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1 Introduction

When investigating leaked-out cartels, one consistently finds sophisticated mechanisms

to organize the cartel (Hyytinen et al., 2019 Levenstein and Suslow, 2006, Levenstein

and Suslow, 2011, Harrington, 2006). Involved firms do not only coordinate offers,

quantities or prices. They also use payment schemes to compensate cartel members that

came off badly in an auction or time period. For instance, in the vitamin cartel firms

with an output above the collusive quotas directly bought vitamins from the other cartel

members to compensate them. The Austrian construction cartel used a particular fund

for compensation payments (Oberster Gerichtshof der Republik Österreich, 2017). This

construction cartel is a very recent example for complicated cartel structures that

arranged complex market sharing and compensation mechanisms. Despite its wide-

spread usage, there is little theoretical literature on the exact motives for employing

certain collusive compensation schemes.

Additionally, competition authorities worldwide are concerned about the increasing

usage of algorithms and machine learning tools to support firms’ pricing (OECD, 2017).

Algorithms might ‘learn’ to behave cooperatively (Calvano et al., 2020a, 2020b, 2021,

Assad et al., 2020, 2021, Brown and MacKay, 2020, Johnson et al., 2020, Harrington,

2021, Normann and Sternberg, 2021, Klein, 2019). Moreover, better algorithms fed by

ever increasing amounts of collected data may enhance firms’ ability for more tailored

pricing to certain users (Peiseler et al., 2018) or entire demand environments (Miklós-

Thal & Tucker, 2019). This last aspect seems to be particularly relevant. A prominent

example for this is ‘Amazon forecast’, an algorithm based demand prediction software

which is not only used by Amazon shopping, but also offered globally to third party

firms. The service applies machine learning techniques to time series data from the

past and “cause an improvement in forecast quality by up to 50%”.1 The software

has prominent users: Foxconn, a contract manufacturer for, e.g., Apple, Microsoft,

and Nintendo; Clearly, a large online eye wear retailer, or Axiom Telecom, the largest

1https://aws.amazon.com/forecast/?nc1=h ls
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telecommunications operator in the Near East.2

On top of the aforementioned reasons, the question of collusive compensation is also

likely to become more relevant once we take into account the social structures in which

economic behaviour is embedded (Granovetter, 1985). Trust is a crucial ingredient into

cooperation of any kind, which may be established fairly easily when decision makers

are relatively homogeneous. Since managerial boards become increasingly diverse, ad-

ditional necessity to sustain collusive agreements through sophisticated schemes might

arise.

What are the incentives for colluding parties to use certain collusion compensation

schemes? How do these incentives depend on better prediction ability? Which of these

collusive schemes should we expect to increasingly emerge in the future? Although

these are very pressing issues both for theorists and competition authorities, the ex-

isting literature does not yet offer any answers. This is the first paper to explicitly

address these questions.

We consider an infinitely repeated game between two firms. Each period consists

of two stages. In the first stage, firms are temporarily asymmetric. Consumers have a

strict preference for one firm, but the identity of the preferred firm is stochastic and

varies over time. Firms compete in prices and receive a noisy signal about the second

stage, in which valuations are symmetric and either high or low for both firms. Firms

have to pay an entry cost in order to offer their products in the second stage. Joint

profits are highest when only the preferred firm sells at monopoly prices in the first

stage and only one firms enters the second stage if it can at least cover its entry cost

in expectation. Collusion can be sustained if neither firm has an incentive to deviate.

The temporary asymmetry in stage one creates very high incentives for the currently

disadvantaged firm to deviate, in particular when it received a signal that also the

second stage will be disappointing.

We identify two collusive compensation schemes that allow to dampen the incentives

2https://aws.amazon.com/forecast/customers/
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to deviate for the disadvantaged firm. First, the disadvantaged firm may be assigned

‘future market shares’, i.e. the exclusive right to enter into the second stage. Note that

this can still be achieved with an implicit understanding of all parties involved, i.e.,

it could still be viewed as a form of ‘tacit collusion’, which is not forbidden in most

jurisdictions. Second, the disadvantaged firm might receive a ‘bribe’ in the form of a

direct transfer from the other firm. This is more effective since the optimal transfer

can be chosen such that there is no slack left in the incentive compatibility constraint.

However, it entails the disadvantage that this is clearly illegal behaviour which will be

fined in case of detection.

We analyze the most profitable collusive equilibrium for different compensation

schemes, a given discount factor δ and the signal precision ρ, i.e., the firms’ ability to

accurately predict the state in stage two already upon receiving a signal in stage one.

Intuitively, advanced collusive scheme that dampen incentives to deviate enable higher

collusive prices. Only one firm enters the stage-two market in any collusive agreement,

unless a sufficiently precise signal (ρ > ρ̄) indicates that expected profits are so low

that not even the entry costs can be recovered.

We find that all three compensation schemes are harder to sustain when ρ increases

as long as ρ < ρ̄, but easier to sustain when ρ increases when ρ > ρ̄. Collusive

schemes that are easier to sustain enable higher collusive prices. In the first case, the

currently disadvantaged firm is increasingly convinced that the future will not be great.

Hence, cheating on the competitor and reaping high profits right away becomes more

appealing. Once ρ > ρ̄, firms understand that after receiving a bad signal, entry is not

worthwhile, but conditional on entry after a good signal, the payoff will be substantial,

and more so the more precise is the signal. Thus, the disadvantaged firm has lower

incentives to deviate. This implies that the relationship between prices and prediction

ability is inverse u-shaped.

Finally, we consider the relative attractiveness of each of these compensation schemes

depending on the signal precision ρ and the fines imposed upon conviction in case of
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collusive compensation through direct transfers. The extent to which firms can benefit

from better prediction ability depends on the collusive compensation scheme. We find

that assigning future market shares is optimal when prediction ability is intermediate,

and otherwise direct transfers are optimal. Since competition authorities need to uti-

lize limited resources efficiently, our analysis sheds light onto which schemes probably

demand closest attention in the future.

This paper is structured as follows. We relate to existing literature in Section 1.1

and describe our model in Section 2. We provide an analysis of collusive compensation

schemes in Section 3, we relate to welfare aspects in Section 4 and we characterize

optimal collusive compensation in Section 5. We present a numerical example in Section

6. In Section 7, we discuss policy implications and conclude.

1.1 Related Literature

Our paper relates to several strands of the literature. Closest to our paper is Miklós-

Thal and Tucker (2019), whose basic setup is similar to ours. Symmetric firms receive

a noisy signal about consumer valuations and might adjust their prices accordingly.

Higher prediction accuracy may lower profits and increase consumer surplus, casting

doubt on aforementioned concerns about enhanced ability to collude through algo-

rithms. In contrast to their paper, our firms are temporary asymmetric.3 The sig-

nal is not about consumer valuations, but about market size in the next sub-period.

This channel gives rise to interesting non-monotonic affects. Moreover, we consider

additional collusive compensation schemes and relate their relative attractiveness to

prediction accuracy.

Collusion under temporary asymmetry appears in the literature on bidding rings

(McAfee and McMillan, 1992, Pesendorfer, 2000, Skrzypacz and Hopenhayn, 2004,

Blume and Heidhues, 2008). Indeed, asymmetry is an inherent ingredient in all auction

3See, e.g., Miklós-Thal (2011) and Athey and Bagwell (2008) for a setting with permanent cost
asymmetries, and Häckner (1994), Bos and Marini (2019), and Bos et al. (2020) for settings with
vertically differentiated products..
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models, in which the degree of asymmetry is private information. Thus, colluding

parties first of all need to ensure efficient revelation of the private information. In our

set-up, there is no private information, and we focus on the interactive effect between

collusive compensation and prediction accuracy instead. Our ‘baseline tacit collusion’

and ‘assignment of future market shares’ can be thought of as weak cartels in the

terminology of McAfee and McMillan, 1992, whereas ‘direct transfers’ are akin to a

strong cartel (Bos & Pot, 2012).

Regarding empirical research, Levenstein and Suslow (2006, 2011, 2012), Harrington

(2006) and Hyytinen et al., 2019 summarize detected cartels and illustrate some of the

compensation schemes formally considered in this paper, e.g., the industrial tubes cartel

and tacit collusion over market entries in the French telecommunication sector. In the

former, tube manufacturers coordinated market shares and regions. When a customer

requested an offer from the ‘wrong’ firm, it set an unrealistically high price to avoid

winning the contract, i.e. it basically left the market.4 In the French telecommunication

sector, Bourreau et al. (2021) provide evidence that the incumbent operators to have

been tacitly colluding over market entry to avoid cannibalization and to ensure high

mark-ups. Our framework addresses these issues and shows how algorithmic collusion

might enable more stable collusion in the future.

Concerns similar to the ones described in this paper arise in the literature on al-

gorithmic pricing (Calvano et al., 2020a, 2020b, 2021, Assad et al., 2020, 2021, Brown

and MacKay, 2020, Johnson et al., 2020, Harrington, 2021) and experiments thereof

(Normann and Sternberg, 2021, Klein, 2019). We add to this literature by providing

a theoretical foundation for the incentives and mechanics of different collusive com-

pensation schemes, and how these incentives depend on prediction accuracy. Existing

research mainly focuses on the usage of algorithms for price setting, while we analyze

the use of algorithms to forecast markets. In that sense, it corresponds to the seminal

4See “Commission Decision of 16 December 2003 relating to a proceeding pursuant to Article 81
of the EC Treaty and Article 53 of the EEA Agreement – Case COMP/E-1/38.240 - Industrial tubes:
https://ec.europa.eu/competition/antitrust/cases/dec docs/38240/38240 29 1.pdf
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early work of Green and Porter (1984) as well as Rotemberg and Saloner (1986) on

collusion with varying demand. Recent literature in the field of demand uncertainty

comes from O’Connor and Wilson (2021) and Bajari et al. (2019). The application of

artificial intelligence to decision making in general has been examined by, e.g., Agrawal

et al. (2019b, 2019c).

The usage of algorithms and, more broadly, artificial intelligence in industrial con-

texts raises many policy issues. Among others, this is examined by Assad et al. (2021)

and Agrawal et al. (2019a).

2 Model

We consider an infinitely repeated interaction between two firms with a common dis-

count factor δ. Each period consists of two stages. In each stage, there is a mass 1 of

homogeneous consumers with unit demand. In the first stage, consumer valuations are

given by (vH , vL) for firm 1 and firm 2, respectively, or by (vL, vH), with vH > vL > 0.

Ex-ante, each of these two states is equally likely, and the states are i.i.d. over time. In

that sense, firms are temporary asymmetric. We refer to the firm with vH as preferred

firm and to the firm with vL as disadvantaged firm.

In the second stage, firms are symmetric, but again, there are two states which are

ex-ante equally likely and i.i.d. over time, denoted by H and L. In state H, consumers’

valuation for both firms is v > 0, and in state L, consumers’ valuation for both firms

is zero. Firms have to pay a fixed entry cost F in order to offer their product in the

second stage. This payment is publicly observable. Throughout, marginal costs of

production are normalized to zero.

The timing of the stage game is as follows. Firms observe the realization of the

state in stage 1 and receive a common signal s ∈ {h, l} about the second stage.5 The

5The model could also be adjusted to allow for an additional signal concerning the first stage.
However, in our context such a signal would have little relevance since we are primarily interested in
the interactive effect of the ability to predict on different collusive compensation schemes. This only
matters once temporary asymmetries have already materialized.
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signal has precision ρ, i.e., Pr(h|H) = Pr(l|L) = ρ ∈
[
1
2
, 1
]
. Since ex-ante both states

are equally likely, also the posterior Pr(H|h) = Pr(L|l) = ρ, so the probability that

the predicted state of the world realizes is also given by ρ. For ρ = 1/2, the algorithm

has no predictive power, i.e. the posterior after receiving any signal equals the prior:

Pr(H|h) = Pr(H|l) = Pr(H). For ρ = 1, the algorithm has perfect prediction ability.

