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Monitoring employee job performance is a fundamental task in personnel management. In 

particular, understanding how performance improves with experience—the “returns to 

experience”—is critical to decisions about hiring and turnover, investments in employee training, 

and others. Consider the choice between retaining a current employee or replacing that employee 

with a novice new hire; the optimal choice depends not simply on the current performance of the 

two individuals, but rather on each person’s expected future performance over time. However, 

isolating the causal effects of experience is complicated by imperfect and incomplete performance 

measures, and selection on performance through hiring and turnover decisions. We examine the 

case of classroom teachers, and the most common performance measure for public-school 

teachers: rubric-scored classroom observations. 

Our focus is estimating the returns to experience in teaching using data from classroom 

observations. To be precise, we define “returns to experience” as the causal effect of one additional 

year of experience on teacher performance. We estimate returns separately for the first year of 

experience, second year, third year, etc. Our primary objective is evaluating claims about returns 

to experience for (a) performance of the teaching practice inputs which the observation rubrics are 

designed to measure. But we also consider inferences about returns to experience on (b) broader 

output-based measures of teacher performance, like teacher contributions to student outcomes. The 

extent to which experience affects (a) and (b) differently partly motivates our work, because input-

based measures are much more common in schools than output-based measures. 

Given the causal inference goal, we make explicit the causal inference features of the 

problem, including identifying assumptions, threats to those assumptions, and an empirical 

exploration of those threats. To begin we show returns-to-experience estimates using observation 

scores and the standard methods for estimating returns to experience in teaching. These estimates 

are the solid lines in Figure 1 using data from Tennessee and Washington, DC. We then describe 

how those estimates can be thought of as difference-in-differences style estimates. The identifying 

assumptions are clarified by combining the diff-in-diff framework with a conceptual framework 

that relates observation scores to actual teacher performance on different dimensions of 

performance. Those assumptions require, first, that veteran (comparison) teachers no longer 

experience returns to an additional year of experience. Second, that the process, explicit or implicit, 

that maps true performance to scores does not depend on a teacher’s years of experience.  
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We evaluate a number of threats to these identifying assumptions. Most threats are reasons 

why observation scores might rise (fall) over time even if a teacher’s true performance is 

unchanged. One simple example is when changes are made to the scoring rubric, as happened in 

Washington, DC Public Schools (DCPS) in 2017. As we discuss in detail, changes to the rubric 

(or to rater training, or to rater-teacher matching rules) do not necessarily threaten inferences about 

the causal returns to experience. Veteran teachers—the diff-in-diff comparison group—provide an 

estimate of the effect of such changes under the first assumption above, and that estimate is a 

reasonable counterfactual for early-career teachers under the second assumption above. We use 

similar reasoning, combined with empirical evidence where available, to address other threats: 

rater leniency bias, raters using information from outside the observation, changes in incentives 

that distort teacher effort, manipulation behaviors by teachers which raise scores but not 

performance, the effect of job changes, and others.  

We find little evidence that these potential threats compromise a causal interpretation of 

the typical returns-to-experience estimates, applied to observation scores. Veterans provide a 

plausible diff-in-diff style counterfactual estimate for several often-stated threats: leniency bias 

from raters, manipulation by teachers, changes in the evaluation system, changes in teachers’ job 

assignments, and others. Our estimates are robust to changes in the rubric, different rater types, 

and controlling for student baseline achievement, among other things. Still, there are reasons to 

remain cautious about a causal interpretation. We find, in one setting, a weakening correlation 

between teacher observation scores and student test scores as teacher experience grows.  

The standard returns-to-experience estimates also carry potential bias from the use of two-

way fixed effects methods. We discuss the standard estimates in light of recent insights from 

de Chaisemartin and D’Haultfœuille (2020), Goodman-Bacon (in-press), and others. One 

distinctive feature of the returns-to-experience case is multiple treatments: the first year of 

experience, second year, third year, etc. Thus, for example, to correctly estimate the first-year 

effect we must account for any second-year effect (or third-year effect, etc.) occurring in the 

comparison group. When there are multiple treatments, the two-way fixed effects estimates will 

be biased if the correlation of treatments is changing over time. We show this potential bias 

formally by building on the Goodman-Bacon (in-press) framework. In the current case, this bias 

will occur when the distribution of teacher experience is changing over time.  
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Empirically, however, these potential two-way fixed effects biases do not substantially 

alter our conclusions about the returns to experience captured by classroom observations. The 

dashed line in Figure 1 shows estimates using the alternative diff-in-diff estimator proposed in 

de Chaisemartin and D’Haultfœuille (2020). As we discuss in the paper, this alternative 

mechanically avoids the potential bias of the two-way fixed effects method, but at the cost of 

precision. The differences in in DCPS estimates are largely explained by changes over time in the 

DCPS distribution of experience, while Tennessee’s distribution remains relatively constant. 

Understanding observation-based measures is especially salient in the education sector. As 

differences in teacher effectiveness have become more formally recognized in practice and 

research, substantial attention has focused on the development, understanding, and application of 

measures of teacher performance (Goe, Bell, and Little 2008, Kane, Kerr, and Pianta 2014, Rowan 

and Raudenbush 2016). Despite wide recognition of the importance of effective teaching, there is 

comparatively little evidence on whether or how teaching improves (Jackson, Rockoff, and Staiger 

2014). One exception is that, on average, teaching performance improves over the first few years 

of a teacher’s career. This returns-to-experience finding has been widely replicated, but nearly all 

existing estimates measure performance with teacher “value added” to student achievement test 

scores (see, for example, Rockoff 2004, Papay and Kraft 2015). The gains to student achievement 

shown by returns to early-career experience hint at opportunities for successful teacher training 

that has long vexed researchers. However, test-score value-added measures are outcomes, and 

offer little insight on the teaching tasks by which teachers could improve.  

Classroom observations offer another measure of teaching performance that may provide 

insight on the specific skills teachers develop early in their careers. Standardized, rubric-scored  

classroom observations are now widely used, and most teachers receive at least one observation 

per year (Cohen and Goldhaber 2016, Steinberg and Kraft 2017). States and school districts can 

use observations for a variety of purposes, including understanding changes in teaching 

performance over time. For example, Figure 1 shows the within-teacher average improvement over 

the first ten years of teaching for several cohorts of Tennessee and DCPS teachers as measured by 

their performance on teacher observations. Figure 2 shows the same estimates but for value added 

to student test scores, and Figure 3 for teachers’ improvement on student surveys about teachers’ 

practice in DCPS. The pattern of change over time is similar in these three graphs, which raises a 
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host of questions about whether each reflects true improvement and, if so, the relationship between 

skill development and teachers’ ability to improve student achievement.  

 This paper makes three contributions to the literature on teacher job performance. First, 

we report returns-to-experience estimates using classroom observation scores from two evaluation 

systems—Tennessee and Washington, DC. There are many returns-to-experience estimates in the 

teacher performance literature, but nearly all existing estimates use student test-score measures of 

teacher performance (for a review, see Jackson, Rockoff, and Staiger 2014). Our observation score 

estimates of inputs complement test score estimates of outputs. In that sense, our estimates add to 

existing, but scarce, efforts to understand the mechanisms behind test-score returns to experience 

(Kraft and Papay 2014, Ost 2014, Atteberry, Loeb, and Wyckoff 2015). We are aware of only two 

other papers that use observation scores to measure returns to experience: Kraft, Papay, and Chi 

(2020) using data from Charlotte, North Carolina, and contemporaneous work by Laski and Papay 

(2020) also using Tennessee’s data. 

Second, as described already, we make explicit the causal inference features of our returns-

to-experience estimates. Employing observation-based estimates to better understand the potential 

effect of individual and school factors to teacher development assumes a causal relationship. The 

identifying assumptions and related threats have not previously been addressed explicitly, at least 

in the study of observation scores. Moreover, the diff-in-diff features and assumptions we describe 

have direct parallels from estimates using student test scores. Third, and related, our analysis of 

threats incorporates concerns about observation scores raised in prior papers, and in many cases 

provides new empirical evidence. These known concerns include rater leniency bias (Weisberg, 

Sexton, Mulhern, Keeling et al. 2009; Steinberg and Kraft 2017), the influence of the students in 

the classroom (Campbell and Ronfeldt 2018), unintended effects of teacher-rater pairings (Chi 

2020), among other concerns (Cohen and Goldhaber 2016, Grissom and Bartanen 2019). 

 In Section 1 we replicate the standard returns to experience estimates in the DCPS and 

Tennessee settings, including describing the data for the paper. In Section 2 we describe a 

framework, both conceptual and econometric, to aid in evaluating claims about (inferences from) 

the standard returns-to-experience estimates. Section 3 discusses threats to a causal interpretation 

of returns-to-experience estimates, providing empirical tests where we can. Section 4 concludes.  
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1. Data and setting  

The data from DCPS and Tennessee are well-suited to examining the early-career 

development of teaching skills and are distinctive in several respects. Most importantly, we 

observe early-career changes in individual educators’ teaching practices, using data from rubric-

based classroom observation programs that have been used in each setting over many years. In 

DCPS, the panel begins with the start of its current evaluation system, IMPACT, in 2009-10, and 

spans through 2018-19. Tennessee’s current evaluation system began in 2011-12, and our data run 

from that start through 2018-19. Both datasets include several measures of teacher performance, 

including item-level sores for each specific task-based item on the observation rubric, as well 

composite scores which average across items. Teachers in tested grades and subjects can be linked 

to their students, and corresponding achievement scores and demographic information. 

Characteristics of the teachers and their students in out data are summarized in Table 1. 

Common features. The DCPS and Tennessee settings share many first-order features. In 

both locations, all teachers—regardless of experience—are evaluated every year by trained 

observers. Likewise, for both Tennessee and DCPS, observation scores are a substantial 

component of a larger set of evaluation measures, including “value added” scores which measure 

teacher contributions to student achievement.2 Those larger evaluation systems are used to identify 

exemplary teachers, those in need of additional support or training, or individuals who will be 

dismissed. During most of the period we study, teachers in DCPS were observed five times per 

year. After a change in the rubric in 2017, teachers were observed up to three times per year 

depending on experience and performance. In Tennessee, the number of evaluations per year varies 

according to teachers’ prior performance (and licensure status), but teachers are typically evaluated 

multiple times per year. The median novice teacher in Tennessee receives 2.5 formal observations 

and the median novice teacher in DCPS receives five formal observations.  

While the two systems use different rubrics, they both use standards-based observation 

protocols to assess teaching practice, and both systems assess similar tasks and teaching practices. 

