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Abstract

We asses how firms’ incentives to operate and invest in energy storage depend

on the market structure. For this purpose, we characterize equilibrium market

outcomes allowing for market power in storage and/or production, as well as for

vertical integration between storage and production. Market power reduces overall

efficiency through two channels: it induces an inefficient use of the storage facilities,

and it distorts investment incentives. The worst outcome for consumers and total

welfare occurs under vertical integration. We illustrate our theoretical results by

simulating the Spanish wholesale electricity market for different levels of storage

capacity. The results are key to understand how to regulate energy storage, an

issue which is critical for the deployment of renewables.

Keywords: storage, electricity, market structure, investment, vertical relations.

1 Introduction

The transition to a low carbon economy will require massive investments in renewable

energy. Renewables provide substantial environmental and economic benefits (Borenstein

(2012)), but their deployment is not free of obstacles. In particular, the intermittency

of renewables poses a challenge for power systems, in which demand and supply have
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to be equal at all times. For this reason, the pathways to decarbonizing the power

sector increasingly rely on energy storage as a means to counteract the volatility of

renewable output.1,2 Whether this objective is actually achieved will crucially depend on

firms’ incentives to operate and invest in storage facilities. The goal of this paper is to

characterize how such incentives shape market outcomes, and to understand how they

depend on the market structure.

By storing electricity when renewables’ availability is high and releasing it when it is

low, storage facilitates the integration of renewables in electricity markets. Furthermore,

because storage improves security of supply, it reduces the need to invest in oil-fired or

natural gas back-up generators (European Commission, 2020). And last, but not least,

by smoothing production over time, storage reduces generation costs and flattens the

price curve, which translates into improved production efficiency and lower prices for

consumers. The downside is that the costs of investing in energy storage remain high,

despite substantial cost reductions over the past decade (BloombergNEF (2020)).

Do markets send adequate signals for firms to invest in storage, or is it necessary to

put in place other regulatory arrangements to align social and private incentives? As it

is well known, markets fail in internalizing positive externalities, such as the ones listed

above, and this naturally leads to under-investment. But, are such externalities the only

market failures we should be concerned about? Leaving aside externalities, in this paper

we show that perfectly competitive markets (both in storage as well as in generation)

induce the socially optimal storage decisions (see also Ambec and Crampes (2019) and

Schmalensee (2019)). However, we also show that market power distorts storage decisions

(operation and investment) in ways that increase costs and consumer payments. For this

reason, market structure is a key determinant of the ability of markets to send efficient

signals for storage operators.

We build a stylized theory model that captures the key drivers of storage investment

and pricing incentives in wholesale electricity markets. In particular, we assume that the

market is served by a fringe of non-strategic producers, one strategic producer, and a set

1Demand response is also an important source of flexibility. Some of the economic issues it raises

are similar to the ones raised by storage, with two important differences. First, consumers are usually

considered as price-takers. And second, storage requires heavier investments as compared to demand

response. However, behavioral, informational and political considerations often introduce obstacles to

demand response (Fabra et al. (2020)).
2For instance, in the big five markets in Europe (Great Britain, France, Germany, Spain and Italy),

energy storage could grow from 3 GW today, to 26 GW in 2030, and 89 GW by 2040, representing one

fifth of the total capacity additions that are needed to decarbonize the power sector (the rest being wind,

solar, interconnectors and gas peakers (McCarthy and Eager (2020))).
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of storage owners. In order to endogenize investment decisions, we assume that storage

capacity is chosen once and for all, followed by competition in the wholesale market. De-

mand moves deterministically over time, from low to high levels over a compact interval,3

while production entails increasing marginal costs.

Under the welfare maximizing solutions,4 the planner uses storage to shift production

from high to low demand periods in order to minimize generation costs. Moreover, it

invests in storage capacity so as to equate the additional marginal cost savings brought

about by storage with its per unit investment cost.5 At the optimal capacity, production

is not fully flattened across time as the marginal cost savings of adding storage would fall

down to zero, i.e., below the investment cost. Under the competitive market solution,

storage owners make profits by arbitraging price differences across demand levels. Since

in the absence of market power prices reflect marginal costs, the arbitrage gains capture

the cost savings that storage brings about. Hence, the social and private incentives are

aligned, absent other market imperfections.

Market power in generation and storage distorts this outcome in opposite directions.

Consider first the case in which there is market power in generation, but not in storage.

Since the strategic firm’s incentives to withhold output are stronger in high demand

periods, the price curve becomes steeper the higher the degree of market power. This

makes arbitrage more profitable, inducing storage firms to over-invest.

Consider now the case in which a storage monopolist serves a perfectly competitive

energy market. The storage firm is no longer a price taker, i.e., it internalizes the impact

of its storage decisions on the prices at which it either buys or sells the stored amounts.

This leads the storage owner to smooth its storage decisions over time in order to avoid a

strong price reduction when it sells and a strong price increase when it buys (i.e., acting

as a monopolist or as a monopsonist, respectively). In turn, this smoothing reduces the

profitability of storage, and thus leads to under-investment.

These distortions are enhanced in the case in which a vertically integrated firm has

market power in both storage and generation. The reason is that the vertically integrated

firm not only internalizes the price impacts on its stored output but also on its own

3In the context of electricity markets, demand can be understood as total load minus renewable

generation. Our model focuses on seasonal demand variation while omitting demand uncertainty. Adding

it would complicate the model without changing its main results.
4We characterize the first-best (the planner can decide both upon generation and storage) and the

second-best (she can only decide upon storage, as generation decisions are market-based.
5Under the first-best, these marginal cost savings are computed along the industry marginal cost

curve. Instead, under the second-best, they are computed along the market supply curve, which is

steeper. This implies that the second-best capacity exceeds the first-best capacity.
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generation. This leads to a greater distortion in the allocation of output across firms.

For this reason, under reasonable assumptions, this market structure yields the least

efficient market outcome, the lowest level of investment in storage capacity, and the

lowest level of consumer surplus.

In sum, we find that total welfare and consumers surplus decline as we introduce

more layers of market power. Market power in production creates static productive inef-

ficiencies as it distorts the optimal market shares across producers; while market power

in storage creates dynamic productive inefficiencies as storage fails to flatten production

across demand levels. In both cases, market power gives rise to additional inefficiencies

as it distorts the incentives to invest in storage. These impacts ultimately translate into

higher prices for consumers.

We illustrate the predictions of our model by simulating the Spanish electricity mar-

ket under the 2030 energy and environmental targets (MITECO (2020)). Using detailed

data on electricity demand, generation units and generation costs, we quantify the im-

provement in productive efficiency and the reduction in carbon emissions brought about

by storage. We also compute the arbitrage profits made by competitive storage firms,

and show that they decrease as installed storage capacity goes up. Interestingly, our

results point at the complementarity between investments in renewables and storage. On

the one hand, storage boosts the profitability of renewables by reducing curtailment at

times of excessive renewables availability. On the other, renewables enlarge arbitrage

profits, as a result of increased price volatility and more frequent zero-price episodes.

Importantly, even in scenarios with large renewables penetration, arbitrage profits are

several orders of magnitude lower than the costs of investments. Accordingly, if regulators

want to boost investments in storage (as shown in their decarbonization pathways), they

will have to complement the market revenues of storage owners with public support. For

this purpose, they could resort to storage capacity auctions to select those firms that are

willing to carry out the investments at least cost. By bundling support to price caps

or reliability options (Cramton and Stoft (2008)), they could at least partially correct

the distortions created by market power on the optimal use of storage. The auctions’

eligibility criteria could also serve to avoid that dominant generators increase their market

power by investing in storage, as that would also result in an inefficient use of the storage

facilities.

Related Literature Our paper relates to a long-standing literature on the role of

storage technologies in commodity markets. The canonical theory (Newbery and Stiglitz

(1979); Wright and Williams (1984)) focuses on the role of storage in balancing stochastic
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production in a perfectly competitive environment. Subsequent papers in this literature

consider alternative market structures and explore the impact of storage on price volatil-

ity and social welfare (McLaren (1999); Williams and Wright (2005); Mitraille and Thille

(2014); Thille (2006); Allaz (1991)). Our contribution to this literature is two-fold. First,

we abstract from issues related to stochastic demand to put the spotlight on the role of

strategic interactions and ownership structure. Encompassing different market structures

in a single tractable framework allows us to provide a welfare ranking across market struc-

tures. Second, in contrast to the previous literature, we characterize endogenous storage

investment decisions and relate them to the degree of market power. Interestingly, our

results imply that analyzing production and storage decisions in isolation underestimates

the welfare distortions created by the exercise of market power.

Our paper also contributes to an emerging literature on the economics of energy

storage.6 First, a strand of engineering-oriented studies quantify the value of electricity

storage for small storage operators that take prices as given (e.g. Shardin and Szölgyenyi

(2016) Steffen and Weber (2016)). In contrast to these papers, our analysis reveals that

abstracting from strategic interaction and storage-induced price effects overestimates the

profitability of storage investments. Related papers analyze the level of storage capacity

needed to deal the intermittency of renewables (e.g. Pommeret and Schubert (2019)) or

examine the economic properties of different storage technologies (e.g. Crampes and Tro-

chet (2019)). More closely related to us, Ambec and Crampes (2019) and Schmalensee

(2019) analyze whether perfectly competitive energy markets provide optimal incentives

for investing in storage facilities. We depart from these papers by introducing strategic

behavior in both generation and storage under various ownership configurations, reveal-

ing a wedge between private and social incentives regarding storage decisions.7 This

incentive misalignment is also present in an empirical paper by Karaduman (2020), who

builds a quantitative model of the South Australian Electricity Market to estimate the

expected market outcomes under various levels of storage capacity. Our stylized frame-

work complements this analysis in two respects. First, we provide analytical closed-form

solutions that single out the differences across different market structures. Second, we

expand the set of cases considered by analyzing the effects of vertical integration between

6Early contributions to this literature analyzed the strategic behavior of conventional hydropower

plants (e.g. Garcia et al. (2001)).
7Sioshansi (2014) and Schill and Kemfert (2011) also compare market outcomes under different market

and ownership structures, but do not analyze investment decisions. Nasrolahpour et al. (2016) explores

storage investment incentives, but only under the assumption of perfect competition. We also depart

from these papers in that, instead of their two period configuration, we allow for a continuum of demand

levels. With only two demand levels, storage smoothing would not be possible.
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generation and storage, which is common in most electricity markets in practice.

More broadly, our paper is related to the trade literature that allows for strategic

arbitrage across countries. The reason is that trade links markets across space, while

storage links markets across time. One notable difference is that trade flows are rarely

constrained by the infrastructure linking two markets, while storage is typically limited

by binding capacity constraints. Hence, while (in the absence of market power) the law

of one price (up to transportation costs) applies to the trade context, it does not apply

to the storage case. Energy trade is an exception, as electricity and gas trade require

cross-border interconnection capacity. It is thus not surprising to find some similarities

between our analysis and papers on electricity trade (Joskow and Tirole (2000, 2005)

and Yang (2020)), or gas trade (Ritz (2014); Massol and Banal-Estanol (2018)). The

main difference however is that the storage capacity allows to ‘stock’ energy over time,

in contrast to the transmission capacity which allows energy to ‘flow’ at an instant of

time. Hence, while it is particularly relevant to understand how and when is a binding

storage capacity operated, this question becomes simpler in the context of energy trade

(i.e., always use the transmission line at full capacity).

Last, our paper connects with the literature on exhaustible natural resources. Indeed,

oil, gas, and minerals, among other natural resources, have two common features with

electricity: they are storable and often vulnerable to the exercise of market power. This

literature has shown that the optimal extraction path of natural resources follows the

“Hotelling rule” both for price-taking storage firms (Hotelling (1931)) as well as for

strategic firms (Salant (1976)). Interestingly, our analysis departs from the Hotelling

model in that, unlike the case of natural resources in which reserves are exogenously

given, in our storage problem firms also have to decide when to store, as well as how

much to invest in storage capacity.

The remainder of the paper is organized as follows. Section 2 describes the model.

Section 3 characterizes the solution to the social planner’s problem when she can take

production and storage decisions (first-best) or when she can only decide on storage

(second-best). These solutions serve as benchmarks to assess the equilibrium market

outcomes characterized in Section 4. The analysis considers three alternative market

structures for storage ownership: a fringe of competitive storage owners, an independent

storage monopolist, and a vertically integrated storage monopolist. Section 5 compares

the resulting equilibrium outcomes in terms of consumer surplus and total welfare. Sec-

tion 6 conducts simulations of the Spanish electricity market for different levels of storage

capacity. Section 7 concludes. All the proofs are postponed to the Appendix.
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2 The Model

Consider a market for a storable good (e.g., electricity). Its demand can be met through

production or through storage. The costs of producing q units are captured by the

function c (q) , which is increasing and convex, i.e., c′ (q) > 0 and c′′ (q) > 0. The costs of

storing and releasing the good are normalized to zero up to the storage capacity K, while

storing above K is impossible. The costs of investing in storage capacity K are given

by the function C (K) , which is also increasing and (weakly) convex, i.e., C ′ (K) > 0

and C ′′ (K) ≥ 0. To obtain closed-form solutions, we will assume linear marginal costs

of production, i.e. c′ (q) = q.