Upon receiving signals, firms simultaneously set period-1 prices and make their entry

decision for the second stage, both of which are publicly observable. In the second

stage, those firms that entered the market observe the state realization and set a price

for the second stage. For the infinitely repeated game, we are interested in the most

profitable subgame-perfect equilibrium supported by grim trigger strategies.

We make the following additional assumptions on the parameters of the model.

Assumption 1. (i) v
2
− F > 0, (ii) vL > v − F and (iii) 2(v − 2F ) > vL.

The rationale behind these assumptions is as follows. Part (i), v
2
− F > 0, ensures

that, absent any signal, a monopolist would find it profitable to enter in the second

stage. In that sense, our model can be interpreted as capturing low-entry-cost indus-

tries. In high-entry-cost industries, this inequality would be reversed and a monopolist

would ex-ante not enter.

Part (ii), vL > v − F , originates from the collusive scheme with future market

shares. It contrasts the short-term gain from deviation in a collusive agreement with

monopoly prices, given by vL, with the profit the firm obtains if the signal is perfectly

informative (ρ = 1). This condition ensures that there is an incentive to deviate from

a collusive agreement with monopoly prices. If this condition fails, than there is only

very little at stake for the disadvantaged firm in the first stage to start with, rendering

all considerations on collusion irrelevant. This assumption could easily be relaxed and

is made for easy of exposition only.

Part(iii), 2(v−2F ) > vL, establishes an upper bound on vL, which is relevant in the

first stage, relative to v/2− F , which are relevant in the second stage. This condition

ensures that the second stage is sufficiently important, relative to the first stage. If
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this condition fails, then potential profits accrued in the second stage are irrelevant,

and hence there is little scope for the collusive compensation schemes we contemplate.

This assumption is made for clarity only and could easily be dispensed with.

Taken together, our assumptions can be written as:

2(v − 2F ) > vL > v − F > 0 (1)

where (i) v
2
− F > 0 is implied by v − F > 0.

Example: We consider the outlined setting as fairly general, but it applies in

particular to creative industries such as film or video game production, as popularity

is always somewhat random there.6 Consider gaming enterprises that have developed

a new action game. They could either compete or jointly evaluate which game has the

higher valuation in the market and agree to sell this only (at price vH in our stage

1). Both firms do not know next year’s demand for action games but have to make

costly investments to develop a new game (entry costs F in our model). To add zest

to a withdrawal, the preferred studio in stage 1 could take measures such as bribes or

dedicate the ‘action game market’ in stage 2 to the disadvantaged firm.

2.1 Analysis - Stage game

In order to illustrate the mechanics of the model, we first analyze the stage game in

case firms compete with each other. As usual, we proceed with backwards induction.

Since we are eventually interested in the most severe punishment through grim trigger

strategies, we focus on the least profitable subgame-perfect equilibrium.

In the second stage, firms are aware of the entry decision of the other firm and the

state realization. Since this is a standard Bertrand game, profits for both firms are zero

in case both entered, whereas in case of a single entrant this firm acts as a monopolist

and makes profit v when the state is H and zero otherwise.

6According to Statista research, the video game market in the US alone has a size of 65.5 Billion
USD: https://www.statista.com/topics/868/video-games/#dossierSummary
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Taking the signal s ∈ {h, l} and expected second stage profits as given, firms

simultaneously set first-stage prices and decide on entry for stage 2. If expected profits

given the signal make entry for a single firm profitable (i.e., it holds that Pr(H|s)v −

F > 0), then the market entry game has a hawk-and-dove game flavor as shown in

Figure 1. There are two asymmetric Nash equilibria in pure strategies and one in mixed

strategies, which results in zero expected profits for both firms. Thus, irrespective of

the signal s, expected profits for stage 2 are zero in the least profitable subgame-perfect

equilibrium.

firm 2

Enter Do not enter

firm 1
Enter −F,−F Pr(H|s)v − F, 0

Do not enter 0, P r(H|s)v − F 0, 0

Figure 1: Stage 2 market entry game conditional on signal s

In stage 1, valuations are vH and vL, respectively, so in equilibrium the preferred

firm obtains a profit of vH − vL. Since ex-ante each firm is equally likely to be the

preferred one, expected profits per period are vH−vL
2

+0. Hence, the discounted expected

profit for each firm in the least profitable Nash equilibrium is given by:

E(π)N =

(
vH − vL

2

)
1

1− δ
. (2)

3 Collusive Compensation Schemes

Instead of competing with each other, both firms could collude. We are interested in

the most profitable outcome that can be supported in a subgame-perfect equilibrium

for a given collusive compensation scheme and the parameters of the model. In contrast

to the literature on endogenous cartel formation (Bos & Harrington, 2010; Bloch, 2018;

Belleflamme & Bloch, 2004; Harrington & Chang, 2009), we take the potential collusive

structure as given and investigate the most collusive outcomes given this structure.
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A standard efficiency argument dictates that in the most profitable collusive equilib-

rium, only the preferred firm is active in the first stage and charges a signal-dependent

price ps, s ∈ {h, l}, and the disadvantaged is not active (or alternatively, charges any

prohibitively high price). Thus, we are interested in the pair price (pl, ph) that maxi-

mizes joint expected profits, subject to state- and signal-dependent incentive compat-

ibility constraints.

The most efficient collusion is joint-profit maximization, i.e. setting monopoly prices

after both signals and making a monopoly-like entry decision. A monopolist would

optimally sell only the high valued good at price p1 = vH in stage 1. If monopoly

entry into the second stage is profitable in expectation, then it is accompanied by a

stage-two monopoly price p2 = v. This expectation crucially depends on the signal

precision, so using a predictive algorithm can change the decision making compared to

the uninformed case. In low-cost industries, monopoly entry is always profitable after

signal h since the expected revenue based on the prior exceeds the costs (v
2
≥ F ), and

it is also profitable after signal l as long as ρ ≤ ρ̄, where ρ̄ is given by:

(1− ρ)v ≥ F

ρ ≤ ρ̄ =
v − F

v
.

(3)

In the following, we examine the interaction of prediction accuracy with several car-

tel compensation mechanisms. Under this term we subsume all actions taken within a

cartel. While, for example, price or quantity fixing is an external action as it impacts

the market, internal actions are those that incentivize or compensate firms of a cartel

for some behaviour. These compensation schemes are useful as we have by construction

asymmetries that lead to differences in the incentive constraints. The first scheme is

(baseline) tacit collusion, i.e. we assume behaviour of the two firms that is somehow

coordinated to optimize joint profits but do not require direct communication (Har-

rington & Skrzypacz, 2011). The second scheme is the assignment of the market in

stage 2 to the firm facing the low valuation in stage 1, i.e. it is guaranteed that the
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low state firm gets the stage 2 market as long as the posterior-weighted expected profit

is positive. The last scheme we examine uses direct transfers between the two firms.

The high state firm in stage 1 pays the low state firm not to deviate, which possibly

enables higher collusive prices. This comes at the prize of a higher detection likelihood

and possible fines as direct payments leave marks.

For all compensation schemes, collusion at monopoly prices, i.e., ph = pl = vH ,

is only possible when firms are sufficiently patient. Otherwise, a lower price p∗s(ρ),

s ∈ {h, l}, needs to be chosen such that currently disadvantaged firm has no incentive

to deviate.

When the signal h was received, continuation values are higher and hence punish-

ment after a deviation is higher. Therefore even moderate prices decreases suffice to

deter deviations. Thus, for each collusive compensation scheme and given δ and ρ,

either (i) p1 = vH is sustainable after both signals, (ii) vH remains sustainable after

the h signal but the prices needs to be distorted downwards after the l signal or (iii)

after both signals, prices need to be distorted downwards.

We introduce the following notation for describing the critical thresholds on δ.

First, we differentiate between the two intervals of ρ. For ρ ≤ ρ̄, we use ĈDF , and

for ρ > ρ̄, we use C̃DF . To separate the CDF by compensation schemes, we use

the subscripts {base, f.m.s., d.t.} for baseline tacit collusion, assigning future market

shares, and direct transfers, respectively.

3.1 Baseline tacit collusion

We first describe baseline tacit collusion. In any efficient collusive scheme, the disad-

vantaged firm in stage 1 has an incentive to deviate since it does not make any profits

in stage 1 otherwise. Under baseline tacit collusion, the disadvantaged firm is only

kept in check by the threat of reversion to Nash equilibrium play forever in case of a

deviation. In case the low valuation firm obeys to the collusive agreement, the firms

randomize the decision who gets the whole market in the following second stage.
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Conditional on period one valuations v1 ∈ {H,L} and signal s ∈ {h, l}, we denote

the respective continuation values by Vv1,s. Since all of these are ex-ante equally likely,

the ex-ante expected discounted profits under collusion are:

Vbase(ρ) =
VHh(ρ) + VHl(ρ) + VLh(ρ) + VLl(ρ)

4
. (4)

Given the signal structure, entry in stage 2 is always profitable after signal h, but

only when ρ ≤ ρ̄ after signal l. So the total expected profit from stage 2 is

π2,h =
ρv − F

2

π2,l =


(1−ρ)v−F

2
if ρ ≤ ρ̄

0 if ρ > ρ̄

Under baseline collusion, the identity of the potential entrant in stage 2 is determined

randomly. Thus, the respective continuation values are given by

VHh = ph +
π2,h

2
+ δV

VHl = pl +
π2,l

2
+ δV

VLh = 0 +
π2,h

2
+ δV

VLl = 0 +
π2,l

2
+ δV

(5)

Collusion at monopoly prices is sustainable as long as neither firm has an incentive

to deviate for all possible signals. Clearly, the currently preferred firm never has an

incentive to deviate, so we only need to consider deviation incentives for the currently

disadvantaged firm. The most profitable deviation, given that the other firm is charging

a price ps, is charging a price p
′ sufficiently low such that the entire demand is attracted,

which is given by p′ = vL−vH +ps. This will be met immediately with the most severe

punishment in stage 2, resulting in 0 profits, and Nash equilibrium punishment in all

future periods. Thus, upon receiving signal h, the incentive constraint (IC) is given
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by

(ICh) : VLh ≥ vL − vH + ph + δE(π)N (6)

and upon signal l, the constraint is given by

(ICl) : VLl ≥ vL − vH + pl + δE(π)N . (7)

For collusion at monopoly prices, ph = pl = vH , so VLh > VLl, so ICl is binding.

When δ is sufficiently high, monopoly prices are sustainable. Otherwise, first pl needs

to be adjusted, which relaxes the ICl but tightens ICh. When δ is very small, both ph

and pl need to be adjusted. The following proposition shows how these adjustments

are made optimally.

It will be convenient to define several thresholds of the critical discount factor

(CDF ) and interior price functions. For ease of reference, these are collected in Ap-

pendix A, along with several useful properties collected in Lemma 3, which will be

repeatedly used in the following.

We next characterize the highest sustainable sets of prices under baseline tacit

collusion.

