

hinges on the magnitudes of economies of scale in printing, shipping, and storing movie

prints (whether in 35mm film or digital) and cost reductions from digital relative to film

distribution. The latter dominates the former under the counterfactual adoption paths of

7In this sense, upstream excess inertia is obtained as a residual and can arise because of coordination
failure and adoption externalities across distributors.
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digital screens.

The rest of the paper is organized as follows. The next section reviews the literature and

highlights the main points of departure from it. Section 3 presents the movie distribution

and movie exhibition industries, describes the technology and highlights the specificities of

the French market. Section 4 describes the data and gives preliminary descriptive statistics.

Section 5 develops the dynamic structural model of technology adoption. Section 6 shows

the identification and estimation of the industry model. Finally, section 7 presents the

counterfactual analysis.

2 Related Literature

Previous empirical work on technology adoption under network effects has primarily focused

on the identification and estimation of network effects. Identification is, in general, not

straightforward due to the reflection problem highlighted in Manski (1993,1995). Rysman

(2019) discusses this issue in the specific case of network effects and reviews the approaches

taken to address it. In the context of direct network effects, recent contributions uses re-

gional or individual-specific exogenous shifters of network size to identify direct network

effects: Gowrisankaran and Stavins (2004) study ACH adoption by banks, Tucker (2008)

studies video-messaging adoption by a bank’s employees, Goolsbee and Klenow (1999) study

adoption of home computers.

In the case of indirect network effects, the literature relies on instruments that shift

adoption on one side of the market (e.g., software market) to identify the degree of indirect

network effects on the other side of the market (e.g., hardware market).8 Recent examples

include: video games platforms (Clements and Ohashi (2005), Corts and Lederman (2009),

Dubé, Hitsch, and Chintagunta (2010)), compact disks titles-players (Gandal, Kende, and

Rob (2000)), DVD titles-players (Karaca-Mandic (2003), Gowrisankaran, Park, and Rysman

(2014)). In addition to the endogeneity problem, the latter paper highlights other econo-

metric issues arising with time series data: hierarchical variation and spurious correlation.

Because the data structure in this paper is likely to give rise to the same econometric issues,

I build on their approach in the estimation section.

A few papers within this literature go beyond the estimation of network effects and discuss

welfare implications. Ohashi (2003) studies the war between VHS and Betamax in the VCR

market and quantifies the value of compatibility between the two technologies. Rysman

8This type of network effects have been formally modeled by Chou and Shy (1990), and further developed
by Church and Gandal (1992). Recent theoretical contributions include Markovich (2008), and Markovich
and Moenius (2013). For a review of the literature on network effects, see Farrell and Klemperer (2007).
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(2004) studies the Yellow Pages market and analyzes the trade-off between market power

and internalization of network effects. Augereau, Greenstein, and Rysman (2006) discuss

the potential role of ISPs differentiation in the initial failure to coordinate on a standard

for 56K modems. Ackerberg and Gowrisankaran (2006) examine the welfare implications of

customer and bank subsidies in ACH adoption. Ryan and Tucker (2012) study video-calling

adoption within a multi-national firm and simulate counterfactual diffusion paths under

alternative network seeding policies. Lee (2013) studies the welfare impact of exclusivity

contracts between software providers and hardware platforms in the video game industry.

The present paper contributes to this literature by providing a case study of excess inertia

in technology adoption, and by disentangling the sources of surplus loss.

This paper makes a contribution to the literature using dynamic games to study innova-

tion and technology adoption. The recent research on this topic builds dynamic structural

models and simulates the effect of competition on innovation (e.g., Goettler and Gordon

(2011), Igami (2017), Igami and Uetake (2017)) or technology adoption (Schmidt-Dengler

(2006), Macher, Miller, and Osborne (2017)). This paper contributes to this literature in two

ways. First, the paper evaluates the role of firm heterogeneity and externalities in delaying

new technology adoption. Second, this paper highlights the importance of measuring and

modeling adoption within the firm (e.g., at the unit of capital level). Indeed, multi-homing

(i.e, the simultaneous use of two technologies across a firm’s capital stock) is an important

feature of a wide array of industries.9

This paper contributes to the empirical literature studying the movie industry. This

literature has considered many facets of the industry: the effect of vertical integration (Gil

(2008)), seasonality (Einav (2007)), strategic entry and exit, and spatial retail competition

(Davis (2006a), Davis (2006b), Takahashi (2015), Gil, Houde, and Takahashi (2015)). Recent

contributions have studied digitization in the movie industry. Waldfogel (2016) studies the

effect of digital movie production, alternative distribution channels (streaming), and online

film criticism on new product releases. Rao and Hartmann (2015) study the quality-variety

trade-off in screening brought about by digital projection. Yang, Anderson, and Gordon

(2019) evaluate the impact of digital projection on product variety and supply concentration

(i.e., number of screens on which the top movie is shown). The present paper contributes

to this strand by using the transition from film to digital as an example of a technology

standard switch and estimate how the diffusion path differs from the social optimum.

9Examples from the intra-firm technology adoption literature include: Mansfield (1963), Nabseth and Ray
(1974), Romeo (1975), Levin, Levin, and Meisel (1992), Fuentelsaz, Gomez, and Polo (2003), and Battisti
and Stoneman (2005).
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3 Industry Background

This section describes the movie-distribution and movie-exhibition industries before and

after the advent of digital technology. It presents costs and benefits of digital cinema from

the perspective of distributors and exhibitors and discusses the effect of digital cinema on

movie ticket prices and quality. Finally, this section highlights the specificities of the French

distribution and exhibition markets and important stylized facts.

3.1 From 35mm film to digital

For most of the 20th century, movies reached viewers after going through a series of specified

steps in a vertically structured industry. After the movie is shot and produced, distributors

print the movie onto 35mm film reels and ship the reels to movie theaters. At the theater,

a projectionist prepares the reels and arranges them so they can be fed to a film projector.

When the movie’s run is over, the print is broken back down into shipping reels and either

sent to the next theater or returned to the distributor.

On January 19, 2000, the Society of Motion Picture and Television Engineers, in the US,

initiated the first standards group dedicated to developing digital cinema. The technology

would entail (1) movie distribution on a digital support (via the internet or hard drives),

instead of the historical uses of film reels and (2) movie projection via digital projection

hardware instead of the film-projection technology.

To screen a digital movie, theaters must equip their screens with digital projectors. Four

manufacturers supply digital cinema projectors worldwide: Sony, Barco, Christie, and NEC.

The average list price of a digital projector (in 2010 euros) was e88, 000 in 2005, e50, 000

in 2010, and e40, 000 by 2012. In addition to the digital projector, a digital cinema requires

a powerful computer known as a “server.” A digital movie is supplied to the theater as a

digital file called a Digital Cinema Package (DCP). The DCP is copied onto the internal

hard drives of the server, usually via a USB port.

Digital projection automates all the technical tasks that were previously performed by

the projectionist. Unskilled staff can control the playback of the content (movie featured,

trailers, ads), the projector, sound system, auditorium lighting, and tab curtains through

the server.

3.1.1 Supply of digital movies by distributors

Digital distribution of movies drastically cuts printing and shipping costs for movie distrib-

utors. The cost of an 80-minute feature film print is on average between US$1,500 and

$2,500. By contrast, a feature-length movie can be stored on an off-the-shelf 300 GB hard
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drive for $50.10 In addition, hard drives can be returned to distributors for reuse. With

several hundred movies distributed every year, the US distribution industry saves over $1

billion annually.

3.1.2 Adoption of digital projectors by exhibitors

Digital projection allows exhibitors to cut down on operating costs. Screening film prints

is a technical task, requiring mechanical skills that are increasingly rare and costly.11 By

contrast, operating a digital projector is a simple task: untrained staff can easily compose

a playlist and launch a projection as on a regular computer. Digital projection also opens

up the possibility of using theaters for “alternative content” such as pop concerts, opera

broadcasts, and sports events.

A consequence of the “automated” nature of digital projection is that uncertainty and learn-

ing, which can be important determinants of technology diffusion, are not central to theaters’

adoption decisions.

3.1.3 Multi-homing by movie distributors and theaters

Multi-homing in movie distribution consists of the distribution of a given movie on both film

and digital supports. According to industry professionals, multi-homing was widespread

over the diffusion period studied in this paper (2005–2014). Importantly, the decision to

multi-home involves a trade-off between economies of scale and cost reduction. On the one

hand, there are economies of scale in printing, shipping, and storing movie prints (whether in

film or digital). By multi-homing, distributors split their production over two cost functions

(film and digital) and forgo some of these economies of scale. On the other hand, there

are cost reductions from digital relative to film distribution, which incentive distributors to

multi-home.

Multi-homing in movie exhibition refers to equipping a given screen with both a digital

and film projector. This type of multi-homing was rare for practical reasons (limited space

in screening booth, heavy and sensitive projection equipment), and because theaters laid off

their projectionists following the adoption of digital projection.

3.1.4 The Virtual Print Fee system

A large fraction of the cost savings from digital cinema is realized by distributors. For

this reason, theaters have been reluctant to switch without a cost-sharing arrangement with

movie distributors. An agreement was reached with the Virtual Print Fee (VPF) system.

10The latter figure of $50 does not include the price of encryption-key generation, transportation, and
storage, which add approximately $200–$300. For French/European movies, these figures are around e950
for film print distribution and around e350 for digital print distribution, including shipping, encryption-key
generation, and storing.

11Film projectionists are commonly represented by powerful unions and are therefore expensive. See the
interview in l’Obs 07/14/2010 (in French) “Frédéric, projectionniste chez UGC pour 1800 euros par mois”
The collective bargaining agreements set the minimum monthly salary to e1, 500 over the period of interest.
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The VPF system was born in the US market and was rapidly adopted in the rest of the

world. Under this system, the distributor pays a fee per digital movie to help finance the

digital hardware acquired by the theater. The VPF contract would typically cover 50% of

the hardware adoption cost; the rest has to be paid for by the exhibitor.

3.1.5 Impact on ticket prices and movie quality; and the role of 3D

Excluding 3D movies, the film-digital quality differential was small enough not to warrant

any impact on ticket prices.12 Although 3D movies, and in particular Avatar (released in the

winter 2009, grossing $2.7 billion worldwide), were initially a major selling point for digital

projection, exhibitors quickly realized it was not expanding the audience as promised.13 The

vast majority of movies released over the diffusion period were in 2D.