Demand, denoted θ, is assumed to be perfectly inelastic up to the consumers’ maxi-

mum willingness to pay v.8 Demand takes values in the interval
[
θ, θ̄
]

during a certain

period of time (i.e., the storage cycle), which we will refer to as a ‘day’. However, in

the interest of tractability, rather than describing demand by the values it takes during

the ‘day’, we describe it by a load duration curve (Green and Newbery (1992)), i.e., an

increasing cumulative distribution function G (θ) that gives the fraction of the day when

demand is below a certain level. This characterization implies that demand is monoton-

ically increasing during the ‘day’.9 We assume that G (θ) is everywhere differentiable in

the support, with density g (θ) . The density is assumed symmetric around its expected

value, denoted E(θ).

Investment, production and storage decisions take place in two stages. In the first

stage, storage capacity K is chosen once and for all. In the second stage, production

and storage decisions are simultaneously chosen by firms (in those cases in which there is

more than one) for each of the possible demand levels of the ‘day’(s). It is inconsequential

whether there is a single day or several ‘days’ as along as they are all identical. At the

beginning of each ‘day’, the storage capacity K is empty, but it can be filled up during the

‘day’. The stored amounts can be released any time and without constraints. However,

at the end of the ‘day’, any stored amount becomes valueless.

Market structure in the product market There are two types of producers: a

dominant firm (D) and a set of fringe firms (F ). Inspired by Perry and Porter (1985),

8In the context of electricity markets, θ can be interpreted as total demand net of renewables. We

assume that v is large enough so that it never binds. Results do not depend on this assumption, or on

demand being price-inelastic, but they make the analysis simpler.
9It is possible to extend our analysis to more general demand characterizations, as long as demand

during the storage cycle had at most one minimum and one maximum, e.g. if demand follows a sine

or cosine function during the day. The notation would be more involved but results would remain

unchanged.
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we assume that the existing production assets are split between them: for each cost

level, the dominant firm owns a fraction α ∈ (0, 1), while the remaining fraction (1− α)

is owned by the fringe. This means that their marginal costs are c′D(q) = q/α and

cF (q) = q/ (1− α) , respectively. The competitive industry supply curve remains fixed at

q = c′ (q) irrespectively of the distribution of assets across firms. Firms’ market shares

at an efficient output allocation are α for the dominant firm and (1− α) for the fringe.

Any departure from those efficient shares would lead to higher production costs. Last,

note that α is a measure of the dominant firm’s size, i.e., at any given price, the higher

α the more it can produce without incurring in losses. Equivalently, α is a measure of

the dominant firm’s efficiency, i.e., the higher α, the lower the costs that the firm incurs

when producing a given quantity.

Market structure in the storage market Regarding storage, we will consider vari-

ous market structures. First, we will analyze the first-best and the second-best solutions.

Under both of them, a social planner chooses how much to invest in storage capacity and

when to use it. The difference between the two is that under the first-best, the social

planner can also take production decisions, whereas under the second-best, production

decisions are market-based. We will compare these benchmarks with three alternative

cases in which there is either (i) a continuum of competitive storage firms; (ii) a sin-

gle independent storage monopolist; or (iii) a vertically integrated firm that owns both

production and storage facilities.

3 The Social Planner Solutions

3.1 The First-Best

Under the first-best, the social planner takes investment, storage and production decisions

in order to maximize total welfare. Because total demand is inelastic, total welfare is

simply the sum of gross consumers’ surplus net of production costs, minus the costs of

investing in storage capacity. Since the total amount that has to be produced in order

to meet demand is (θ − qS(θ) + qB(θ)) , the first-best solves the following maximization

problem:

max
K,qB(θ),qS(θ)

W =

∫ θ̄

θ

[vθ − c (θ − qS(θ) + qB(θ))] g(θ)dθ − C (K) ,

subject to two intertemporal constraints. First, the storage facilities cannot store beyond

their capacity. And second, they cannot release more than what they have stored. Given
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our assumptions on demand, these two constraints can be written as∫ θ̄

θ

qB(θ)g(θ)dθ ≤ K (1)∫ θ̄

θ

qB(θ)g(θ)dθ ≥
∫ θ̄

θ

qS(θ)g(θ)dθ. (2)

Our first lemma characterizes the optimal use of the storage capacity at the first-best

solution, denoted as FB. Figure 1 provides an illustration.

Lemma 1 At the first-best, for given K, the optimal storage decisions are given by:

qFBB (θ) = max
{
θFB1 (µ)− θ, 0

}
and qFBS (θ) = max

{
θ − θFB2 (µ) , 0

}
where

θFB1 (µ) = E(θ)− µ

2
≤ θFB2 (µ) = E(θ) +

µ

2
, (3)

and where µ solves the capacity constraint (1) with equality.

Proof. See the Appendix.

For given capacity K, storage reduces production costs by smoothing production

across time. It is optimal to store so as to flatten production at θFB1 for θ < θFB1 , and to

release the stored amounts so as to flatten production at θFB2 for θ > θFB2 . If the storage

capacity does not bind (µ = 0), production and marginal costs are equalized at E(θ)

across all periods. Instead, a binding capacity constraint (µ > 0) partially prevents this

as, for demand levels between θFB1 and θFB2 , the storage capacity remains inactive.

The marginal value of storage capacity is given by θFB2 − θFB1 , i.e., the marginal

cost savings from storing an extra unit of output that costs θFB1 in order to substitute

production that would have cost θFB2 instead. The higher K, the lower the marginal

value of storage as the cost savings from transferring output from θFB2 to θFB1 become

smaller as θFB2 and θFB1 get closer to each other.

This leads to our first Proposition, which characterizes the optimal investment in

storage.

Proposition 1 At the first-best, the optimal investment in storage capacity, K = KFB,

is the unique solution to

C ′ (K) = θFB2 (K)− θFB1 (K) > 0. (4)
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θ

θ θ̄

qFBS

qFBB

θFB2

θFB2

θFB1

θFB1

c′(θ)

µFB

θ

q(θ), p(θ)

Notes: This figure illustrates the solution provided by Lemma 1. The brown line represents market

demand plus/minus storage decisions. The shaded area represents the amount of stored goods. As can

be seen, demand and hence marginal costs are fully flattened whenever the storage facilities are active.

The marginal value of storage is found along the industry’s marginal cost curve, as depicted by the red

arrow.

Figure 1: Optimal storage decisions under the first-best solution

Proof. See the Appendix.

At the optimal investment, the marginal value of storage capacity is equal to its unit

cost. This implies that the capacity constraint must be binding in equilibrium (µFB > 0).

Otherwise, the marginal value of storage capacity would fall below its unit cost. As a

consequence, at the social optimum, storage allows to smooth production and marginal

costs, but it does not lead to full price equalization across time.

3.2 The Second-Best

The first-best solution assumes that production is efficient, i.e., the market share alloca-

tion between the dominant and the fringe firms is efficient. However, in many instances,

the social planner has no control over production decisions. Her role is limited to choosing

how much to invest in storage capacity and how to operate it. We refer to the solution

of the constrained planner’s problem as the second-best.
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The equilibrium in the product market is simultaneously determined by the storage

decisions of the social planner, {qS(θ), qB(θ)} , and the output decisions of the dominant

firm and the fringe, denoted qD(θ) and qF (θ) respectively (Cournot assumption). Since

the fringe is willing to produce whenever prices are at or above its marginal costs, the

fringe’s supply is given by qF (θ) = (1 − α)p(θ). Last, because of market-clearing, the

inverse residual demand faced by the dominant firm is given by

p (θ; qS, qB, qD) =
θ − qS(θ) + qB(θ)− qD(θ)

1− α
· (5)

Taking {qS(θ), qB(θ)} as given, the dominant producer chooses its output qD(θ) in

order to maximize profits over its residual demand for every demand level θ,

max
qD(θ)

πD =

∫ θ̄

θ

[p (θ; qS, qB, qD) qD(θ)− cD (qD(θ))] g (θ) dθ. (6)

Our next Lemma gives the resulting output allocation between firms, as well as the

market price as a function of {qS(θ), qB(θ)}.

Lemma 2 For given qB(θ) and qS(θ), the quantities produced by the dominant and fringe

producers as a function of the storage decisions are given by

qD(θ) =
α

1 + α

(
θ − qS(θ) + qB(θ)

)
< qF (θ) =

qD(θ)

α
,

resulting in a market price given by

p (θ; qS, qB) =
θ − qS(θ) + qB(θ)

1− α2
· (7)

Proof. See the Appendix.

The dominant producer charges a constant price-cost markup equal to α, for all

demand levels. Since the fringe operates at marginal costs, firms’ market shares depart

from the efficient allocation, giving rise to productive inefficiencies. The higher α, the

stronger the dominant firm’s market power, and the larger the degree of productive

inefficiency.

In turn, taking qD(θ) as given, the social planner takes storage decisions {qS(θ), qB(θ)}
to maximize total welfare,

max
qB(θ),qS(θ)

W =

∫ θ̄

θ

vθg(θ)dθ −
∫ θ̄

θ

[cD (qD(θ)) + cF (θ − qS(θ) + qB(θ)− qD(θ))] g(θ)dθ,

subject to the intertemporal constraints (1) and (2).

Our next Lemma characterizes, for given K, the planner’s storage decisions under the

second-best. The solution is illustrated in Figure 2.
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θ

θ θ̄θSB2θSB1

c′F (θ)θSB
2

1−α2

θSB
1

1−α2

µSB

θ

q(θ), p(θ)

Notes: This figure illustrates the solution provided by Lemma 3. The brown line represents market

demand plus/minus storage decisions. The shaded area represents the amount of stored goods. The

blue line gives prices at every demand level. As can be seen, demand is fully flattened, and the marginal

value of storage is found along the price curve, as depicted by the red arrow.

Figure 2: Optimal storage decisions under the second-best solution

Lemma 3 At the second-best, for given K, the optimal storage decisions are given by:

qSBB (θ) = max
{
θSB1 (µ)− θ, 0

}
and qSBS (θ) = max

{
θ − θSB2 (µ) , 0

}
where

θSB1 (µ) = E(θ)− (1− α2)
µ

2
≤ θSB2 (µ) = E(θ) + (1− α2)

µ

2
, (8)

and where µ solves the capacity constraint (1) with equality.

Proof. See the Appendix.

The storage decisions under the second-best are the same as under the first-best. In

particular, storage serves to flatten production at θSB1 for θ < θSB1 and at θSB2 for θ > θSB2 .

Since the storage capacity K is fully used, such demand thresholds are the same as under

the first-best. There is however one key difference between Lemmas 1 and 3. Namely,

µSB is now given by the fringe firms’ marginal cost savings from moving production from

θSB2 to θSB1 , and not by the marginal cost savings along the industry competitive supply.

The reason is that the social planner takes the dominant firm’s supply as given when
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deciding on the use of the storage facilities (Cournot assumption). Hence, the fringe’s

supply provides the production flexibility that accommodates the changes in the storage

decisions. Since the fringe’s supply is steeper than the industry competitive supply,

µSB > µFB.

Turning into the optimal investment level, note that the impact of increasing storage

capacity on total welfare can be decomposed into two terms:10

dW

dK
=
∂W

∂K
+

∫ θ̄

θ

∂W

∂qD (θ)

∂qD (θ)

∂K
g(θ)dθ.

The first term is a direct effect, which results from relaxing the storage capacity con-

straint, i.e., it is given by µSB =
(
θSB2 − θSB1

)
/ (1− α2) . The second term is a strategic

effect: an increase in storage capacity induces the dominant firm to withhold more output,

which enlarges the productive inefficiencies and hence reduces total welfare. It follows

that that marginal value of storage capacity is below µSB.

In particular, the marginal value of storage capacity is given by the marginal cost

savings from storing an extra unit of output when demand is θSB1 in order to substitute

production when demand is θSB2 . However, unlike the first-best, these cost savings are now

evaluated at the equilibrium market shares, with the dominant firm (fringe) producing an

inefficiently low (high) market share (Lemma 2). In particular, for given θ, the average

marginal costs (weighted by firms’ market shares) are given by

α

1 + α
c′F

(
α

1 + α
θ

)
+

1

1 + α
c′D

(
1

1 + α
θ

)
=

1 + α− α2

(1 + α) (1− α2)
θ.

Therefore, the marginal cost savings brought about by an additional unit of storage are

given by the difference of the above expression evaluated at θSB2 and θSB1 .

Our next Proposition characterizes the investment decision at the second-best.

Proposition 2 At the second-best:

(i) Equilibrium investment, K = KSB, is the unique solution to

C ′ (K) =
1 + α− α2

(1 + α) (1− α2)

[
θSB2 (K)− θSB1 (K)

]
.

(ii) There is inefficient over-investment in storage,

KSB =
1 + α− α2

(1 + α) (1− α2)
KFB > KFB, (9)

which is increasing in α.

10Using the envelope theorem, the effect of the change in storage decisions vanishes out.
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Proof. See appendix.

How does market power in the product market, α, affect the optimal capacity deci-

sion? The bigger the dominant firm, the more output it withholds. Hence, the marginal

cost savings (weighted by firms’ market shares) brought about by additional storage

are greater the higher α. This implies that the optimal investment at the second-best is

larger than at the first-best because it has the additional value of reducing the productive

inefficiencies created by market power. This over-investment is nevertheless inefficient: if

the product market were perfectly competitive, the investment costs of the extra storage

capacity would exceed the production cost savings.

The first-best and the second-best serve to assess the market solutions under various

market structures, an issue to which we turn next.