Tennessee uses the TEAM (Tennessee Educator Acceleration Model) evaluation rubric. Rubric 

items are divided into three categories of skills: instruction, planning, and environment. Each 

 
2 In DCPS classroom observations account for 75 percent of overall IMPACT scores for the more than 80 percent of 
teachers without a  value-added score. For teacher with value added as part of their evaluation, observations account 
for between 30 and 40 percent depending on the year. In Tennessee, classroom observations are 50 and 85 percent of 
the overall TEAM score for teachers with and without value-added scores, respectively.  
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category is comprised of multiple items for teaching tasks. Ratings for each item range from 1-5 

(5 = significantly above expectations, 1 = significantly below expectations). During most of the 

period of our analysis, DCPS used an observation rubric called the Teaching and Learning 

Framework (TLF), a modified version of Danielson’s Framework for Teaching (1997). The DCPS 

rubric has a 1-4 rating scale (4 = highly effective, 1 = ineffective) for items measuring nine teaching 

tasks.3 In 2017, DCPS transitioned to the Essential Practices (EP) observation rubric, which covers 

similar skills to the TLF, but with more concise definitions for each related task and explicit  

alignment to the Common Core State Standards.  

One frequent, but misleading, criticism of such classroom observation systems is that the 

scores produced have little variation, with most teachers scoring in one or two top categories (Kraft 

and Gilmour 2017, Weisberg, Sexton, Mulhern, and Keeling 2009). This lack of variation arises 

in part because final scores are rounded off to integer values. In this paper we use observation 

scores that average across many item scores (several items and several observations of a given 

item), and those scores vary meaningfully, with a relatively Gaussian density (as shown in 

Appendix Figure A1).  

Differences between the two evaluation systems. While both evaluation systems share 

many features, there are a number of useful differences. First, while both places use trained school-

based personnel to conduct evaluations (e.g., principals and assistant principals, or other 

instructional leaders), through 2016 DCPS additionally employed “master educators”—observers 

external to the school with subject- and grade-specific expertise. Two of every teacher’s annual 

observations were conducted by a master educator.  

Second, the two systems have different incentives and consequences associated with 

teachers’ performance scores. While both DCPS and Tennessee might be considered high-stakes 

evaluation systems, DCPS’s has notably higher stakes. In DCPS, teachers with particularly low 

performance (those whose composite scores earn them an overall rating of ineffective) and 

teachers with relatively low performance (those rated lower than effective) who fail to improve 

are subject to involuntary dismissal—a policy that influences teachers’ improvement and their 

retention decisions, at least at the margins (Dee and Wyckoff 2015, Dee, James, and Wyckoff 

2021). There are also stakes in DCPS associated with high performance. Teachers who 

 
3  The first seven tasks align generally with the domain of instruction, while the final two align with the domains of 
classroom management and environment. 
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demonstrate exceptional performance (those rated highly effective) are eligible for substantial 

bonuses and, if they continue to perform well, large base pay increases. In Tennessee, to earn 

tenure a teacher must receive a final composite score of “above expectations” or higher (roughly 

the top two-thirds of teachers) for two consecutive years, after working at least five years total. 

Tenure can be revoked based on evaluation scores but that is rare: a teacher must score “below 

expectations” or lower (roughly the bottom 5 percent of teachers) for two consecutive years, and 

this rule does not apply to teachers who were tenured before 2011-12. 

Another difference between the two systems is DCPS’s recent addition of another task-

based evaluation measure that assesses instructional quality (with data available from 2016-17 

through 2018-19)—student surveys of practice. This measure is adapted from the Tripod survey 

(see Ferguson and Danielson 2015), which ask students’ questions about their teachers’ practice 

(e.g., “When explaining new ideas or skills in class, my teacher tells us about common mistakes 

that students might make”), and is administered to DCPS classrooms in grades 3 and up. The 

survey assesses teaching across seven categories: Care, Confer, Captivate, Clarify, Consolidate, 

Challenge, and Classroom management.  

Finally, in addition to the specifics of their evaluation systems, DCPS and Tennessee differ 

from each other in size and many other characteristics. TEAM is used by nearly the entire state of 

Tennessee, and therefore includes teachers and schools across a range of settings and 

demographics. Each year the Tennessee data include roughly 84,000 teachers, of whom 5,500 are 

in their first-year teaching, with 450,000 students at 1,350 schools. DCPS, on the other hand is an 

urban majority-minority and low-income district, with approximately 3,500 teachers (290 novice) 

at 125 schools serving 46,000 students each year.   

Other data. In addition to classroom observation data for teachers, we have access to other 

data for teachers and students. For DCPS and Tennessee teachers, we know when they entered 

teaching, their experience in teaching, and other socio-demographic characteristics. We have 

information regarding the observation raters and timing of the five observations. In both settings 

we have the usual information regarding each teacher’s students in tested subjects and grades, 

including eligibility for free or reduced-price lunch, race, ethnicity, and standardized achievement 

scores, where applicable.  
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2. Estimates and causal inference 

2.1 Standard estimates of returns to experience 

Figure 1 depicts the returns to experience in teaching, using the performance measure of 

classroom observation ratings. The solid-line estimates use an estimation strategy typical of prior 

papers on the returns to experience in teaching. Though the estimation strategy is common, in 

nearly all prior papers the performance measure is teachers’ contributions to student test scores (or 

teacher “value added scores”).4 We come to the dashed-line estimates later.  

The core of the typical estimation strategy is to focus on variation within individual 

teachers over time (Rockoff 2004). The regression specification is: 

�̅�𝑠𝑗𝑗𝑗𝑗 = ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗�+ 𝜇𝜇𝑗𝑗 + 𝜋𝜋𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗,                                              (1) 

where the outcome variable is a measure of teacher performance. In the Figure 1 estimates, �̅�𝑠𝑗𝑗𝑗𝑗 is 

the classroom observation score of teacher 𝑗𝑗 in school year 𝑡𝑡, scaled in teacher standard deviation 

units (mean 0, s.d. 1 within state-by-year cells).5 For a given teacher, years of experience, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗, 

is colinear with school year, 𝑡𝑡, unless she takes a leave of absence. Specification 1 includes both 

teacher fixed effects, 𝜇𝜇𝑗𝑗, and school-year fixed effects, 𝜋𝜋𝑗𝑗, and thus requires some restriction on 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� to avoid the age-period-cohort problem. The typical restriction, which we also use in 

the Figure 1 solid line, is to assume no returns to experience after some number of years, 𝑒𝑒̅. Then 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� is a series of indicator variables for years of experience up to 𝑒𝑒̅: 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� = �𝛿𝛿𝑒𝑒𝐷𝐷𝑗𝑗𝑗𝑗𝑒𝑒
𝑒𝑒̅−1

𝑒𝑒=0

 

where 𝐷𝐷𝑗𝑗𝑗𝑗𝑒𝑒 = 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑒𝑒�. It is common to choose 𝐷𝐷𝑗𝑗𝑗𝑗1 , the first year of teaching, as the omitted 

category, but we omit the “veterans” category, 𝐷𝐷𝑗𝑗𝑗𝑗𝑒𝑒̅ = 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒𝑒̅�, and thus the zero line on the 

 
4 The exceptions we are aware of, as described in the introduction, are Kraft, Papay, and Chi (2020) and Laski and 
Papay (2020), which also use classroom observation scores but a  somewhat different estimation strategy. 
5 We begin with the item-by-observation level data in the original rubric units (integer scores 1-4 in DCPS and 1-5 in 
Tennessee); these are the data as recorded by the observers. All of the following steps are carried out separately for 
DCPS and Tennessee data: (i) We standardize the item-by-observation level scores by year so that each item is mean 
0, standard deviation 1. (ii) For each teacher 𝑗𝑗 and item, we average item-by-observation level scores to create an item 
average score for year 𝑡𝑡. We then re-standardize the item-average scores. (iii) For each teacher 𝑗𝑗, we average her 
annual item-average scores to create the overall annual average score. Finally, we again standardize the overall average 
scores by year. Thus 𝑠𝑠�̅�𝑗𝑗𝑗  is mean 0 and standard deviation 1 each year, across all teachers in the state of Tennessee 
(District of Columbia Public Schools), regardless of experience.  
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Figure 1 y-axis is average veteran performance.6 The 𝛿𝛿𝑒𝑒 estimates are plotted in Figure 1’s solid 

line. The vertical lines mark cluster-corrected 95 percent confidence intervals, with teacher 

clusters. 

Our main outcome variable �̅�𝑠𝑗𝑗𝑗𝑗 is teacher 𝑗𝑗’s “classroom observation score” in year 𝑡𝑡.  More 

precisely, �̅�𝑠𝑗𝑗𝑗𝑗 is the average of several task-specific scores, �̅�𝑠𝑗𝑗𝑗𝑗 = 1
𝐾𝐾
∑ 𝑠𝑠𝑗𝑗𝑗𝑗𝑘𝑘𝐾𝐾
𝑘𝑘=1 . The Tennessee rubric 

includes 𝐾𝐾 = 19 items and DCPS 𝐾𝐾 = 9. Our focus on the average observation score is motivated 

by an empirical constraint: While the tasks being scored are distinct—for example “teacher content 

knowledge” and “managing student behavior”—in practice the scores across tasks are highly 

correlated. In our Tennessee data, the mean correlation between items is 0.53 with a standard 

deviation of 0.05; in a factor analysis the first factor explains 95 percent of the variation in item 

scores. This correlation of items is common in classroom observation rubric scores (e.g., Kane et 

al. 2011). 

In Figure 2 we plot analogous estimates where the performance measure is teachers’ 

contributions to student test scores (also known as teacher value added scores). To obtain these 

estimates we fit a specification analogous to specification 1:  

𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 = ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗�+ 𝜇𝜇𝑗𝑗 + 𝜋𝜋𝑗𝑗 + 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)� + 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗,                          (2) 

where 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗  is the end of year 𝑡𝑡 test score for student 𝑖𝑖 in subject 𝑠𝑠 taught by teacher 𝑗𝑗. Test scores 

are in student standard deviation units (mean 0, s.d. 1 within state-by-year-by-subject-by-grade 

cells). The ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� function is the same as in specification 1, and 𝜇𝜇𝑗𝑗 and 𝜋𝜋𝑗𝑗 are again teacher 

and year fixed effects. We continue to estimate standard errors using a cluster (teacher) correction. 