3.1.6 Welfare implications

Although the paper does not discuss welfare, digital cinema is expected to increase consumer

surplus by reducing the cost of bringing movies to the market. A first consequence of such

reduction in costs are wider releases with increased access for theaters located in small and

rural markets. Second, cost reductions in movie making will lead to new product entry.14

3.2 The French distribution and exhibition market

3.2.1 The French exhibition industry

The French exhibition industry is fragmented, with a large fraction of small theaters: half of

theaters are mono-screen, and an additional 15% are two-screen theaters. The largest theater

chains by share of total screens in 2014 (end of the diffusion of digital cinema) are Gaumont-

Pathé (13.6% of screens), CGR (7.8%), and UGC (7.5%). These three chains make up 50.1%

of total box office revenue.15 In the early phase of the diffusion period (in 2007), these shares

were: Gaumont-Pathé (12.1% of screens), CGR (7.1%), and UGC (7.0%). Market shares

were relatively stable over the diffusion period. The French exhibition industry experienced

small entry and exit rates over the diffusion period (around 1.5% per year). As a result,

the majority of digital projectors acquired were replacing old film projectors, enabling the

analysis of the industry’s choice between the old and new technology standard.

12As noted by Davis (2006a), theaters’ ability to set ticket prices is constrained by distributors’ incentives.
Because the conversion to digital distribution affected mainly the cost of a movie print, which is a fixed cost
from the point of view of movie tickets, it did not significantly impact ticket pricing. However, by decreasing
distribution costs, it increased competition for screens between distributors. The latter may have had a
positive impact on theaters’ share in box office revenue.

13See Bordwell (2013).
14Aguiar and Waldfogel (2018) show that if product quality is unpredictable at the time of investment

(as is typically the case with cultural products such as movies), new product entry can have large welfare
benefits.

15See Kopp (2016).
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3.2.2 The French distribution industry

The French distribution industry is less concentrated than its US counterpart. In 2014, for

example, the four-firm concentration ratio was 35.2% in France and 57.4% in the US. Over the

diffusion period 2005–2014, US movies had an average 47% market share (of total box-office

revenue), French movies had a 39% market share, and European and other nationalities made

up 14% of the box office.16 An important point to note is that US studios distribute their

movies via national subsidiaries (e.g., Universal France or Warner Bros. France). Subsidiaries

tailor their advertising and distribution campaigns to the national market they operate in.

Therefore, the support—film or digital—over which US movies are distributed in France

depends primarily on the installed bases of film and digital projectors in France.

3.2.3 The VPF and government subsidies

In the US, the VPF system was the result of bilateral negotiations between distributors and

exhibitors. This was initially the case in France as well, until a law was passed on September

2010 making VPF contributions mandatory: any distributor willing to distribute digital

copies of its movie must pay a fixed fee to the theater booking the digital copy. As in the

US, the VPF would go toward covering 50% of the digital projector cost, the rest being paid

by the exhibitor.

Government and regional subsidies to small theaters were another important feature

of the hardware-acquisition process in France. Many small “continuation” theaters, which

receive movies only two or three weeks after their national release, did not generate enough

VPF to be able to acquire the digital-projection hardware. The government, along with

the regions, stepped in to help these theaters finance their digital conversion. These aids

were allocated to theaters that owned less than three screens and were not part of a chain

controlling 50 screens or more.

3.2.4 Art house theaters

French theaters can acquire the “art house” label if they screen a minimum share of in-

dependent and art house movies. This share depends on the theater location (e.g., small

rural area, large city). The label, awarded every year, entitles the theater to government

financial support (in the form of a lump-sum subsidy). A priori, operating profits may differ

for art house theaters compared to non-art house (or commercial) theaters. Additionally,

digital movies availability differs for commercial movies (e.g., US block-busters) compared

to art house and independent movies. In particular, art house distributors lagged behind

commercial distributors in their switch to digital. Therefore, art house theaters may differ

in their adoption behavior.

16Based on CNC 2014 annual report.
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4 Data and Descriptive Statistics

This section describes the data and presents descriptive statistics. The data contain infor-

mation on theaters’ digital-adoption decisions, theater characteristics, adoption costs, and

availability of digital movies over time.

The main dataset is a panel describing digital adoptions by theaters. This dataset was

collected from two sources: the European Cinema Yearbooks published by Media Salles, and

an online database maintained by Cinego, a private digital platform.17 Both sources are

public and provide snapshots of the digital-exhibition industry at different periods spanning

June 2005 through March 2013, in France. Thirteen dates are obtained from the Cinema

Yearbooks, and 5 dates from the Cinego database. At each of the 18 observation dates, the

number of digital projectors acquired is known for every active theater. The observation

dates and sources are detailed in Appendix A. Figure 1a represents the 18 observation dates

along with the industry share of screens equipped with digital projection. As seen in this

figure, the panel is aperiodic (starting in 2008) and stops before the diffusion is complete in

2014. Five periods are dropped to ensure a relative periodicity in the sample (6 months).

Details about this procedure can be found in Appendix A.

Two auxiliary datasets complement the main adoption panel dataset. The first is ob-

tained from the French National Center of Cinematography (CNC hereafter). The CNC

dataset provides a rich set of information on theaters’ characteristics, local market size, and

the share of movies available in digital, between 2005 and 2015. More precisely, this annual

dataset contains: (1) lists of all active theaters, (2) the number of screens, the number of

seats, the address, the owner’s identity (theater chain, individual), and art house status for

each active theater, (3) market population (categorical) at the urban/rural unit level (de-

fined below), and (4) the share of movies released in digital (distributed partially or entirely

in digital).

The second auxiliary dataset, obtained from the European Audiovisual Observatory, pro-

vides time-series information on digital-projector acquisition costs.18 Namely, the time-series

for the hardware adoption cost is constructed by adding (1) the price of a digital projector

(net of VPF contributions) to (2) ancillary costs. The time-series for digital-projector prices

is based on a survey of projector manufacturers. Actual prices paid by specific theaters

are not public due to nondisclosure agreements between theaters and manufacturers. This

time-series is taken as representative of the “list” price (or manufacturer’s suggested retail

17Raw data available at: http://www.mediasalles.it/yearbook.htm and
https://cinego.net/basedessalles (via the Internet Archive)

18See ”The European Digital Cinema Report - Understanding digital cinema roll-out” (Council of Europe,
2012)
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price MSRP) of digital projectors. The analysis accounts for the VPF subsidies, which cover

50% of the projector price.19 Ancillary costs include the price of other equipment (the server

and the digital sound processor), Theater Management software, and labor costs (installa-

tion). Estimates of ancillary costs were collected by the European Audiovisual Observatory,

but are only available for 2010. In the analysis, these ancillary costs are assumed to have

stayed constant over the sample period. This assumption seems reasonable for labor costs.

According to the Observatory, price declines for the server and digital sound processor are

more limited than for the digital projector. The hardware-adoption cost is adjusted to 2010

constant euros.20 The hardware adoption cost is interpolated to obtain estimates at the 13

observation dates. Figure 1b shows the time series for this variable.

The analysis is conducted on the data after the following preparation. Itinerant theaters,

which account for 5% of active theaters, are dropped. Because the focus is on firms’ decision

to convert existing capital from film to digital, theaters that enter during the diffusion period

already equipped with digital projectors are excluded from the model. Their contribution to

the overall installed base of digital screens is, however, accounted for and taken as exogenous.

Firms exiting before conversion to digital are also excluded.21 Rates of entry and exit are,

however, low (between 1 and 1.5% of firms enter or exit every year). Theaters in French

overseas territories are excluded. The final sample includes 1, 671 theaters, located in 1, 169

markets (urban or rural units, defined below), and observed over 13 dates between June 2005

and April 2012. The sample covers 87% of all non-itinerant theaters located in Metropolitan

France, which were active in 2005 or entered before 2008 equipped with the old technology.

Table 1 shows a description of the variables used in the analysis.

Local market definition and competitors

Local market demand and competition are defined based on the urban or rural unit in which

the theater is located. An urban unit is defined by the INSEE, the French National Statistics

Office, for the measurement of contiguously built-up areas. It is a “commune” alone or a

grouping of communes that form a single unbroken spread of urban development, with no

distance between habitations greater than 200 meters, and have a total population greater

than 2,000 inhabitants. Communes not belonging to an urban unit are considered rural.22

In 2010, Metropolitan France contained 2, 243 urban units and about 33, 700 rural units.

For the largest cities (Paris, Lyon, Marseille), the urban unit division is not appropriate,

19Although the law mandating VPF subsidies was only enacted in September 2010, it was retroactive.
Moreover, anecdotal evidence indicates that pre-2010, the majority of projectors were purchased under VPF
agreements. The model will assume digital projector-purchases before 2010 benefited from VPF subsidies.

20The GDP Implicit Price Deflator for France is used.
21The inability to convert is, however, not a significant cause for exit, because the CNC and regional

governments subsidized digital adoption for the smallest and less financially sound theaters.
22Communes correspond to civil townships and incorporated municipalities in the US.
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because the resulting local markets are too large. In these cases, the relevant market within

each city is the “arrondissement” (equivalent to zipcode in the US).23 In the rest of the

paper, a theater’s competition is measured using the number of competing screens in the

same local market.

Descriptive statistics

The analysis focuses on theaters with at least four screens, due to the prevalence of gov-

ernment and regional subsidies for theaters with three screens or fewer.24 Table 2 and 3

report cross-sectional summary statistics, and highlight the market and firm heterogeneity

captured by the data.

Table 2 shows summary statistics for the 399 theaters with at least four screens. A

significant fraction of these theaters, 33%, are art house theaters. The average theater has

eight screens, and 1, 538 seats. Thirty-five percent of theaters are part of the three largest

theaters chains: Gaumont-Pathé, CGR, and UGC. In total, 53.4% of theaters are miniplexes

(4-7 screens), and 46.6% are multiplexes/megaplexes (8 screens or more).

Table 3 reports summary statistics by market type. Paris and its suburbs are controlled

for separately because attendance rates are significantly higher in the capital compared to

national averages.25 As expected, the stock of screens grows with the market size. A larger

fraction of theaters is art house in rural areas because the CNC’s threshold requirements

to qualify are lower for relatively less dense areas. Theater size increases on average with

market size (except for Paris, where the scarcity of space limits theater size).

Preliminary analysis of the data uncovers two important points. First, theaters tend

to gradually roll-out digital technology over their stock of screens. Figure 2a shows the

number of new digital screens equipped per year. Figure 2b decomposes this number into:

(1) screens installed by new adopters (theaters with no digital screens in t − 1), and (2)

screens installed by theaters with some digital screens by t − 1. (1) is informative about

the degree of adoption at the extensive margin, whereas (2) is informative about the degree

of adoption at the intensive margin (within-theater). Starting in 2008, a large fraction of

23The subdivision by arrondissement is arbitrary, given that theaters are engaged in spatial competition.
As a robustness check, a theater’s competition can also be measured using distance bands around the theater
location. With a distance band of 5 miles, this alternative definition gives similar values for the variable
“number of competitors’ screens.”