4 The Market Solutions

In this section we analyze the optimal storage and investment decisions under three al-

ternative ownership structures: (i) there is a fringe of storage owners; (ii) there is an

independent storage monopolist; or (iii) there is a vertically integrated storage monop-

olist.

4.1 Competitive Storage

We start by considering the case in which storage facilities are in the hands of a large set

of small owners, with free entry in storage. Since the storage and the production facilities

are independently owned, for given storage decisions {qB(θ), qS(θ)} , the equilibrium in

the product market remains as in Lemma 2.

Storage operators earn a return from buying the good when prices are low and selling

the good when prices are high. Therefore, for given K, at every demand level θ, their

problem is simply to choose how much to store, qB(θ), and how much to release, qS(θ),

so as to maximize their arbitrage profits, taking market prices as given. Formally, their

problem can be written as

max
qB(θ),qS(θ)

πS =

∫ θ̄

θ

p (θ) [qS(θ)− qB(θ)] g (θ) dθ, (10)

subject to the intertemporal constraints (1) and (2). The free entry condition implies

that there is investment in storage capacity until the returns from storage just cover the

investment costs.
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Not surprisingly, the operation of storage facilities by competitive firms results in the

same pattern of storage use as under the social planner solutions. The planner flattens

production, which is equivalent to flattening prices, just like the competitive owners do.

Lemma 4 Under competitive storage, for given K, the equilibrium storage decisions are

the same as under the second-best.

Proof. See the Appendix.

For the competitive storage owners, the marginal value of capacity is given by the

extra arbitrage profits, i.e., the price difference between storing an extra unit at a price

θC1 /(1−α2) in order to sell it at a price θC2 /(1−α2). Note that the market price is equal

to the marginal cost of the fringe, which is steeper than both the industry marginal cost

curve and the average marginal cost of the two firms at the market equilibrium. Hence,

the marginal value of capacity for the storage owners is greater than under the first-best

and the second-best.

This alone would imply that equilibrium investment is inefficiently high, a result

that is further strengthened by the combination of free-entry and cost convexity. In

particular, because of the free-entry condition, firms invest in storage capacity up to

the level at which the marginal value of storage equals average investment costs. Due

to cost convexity,11 average costs are below marginal costs, giving rise to even greater

over-investment. In turn, investment is increasing in the degree of market power in the

product market, α, as it enhances the marginal value of capacity by making the price

curve steeper.

Proposition 3 When storage is owned by a competitive fringe:

(i) Equilibrium investment, K = KC, is the unique solution to

C (K)

K
=
θC2 (K)− θC1 (K)

1− α2
· (11)

(ii) There is inefficient over-investment in storage, KC > KSB > KFB, which is increas-

ing in α.

4.2 Independent Storage Monopolist

Consider now the case in which the storage facilities are owned by an independent storage

monopolist. The main difference with respect to the previous case is that the storage

11In the investment cost function C(K) were concave, then the comparison with the first-best and

second-best would depend on the relationship between α and the degree of cost concavity.
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owner now internalizes the effects of its decisions on market prices, and thus on arbitrage

profits. Hence, the problem of the storage monopolist can be re-written as in (10), now

replacing p (θ) by the inverse demand (5),

max
qB(θ),qS(θ)

πS =

∫ θ̄

θ

θ − qS(θ) + qB(θ)− qD(θ)

1− α
[qS(θ)− qB(θ)] g (θ) dθ, (12)

subject to the intertemporal constraints (1) and (2). The problem of the dominant

producer is still given by (6).

Our next Lemma characterizes, for given K, the use of the storage facilities by the

storage monopolist. Figure 3 illustrates the solution.

Lemma 5 When storage is owned by an independent monopolist, for given K, the equi-

librium storage decisions are given by:

qMB (θ) = max

{
θM1 (µ)− θ

2 + α
, 0

}
and qMS (θ) = max

{
θ − θM2 (µ)

2 + α
, 0

}
,

where

θM1 (µ) = E(θ)− µ

2
(1− α2) ≤ θM2 (µ) = E(θ) +

µ

2
(1− α2), (13)

and where µ solves the capacity constraint (1) with equality.

Proof. See the Appendix.

As in the previous cases, storage allows to shift production across demand levels.

Unlike the previous cases, however, it does not lead to a full flattening of production

whenever the storage facilities are active. The reason is that the storage monopolist no

longer equalizes prices, but rather marginal revenues when it sells (or marginal costs when

it buys). As it is standard in a monopoly problem (or symmetrically, in a monopsonist

problem), marginal revenue is below the market price because an increase in supply

(i.e., an increase in qS) reduces the price at which the inframarginal units are sold.

Symmetrically, an increase in demand (i.e., an increase in qB) makes it more costly to

buy the inframarginal units. Thus, the storage owner smooths storage in order to avoid

a strong price reduction when it sells and a strong price increase when it buys. In turn,

this prevents production and prices from being fully flattened, and production costs from

being minimized.

The comparison of Lemma 5 with Lemmas 1 and 3 shows that market power in

storage creates an inefficient use of the storage capacity relative to both the first-best

and the second-best. First, when the storage capacity is binding (> 0), the region

over which the storage facilities are not active is inefficiently short. In other words,
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θ θ̄

θ

q(θ)

θM1 θM2

p(θ)

θM2
1−α2

θM1
1−α2

MRS

MCS
µM

θ

q(θ), p(θ)

Notes: This figure illustrates the solution provided by Lemma 5. The brown line represents market

demand plus/minus storage decisions. The shaded area represents the amount of stored goods. The

blue line gives prices at every demand level. As can be seen, the storage monopolist does not fully

flatten production, but rather its marginal costs and revenues, as shown by the green lines.

Figure 3: Equilibrium storage decisions by the storage monopolist

because of storage smoothing, the monopolist requires more demand levels to fill the same

storage capacity.12 Second, when the storage capacity constraint is not binding (= 0),

the monopolist under-utilizes the existing storage capacity. In particular, a fraction of

the storage capacity remains idle despite the scope for marginal arbitrage, which would

help to reduce production costs. Again, another source of productive inefficiency.

Note that the degree of storage smoothing is positively related to the degree of market

power in the product market, α. The higher α, the steeper is the marginal cost of the

fringe, and hence the steeper is the residual demand function faced by the storage owner

(see equation (7)). This makes the storage monopolist willing to smooth storage more in

order to avoid sharp price changes.13 In sum, market power in production amplifies the

12For given K and the endogenous values of µ, we must have θM1
(
µM
)
≥ θFB

1

(
µFB

)
and θM2

(
µM
)
≤

θFB
1

(
µFB

)
.

13If the storage monopolist was a Stackelberg leader, there would be less storage smoothing than under

a simultaneous quantity choice model. In the releasing region, the storage monopolist would be able

to commit to sell more knowing that the dominant producer would respond by increasing withholding,

which would mitigate the price reduction. Under simultaneous quantity choices, this strategic effect is
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inefficient use of the storage capacity due to market power in storage.

For the storage monopolist, the marginal value of capacity is again made of two terms,

a direct effect and a strategic effect:

dπS
dK

=
∂πS
∂K

+

∫ θ̄

θ

∂πS
∂qD(θ)

∂qD(θ)

∂K
g (θ) dθ.

First, as in the case of competitive storage, an extra unit of capacity allows the firm

to increase its arbitrage profit by buying an extra unit at p
(
θM1
)

and selling it at p
(
θM2
)
,

thus making extra profits
(
θM2 − θM1

)
/(1 − α2). Due to storage smoothing, θM1 and θM2

are closer to each other than under competitive storage, thus implying that the marginal

arbitrage profit is now lower.

However, there is now a second term that enhances the marginal value of capac-

ity for the storage monopolist. In particular, when it adds new capacity and thus sells

(buys) more output, the dominant producer restricts its own output (because of strategic

substitutability, see Lemma 2). This strategic effect partially mitigates the price reduc-

tion (increase), thus making storage capacity more valuable. Since the effects when the

storage operator buys or sells are of the same magnitude, this is formally captured by∫ θ̄

θ

∂πS
∂qD(θ)

∂qD(θ)

∂K
g (θ) dθ = 2

∫ θ1

θ

[
∂p (θ)

∂qD(θ)

∂qD(θ)

∂qB(θ)

∂qB(θ)

∂K
qB(θ)

]
g(θ)dθ > 0.

This effect would not be present in the absence of market power in the product

market (as the rivals’ output decisions would not be affected by the storage decisions,

∂qD(θ)/∂qB(θ) = 0). Similarly, it would not be present in the absence of market power

in storage (as the storage operators would take prices as given, without internalizing the

effects of their decisions on market prices, ∂p (θ) /∂K = 0). Hence, the combination of

market power in both production and storage are necessary to uncover this effect.

Our next Proposition characterizes the equilibrium investment.

Proposition 4 When storage is owned by an independent storage monopolist:

(i) Equilibrium investment K = KM is the unique solution to

C ′(K) =
θM2 (K)− θM1 (K)

1− α2
+

2αK

(1− α2)G[θM1 (K)]
· (14)

(ii) When α = 0, KSB = KFB > KM .

(iii) When α > 0, if θ is uniformly distributed and C ′(K) = K, then KSB > KFB >

KM .

not present.
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Proof. See the Appendix.

The comparison of the storage monopolist’s solution versus the second-best depends

on countervailing forces. In the absence of market power in the wholesale market, storage

smoothing reduces the marginal gain from arbitrage, thus leading to less investment than

under the second-best. However, the presence of market power in generation pushes in

the opposite direction. Whether one effect or the other dominates depends on the relative

strength of the two sources of market power, which ultimately depends on the shape of

G (θ) and C(K), as well as on the value of α. We show that for uniformly distributed

demand and a linear marginal cost function, the former effect dominates, thus leading to

under-investment relative to both the first-best and the second-best.14

4.3 Vertically Integrated Storage Monopolist

We now consider the case in which the dominant producer owns all the storage facilities.

Hence, the vertically integrated firm decides both on production as well as on storage.

Its profit maximizing problem now becomes

max
qD(θ),qS(θ),qB(θ)

πI =

∫ θ̄

θ

[p (θ; qS, qB, qD) [qD(θ)− qB(θ) + qS(θ)]− cD (qD(θ))] g (θ) dθ,

subject to the intertemporal constraints (1) and (2), with the market price given by

(5). As compared to (6), the firm now internalizes how its output decisions affect the

arbitrage profits made through its storage facilities. Also, as compared to (12), the

firm now internalizes how its storage decisions affect the revenues made through its own

production.

By replacing q(θ) = qD(θ)− qB(θ) + qS(θ), the problem would be equivalent to

max
q(θ),qS(θ),qB(θ)

πI =

∫ θ̄

θ

[p (θ; q) q(θ)− cD (q(θ)− qS(θ) + qB(θ))] g (θ) dθ,

subject to the intertemporal constraints. As implicit in this formulation, the vertically

integrated firm decides on how much output to offer to the market (regardless of whether

it comes from its own production or from its storage facilities), and uses storage to

minimize the costs of its in-house production. However, its own production is distorted

by its incentives to push market prices up.15

14This result holds for more general investment cost functions as long as this curve is not very steep

for low levels of investment.
15This shows why this solution differs from the first-best, even when α approaches one. Indeed, the

vertically integrated firm withholds output to push prices up, which leads to a distorted output allocation

between the fringe and the dominant firm. This source of inefficiency is not present under the first-best.
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Our next lemma characterizes the production and storage decisions of the vertically

integrated firm, for given K. Figure 4 illustrates the solution.

Lemma 6 When storage is owned by the dominant producer, for given K, the equilibrium

storage and production decisions are given by:

qIB(θ) = max

{
θI1 (µ)− θ

2
, 0

}
and qIS(θ) = max

{
θ − θI2 (µ)

2
, 0

}
, and

qID(θ) =
α

1 + α
max

{
θI1 (µ) , θ

}
for θ < E(θ) (15)

qID(θ) =
α

1 + α
min

{
θI2 (µ) , θ

}
for θ > E(θ) (16)

where

θI1 (µ) = E(θ)− µ

2
(1 + α) ≤ θI2 (µ) = E(θ) +

µ

2
(1 + α),

and where µ solves the capacity constraint (1) with equality.

Proof. See the Appendix.

For given capacity K, the vertically integrated firm withholds output to push prices

up and uses storage to smooth its own production across time. This minimizes its own

costs, but gives rise to two sorts of productive inefficiencies. First, because it produces

inefficiently little; and second, because it uses storage to flatten its own production, all

the changes in demand are fully met by the fringe’s production along its steeper marginal

cost curve.

Interestingly, vertical integration changes the pattern of market power over time given

that the firm now internalizes the price effects on its net position qD(θ)− qB(θ) + qS(θ).

In particular, the vertically integrated firm no longer charges a constant markup at α

(as it was the case for the stand-alone producer). Instead, its mark-up is increasing

in demand. For θ < θI1, the firm charges a markup below α because its net position

qD(θ) − qB(θ) is smaller than in the case of the stand-alone producer. This mark-up

even becomes negative when qD(θ) < qB(θ), which is when the firm is a net-buyer and

hence exercises monopsony power by reducing prices below marginal costs. Instead, for

θ > θI2, the firm exercises more market power than in the stand-alone case because its

net position qD(θ) + qS(θ) is now larger. This is summarized below.