Proposition 1. For baseline tacit collusion, the highest sustainable prices p∗l and p∗h

are as follows. If ρ ≤ ρ̄, then (p∗l , p
∗
h) =

(vH , vH) δ ≥ ĈDF base,1(
p̂l,1base(ρ), vH

)
ĈDF base,1 > δ ≥ ĈDF base,2(

p̂l,2base(ρ), p̂
h
base(ρ)

)
otherwise
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If ρ > ρ̄, then (p∗l , p
∗
h) =
(vH , vH) δ ≥ C̃DF base,1(
p̃l,1base(ρ), vH

)
C̃DF base,1 > δ ≥ C̃DF base,2(

p̃l,2base(ρ), p̃
h
base(ρ)

)
otherwise

Prices and critical discount factors can be found in Appendix A.

Proof. See appendix.

Proposition 1 shows the highest sustainable prices under baseline collusion. De-

pending on the prediction ability ρ and the discount factor δ, different prices are sus-

tainable. By lowering the price the currently preferred firm offers, also undercutting

becomes less attractive since less is at stake to start with, which lowers the incentive

to deviate and, by that, the CDF necessary for stable collusion. We need to take into

account that for ρ < ρ̄, entry into the second stage if profitable after both signals, but

for ρ > ρ̄ it is no longer profitable after a bad signal. This affects the disadvantaged

firm’s incentive to deviate and hence modulates the strength of the pricing distortion

that successfully deters such a deviation. The incentive to deviate is always stronger

after a bad signal, because in that case the second-stage punishment is relatively less

damaging since also equilibrium payoffs are relatively low. Hence, prices pl need to

be distorted more frequently and more severely than prices ph. Both when ρ ≤ ρ̄ and

when ρ > ρ̄, there are three possible cases, depending on the discount factor δ. When δ

is sufficiently high, then monopoly prices vH are sustainable after both signals. When

δ is intermediate, then prices pl after the bad signal need to be distorted downwards

and prices ph after the good signal are still sustainable. When δ is very low, then both

prices need to be distorted downward relative to monopoly levels, but more so after a

bad signal.

As an illustration of optimal prices in baseline tacit collusion, consider Figure 2 (see

Section 6 for a deeper numerical illustration), using both a low (left panel) and a high

14



(right panel) discount factor δ. Throughout, higher prices are sustainable after a high

signal (ph) then after a low signal (pl), since the incentives to deviate are lower when

the future is promising. This effect is stronger the more precise the signal (for ρ < ρ̄),

which increases the wedge between ph and pl. When the signal is already sufficiently

precise (ρ > ρ̄), then anyways there is no longer entry after the bad signal and there

is only a positive effect of increasing signal precision. When δ is low (left panel), then

monopoly prices ph = vH = 3
2
can never be sustained, but when δ is high (right panel),

then monopoly prices ph = vH = 3
2
can be sustained when the signal is sufficiently

precise.

This figure shows optimal prices under baseline tacit collusion for δ = 1
2 (left panel) and δ = 11

20 (right
panel). Other parameter values: v = 1, vH = 3

2 , vL = 1, F = 1
4 .

Figure 2: Baseline tacit collusion: Optimal Prices

3.2 Assigning Future Market Shares

An alternative to simple tacit coordination is the assignment of future market shares.

While the former provides no immediate incentive for good cartel conduct but solely

the prospect of shared monopoly profits, the latter has a direct gratification. Now we

assume that the firm currently facing the high valuation promises the other firm the

market of stage 2. This is in contrast to our baseline tacit collusion, where there is

randomization for the entry into stage 2. Now the low state firm is guaranteed the
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right the enter into stage 2, still facing the risk of low demand. This promise expires

after the current period.

Intuitively, such a promise enables firms to sustain higher collusive prices since the

incentives to deviate are weakened. The continuation values then look as follows:

VHh = ph + 0 + δV

VHl = pl + 0 + δV

VLh = 0 + π2,h + δV

VLl = 0 + π2,l + δV

(8)

In contrast to the continuation values from baseline tacit collusion in (5), the continua-

tion values of the currently preferred firm (VHs) are reduced, whereas the continuation

values of the disadvantaged firm (VLs) are increased. Since the binding constraint

originates from deviating incentives of the disadvantaged firm, this shifts slack of a

non-binding IC and relaxes the binding IC. We next characterize the highest sustain-

able prices when future market shares are used.

Proposition 2. For collusion via assigning future market shares, the highest sustain-

able prices p∗l and p∗h are as follows. If ρ ≤ ρ̄, then (p∗l , p
∗
h) =

(vH , vH) δ ≥ ĈDF f.m.s.,1(
p̂l,1f.m.s.(ρ), vH

)
ĈDF f.m.s.,1 > δ ≥ ĈDF f.m.s.,2(

p̂l,2f.m.s.(ρ), p̂
h
f.m.s.(ρ)

)
otherwise

If ρ > ρ̄, then (p∗l , p
∗
h) =

(vH , vH) δ ≥ C̃DF f.m.s.,1(
p̃l,1f.m.s.(ρ), vH

)
C̃DF f.m.s.,1 > δ ≥ C̃DF f.m.s.,2(

p̃l,2f.m.s.(ρ), p̃
h
f.m.s.(ρ)

)
otherwise
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Prices and critical discount factors can be found in Appendix A.

Proof. See appendix.

The price structure when assigning future market shares are used (Proposition 2)

is very similar to baseline tacit collusion (Proposition 1). Both for low and high levels

of ρ, there are three different cases depending on δ. Monopoly prices after both signals

are only sustainable when δ is sufficiently high. Otherwise, prices need to be distorted

downwards, and more so after a bad signal because than the incentive to deviate is

stronger.

Figure 3 illustrates optimal prices when future market shares are used, using the

same parameter values as in Section 6. In the left panel, where δ is low, monopoly

prices vH after the high signal are only sustainable when ρ is high. In the right panel

δ is high, so monopoly prices vH after always sustainable after the high signal. In this

example, expected prices and profits decrease in ρ when ρ < ρ̄, because ph cannot

exceed vH , but the incentive to deviate after the bad signal increases and hence pl

needs to decrease.

This figure shows optimal prices when future market shares are used for δ = 1
2 (left panel) and δ = 11

20
(right panel). Other parameter values: v = 1, vH = 3

2 , vL = 1, F = 1
4 .

Figure 3: Collusion via future market shares: Optimal prices
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3.3 Direct Transfers

The collusive schemes we considered so far do not require any communication. For

future market shares, some explicit coordination might be helpful, but, in principle, not

necessary. Even then, this can be done verbally, i.e. the cartel members can in principle

avoid (nearly) any records. In the next step, we formally describe a compensation

scheme with direct transfers between the firms, which is often understood as a ‘strong

cartel’ (McAfee & McMillan, 1992; Bos & Pot, 2012). Now, there exist by construction

some records regarding the payment of the transfer. Even if it happens in cash, someone

has to withdraw it from some account, which again leaves some traces.

We model the possibility for direct transfers as follows. As in the baseline model,

firms still simultaneously set prices ps upon receiving the signal s ∈ {h, l}. After stage

1 prices are set, the currently preferred firm can make a transfer ts to the disadvantaged

firm, and then the stage 2 entry decisions are made as before. Reflecting the possibility

of detection by the competition authority, we assume that a per-period fine of Φ has

to be paid when firms collude.

Qualitatively, these model adjustments affects incentives in the following way. As

we have an asymmetry in stage 1, the firm currently facing the low valuation has a

binding incentive constraint. In order to relax this constraint, the high state firm could

pay a signal-contingent transfer ts to the low state firm in order to incentivize it to

stick to the collusive agreement, i.e. to stay away from the market in stage 1. This

transfer needs to be sufficiently small such that it is also in the preferred firm’s interest

to actually pay it.

Additionally, we now include the possibility for fines, e.g., through a competition

authority. For collusive compensation via tacit collusion and via the assignment of

future market shares, we assume that both schemes can theoretically happen without

explicit coordination. In theory, firms could not only reach tacit collusion without com-

munication but they could also coordinate silently on withdrawing from the market in

some stages. In contrast, there is no doubt that direct transfers need some communi-
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cation and leave traces on bank accounts. Such a behaviour is clearly illegal. Hence,

firms have to take a detection risk and subsequent punishment into account. For the

sake of simplicity, we assume in our setting a punishment term Φ that has to be paid

every round by each firm. We consider the payment as welfare neutral, e.g., because

the regulator uses collected fines efficiently.7

The continuation values then look as follows:

VHh = ph − th +
π2,h

2
− Φ + δV

VHl = pl − tl +
π2,l

2
− Φ + δV

VLh = 0 + th +
π2,h

2
− Φ + δV

VLl = 0 + th +
π2,l

2
− Φ + δV

(9)

In contrast to the continuation values from baseline tacit collusion in (5), the disad-

vantaged firm (VLs) now additionally expects a signal-contingent transfer ts as long it

does not deviate, but also payment of a fine Φ. This relaxes the binding ICl. However,

now also the preferred firm (VHs) may have an incentive to deviate, namely simply

refusing to pay the transfer. Note that we assume that the transfer is paid only after

the pricing decision has been made (and is observable by both firms) such that the

firms cannot react to a potential deviation in stage 1 anymore.

We now characterize the optimal transfers and then the maximal sustainable prices

using these transfers.

Lemma 1. If firms collude via direct transfers, the optimal transfer depends on the

signal s ∈ {h, l} and the price ps and is given by

t∗s =
ps − vH + vL

2
.

Proof. See appendix.

7We take the fine Φ as exogenously given. The optimal design of fines and leniency are beyond the
scope of this paper and addressed, e.g., in Bos and Harrington, 2015, Bos et al., 2018, Aubert et al.,
2006, Spagnolo, 2004, and Harrington, 2008.

19



As Lemma 1 shows, the optimal transfers are linear in the collusive prices. These

transfers are optimal in the sense that they do not leave any slack in any IC. This

is achieved through equating the currently preferred and the currently disadvantaged

firms’ incentives to deviate. A very small transfer does not achieve anything and the

disadvantaged firm is still as inclined to deviate as it was before. Also a very high

transfer cannot be optimal since then the currently preferred firm may deviate and

simply refuse to pay it. The optimal transfers exactly balance these two forces such

that both firms’ incentive to deviate is equally strong. The precise level of the transfer

that achieves this depends on how much is to be gained from deviation, which in turn

depends on the prices pl and ph being set in equilibrium.

Note that deviation and subsequent punishment of the other player through grim

trigger strategies now also entails another advantage, namely avoiding being caught

colluding by the competition authority and paying fines. If the detection probability,

or the associated fine, is sufficiently high, then collusion with direct transfers are not

sustainable at all. We formally derive the upper bound on fines such that collusion

with direct transfers are feasible in the following lemma.

Lemma 2. Direct transfers as a collusive compensation scheme is sustainable as long

as Φ < Φ̄, where

Φ̄ =


v−2F

4
ρ ≤ ρ̄

ρv−F
4

ρ > ρ̄

See appendix.

We are now ready to characterize the highest sustainable prices when such transfers

are used.

Proposition 3. For collusion with direct transfers, collusion is sustainable as long as

Φ < Φ̄. In that case, the highest sustainable prices p∗l and p∗h are as follows. If ρ ≤ ρ̄,
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then (p∗l , p
∗
h) = 

(vH , vH) δ ≥ ĈDF d.t.,1(
p̂l,1d.t.(ρ), vH

)
ĈDF d.t.,1 > δ ≥ ĈDF d.t.,2(

p̂l,2d.t.(ρ), p̂
h
d.t.(ρ)

)
otherwise

If ρ > ρ̄, then (p∗l , p
∗
h) =
(vH , vH) δ ≥ C̃DF d.t.,1(
p̃l,1d.t.(ρ), vH

)
C̃DF d.t.,1 > δ ≥ C̃DF d.t.,2(

p̃l,2d.t.(ρ), p̃
h
d.t.(ρ)

)
otherwise

Throughout, the optimal transfers ts = t∗s, s ∈ {h, l}, as shown in Lemma 1 are used.