24These subsidies covered part or all of a theater’s adoption costs. They were allocated according to a
government-determined (or regional) timeline. Therefore, subsidized theaters’ adoption behavior (adoption
times and units of technology adopted) does not stem from an optimization problem and is not informative
about underlying benefits from adoption. Although the model does not formally include subsidized firms,
their adoption decisions contribute to the installed base of digital projectors but assumed to be exogenous
in the model.

25Moviegoers in Paris visit theaters on average 12 times a year, compared to a national average of 4 − 5
times over the diffusion period.
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screens converted to digital per year belong to theaters that have already adopted at least

one digital screen in previous periods, highlighting the importance of the intensive margin.26

To closely match this feature of the data in the theoretical section, adoption decisions will

be modeled at the screen-level.

Second, adoption by a theater’s competitors does not significantly affect its likelihood of

adoption. I provide evidence for this in the estimation section 6.3.1. Therefore, strategic

interactions in local markets are ruled out in the model.

5 Industry Model

This section presents the dynamic structural model. The model will be subsequently used

to guide the estimation and recovery of theaters’ operating profits under the film and digital

technologies. These profits are required to quantify, via simulation of counterfactuals, the

amount of surplus loss due to excess inertia.

Theaters’ technology adoption choices are modeled as a dynamic game played at the level

of the French movie industry. Digital projectors are durables, so the model must incorporate

the fact that theaters can delay their adoption to a future date to benefit from lower prices

and obtain greater availability/variety of complementary goods (i.e., digital movies).

The central part of the model specifies how theaters make their technology adoption

decisions—at the screen-level—as a function of their firm and market-level characteristics, the

adoption cost, and the availability of technology-specific complementary goods (film or digital

movies). Theaters have an incentive to convert to digital projection due to cost-reductions

(primarily labor cost savings). For the distribution market, the model captures a distributor’s

per-period decision regarding on which support to distribute its movies (film and/or digital),

given the technology-specific installed bases (screens equipped with film/digital projectors).

Finally, an equilibrium of the distribution-exhibition industries is specified. In equilibrium,

theaters convert their screens optimally to digital projection, given their information sets and

beliefs about future states, and these beliefs are consistent with theaters’ adoption decisions

and distributors’ optimal choices of distribution format.27

26An alternative way of measuring the contribution of the intensive margin is to decompose the sample
variance in adoption times across all screens in the industry into within-theater and between-theater vari-
ances. The former sample variance is 1.28 (corresponding to a standard deviation of 1.13 years), the latter
is 1.02 (or a standard deviation of 1.01 years). Therefore, within-theater variance in adoption times explains
about 56% of total variance across all screens in the industry. This likely underestimates the contribution
of the intra-firm margin because the panel stops before the end of the diffusion.

27All vectors are denoted in bold.
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5.1 Adoption of digital projectors by theaters

Time is discrete and infinite. A period corresponds to six months.

Firms: A firm is a movie theater. There are I firms indexed by i ∈ {1, ..., I}. This set is

fixed throughout the game: no entry and exit occur.

Firm state space: Firm heterogeneity is reflected through firm states. In period t, the in-

dividual state of theater i ∈ I is a vector denoted by xit ∈ X .28 Firm state xit is decomposed

into (τi, sit):

• τi is a vector representing theater i’s type, which is fixed throughout the game. τi

includes firm size Si (number of screens), local market characteristics (market size,

denoted marketi, and number of competitors’ screens, denoted S−i), art house label

arti ∈ {0, 1}, and a chain identifier chaini ∈ {0, 1, ..., C} (with chaini = 0 if i is not

horizontally integrated).

• sit ∈ {0, 1, ..., Si} represents the number of screens converted to digital by theater i,

by the beginning of period t. The remaining Si − sit screens operate using the film

technology.

Let the industry state, xt, be a vector over individual firm states that specifies, for each

firm state x ∈ X , the number of firms (across the industry) at x in period t. Focusing

on symmetric and anonymous equilibrium strategies, this definition of the industry state

is without loss of generality. Let S =
∑

i∈I Si denote the total number of screens in the

industry, and let st =
∑

i∈I sit denote the total number of digital screens in the industry in

period t.

Theaters that are part of the same chain are assumed to make their adoption decisions

independently. This assumption is motivated by the fact that modelling adoption at the

chain level is computationally burdensome: each chain’s state should record firms’ states for

all theaters part of the chain. The resulting chain state vector is high-dimensional.29 This

modelling assumption is discussed in more length in section 5.3.

Transition dynamics: A theater can increase its number of digital screens, sit, by paying

an adoption cost. If firm i converts ait screens to digital in period t, the firm transitions to

a state sit+1 given by

sit+1 = sit + ait for ait ≤ Si − sit (1)

28An earlier version of the paper includes strategic interactions at the local market level (oligopoly game).
Theaters track their competitors’ adoption decisions. See online appendix.

29The chain adoption state vector for Gaumont-Pathé (70 theaters) has dimension 1,088,430—assuming
all theaters have four screens and ignoring theaters’ types and rivals states.
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There is no uncertainty in state transition. A theater’s state sit is bounded above by its

maximum capacity Si.

Aggregate adoption cost: The aggregate adoption cost process, {pt, t ≥ 0}, includes the

digital-projector price (net of VPF contributions) and ancillary costs. This process is as-

sumed deterministic and publicly observable to all firms. The process reflects technological

advances in the manufacturing of digital projectors, as well as learning-by-doing and scale

economies, which exogeneously decreases the hardware adoption cost over time.30

Firm-specific adoption cost: The per-screen adoption cost for theater i in period t is the sum

of two components:

pt + εit (2)

where pt is the aggregate adoption cost and εit is a theater-specific shock, drawn from a

distribution with c.d.f F . This theater-specific shock is privately drawn at the beginning of

each period and is independent across periods and theaters.

Before defining theaters’ single-period profit function, digital movie availability is first

discussed.

Availability of digital movies: Every period, a continuum of massM of movies is released.

Movies are short-lived and are screened by theaters for one period. Let hdt denote the share

of movies released exclusively in digital format in period t, and hft denote the share of movies

released exclusively in film in period t. Denote by hmt = 1−ht−hft the share of multi-homed

movies (i.e., distributed on both film and digital).

According to industry professionals, multi-homing was widespread over the diffusion pe-

riod studied in this paper (2005–2014).31 To match this feature of the distribution market,

I impose the restriction that hdt = 0, i.e., a given movie is either multi-homed or released

exclusively in film.

For the rest of the analysis, define ht ≡ hmt so that 1−ht = hft . The share of multi-homed

movies, ht, is assumed to depend on the installed base of digital screens. Let

ht = Γ(xt) (3)

denote distributors’ reaction function giving the share of movies multi-homed as a function

of the industry state vector. This mapping is increasing in its arguments. The mapping Γ(.)

is an endogenous object and is allowed to depend on the adoption equilibrium played by

30The process can be assumed to be random. For example, the transition matrix of the process can depend
on the stock of digital screens in the industry: P(pt+1|pt, st). The simpler specification is imposed due to
the limited amount of data available to estimate a transition matrix (only time series information used).

31This is consistent with the findings of Anderson, Gordon and Yang (2019) for the digitization of the
Korean movie industry. They find that the vast majority of distributors multi-homed until 2015.
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downstream movie theaters.

Theaters’ Single-Period Profit Function: The single-period profit of theater i (net of

the adoption cost) in period t, if it adopts ait units of digital hardware, is given by

Π(xit, pt, ht, ait, εit) = π(xit, ht)− ait(pt + εit) (4)

where π(xit, ht) are theater i’s operating profits (screenings, concessions, advertisements)

in period t, which depends on the firm state xit and the shares of digital movies ht, and

ait(pt + εi,t) is the total cost of converting ait screens in period t.

Operating profits are decomposed into total profits from digital screens πd(xit, ht) and

total profits from film screens πf (xit).
32 I introduce a set of minimum shape restrictions that

have to be satisfied by these payoffs to be consistent with theaters choosing movies optimally

to maximize operating profits (recall that xit = (τi, sit)):

Assumption 1. Let n denote the number of digital screens in theater i, then

1. πd(τi, n, ht)− πd(τi, n− 1, ht) is nonincreasing in n, given ht. (concavity in n)

2. πf (τi, n− 1)− πf (τi, n) is nondecreasing in n, given ht. (concavity in Si − n)

3. πd(τi, n, ht)− πd(τi, n− 1, ht) is nondecreasing in ht, given n. (Supermodularity)

The first assumption states that the marginal benefit from an additional digital screen

is nonincreasing in the number of digital screens. The second assumption states the same

result but for film screens instead (if the number of digital screen is n, the number of film

screens is Si − n). Both assumptions illustrate the fact that, when choosing which movies

to screen, theaters rank movies by potential box-office revenue and choose to screen movies

with the highest box-office potential first (given firm and market characteristics). The third

assumption states that the marginal benefit from an additional digital screen increases with

the availability of digital movies. Again, if theaters pick movies with the highest potential

box-office revenue, then the expected revenue per digital screen is higher when choosing from

a larger pool of digital movies (large ht). Note that the equivalent of this last assumption

for film screens is not necessary, because all movies released per period are available on film

(either because multi-homed or exclusively released on film).

Assumption 1–3 and equation (3) make clear the positive feedback loop between the

hardware and software sides of the market. For a theater, the benefit from adopting a

digital projector depends on the share of movies available in digital ht (technology-specific

software), which in turn depends on the installed base of digital screens in the industry.

32Note that πf (xit) is independent of ht because all movies are available on film.
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State space: In a Markov Perfect Equilibrium, firms use Markov adoption strategies

and condition their adoption decision only on the current vector of state variables ωit ≡
(xit, pt,xt, εit). Although theater i’s single-period profits, Π(.), do not depend directly on

the industry state vector xt, the firm tracks this variable in order to form expectations about

the future evolution of the (payoff-relevant) share of multi-homed movies ht, determined by

equation (3).

The analysis focuses on equilibria in pure symmetric Markov strategies, defined as map-

pings from the current state ωit into actions ait (i.e., number of screens to be converted to

digital). In the rest of the model, define γit ≡ (xit, pt,xt) as the state excluding the private

firm-specific shock, so that

ωit = (xit, pt,xt, εit) = (γit, εit)

Value function and optimal adoption rule: Let a(γit, εit) be a pure adoption strategy.

Firms aim to maximize expected discounted profits, by choosing the number of screens to

equip with a digital projector at the current period, taking into account the effect on future

operating profits and given their belief about future values of the state vector. The value

function of firm i is defined as the solution of the following Bellman equation (where the

subscript t is omitted and next-period variables are marked with a prime):

V (γi, εi) = max
ai

{
π(xi, h)− ai(p+ εi)

+ β
∑
p′,x′

V (τi, si + ai, p
′,x′)Pa(p

′,x′|γi)
} (5)

where β is the discount factor, Pa is the transition kernel, giving the probability of one-period

reachable states for the adoption price and industry state vector, given firm i’s belief a about

other theaters’ actions. Moreover, V (τi, si + ai, p
′,x′) is firm i’s ex-ante value function, that

is, before observing next-period firm-specific shock ε′i. It is given by: V (τi, si + ai, p
′,x′) =∫

V (τi, si + ai, p
′,x′, ε′i)dF (ε′i).