Corollary 1 The demand-weighted mark-up charged by the vertically integrated firm is

higher than in the stand-alone case. In particular, the firms charges a mark-up below

(above) α for low demand levels θ < θI1 (for high demand levels θ > θI2).
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θ θ̄

θ

q(θ)

θI1 θI2

c′D(θ)θI2
1+α

θI1
1+α

p(θ)

µI

θ

q(θ), p(θ)

Notes: This figure illustrates the solution provided by Lemma 6. The brown line represents market

demand plus/minus storage decisions. The shaded area represents the amount of stored goods. The

blue line gives prices at every demand level. As can be seen, the vertically integrated firm operates the

storage facilities to flatten its own production and thus its own marginal costs, as shown by the green

line. Note that prices fall below marginal costs for low θs for which the firm is a net buyer.

Figure 4: Equilibrium storage decisions by the vertically integrated storage monopolist

Proof. See the Appendix.

Using expressions (15) and (16), the dominant firm’s marginal costs at θI1 and θI2 are

θI1/(1 + α) and θI2/(1 + α), respectively. Hence, the marginal value of storage capacity is

captured by the marginal cost savings from storing a unit of output that costs θI1/(1 +α)

in order to substitute production that would have cost θI2/(1 + α). Accordingly, µI =

(θI2−θI1)/(1+α). Note that these are the marginal cost savings of the vertically integrated

firm, which are below those at the industry level. As a result, there is inefficient under-

investment in storage capacity as compared to the first-best. In turn, since the second-

best capacity is above the first-best capacity, the equilibrium capacity is also inefficiently

low with respect to the second-best.

Two key differences in investment incentives explain the departure from the first-best.

The first difference comes from the ability of the vertically integrated firm to exercise

market power. To see this, note that in both cases the marginal value of storage capacity

is equal to the marginal costs savings for the dominant firm. However, in the first-best
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these coincide with the marginal cost savings at the industry level, as the dominant firm

is producing the socially efficient share of output. In contrast, a dominant firm that

behaves strategically withholds output and depresses its marginal costs, which reduces

the need to smooth its total production costs by investing in storage capacity. Second,

even if the dominant firm priced at marginal cost in the production stage, its incentives

to invest in storage would still remain lower, as it does not internalize the cost savings

that storage facilities would provide to the competitive fringe. Our next proposition

characterizes the optimal investment decision of the vertically integrated firm.

Proposition 5 When storage is owned by the dominant producer:

(i) Equilibrium investment K = KI is the unique solution to

C ′(K) =
θI2 (K)− θI1 (K)

1 + α
· (17)

(ii) There is inefficient under-investment in storage, KSB > KFB > KI . The distor-

tion in increasing in α.

Proof. See the Appendix.

Interestingly, and in contrast with the previous cases, storage capacity KI decreases

in the degree of market power in the product market, α. A larger α implies that the

dominant firm has lower and flatter marginal costs. Additionally, since a larger α implies

that the dominant firm withholds more, the marginal cost savings are computed over a

flatter region of the cost function. In sum, the marginal cost savings brought about by an

extra unit of capacity are lower the more market power there is, thus making additional

storage capacity less valuable the higher α.

5 Comparison across Market Structures

In this section, we compare equilibrium outcomes across market structures to assess the

impacts on consumers surplus and overall efficiency. We start by performing the compar-

ison for a given non-binding storage capacity, and then compare market outcomes under

a binding capacity constraint. In all cases, we take K as given in order to understand

how different players would use a given storage capacity chosen by the regulator.16

16This approach facilitates the comparison across market structures, while providing a welfare ranking

that extends to the case with endogenous storage capacity under some convexity conditions regarding

the investment cost function.

22



Consumer’s surplus can be defined as

CS =

∫ θ̄

θ

[
v − pi(θ)

]
θg(θ)dθ = vE(θ)− E[p].

Hence, differences in consumer surplus across market structures are fully driven by dif-

ferences in the market-weighted average price, denoted E[p]. Market structures affect (i)

the price levels for each demand realization, as well as (ii) the slope of the price pattern

over time. Clearly, E[p] is higher under market structures that give rise to steeper price

patterns, even if the unweighted average prices coincide.

pC(θ)E(θ)
1−α2

E(θ)

E(θ) pFB(θ)

θ

pNS(θ)

pM(θ)

pI(θ)

θ̄

θ

p(θ)

Notes: For the case in which storage capacity K is non-binding, this figure depicts equilibrium prices

for every demand level θ across all market structures: FB first-best (black), SB second-best and C

competitive (red), M storage monopolist (blue), I vertically integrated firm (green) and NS no-storage

(orange).

Figure 5: Equilibrium prices across market structures for non-binding storage capacity

To understand how the market structure affects the price level and the slope of the

price patterns, it is useful to first consider the case in which the storage capacity constraint

K is non-binding. Using our previous results, Figure 5 plots equilibrium prices as a

function of demand θ under all market structures considered. We would like to highlight

three main results that come out of this figure. First, as compared to the case with no

storage, storage smooths prices across time. However, only under competitive storage are

prices fully equalized across demand levels (recall that we are assuming a non-binding
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capacity constraint). In contrast, market power in storage results in a steep price pattern,

although not as steep as in the absence of storage. Second, regardless of who owns the

storage facilities, market power in the product market increases the price level. This can

be seen by comparing prices under competitive storage and the first best: both are flat,

but the former are higher. Last, if storage facilities are monopoly owned, market power

in the product market makes the price pattern both higher as well as steeper, more so

under vertical integration than in the case of a stand-alone storage monopolist.

Averaging across all demand levels, the demand-weighted average prices under all

market structures considered are given by:

E[p]FB = E[θ]2

E[p]SB = E[p]FB
1

1− α2

E[p]C = E[p]SB

E[p]M = E[p]SB + V ar[θ]
1

(1− α)(2 + α)

E[p]I = E[p]SB + V ar[θ]
1

2(1− α)

E[p]NS = E[p]SB + V ar[θ]
1

1− α2

Average prices under the first-best simply reflect the average across marginal costs. In

all other cases, prices are increasing in α, reflecting two types of mark-ups (i) a mark-up

due to market power in the energy market (which is a function of α), and (ii) a markup

due to market power in storage (which depends on α and V ar[θ] as both affect the slope

of the price pattern faced by storage owners). Since the first mark-up is common across

all market structures, the price comparison solely depends on the distortions due to the

use of storage. Comparing these expressions, it immediately follows that

E[p]FB < E[p]SB = E[p]C < E[p]M < E[p]I < E[p]NS.

Regarding total welfare, since demand is assumed to be price-inelastic, it can be

expressed as simply the sum of gross consumer surplus minus total costs:

TW = vE(θ)−
∫ θ̄

θ

(
q2
D(θ)

2α
+

q2
F (θ)

2(1− α)

)
g(θ)dθ

Similarly as before, total costs can be decomposed into two terms:17 (i) one reflect-

ing static productive inefficiencies, and (ii) another one reflecting dynamic production

17The expressions can be found in the Appendix.
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inefficiencies due to the distorted use of storage. On the one hand, total costs increase

due to market power in the product market, which results in distorted market shares

between the dominant firm and the fringe. Second, total costs increase due to the misuse

of storage, which results in a lack of production equalization across time. As with prices,

the second distortion is also amplified by market power in the product market.

The above results naturally carry over to the cases in which the storage capacity K

is binding. In particular, for all K, the same outcome as under the second-best can

be achieved by allocating K to competitive storage owners, which in turn deliver higher

consumer surplus and higher welfare than when storage is monopolized, either by a stand-

alone firm or by a vertically integrated one. However, the comparison of consumer and

total welfare in the stand-alone storage monopolist case versus the vertically integrated

case depends on countervailing forces. On the one hand, the stand-alone monopolist

spreads the use of storage more across time in order to avoid strong price effects. This

results in higher production costs (recall that, for given K, θM2 (K)− θM1 (K) < θI2(K)−
θM1 (I)). On the other hand, when the dominant producer owns storage it has stronger

incentives to withhold output in order to push market prices up. This creates larger

static production inefficiencies as the dominant firm’s output is replaced by the fringe’s.

Which of these two effects dominates depends on the degree of market power α and on

the shape of the demand distribution G(θ). For reasonable assumptions on the demand

distribution, e.g. uniformly distributed demand, the second effects dominates. This

suggests that allocating storage capacity to vertically integrated firms may result in the

lowest level of consumer surplus and overall efficiency.

The following Proposition summarizes the above results:

Proposition 6 (i) For all K, the ranking of consumer surplus and total welfare across

market structures is given by, for j = I,M :

CSFB(K) > CSSB(K) = CSC(K) > CSj(K)

W FB(K) > W SB(K) = WC(K) > W j(K)

(ii) Let K be the storage capacity that the storage monopolist uses when K is non-binding.

For any K > K, or for any K < K and θ uniformly distributed,

CSM(K) > CSI(K)

WM(K) > W I(K)

Proof. See the Appendix.

In sum, it is not enough to promote investments in storage if market power in produc-

tion remains. The reason is that storage facilities will be inefficiently operated if market
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prices are distorted due to market power. Also, regulators should avoid allocating stor-

age capacity to dominant operators, particularly so if they are vertically integrated firms.

This conclusion is further strengthened if regulators rely on pure market mechanisms to

spur storage investments. As we have seen, the endogenous investment decisions of a

vertically integrated firm depart from the second best solution, further compounding the

inefficiencies arising from distortions in the use of storage.

One way for the regulator to implement the second-best is to allow small firms to invest

up to KSB and no more (recall that KSB < KC). An alternative would be to run storage

auctions for a capacity equal to KSB, but only allow small operators to participate. These

options would allow the regulator to correct the distortions arising from competitive over-

investment while relying on the market to efficiently operate storage facilities.

6 Simulation of the Spanish Electricity Market

In this section we illustrate some of our theoretical results using actual market data. In

particular, we assess equilibrium market outcomes under different levels of storage capac-

ity, and quantify the profitability of storage investment depending on whether electricity

producers act competitively or strategically. For these purposes, we perform a series

of simulations using the multi-unit auction model developed in De Frutos and Fabra

(2012). The model characterizes equilibrium bidding by electricity generators who com-

pete by submitting step-wise bid functions to the auctioneer. Production and prices are

set according to a uniform-price auction.

The set of parameters used in the simulations closely replicate the Spanish wholesale

electricity market. All simulations are conducted at the hourly level over a one year

period (8,760 hours). The technology mix (in terms of capacities) has been set according

to the 2030 energy targets, following the 2021-2030 Spanish National Energy and Climate

Plan. This includes the deployment of new renewable capacity (mainly solar, but also

wind) and the phase out of coal plants and half of the nuclear capacity. The objective

is that by 2030, 74% of electricity generation will come from renewable sources.18 For

the plants’ ownership structure, we have assumed that all new capacity additions are in

the hands of competitive firms.19 The hourly electricity demand patterns have been set

as reported by the Spanish System Operator for 2017 (source: esios.ree.es). The hourly

18See “Plan Nacional Integrado de Enerǵıa y Clima 2021-2030”, MITECO (2020).
19Many capacity additions will certainly be in the hands of the large electricity producers. To the

extent that this gives them more market power, our estimated mark-ups provide a lower lower bound of

the degree of market power.
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availability factors of the renewable resources have been set at the average of the previous

five years, as also reported by the Spanish System Operator. By multiplying these factors

times the installed capacity of each technology, we obtain the renewable production at

an hourly basis. Hydro production has been allocated to shave the peaks of demand

net of renewables. Last, the daily prices for CO2 (EUA) and gas (TTF Hub) have been

set at the 2017 prices in international markets (source: Bloomberg). Last, with detailed

data about the gas plants’ heat rates and CO2 emission factors, we have computed the

marginal costs of these plants used in the simulations.20

6.1 Scenarios

For different levels of storage capacity, we compute the optimal storing and releasing

decisions when the storage capacity is operated by either an unconstrained social planner

(first-best), by a constrained social planner (second-best), or by a set of competitive

storage operators (competitive storage). Since the arbitrage gains of competitive storage

owners are above the ones internalized by storage owners with market power, our analysis

provides an upper bound to the investment incentives provided by market prices. We

assume that the time frame for storage operation (i.e. the full storage/release cycle) is

the natural day,21 and that the round-trip efficiency of storage is 0.85, i.e., there is a 15%

efficiency loss. For each scenario, we compute the equilibria that would arise if electricity

producers behaved competitively (i.e., by bidding at marginal cost) or strategically (i.e.,

by playing the Nash equilibria in bid functions as in De Frutos and Fabra (2012)).

6.2 Results

For illustrative purposes, Table 1 first provides the summary statistics of two sets of

simulations, with and without storage. As it can be seen, more than three quarters

of total demand will be covered by renewables, the rest being nuclear, hydro and gas.

Demand-weighted average prices will be between 17-22 Euro/MWh, being lower in the

competitive than in the strategic scenario, and slightly larger in the scenario with storage.