Prices and critical discount factors can be found in Appendix A.

Proof. See appendix.

The basic structure from pricing with direct transfers (Proposition 3) is similar to

baseline tacit collusion and future market shares. For a discount factor high enough

to maintain collusion with monopolistic pricing, the optimal transfer equals ts = vL
2

independently of the signal. Reducing equilibrium prices also lowers the transfer. The

loss caused by lowering the price is split evenly between both firms. Both firms are

ex-ante symmetric and hence equally likely to become preferred or disadvantaged, so,

in expectation, it does not matter how high the transfers are and whether a firm is

giving or receiving them.

In Figure 4, we illustrate optimal prices when direct transfers are used, using low

and high levels of δ (top and bottom panels, respectively) and low and high levels

of punishment Φ (left and right panels, respectively). When δ is low but Φ is high

(top right panel), then monopoly prices after the good signal are always sustainable

and there is a u-shaped relationship between prices after the bad signal and signal
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precision.

These figures show optimal prices when direct transfers are used for δ = 1
2 (top panels) and δ = 2

5
(bottom panels), for zero punishment (Φ = 0, left panels) and for high punishment (Φ ≈ Φ̄, right
panels). Other parameter values: v = 1, vH = 3

2 , vL = 1, F = 1
4 . As these figures illustrate, monopoly

prices are easily sustainable when firms use sophisticated collusive compensation schemes.

Figure 4: Collusion via direct transfers: Optimal prices

4 Welfare analysis

Given our characterization of optimal prices, we can now investigate how expected

prices, profits, consumer surplus, and total welfare change depending on prediction

ability ρ for different collusive schemes.

In our model, both stage-1 states are ex-ante equally likely, and hence the expected
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stage-1 prices are given by

E(p) =
p∗l + p∗h

2

in any collusive compensation scheme. Consumers have unit demand and thus stage-1

prices are welfare-neutral transfers from consumers to firms. In any collusive equilib-

rium, there is stage-2 entry by at most one firm, so consumers can never extract positive

surplus from stage 2. Thus, from a consumer welfare point of view, only stage-1 prices

matter. Ex-ante expected consumer surplus (CS) is given by

CS = [Pr(h) [vH − p∗h] + Pr(l) [vH − p∗l ]]
1

1− δ

=

[
vH − 1

2
[p∗h + p∗l ]

]
1

1− δ
.

Concerning expected profits, there is an additional effect through stage-2 entry costs

and profits. Since both firms are ex-ante symmetric, we define producer surplus (PS)

as the sum of expected profits. In any collusive equilibrium, there is entry into stage

2 after both signals when ρ ≤ ρ̄, but only after signal h when ρ > ρ̄. The fine Φ only

has to be paid in the direct transfers (d.t.) compensation scheme, so producer surplus

is given by

PS =


[ 1
2
(p∗h + p∗l )

stage 1

+
1

2
v − F

stage 2

−2Φ · 1d.t.

]
1

1−δ
if ρ ≤ ρ̄

[ 1
2
(p∗h + p∗l )+

1

2
(ρv − F )−2Φ · 1d.t.

]
1

1−δ
if ρ > ρ̄

Finally, we define total surplus (TS) as the sum of consumer and producer surplus and

the punishment term Φ in case direct transfers are used. In that sense, we view Φ not

simply as a form of ‘burning money’ to keep firms in check, but used by a benevolent
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social planner in the interest of society. Thus, total surplus is given by

TS = CS + PS + 2Φ · 1d.t. .

We now present our main comparative statics results.

Proposition 4. For all collusive compensation schemes, when ρ increases then

(i) expected prices, profits and producer surplus weakly decrease, consumer welfare

weakly increases and total surplus is constant when ρ ≤ ρ̄ but

(ii) expected prices, profits, and producer surplus weakly increase, consumer welfare

weakly decreases, and total surplus weakly increase when ρ > ρ̄.

Proof. See appendix.

The key insights from Proposition 4 are twofold. First, expected prices are u-

shaped in prediction ability ρ, and second, total welfare is initially constant, and then

increasing in ρ. Profits and producer surplus follow the comparative statics of prices,

whereas consumer surplus is indirectly proportional to prices. All these results hold

for all our collusive schemes.

Regarding prices, the intuition is as follows. When ρ increases when it is initially

low, then deviations become more attractive for the currently disadvantaged firm.

Thus, collusive prices have to be distorted downwards in order to deter deviations.

When ρ is already high, then after the low signal, entry into stage 2 no longer takes

place, so there is no immediate punishment from deviating. But staying in the collusive

agreement becomes more profitable because entry costs are spent more efficiently, so it

becomes more attractive to adhere to the collusive agreement, allowing sustainability

of higher collusive prices.

The results on consumer surplus then follow readily from the definition.

The total welfare considerations in Proposition 4 serve as a relevant benchmark of

the overall role of prediction accuracy in our setting. Note that prices in this model

are simply welfare-neutral transfers between consumers and firms. Since there is unit
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demand and the market is always covered, there are no welfare effects of pricing (no

dead weight loss). The only welfare-relevant quantity is F , reflecting the fixed costs of

setting up a business for the second stage. As long as ρ ≤ ρ̄, the entry decision remains

unaffected (there is entry after both signals), and hence there is also no welfare effect.

Once ρ exceeds ρ̄, firms no longer make socially inefficient investments after bad signals,

which increases total welfare (through increasing profits). This effect increases in ρ and

hence total welfare is maximal when prediction accuracy is perfect (ρ = 1). In this

sense, our results are reminiscent of results in Bos and Pot, 2012.

5 Optimal collusive compensation

With our benchmark results on welfare in mind, we now turn attention to our main

object of interest. Suppose potentially colluding firms additionally cooperatively choose

a collusive compensation scheme. Depending on the parameters of the model, which

collusive compensation schemes are most profitable? And how does the answer depend

on the prediction accuracy ρ? The following propositions answer these questions.

We first show collusion using future market shares is always weakly more profitable

than baseline tacit collusion.

Proposition 5. For any ρ, assigning future market shares yields weakly higher profits

than baseline tacit collusion, i.e., E[Πf.m.s.(ρ)] ≥ E[Πbase(ρ)].

Proof. See appendix.

Proposition 5 shows that assigning future market shares is always weakly more

profitable. In both collusive compensation schemes, price setting is constrained by

deviation incentives of the disadvantaged firm. Assigning future market shares relaxes

this constraint through the promise of higher market shares in the stage 2. This comes

essentially for free, since it is ex-ante profit neutral and hence does not affect deviation

incentives of the preferred firm. Thus, unless firms are sufficiently patient such that
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monopoly prices are sustainable either way, higher prices can be sustained when future

market shares are used, which yields higher profits.

However, as we show next, the comparison between future market shares and direct

transfers is more ambiguous. Of course, in the absence of fines Φ, direct transfers would

always be optimal, since they optimally remove any slack in the IC constraint of the

preferred firm. For interior levels of Φ, and crucially depending on ρ, this outcome may

be reversed.

Proposition 6. For any v, vL, vH , F , there exists a δ and Φ, such that direct transfers

are most profitable when ρ is sufficiently low but future market shares are most profitable

when ρ is sufficiently high, i.e., Πf.m.s.

(
1
2

)
< Πd.t.

(
1
2

)
, but Πf.m.s.(ρ1) > Πd.t.(ρ1) for

some ρ1 that satisfies 1
2
< ρ1 < ρ̄.

Proof. See appendix.

Before we interpret this result, we show that it also naturally emerges when ρ > ρ̄:

Proposition 7. For any v, vL, vH , F , there exists a δ and Φ, such that direct transfers

are most profitable when ρ is sufficiently high but future market shares are most prof-

itable when ρ is sufficiently low, i.e., Πf.m.s. (1) < Πd.t. (1), but Πf.m.s.(ρ2) > Πd.t.(ρ2)

for some ρ2 that satisfies ρ̄ < ρ2 < 1.

Proof. See appendix.

Proposition 6 and Proposition 7 show that in any industry, the relative attractive-

ness of different collusive schemes crucially depends on the predication accuracy ρ. Of

course, when direct transfers are not penalized at all (Φ = 0) or penalized extremely

harsh in expectation, then direct transfers are always, respectively never, optimal. For

intermediate levels of Φ, however, direct transfers are only optimal when signal preci-

sion is sufficiently small (Proposition 6) or sufficiently high (Proposition 7). As signal

precision increases, future market shares become relatively more attractive, and maybe

become even the preferred collusive scheme. The reason is the following. For all pa-

rameter values, expected prices (and profits) under future market shares are constant
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in ρ for ρ < ρ̄ for certain values of δ, as long as both ph and pl are distorted. For

precisely these values of δ, however, ph under direct transfers is capped at vH and

cannot increase any further; but increasing ρ increases the incentives for deviations

after bad signal, which reduces pl and hence expected prices (and profits) from direct

transfers. This is less concern when ρ is small, such that direct transfers are optimal.

When ρ is sufficiently high, however, this negative effect, combined with the possibility

of fines Φ, make collusion through future market shares more attractive. Therefore,

competition authorities’ limited resources should be optimally utilized depending on

the institutional context.

6 Numerical example

We illustrate our main results through a numerical example. In particular, we set v = 1,

vH = 3
2
, vL = 1, F = 1

4
, and δ = 1

2
. We show how prices, profits, consumer surplus

and total surplus react to changes in prediction ability ρ, depending on whether the

punishment term Φ is low or high, and for our three collusive compensation schemes.

We first investigate expected prices in Figure 5. For all collusive compensation

schemes, prices are u-shaped in prediction accuracy. When ρ increases when it was

initially low, the disadvantaged firm becomes more inclined to deviate when a high

signal was received, so prices need to be distorted downwards to deter deviations.

Conversely, when ρ increases from already high levels, there is no entry in stage 2

when a low signal was received, so entry costs are less frequently wasted which increases

expected profits. This makes it more important to adhere to the collusive agreement,

making higher prices sustainable. Moreover, the figure illustrates that expected prices

are highest when direct transfers are used.
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This figure shows expected prices as a function of prediction ability ρ for different collusive compen-
sation schemes, both for low punishment (Φ = 0, left panel) and for high punishment (Φ = 1/11,
right panel). For all collusive schemes, prices are u-shaped in prediction accuracy. Expected prices
are always highest when direct transfers are used.

Figure 5: Expected prices depending on ρ.

Figure 6 depicts profits as a function of prediction ability ρ. On top of the effect of

expected prices, profits additionally depend on entry costs (which are no longer paid

after a bad signal was received in case ρ > ρ̄), and the punishment term Φ in case

direct transfers are used. Thus, when Φ is low (left panel), the ranking of profits across

collusive compensation schemes follows exactly the expected prices, as in Figure 5.

Additionally, all profits increase in ρ when ρ > ρ̄ because entry costs are wasted less

frequently.

The right panel of Figure 6 illustrates our main result. When Φ is high, there

is the possibility for a double regime switch, i.e., the optimal collusive compensation

scheme changes depending on ρ. Assigning future market shares is optimal when

ρ is intermediate, and direct transfers are optimal otherwise. The extent to which

firms are able to take advantage of better forecasting ability crucially depends on the

compensation scheme employed.
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This figure shows firm profits as a function of prediction ability ρ for different collusive compensation
schemes, both for low punishment (Φ = 0, left panel) and for high punishment (Φ = 1/11, right
panel). When Φ is low, direct transfers always yield the highest profit. When Φ is high, assigning
future market shares is optimal when ρ is intermediate.