The optimal adoption rule can be expressed as a function of the choice-specific value

functions. Let W (ai|γi) denote the discounted expected value function when firm i converts

ai screens in the current period:

W (ai|γi) = β
∑
p′,x′

V (τi, si + ai, p
′,x′)Pa(p

′,x′|γi) (6)

Define ∆W (k|γi) ≡ W (k|γi) −W (k − 1|γi) for k ∈ {1, 2, .., Si} as the difference in the
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choice-specific value functions of converting k and k − 1 screens to digital. Firm i’s optimal

adoption rule is derived by noting that, in deciding the number of screens to convert to digital

technology, the firm compares the choice-specific value functions net of the adoption cost.

The adoption cost, in turn, depends on the current list price pt, and firm i’s idiosyncratic

shock εit. The optimal adoption rule takes the form of a set of cut-offs in εit.
33 It can be

expressed as

ait =


0 if ∆W (1|γit)− pt ≤ εit

k if ∆W (k + 1|γit)− pt < εit ≤ ∆W (k|γit)− pt
and 1 ≤ k < Si − sit

(Si − sit) if εit < ∆W (Si − sit|γit)− pt

(7)

The optimal adoption rule can alternatively be recast in the form of conditional choice

probabilities (CCP):

P (ait|γit) =



∫∞
∆W (1|γit)−pt dF (εit) if ait = 0

∫ ∆W (k|γit)−pt
∆W (k+1|γit)−pt dF (εit) if ait = k ∈ {1, 2, ..., Si − sit − 1}

∫ ∆W (Si−sit|γit)−pt
−∞ dF (εit) if ait = Si − sit

(8)

Finally, the ex-ante value function (i.e., before the firm observes the idiosyncratic shock

εit) can be derived by taking expectations with respect to εi in equation (5):

V (γi) = π(xi, h) +
∑
ai

P (ai|γi)
(
− ait(p+ E[εi|γi, ai]) +W (ai|γi)

)
(9)

The last equation expresses the ex-ante value function V , as a function of the choice-specific

value function W and probabilities P (ai|γi). The latter are both functions of the ex-ante

value function. An equilibrium ex-ante value function is a fixed-point of this mapping.

5.2 Market equilibrium

In every period, the sequence of events is as follows: First, distributors observe the installed

base of digital screens (i.e., the industry state vector xt) and publicly make their distribution

decision (film or multi-homing) for movies released in that period. Second, theaters receive

33The cut-off rule can be derived by noting the following two points: (1) ait is optimal in state γit iff
W (ait|γit)− ait(pt + εit) ≥W (a′|γit)− a′(pt + εit) for all a′ 6= ait, and (2) ∆W (k|γit) is nonincreasing in k
(which stems from assumption 1–3). Combining (1) and (2) yield the cut-off rule.
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a private draw εit from the distribution of hardware costs, and decide whether to convert

any screens to digital, given the share of movies multi-homed ht and their private adoption

cost. Third, theaters receive operating profits and pay the adoption cost. The state variables

evolve as the adoption decisions are completed and new values of the exogenous variables

are realized.

The analysis focuses on equilibrium in pure symmetric Markov Perfect strategies. In a

Markov Perfect equilibrium, each theater’s adoption decision is optimal in every state, given

its beliefs about future states, and those beliefs are consistent with the adoption decisions

of other theaters. The adoption strategy a∗ is an equilibrium if:

V (γit; a
∗) ≥ V (γit; a

′
i, a
∗
−i) for all firm states γit and strategies a′i (10)

where V (γit; a
∗) is theater i’s ex-ante value function at state γit, given that all theaters

play strategy a∗, and V (γit; a
′
i, a
∗) is theater i’s ex-ante value function when the theater

unilaterally deviates to strategy a′i. Given the large number of theaters, the mapping Γ(.) is

assumed to be the same under strategy profiles a∗ and (a′i, a
∗
−i) (it is not affected by unilateral

deviations). Due to network effects, the game has multiple equilibria, some of which can be

found numerically.34

5.3 Remarks

The assumption that theaters make their adoption decisions independently, even within

chains, is violated if theater chains coordinate adoption decisions across theaters. Two

incentives to do so are: (1) to benefit from lower per-unit adoption cost when placing large

orders of projectors and (2) to tip the industry by significantly increasing the share of digital

screens in the industry. To alleviate concern (1), the model controls for chain effects in the

profits from operating (firm type τi include an indicator for the three largest theater chains).

Regarding the second motive, the largest chain (Gaumont-Pathé) controlled 12.1% of screens

and had a market share (box-office revenue) of approximately 20%: given its relatively small

capital stock of screens, its ability to tip the market toward digital appears limited.

6 Estimation

This section discusses the identification and estimation of the structural model presented in

section 5. The objective is to recover firms’ operating profits π(xit, ht). Estimation results

34One can show that at least one degenerate equilibrium (e.g., with no adoption) exists.
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indicate that there is a significant reduction in costs with the conversion to digital. These

cost-reductions are consistent with labor cost savings and the magnitude of projectionnists’

wages. Finally, the analyze uncovers the main dimension of hetereogeneity in profits from

digital across theaters.

6.1 Identification

Standard results for the identification of discrete-choice models, as in Rust (1994), Magnac

and Thesmar (2002), and Bajari, Chernozhukov, et al. (2015), apply to this setting. As-

suming that (β, F ) are known, the single-period payoff is not identified without further

restrictions. I use fonctional form restrictions and a normalization.

First, as equation (4) shows, the single-period payoff is linear in the adoption cost pt and

the action ait. This restriction is arguably well-informed given the structure of the problem.

Second, I normalize total operating profits when theater has not converted any screen to 0.

Indeed, we have (recalling that xit = (τi, sit))

π(xit, ht) = πd(xit, ht) + πf (xit)

=

sit∑
n=1

[(πd(τi, n, ht)− πd(τi, n− 1, ht))− (πf (τi, n− 1)− πf (τi, n))] + πf (τi, 0)

(11)

The term πf (τi, 0) corresponds to total operating profits when theater i has no digital screens.

It is independent of theater i’s adoption behavior and is therefore a fixed component of

operating profits. Only the cost reduction from converting screen n ∈ {1, ..., Si} (term in the

sum) can be identified from knowledge of the CCP. In the rest of the paper, πf (τi, 0) is set

to 0, and I focus on profits from a digital screen relative to a film screen. This restriction is

relatively innocuous given that the main object of interest will be the counterfactual change

in surplus due to the cost reduction from digital adoption. In the rest of the analysis,

persistent firm and market characteristics (τi) are exogeneous.

6.2 Estimation

6.2.1 Parameterization

This section details the model parameterization. Operating profits are obtained by summing

profits per digital screen (relative to a film screen) over the sit digital screens converted by

theater i by time t. Importantly, profits per digital screen vary across screens (Assumption
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1-1) and increase with the availability of digital movies (Assumption 1-3).

To capture this dependence parsimoniously, I assume that there are two possible levels of

profit per digital screen: (1) a baseline level πd(τi) corresponding to the cost-reduction from

converting a screen to digital keeping revenue constant; and (2) a decayed level π̃d(τi, ht) ≡
πd(τi) − δ(τi, ht) equal to the baseline profits less a decay. From Assumption 1-3, δ(τi, ht)

is nonincreasing in ht. Additionally, I assume that a fraction min{ sit
Si
, ht} of screens yields

profits πd(τi) per screen, whereas the remaining max{0, sit
Si
− ht} yield profits π̃d(τi, ht).

Theater i’s operating profits in state (xit, ht) are therefore given by

π(xit, ht) =

{
sitπd(τi) if sit

Si
≤ ht

Si

(
htπd(τi) + ( sit

Si
− ht)π̃d(τi, ht)

)
if sit

Si
≥ ht

(12)

Figure 3 illustrates this representation of operating profits in the case of a 5-screen the-

ater when ht = 0.5. The left-hand side figure shows a general form of profits per digital

screen, whereas the right-hand side represents the functional form restriction imposed. As

ht increases, the decay decreases and profits from the fraction max{0, sit
Si
− ht} of digital

screens increase from π̃d(τi, ht) to πd(τi).

For profits per digital screen πd(τi) and decay δ(τi, ht), a simple reduced form is used:

πd(τi) = α0 + α1Si + α21{arti = 1}+ α3S−i + αmarketi + αchaini
(13)

δ(τi, ht) = δ0 + δ1Si + δ2ht + δ3ht × Si + δ4ht × 1{arti = 1} (14)

where Si is the number of screens in theater i, arti is an indicator for art house theaters,

S−i is the total number of screens owned by theater i’s competitors, and αmarketi and αchaini

are dummies for market size and chain identifier.35 Equation (13) specifies how profits per

digital screen depends on firm and market characteristics. Equation (14) specifies the decay

in profits. The decay depends on theater size, availability of digital movies, art house status,

and interactions. The decay is expected to decrease with digital movie availability. Because

larger theaters screen more movies, the decay is expected to increase with theater size for

a given level of ht.
36 Finally, I control for the interaction of ht with a theater’s art house

status to capture the fact that availability of art house digital movies lagged behind that of

commercial digital movies. Without this control, the model will translate slower adoption of

art house theaters into lower profits (α2 < 0), whereas in fact, art house theaters delay their

adoption because fewer art house movies are available in digital compared to commercial

35See Table 1 for the different categories of market size.
36Smaller theaters might be able to delay their conversion longer because they screen fewer movies overall.

Ignoring this mechanism would affect the estimation results by predicting lower profits for smaller theaters.
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movies.

The parameters of interest are the vectorα = ({αi}i=0...3, αmarket=1...6, αchain=0...3, {δi}i=0...4)

entering the profit per digital screen and decay. All parameters are dynamic in the sense

that they must be inferred from firms’ dynamic decision process. The distribution F of the

firm-specific shock εit is set to N (0, σ2).

6.2.2 Estimation approach

Two issues make the estimation of the dynamic game complicated. First, the large number

of firms (due to network effects at the industry level) and the dimension of firms’ state

X generate a high-dimensional industry state space.37 Second, as is common in games of

technology adoption under network effects, there are multiple equilibria.