20De Frutos and Fabra (2012) provide a detailed description of how these costs are computed.
21The time frame depends on several factors, such as the technical characteristics of the storage

technology (batteries, pumped storage, etc...). Currently, the most common storage solutions use a

4-hour battery. In the Online Appendix we present simulations for alternative assumptions regarding

the optimal cycle (two days, one week, one month) and for daily cycles that do not correspond to the

natural day. Obviously, a longer time frame comes with bigger marginal arbitrage benefits. However,

when considering the lower usage over the life-cycle of the storage facility, daily cycles turn out to be

the most profitable.
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K=0 K=10.000

Competitive Strategic Competitive Strategic

Demand 29,172 29,172 29,172 29,172

Wind 46.9% 46.8% 47.1% 47.0%

Solar 27.0% 27.0% 27.3% 27.3%

Hydro 6.1% 6.1% 6.1% 6.1%

Nuclear 4.9% 4.5% 5.0% 4.7%

CCGT 3.6% 3.6% 3.0% 3.0%

Other renewables 11.5% 12.0% 11.7% 12.1%

Average price 17.25 21.65 17.67 21.88

Standard deviation 19.76 21.67 19.89 21.65

Price (max) 33.91 41.94 32.76 40.94

Price (min) 0.84 0.88 1.02 1.32

Table 1: Simulated market outcomes with and without storage

Notes: The table displays average hourly demand (MWh), the share of each technology in the generation

mix (%), average demand-weighted hourly prices (Euro/MWh), average maximum and minimum prices

(Euro/MWh) and their standard deviation (Euro/MWh). Two scenarios are considered, one without

storage (first two columns) and the other one with storage (last two columns). In each case, we report

the results when all generators behave competitively, or when they bid strategically. Storage is operated

by competitive non-integrated firms.
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Figure 6: Marginal value of storage capacity (high renewables penetration)

Notes: This figure shows the marginal value of storage capacity investments as a function of capacity,

given the generation technology mix that is expected for 2030. It reports results for an unconstrained

social planner (first-best), a constrained social planner (second-best), and competitive storage. The

first best curve is computed as the system marginal cost saving when all generators supply at their

marginal cost of production. The second best captures the marginal cost savings when generators act

strategically, bidding above marginal production costs. The competitive curve is computed by calculating

the marginal profit at different capacity levels when generators behave strategically. The value displayed

is the marginal value per cycle/day averaged across all hours of the year.

Storage has a clear impact on the maximum and minimum prices, which go down and

up respectively, leading to a flatter price curve.

Figure 6 reports the marginal value of storage capacity, for different levels of invest-

ment, given the generation technology mix planned for 2030. It reports the results under

the three storage ownership scenarios: first-best, second-best, and competitive storage.

Recall that, for the social planner, the marginal value of storage capacity is given by the

marginal cost savings from storing one extra unit of electricity. Likewise, for the com-

petitive storage owners, the marginal value of storage capacity is given by the marginal

arbitrage profits.

The first thing to notice is that, in line with our theoretical predictions, these curves

are negatively sloped, i.e., adding storage capacity becomes less valuable and less prof-

itable the greater the amount of existing storage capacity. The reason is that the most
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(a) Profits of wind (b) Profits of solar PV

(c) Profits of CCGTs (d) Emissions

Figure 7: Carbon emissions and profits by technology - Scenario 2030

Notes: Panels (a), (b) ans (c) display market profits by technology (not including investment costs),

for different levels of storage capacity, when generators behave competitively (solid line) or strategically

(dashed line). Panel (d) reports carbon emissions. Profits of renewable technologies are increasing in

storage capacity as these technologies produce more (because there is less curtailment) and they do so

at higher prices. Not surprisingly, CCGTs make almost zero profits under the competitive scenario, and

strictly positive profits otherwise.
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costly production units are first replaced by the least costly production units, and so on,

in decreasing and increasing cost order, respectively. Hence, the cost savings (and thus

the price differences) of storing become increasingly smaller as more storage capacity is

introduced.

Also note that the differences across these three curves are small. A plausible ex-

planation is that, with high renewables penetration, the degree of market power is low,

leading to small production distortions and to prices that are close to marginal costs.

This is particularly the case for high levels of storage capacity. Since this implies that

marginal costs and prices are fairly similar in all scenarios, the marginal value of capacity

is similar across all of them (see also Table 1). However, for lower levels of storage capac-

ity, since the strategic producers can exercise more market power, the marginal arbitrage

profits for the competitive storage owners exceed the marginal cost savings for the social

planner. This might lead to inefficient over-investment under the market-based scenario,

as we highlighted in our theoretical analysis.

If we consider an scenario with low renewables penetration, matters are strikingly

different. To illustrate this, we have also run simulations with the 2017 market structure,

when renewables’ penetration was much lower: wind generation capacity was half and

solar capacity was 8 times lower as compared to the 2030 targets. Results show that

the marginal value of storage capacity was systematically negative. This implies that

investing in storage capacity was neither profitable for competitive storage owners nor

desirable from a social point of view, even if investment costs were negligible.22 This is

so for a two-fold reason. With few renewables, market prices are almost always set by

the conventional technologies, whose marginal costs, and the resulting market prices, are

fairly constant. This implies that the marginal cost savings and arbitrage profits become

so small that they are more than offset by the round-trip efficiency losses of storing and

releasing electricity.

The contrast between the positive and the negative marginal value of storage capacity

under high and low renewables penetration, respectively, indicate that renewables boost

the value of storage capacity. The complementarity goes both ways, as storage also makes

investments in renewables more socially valuable and more profitable. This can be seen

in Figures 7a and 7b, which depict the market revenues of wind and solar as storage

capacity goes up. Both curves are increasing for two reasons. First, storage prevents

22We should keep in mind that this analysis is limited to the arbitrage value of energy storage, as we

only focus on using energy storage to shift load from peak to off-peak periods. However, energy storage

creates other positive externalities which should also be taken into account when computing the optimal

investment.
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renewable curtailment in periods of relatively high renewables production relative to

demand. This is particularly important for solar plants, as their production is strongly

correlated during the sunny hours of the day, thus making curtailment more likely. And

second, storage increases prices in low price hours (i.e., when renewables availability is

high) and depresses prices in high price hours (i.e., when renewables availability is low).

Conventional technologies get the other side of the coin, as the reduced curtailment

of renewables and the changes in price patterns imply that they sell less and they get

paid lower prices on average. Hence, as can be seen in Figure 7c, their profits go down

as storage capacity goes up. Because conventional production is increasingly replaced by

renewables production, carbon emissions go down as well. This is shown in Figure 7d.

These various effects have important welfare implications. 9a reports the effects of

increasing storage capacity on generation costs, while Figure 9b reports the effects on

consumers’ expenditures. As expected, generation costs go down as storage capacity goes

up. However, this does not necessarily translate into higher gains for end-consumers. The

reason for this ambiguity is that storage decreases prices in some hours but increases

them in others. The latter need not be the hours with lower demand, but rather those

in which demand net of renewables is lower. Hence, the price increases might take place

when consumers’ consumption is high, thus implying that the average (demand-weighted)

prices they face might well go up as storage capacity increases. In general, the relationship

between consumers’ prices and storage need not be monotonic.

Finally, to shed light on whether investments in storage are socially desirable, one

would have to compare the savings in generation costs against the costs of invest-

ing in storage capacity. Current figures report costs of battery storage at around 150

Euro/MWh (IRENA (2017)). Hence, without considering other positive effects of stor-

age (notably, security of supply and learning by doing externalities), it would not be

socially optimal or profitable to currently invest in storage (recall from Figure 6 that

the marginal value of storage is no greater than 24 Euro/MWh). Hence, the costs of

storage have to fall and the installed renewables capacity needs to ramp up for there to

be a clear case for investments in storage. Over the last ten years, we have witnessed

sharp cost reductions in renewables and battery storage (65% to 85% since 2010). Only

if this trend continues in the future, will the costs of investing in storage fall below their

marginal value. This would strengthen the case for further investing in storage, beyond

the objectives of improving security of supply and fostering learning by doing economies.
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(a) Generation costs (b) Consumers’ expenditure

Figure 9: Productive efficiency and consumers’ expenditure

Notes: For different levels of storage capacity, panel (a) reports generation costs (not including investment

costs). Panel (b) shows firms’ market revenues, thus reflecting the total amount that consumers pay

to buy their electricity consumption at market prices. Both panels report the results when generators

behave competitively (solid line) or strategically (dashed line).

7 Conclusions

There is consensus among the relevant institutions and industry analysts on the strong

growth potential of energy storage over the next decade (see for instance, McCarthy

and Eager (2020) and European Commission (2020)). However, whether these expecta-

tions fully materalise will heavily depend on policy and regulatory decisions which will

determine the incentives to operate and invest in storage facilities.

Our focus in this paper has been to analyze how such incentives depend on the

market structure. We have found that perfectly competitive markets replicate the first-

best, absent other market imperfections. However, market power in storage and/or in

generation reduce market efficiency through two channels: they induce an inefficient use

of the storage facilities, and they distort investment incentives. Whereas market power

in the wholesale electricity market tends to induce over-investment in storage, market

power in storage tends to induce firms to under-invest. Under reasonable assumptions,

the combination of the two through vertical integration gives rise to the most distorted

outcome, both for consumers as well as for overall efficiency.

Our simulations of the Spanish electricity market show that the arbitrage profits made

by storage owners are not enough to cover their investment costs. This implies that

without public support, it is doubtful whether the socially optimal investments in energy

storage (to the extent that they are positive) would actually take place. The mechanisms
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designed to grant public support should take into account that market structure matters,

i.e., the same storage capacity in the hands of competitive storage owners is more socially

valuable that if it is allocated to large storage firms or to generators.

Despite the scant attention given by academic research to these issues, there is an

intense debate in the policy arena regarding the rules on who should own and operate

storage facilities. In many jurisdictions, storage is considered a generation asset, which

essentially bars system operators from owning and operating storage devices due to un-

bundling restrictions.23 Yet, our analysis suggests that regulators should not put the

spotlight on the integration between transmission and storage (which could potentially

be positive),24 but rather on the integration between generation and storage, as well as

on the concentration in storage ownership. A vertically integrated firm or a large storage

owner internalizes the price effects caused by storage on its own energy sale and purchase

decisions. This causes them to distort the use of storage away from the cost-minimizing

pattern, reducing its profitability, and thus weakening the firms’ incentives to invest.

Throughout the analysis, we have assumed that storage owners are exposed to whole-

sale electricity prices. While this is generally true for large storage installations (e.g.

pumped hydro), it need not be so for the distributed storage facilities (e.g. electric vehi-

cles, or behind-the-meter batteries). In order to fully develop the potential of storage, it

is paramount to foster dynamic electricity prices and time-of-use tariffs so that storage

owners internalize the social benefits that they bring about.

23For instance, in May 2019, the European Commission ruled that only under exceptional circum-

stances are transmission and distribution operators allowed to own and operate storage facilities (Euro-

pean Commission, 2019). Similarly, in 2019, China decided not to allow network operators to include

storage costs in their fees, which led to a sharp decline in storage investment. Yet, other jurisdictions

(such as Australia or Chile) allow network operators to own and operate storage assets under certain

conditions. And in the US, the debate is still on-going as regulators are currently reviewing the storage

ownership rules, which differ widely across states (European Commission (2019, 2020)).
24For instance, that is the case if the transmission owner is required to operate storage so as to reduce

system costs, just as a social planner would do. Also, storage in the hands of the System Operator could

contribute to security of supply.
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Appendix: Proofs

Proof of Lemma 1

At the production stage, the problem of the social planner is to choose qS(θ) and qS(θ)

to maximize total welfare W , taking capacity K > 0 and the demand distribution G(θ)
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as given. Therefore, we look for the solution to the following problem:

max
qS(θ),qB(θ),∀θ

W
(
qS(θ), qB(θ)

)
=

∫ θ̄

θ

[
vθ − (θ − qS(θ) + qB(θ))2

2

]
g(θ)dθ

s.t. h1

(
qS(θ), qB(θ)

)
=

∫ θ̄

θ

qB(θ)g(θ)dθ −
∫ θ̄

θ

qS(θ)g(θ)dθ ≥ 0

h2

(
qB(θ)

)
= K −

∫ θ̄

θ

qB(θ)g(θ)dθ ≥ 0

h3

(
qS(θ)

)
= qS(θ) ≥ 0,∀θ

h4

(
qB(θ)

)
= qB(θ) ≥ 0,∀θ

with K > 0. We can define the constraint set of the problem as:

C := {qS(θ), qB(θ) ∈ X : hj
(
qS(θ); qB(θ)

)
≥ 0, j = {1, 2, 3, 4}}

The set X = (0,+∞)2 is open and convex because it is Cartesian product of open

intervals which are open, convex sets. Note that the objective function W (·) and the

constraints are continuously differentiable functions. Moreover, C is closed, bounded

and compact, so the solution set to the problem is non-empty. Moreover, W (·) is strictly

concave in qB(θ) and qS(θ). The constraints are (weakly) concave, so the solution to the

problem is unique.