The function 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1) � is a flexible function of student 𝑖𝑖’s prior year test score in subject 𝑠𝑠. Our 

analysis sample includes grades 4-8 in math and English language arts.7  

 
6 Alternatives to the version of ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 � in 2 include: (i) Specifying ℎ as cubic, or other higher-order polynomial, in 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 , though often still with 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗  top-coded at some point (e.g., Rockoff 2004). (ii) Dividing 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗  into bins, e.g., 
1–2, 3–4, 5–9, 10–14, 15–24, and 25+ where �̅�𝑒 would have otherwise been = 10 (e.g., Harris and Sass 2011). (iii) 
Using the non-standard age-experience progressions, e.g., leaves of absence, to estimate specification 1 without 
restrictions on ℎ (e.g., Wiswall 2013). 
7 Years 2015-16 and 2016-17 are excluded for Tennessee because students were not tested in 2015-16. In Tennessee 
if the student had two or more teachers in a given subject and year, we include one observation per teacher and weight 
each observation by the proportion of responsibility allocated by the state to the teacher. Three quarters of students 
had one teacher in a given subject. If the student’s prior year test score is missing, we replace it with zero and include 
an indicator for missing in the function 𝑏𝑏. 
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In Figure 3, we plot estimates where the performance measure is based on student survey 

responses in DCPS. The Figure 3 estimates use the same teacher-by-year specification 1 as for 
Figure 1, except for the change in outcome variable. The outcome is teacher 𝑗𝑗’s average survey 

score in year 𝑡𝑡; the average across seven survey items known as the “7Cs.” This score is scaled in 

teacher standard deviation units.8 

2.2 Causal inferences  

 Labeling estimates like those in Figure 1 as “returns to experience” is a causal claim. The 

“returns” are the effect of the treatment “experience” on some outcome often left implicit. Threats 

to that claim depend on the outcome. For example, contrast claims about observation scores per 

se and broader claims about teacher job performance. Causal claims may also be threatened by the 

statistical properties of the estimators or by substantive institutional details. This section describes 

some conceptual and econometric structure to aid in evaluating claims about returns to experience 

estimates.  

2.2.1 Difference-in-differences framework 

Returns to experience estimates, like those in Figure 1, can be thought of as difference-in-

differences estimates. Moreover, the standard estimation strategy, described in Section 2.1, is a 

two-way fixed effects diff-in-diff estimator. The diff-in-diff framework provides a well-known 

structure for evaluating causal inference claims. 

To see the diff-in-diff features, start by focusing on a simple case: an estimate of (i) the 

effect of the first year of teaching experience on observation scores, using (ii) data from just two 

years, 𝑡𝑡 = 2012 and 𝑡𝑡 + 1 = 2013. This simple case is a classic two-group, two-period (“2x2”) 

diff-in-diff setup. The classic 2x2 graph for this case is shown in Figure 4 by the pair of blue lines 

at the far left, using data from Tennessee. The solid blue line’s two end points (filled circles) plot 

the mean observation scores for the “treated group” of teachers who had zero experience in 2012 

and one year of experience in 2013. The dashed blue line plots a “comparison group” of veteran 

teachers with 10 or more years of experience by 2012. Figure 4 is measured in the original 5-point 

Tennessee rubric scale, without any standardizing or regression adjustments. The diff-in-diff 

 
8 We do not have access to student-level survey responses. We begin with teacher-by-survey-item data on each of 
seven items, “7Cs,” measured by the Tripod survey. (i) Within year, we first standardize the teacher-by-item scores 
by year so that each category is mean 0 and standard deviation 1 for a  given year. (ii) For each teacher 𝑗𝑗, we then 
average her annual item-level scores to create the overall annual average score. Finally, we again standardize the 
overall average scores by year.  
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estimate is 0.12 = (3.72− 3.47)− (3.97− 3.84) rubric scale points, or about one-third of a 

teacher standard deviation. Here the dashed line provides the counterfactual. Assume that there are 

no returns to additional experience after 10 years. Then the slope of the dashed line reflects trends 

in scores unrelated to true teacher performance or experience, and thus the dashed slope is a 

plausible counterfactual for the novice teacher scores if there were no returns to the first year of 

experience.9 The rest of Figure 4 shows several 2x2 diff-in-diff plots, one for each cohort of new 

first-year teachers. And we could apply this exercise to examine the effect of the second year of 

experience, the third year, and so on.  

Our narration of Figure 4 matches the intuition often given for the standard returns to 

experience estimation strategy, though here we have been more explicit about the diff-in-diff 

features. What often remains unexplained is how to aggregate the several 2x2 cases into an overall 

estimate, and in that aggregation the intuition can break down in ways we describe next. 

2.2.2 Two-way fixed effects and potential bias 

The standard estimation strategy is a two-way fixed effects diff-in-diff estimator, but with 

multiple treatments. Recall specification 1:  

�̅�𝑠𝑗𝑗𝑗𝑗 = ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗�+ 𝜇𝜇𝑗𝑗 + 𝜋𝜋𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗,                                              (1) 

and the similar specification 2. The more familiar example of a two-way FE diff-in-diff has a single 

binary treatment variable in the place of ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗�. Thus, a specification like:  

�̅�𝑠𝑗𝑗𝑗𝑗 = 𝛿𝛿𝐷𝐷𝑗𝑗𝑗𝑗 + 𝜇𝜇𝑗𝑗 + 𝜋𝜋𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗. 

Several recent papers describe the properties of the two-way FE estimator; our analysis of the 

returns-to-experience case here draws primarily on de Chaisemartin and D’Haultfœuille (2020) 

and Goodman-Bacon (in-press).10 A key insight is that the two-way FE estimate, 𝛿𝛿𝑓𝑓𝑒𝑒, is a weighted 

average of all the possible classic two-group, two-period (“2x2”) diff-in-diff estimates, 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�, 

nested in the data. The subscript 𝑒𝑒𝑒𝑒′ indexes 2x2 cases with treated group 𝑒𝑒 and comparison group 

𝑒𝑒′.11 The 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′� are analogues to the several 2x2 cases in Figure 4. 

 
9 Using terms we will introduce in Section 2.2.4, changes in the dashed line represent changes in the function 𝑔𝑔, if 
there are no returns beyond year 10. 
10 Other papers in this fast-growing literature include Borusyak and Jaravel (2017), Sun and Abraham (2020), Athey 
and Imbens (2018), Callaway and Sant’Anna (2020), and Imai and Kim (2020).  
11 Goodman-Bacon (in-press), among others, formalizes this insight in the case of a  single binary treatment. The same 
insight largely holds when there are multiple treatments, as in the current case of ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 �. We discuss the “largely” 
qualification below, but the insight holds sufficiently enough that the same potential bias is relevant. Each of the 2x2 
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The two-way FE estimator comes with two key sources of potential bias, and a third when 

there are multiple treatments. The first potential bias occurs when groups who receive the same 

treatment but at different times have different treatment effects—heterogeneity across groups. If 
treatment effects are homogeneous across the 2x2 cases, 𝑒𝑒𝑒𝑒′, then the two-way FE weights are 

irrelevant to the averaging and the weights maximize precision.12 If treatment effects are 

heterogeneous, then the weights do not return the true average effect.  

Still, even with heterogeneity across groups, the weights still return a sensible estimate in 

the returns-to-experience case. Because of the precision maximizing objective, the two-way FE 

weights are increasing in the sample size and treatment variance of a group 𝑒𝑒𝑒𝑒′. Thus, first, the 

standard estimates will give more (less) weight to larger (smaller) cohorts. Second, the standard 

estimates will give more (less) weight to more recent (older) cohorts 𝑒𝑒. This occurs because, for a 

given treatment 𝐷𝐷𝑒𝑒, all cohorts 𝑒𝑒 have the same number of pre-treatment years and the number of 

post-treatment years is increasing with cohort age; this creates greater treatment variance for more 

recent cohorts. 

The second potential bias occurs when the effect of a treatment grows (shrinks) over time—

heterogeneity over time within groups. The problem occurs when (i) a comparison group 𝑒𝑒′ 

received the treatment at some earlier time, and (ii) the treatment effect is growing or shrinking 
with time. The change in outcomes for 𝑒𝑒′ caused by (ii) is nevertheless counted as counterfactual 

change and subtracted off the observed change for 𝑒𝑒 to calculate 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�. Feature (i) is certainly 

a feature of the returns-to-experience case: comparison groups are (largely) composed of more-

experienced teachers. Identifying Assumption 2, discussed in more detail below, is partly 

motivated by this second potential bias. 

The third potential bias is specific to settings with multiple treatments, and it occurs when 

the distribution of treatments changes across groups—heterogeneity of treatment probabilities. To 

 
estimates takes the classic form �̂�𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′ � = �𝑦𝑦�𝑟𝑟

𝑝𝑝𝑝𝑝𝑖𝑖𝑗𝑗 − 𝑦𝑦�𝑟𝑟
𝑝𝑝𝑟𝑟𝑒𝑒�− �𝑦𝑦�𝑟𝑟′

𝑝𝑝𝑝𝑝𝑖𝑖𝑗𝑗 − 𝑦𝑦�𝑟𝑟′
𝑝𝑝𝑟𝑟𝑒𝑒�. However, because group 𝑒𝑒′ might itself  

have a change in treatment status during run of the available data, the “pre” and “post” periods for 𝑒𝑒𝑒𝑒′  need to be 
defined such that group 𝑒𝑒’s treatment status changes but 𝑒𝑒′’s does not (see Goodman-Bacon in-press for more details). 
12 In this paper’s setting, homogeneity across groups is not implausible. Indeed, the example data in Figure 4 show 
relative homogeneity across cohorts 𝑒𝑒. The nature of the “treatment” is likely more stable over time, though 
heterogeneity could arise from changes in starting skill level of novice cohorts. Absent some new intervention targeted 
specifically to early-career teachers, the returns to experience likely reflect something about skill development which 
is more fundamental and not changing discontinuously over time. 



14 
 

simplify the exposition, consider the case with just two treatments. In the notation of our setting, 

the two-way FE specification would be:  

�̅�𝑠𝑗𝑗𝑗𝑗 = 𝛿𝛿1𝐷𝐷𝑗𝑗𝑗𝑗1 + 𝛿𝛿2𝐷𝐷𝑗𝑗𝑗𝑗2 + 𝜇𝜇𝑗𝑗 + 𝜋𝜋𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗.                                           (3) 

With multiple treatments the two-way FE estimate, 𝛿𝛿𝑓𝑓𝑒𝑒1 , is no longer the same weighted average 

of all the possible classic 2x2 estimates, 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1 , nested in the data. The difference comes from 

how the multiple treatment case deals with the co-occurrence (or covariance) of treatments. We 

can write 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1  as a function of three key inputs:  

𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1 = 𝑎𝑎 �𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

~1 , 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
~2 , 𝜌𝜌�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

1 �. 