Although two-step methods (such as Bajari, Benkard, and Levin (2007), Pesendorfer

and Schmidt-Dengler (2008), Aguirregabiria and Mira (2007), and Pakes, Ostrovsky, and

Berry (2007)) can be used to address both issues, they remain computationally burdensome

(for standard errors computation). Because strategic interactions are ruled out at the local

market level, the approach taken here is to recast the dynamic game as a single-agent dynamic

discrete-choice problem for each theater. The underlying assumption is that a single theater’s

adoption behavior has a negligible impact on the process {ht}t≥0.38 This process is assumed

to be exogeneous and deterministic from the point of view of a single theater. In the rest

of the analysis, I replace the industry state xt (in the vector γit) by ht. Denote by Li the

dimension of firm i’s state space {γit}.
The estimation approach follows the CCP-based method proposed in Hotz and Miller

(1993) and Hotz, Miller, et al. (1994). In a first step, the CCP giving the equilibrium policy

rule are estimated from the data. Next, using the CCP, I obtain the choice-specific value

functions for each candidate parameter. In this step, I avoid forward-simulation by using the

matrix inversion method suggested by Aguirregabiria and Mira (2007) and Pesendorfer and

Schmidt-Dengler (2008). In the last step, I estimate the parameter of interest by minimizing

the distance between the predicted CCP and the actual CCP (or equivalently, between

predicted and actual differences in choice-specific value functions).

First-step estimation:

Movie theaters’ adoption-policy function. The estimation proceeds by first recovering the

conditional choice probabilities (CCP) governing theaters’ equilibrium adoption of digital

hardware. The CCP P (ait|γit) are estimated using an ordered probit model, and in what

follows are assumed to be known.

37For instance, ignoring firm heterogeneity and assuming all 399 firms are four-screen theaters (so sit ∈
{0, 1, 2, 3, 4}), the total number of possible industry states xt is 1,071,993,300.

38Note that in approximation methods to MPE, such as Ifrach and Weintraub (2017), a similar assumption
is imposed: firms’ ignore their effect on the transition of the industry state moment.
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As pointed out by Gowrisankaran, Park, and Rysman (2014), a simple regression of the-

aters’ adoption on digital movie availability ht and adoption cost pt will run into several

econometric issues. The effect of ht is not identified without further restrictions (simultane-

ity problem in the system of equations determining the effect of software availability on

hardware adoption, and hardware adoption on software availability). Additionally, due to

the hierarchical structure of the data (ait varies in the cross-section and times series, while

(ht, pt) vary only in the time series) the effect of ht and pt are only estimated in the time

series—a small sample problem. To sidestep these two issues, I instead include time dum-

mies ηt in the regressors. The latter are estimated consistently (in the cross-section) and

capture the combined effects of digital movie availability, adoption cost, and aggregate time

shocks.39

The Hotz-Miller inversion gives a one-to-one mapping between the differences in choice-

specific value functions and the CCP (equation (8)). Note that for a ∈ {0, .., Si − sit},

P (ait ≤ a|γit) =

∫ ∞
∆W (a+1|γit)−pt

dF (εit) = 1− Φ

(
∆W (a+ 1|γit)− pt

σ

)
(15)

where εit ∼ N (0, σ2) and Φ is the normal cumulative distribution. Differences in choice-

specific value functions can be obtained by inverting equation (15):

∆W (a+ 1|γit)− pt
σ

= Φ−1(1− P (ait ≤ a|γit)) (16)

If the firm idiosyncratic shock εit equals this (normalized) cut-off, firm i is indifferent between

adopting a and a + 1 digital screens, in state γit. Using equation (16), I can construct

estimates ∆̂W (a+ 1|γit) from knowledge of the CCP P̂ (ait ≤ a|γit).
Value functions. Given a candidate parameter vector and knowledge of the CCP, the ex-

pected value function solves a system of linear equations.40 To see this, equation (9) can be

rewritten:

39By following this approach, I can only predict adoption behavior on-path, i.e., for the equilibrium real-
ization of the process {ht, pt}t≥0. As noted in Bajari, Benkard, and Levin (2007), the inability to predict
behavior in states not observed in the data may have important consequences on profit estimates relevant
off-path. However, in my setting, no parameter of interest is determined off-path.

40This is noted by Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008).
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V (γi) =
∑
ai

P (ai|γi)
(
π(xi, h)− ait(p+ E[εi|γi, ai]) +W (ai|γi)

)
=
∑
ai

P (ai|γi)
(
π(xi, h)− ait(p+ E[εi|γi, ai])

)
+ β

∑
ai,γ′i

P (ai|γi)P (γ ′i|γi, ai)V (γ ′i)

(17)

In matrix notation, the expected value function as a function of a candidate parameter α

can be written (omitting the subscript i):

V(α) =
∑
a

P(a)
(
Π(α)− ai(p + e(a)

)
+ β · F ·V(α)

= (I− β · F)−1

{∑
a

P(a)
(
Π(α)− ai(p + e(a)

)} (18)

where V(α) is the Li × 1 dimensional vector of ex-ante value functions, I is the Li × Li

identity matrix, F is an Li × Li matrix with (k, l)-element equal to P (γ ′i = k|γi = l), P(a)

is an Li × 1 vector of CCP with kth-element equal to P (ai = a|γi = k), Π(α) is an Li × 1

vector of single-period profits π(xit, ht), p is an Li × 1 block vector of adoption costs, and

e(a) is an Li × 1 vector with kth-element equal to E[εi|γi = k, a].41

Let Ṽ(α) be the solution of this system of linear equations, for a given candidate param-

eter α and estimated CCP P̂ (ai|γi). The choice-specific value functions W̃ (ai|γi;α), and

corresponding predicted CCP P̃ (ai|γi;α) can be derived using equations (6) and (16).

Second-step estimation:

In the second step, the underlying parameters α are set such that the predicted CCP

P̃ (ai|γi;α) match the actual CCP P̂ (ai|γi) for every firm i and state γi. Equivalently, one

can match the differences in choice-specific value functions ∆W̃ (ai|γi;α) and ∆Ŵ (ai|γi).42

The objective function is

Q(α) = ||∆W̃ (ai|γit;α)−∆Ŵ (ai|γit)||2 =

√∑
i,γi,ai

(
∆W̃ (ai|γit;α)−∆Ŵ (ai|γit)

)2

41The discount factor used is β = 0.95.
42Matching differences in the choice-specific value functions is preferred here because the objective function

is quadratic in the parameter, and the gradient can be easily derived.
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The estimator of the underlying parameters is the solution of

min
α
Q(α)

Standard errors are obtained by bootstrap sampling. One difficulty with non-parametric

bootstrap is the presence of correlation in decisions across local markets and firms, there-

fore, sampling market-histories (or firm-histories) with replacement, as is commonly done in

dynamic oligopoly games, is not a valid approach. Instead, a parametric boostrap procedure

is used.43

6.3 Estimation results

6.3.1 First-step estimates

Theaters’ adoption-policy function. The conditional choice probabilities are estimated using

a flexible reduced form, via an ordered probit model. To further control the size of the state

space, theaters’ strategy space (the number of screens that can be converted) is restricted to

lie on a grid. More precisely, miniplexes (theaters with 4 to 7 screens) are assumed to adopt

on the space sit/Si ∈ {0, 1
4
, 1

2
, 3

4
, 1}, whereas multi- and megaplexes (theaters with 8 screens

or more) are assumed to adopt on the space sit/Si ∈ {0, 1
8
, 2

8
, ..., 7

8
, 1}. Figure 4 shows

kernel density estimates of the within-firm adoption rates for miniplexes (panel (a)) and

multi/megaplexes (panel (b)), conditional on partial adoption (sit/Si > 0 and sit/Si < 1).

For miniplexes, the density has three identifiable modes. The previous assumption restricting

the strategy space to the set {0, 1
4
, 1

2
, 3

4
, 1} appears non-restrictive. For multi/megaplexes,

the density shows a mode around 0.2. The grid chosen, {0, 1
8
, 2

8
, ..., 7

8
, 1}, is sufficiently fine

given the estimated density of sit/Si.

Because theaters cannot divest and roll back the old technology, a firm cannot transition

to lower states. For instance, a four-screen theater with sit/Si = 3/4 can only transition to

sit+1/Si ∈ {3/4, 1}. In this sense, next period’s possible states depend on the firm’s adoption

rate in the current period. This dependence is accounted for in constructing the likelihood

(see Appendix B).

A theater’s share of screens converted to digital between t and t + 1, denoted ait/Si, is

explained by the number of screens in the theater (and its square), the share of digital screens

in the theater in period t, whether the theater is an art house, competitors’ total number

43(1) draw a bootstrap sample of firms (initial industry state), (2) simulate the diffusion process across all
firms in the bootstrap sample using the (parametric) first-stage estimated CCP, and (3) estimate the model
following the two-step procedure using the simulated data. Repeat the three steps Nb times.
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of screens, a polynomial in time, and its interaction with the theater’s art house status.44

The polynomial in time captures the effect of digital movie availability, adoption cost, and

aggregate time shocks, which all vary in the time series. The interaction of time and art house

status captures any aggregate shocks that are specific to art house theaters (e.g., lags in art

house digital movie availability). A second specification augments the model by including

market dummies to control for market size. A third specification includes both market

dummies and theater-chain dummies for the three major French theater chains (Gaumont-

Pathé, CGR, and UGC). Finally, a fourth specification also controls for interactions between

theater size Si and all other variables.

Table 4 presents the estimates of the ordered probit model under the four specifications.

As expected, across the four specifications, the time effects are increasing. This trend reflects

decreasing adoption costs and increasing digital movie availability. Larger theaters are more

likely to adopt, but the marginal effect is decreasing. Art house status affects the likelihood

of adoption only through its interaction with time. This indicates that the main driver of

differences in adoption behavior between art house and commercial theaters are differences in

digital movie availability rather than inherent differences in the cost-reductions from digital.

The share of a theater’s screens already converted to digital is negatively related to further

adoption.45

Competitors’ total number of screens does not significantly impact a theater’s likelihood

of adoption. Moreover, I verify that strategic interactions between firms are not a major

determinant of adoption: the likelihood-ratio test of specification (3) and (4) against a

specification controlling for competitors’ digital screens adoption fails to reject the null that

the coefficient on competitors’ adoptions is zero at the 5% confidence level. Theaters located

in Paris are more likely to adopt than theaters located in the small urban areas with fewer

than 20, 000 inhabitants and rural areas, although the effect is not significant. Among the

chain dummies, CGR theaters are more likely to adopt than single theaters or theaters

belonging to smaller chains.

Appendix B.2 compares model predictions for the share of digital screens to actual shares

in the data. Overall, and given the limitations imposed by the parametric specification of

the policy function, the model captures the main trends in the data well. The rest of the

analysis uses specification (3) based on the AIC.