The Lagrangian of the problem is:

L
(
qB(θ), qS(θ), ηS(θ), ηB(θ), λ, µ

)
=

∫ θ̄

θ

[
vθ − (θ − qS(θ) + qB(θ))2

2

]
g(θ)dθ +

∫ θ̄

θ

ηS(θ)qS(θ)g(θ)dθ

+

∫ θ̄

θ

ηB(θ)qB(θ)g(θ)dθ + λ

[ ∫ θ̄

θ

qB(θ)g(θ)dθ −
∫ θ̄

θ

qS(θ)g(θ)dθ

]
+ µ

[
K −

∫ θ̄

θ

qB(θ)g(θ)dθ

]
where λ, µ, ηS(θ) and ηB(θ) are the multipliers associated with their respective constraints
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h1(·), h2(·), h3(·), h4(·) ≥ 0. The Karush-Kuhn-Tucker (KKT) conditions are:

θ − qS(θ) + qB(θ)− λ+ ηS(θ) = 0,∀θ (18)

θ − qS(θ) + qB(θ)− λ+ µ− ηB(θ) = 0,∀θ (19)

ηi(θ) ≥ 0,∀θ, i = {S,B}

qi(θ) ≥ 0,∀θ, i = {S,B}

ηi(θ)qi(θ) = 0,∀θ, i = {S,B}∫ θ̄

θ

qB(θ)g(θ)dθ −
∫ θ̄

θ

qS(θ)g(θ)dθ ≥ 0 (20)

λ ≥ 0 (21)

λ

[ ∫ θ̄

θ

qB(θ)g(θ)dθ −
∫ θ̄

θ

qS(θ)g(θ)dθ = 0

]
= 0 (22)

µ ≥ 0 (23)

K −
∫ θ̄

θ

qB(θ)g(θ)dθ ≥ 0 (24)

µ

[
K −

∫ θ̄

θ

qB(θ)g(θ)dθ

]
= 0 (25)

These conditions are necessary and sufficient, due the concavity of the objective func-

tion and the constraints. Without loss of generality, we can focus attention on cases in

which for any θ ∈ [θ, θ̄], qB(θ) > 0→ qS(θ) = 0 & qS(θ) > 0→ qB(θ) = 0. We conjecture

that there exists θ1 ∈ [θ, θ̄] and θ2 ∈ [θ, θ̄], with θ1 ≤ θ2, such that:{
qB(θ) > 0 if θ < θ1

qB(θ) = 0 if θ ≥ θ1

and

{
qS(θ) = 0 if θ ≤ θ2

qS(θ) > 0 if θ > θ2

.

We proceed by finding the expressions for qB(θ), qS(θ), θ1 and θ2 implied by this

conjecture that satisfy all the KKT conditions. Note that λ > 0 must be satisfied in every

possible solution of this problem, as if the associated constraint holds with inequality,

one can always increase the value of the program by increasing qS(θ) or reducing qB(θ).

From condition (18):

qS(θ) = θ − λ,∀θ > θ2

and from condition (19):

qB(θ) = λ− µ− θ, ∀θ < θ1

By continuity:

qS(θ2) = 0⇒ θ2 = λ⇒ qFBS (θ) = θ − θ2,∀θ > θ2

qB(θ1) = 0⇒ θ1 = λ− µ⇒ qFBB (θ) = θ1 − θ, ∀θ < θ1
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From condition 20: ∫ θ1

θ

(θ1 − θ)g(θ)dθ =

∫ θ̄

θ2

(θ − θ2)g(θ)dθ. (26)

We have two possible cases depending on the value of the exogenous parameter K.

When K is binding, > 0 and θ2− θ1 = µ > 0. Define x = θ2− θ1. By symmetry of G(θ),

equation (26) implies that θ2 and θ1 must be symmetric around the mean, i.e.,

θ1 = E(θ)− x

2
⇒ θFB1 = E(θ)− µFB

2
(27)

θ2 = E(θ) +
x

2
⇒ θFB2 = E(θ) +

µFB

2
(28)

with µFB implicitly given by:∫ θ1(µFB)

θ

(
θ1(µFB)− θ

)
g(θ)dθ =

∫ θ̄

θ2(µFB)

(
θ − θ2(µFB)

)
g(θ)dθ = K. (29)

When K is not binding, so that µ = 0, from equations (27) and (28) it is straight-

forward to establish that θFB1 = θFB2 = E(θ). Therefore, the unique solution in this case

is: {
qB(θ) = E(θ)− θ if θ < E(θ)

qB(θ) = 0 if θ ≥ E(θ)
and

{
qS(θ) = 0 if θ ≤ E(θ)

qS(θ) = θ − E(θ) if θ > E(θ)
.

Proof of Proposition 1

Now we turn to the problem of choosing optimal K at the investment stage. The problem

of the social planner at the investment stage it to maximize total welfare (which is a

function of K alone) given the optimal operation of storage at the production stage.

Let V (K) be the value function after substituting the optimal solutions q∗S(θ,K)

and q∗S(θ,K) at the production stage. Thus, the problem of the social planner at the

investment stage is

max
K

W (q∗S(θ,K), q∗B(θ,K), K)− C(K) = V (K)− C(K)

By the envelope theorem, we have that:

dV (K)

dK
=
∂L
(
qB(θ), qS(θ), ηS(θ), ηB(θ), λ, µ

)
∂K

= µFB.

Therefore, the unique interior solution KFB is given by:

∂W

∂K
= 0⇔ µFB − C ′(K) = θ2(KFB)− θ1(KFB)− C ′(KFB) = 0 (30)

with ∫ θ1(µ(K))

θ

(
θ1(µ(K))− θ

)
g(θ)dθ =

∫ θ̄

θ2(KFB)

(
θ − θ2(KFB)

)
g(θ)dθ = KFB.
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Proof of Lemma 2

The problem of the competitive fringe is:

max
q(θ)

{
p(θ)q(θ)− q2(θ)

2(1− α)

}
.

The first order condition, which is both necessary and sufficient, is:

p(θ)− q∗(θ)

1− α
= 0,⇔ q∗F (θ) = (1− α)p(θ),∀θ

The dominant producer chooses its output in order to maximize its profits,

max
qD(θ)

πD (θ) =
θ − qS(θ) + qB(θ)− qD(θ)

1− α
qD(θ)− [qD(θ)]2

2α

Hence, the first order condition of problem is:

∂πD (θ)

∂qD (θ)
= 0⇔ θ − qS(θ) + qB(θ)− 2qD(θ)

1− α
−qD(θ)

α
= 0⇔ qD(θ) =

α

1 + α
(θ − qS(θ) + qB(θ)) ,∀θ

(31)

with second order condition satisfied. Note that the above implies

qF (θ) =
1

1 + α
(θ − qS(θ) + qB(θ)) .

The equilibrium price is

p(θ) =
1

1− α2
(θ − qS(θ) + qB(θ)) .

Proof of Lemma 3

At the production stage, the problem of the social planner is to solve problem

max
qB(θ),qS(θ)

W =

∫ θ̄

θ

vθg(θ)dθ −
∫ θ̄

θ

[
[qD(θ)]2

2α
+

[θ − qS(θ) + qB(θ)− qD(θ)]2

2 (1− α)

]
g(θ)dθ,

subject to constraints (2) and (1). The structure of the functional optimization problem

is identical to the one in the Proof of Proposition 1 in Appendix 7, with concavity and

compactness assumptions satisfied, so a unique solution to the problem exists. Without

loss of generality, we can focus attention on cases in which for any θ ∈ [θ, θ̄], qB(θ) >
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0→ qS(θ) = 0 & qS(θ) > 0→ qB(θ) = 0. The KKT conditions are:

θ − qS(θ) + qB(θ)− qD(θ)

1− α
− λ = 0,∀θ ≥ θ2 (32)

θ − qS(θ) + qB(θ)− qD(θ)

1− α
− λ < 0,∀θ < θ2

θ − qS(θ) + qB(θ)− qD(θ)

1− α
− λ+ µ = 0,∀θ ≤ θ1 (33)

θ − qS(θ) + qB(θ)− qD(θ)

1− α
− λ+ µ > 0,∀θ > θ1∫ θ1

θ

qB(θ)g(θ)dθ =

∫ θ̄

θ2

qS(θ)g(θ)dθ (34)

with θ1 ≤ θ2 and the complementary slackness conditions identical to equations (21)-

(25) of the problem in Appendix 7. Note that condition (34) already incorporates the

fact that we must have λ > 0 in any optimal solution to the problem. Note that these

conditions are necessary and sufficient, due the concavity of both the objective function

and the constraints.

From conditions (32) and (33), and using the best response of the dominant firm,

equation (31): (
θ − qS(θ) + qB(θ)

) 1

1− α2
= λ,∀θ > θ2

and from condition (33):(
θ − qS(θ) + qB(θ)

) 1

1− α2
= λ− µ,∀θ < θ1

By continuity:

qS(θ2) = 0⇒ θ2 = λ(1− α2)⇒ qSBS (θ) = θ − θ2,∀θ > θ2

qB(θ1) = 0⇒ θ1 = (λ− µ)(1− α2)⇒ qSBB (θ) = θ1 − θ, ∀θ < θ1

From condition (34):∫ θ1

θ

(θ1 − θ)g(θ)dθ =

∫ θ̄

θ2

(θ − θ2)g(θ)dθ. (35)

We have two possible cases depending on the value of the exogenous parameter K.

When K is binding, µ > 0 and θ2−θ1 = µ(1−α2) > 0. Define x = θ2−θ1. By symmetry

of G(θ), equation (44) implies that θ2 and θ1 must be symmetric around the mean, i.e.,

θ1 = E(θ)− x

2
⇒ θSB1 = E(θ)− µSB

2
(1− α2) (36)

θ2 = E(θ) +
x

2
⇒ θSB2 = E(θ) +

µSB

2
(1− α2) (37)
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with µSB implicitly given by:∫ θ1(µSB)

θ

(
θ1(µSB)− θ

)
g(θ)dθ =

∫ θ̄

θ2(µSB)

(
θ − θ2(µ)

)
g(θ)dθ = K. (38)

Note that when K is not binding, so that µ = 0, from equations (36) and (37) it is

straightforward to establish that θSB1 = θSB2 = E(θ).

Proof of Proposition 2

The problem of the constrained social planner is to choose K to maximize total welfare,

conditional on optimal behavior of all agents at the production stage. Thus, the problem

is:Second best:

max
qB(θ),qS(θ)

(K, q∗S(θ,K), q∗B(θ,K)) = vE[θ]−
∫ θ̄

θ

1

2α
(qD(θ))2g(θ)dθ

+

∫ θ̄

θ

1

2(1− α)

(
θ − qS(θ) + qB(θ)− qD(θ)

)2
g(θ)dθ.

By the envelope theorem,

dW

dK
=
∂W

∂K
+

∫ θ̄

θ

∂W

∂qD (θ)

∂q∗D (θ)

∂K
g(θ)dθ.

The first term is a direct effect and it equals µSB. The second term is a strategic effect

which results from the impact of K on the dominant firm’s output decision. Focusing on

it,∫ θ̄

θ

∂W

∂qD (θ)

∂q∗D (θ)

∂K
g(θ)dθ = −

∫ θ̄

θ

[
∂q∗D (θ)

∂K

q∗D (θ)− α (θ − q∗S (θ) + q∗B (θ))

α (1− α)

]
g(θ)dθ

=
α

(1− α2)

∫ θ̄

θ

[
∂q∗D (θ)

∂K
(θ − q∗S (θ) + q∗B (θ))

]
g(θ)dθ,

where the second line follows from using the expression for q∗D (θ) .

Since

qB(θ) = max {θ1 (µ)− θ, 0} and qS(θ) = max {θ − θ2 (µ) , 0} ,

we can write,∫ θ̄

θ

∂W

∂qD (θ)

∂q∗D (θ)

∂K
g(θ)dθ =

α

(1− α2)

(∫ θ1

θ

∂q∗D (θ)

∂K
θ1g(θ)dθ +

∫ θ̄

θ2

∂q∗D (θ)

∂K
θ2g(θ)dθ

)
.
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For θ ∈ (θ, θ1),

q∗D (θ) =
α

1 + α
θ1 ⇒

∂q∗D (θ)

∂K
=

α

1 + α

∂θ1

∂K
=

α

1 + α

1

G (θ1)
·

And for θ ∈
(
θ2, θ̄

)
,

q∗D (θ) =
α

1 + α
θ2 ⇒

∂q∗D (θ)

∂K
=

α

1 + α

∂θ2

∂K
= − α

1 + α

1

1−G (θ2)

Hence, the strategic effect is∫ θ̄

θ

∂W

∂qD (θ)

∂q∗D (θ)

∂K
g(θ)dθ = − α2

(1− α2) (1 + α)
(θ2 − θ1) < 0

Note that the strategic effect disappears if α = 0. Furthermore, it is negative, and its

absolute value is increasing in α.

Putting the direct and the strategic effects together

dW

dK
= − α2

(1− α2) (1 + α)
(θ2 − θ1) +

1

(1− α2)
(θ2 − θ1)− C ′(K)

=
α− α2 + 1

(1− α) (α + 1)2 (θ2 − θ1)− C ′(K).

Note that α−α2+1
(1−α)(α+1)2

is increasing in α, and it equals 1 for α = 0. It follows that

KSB > KFB. Note that the solution to the problem implies that the capacity constraint

must be binding in the second stage. Otherwise, idle storage capacity would imply that

the marginal benefit of storage capacity is lower than its marginal cost, violating the

optimality condition at the first stage.

Proof of Lemma 4

At the production stage, the problem of the competitive storage operator is to solve prob-

lem (10) subject to constraints (2) and (1). The structure of the functional optimization

problem is identical to the one in the Proof of Proposition 1 in Appendix 7, with concav-

ity and compactness assumptions satisfied, so a unique solution to the problem exists.