The first term 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
~1  is the 2x2 estimate of treatment 1’s effect on �̅�𝑠 without controlling for 

treatment 2, and vice versa for 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
2~ . The third term 𝜌𝜌�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

1  captures the covariance of 

treatments 1 and 2. Specifically, 𝜌𝜌�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1  is the estimated probability 𝐸𝐸��𝐷𝐷1|𝐷𝐷2 = 1, 𝜇𝜇𝑗𝑗,𝜋𝜋𝑗𝑗� for 

group 𝑒𝑒𝑒𝑒′.13 However, the two-way FE estimator is a precision-weighted average of: 

𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1 = 𝑎𝑎� �𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

~1 , 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
~2 , 𝜌𝜌�𝑓𝑓𝑒𝑒1 �, 

which uses 𝜌𝜌�𝑓𝑓𝑒𝑒1  instead of 𝜌𝜌�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1 . The 𝜌𝜌�𝑓𝑓𝑒𝑒1  term is itself a two-way FE estimate of 𝜌𝜌1 from the 

specification: 𝐷𝐷𝑗𝑗𝑗𝑗1 = 𝜌𝜌1𝐷𝐷𝑗𝑗𝑗𝑗2 + 𝜇𝜇𝑗𝑗 + 𝜋𝜋𝑗𝑗 + 𝜂𝜂𝑗𝑗𝑗𝑗 . Thus, the third potential bias occurs when there is 

heterogeneity in 𝜌𝜌�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1 . If there is homogeneity then 𝜌𝜌�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

1 =  𝜌𝜌�𝑓𝑓𝑒𝑒1  and 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1 = 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

1 , 

even if there is still heterogeneity in the treatment effects, 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1 . Moreover, heterogeneity in 

𝜌𝜌�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1  may be more problematic than heterogeneity in treatment effects; both 𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

1  and 

𝛿𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
2  are separately “identified” and thus contribute to 𝛿𝛿𝑓𝑓𝑒𝑒1  and 𝛿𝛿𝑓𝑓𝑒𝑒2  even if the two treatments 

are collinear in group 𝑒𝑒𝑒𝑒′.14 

For returns-to-experience estimates, the distribution of treatments is the distribution of 

teacher experience. Thus, the third potential bias is caused by changes over time in the proportion 

 
13 In other words, 𝜌𝜌�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

1  is a  diff-in-diff estimate of the “effect” of treatment 2 on the dependent variable 𝐷𝐷1. 
14 Our analysis here draws on Goodman-Bacon (in-press); section IV.B discusses “controls” and additional treatments 
are a specific case of additional controls. The key term in Section IV.B is the term in brackets in equation 26 labeled 
�̂�𝛽𝑏𝑏 ,𝑘𝑘𝑘𝑘
𝑑𝑑 . Using our notation (including 𝑒𝑒𝑒𝑒′ in place of 𝑘𝑘𝑘𝑘) and a little algebra the �̂�𝛽𝑏𝑏 ,𝑘𝑘𝑘𝑘

𝑑𝑑  term can be written:  

�̌�𝛿2𝑥𝑥2�𝑟𝑟𝑟𝑟′�
1 = � 

𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟′�𝐷𝐷𝑗𝑗𝑗𝑗
1 �∗𝛿𝛿�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

~1  − 𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟′�𝐷𝐷𝑗𝑗𝑗𝑗
2 �∗𝛿𝛿�2𝑥𝑥2�𝑟𝑟𝑟𝑟′�

~2 ∗𝜌𝜌�𝑓𝑓𝑓𝑓
1

𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟′� 𝐷𝐷𝑗𝑗𝑗𝑗
1 −𝐷𝐷𝑗𝑗𝑗𝑗

2 ∗𝜌𝜌�𝑓𝑓𝑓𝑓
1  �

 | 𝜇𝜇𝑗𝑗, 𝜋𝜋𝑗𝑗� = � 
𝑐𝑐𝑝𝑝𝑣𝑣𝑟𝑟𝑟𝑟′� 𝑖𝑖�̅�𝑗𝑗𝑗 ,   𝐷𝐷𝑗𝑗𝑗𝑗

1 −𝐷𝐷𝑗𝑗𝑗𝑗
2 ∗𝜌𝜌�𝑓𝑓𝑓𝑓

1  �

𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟′� 𝐷𝐷𝑗𝑗𝑗𝑗
1 −𝐷𝐷𝑗𝑗𝑗𝑗

2 ∗𝜌𝜌�𝑓𝑓𝑓𝑓
1  �

 | 𝜇𝜇𝑗𝑗,𝜋𝜋𝑗𝑗�, 

where we are assuming no “within-timing-group” variation. 
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of teachers in their first, second, third, …, 𝑒𝑒̅th year of teaching. For example, because the state 

(district) is hiring more or fewer novices from year to year.  

2.2.3 Alternative diff-in-diff strategy 

The dashed line in Figure 1 uses an alternative identification strategy, designed to avoid 

the potential bias of the two-way FE approach. Here we are using the 𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀 estimator proposed 

by de Chaisemartin and D’Haultfœuille (2020). The alternative is estimated with: 

𝛿𝛿𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒 = 1
𝑁𝑁𝑓𝑓
∑ 𝑁𝑁𝑒𝑒𝑗𝑗
𝑗𝑗 𝛿𝛿𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗 , where 

𝛿𝛿𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗 =

⎣
⎢
⎢
⎢
⎡

1
𝑁𝑁𝑒𝑒𝑗𝑗 � ��̅�𝑠𝑗𝑗,𝑗𝑗 − �̅�𝑠𝑗𝑗,𝑗𝑗−1�

𝑗𝑗:𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟𝑗𝑗 ,𝑗𝑗=𝑒𝑒 ,
𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟𝑗𝑗 ,𝑗𝑗−1=𝑒𝑒−1 ⎦

⎥
⎥
⎥
⎤
− �

1
𝑀𝑀𝑒𝑒𝑗𝑗 � ��̅�𝑠𝑗𝑗,𝑗𝑗 − �̅�𝑠𝑗𝑗,𝑗𝑗−1�

𝑗𝑗:𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟𝑗𝑗 ,𝑗𝑗−1≥𝑒𝑒̅

� 
(4) 

Each 𝛿𝛿𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗  is a diff-in-diff estimate for treatment 𝑒𝑒 in year 𝑡𝑡. The first expression in square 

brackets is the mean first difference in �̅�𝑠𝑗𝑗𝑗𝑗 for the sample of “treated” teachers, those for whom 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗,𝑗𝑗 = 𝑒𝑒 and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗,𝑗𝑗−1 = 𝑒𝑒 − 1. In the second pair of square brackets is the mean first 

difference for the “comparison” veteran teachers, those for whom 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗,𝑗𝑗−1 ≥ 𝑒𝑒̅. The number of 

treated teachers is 𝑁𝑁𝑒𝑒𝑗𝑗  and comparison teachers is 𝑀𝑀𝑒𝑒𝑗𝑗.15 

This alternative strategy avoids the potential biases of the two-way FE strategy. First, the 

alternative strategy avoids the changing distribution of treatments problem. The comparison group 
only includes veteran teachers whose treatment status does not change from (𝑡𝑡 − 1) to 𝑡𝑡 by 

construction.16 Further treatment status can only change once for the treated group—i.e., from 

𝐷𝐷𝑗𝑗,𝑗𝑗−1
𝑒𝑒 = 0 to 𝐷𝐷𝑗𝑗,𝑗𝑗

𝑒𝑒 = 1—because 𝑒𝑒 cannot change faster than 𝑡𝑡 and the alternative estimator only 

uses two years (𝑡𝑡 − 1) and 𝑡𝑡. In other words, the alternative estimator matches the intuitive 

example of Figure 4. Moreover, second, these same features limit the potential bias from 

heterogeneity of effects over time. Finally, the alternative strategy weights simply by the sample 

size of treated teachers, 𝑁𝑁𝑒𝑒𝑗𝑗 , to average across cohorts. Recall the standard two-way FE weights 

 
15 In practice we estimate each �̂�𝛿𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗  with a weighted least squares regression, stacking the several 𝑒𝑒𝑡𝑡 cases into a 
system of equations with one equation for each �̂�𝛿𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗 . The stacked regressions approach allows us to estimate standard 
errors which are cluster (teacher) corrected across �̂�𝛿𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑒𝑒𝑗𝑗 . We undo the implicit precision-maximizing weights before 
applying the 𝑁𝑁𝑒𝑒𝑗𝑗 weights as shown in equation 4. 
16 Implicit in “treatment status does not change” is the assumption that there are no returns-to-experience effects 
beyond �̅�𝑒 years. This assumption is common in the literature on teachers, and we formalize this assumption in Section 
2.3. 
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are also a function of treatment variance, which makes the average estimate biased, or at least 

difficult to interpret, when effects are heterogenous across cohorts. 

The cost of the alternative estimator is a potential loss of precision. However, for our 

standard errors the first-order consideration is the number of unique teachers (clusters), not the 

number of teacher-by-year observations. Both the standard and alternative estimators use the same 

set of unique teachers. Moreover, any change in estimated standard errors is potentially misleading 

because the precision-maximizing promise of the two-way FE approach requires homogeneity of 

effects. 

Empirically, at least in our setting, conclusions about the returns to experience are not 

greatly affected by the two-way FE estimator’s biases. As Figure 1 shows, the standard and 

alternative estimates are nearly identical in the Tennessee case. That is not true in the DCPS case 

where there is a noticeable difference. But two things are important to note. First, that DCPS 

difference is largely explained by changes in the distribution of teacher experience over time; thus, 

the difference arises from the two-way FE bias specific to the multiple treatments case. As shown 

in Appendix Figure A2, the distribution of experience in DCPS has been shifting away from early-

career teachers over time, but becoming more stable from 2014-15.17 If we restrict out analysis to 

this more-stable more-recent period, the standard and alternative approaches are quite similar, as 

shown in Appendix Figure A3. Second, the DCPS difference in Figure 1 is more a difference in 

intercepts, and less a difference in slopes over time. For years 1 through 5-6 the year-to-year 

changes are nearly identical. That is also the period when returns to experience are the largest. 

Thus, the experience-distribution bias is not affecting most inferences about change over time. 

The two estimation strategies also yield similar estimates when the outcome is teacher 

contribution to student test scores (or value-added scores), as shown in Figure 2. The same is true 

when we use the student survey measure of teacher performance, in Figure 3. Smaller sample sizes 

make these estimates noisier under either strategy, but the patterns across strategies are consistent. 

In the remainder of the paper we use the two-way FE estimator. However, the remaining 

content of the paper applies to both the standard and alternative approaches, including identifying 

assumptions, threats to those assumptions, and several empirical tests. Moreover, the similarity of 

 
17 Our data begin in 2009-10 at the start of DCPS’s new IMPACT performance evaluation program, which might 
partly explain the change in experience distribution. However, those years also coincide with the slow labor recovery 
following the 2008 recession. We do not see the same pattern in Tennessee where the experience distribution has been 
stable over the years we study. 
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standard and alternative estimates, after accounting for the DCPS experience distribution changes, 

suggests other sources of two-way FE potential bias are not first-order.  

2.2.4 Inferences from scores to performance 

Classroom observation scores, at best, measure only some aspects of a teacher’s job. 

Claims about teacher performance based on observation scores alone require assumptions—in 

particular, assumptions about the relationships among (i) classroom observation scores, (ii) 

teachers’ actual performance on the job tasks observations claim to measure, and (iii) the student 

outcomes which are the end goal of schooling. In this subsection we provide a conceptual 

framework to organize these relationships. 
A teacher’s primary job responsibility is to improve her students’ outcomes. Let 𝜇𝜇𝑦𝑦  

measure a teacher’s true contribution to (equivalently, causal effect on) student outcome 𝑦𝑦. 