Figure 6: Expected profits depending on ρ.

Next, consider Figure 7 for an illustration of consumer surplus. Since direct trans-

fers enable higher sustainable prices, consumer surplus is the lowest in that case. The

effect on consumer welfare is indirectly proportional to first-stage prices, so it is inverse

u-shaped in prediction ability ρ.

This figure shows consumer surplus as a function of prediction ability ρ for different collusive com-
pensation schemes, both for low punishment (Φ = 0, left panel) and for high punishment (Φ = 1/11,
right panel).

Figure 7: Expected consumer surplus depending on ρ.

Combining the profits of both firms and customer welfare, we get total surplus as

shown in Figure 8. Up to the threshold ρ̄, social welfare is flat in the prediction ability
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ρ, because only prices are affected, which are welfare-neutral. Once the ρ̄-threshold

is reached, total welfare increases in ρ because less inefficient resources are wasted

on unprofitable markets (no more entry after signal l). Note that by definition, the

punishment is a pure transfer from firms to the state and hence welfare-neutral. Thus,

the figure looks identical for Φ = 1/11 and hence is omitted. Finally, note that total

surplus is identical across all collusive compensation schemes.

This figure shows total surplus as a function of prediction ability ρ for different collusive compensation
schemes and Φ = 0. Total surplus increases in ρ because fewer resources are wasted on inefficient
stage-2 entry. Total surplus is identical across all collusive compensation schemes.

Figure 8: Expected total surplus depending on ρ.

7 Conclusion

In the last two decades, firms started accumulating unprecedented amounts of data,

allowing them to better forecast the economic environment in which they will operate

tomorrow. This trend is bound to continue in the foreseeable future. At the same time,

managerial boards become increasingly more diverse.

Combining these two observations triggers the obvious question how firms are ex-

pected to sustain collusion in the twenty-first century. Our paper provides answers

to these questions by considering a model with temporary asymmetry. We show that

assigning future market makes it easier to sustain collusion by reducing the incentives

to deviate for firms that are temporarily disadvantaged. Direct transfers are even more
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powerful but may come at the expense of detection through competition authorities.

As prediction ability increases, direct transfers become relatively less attractive when

prediction ability was initially low. Levenstein and Suslow (2011) find that strong

cartels using transfers tend to be more stable. This is consistent with our finding the

direct transfers become more attractive when prediction ability increases from already

high levels.

Tacit collusive schemes could, in principle, operate without any personal interaction

between firm representatives. As Jaspers (2017) emphasizes, cartels operate beyond

the legal confines, and, by that, rely heavily on social networks and pressure among

the cartel members. This might become more difficult as managerial boards of firms

get more diverse in terms of nationalities, genders and cultural backgrounds. Hence,

algorithmic market forecasting does not only makes tacit collusion more attractive, it

also addresses potentially lower cartel strength due to higher diversity in the responsible

boards.

Our results reveal that the relative attractiveness of different compensation schemes

crucially depends on the firms’ ability to forecast future market conditions. Competi-

tive authorities should thus increasingly focus their resources on detecting and fighting

such collusive schemes. On the other hand, tacit collusion is by definition not illegal,

as conscious and documented arrangements that could be punishable do not exist. An

indirect measure might be lowering entry barriers. As documented in Levenstein and

Suslow, 2006, many cartels broke down once new competitors entered the market.

Collusion is total-welfare neutral in our setting, and better prediction ability in-

creases total welfare. Since we focused on the relative attractive of different collusive

compensation schemes from a firm’s perspective, we abstracted from additional aspects

such as demand reductions incurred through collusion. These seem to be a fruitful area

left for future research.
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Appendix

A Additional definitions

For the analysis of baseline tacit collusion, we define the following quantities:

ĈDF base,1 =
2(F + (ρ− 1)v + 2vL)

(2ρ− 1)v + 6vL

ĈDF base,2 =
4(F − ρv + 2vL)

3(v − 2ρv + 4vL)

C̃DF base,1 =
4vL

ρv + 6vL − F

C̃DF base,2 =
4(F − ρv + 2vL)

3(F − ρv + 4vL)

p̂l,1base(ρ) =
v(δ − 2(δρ− ρ+ 1)) + 5δvH − 6δvL + 2F − 4(vH − vL)

5δ − 4

p̂l,2base(ρ) =
v(3δ − 6δρ+ 4(ρ− 1)) + 4(3δ − 2)(vH − vL) + 4F

12δ − 8

p̂hbase(ρ) =
3δ(2ρv − v + 4vH − 4vL) + 4F − 4ρv − 8vH + 8vL

12δ − 8

p̃l,1base(ρ) =
δ(F − ρv + 5vH − 6vL)− 4vH + 4vL

5δ − 4

p̃l,2base(ρ) =
3δ(F − ρv + 4vH − 4vL)− 8vH + 8vL

12δ − 8

p̃hbase(ρ) =
(4− 3δ)F + (3δ − 4)ρv + 4(3δ − 2)(vH − vL)

12δ − 8

For the analysis of collusion with assigning future market shares, we define the following

quantities:

ĈDF f.m.s.,1 =
4(F + (ρ− 1)v + vL)

2F + (4ρ− 3)v + 6vL

ĈDF f.m.s.,2 =
2(F − ρv + vL)

F − 3(ρv − vL) + v

C̃DF f.m.s.,1 =
4vL

ρv + 6vL − F

C̃DF f.m.s.,2 =
2(F − ρv + vL)

2F − 2ρv + 3vL

p̂l,1f.m.s.(ρ) =
v(4(ρ− 1− δρ) + 3δ)− 2(δ − 2)F − δvH + (6δ − 4)(vH − vL)

5δ − 4
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p̂l,2f.m.s.(ρ) =
v(2(δ + ρ− 1)− 3δρ)− (δ − 2)F

3δ − 2
+ vH − vL

p̂hf.m.s.(ρ) =
(2− δ)F − δ(−3ρv + v − 3vH + 3vL)− 2(ρv + vH − vL)

3δ − 2

p̃l,1f.m.s.(ρ) =
δ(F − ρv + 5vH − 6vL)− 4vH + 4vL

5δ − 4

p̃l,2f.m.s.(ρ) =
δ(F − ρv) + (3δ − 2)(vH − vL)

3δ − 2

p̃hf.m.s.(ρ) =
−2(δ − 1)F + 2(δ − 1)ρv + (3δ − 2)(vH − vL)

3δ − 2

For the analysis of collusion with direct transfers, we define the following quantities:

ĈDF d.t.,1 =
2(F + 2Φ + (ρ− 1)v + vL)

(2ρ− 1)v + 4vL

ĈDF d.t.,2 =
F + 2Φ− ρv + vL
2vL − 2ρv + v

C̃DF d.t.,1 =
2(2Φ + vL)

4vL + ρv − F

C̃DF d.t.,2 =
F + 2Φ− ρv + vL
F − ρv + 2vL

p̂l,1d.t.(ρ) =
v(−2δρ+ δ + 2ρ− 2) + 3δvH − 4δvL + 2F + 4Φ− 2vH + 2vL

3δ − 2

p̂l,2d.t.(ρ) =
v(−2δρ+ δ + ρ− 1) + (2δ − 1)(vH − vL) + F + 2Φ

2δ − 1

p̂hd.t.(ρ) =
δ(2(ρv + vH − vL)− v) + F + 2Φ− ρv − vH + vL

2δ − 1

p̃l,1d.t.(ρ) =
δ(F − ρv + 3vH − 4vL) + 2(2Φ− vH + vL)

3δ − 2

p̃l,2d.t.(ρ) =
δ(F − ρv + 2vH − 2vL) + 2Φ− vH + vL

2δ − 1

p̃hd.t.(ρ) =
(δ − 1)(ρv − F ) + (2δ − 1)(vH − vL) + 2Φ

2δ − 1

Lemma 3. Given our assumptions and in the relevant parameter range, for all cartel

compensation schemes k, k ∈ {base, f.m.s., d.t.}, it always holds that:

(i) ĈDF k,1 <
2
3
(for ρ ≤ ρ̄)

(ii) C̃DF k,1 <
2
3
(for ρ > ρ̄)

Proof. We separately show the result for each of the three cartel compensation schemes

k ∈ {base, f.ms., d.t.}.
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First, consider baseline tacit collusion, k = base.

(i) The constraint is only relevant for ρ ≤ ρ̄. Note that ĈDF base,1 increases in ρ:

∂ĈDF base,1(ρ)

∂ρ
=

2v(

>0

−2F + v+2vL)

(−2ρv + v − 6vL)2
> 0

and hence the constraint is binding at ρ = ρ̄. The result then follows readily since

ĈDF base,1(ρ̄) =
4vL

6vL + v − 2F
<

2

3

6vL < 6vL + v − 2F

v − 2F > 0

where the last inequality is always satisfied by assumption.

(ii) The constraint is only relevant for ρ > ρ̄. Note that C̃DF base,1 decreases in ρ

since

∂C̃DF base,1(ρ)

∂ρ
=

−4vvL
(F − ρv − 6vL)2

< 0

and hence the constraint is binding at ρ = ρ̄. Since C̃DF base,1(ρ̄) = 4vL
6vL+v−2F

=

ĈDF base,1(ρ̄), the result follows readily from (i).

Next, consider collusion using future market shares, k = f.m.s.

(i) The constraint is only relevant for ρ ≤ ρ̄. Note that ĈDF base,1 increases in ρ:

∂

∂ρ
ĈDF f.m.s.,1 =

4v(

>0

−2F + v+2vL)

(2F + (4ρ− 3)v + 6vL)2
> 0 (10)

and hence the constraint is binding at ρ = ρ̄. The result then follows readily since

ĈDF f.m.s.,1(ρ̄) =
4vL

6vL + v − 2F
<

2

3
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This is the same as before for baseline tacit collusion.

(ii) The constraint is only relevant for ρ > ρ̄. As C̃DF base.,1 = C̃DF f.m.s.,1, the

respective derivation for basleine tacit collusion beforehand applies as well.

Finally, consider collusion using direct transfers, k = d.t.

By construction, CDFd.t.,1(ρ,Φ) <
2
3
∀ ρ holds as we define the upper bound of Φ such

that it satisfies exactly this condition, see the proof of Lemma 2.

B Additional proofs

Proof of Proposition 1:

Proof. The proof proceeds as follows. We first consider the case where ρ ≤ ρ̄, and then
the case where ρ > ρ̄. For both cases, we characterize conditions such that monopoly
prices ph = pl = vH are sustainable, as well as the highest sustainable prices in cases
they are not.

Suppose that ρ ≤ ρ̄. Then in equilibrium, there is entry after both signals, so the
respective continuation values are given by

VHh = ph +
ρv − F

2
+ δV

VHl = pl +
(1− ρ)v − F

2
+ δV

VLh = 0 +
ρv − F

2
+ δV

VLl = 0 +
(1− ρ)v − F

2
+ δV

Since there is no incentive to deviate for the currently preferred firm, we only need
to investigate incentive compatibility for the currently disadvantaged firm. Given that
the preferred firm charges ps after signal s ∈ {h, l}, the most profitable deviation is
to a price p′ = vL − vH + ps. When ps = vH , then p′ = vL. Hence the two incentive
compatibility constraints, upon receiving a high and a low signal, respectively, need to
be satisfied:

(ICh) : VLh(ph, pl) ≥ vL − vH + ph + δE(π)N

(ICl) : VLl(ph, pl) ≥ vL − vH + pl + δE(π)N

When ph = pl = vH , then VLh > VLl and the RHS is the same in both conditions, so
ICl is binding. We can readily solve for δ and obtain that collusive prices ph = pl = vH
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are sustainable when

δ ≥ ĈDF base,1 =
2(F + (ρ− 1)v + 2vL)

(2ρ− 1)v + 6vL
(11)

holds.
Now suppose that δ < ĈDF base,1 so collusion at monopoly prices is not sustainable.