The Lagrangian of the problem, omitting the non-negativity constraints, is:

L
(
qB(θ), qS(θ), λ, µ

)
=

∫ θ̄

θ

p(θ)
[
qS(θ)− qB(θ)

]
g(θ)dθ + λ

[ ∫ θ̄

θ

qB(θ)g(θ)dθ −
∫ θ̄

θ

qS(θ)g(θ)dθ

]
+ µ

[
K −

∫ θ̄

θ

qB(θ)g(θ)dθ

]
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where λ and µ are the Lagrange multipliers. Without loss of generality, we can focus

attention on cases in which for any θ ∈ [θ, θ̄], qB(θ) > 0 → qS(θ) = 0 & qS(θ) > 0 →
qB(θ) = 0. The KKT conditions are:

p(θ)− λ = 0,∀θ ≥ θ2 (39)

p(θ)− λ < 0,∀θ < θ2 (40)

p(θ)− λ+ µ = 0,∀θ ≤ θ1 (41)

p(θ)− λ+ µ > 0,∀θ > θ1 (42)∫ θ1

θ

qB(θ)g(θ)dθ =

∫ θ̄

θ2

qS(θ)g(θ)dθ (43)

with θ1 ≤ θ2 and the complementary slackness conditions identical to equations (21)-

(25) of the problem in Appendix 7. Note that condition (43) already incorporates the

fact that we must have λ > 0 in any optimal solution to the problem. Note that these

conditions are necessary and sufficient, due the concavity of both the objective function

and the constraints.

From condition (39):

p(θ) = λ,∀θ > θ2

and from condition (41):

p(θ) = λ− µ,∀θ < θ1

Since p(θ) is the best response of the dominant firm,

λ = p(θ) =
θ − qS(θ)

1− α2
⇔ qS(θ) = θ − (1− α2)λ,∀θ > θ2

λ− µ = p(θ) =
θ + qB(θ)

1− α2
⇔ qS(θ) = (1− α2)(λ− µ)− θ, ∀θ < θ1

By continuity:

qS(θ2) = 0⇒ θ2 = (1− α2)λ⇒ qCS (θ) = θ − θ2,∀θ > θ2

qB(θ1) = 0⇒ θ1 = (1− α2)(λ− µ)⇒ qCB(θ) = θ1 − θ, ∀θ < θ1

From condition (43): ∫ θ1

θ

(θ1 − θ)g(θ)dθ =

∫ θ̄

θ2

(θ − θ2)g(θ)dθ (44)

We have two possible cases depending on the value of the exogenous parameter K.

When K is binding, µ > 0 and θ2 − θ1 = µ(1− α2) > 0. Define x = θ2 − θ1 and assume
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that G(θ) has a well-defined mean given by E(θ). By symmetry of G(θ), equation (44)

implies that θ2 and θ1 must be symmetric around the mean i.e.

θ1 = E(θ)− x

2
⇒ θC1 = E(θ)− µC(1− α2)

2
(45)

θ2 = E(θ) +
x

2
⇒ θC2 = E(θ) +

µC(1− α2)

2
(46)

with µC implicitly given by:∫ θ1(µC)

θ

(
θ1(µC)− θ

)
g(θ)dθ =

∫ θ̄

θ2(µ

(
θ − θ2(µ

)
g(θ)dθ = K. (47)

Note that when K is not binding, so that µ = 0, from equations (45) and (46) it is

straightforward to establish that θC1 = θC2 = E(θ).

Proof of Proposition 3

The free-entry and perfect competition assumptions imply that entry/investments take

place until expected profits are zero, conditional on operating the storage facilities opti-

mally, i.e., πS
(
qCS (θ), qCB(θ)

)
= 0. Profits of the storage operator at the investment stage

are:

πS
(
K,µ(K)

)
=

∫ θ̄

θ

pC(θ)
[
qCS (θ)− qCB(θ)

]
g(θ)dθ − C(K)

= µC(K)K − C(K)

(48)

with µSB(K) implicitly given by equation (47).

Thus, under the zero-profit condition, the equilibrium investment K = KC is the

unique solution to

πS
(
qCS (θ), qCB(θ)

)
= 0⇔ C(K)

K
= µSB(K) =

θC2 − θC1
1− α2

. (49)

Note that the solution to the problem implies that the capacity constraint must be

binding in the second stage, for the same reasons as in the first-best problem.

Now, we show that KC > KFB. Assume on the contrary that KC ≤ KFB. From

equations (29) and (47), this implies that:∫ θC1

θ

(θC1 − θ)g(θ)dθ ≤
∫ θFB

1

θ

(θFB1 − θ)g(θ)dθ → θC1 ≤ θFB1∫ θ̄

θC2

(θ − θC2 )g(θ)dθ ≤
∫ θ̄

θFB
2

(θ − θFB2 )g(θ)dθ → θC1 ≥ θFB1
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Thus, from the optimal solutions (4) and (14),

θC2 − θC1 ≥ θFB2 − θFB1 ⇒ µC(1− α2) ≥ µFB ⇒ C(K)

K
(1− α2) ≥ C ′(K).

A contradiction, by strict convexity of the cost function C(K) and α > 0.

On the other hand, KC > KSB follows directly from the strict convexity of C(K).

Proof of Lemma 5

At the production stage, the problem of the storage monopolist is:

max
qS(θ),qB(θ)

∫ θ

θ

θ − qS(θ) + qB(θ)− qD(θ)

1− α
(qS(θ)− qB(θ))g (θ) dθ,

subject to constraints (1) and (2). The structure of the functional optimization problem

is identical to the one in the Proof of Proposition 1, with concavity and compactness

assumptions satisfied, so a unique solution to the problem exists. The Lagrangian of the

problem, omitting the non-negativity constraints, is given by:

L =
1

1− α

∫ θ

θ

[
θ − qS(θ) + qB(θ)− qD(θ)

] [
qS(θ)− qB(θ)

]
g (θ) dθ

+ λ

[∫ θ

θ

qB(θ)g (θ) dθ −
∫ θ

θ

qS(θ)g (θ) dθ

]
+ µ

[
K −

∫ θ

θ

qB(θ)g (θ) dθ

]

where λ and µ are the Lagrange multipliers. Without loss of generality, we can focus

attention on cases in which for any θ ∈ [θ, θ̄], qB(θ) > 0 → qS(θ) = 0 & qS(θ) > 0 →
qB(θ) = 0. The KKT conditions are:

θ − 2qS(θ)− qD(θ)

1− α
− λ = 0,∀θ ∈

(
θ2, θ

)
θ

1− α
− λ < 0,∀θ < θ2

θ + 2qB(θ)− qD(θ)

1− α
− λ+ µ = 0,∀θ ∈ (0, θ1)

−θ + 2qB(θ)− qD(θ)

1− α
+ λ− µ < 0,∀θ > θ1∫ θ1

θ

qB(θ)g (θ) dθ =

∫ θ

θ2

qS(θ)g (θ) dθ = K

with θ1 ≤ θ2 and the complementary slackness conditions identical to equations (21)-(25).

These conditions are necessary and sufficient, due the concavity of both the objective

function and the constraints.
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Pointwise optimality implies that the system of reaction functions is:

qS(θ) =

(
θ − qD(θ)

)
− λ (1− α)

2

qB(θ) =
(λ− µ) (1− α)−

(
θ − qD(θ)

)
2

qD(θ) =
(
θ − qS(θ) + qB(θ)

) α

1 + α

Thus, we have that:

qS(θ) =
θ − (1− α2)λ

α + 2
,∀θ > θ2

qB(θ) =
(1− α2) (λ− µ)− θ

α + 2
,∀θ < θ1

By continuity:

qS(θ2) = 0⇒ θ2 =
(
1− α2

)
λ⇒ qS(θ) =

θ − θ2

2 + α
,∀θ > θ2

qB(θ1) = 0⇒ θ1 =
(
1− α2

)
(λ− µ)⇒ qB(θ) =

θ1 − θ
2 + α

,∀θ < θ1

As for the market price,

p(θ) =
θ − qS(θ) + qB(θ)− qD(θ)

1− α

=
1

(1− α2)

(
θ − qS(θ) + qB(θ)

)
Using the expressions for qS(θ) and qB(θ),

p(θ) =
θ (1 + α) + θ2

(α + 2) (1− α2)
, ∀θ > θ2

p(θ) =
θ (1 + α) + θ1

(α + 2) (1− α2)
, ∀θ < θ1

Note that

p(θ)− p(θ2) =
θ − θ2

(α + 2) (1− α2)
, ∀θ > θ2

p(θ1)− p(θ) =
θ1 − θ

(α + 2) (1− α2)
, ∀θ < θ1

From condition (2): ∫ θ1

θ

θ1 − θ
2 + α

g(θ)dθ =

∫ θ̄

θ2

θ1 − θ
2 + α

g(θ)dθ = K (50)
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We have two possible cases depending on the value of the exogenous parameter K.

When K is binding, µ > 0 and θ2−θ1 = µ(1−α2) > 0. Define x = θ2−θ1. By symmetry

of G(θ), equation (50) implies that θ2 and θ1 must be symmetric around the mean i.e.,

θ1 = E(θ)− x

2
⇒ θM1 = E(θ)− µ(1− α2)

2
(51)

θ2 = E(θ) +
x

2
⇒ θM2 = E(θ) +

µ(1− α2)

2
(52)

with µ = µM (K) implicitly given by:∫ θ1(µM (K))

θ

θ1(µM (K))− θ
2 + α

g(θ)dθ =

∫ θ̄

θ2(µM (K))

θ − θ2(µM (K))

2 + α
g(θ)dθ = K (53)

Note that when K is not binding, so that µ = 0, from equations (51) and (52) it is

straightforward to establish that θM1 = θM2 = E(θ). However, as shown below, µ = 0

cannot be a solution to the first stage problem.

Proof of Proposition 4

(i) The problem of the storage firm is to maximize profits, conditional on operating the

storage facilities optimally. Thus, the problem is:

max
K

πS
(
K,µ(K)

)
=

∫ θ̄

θ

pM(θ)
[
qMS (θ)− qMB (θ)

]
g(θ)dθ − C(K)

=
1

(1− α2)(2 + α)2

∫ θ̄

θ2(µ(K)

[
θ(1 + α) + θM2

(
µ(K)

)][
θ − θM2

(
µ(K)

)]
g(θ)dθ

− 1

(1− α2)(2 + α)2

∫ θ1(µ(K)

θ

[
θ(1 + α) + θM1

(
µ(K)

)][
θM1
(
µ(K)

)
− θ
]
g(θ)dθ

− C(K)

(54)

with µM(K) implicitly given by equation (53).

Taking the derivative with respect to K we have:

∂πS
∂K

=
−1

(1− α2)(2 + α)2

[ ∫ θ̄

θ2

[
αθ + 2θ2

]∂θ2

∂K
g(θ)dθ +

∫ θ1

θ

[
αθ + 2θ1

]∂θ1

∂K
g(θ)dθ

]
− C ′(K).

(55)

Applying the implicit function theorem to equation (53), we can obtain:

∂θ1

∂K
=
∂θ1

∂µ

∂µ

∂K
=

2 + α

G(θ1)

∂θ2

∂K
=
∂θ2

∂µ

∂µ

∂K
= − 2 + α

1−G(θ2)
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Thus:

∂πS
∂K

=
1

(1− α2)(2 + α)G(θ1)

[
2G(θ1)(θ2 − θ1) + α

(∫ θ̄

θ2

θg(θ)dθ −
∫ θ1

θ

θg(θ)dθ

)]
− C ′(K)

=
2αK

(1− α2)G(θ1)
+
θ2 − θ1

1− α2
− C ′(K).

Therefore,
∂πS
∂K

= 0⇔ 2αK

(1− α2)G(θ1)
+
θ2 − θ1

1− α2
= C ′(K). (56)

(ii) Optimality conditions when α = 0 are given by:

C ′(K) = θFB2 (K)− θFB1 (K)

C ′(K) = θSB2 (K)− θSB1 (K)

C ′(K) = θM2 (K,α = 0)− θM1 (K,α = 0)

Equations (29), (38) and (53) imply that

θFB2 (K)− θFB1 (K) = θSB2 (K)− θSB1 (K) > θM2 (K,α = 0)− θM1 (K,α = 0)

Thus, KM < KSB = KFB for α = 0.

(iii) We just need to show that KM < KFB, as < KFB < KSB is always true for

α > 0. With demand uniformly distributed on [θ, θ̄], optimal investment in storage

capacity is given by:

θFB2 (KFB)− θFB1 (KFB) = C ′(KFB)

θ̄ − θ − 2
√

2(θ̄ − θ)KFB = KFB

KFB =
[
5− 2

√
6
]
(θ̄ − θ)

Note that, for θ uniformly distributed on [θ, θ̄], the marginal investment revenue for

the monopolist MRM(K) is:

MRM(K) =
θM2 − θM1 (K)

1− α2
+

2αK

(1− α2)G(θM1 (K))

=
(θ̄ − θ)− 2

√
2(2 + α)(θ̄ − θ)K

1− α2
+

α2K(θ̄ − θ)
(1− α2)

√
2(2 + α)(θ̄ − θ)K

=
1

(1− α2)
√

2 + α

(√
2 + α(θ̄ − θ)− (4 + α)

√
2(θ̄ − θ)K

)
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Evaluated at KFB:

MRM(K = KFB) =
θ̄ − θ

(1− α2)
√

2 + α

(√
2 + α− (4 + α)

√
2(5− 2

√
6)

)
< 0

Moreover,

∂MRM(K)

∂K
=

2

(2 + α)(1− α2)

(
∂θM2 (K)

∂K
− ∂θM1 (K)

∂K

)
+

α

(2 + α)(1− α2)

(
− θM2 g(θM2 )− θM1 g(θM1 )

)
< 0

for all K, as
∂θM2 (K)

∂K
< 0 and

∂θM1 (K)

∂K>0
. Thus, KM(K) < KFB(K).