Outcomes like math and reading skills, social and emotional skills, labor market success, 

citizenship, health, or any other end goal of schooling. Thus, claims about teacher performance are 

often claims about 𝜇𝜇𝑦𝑦 . However, in practice, measuring 𝜇𝜇𝑦𝑦  is difficult, even when 𝑦𝑦 itself is 

observable. That difficulty is demonstrated by the case of “value-added scores” which estimate a 

teacher’s contribution to student test scores.18 While we will sometimes use student test scores as 
𝑦𝑦 in this paper, this conceptual framework is meant to be general to any 𝑦𝑦.    

If 𝜇𝜇𝑦𝑦  summarizes a teacher’s output, then 𝜇𝜇𝑦𝑦  is a function of that teacher’s performance in 

many different job tasks:  

𝜇𝜇𝑦𝑦 = 𝑓𝑓𝑦𝑦�𝜃𝜃1, 𝜃𝜃2, … ,𝜃𝜃𝑘𝑘
′
, 𝜃𝜃𝑘𝑘

′+1, … , 𝜃𝜃𝐾𝐾�,                                             (5) 

where 𝑘𝑘 indexes teacher job tasks. Each task is a unit of work that produces an input to 𝑦𝑦. Let 𝜃𝜃𝑘𝑘  

measure the teacher’s performance in task 𝑘𝑘. Higher performance in task 𝑘𝑘—a higher value of 

𝜃𝜃𝑘𝑘—is synonymous with producing more or higher-quality task 𝑘𝑘 inputs.  

 Classroom observation rubrics are often loosely described as measuring inputs to 𝜇𝜇𝑦𝑦 . More 

sharply, observation rubrics are designed to assess a teacher’s actions and decisions in selected job 

tasks. In other words, observation rubrics are designed to measure 𝜃𝜃𝑘𝑘 . For example, observers are 

asked to score the nature and frequency of questions teachers ask students, but observers are not 

asked to assess whether these questions generated student learning. Observation scores are also 

 
18 Still, value-added scores are estimates, and a value-added score for one individual teacher is generally quite noisy. 
For a recent review of the literature on teacher job performance, including measurement, see Jackson, Rockoff, and 
Staiger (2014).  
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sometimes described as measures of teachers’ skills. We prefer to think of 𝜃𝜃𝑘𝑘  as performance, 

which is a function of both skills and effort. Improvement in scores might reflect improvement in 

skills, or improvement in effort, or both. Rubrics, like the ones we study, typically measure both 

skills and effort.19 

Crucially, however, observation scores do not measure all the 𝜃𝜃𝑘𝑘  which contribute to 𝜇𝜇𝑦𝑦 . 

This is the first key feature of the relationship between observation scores and student outcomes. 

To emphasize this feature, the expression in 5 partitions tasks into two groups: let tasks {1,2, … , 𝑘𝑘′} 

be tasks the rubric is designed to measure, while tasks {𝑘𝑘′ + 1, … ,𝐾𝐾} are not measured by the 

observation rubric. 

 A second key feature is that observation scores are only estimates of 𝜃𝜃𝑘𝑘 . Let 𝑠𝑠𝑘𝑘  be a rubric 

score which is designed to measure the latent variable of teacher performance in task 𝑘𝑘:  

𝑠𝑠𝑗𝑗𝑗𝑗𝑘𝑘 = 𝑔𝑔𝑘𝑘�𝜃𝜃𝑗𝑗𝑗𝑗𝑘𝑘� + 𝜀𝜀𝑗𝑗𝑗𝑗𝑘𝑘 ,                                                          (6) 

where 𝑗𝑗 indexes teachers and 𝑡𝑡 indexes time. The 𝜀𝜀𝑘𝑘  term is measurement error, with 𝐸𝐸�𝜀𝜀𝑗𝑗𝑗𝑗𝑘𝑘 � = 0.  

The function 𝑔𝑔𝑘𝑘  represents the evaluation process. The specific form of 𝑔𝑔𝑘𝑘  is unknown, to 

both the econometrician and the evaluation designer. However, in general terms, 𝑔𝑔𝑘𝑘  is determined 

first by the explicit features of the evaluation process—e.g., the rubric itself, how evaluators are 

trained, how evaluators are assigned to teachers, incentives. Such explicit features are (mostly) 

controllable by those designing and implementing the evaluation. But 𝑔𝑔𝑘𝑘  also includes less-

explicit, less-controllable features—e.g., the behaviors teachers or evaluators choose in response 

to the explicit features. A commonly used alternative to 6 would be 𝑠𝑠𝑗𝑗𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑗𝑗𝑗𝑗𝑘𝑘 + 𝜖𝜖𝑗𝑗𝑗𝑗𝑘𝑘 , where all 

deviations of 𝑠𝑠 from 𝜃𝜃 are “error” and 𝐸𝐸�𝜖𝜖𝑗𝑗𝑗𝑗𝑘𝑘 � = 0. We prefer using the function 𝑔𝑔𝑘𝑘  to emphasize 

the role of the evaluation process itself. Even in large samples, that process will create some 

difference between 𝐸𝐸�𝑠𝑠𝑗𝑗𝑗𝑗𝑘𝑘 � and 𝐸𝐸�𝜃𝜃𝑗𝑗𝑗𝑗𝑘𝑘�.  

Using data on 𝑠𝑠𝑘𝑘  to make claims about 𝜃𝜃𝑘𝑘  requires some assumptions about 𝑔𝑔𝑘𝑘 . Our focus 

in this paper is inferences about how 𝐸𝐸�𝜃𝜃𝑗𝑗𝑗𝑗𝑘𝑘� changes with experience on the job. Thus our focus is 

on assumptions about how 𝑔𝑔𝑘𝑘  does or does not change over time or across groups. We describe 

those identifying assumptions in Section 2.3 below.  

 
19 While these observation rubrics are designed to measure teacher performance, there is some evidence that 
empirically they also measure student behavior (Campbell and Ronfeldt 2018). We address this issue in Section 3 as 
a threat to causal inferences about teacher performance.  
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However, all claims about 𝜃𝜃𝑘𝑘  based on 𝑠𝑠𝑘𝑘  require a more fundamental assumption about 

𝑔𝑔𝑘𝑘—an assumption about measurement validity. An ideal condition would be that 𝑔𝑔𝑘𝑘  is such that 

𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒�𝑠𝑠𝑗𝑗𝑗𝑗𝑘𝑘 ,𝜃𝜃𝑗𝑗𝑗𝑗𝑘𝑘 � = 1, after accounting for measurement error, 𝜀𝜀𝑗𝑗𝑗𝑗𝑘𝑘 . While this ideal is unlikely to hold 

in practice, the correlation may be sufficiently large so that the benefits of using 𝑠𝑠𝑘𝑘  to inform some 

management decision (or research claim) outweigh the costs of mistakes in inferences about 𝜃𝜃𝑘𝑘 . 

Equation 5 suggests one partial test is a predictive validity test: 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒��̅�𝑠𝑗𝑗𝑗𝑗 ,𝜇𝜇𝑗𝑗𝑗𝑗
𝑦𝑦 �. Our estimate of that 

correlation is 0.38 for Tennessee data and 0.30 for DCPS, when 𝜇𝜇𝑦𝑦 is the teacher’s value-added 

contribution to math and reading test scores.20 Those estimates of 0.38 and 0.30 are likely to be 

too small. First, there is the common attenuation because of measurement error. Second, the simple 

mean �̅�𝑠𝑗𝑗𝑗𝑗 gives equal weight to each task score 𝑠𝑠𝑗𝑗𝑗𝑗𝑘𝑘 . But it seems unlikely that the elasticity of 𝜇𝜇𝑦𝑦  

with respect to 𝜃𝜃𝑘𝑘  is equal for all tasks, 𝑘𝑘. In other words, if we knew the education production 

function 𝑓𝑓𝑦𝑦, we would likely choose un-equal weights. Thus, claims about differences in 𝜇𝜇𝑦𝑦 based 

on �̅�𝑠 will likely understate true differences even when 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒(𝑠𝑠𝑘𝑘 ,𝜃𝜃𝑘𝑘) = 1.21 

2.3 Identifying assumptions 

Under what identifying assumptions can the estimates in Figure 1 be interpreted as causal 

returns to experience—specifically the effect of experience on performance, 𝜃𝜃, of the tasks which 

the rubric is designed to measure? The underlying diff-in-diff structure suggests a parallel-trends-
style assumption: roughly, that the difference between novice and veteran scores, 𝑠𝑠, would be 

constant over time if neither novice nor veteran performance, 𝜃𝜃, improved with experience. But 

we can sharpen the assumptions by using the conceptual framework from subsection 2.2.4. 

Interpreting Figure 1 as the causal returns to experience requires two identifying 

assumptions. Assumption 1: The function 𝑔𝑔 does not depend on experience, i.e., 𝑔𝑔(𝜃𝜃, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) =

𝑔𝑔(𝜃𝜃). For example, this assumption requires that if an early-career and a veteran teacher have the 

 
20 Appendix Table A1 reports estimates from regressions where the dependent variable is a  student test score, 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗  as 
in equation 2, and the key predictor variable is the teacher’s average observation score, �̅�𝑠𝑗𝑗𝑗𝑗 as in equation 1. In column 
2, the coefficient on 𝑠𝑠�̅�𝑗𝑗𝑗  is 0.081 in Tennessee and 0.098 in DCPS. That coefficient is the predicted increase in teacher 
value added, 𝜇𝜇𝑗𝑗𝑗𝑗

𝑦𝑦 , for an increase in teacher observation score, 𝑠𝑠�̅�𝑗𝑗𝑗 , of one teacher standard deviation; that coefficient 
is not the 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒�𝑠𝑠�̅�𝑗𝑗𝑗 ,𝜇𝜇𝑗𝑗𝑗𝑗

𝑦𝑦 � because value added is measured in student test score standard deviations. For Tennessee the 
correlation is 0.38 = 0.08 0.21⁄ , where 0.21 is the estimated standard deviation in value added. For DCPS that 
denominator is 0.33. 
21 Additionally, the scoring rubrics used in Tennessee and DCPS were both adapted from the well-established 
Framework for Teaching (Danielson 1997), which is based on a carefully-articulated conception of teaching and 
learning (Dwyer and Villegas 1993), empirical studies (Myford et al. 1994), and a design process that followed 
established standards (AERA, APA and NCME 2014). 
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same true task performance, 𝜃𝜃, they will have the same observation score, 𝑠𝑠. Assumption 2: True 

performance is not changing over time, on average, in the comparison group of teachers, i.e., 

𝐸𝐸�𝜃𝜃𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒𝑒̅� = 0.  