Decreasing pl relaxes ICl but tightens ICh since also V decreases, whereas decreasing

ph relaxes ICh and tightens ICl. When δ is just slightly below ĈDF base,1 and ph =
pl = vH , then ICl fails but there is slack in ICh. Hence, we can decrease pl and keep
ph fixed such that ICl is satisfied. Hence, we solve

VLl(vH , pl) = vL − vH + pl + δE(π)N

for pl while holding ph = vH fixed, which yields

pl = p̂l,1base =
v(−2δρ+ δ + 2ρ− 2) + 5δvH − 6δvL + 2F − 4vH + 4vL

5δ − 4
.

Since decreasing pl tightens ICh, we need to check whether ICh is still satisfied. This
holds as long as

VLh(vH , p̂
l,1
base) ≥ vL − vH + p̂l,1base + δE(π)N

which holds whenever

δ ≥ ĈDF base,2 =
4(F − ρv + 2vL)

3(v − 2ρv + 4vL)
.

Thus, for ĈDF base,1 > δ ≥ ĈDF base,2, (pl, ph) = (p̂l,1base, vH) are the highest sustainable
prices.

Next, we consider δ < ĈDF base,2. Then both pl and ph need to be decreased in
order to simultaneously satisfy ICl and ICh with equality, which leads to

pl = p̂l,2base =
v(−6δρ+ 3δ + 4ρ− 4) + 4(3δ − 2)(vH − vL) + 4F

12δ − 8

ph = p̂hbase =
3δ(2ρv − v + 4vH − 4vL)− 4ρv − 8(vH − vL) + 4F

12δ − 8
.

By construction, these prices satisfy all IC constraints.
Now suppose that ρ > ρ̄. The proof is analogous to the case where ρ ≤ ρ̄. The only

difference is that now, in equilibrium there is only entry after signal h but not after
signal l, which changes the on-equilibrium continuation values:

VHh = ph +
ρv − F

2
+ δV

VHl = pl + δV

VLh = 0 +
ρv − F

2
+ δV

39



VLl = 0 + δV

and hence, indirectly, also the foregone profits from deviation. The punishment payoffs
and hence the RHS of the incentive compatibility constraints remain unchanged. The
remainder of the proof is analogous to the case where ρ ≤ ρ̄ and hence not repeated.
Monopoly prices ph = pl = vH are sustainable when δ is sufficiently high. For inter-
mediate levels of δ, pl needs to be decreased. When such a decrease would eventually
violate ICh, also ph needs to be decreased. Making these adjustments optimally yields
exactly the price schedule stated in the proposition.

Proof of Proposition 2:

Proof. This proof proceeds in the same manner as the proof for Proposition 1. When
ρ ≤ ρ̄, there is entry of the disadvantaged firm after both signals and hence the con-
tinuation values are given by

VHh = ph + δV

VHl = pl + δV

VLh = 0 + ρv − F + δV

VLl = 0 + (1− ρ)v − F + δV

whereas for ρ > ρ̄, the disadvantaged firm enters only after the good signal, which
yields continuation values

VHh = ph + δV

VHl = pl + δV

VLh = 0 + ρv − F + δV

VLl = 0 + δV

Proceeding analogously to the proof for Proposition 1, we obtain the threshold levels
of δ and the optimal price schedule as stated in the proposition.

Proof of Lemma 1:

Proof. After signal s ∈ {h, l} and given that prices ps and transfers ts are expected, the
optimal deviation for the preferred firm is not paying the transfer while still charging
the same price; and for the disadvantaged firm to undercut. Using the continuation
values in (9), this yields the following IC constraints:

ICHs(ts) = VHs(ts)−
(
δ(vH − vL)

2(1− δ)
+ ps

)
ICLs(ts) = VLs(ts)−

(
δ(vH − vL)

2(1− δ)
+ ps − vH + vL

)

40



The optimal transfer t∗s equates these two ICs and hence

ICHs(ts) = ICLs(ts)

−ts = ts − (ph − vH + vL)

ts =
ph − vH + vL

2

Proof of Proposition 3:

Proof. The proof proceeds similar to the proof or Proposition 1, using optimal transfer
as described in Lemma 1 and the continuation values in (9). Depending on ρ and δ,
monopoly prices after both signal signals are sustainable or alternatively prices need
to be adjusted. The exact thresholds on δ and prices are the stated in the proposition
text.

Proof of Lemma 2:

Proof. Setting a price p∗s < vH aims at lowering the critical discount factor necessary
to sustain collusion. Direct transfers introduce Φ as additional variable. As both the
optimal prices pd.t.(Φ) and the critical discount factors CDFd.t.(Φ) are functions of the
punishment term, we need to define an interval for Φ in which prices and CDFs are
well-behaved. Hence, we have to ensure that the the optimal prices do not exceed the
monopolistic price vH as this is the highest possible price to sell a positive quantity.
We evaluate the partial derivative of p∗d.t. as shown in Prop. 3 with respect to Φ.
Differentiating the optimal price for ρ ≤ ρ̄ as well as for ρ > ρ̄ leads to the same
derivatives, namely

∂p∗l
∂Φ

=


0 δ > CDFd.t.,1 ∀ ρ

4
3δ−2

CDFd.t.,1 ≥ δ > CDFd.t.,2 ∀ ρ
2

2δ−1
CDFd.t.,2 ≥ δ ∀ ρ

4

3δ − 2


≥ 0 δ > 2

3

≤ 0 δ < 2
3

− δ = 2
3

∂p∗h
∂Φ

=

{
0 δ > ĈDF d.t.,2 ∀ ρ

2
2δ−1

o/w ∀ ρ

2

2δ − 1


≥ 0 δ > 1

2

≤ 0 δ < 1
2

− δ = 1
2

Hence, to satisfy all four incentive constraints (a firm can get either the high or the
low valuation in stage 1 and the firms receive either a good or a bad signal regarding
stage 2), the price does not react negatively in response to an increase in Φ anymore.
If Φ gets too large, the respective price pair 2 (p′l, vH) or else pair 3 (p′′l , p

′′
h) must rise
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above the monopolistic price vH , which would actually cause zero demand as the price
would exceed consumer valuation. Therefore, we restrict the punishment term Φ to
ensures such a price cannot happen. We do that by ensuring that CDFd.t.,1 ≱ 2

3
. As

the critical discount factor differs in ρ, we evaluate first the condition for ĈDF d.t.,1 and

then C̃DF d.t.,1 at the threshold 2
3
. For ρ ≤ ρ̄, this yields

2

3
= ĈDF d.t.,1 =

2(F + 2Φ + (ρ− 1)v + vL)

(2ρ− 1)v + 4vL

and hence

Φ̂1 =
1

6
(v(2− ρ)− 3F + vL)

and for ρ > ρ̄, we obtain

2

3
= C̃DF

l,m

d.t. =
2(2Φ + vL)

4vL + ρv − F

and hence

Φ̃1 =
1

6
(ρv − F + vL).

Equivalently, we evaluate the upper bound on Φ for price pair 3 –(p′′l , p
′′
h) –, such that

CDFd.t.,2 <
1
2
holds. So for ρ ≤ ρ̄, we set

1

2
= ĈDF d.t.,2 =

F + 2Φ− ρv + vL
2vL − 2ρv + v

and obtain

Φ̂2 =
1

4
(v − 2F )

and for ρ > ρ̄, we set

1

2
= C̃DF d.t.,2 =

F + 2Φ− ρv + vL
2vL − ρv + v

and obtain

Φ̃2 =
1

4
(ρv − F ).

One can easily see that the upper bound of Φ depends on the case in which ρ is.
To ensure that the all of the former equalities are satisfied, we have to set the upper

bound of the punishment terms – depending on ρ such that ̂̄Φ = min
{
Φ̂1, Φ̂2

}
and˜̄Φ = min

{
Φ̃1, Φ̃2

}
. As ∂Φ̂1

∂ρ
< 0, we set ρ = ρ̄ to ensure that even min

ρ
{Φ̂1} exceeds Φ̂2.

42



Next, note that

Φ̂2 =
v − 2F

4
<Φ̂1(ρ̄) =

1

6

[(
2− v − F

v

)
v − 3F + vL

]
can we simplified to

v − 2F

4
< v − 2F + vL,

which holds by assumption.
Now we show that for ρ > ρ̄ Φ̃1(ρ) is smaller than Φ̃2(ρ) since

Φ̃1(ρ) =
ρv − F

4
< Φ̃2(ρ) =

1

6
(ρv − F + vL)

vL >
1

2
(ρv − F ),

which holds for all ρ > ρ̄.
Thus, collusion with direct transfers is sustainable as long as Φ < Φ̄.

Proof of Proposition 4:

Proof. We proceed as follows. We first show the comparative static results of prices
for both ρ ≤ ρ̄ and ρ > ρ̄, followed by results for consumer surplus, producer surplus,
and total surplus.

Recall the definitions of prices as price pairs as done in the the first three proposi-
tions with k ∈ {base, f.m.s., d.t.}:

For ρ ≤ ρ̄ :


(vH , vH) price pair 1(
p̂l,1k (ρ), vH

)
price pair 2(

p̂l,2k (ρ), p̂hk(ρ)
)

price pair 3

For ρ > ρ̄ :


(vH , vH) price pair 1(
p̃l,1k (ρ), vH

)
price pair 2(

p̃l,2k (ρ), p̃hk(ρ)
)

price pair 3

The expected price E(p) is the average of every price pair.

Consider first ρ ≤ ρ̄.

For baseline tacit collusion, we obtain:

E [(vH , vH)] = vH

E
[(

p̂l,1base(ρ), vH

)]
=

v(δ − 2δρ+ 2ρ− 2)− 6δvL + 2F + 4vL
10δ − 8

+ vH

E
[(

p̂l,2base(ρ), p̂
h
base(ρ)

)]
=

2F − v

6δ − 4
+ vH − vL
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where the first and the third quantity are clearly constant in ρ, and

∂

∂ρ
E
[(

p̂l,1base(ρ), vH

)]
=

(1− δ)v

5δ − 4
< 0

where the last inequality follows from the fact that δ < 2
3
< 4

5
whenever we are in that

case by Lemma 3.
Similarly, for the assignment of future market shares, we obtain

E [(vH , vH)] = vH

E
[(

p̂l,1f.m.s.(ρ), vH

)]
=

2F (2− δ) + v(4ρ− 4δρ+ 3δ − 4)− 6δvL + 4vL
10δ − 8

+ vH

E
[(

p̂l,2f.m.s.(ρ), p̂
h
f.m.s.(ρ)

)]
=

(v − 2F )(δ − 2)

6δ − 4
+ vH − vL

where the first and third quantity are constant in ρ and

∂

∂ρ
E
[(

p̂l,1f.m.s.(ρ), vH

)]
=

2(1− δ)v

5δ − 4
< 0

where the last inequality follows from the fact that δ < 2
3
< 4

5
whenever we are in that

case by Lemma 3.
For direct transfers, we obtain:

E [(vH , vH)] = vH

E
[(

p̂l,1d.t.(ρ), vH

)]
=

v(δ − 2δρ+ 2ρ− 2)− 4δvL + 2F + 4Φ + 2vL
6δ − 4

+ vH

E
[(

p̂l,2d.t.(ρ), p̂
h
d.t.(ρ)

)]
=

2F + 4Φ− v

4δ − 2
+ vH − vL

where the first and third quantity are constant in ρ and

∂

∂ρ
E
[(

p̂l,1d.t.(ρ), vH

)]
=

(1− δ)v

3δ − 2
< 0

where the last inequality follows from the fact that δ < 2
3
whenever we are in that case

by Lemma 3.
Thus, for all collusive compensation schemes, prices weakly decrease in ρ and ρ ≤ ρ̄.
Lemma 3 shows that price pair 2 implies δ < 2

3
for all three compensation schemes,

such that ∂
∂ρ
E
[(

p̂l,1k (ρ), vH

)]
< 0 always holds.