Proof of Lemma 6

The structure of the functional optimization problem is identical to the one in the Proof

of Proposition 1, with concavity and compactness assumptions satisfied, so a unique

solution to the problem exists. For a more formal treatment of the problem, we refer the

reader to the characterization of the first-best. The Lagrangian of the problem, omitting

the non-negativity constraints, is given by:

L
(
p(θ), qB(θ), qS(θ), λ, µ

)
=

∫ θ̄

θ

[
p(θ)D (p; θ)− [D (p; θ)− qS(θ) + qB(θ)]2

2α

]
g (θ) dθ

+ λ

[ ∫ θ̄

θ

qB(θ)g(θ)dθ −
∫ θ̄

θ

qS(θ)g(θ)dθ

]
+ µ

[
K −

∫ θ̄

θ

qB(θ)g(θ)dθ

]
where λ and µ are the Lagrangian multipliers and D (p; θ) = θ − (1 − α)p(θ). Without

loss of generality, we can focus attention on cases in which for any θ ∈ [θ, θ̄], qB(θ) >

0→ qS(θ) = 0 and qS(θ) > 0→ qB(θ) = 0. The KKT conditions are:

θ − (1− α)
[
qS(θ)− qB(θ)

]
− (1− α2)p(θ) = 0, ∀θ (57)

1

α

[
θ − qS(θ)− (1− α)p(θ)

]
− λ = 0, ∀θ ≥ θ2 (58)

1

α

[
θ − (1− α)p(θ)

]
− λ < 0, ∀θ < θ2

1

α

[
θ + qB(θ)− (1− α)p(θ)

]
− λ+ µ = 0,∀θ ≤ θ1 (59)

1

α

[
θ − (1− α)p(θ)

]
− λ+ µ > 0,∀θ > θ1∫ θ1

θ

qB(θ)g(θ)dθ =

∫ θ̄

θ2

qS(θ)g(θ)dθ (60)
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with θ1 ≤ θ2 and the complementary slackness conditions identical to those in equations

(21)-(25). These conditions are necessary and sufficient, due the concavity of both the

objective function and the constraints.

Combining conditions (57) and (58):

qS(θ) =
θ − λ(1 + α)

2
,∀θ ≥ θ2

p(θ) =
θ + λ(1− α)

2(1− α)
,∀θ ≥ θ2

From conditions (57) and (59):

qB(θ) =
(λ− µ)(1 + α)− θ

2
,∀θ ≤ θ1

p(θ) =
θ + (λ− µ)(1− α)

2(1− α)
,∀θ ≤ θ1

And from condition (57):

p(θ) =
θ

1− α2
for θ1 < θ < θ2.

By continuity:

qS(θ2) = 0⇒ θ2 = (1 + α)λ⇒

qIS(θ) = θ−θ2
2
, ∀θ > θ2

p(θ) = θ
2(1−α)

+ θ2
2(1+α)

,∀θ > θ2

qB(θ1) = 0⇒ θ1 = (1 + α)(λ− µ)⇒

qIB(θ) = θ1−θ
2
,∀θ < θ1

p(θ) = θ
2(1−α)

+ θ1
2(1+α)

,∀θ < θ1

From condition 60: ∫ θ1

θ

θ1 − θ
2

g(θ)dθ =

∫ θ̄

θ2

θ − θ2

2
g(θ)dθ. (61)

We have two possible cases depending on the value of the exogenous parameter K.

When K is binding, µ > 0 and θ2 − θ1 = µ(1 + α) > 0. Define x = θ2 − θ1 and assume

that G(θ) has a well-defined mean given by E(θ). By symmetry of G(θ), equation (61)

implies that θ2 and θ1 must be symmetric around the mean i.e.,

θ1 = E(θ)− x

2
⇒ θC1 = E(θ)− µ(1 + α)

2
(62)

θ2 = E(θ) +
x

2
⇒ θC2 = E(θ) +

µ(1 + α)

2
(63)
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with µ = µI (K) implicitly given by:∫ θ1(µI(K))

θ

θ1(µI (K))− θ
2

g(θ)dθ =

∫ θ̄

θ2(µI(K))

θ − θ2(µI (K))

2
g(θ)dθ = K (64)

Note that when K is not binding, so that µ = 0, from equations (62) and (63) it

is straightforward to establish that θI1 = θI2 = E(θ). However, as shown below, µ = 0

cannot be a solution to the first stage problem.

Proof of Corollary 1

Let us use L (θ) to denote the Lerner Index, i.e., the ratio between price minus marginal

cost over price. Using the equilibrium storage decisions,

L (θ) =


θ(1+α)−θI1(1−α)

θ(1+α)+θI1(1−α)
if θ < θI1

α if θI1 ≤ θ ≤ θI2
θ(1+α)−θI2(1−α)

θ(1+α)+θI2(1−α)
if θ > θI2

These mark-ups are continuous in θ. They are constant for θI1 ≤ θ ≤ θI2 and increasing

in θ otherwise. Hence, for θ < θI1, L (θ) < α. And for θ > θI2, L (θ) > α. Since the two

expressions are a mirror image of each other, while the markups for high demand levels

are weighted more, the demand-weighted average mark-up is greater than α.

Proof of Proposition 5

By identical arguments to those in the proof for optimal First Best capacity investment

(Section 7), the unique interior solution KI is given by the solution to:

µ− C ′(K) =
θI2(K)− θI1(K)

1 + α
− C ′(K) = 0 (65)

with µ = µI (K) implicitly given by the solution to∫ θ1(µ(K))

θ

θ1(µ(K))− θ
2

g(θ)dθ =
1

2

∫ θ̄

θ2(µ(K))

θ − θ2(µ(K))

2
g(θ)dθ = K.

Now we show that KI < KFB. Assume on the contrary that KI ≥ KFB. Then, by

strict convexity of the cost function:

KI ≥ KFB ⇒ C ′(KI) ≥ C ′(KFB) (66)

Moreover:

KI ≥ KFB ⇒ θI2 − θI1 < θFB2 − θFB1 ⇒ (1 + α)C ′(KI) < C ′(KFB) (67)
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where the first implication comes from the capacity constraints in the optimal solution

(equations (29) and (64)), and the second from first stage optimality conditions (4) and

(17). Putting (66) and (67) together:

(1 + α)C ′(KI) < C ′(KFB) ≤ C ′(KI)

Proof of Proposition 6

From Lemma 4, we know that, for given K, equilibrium storage decisions under the

second-best and under competitive storage coincide. Thus, W SB(K) = WC(K) and

CSSB(K) = CSC(K), ∀K. Moreover,

{qSBB (θ,K), qSBS (θ,K)} = argmax
qB(θ,K),qS(θ,K)

W (K)

Thus, as qMB (θ,K) 6= qSBB (θ,K) and qIB(θ,K) 6= qSBB (θ,K) for some θ and all K, we

have that W SB(K) > WM(K) and W SB(K) > W I(K), ∀K.

For the second part of the proposition, we want to show that WM(K) > W I(K),

which is equivalent to TCM(K) > TCI(K). Note that:

lim
K→∞

[TCM(K)− TCI(K)] = V [θ]
5α

8 (1− α) (2 + α)2 > 0

lim
K→∞

[TCM(K)− TCI(K)] = 0

Thus, TCM(K) < TCI(K) if:

∂TCM(K)

∂K
< 0 (68)

∂TCI(K)

∂K
< 0 (69)∣∣∣∣∂TCM(K)

∂K

∣∣∣∣ ≥ ∣∣∣∣∂TCI(K)

∂K

∣∣∣∣ (70)

for all K < KM(max), where:

KM(max) =

∫ E[θ]

θ

E[θ]− θ
2 + α

g(θ)dθ.

Recall that

TC(K) =

∫ θ̄

θ

(
αq2

F (θ,K)

2
+
q2
F (θ,K)

2(1− α)

)
g(θ)dθ

For the monopolist:
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TCM(K) =
1 + α− α2

2(1− α)

[ ∫ θM1 (K)

θ

(
θ(1 + α) + θM1 (K)

(2 + α)(1 + α)

)2

g(θ)dθ +

∫ θM2 (K)

θM1 (K)

(
θ

(1 + α)

)2

g(θ)dθ

+

∫ θ̄

θM2 (K)

(
θ(1 + α) + θM2 (K)

(2 + α)(1 + α)

)2

g(θ)dθ

]

For the vertically integrated firm

TCI(K) =

∫ θM1 (K)

θ

(
1

2α

(
αθI1(K)

1 + α

)2

+
1

2(1− α)

(
(1 + α)θ + (1− α)θI1(K)

2(1 + α)

)2
)
g(θ)dθ

+
1 + α− α2

2(1− α)

∫ θM2 (K)

θM1 (K)

(
θ

(1 + α)

)2

g(θ)dθ

+

∫ θ̄

θM2 (K)

(
1

2α

(
αθI2(K)

1 + α

)2

+
1

2(1− α)

(
(1 + α)θ + (1− α)θI2(K)

2(1 + α)

)2
)
g(θ)dθ

For the independent monopolist, after some computations we have that:

∂TCM(K)

∂K
=

1 + α− α2

(1− α)(2 + α)(1 + α)2G (θM1 (K))

[∫ θM1 (K)

θ

[
θ(1 + α) + θM1 (K)

]
g(θ)dθ

−
∫ θ̄

θM2 (K)

[
θ(1 + α) + θM2 (K)

]
g(θ)dθ

]
< 0∣∣∣∣∂TCM(K)

∂K

∣∣∣∣ =
1 + α− α2

(1− α)(2 + α)(1 + α)2

[
θM2 (K)− θM1 (K)

]
+

1 + α− α2

(1− α)(2 + α)(1 + α)G (θM1 (K))

[∫ θ̄

θM2 (K)

θg(θ)dθ −
∫ θM1 (K)

θ

θg(θ)dθ

]

and for the vertically integrated firm:

∂TCI(K)

∂K
=

1

2(1 + α)2

1

G (θI1(K))

[∫ θM1 (K)

θ

[
(1 + α)θ + (1 + 3α)θI1(K)

]
g(θ)dθ

−
∫ θ̄

θI2(K)

[
(1 + α)θ + (1 + 3α)θI2(K)

]
g(θ)dθ

]
< 0∣∣∣∣∂TCI(K)

∂K

∣∣∣∣ =
(1 + 3α)

2(1 + α)2

[
θI2(K)− θI1(K)

]
+

1

2(1 + α)G (θI1(K))

[∫ θ̄

θI2(K)

θg(θ)dθ −
∫ θI(K)

θ

θg(θ)dθ

]

Assuming that θ is uniformly distributed on [θ, θ̄], we have that:
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∣∣∣∣∂TCM(K)

∂K

∣∣∣∣ =
1 + α− α2

(1− α)(2 + α)(1 + α)2

[
(2 + α)(θ̄ − θ)− (3 + α)

√
2(2 + α)(θ̄ − θ)K

]
∣∣∣∣∂TCI(K)

∂K

∣∣∣∣ =
1

(1 + α)2

[
(1 + 2α)(θ̄ − θ) + (7α + 3)

√
(θ̄ − θ)K

]
Thus:∣∣∣∣∂TCM(K)

∂K

∣∣∣∣− ∣∣∣∣∂TCI(K)

∂K

∣∣∣∣ > 0⇔ K <

(
α2(2 + α)

√
θ̄ − θ

(1 + α− α2)(3 + α)
√

2(2 + α)− (7α + 3)(1− α)(2 + α)

)2

Note that:

(
α2(2 + α)

√
θ̄ − θ

(1 + α− α2)(3 + α)
√

2(2 + α)− (7α + 3)(1− α)(2 + α)

)2

<

(
E[θ]− θ

)2

2(θ̄ − θ)(2 + α)
= KM(max)

Thus,

∣∣∣∣∂TCM (K)
∂K

∣∣∣∣ > ∣∣∣∣∂TCI(K)
∂K

∣∣∣∣, so that TCM(K) < TCI(K) and WM(K) > W I(K).

For comparing consumer surplus, we follow the same approach. First note that:

lim
K→∞

[CSM(K)− CSI(K)] =
α

2 + α
V [θ] > 0

lim
K→∞

[CSM(K)− CSI(K)] = 0

Second, note that:

∂CSM(K)

∂K
=

1

(1− α2)G(θM1 (K))

[ ∫ θ̄

θM2 (K)

θg(θ)dθ −
∫ θM1 (K)

θ

θg(θ)dθ

]
> 0

for all K and

∂CSI(K)

∂K
=

1

(1 + α)G(θI1(K))

[ ∫ θ̄

θI2(K)

θg(θ)dθ −
∫ θI1(K)

θ

θg(θ)dθ

]
> 0

for all K.

Finally, when θ is uniformly distributed on [θ, θ̄], we have that:

∂CSM(K)

∂K
− ∂CSI(K)

∂K
> 0⇔ θ̄ − θ −

√
2(2 + α)(θ̄ − θ)K
1− α2

− θ̄ − θ − 2
√

(θ̄ − θ)K
1 + α

> 0(
α
√
θ̄ − θ√

2(2 + α) + 2α− 2

)2

> K

Note that: (
α
√
θ̄ − θ√

2(2 + α) + 2α− 2

)2

<

(
E[θ]− θ

)2

2(θ̄ − θ)(2 + α)
= KM(max)

Thus, ∂CSM (K)
∂K

> ∂CSI(K)
∂K

, so that CSM(K) > CSI(K), for all K.
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