The value of the comparison group, and thus the second difference, is shown by stating the 

identifying assumptions that would be required for a first-difference estimate of returns to 

experience. If we used only early-career teachers’ data, we could not separate the returns to 
experience from changes in 𝑔𝑔 over time, because, as mentioned above, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑡𝑡 are colinear 

within teacher. Estimates based on first differences alone cannot use Assumption 2, and instead 

require the stronger Assumption 3: The function 𝑔𝑔 does not change over time—i.e., 𝑔𝑔(𝜃𝜃, 𝑡𝑡) =

𝑔𝑔(𝜃𝜃). In the next section we discuss different substantive threats to these identifying assumptions, 

but some of the quite-plausible threats are known changes in 𝑔𝑔 over time. 

 

3. Alternative explanations and threats to causal inference   

 Observation scores may improve (decline) over time for reasons unrelated to a teacher’s 

gains from experience. In this section we describe several alternative explanations for changing 

scores, and whether an alternative explanation threatens a causal “returns to experience” 

interpretation of Figure 1. We focus specifically on interpreting changes in observation scores as 

the causal effect of experience on performance of the tasks which the rubric is designed to measure.  

Before taking up specific alternative explanations, we begin with some general evidence 

relevant to the plausibility of identifying Assumptions 1 and 2. First, Figure 5 reports a partial test 

of Assumption 1. For this test assume that 𝑔𝑔 does not depend on experience (Assumption 1), and 

that the 𝑓𝑓𝑦𝑦 function also does not depend on experience. (Recall that 𝑓𝑓𝑦𝑦 relates teacher task 

performance, 𝜃𝜃, to teacher contributions to student outcomes, 𝜇𝜇𝑦𝑦.) If both 𝑔𝑔 and 𝑓𝑓𝑦𝑦 are unrelated 

to experience, then we would expect that the relationship between observation scores, �̅�𝑠, and 

teacher contributions, 𝜇𝜇𝑦𝑦 , should be unrelated to experience.  

Figure 5 shows, for teachers with 𝑒𝑒 years of experience (x-axis), the predicted increase in 

test-score value added, 𝜇𝜇𝑦𝑦 , for a one standard deviation increase in observation score, �̅�𝑠 (y-axis).22 

 
22 To obtain the estimates in Figure 5, we fit a  student-test-score regression similar to specification 2, but where 
ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 � is replaced with 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 , 𝑠𝑠�̅�𝑗𝑗𝑗� = 𝛾𝛾𝑒𝑒 ̅𝑠𝑠�̅�𝑗𝑗𝑗 + �𝛿𝛿𝑒𝑒𝐷𝐷𝑗𝑗𝑗𝑗𝑒𝑒
𝑒𝑒−̅1

𝑒𝑒=0

+ 𝛾𝛾𝑒𝑒�𝑠𝑠�̅�𝑗𝑗𝑗 × 𝐷𝐷𝑗𝑗𝑗𝑗𝑒𝑒 � 
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The solid line uses only within-teacher over-time variation (by including teacher FE), and the 

dashed line uses both within- and between-teacher variation (omitting teacher FE). To get a sense 
of the correlation between �̅�𝑠 and 𝜇𝜇𝑦𝑦 , multiply the y-axis by about 5 for Tennessee and 3 for DCPS 

(see footnote #).  

The relationship between �̅�𝑠 and 𝜇𝜇𝑦𝑦  is (largely) unrelated to experience in Figure 5. With 

perhaps one exception, there is no clear trend related to experience. And we cannot reject the null 

that each point estimate is different from the series average, though the DCPS estimates are quite 

noisy. The exception is the earliest years in Tennessee using only within-teacher variation (solid 

line series). Those estimates suggest the correlation declines from the first year to the fourth, but 

then remains stable afterward. Some of the specific threats described below could be a mechanism 

behind the declining correlation. That decline in correlation could be evidence that 𝑔𝑔 does depend 

on experience, but it is not necessarily evidence against Assumption 1. Even if the function 𝑓𝑓𝑦𝑦 

does not depend on teacher experience, the optimization of 𝑓𝑓𝑦𝑦 to maximize 𝜇𝜇𝑦𝑦  may depend on 

experience. For example, perhaps as early-career teachers gain experience they shift more effort 

to tasks not measured by the observation rubric, i.e., 𝑘𝑘 = {𝑘𝑘′ + 1, … ,𝐾𝐾}, or more subtly shift 

across tasks in a way not well captured by the simple average �̅�𝑠𝑗𝑗𝑗𝑗. 

Additionally, Figure 5 is only a partial test. We have only one 𝑦𝑦 outcome: teacher 

contributions to student test scores. Teachers contribute to other important student outcomes, like 

social and behavioral skills (Jackson 2018), and classroom practices are likely important to those 

outcomes as well. Related, in DCPS we have student surveys which may capture inputs to test and 

non-test student outcomes. Appendix Figure A4 repeats the test in Figure 5 with the surveys as 

outcomes, and we find steady, albeit noisy, correlations between classroom observation scores and 

the student survey scores. 

 

We can also partially test identifying Assumption 2. That assumption requires that true 
performance, 𝜃𝜃,is not changing over time, in expectation, among the comparison group of teachers, 

i.e., 𝐸𝐸�𝜃𝜃𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒𝑒̅� = 0. Our main estimates in Figure 1 set 𝑒𝑒̅ = 10 to define the 

veteran group. If Assumption 2 holds, then our estimates for returns at 𝑒𝑒 = 1-9 should be robust 

 
which includes the interactions 𝑠𝑠�̅�𝑗𝑗𝑗 ×1�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑒𝑒� on the right-hand side. Figure 5 plots (𝛾𝛾𝑒𝑒 + 𝛾𝛾𝑒𝑒 )̅ for each level of 
experience, 𝑒𝑒. 
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to setting 𝑒𝑒̅ above 10. Appendix Figure A5 shows estimates with 𝑒𝑒̅ = 15 and 𝑒𝑒̅ = 20, and for 𝑒𝑒 = 

1-9 the estimates are quite similar to Figure 1. Additionally, while we cannot observe Δ𝜃𝜃 =

𝐸𝐸�𝜃𝜃𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒𝑒̅� directly, we can estimate Δ𝑔𝑔(𝜃𝜃) = 𝐸𝐸�𝑔𝑔�𝜃𝜃𝑗𝑗𝑗𝑗� − 𝑔𝑔�𝜃𝜃𝑗𝑗(𝑗𝑗−1)�|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥

𝑒𝑒̅�. Among veteran teachers, the mean first-difference in observation scores is 0.004 standard 

deviations (st.err. 0.002) in Tennessee and -0.073 standard deviations (st.err. 0.006) in DCPS.24. 

Under what conditions would Δ𝑔𝑔(𝜃𝜃) ≅ 0 but Δ𝜃𝜃 ≠ 0? Only in the knife-edge case where any 

change in true performance, 𝜃𝜃, is just offset by a change in the 𝑔𝑔 function.3.1 The evaluation 

system 

Changes in scores over time may be caused by changes to the evaluation system’s tools 

and procedures. Key features of an evaluation system include the scoring rubric, the training 

provided to raters, and the rules for assigning teachers to raters.25 Even if a teacher’s performance, 
𝜃𝜃, remains constant, the score assigned to that performance, 𝑠𝑠, may go up or down if the system’s 

processes change. In other words, the evaluation system’s tools and procedures are key features of 

the function 𝑔𝑔. (The incentives or consequences attached to scores are also a key feature of an 

evaluation system; we return to incentives below.) 

The most straightforward example is a change in the scoring rubric. In 2017 DCPS 

switched from the Teaching and Learning Framework (TLF) rubric to an entirely new Essential 

Practices (EP) rubric. The new rubric did not measure exactly the same set of tasks, 𝑘𝑘, as the old 

rubric. Other rubric changes might be smaller, like word choices, even if the tasks scored remain 

the same.26 However, rubric changes, big or small, would not necessarily threaten our identifying 

 
24 In DCPS, compositional differences in the teaching force over time (Dee and Wyckoff 2015, Dee et al. 2021, James 
and Wyckoff 2020) could make it appear, with our preferred within-year standardization process, as if experienced 
teachers were declining over time as the average performance of incoming teachers improves. However, relying on 
alternative standardization approaches, including standardizing relative to veteran teachers within year and 
standardizing scores across years, do not change the slopes shown in Figure 1. Differences in point estimates across 
standardization approaches never exceed 0.037, with an average difference in point estimates across approaches and 
levels of experiences of 0.005. In rubric units, the average first difference for veteran teachers is also quite small, at -
0.014 (st.err. 0.003). 
25 Our language and examples in this discussion mainly imply the evaluation systems designed or used by schools, 
districts, or states. The features and reasoning also apply to scores collected by researchers or for other purposes. 
26 Our focus here is comparisons over time within a sample of teachers. Rubrics also vary across samples. DCPS and 
Tennessee use different observation rubrics, and those two rubrics are designed to cover different sets of teaching 
tasks. DCPS employs different rubrics to assess teachers with different sets of tasks, e.g., general education teachers 
have a somewhat different rubric than early-childhood or special-education teachers. More generally, school systems 
and researchers use a wide variety of observation rubrics, which should caution against strong comparisons of 
observation scores across systems or studies. Early-career experience may improve performance on a task which is 
measured by one rubric but not another. However, if we take a broader notion of teacher performance, like 
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assumptions, as long as the changes affect early-career (treatment) and veteran (comparison) 

teachers equally. 

The DCPS changes allow us to compare estimates from different rubrics. In Figure 6 the 

short dash line shows estimates of returns to experience using only data generated by the TLF, 

while the long dash line uses only EP. Both dashed lines are limited to scores from school 

administrators. For both rubrics the average first-year teacher’s rating is much lower than the 

average veteran’s rating, but that starting gap is smaller with the EP rubric. In both cases teachers 

make larger improvements over the first five years compared to the next five, but the improvements 

are steeper using the TLF rubric. The differences suggest a potential threat to Assumption 1—that 
𝑔𝑔 does not depend on experience—at the time of the change in rubrics in DCPS. However, the 

difference between the dashed (TLF) and long-dashed (EP) estimates could be a compositional 

change. Starting in 2011, and thus concurrent with our data, DCPS became more selective in both 

hiring and retention decisions, with strategies based explicitly on performance measure (Dee and 

Wyckoff 2015, Jacob et al. 2018). There were noticeably fewer early-career teachers by 2017 

(Appendix Figure A2). Thus, in Figure 6, the higher scores with the EP rubric may reflect true 

higher performance because of selection.  

Choosing raters is also a key evaluation design decision, which itself may change over 

time. Figure 6 also compares estimates by rater type for DCPS. The solid red line uses only ratings 

from the master educator raters, who are external to the school, while the dashed red line uses only 

ratings from school administrators. Both lines are limited to scores generated by the TLF rubric. 

The two TLF lines are quite similar, especially over the first five years of a teacher’s career. 