Second, consider ρ > ρ̄.

For baseline tacit collusion, the expected prices and respective derivatives become:

E [(vH , vH)] = vH

E
[(

p̃l,1k (ρ), vH

)]
=

δ(F − ρv − 6vL) + 4vL
10δ − 8

+ vH
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E
[(

p̃l,2k (ρ), p̃hk(ρ)
)]

=
F − ρv

6δ − 4
+ vH − vL

∂

∂ρ
E [(vH , vH)] = 0

∂

∂ρ
E
[(

p̃l,1k (ρ), vH

)]
=

δv

8− 10δ
> 0 ∀δ ∈

[
0,

4

5

)

∂

∂ρ
E
[(

p̃l,2base(ρ), p̃
h
base(ρ)

)]
=

v

4− 6δ
> 0 ∀δ ∈

[
0,

2

3

)
For the assignment of future market shares, the expected prices and respective

derivatives become:

E [(vH , vH)] = vH

E
[(

p̃l,1k (ρ), vH

)]
=

δ(F − ρv + 10vH − 6vL)− 8vH + 4vL
10d− 8

E
[(

p̃l,2f.m.s.(ρ), p̃
h
f.m.s.(ρ)

)]
=

(ρv − F )(δ − 2)

6δ − 4
+ vH − vL

∂

∂ρ
E [(vH , vH)] = 0

∂

∂ρ
E
[(

p̃l,1f.m.s.(ρ), vH

)]
=

δv

8− 10δ
> 0 ∀δ ∈

[
0,

4

5

)
∂

∂ρ
E
[(

p̃l,2f.m.s.(ρ), p̃
h
f.m.s.(ρ)

)]
=

(2− δ)v

4− 6δ
> 0 ∀δ ∈

[
0,

2

3

)
For collusion via direct transfers the expected prices and respective derivatives

become:

E [(vH , vH)] = vH

E
[(

p̃l,1d.t.(ρ), vH

)]
=

δ(F − ρv − 4vL) + 2(2Φ + vL)

6d− 4
+ vH

E
[(

p̃l,2k (ρ), p̃hk(ρ)
)]

=
F + 4Φ− ρv

4d− 2
+ vH − vL

∂

∂ρ
E [(vH , vH)] = 0

∂

∂ρ
E
[(

p̃l,1d.t.(ρ), vH

)]
=

δv

4− 6δ
> 0 ∀δ ∈

[
0,

2

3

)
∂

∂ρ
E
[(

p̃l,2d.t.(ρ), p̃
h
d.t.(ρ)

)]
=

v

2− 4δ
> 0 ∀δ ∈

[
0,

1

2

)
Lemma 3 shows that price pair 2 implies δ < 2

3
for all three compensation schemes,

such that ∂
∂ρ
E
[(

p̂l,1k (ρ), vH

)]
> 0 always holds. As price pair 3 requires a weakly lower

critical discount factor, δ < 2
3
is implied as well, such that ∂

∂ρ
E
[(

p̃l,2k (ρ), p̃hk(ρ)
)]

> 0

holds for baseline tacit collusion and collusion via future market shares. Collusion via
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direct transfers requires δ < 1
2
. Hence, we need to show that 1

2
> C̃DF d.t.,2:

1

2
> C̃DF d.t.,2(ρ) =

F + 2Φ− ρv + vL
F − ρv + 2vL

always hold. Since C̃DF d.t.,2 decreases in ρ:

∂

∂ρ
C̃DF d.t.,2 =

<0 for Φ̄

v (2Φ− vL)

(F − ρv + 2vL)2
< 0,

the constraint is binding at ρ = ρ̄ and Φ = Φ̄. Since

C̃DF d.t.,2(ρ̄, Φ̄) =
1

2

the constraint is always satisfied. Hence, ∂
∂ρ
E
[(

p̃l,2d.t.(ρ), p̃
h
d.t.(ρ)

)]
> 0 holds as well.

All results and consumer surplus, producer surplus, and total welfare then follow
straight away from the respective definitions.

Proof of Proposition 5:

Proof. To show that the assignment of future market shares is weakly preferred to tacit
collusion in terms of expected profits, consider first how the collusive pricing works in
the given model. For monopolistic pricing (price pair 1, (vH , vH)), expected profits
for all three schemes are the same. Once the exogenous discount factor is below the
respective critical factor, firms need to lower prices to maintain collusion. Hence, this
proof proceeds in two steps: First, it is shown that the respective CDFs of f.m.s. are
below those for baseline tacit collusion, i.e. lowering prices is only necessary for a lower
δ (see Appendix A for the exact CDF values). Second, it is shown that once prices
for both schemes need to be adjusted downwards, expected prices for f.m.s. are above
prices for tacit collusion.

For ρ ≤ ρ̄, this becomes:

First, we compare ĈDF f.m.s.,1 and ĈDF base,1:

ĈDF f.m.s.,1 − ĈDF base,1 =
2

≥0

((1− ρ)v − F )

<0

(2F − v − 2vL)

((2ρ− 1)v + 6vL)

>0

(2F + (4ρ− 3)v + 6vL)

>0

≤ 0

The LHS of the numerator becomes smallest at ρ = ρ̄:(
1− v − F

v

)
v − F = 0

By continuity, any ρ < ρ̄ leads to (1 − ρ)v − F > 0. As vL > v − F holds by
assumption, it is easy to see that booth terms in the denominator must be negative.
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Next, we compare ĈDF f.m.s.,2 and ĈDF base,2:

ĈDF f.m.s.,2 − ĈDF base,2 =

>0

2(v − 2F )

<0

(F − ρv − vL)

3(−2ρv + v + 4vL)(F − 3ρv + v + 3vL)
< 0

Both parts of the denominator becomes smallest at ρ = ρ̄. Hence, we ensure that both
LHS and RHS exceed 0 at ρ = ρ̄:

LHS:

(
1− 2

v − F

v

)
v + 4vL > 0

4vL >

(
2
v − F

v
− 1

)
v

4vL > v − F

RHS:

(
1− 3

v − F

v

)
v + F + 3vL > 0

3vL > 2(v − F )

The inequalities for both LHS and RHS always hold. Hence, for ρ ≤ ρ̄, the CDFs of
f.m.s. are lower than those of baseline collusion.

For ρ > ρ̄:

As C̃DF f.m.s.,1 = C̃DF base,1 holds, we directly compare C̃DF f.m.s.,2 = C̃DF base,2:

C̃DF f.m.s.,2 − C̃DF base,2 =
2

>0

(ρv − F )

<0

(F − ρv − vL)

3 (2F − 2ρv + 3vL)

>0

(F − ρv + 4vL)

>0

< 0

Thus, for all ‘pairs’ of equivalent CDFs holds CDFf.m.s. ≤ CDFbase. By that, every
f.m.s. price pair is stable within a larger range of discount factors than baseline tacit
collusion price pairs.

Second, we compare actual prices of both schemes:

For monopolistic pricing – price pair 1, (vH , vH) – prices are the same. Hence, we
compare the expected adjusted prices (price pairs 2 and 3):
For ρ ≤ ρ̄:

E
[(

p̂l,1f.m.s.(ρ), vH

)]
− E

[(
p̂l,1base(ρ), vH

)]
=

(1− δ)

<0

(F + (ρ− 1)v)

5δ − 4
> 0 ∀δ ∈

[
0,

4

5

)
E
[(

p̂l,2f.m.s.(ρ), p̂
h
f.m.s.(ρ)

)]
− E

[(
p̂l,2base(ρ), p̂

h
base(ρ)

)]
=

(1− δ)(v − 2F )

4− 6δ
> 0 ∀δ ∈

[
0,

2

3

)
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As shown in Lemma 3, δ < 2
3
holds, such that in both cases the adjusted f.m.s. price

exceeds the adjusted baseline price.

For ρ > ρ̄:

E
[(

p̃l,1f.m.s.(ρ), vH

)]
− E

[(
p̃l,1base(ρ), vH

)]
= 0

E
[(

p̃l,2f.m.s.(ρ), p̃
h
f.m.s.(ρ)

)]
− E

[(
p̃l,2base(ρ), p̃

h
base(ρ)

)]
=

(1− δ)(ρv − F )

4− 6δ
> 0 ∀δ ∈

[
0,

2

3

)
As shown in Lemma 3, δ < 2

3
also holds for critical discount factors in the ρ > ρ̄ case.

Hence, the assignment of future market shares is weakly better than tacit collusion.

Proof of Proposition 6:

Proof. For firm i, the expected profit is given by

E(Πi) =

[
1

2

[ p∗h + p∗l
2

stage 1

+
1

2
v − F

stage 2

]
− Φ · 1d.t.

]
1

1− δ
if ρ ≤ ρ̄ .

As stage 2 profits are independent of ρ, variation can only stem from stage 1. As shown
in the previous propositions on the optimal prices (props. 1, 2, 3), there exist three
price pairs. To separate them, we use a running index {1, 2, 3} to describe the respec-
tive pairs in descending order for ρ ≤ ρ̄. Pair 1 is (vH , vH), in which fully monopolistic
pricing is possible. Pair 2 is (p′l, vH), in which the price is lowered following a low signal
(p′l < vH) but ph remains at the monopolistic price vH . Pair 3 is (p′′l , p

′′
h), in which both

prices pl and ph are adjusted downwards.

Assume the setting in which a firm optimally applies price pair 2 within a future
market shares scheme and price pair 3 within a direct transfer compensation scheme.
For a regime switch from scheme d.t. to f.m.s. being optimal, we need E[Πd.t.(ρ)] >
E[Πf.m.s.(ρ)]. To sustain the choice of price pair 3 within the f.m.s. scheme, δ <

̂CDFf.m.s., 2 must be satisfied. Second, ̂CDFd.t.,1 ≥ δ ≥ ̂CDFd.t.,2 must hold to
ensure the firm optimally applies price pair 2 within the d.t. compensation scheme.
For a regime switch expected profits necessarily need to intersect. Hence, we define
the difference of the expected profits functions for ρ ≤ ρ̄ as:

∆̂(ρ,Φ) = E[Πf.m.s. − Πd.t.(ρ,Φ)] =
F − 6Φ− ρv + vL

2(3δ − 2)
(12)

In a very first step we evaluate expected profits for stage 1 at the lower bound of ρ,
i.e. ρ = 1

2
and for zero punishment (Φ = 0). It has to be shown that E[Πd.t.(

1
2
, 0)] >

E[Πf.m.s.(
1
2
)] holds to ensure that without prediction accuracy, direct transfers lead to

higher expected profits than assigning future market shares. For Φ = 0, the difference
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in eq. (12) must become negative, i.e.