44Due to time gaps in the panel (see Appendix A), time dummies cannot be used.
45This finding is expected because, given a share of digital movies, theaters that are lagging in terms of

adoption (low sit/Si) have a greater incentive to adopt.
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6.3.2 Second-step estimates

This section presents estimation results for the profit per digital screen (the baseline πd(τi)

and decay δ(τi, ht)). These components are combined, in equation (12), to obtain theaters’

single-period operating profits.

Table 5 shows estimates of the parameters entering the single-period profits per digital

screen relative to a film screen. First, there is heterogeneity in the baseline profits πd(τi)

across theaters Profits per screen are increasing in theater size. This is the case if there

are scale economies in operating a theater, and these economies of scale are larger under

digital technology than under 35mm film. Note that, art house status, market size, and

competitors’ screens do not significantly affect profits per digital screen. This is expected

because these variables affect only revenues not costs of operating, and by definition πd(τi)

are profits per digital screen relative to a film screen keeping revenue constant (i.e., gross of

the decay).

The decay function is decreasing in the availability of digital movies (or equivalently in

time because ht is a deterministic function of time). As ht converges to one, a theater’s choice

set of digital movies increases so profits per digital screen increase. Theater size doesn’t

significantly impact the decay. One would expect the decay to be larger for large theaters,

fixing digital movie availability, because larger theaters need more digital movies. Finally,

the interaction with art house status is positive, consistent with digital movie availability

lagging for art house movies compared to commercial movies.

Profits per digital screen relative to film implied by the structural estimates have the

correct order of magnitude. Figure 5 shows the distribution of single-period profits per

digital screen across theaters (over a period of 6 months) predicted by the model. Profits

per digital screen are between e2, 445 and e7, 810, with a mean of e5, 346 and median of

e5, 183. These results are contrasted with estimates of projectionist’s wages. Collective

bargaining agreements set a projectionist’s minimum monthly salary at e1, 500 over the

period of interest, or e9, 000 over a period of 6 months. The latter figure is an upper bound

on cost-reductions per screen because projectionists are replaced with lower-wage workers.

Therefore, profits levels implied by the structural model are economically plausible.

7 Counterfactual Analysis

This section uses the estimated model to quantify the magnitude of excess inertia in the

transition from 35mm film to digital cinema. Two counterfactual adoption paths are simu-

lated for the industry: in the first benchmark, a social planner maximizes aggregate theater

profits taking as given upstream distributors’ equilibrium reaction function; in the second
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benchmark, the social planner mandates coordination on digital distribution for all movie–

periods, and maximizes aggregate theater profits. Results point to a sizeable surplus loss, a

third of which is accounted for by externalities among downstream theaters. The last sub-

section analyzes distributors’ costs of multi-homing and provide evidence that they benefit

under the two counterfactual scenarios.

7.1 Planner’s benchmark

By converting its screens to digital, a theater raises distributors’ incentive to release movies

in digital. This increased number and variety of digital movies is a positive externality on

other theaters equipped with digital projectors.46 Additionally, by increasing digital movie

availability, non-adopters’ option value from digital technology also increases. Such increased

profits and option values are not internalized by the adopter, and as a result, industry profits

are not maximized under the non-cooperative market outcome.

In this benchmark, the social planner chooses a sequence of adoption decisions for each

theater {at = a1t, ..., aIt}t≥0 to maximize the discounted sum of aggregate theater profits

max
{at}t≥0

E

[∑
i∈I

∞∑
t=0

βtΠ(xit, pt, ht, ait, εit)

]
s.t. ht = Γ(xt) (19)

where the expectation is taken with respect to the sequence of theaters’ idiosyncratic

shocks and the planner takes distributors’ equilibrium best response Γ as given. The initial

industry state x0 is fixed to si0 = 0 for all i.47

Problem (19) is computationnally hard to solve because of the large number of players

in the industry: the industry state space is high-dimensional, and an industry adoption

policy rule is, in general, a function of the realization of the full vector of adoption shocks

{εit}i∈I ∈ RI , making the policy-rule space high-dimensional as well.

I deal with these computational issues in two steps. First, I assume that distributors’

reaction function (equation (3)) is a function of the aggregate share of digital screen in the

industry st
S

rather than the whole industry state vector xt. This assumption helps reduce

the dimension of the state space. Figure 6 shows ht = Γ( st
S

) as fitted from the data. This

relation gives the share of digital movies per period as a function of the share of digital

screens in the industry.

46Without multi-homing, there would be a negative externality on non-adopters, as the fraction of movies
released in 35mm film would decrease.

47Note that ht and t were used inter-changeably in πd(τi), because in the estimation part, the process
{ht} is a deterministic function of t. Denote it f(t). In solving the planner’s benchmark, I compute the time
period corresponding to the counterfactual process {ht}, using f−1(ht).
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Second, I note that the object of interest is the maximized value of the planner’s objective

function (discounted sum of industry profits) and not the social planner’s policy rule per se.

Therefore, instead of solving the planner’s full dynamic decision problem, I search for the

maximum value of the objective function over the space of feasible industry adoption paths

{at = a1t, ..., aIt}t≥0. To do so, I generate a large number of random industry adoption paths

and select the path that maximizes the objective function in problem (19). The simulated

paths are generated by adding perturbations to the equilibrium cut-offs in each theater’s

CCP. For a given vector of perturbations {ξi}i∈I , the simulated path is obtained using the

following procedure.

1. Initialize the industry at x0 such that si0 = 0 for all i.

2. Draw firm specific adoption shocks {εi0}i∈I and corresponding adoption decisions dic-

tated by each firm’s perturbed CCP.

3. Calculate single-period industry profits
∑
i∈I

Π(xi0, p0, h0, ai0, εi0)

4. Update the current state {γi0}i∈I according to the adoption decisions and transition of

the exogeneous price process to next period state: {γi1}i∈I . In particular, h1 = Γ( s1
S

).

5. Repeat steps 1-4 for T periods.

Given a vector of perturbations {ξi}i∈I , the objective function is obtained by averaging

L simulated paths. The paths have length T = 40 periods (or 20 years).48 An estimate of

the objective function is obtained as

1

L

L∑
l=1

{∑
i∈I

∞∑
t=0

βtΠl(xit, pt, ht, ait, εit)

}
(20)

where Πl(xit, pt, ht, ait, εit) is the single-period profit of firm i in simulation l at period t,

when the firm follows the adoption strategy obtained by adding the perturbation ξi to its

equilibrium CCP. In practice, I draw K = 15, 000 perturbation vectors and compute the

objective function for each vector {ξi}i∈I . I select the perturbation vector that yields the

highest value of the estimated objective function (20). Let {aP
t }t≥0 be the planner’s policy

rule corresponding to the optimal perturbation vector.

48In the equilibrium market outcome, firms have an incentive to free-ride on other firms’ adoption, so
the speed of digital conversion is slower than what the profit-maximizing industry planner would choose.
Therefore, if T = inf{t ≥ 0 : sit = Si,∀i ∈ I} is the first period by which the industry has fully switched
to digital in the non-cooperative market equilibrium, then the planner will have switched the industry to
digital by T . In practice, T = 20.
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Figure 7a shows an example of simulated industry adoption paths. Each simulated path

corresponds to a perturbation vector {ξi}i∈I .49 Figure 7b plots the effect of 500 additional

perturbation draws on the maximum value of the estimated objective function (expression

(20)) as a function of the total number of perturbation draws. Beyond 10, 000 perturbation

draws, the incremental improvement in the maximized objective function is less than 2, 000

e (i.e. less than 0.002% of aggregate industry profits).

As a robustness check, the social planner’s dynamic problem (19) is explicitly solved

after reducing the dimension of the state and strategy spaces. The results are presented

in Appendix C. The optimum policy rule obtained yields an industry diffusion path that is

consistent with {aP
t }t≥0.

7.2 Coordination benchmark

To quantify the magnitude of excess inertia in the upstream distribution market, I assume

that the planner mandates multi-homing for all movies from the first period on and maximize

aggregate theater profits. In other words, ht = 1,∀t. I assume that the social planner

chooses a sequence of adoption decisions for each theater {at = a1t, ..., aIt}t≥0 to maximize

the discounted sum of aggregate theater profits

max
{at}t≥0

E

[∑
i∈I

∞∑
t=0

βtΠ(xit, pt, ht = 1, ait, εit)

]
(21)

where the expectation is taken with respect to the sequence of theaters’ idiosyncratic shocks.

The initial industry state x0 is fixed to si0 = 0 for all i. Because the value of ht is fixed,

network effects (in hardware adoption) are shut-down, and the problem is equivalent to

profits maximization by each theater: I solve a single-agent dynamic decision problem for

each theater i, given ht = 1,∀t.
Each single-agent decision problem is an optimal stopping problem. Indeed, when multi-

homing is manded for all movies-periods, the marginal benefit from converting a screen

to digital is constant across screens. As a consequence, theaters make a 0 − 1 adoption

decision. Decreasing adoption costs {pt}t≥0 and exogeneous theater characteristics are the

factors driving the diffusion process.

Let {aC
t }t≥0 be the solution of problem (21).

49And one particular sequence of theaters’ idiosyncratic shocks. More precisely, for each firm i, I transform
the equilibrium cut-offs κ in firms CCP (estimated by ordered probit) into κ + ξi where ξi is drawn from
N (X,Y ) where X ∼ N (−1.5, 2) and Y ∼ U [0.5, 2].

30



7.3 Counterfactual Results

Figure 8a and 8b show the diffusion paths under the non-cooperative market outcome and

the two benchmarks for digital screens (left) and digital movies (right).50 As expected, the

diffusion of digital is faster under the two counterfactual scenarios: by 1 to 3.5 years for the

time to 10% adoption, and 0.5 to 2.5 years for the time to 90% adoption. Additionally, the

diffusion path is steeper in the planner’s benchmark relative to the coordination benchmark

because, in the former, digital movie availability is endogenously determined by the installed

base of digital screen. The planner must build up the installed base of digital screen to

incentivize distributors to switch.

Next, I compare theaters’ aggregate profits under the three scenarios. Let {aM
t }t≥0 be the

vector of adoption decisions in the non-cooperative market outcome. For given sequences of

adoption decisions {at}t≥0 and digital movie availability {ht}t≥0, define the aggregate theater

surplus (net of adoption costs) as

TS({at}t≥0, {ht}t≥0) = E

[∑
i∈I

∞∑
t=0

βtΠ(xit, pt, ht, ait, εit)

]
where xit = (τi,

∑
t≥0

ait) (22)

Denote aggregate theater surplus under the non-cooperative market outcome, planner’s

benchmark, and coordination benchmark by TSM , TSP , and TSC , given adoption decisions

{aM
t }t≥0, {aP

t }t≥0, and {aC
t }t≥0 and corresponding sequences of digital movies availability

{ht}t≥0.