Additionally, in this comparison there is no composition change concern since each teacher was 

rated by both a school administrator and master educator each school year. Figure 6 does obscure 

one important difference between master educator scores and school administrator scores. School 

administrators give higher scores on the 1-4 scale; in other words, the 𝑔𝑔 function does depend on 

rater type. However, the difference in scores between the rater types is the same for all teachers 

regardless of experience; thus, the rater type difference in 𝑔𝑔 does not violate Assumption 1.27 

 
contributions to student achievement, many rubrics which measure different tasks are similarly good predictors of 
teacher contributions to test scores (Kane and Staiger 2012). 
27 Figure 6 does not show intercept differences between the three series; each series is estimated separately with the 
veteran intercept set to zero. Appendix Figure A7 shows the estimates which allow for the intercept comparison. 
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In general, changes to the evaluation system are changes to the function 𝑔𝑔. Interpreting 

Figure 1 as the causal returns to experience does not require that 𝑔𝑔 remain unchanged. The only 

restriction on 𝑔𝑔 is that 𝑔𝑔 not depend on experience. This applies to obvious changes in 𝑔𝑔, like the 

rubric or types of evaluators, and to changes which are more difficult (for the researcher) to 

observe. One potentially difficult to observe change is to the training of raters. Imagine that system 

administrators determine, at a given point in time, that raters need to be re-trained on some aspect 
of scoring. That re-training might be in fact be motivated by administrators’ belief that scores, 𝑠𝑠, 

are not reflecting performance, 𝜃𝜃, as they should. A second example is a change to the rules for 

assigning teachers to raters. Chi (2020), among others, has documented teacher-rater match effects 

on scores; when a teacher and rater share a gender or race, the teacher’s scores are higher. Imagine 

the evaluation system administrators decide, at some point, to make gender or race an explicit 

factor in the rules for making assignments. 

3.2 Behavior of the raters 

Changes in scores over time may reflect changes in the behavior of the raters. Raters have 

some discretion within any evaluation system’s designed procedures. Observation scores fall 

somewhere in between the theoretical poles of objective evaluation and subjective evaluation. 

Raters may also take actions which violate the designed procedures they were trained to follow. 

The behavior of raters, whether intended or unintended in the system design, is part of the function 
𝑔𝑔. 

One behavior that is frequently cited, given rater discretion, is leniency bias—the tendency 

for raters to give scores which are higher than warranted. The histograms in Appendix Figure A1 

would be consistent with systematic leniency bias in observation scores, although such bias is less 

evident for scores assigned by the master educators in DCPS. The skew in Appendix Figure A1 

could also accurately reflect teacher performance using a rubric with ceiling effects. Leniency bias 

is often cited as a concern in classroom observation scores by both researchers and in public debate 

(Kraft and Gilmour 2017, Anderson 2013).  

However, leniency bias does not necessarily threaten our causal interpretation of Figure 1 
as returns to experience. To violate Assumption 1—𝑔𝑔 does not depend on experience—rater 

leniency would need to be correlated with teacher experience. For example, imagine that raters are 

less lenient with a first-year teacher compared to their rating of the same teacher in her second 

year; then Figure 1 would over-state the returns to the first year of teaching. Such a change in 
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leniency might be a mechanism behind the early-years decline in Tennessee in Figure 5. However, 

if it is not correlated with experience, leniency bias will be differenced out in the same way as 

rubric changes or other evaluation system features. 

Another potential mechanism is that raters may use information learned outside a given 

observation. Consider the case of a teacher scored by her school principal. A few brief classroom 

observations are a small fraction of the interactions a teacher and principal will have in a school 

year; the principal likely learns much about the teacher’s performance outside of formal 

observations. Ho and Kane (2013) show evidence that a teacher’s own principal scores a video of 

her classroom differently than a principal from another school in the district scores the same video, 

perhaps because the teacher’s own principal begins the scoring with a prior on the teacher’s 

performance. Additionally, because the rubric covers only some teaching tasks, 𝑘𝑘 = {1,2, … , 𝑘𝑘′}, 

a principal may raise (lower) observation scores to reflect the principal’s beliefs about the teacher’s 

performance of tasks not covered by the rubric, 𝑘𝑘 = {𝑘𝑘′ , … ,𝐾𝐾}. A principal using outside 

information is a potentially rational behavior if the observation scores are used for personnel 
decisions and the principal cares about 𝜇𝜇𝑦𝑦 and not �̅�𝑠. 

This outside information explanation may threaten Assumption 1—𝑔𝑔 does not depend on 

experience—but only if raters have and use different outside information depending on a teacher’s 

years of experience. The number of years a teacher-principal pair has worked together may well 

be correlated with the teacher’s years of experience, but it does not need to be strongly correlated 

if school principals switch schools frequently. A high correlation would suggest principal raters 

might have different outside information on early-career and veteran teachers. Empirically the 

correlation is 0.17 in the DCPS data and 0.15 in the Tennessee data. 

We can carry out a test relevant to this outside-information question. Figure 7 shows an 

event study for a change in school principal. The estimates are from a regression which begins 

with specification 1, with added controls for year relative to a change in the school’s principal.  

Further the time series is allowed to differ for early-career and veteran teachers. If principals learn 

about a teacher’s performance outside of formal classroom observations, we might expect 

observation scores to rise or fall. However, scores do not change on average as a principal and 

teacher work together longer. This pattern holds for both early-career and veteran teachers. In 
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Tennessee there is some evidence that principals give slightly lower scores in their first year in a 

new school.28  

3.3 Incentives and distortion of effort 

Changes in scores may reflect changes in the incentives attached to those scores. Still, a 

change in incentives alone does not threaten inferences about true performance, 𝜃𝜃𝑘𝑘 , for tasks 

scored by the rubric. A new or stronger incentive attached to task 𝑘𝑘’s score, 𝑠𝑠𝑘𝑘 , might well induce 

a teacher to raise her performance of that task, 𝜃𝜃𝑘𝑘 , through more effort for task 𝑘𝑘 or investing in 

skills for task 𝑘𝑘 . Indeed, raising 𝜃𝜃𝑘𝑘  is typically the goal of attaching incentives to 𝑠𝑠𝑘𝑘 . Alternatively, 

a new or stronger incentive might induce more manipulation behavior of the kind discussed in the 

next subsection. In short, apart from manipulation, a change in incentives does not threaten casual 

claims about the effect of experience on performance, 𝜃𝜃𝑘𝑘 , for tasks scored by the rubric, 𝑘𝑘 ∈

{1,2, … , 𝑘𝑘′}.  

However, a change in incentives for 𝑠𝑠𝑘𝑘  can threaten inferences about 𝜇𝜇𝑦𝑦  performance. 

Recall that 𝜇𝜇𝑦𝑦  is a teacher’s contribution to one or more student outcomes, 𝑦𝑦, like math 

achievement, social skills, or earnings as an adult. As discussed earlier, observation rubrics 

comprise only some of the teaching tasks which are inputs to 𝜇𝜇𝑦𝑦 . Thus, the act of evaluation creates 

incentives to give more effort or attention to those scored tasks, {1,2, … , 𝑘𝑘′} in 𝑓𝑓𝑦𝑦, and less effort 

to other un-scored tasks, {𝑘𝑘′ + 1, … ,𝐾𝐾} in 𝑓𝑓𝑦𝑦. Those incentives might be formally linked to scores, 

like monetary bonuses or the threat of dismissal, or more general career concerns. This asymmetry 

between scored tasks and un-unscored tasks is a case of the well-known multi-task distortion 

problem (Holmstrom and Milgrom 1991).  

Using evaluation and incentives to shift teacher effort away from some tasks and toward 

other tasks is not necessarily distortion. There is (quasi-)experimental evidence that rubric-based  

classroom observations can improve teachers’ contributions to student test scores, even when 

teachers are not evaluated based on those test scores (Taylor and Tyler 2012, Briole and Maurin 

2020, Burgess, Rawal, and Taylor in-press). In DCPS specifically, teacher performance improves 

 
28 On additional note on rater behavior. As described in Section 1.2, the item level observation scores for specific tasks 
𝑠𝑠𝑘𝑘 are strongly correlated, in these data and most teacher observation data. This fact is sometimes interpreted as 
evidence that raters do not actually differentiate between tasks, 𝑘𝑘, but instead score teachers on some single general 
dimension of teaching performance. This seems unlikely given that the item level correlations are not = 1. A more 
plausible explanation is that the rubrics define tasks where true performance is in fact strongly correlated. Whatever 
the explanation, this issue is not central to our analysis in this paper which focuses on the average score. This issue 
does limit our ability to make conclusions about how experience may affect tasks differentially. 
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more when the teacher spends more of the year anticipating an unannounced rater visit (Phipps 

2018, Phipps and Wiseman 2021). 

While incentives do not necessarily threaten our causal interpretation of Figure 1, changes 

in incentives may be a mechanism behind the improvements seen in Figure 1. The simplest  

example is tenure rules. In Tennessee, teachers can earn tenure after five years, but tenure requires 

sufficiently high observation scores in years four and five.29 Thus, teachers have somewhat more 

incentive to focus effort on the rubric-measured tasks in years four to five compared to one to 

three, which might contribute to the pattern in Figure 1. Still, it seems unlikely a teacher concerned 

about tenure would wait until year four to pay attention to the rubric, and the slope from years 

three to four in Figure 1 is not obviously a departure from the trend suggested by the other year-

to-year slopes.  

Unlike Tennessee, for most of the period of this analysis, the evaluation incentives in DCPS 

were not explicitly a function of years of experience, but could be correlated with experience. 

DCPS teachers are dismissed if rated “Minimally Effective” (the second-lowest rating) in two 

consecutive years or if they fail to exceed a “Developing” rating (the third-lowest rating) within 

three consecutive years. Before fall 2012, teachers could receive permanent salary increases after 

two consecutive years of being rated “Highly Effective” (the top rating). Figure 8 shows the 

proportion of teachers in each rating category by years of experience, suggesting the incentives are 

not strongly correlated with experience.30  

3.4 Manipulation of scores 

Observation scores may reflect changes in teachers’ actions unrelated to their job 

performance. Teachers, like professionals in any other occupation, may adopt behaviors or actions 
which do raise their scores, 𝑠𝑠, but do not raise their job performance, 𝜃𝜃. In the literature on job 

performance evaluation these actions are known as manipulation.31 This manipulation of 

observation scores might occur, for example, because classroom observations are infrequent and 

brief; thus, a teacher could prepare a special lesson or even rehearse the lesson with his students 

 
29 More precisely, tenure requires being rated “4. Effective” or “5. Highly Effective” on the 1-5 integer scale. While 
only one input to that rating, classroom observation scores get a  weight of 50-85 percent for the teachers. 
30 Also studying DCPS, Adnot (2016) reports evidence that teachers facing the two-consecutive-years-minimally-
effective dismissal threat shift effort across tasks within the rubric toward tasks which are more likely raise their 
scores. This is a  sort of distortion within measured tasks, but suggests that teachers are aware of this margin. 
31 Empirical examples of manipulation by teachers include cheating on student tests (Jacob and Levitt 2003) and 
intentionally excluding low-scoring students from high-stakes tests (Jacob 2005, Cullen and Reback 2006, Figlio 
2006, Figlio and Getzler 2006). 
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in advance of the rater’s visit. By contrast, if the evaluation process or incentives prompted a 

teacher to improve her lessons on all (many of) the days the rater would not be present, that would 

be an improvement in performance and not manipulation.  