∆̂(ρ, 0) =
F − ρv + vL
2(3δ − 2)

< 0

⇔ vL > ρv − F for δ <
2

3

⇔ vL >
v

2
− F,

which holds by assumption (see eq. 1). The restriction on δ < 2
3
is not binding as the

upper bound on the exogenous discount factor, ĈDF d.t.,1 is below 2
3
:

ĈDF d.t.,1 =
2(F + 2Φ + (ρ− 1)v + vL)

(2ρ− 1)v + 4vL

!
<

2

3

ĈDF d.t.,1(ρ,Φ) becomes largest at Φ = Φ̄ and ρ = ρ̄. Plugging in leads to

ĈDF d.t.,1(ρ̄, Φ̄) =
2
(
F + 2

Φ̄

v − 2F

4
+
( ρ̄

v − F

v
−1

)
v + vL

)
(
2
v − F

v
ρ̄

−1
)
v + 4vL

<
2

3

2F − v − 2vL
2F − v − 4vL

<
2

3

2F − v + 2vL > 0

vL >
v

2
− F,

which holds by assumption.

Having shown that the difference in eq. (12) is indeed negative, such that d.t. is more
attractive for zero punishment and no predictive ability, we can solve for the value
Φ̂ > 0 that allows for a regime switch. Setting ∆̂(ρ,Φ) = 0, we obtain

F − 6Φ− ρv + vL
2(3δ − 2)

!
= 0

⇔ Φ̂(ρ) =
1

6
(F − ρv + vL)

Plugging the interval boundaries of ρ into Φ̂(ρ), we get

Φ̂

(
1

2

)
=

1

6
(F − v

2
+ vL) ≡ Φ′′

Φ̂(ρ̄) =
1

6
(2F − v + vL) ≡ Φ′

This, however, has to satisfy the conditions on Φ as shown in Lemma 2, i.e. Φ̂(ρ) ∈
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(0, Φ̄). As 2F − v < v
2
−F, Φ′′ is the binding constraint at that point. Hence, we need

1

6
(F − v

2
+ vL) ≤

1

4
(v − 2F )

⇔ vL ≤ 4
(v
2
− F

)
,

which is an upper bound for vL we consider as not too restrictive.

Consider first Φ′′.
For Φ′′ to cause a regime switch, it must be ensured that the boundaries for δ are

never violated. Hence, we have to evaluate, whether ĈDF d.t.,1(Φ
′′) ≥ ĈDF d.t.,2(Φ

′′)

and whether ĈDF f.m.s.,2 ≥ ĈDF d.t.,2(Φ
′′). First, we evaluate, whether ĈDF f.m.s.,2 ≥

ĈDF d.t.,2 holds. For ρ = 1
2
, this becomes

ĈDF
h,a

f.m.s.

(
1

2

)
− ĈDF

h,a

d.t.

(
1

2
,Φ′′

)
=

1

3

( v − 2F

vL
>0

+
8F − 4v

2F − v + 6vL
<0

)
v − 2F

vL

!
>

4(v − 2F )

2F − v + 6vL
2F − v + 6vL > 4vL

vL >
v

2
− F,

which holds by assumption. Second, we evaluate whether the second condition on δ is
satisfiable. Hence, we evaluate whether

ĈDF d.t.,1 (ρ,Φ
′′) ≥ ĈDF d.t.,2 (ρ,Φ

′′)

2(F + 2Φ + (ρ− 1)v + vL)

(2ρ− 1)v + 4vL
≥ F + 2Φ− ρv + vL

−2ρv + v + 2vL

⇔ 2(F + 2Φ + (ρ− 1)v + vL)

(2ρ− 1)v + 4vL
− F + 2Φ− ρv + vL

−2ρv + v + 2vL
≥ 0

Again, we evaluate the difference at ρ = 1
2
.

ĈDF d.t.,1

(
1

2
,Φ′′

)
− ĈDF d.t.,2

(
1

2
,Φ′′

)
=

2F − v + 2vL
3vL

− 2F − v + 2vL
3vL

= 0

However, differentiating both terms by ρ leads to

8v(−2F + v + vL)

3(−2ρv + v − 4vL)2
>

2v(4F − 2v + vL)

3(−2ρv + v + 2vL)2

For ρ ∈
(
1
2
, ρ̄
]
and the usual parameter restrictions, it can be shown that the change

in ĈDF d.t.,1

(
1
2
,Φ′′) exceeds the change in ĈDF d.t.,2

(
1
2
,Φ′′), such that the difference is
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weakly larger than zero and satisfies the condition imposed.
Consider now the case of Φ′, i.e. a regime switch happens at ρ1 ≲ ρ̄ for Φ ≈ Φ′.

Again, we evaluate, whether ĈDF f.m.s.,2 ≥ ĈDF d.t.,2 holds. For Φ = Φ′ and ρ = ρ̄,
this can be expressed as

ĈDF f.m.s.,2 − ĈDF d.t.,2(ρ̄,Φ
′) >0

⇔ 2

>0

(v − 2F )

>0

(2F − v + vL)

3 (2F − v + 2vL)

>0

(4F − 2v + 3vL)

>0

>0

Second, we check for Φ′, whether also ĈDF d.t.,1 ≥ ĈDF h,a
d.t. holds.To fo this, we evaluate

again, whether the difference of them is positive:

ĈDF d.t.,1(Φ
′, ρ̄)− ĈDF d.t.,2(Φ

′, ρ̄) >0

⇔ 2

>0

(v − 2F )2

(v − 2F + 4vL)(2F − v + 2vL)

>0

>0

Eventually, we can solve for ρ1 causing the regime switch. For that, we use eq. (12),
set it equal to zero, set Φ = Φ̂ ∈ {Φ′,Φ′′} and solve for ρ:

F − 6Φ̂− ρv + vL
2(3δ − 2)

!
= 0

⇔ ρ =
F − 6Φ̂ + vL

v
≡ ρ1

This leads to a non-empty set of δ that satisfies the regime switch conditions, namely

δ ∈
(
ĈDF d.t.,2(ρ, Φ̂),min

{
ĈDF d.t.,1(ρ, Φ̂), ĈDF f.m.s.,2(ρ)

}]
with Φ̂ ∈ [Φ′′,Φ′].

Proof of Proposition 7:

Proof. Suppose δ is such that for both f.m.s. and d.t., ph = vH is sustainable, but
pl = vH is not sustainable, which requires that pl < vH is set in the most profitable

equilibrium. This requires that C̃DF f.m.s.,1 > δ > C̃DF f.m.s.,2 as well as C̃DF d.t.,1 >

δ > C̃DF d.t.,2

Conditional on this case distinction, we can define a function ∆̃(ρ; Φ) as

∆̃(ρ; Φ) = E[Πf.m.s.(ρ)]− E[Πd.t.(ρ,Φ)] =
δ(vL + ρv + 30Φ− F )− 24Φ

(22− 15δ)δ − 8

where we are interested in parameter values δ and Φ such that ˜̃∆(ρ̄; Φ) > 0 and
∆(1; Φ) < 0. We can readily observe that ∆ increases linearly in Φ and decreases
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linearly in ρ. Note that, clearly, for Φ = 0 we always have ∆ < 0 for any ρ.

∂

∂ρ
∆̃(ρ; Φ) =

δv

(22− 15δ)δ − 8

<0 ∀ δ< 2
3

< 0

∂

∂Φ
∆̃(ρ; Φ) =

6

2− 3δ
> 0 ∀ δ <

2

3

∆̃(ρ; 0) =
δ(vL + ρv − F )

(22− 15δ)δ − 8
< 0.

Given this, we can simply find a value Φ such that both regimes are equally prof-
itable for a given level of signal precision ρ. So we define Φ′′′ as the solution to

∆̃(ρ̄; Φ′′′) = 0

Solving for Φ, this leads to:

Φ′′′(ρ) = κ
vL + ρv − F

6
where κ =

δ

4− 5δ
< 1 ∀ δ ∈

[
0,

4

5

)
.

Hence, Φ′′′, evaluated at ρ = ρ̄, becomes

Φ′′′(ρ̄) = κ
vL + v − 2F

6
.

We now establish that a regime switch arbitrarily close to ρ̄, using Φ = Φ′′′, can
always be found. This requires showing that Φ̄ > Φ′′′ > 0, and that moreover we
remain in the relevant case for both f.m.s. and d.t. . First, note that Φ′′′ > 0 holds
whenever 0 < κ < 1, since ρv > F ∀ρ holds. As stated in Lemma 3, price pair 2 implies
δ < 2

3
, such that Φ1 > 0 is always satisfied. Second, we need to ensure that Φ′′′ ≤ Φ̄ is

satisfied. For ρ > ρ̄, this becomes:

ρv − F

4
≥ κ

vL + ρv − F

6

⇔ vL ≤ 3− 2κ

2κ
(ρv − F )

To ensure this condition on vL is satisfied, we minimize the RHS by setting ρ = ρ̄:

vL ≤ 3− 2κ

2κ
(v − 2F ), which holds if

3− 2κ

2κ
≥ 2

2 ≤ 3− 2κ

2κ
⇔ κ ≤ 1,

which holds by construction, see above.

Next, we show that we can always pick a δ such that we are indeed in the relevant
cases for both compensation schemes. For assigning future market shares, this is the
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case as long as

C̃DF f.m.s.,1(ρ̄) =
4vL

v + 6vL − 2F
> C̃DF f.m.s.,2(ρ̄) =

2(2F − v + vL)

4F − 2v + 3vL

which can be written as

2(v − 2F )(vL+ v − 2F ) > 0

which always holds since both terms in the last inequality are positive by assumption.
For direct transfer, a relevant δ is feasible as long as

C̃DF d.t.,1(ρ̄,Φ
′′′) =

2
(
1
3
κ(v − 2F + vL) + vL

)
v − 2F + 4vL

> C̃DF d.t.,2(ρ̄,Φ
′′′) =

(v − 2F )(κ− 3) + (κ+ 3)vL
6F − 3v + 6vL

which can be written as

<0

(κ− 1)

<0

(2F − v)

(2F − v − 4vL)

<0

<0

(2F − v − vL)

(2F − v + 2vL)

>0

> 0

which always holds by assumption.
Finally, it has to be ensured that the relevant CDF intervals overlap such that there

is an admissible δ in between that guarantees the relevant cases for both schemes. This
holds as long as

C̃DF d.t.,1(ρ̄,Φ
′′′) =

2
(
1
3
κ(v − 2F + vL) + vL

)
v − 2F + 4vL

> C̃DF f.m.s.,2(ρ̄) =
2(2F − v + vL)

4F − 2v + 3vL

which holds as long as vL > 2
3
(v−2F ), which is satisfied by assumption. By continuity,

any value for Φ arbitrarily close to Φ′′′ leads to an interior regime switch between the
expected profits of f.m.s. and d.t. as stated in the proposition. Equivalently to the
derivation of Φ′′′, we can set ∆(ρ,Φ) = 0 and solve for ρ:

∆(ρ,Φ) =
δ(vL + ρv + 30Φ− F )− 24Φ

22δ − 15δ2 − 8
= 0

⇔ ρ(Φ) =
δ(F − 30Φ− vL) + 24Φ

δv
≡ ρ2.

ρ2 ∈ (ρ̄, 1] captures the point of the regime switch. The regime switch happens for a
punishment term Φ̂ ≈ Φ′′′ and an exogenous discount factor δ in the non-empty set

δ ∈
[
max

{
ĈDF d.t.,2(ρ, Φ̂), ĈDF f.m.s.,2(ρ)

}
, min

{
ĈDF d.t.,1(ρ, Φ̂), ĈDF f.m.s.,1(ρ)

})
.
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