Table 6 shows industry profits under the three scenarios. Recall that profits from film

are normalized to zero, so these figures are relative to the status-quo with no conversion to

digital. Industry profits net of adoption costs, denoted (TSM , TSP , TSC) ( are 86.11 million

euros under the market outcome, 92.03 million euros under the planner’s benchmark, and

106.21 million euros under the coordination benchmark. The difference TSP − TSM is

attributed to downstream excess inertia (specifically, adoption externalities across theaters),

and TSC − TSP to excess inertia among upstream distributors.51 Overall, excess inertia

causes theaters’ surplus to be 19% lower than under full coordination. Adoption externalities

across downstream firms explain 29% of this surplus loss.

50In all three scenarios, I compute the average over the sequence of firm idiosyncratic adoption shocks.
51Upstream excess inertia is estimated as a residual and can arise because of coordination failure and

adoption externalities across distributors.
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7.4 Distributors’ surplus

The previous section focuses on theaters’ surplus. Does distributors’ surplus increase under

the two benchmarks? A priori, it is not clear: multi-homing is more prevalent and may be

costlier than 35mm film. This section argues that, given estimates of average distribution

costs under film and digital, distributors also benefit under the two benchmarks.

To make the exposition clear, note that conversion to digital distribution affects only

printing, shipping and storage costs of movie copies (PSS). Other costs incurred by distrib-

utors (e.g., advertising space purchase, advertising content creation, promotional events)

remain constant.

Multi-homing may be costlier than film distribution because of economies of scale in

PSS. When multi-homing, distributors split their production over two cost functions (film

and digital), and in doing so, lose some of the scale economies. Denote by Cf (Q) (resp.

Cd(Q)) the total PSS costs of Q film copies (resp. Q digital copies); and ACf (Q) (resp.

ACd(Q)) the corresponding decreasing average cost curves. Digital distribution is more

efficient so Cd(Q) < Cf (Q). For a distributor releasing Q copies of a movie, multi-homing

(with a fraction κ of digital copies and (1−κ) of film copies) is costlier than film distribution

if

Cf (Q) ≤ Cd(κQ) + Cf ((1− κ)Q)

or equivalently

ACf (Q) ≤ κACd(κQ) + (1− κ)ACf ((1− κ)Q)

Whether the previous inequalities hold depends on the value of κ and the degrees of scale

economies in film and digital.

To compare distributors’ costs under the market outcome and benchmarks, I collect data

on average PSS costs per copy for film and digital, from the CNC. The CNC publishes a yearly

report on the French movie distribution industry.52 The reports contain a breakdown of total

(industry-level) distribution costs into PSS costs, advertising space purchase, advertising

content creation, and promotional costs. In particular, this information is available by

number of copies (categorical variable). Table 7 shows average costs per copy for film and

digital by total number of copies. The data confirms that digital distribution is about 80%

less costly than film distribution and that the average cost per copy is decreasing in the

number of copies. Shortcomings of the data are that it covers only French distributors, and

for the “100-200 copies” category, costs per copy on film seem to increase.

52The 2017 report, for instance, can be accessed at: https://www.cnc.fr/cinema/etudes-et-rapports/
etudes-prospectives/les-couts-de-distribution-des-films-dinitiative-francaise-en-2017_

959089.
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I use the data in Table 7 to compute the discounted sum of distribution costs for a

distributor releasing one movie per period on Q copies

C(Q) = Q×
∞∑
t=0

βt
{
ht

(st
S
ACd(

st
S
Q) + (1− st

S
)ACf ((1− st

S
)Q)
)

+ (1− ht)ACf (Q)
}

under the market outcome, planner’s benchmark, and coordination benchmark. When

multi-homing, I assume that κ = st
S

.

Figure 9 plots the average total cost C(Q)/Q for various values of Q. The results indicate

that distribution costs are lower under the two benchmarks compared to the market outcome

for a typical range of Q: the cost-reduction from digital more than compensate for the loss

in scale due to multi-homing.

8 Conclusion

This paper studies the dynamic trade-off faced by a standardized industry. An industry with

network effects benefits from coordinating on a single technology, the ”standard,” to exploit

network benefits. However, once bound together by the benefits of the standard, firms may

become reluctant to switch to new and better technologies as they become available. As an

application, the paper focuses on the French movie industry’s conversion from the 35mm

film standard to digital between 2005 and 2013.

I construct a dynamic game of digital hardware adoption by theaters and digital movie

supply by distributors. Using data on theaters’ adoption decisions and the rich cross-sectional

variation in theater and market characteristics, I estimate theaters’ payoff from converting

their screens to digital. The estimated model is used to quantify the magnitude of excess

inertia in the transition to digital. I simulate two counterfactuals: in the first, a planner

maximizes aggregate theater profits taking as given upstream distributors reaction func-

tion; in the second, the planner mandates coordination on digital distribution upstream and

maximizes aggregate theater profits.

The counterfactuals show that market forces did not provide enough incentives for an

efficient switch from 35mm to digital. Industry profits are lower under the non-cooperative

market outcome relative to under coordination. Additionally, two-thirds of the surplus loss

can be ascribed to excess inertia in the upstream distribution market, whereas the rest is

due to adoption externalities in the downstream exhibition market.

The results suggest that policy intervention in network industries can be beneficial, in

particular, to coordinate firms’ adoption of new technologies. Moreover, the most effective
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instrument (between adoption subsidies or standard-setting committees) depends on the

source of inefficiency and the side of the market that exhibits excess inertia. In the case of

digital cinema, the analysis indicates that inertia lies mainly in the upstream distribution

market.

The current study can be extended in several directions; an important one is noted. The

assumption that the digital manufacturing sector is competitive (“non-sponsored” technol-

ogy) could be relaxed. A monopoly or oligopoly in digital manufacturing may help align

the market outcome with the optimal diffusion path. For example, penetration pricing in-

ternalizes network effects across periods (between early and late adopters), and contingent

contracts can be used to solve the coordination problem. However, due to market power,

the overall effect on theaters and distributors’ surplus is ambiguous.53
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Tables

Table 1: List of variables

Type Variable Description

Movie theater digital screens: sit number of screens converted to digital by time t
screens : Si total number of screens
seats average number of seats per screen
art house equals 1 if art house theater
chain identifier of movie theater chain
competitors screens number of rivals’ screens in local market

Market demand region identifier for the 22 administrative regions
market size identifier for: Paris, Paris inner suburbs (”petite couronne”)

Paris outer suburbs (”grande couronne”),
urban unit with more than 100 thousands inhabitants,
urban unit with 20 to 100 thousands inhabitants,
urban unit with less than 20 thousands inhabitants and rural

Digital projector adoption cost: pt list prices for 2K digital projectors
(including VPF subsidies and ancillary costs) in 2010 euros

Movie distribution digital movies ht share of movies released in digital format

Note: The first three categories in market size (Paris and suburbs) are colinear with the regional dummy for
”Ile-de-France”, the latter is therefore excluded.

Table 2: Summary statistics (theaters with at least 4 screens)

Variable Minimum Mean Maximum Std. Deviation
Theater characteristics
Screens 4 8.118 23 3.736
Seats 112 1, 538 7, 408 961
Art House 0 0.336 1 0.473
# Competitors (theaters) 0 3.118 14 3.414

Theater size (indicators)
Miniplexe (4-7 screens) 0 0.534 1 0.499
Multi/Megaplexe (8 screens or more) 0 0.466 1 0.499

Theater chains (indicators)
UGC 0 0.083 1 0.276
Gaumont-Pathé 0 0.168 1 0.374
CGR 0 0.103 1 0.304

Per screen cost of 56, 176 68, 366 84, 000 8, 800
digital conversion (in 2010 euros)
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Table 3: Summary statistics by market size (theaters with at least 4 screens)

Theaters Markets Theater size Art house Screens per Screens per
(mean) (share) market (mean) market (sd)

Urban unit - >100k inhab 174 101 9.167 0.213 15.792 8.431
Urban unit - 20 to 100k inhab 126 116 7.024 0.563 7.629 2.986
Urban unit - <20k inhab and rural 17 17 6.647 0.647 6.647 3.552
Paris 37 15 7.189 0.135 17.733 9.565
Paris - inner suburbs 18 18 9.222 0.278 9.222 4.977
Paris - outer suburbs 27 26 7.926 0.185 8.231 4.320

National 399 293 8.117 0.337 11.055 7.262

Table 4: Adoption policy function

Dependent variable: Share of screens converted ait/Si

(1) (2) (3) (4)
Estimate s.e Estimate s.e Estimate s.e Estimate s.e

Time 0.664 0.065 0.665 0.065 0.691 0.067 -0.243 0.056
Time squared -0.021 0.003 -0.021 0.003 -0.020 0.003 0.032 0.004
Time × Art house -0.211 0.147 -0.217 0.147 -0.291 0.147 0.129 0.009
Time squared × Art house 0.016 0.007 0.016 0.007 0.019 0.007 -0.007 0.001
Own screens 0.091 0.031 0.086 0.032 0.069 0.034 -0.219 0.043
Own screens squared -0.003 0.001 -0.003 0.001 -0.001 0.002 -0.010 0.002
Art house 0.194 0.792 0.202 0.791 0.612 0.787 0.001 0.143
Competitors’ screens -0.003 0.002 -0.005 0.003 -0.001 0.003 0.012 0.006
Own share of d-screens -1.360 0.111 -1.380 0.112 -1.666 0.118 -0.028 0.039

Market dummies
Paris - outer suburbs -0.239 0.170 -0.108 0.172 -0.005 0.126
Urban unit - 20k-100k inhabitants -0.086 0.142 -0.091 0.144 -0.004 0.124
Urban unit - >100k inhabitants -0.078 0.148 -0.097 0.149 -0.010 0.118
Paris - inner suburbs -0.345 0.189 -0.174 0.191 -0.005 0.069
Paris -0.017 0.172 0.186 0.174 -0.004 0.079

Chain dummies
Gaumont-Pathe -0.151 0.080 -0.001 0.135
CGR 0.328 0.094 -0.000 0.087
UGC -0.914 0.133 -0.007 0.046

Interactions: own screens × other variables X

Observations 4, 788 4, 788 4, 788 4, 788
- log Likelihood 2, 186 2, 182 2, 144 2, 276
AIC 4, 390 4, 393 4, 322 4, 613

Note: For market dummies, the omitted category is “urban unit with fewer than 20k inhabitants
and rural units.” For the chain dummies, the omitted category is “single firm and small chains.”
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Table 5: Structural parameter estimates (in 2010 e)

Estimate s.e

Profit per digital screen: πd(τi)
Constant 3, 763.63 745.03
Own screens 136.19 59.04
Art house 2, 124.22 1, 321.19
Competitors’ screens -2.02 5.16

Market dummies
Paris - outer suburbs -265.24 299.23
Urban unit - 20k-100k inhabitants -239.39 274.75
Urban unit - >100k inhabitants -223.95 285.20
Paris - inner suburbs -414.96 341.85
Paris 234.80 339.67

Chain dummies
Gaumont-Pathe -215.02 151.96
CGR 698.24 211.96
UGC -1, 598.39 422.78

Decay function:
Constant 8, 321.21 2, 322.58
Own screens -53.30 85.73
Time -590.94 244.08
Time x Own screens 12.86 8.57
Time x Art house 239.84 126.99

Note: Standard errors are calculated using Nb = 600 bootstrap
samples. For market dummies, the omitted category is “urban unit
with fewer than 20k inhabitants and rural units.” For the chain
dummies, the omitted category is “single firm and small chains.”
The standard deviation of firm shocks σ is set to 10, 000 e.
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Table 6: Theaters’ surplus under the three scenarios (in millions, 2010 e)

Market Planner Coordination
outcome benchmark benchmark

Gross Industry Profits 177.41 219.95 235.66
Adoption costs 91.29 127.92 129.43
Net Industry Profits 86.11 92.03 106.23
Change in Net Profits 0 5.92 20.12
Change in Net Profits (in %) 0 6.90 23.40

Note: Profits from film are normalized to 0: all profits are relative to the
status-quo with no adoption.

Table 7: Average printing, shipping, storage cost per copy, by total number of copies (in
thousands, 2010 e)

Film Digital
Copies LB UB LB UB

<10 copies 1.14 2.28 0.50 1.00
10-50 copies 0.88 2.19 0.13 0.64
50-100 copies 0.79 1.58 0.13 0.26
100-200 copies 1.01 2.02 0.12 0.23
200-400 copies 0.59 1.17 0.09 0.18
>400 copies 0.57 1.13 0.08 0.15

Note: Estimate for French distributors. In-
puted from aggregate PSS costs divided by # of
movies per category. For Film, use costs from
2007/2008; for digital use costs from 2015 to
2017.

41



Figures

Figure 1: Data and descriptive statistics

(a) Observation times for the diffusion of digital
projectors

(b) Hardware adoption cost (2010 e)

Figure 2: Within-theater adoption

(a) New digital screens (b) Decomposition: Inter/Intra-firm

Note: “Inter-firm” corresponds to screens installed by new adopters (no digital screens
by t − 1). “Intra-firm” corresponds to screens installed by theaters with some digital
screens by t− 1. Subsidized theaters (3 screens or fewer) excluded.
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Figure 3: Parameterization of single-period profits

Figure 4: Density estimate of the intra-firm rate of adoption by firm size

(a) Miniplexes (4-7 screens) (b) Multi/Megaplexes (8 screens or more)

Notes: Both density estimates correspond to the distribution of sit/Si conditional on sit/Si > 0
and sit/Si < 1
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Figure 5: Histogram of πd(τi) (in 2010 e)

Figure 6: Share of movies available in digital ht as a function of share of digital screens st/S

44



Figure 7: Planner’s benchmark

(a) Simulated industry paths (20 perturbation
draws)

(b) Effect of 500 additional perturbation draws on
maximized industry profits

Figure 8: Diffusion paths under the three scenarios

(a) Digital screens (b) Digital movies
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Figure 9: Average cost per copy by number of copies

Note: Film LB and Digital UB used.
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A Data

Table 8 presents the observation dates for the panel of digital projector adoption by data

sources. The table also shows the periodic subsample selected. The periods selected are

such that there is a previous observation period 6 months earlier (in some exeption it is

5 or 7 months). For instance, “May 2012” is selected because the industry is observed on

November 2011. The observation periods selected are represented in blue in Figure 10.

Table 8: Observation times by data source

Date Source Periodic sample

July 2005 Media Salles X
January 2006 Media Salles X
July 2006 Media Salles X
January 2007 Media Salles X
July 2007 Media Salles X
January 2008 Media Salles X
July 2008 Media Salles X
January 2009 Media Salles X
July 2009 Media Salles X
September 2009 Cinego
Jarnuary 2010 Media Salles X
April 2010 Cinego
July 2010 Media Salles X
January 2011 Media Salles X
November 2011 Cinego
January 2012 Media Salles
May 2012 Cinego X
June 2013 Cinego

B Estimation

B.1 First-step: adoption policy rule

First step estimates for the adoption policy rule are obtained by estimating an ordered probit

model. Denote by Pij the probability that theater i transitions to state j. Possible states

are {0, 1
4
, 1

2
, 3

4
, 1} in the case of miniplexes (4 − 7 screens), and {0, 1

8
, 2

8
, ..., 7

8
, 1} in the case

of multi/megaplexes (8 screens or more). In constructing the likelihood, one has to account

for the fact that theaters cannnot divest the new technology, and therefore cannot transition
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Figure 10: Share of digitally equipped screens and observation times

to lower states: the dependent variable sit/Si satisfies sit ≥ si(t−1). The log likelihood is

constructed as follows:

lnL =
∑

i:4≤Si<8

1∑
j=si(t−1)/Si

dijlnPij +
∑
i:8≤Si

1∑
j=si(t−1)/Si

dijlnPij (23)

where dij is an indicator for firm i transitioning to state j.

B.2 First step: goodness of fit

To check the goodness of fit of the first-step adoption policy, model predictions for the share

of digital screens are compared to actual shares in the data. Tables 9, 10, and 11 present the

comparison for all firms, miniplexes only, and multi/megaplexes, respectively. In each table,

the aggregate share of digital screens, the share of adopters (theaters with at least one digital

screen), and the average within-theater share of digital screens (among adopters) are shown

from 2006 to 2013. Overall, given the limitations imposed by the parametric specification

of the policy function, the model captures the main trends in the aggregate, inter-firm, and

intra-firm diffusion rates, for all firms and by firm size (miniplexes vs. multi/megaplexes).

Note that the aggregate share of digital screens was constantly lower for miniplexes than for

multi/megaplexes, as reflected in the predictions as well. Additionally, the intra-firm rates’
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evolution over time is smoother in the prediction than in the data.54

Table 9: Predictions using the adoption policy function - All firms

Aggregate Inter-firm Intra-firm

Year Data Prediction Data Prediction Data Prediction

2006 0.003 0.000 0.021 0.001 0.127 0.161
2007 0.006 0.001 0.028 0.005 0.210 0.215
2008 0.043 0.010 0.056 0.028 0.182 0.256
2009 0.159 0.093 0.122 0.197 0.420 0.359
2010 0.236 0.270 0.431 0.498 0.459 0.470
2011 0.460 0.483 0.684 0.724 0.583 0.596
2012 0.791 0.709 0.841 0.878 0.880 0.761
2013 0.939 0.922 0.934 0.931 0.985 0.934

Note: The column labelled “Aggregate” corresponds to the share of digital
screens across all firms in the industry. The column labelled “Inter-firm” cor-
responds to the share of theaters with at least one digital screen. The column
labelled “Intra-firm” corresponds to the within-theater average share of digital
screens among theaters with at least one digital screen. The predicted rates are
obtained by averaging 500 simulation paths.

C Computation: full-solution approach for the plan-

ner’s benchmark

This section presents the full-solution approach to the planner’s problem (19). The plan-

ner’s benchmark is solved by backward induction starting from T . To address the high-

dimensionality problem, I maintain the moment assumption ht = Γ( st
S

) as in section 7.1. Ad-

ditionally, the planner’s adoption strategy space is coarsened by assuming group-symmetric

strategies: I assign theaters to N groups based on profits πd(τi) and the planner chooses the

same adoption decision (same adoption rate) for theaters within the same group.

These assumptions reduce the dimensionality of the state space tracked by the planner

(excluding theaters’ idiosyncratic shocks). However, within-group adoption strategies may

in general still be a function of the realization of the vector of idiosyncratic shocks, a high-

dimensional vector. I deal with this issue by noting that adoption decisions depend only on

54In particular, for miniplexes, the intra-firm rate jumps to 41% as early as 2007, whereas the model
predicts a slow increase between 2006 and 2009 to reach 40%. The prediction is also smoother in the case
of multi/megaplexes, with an increase in the actual intra-firm rates from 13.5% in 2008 to 41.5% in 2009,
whereas the model predicts a smoother transition.

49



Table 10: Predictions using the adoption policy function - Miniplexes (4-7 screens)

Aggregate Inter-firm Intra-firm

Year Data Prediction Data Prediction Data Prediction

2006 0.002 0.000 0.008 0.000 0.267 0.229
2007 0.007 0.000 0.017 0.002 0.415 0.293
2008 0.007 0.003 0.017 0.007 0.415 0.338
2009 0.024 0.042 0.054 0.093 0.435 0.400
2010 0.112 0.165 0.243 0.317 0.443 0.463
2011 0.294 0.348 0.498 0.584 0.569 0.549
2012 0.653 0.597 0.745 0.798 0.857 0.702
2013 0.879 0.872 0.891 0.885 0.975 0.906

Note: The columns are defined in the same way as in Table 9, but the reference
group is miniplexes instead of all firms. The predicted rates are obtained by
averaging 500 simulation paths.

Table 11: Predictions using the adoption policy function - Multi/Megaplexes (8-23 screens)

Aggregate Inter-firm Intra-firm

Year Data Prediction Data Prediction Data Prediction

2006 0.003 0.000 0.037 0.001 0.087 0.156
2007 0.005 0.002 0.043 0.010 0.107 0.206
2008 0.015 0.013 0.106 0.056 0.135 0.240
2009 0.092 0.113 0.207 0.332 0.415 0.344
2010 0.307 0.320 0.670 0.707 0.466 0.475
2011 0.554 0.554 0.920 0.914 0.593 0.637
2012 0.870 0.775 0.963 0.978 0.903 0.825
2013 0.973 0.950 0.989 0.987 0.997 0.966

Note: The columns are defined in the same way as in Table 9, but the reference
group is multi/megaplexes instead of all firms. The predicted rates are obtained
by averaging 500 simulation paths.
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Figure 11: Diffusion paths under the three scenarios (full-solution approach)

(a) Digital screens (b) Digital movies

the average adoption cost across theaters within a group, i.e. (for Nk theaters in group k):

pt +
1

Nk

∑
i∈I

εit

Appealing to the law of large numbers, the second term is close to zero. By this argument,

I can approximate the planner’s problem as a non-stochastic problem.55

The solution of problem (19) is found by varying N from 1 to 10 groups (5 for miniplexes

and 5 for multiplexes). Figures 11a and 11b show the results for N = 10. The optimal

diffusion path under the planner’s benchmark is relatively close to the optimal path found

by simulation (Figure 8a).

55More precisely, it is a weighted average
∑
aitεit∑
ait

, since the number of screens converted differ across

theaters of different sizes.
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