Manipulation plausibly threatens our casual returns-to-experience interpretation of Figure 

1. In our framework, teacher manipulation results from the evaluation system’s procedures and 

incentives, and is part of the function 𝑔𝑔. A teacher’s awareness of how to manipulate likely grows 

as he gains experience with the evaluation system—e.g., extraordinary preparation in response to 

an announced visit or the use of a “lesson in a box” in response to an unannounced visit. That 

suggests a plausible correlation between manipulation and general teaching experience, which 

threatens Assumption 1 that 𝑔𝑔 is invariant to experience. However, that correlation might be 

weakened if more-experienced teachers share their manipulation strategies with newly-hired 

teachers.32 If the manipulation component of observation scores is unrelated to general experience, 

then manipulation will be differenced out in Figure 1. 

The decline in correlation over years 1-4 in Tennessee in Figure 5 may be explained by 

increasing manipulation over the first few years of a teacher’s career. However, we cannot rule out 

other mechanisms, such as, for example, raters becoming more lenient as a teacher moves from 

first to second to third year. And there are other limitations to the test in Figure 5, as discussed 

above. On the other hand, while underpowered, the evidence in DCPS (panel B) does not indicate 

a decline in the relationship between classroom observation scores and student achievement over 

experience. In addition, the relatively stable correlation between classroom observation scores and 

student survey scores across levels of teaching experience in DCPS (Appendix Figure A4) provide 

evidence against the presence of manipulation, unless teachers were similarly able to manipulate 

scores on both measures across levels of experience. 

Dee and Wyckoff (2015) examine whether DCPS school administers manipulate 
observation scores, 𝑠𝑠, in the face of increased incentives. Consider the teachers who received their 

first Minimally Effective rating in 2010-11, and thus were under a significant threat of dismissal 

during 2011-12. Observation scores did improve in 2011-12 for these teachers, on average.33 

 
32 Strong or widespread manipulation would threaten the basic informativeness assumption about 𝑔𝑔. 
33 These improvements in 2011-12 were likely the result of being rated Minimally Effective (ME) in 2010-11. The 
improvements for ME teachers were larger than improvements for teachers rated Effective in 2010-11. The category 
Effective was the next-highest category in those years. Dee and Wyckoff (2015) provide regression-discontinuity  
estimates using the cutoff between Minimally Effective and Effective. 
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However, master educators also scored these teachers as having improved, and the increase in 

observation scores was similar across both types of raters. Additionally, these teachers under 
dismissal threat also improved on their test-score value added, 𝜇𝜇𝑦𝑦 . Taken together, these results 

suggest that the dismissal threat did not improve observation scores through manipulation alone.  

3.5 Changes in job assignments 

Changes in a teacher’s scores may reflect changes in her job assignment. A teacher’s 
observation score, 𝑠𝑠, might decline (improve) after a job change for either of two reasons: First, 

the teacher’s actual performance, 𝜃𝜃, could decline (improve) because of the job change. Using 

student-test-score measures of 𝜇𝜇𝑦𝑦 , Ost (2014) provides evidence that teaching skills and 

experience are not fully transferable across grade levels. Switching from 3rd to 5th grade, for 

example, likely requires some adjusting of questioning techniques, or shifting effort to new lesson 

plans at the expense of in-class performance. 

Let 𝑎𝑎 and 𝑎𝑎′ be two different job assignments; 𝜃𝜃𝑗𝑗𝑗𝑗𝑣𝑣 is the actual performance of teacher 𝑗𝑗 

in school year 𝑡𝑡 and job assignment 𝑎𝑎 (omitting the 𝑘𝑘 superscript to simplify). We can write: 

𝐸𝐸�𝜃𝜃𝑗𝑗𝑗𝑗 − 𝜃𝜃𝑗𝑗(𝑗𝑗−1)� = 𝐸𝐸�𝜃𝜃𝑗𝑗𝑗𝑗𝑣𝑣 − 𝜃𝜃𝑗𝑗(𝑗𝑗−1)𝑣𝑣������������
Δ𝑗𝑗

+ 𝑒𝑒 × 𝐸𝐸�𝜃𝜃𝑗𝑗(𝑗𝑗−1)𝑣𝑣 − 𝜃𝜃𝑗𝑗(𝑗𝑗−1)𝑣𝑣′ ����������������
Δ𝑎𝑎

,                  (6) 

where 𝑒𝑒 is the probability of switching from job 𝑎𝑎′ to 𝑎𝑎. 

The intuitive notion of “returns to experience” implies that the job is constant and 
experience increases, which matches Δ𝑗𝑗 in expression 6. If identifying Assumption 2 holds—no 

returns for veterans—then Figure 1 reports estimates of (Δ𝑗𝑗 + 𝑒𝑒Δ𝑣𝑣). Assuming further that job 

changes reduce performance, Δ𝑣𝑣 < 0, then Figure 1 underestimates the intuitive Δ𝑗𝑗, a negative 

bias. Alternatively, some researchers or policymakers may be interested (Δ𝑗𝑗 + 𝑒𝑒Δ𝑣𝑣), which we 

could describe as the “returns to experience including job changes typical of early-career teachers.” 

Job changes do threaten identifying Assumption 2, which requires that 𝐸𝐸�𝜃𝜃𝑗𝑗𝑗𝑗 −

𝜃𝜃𝑗𝑗(𝑗𝑗−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 𝑒𝑒̅� = 0 in our comparison group of veteran teachers. A veteran’s performance 

might change because of a job change, Δ𝑣𝑣 ≠ 0 , even if her performance would not have otherwise 

changed, Δ𝑗𝑗 = 0. If job changes do reduce comparison teacher performance, Δ𝑣𝑣 < 0, then the 

estimates in Figure 1 overstate the intuitive Δ𝑗𝑗 for novices. This bias is positive, and the bias 
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described in the prior paragraph is negative, but the two would only cancel each other out under 

the assumption that 𝑒𝑒 and Δ𝑣𝑣 do not depend on experience.34 

The second reason scores might change is that the function 𝑔𝑔 might differ across jobs. For 

example, typically the same rubric is used for all teachers, leaving any adaptation to grade-level 
or subject circumstances up to the rater or training process. More subtly, the function 𝑔𝑔 might 

depend on the students in the classroom (Campbell and Ronfeldt 2018). Students are themselves 

an important feature of a teacher’s job assignment, and a feature which can change even if grade 

level or subject do not. The threat to identification parallels other features of 𝑔𝑔 discussed above. 

As long as job-specific differences in 𝑔𝑔 are unrelated to experience, this second reason is not a 

serious threat to identification. A job-specific difference might be, for example, if raters are more 

lenient with novices after a job change than they are with veterans. 

In Figure 9 we test the robustness of Figure 1 to changes in the students a teacher is 

assigned, even if she remains in the same subject and grade level. Using data from Tennessee and 

DCPS, we plot returns-to-experience estimates with and without controls for student baseline test 

scores.35 Accounting for changes in students assigned does not affect our estimates. The similarity 

of all the estimates in Figures 1 and 9 is partly because they all use only within-teacher variation. 
The function 𝑔𝑔 might well depend on the students in the classroom (Campbell and Ronfeldt 2018), 

but most of the variation in students assigned is between teachers or schools, not within teachers 

over time. 

3.6 Performance improvements among veteran teachers 

The actual performance of veteran (comparison-group) teachers may change over time—

violating Assumption 2—even if there are no returns to experience for veterans. For example, 

veterans may increase their effort in response to incentives. How would interpretation change if 

Assumption 2 was violated in this way, but Assumption 1 held? If the veteran gains were only 

among veterans, then the estimates in Figure 1 would likely understate the true returns to 

 
34 This assumption is sufficient, but not strictly necessary. We only require that the product 𝑒𝑒Δ𝑣𝑣 not depend on 
experience, which should be a weaker assumption.  
35 These estimates come from a student-level regression. The specification is identical to (2) except that the dependent 
variable is 𝑠𝑠�̅�𝑗𝑗𝑗 instead of 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 . The dashed-line series in Figure 9 omits the 𝑏𝑏�𝐴𝐴𝑖𝑖(𝑗𝑗−1)� controls. The solid-line series 
includes 𝑏𝑏�𝐴𝐴𝑖𝑖(𝑗𝑗−1)�. 
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experience for early-career teachers. The veterans’ improvements would be subtracted off any 

improvements for early-career teachers.36 

3.7 Turnover 

One final consideration in interpreting Figure 1 is turnover or attrition from our estimation 

sample. The estimates in Figure 1 use only within-teacher variation in observation scores. This 

feature addresses a first-order potential bias: average observation scores might rise with 

experience, even if each individual teacher’s scores remain constant, if lower-scoring teachers are 

more likely to leave teaching (or at least leave the district or state).  

Still, even with teacher fixed effects, Figure 1 is still partly determined by turnover. In 
Figure 1 the slope between year one and year two is an average of 𝑁𝑁1,2 different individual teacher 

slopes, where 𝑁𝑁1,2 is the sample of individuals who are observed in year one and year two (and 

perhaps future years). Similarly, the slope between year four and year five uses only the 𝑁𝑁4,5 

sample. However, these are not the same samples: 𝑁𝑁4,5 ≠ 𝑁𝑁1,2. First, for any given cohort of novice 

hires, attrition from the profession over time will make 𝑁𝑁4,5 ⊂ 𝑁𝑁1,2. Second, experienced teachers 

who transfer into the system from elsewhere may contribute to 𝑁𝑁4,5 even if they do not contribute 

to 𝑁𝑁1,2. The slope from year one to year two in Figure 1 might be different if we could estimate it 

with the 𝑁𝑁4,5 sample. 

Empirically, however, our Figure 1 estimates are not strongly influenced by this second-

order composition concern. Figure 10 shows our returns-to-experience estimates using subsamples 

defined by when the teacher leaves teaching in Tennessee or DCPS. Much of the difference is 

attributable to differences in intercepts. The changes from year one to two, two to three, etc. are 

quite similar across samples. The exception is that scores decline in a teacher’s final year before 

leaving teaching in the state or district. 

 

4. Conclusion  

We conclude that the typical estimates of returns to experience, applied to observation 

scores, can reasonably be interpreted as the causal effect of additional experience on teachers’ job 

 
36 This subtraction might be desirable in specific cases. Imagine, for example, that veterans improved because of some 
new training, and that training was given to all teachers, early-career and veteran. If, roughly, the effect of the training 
was similar for all teachers, then the subtraction makes the Figure 1 estimates returns to experience controlling for 
any general training effects. 
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performance—specifically, performance of the input tasks covered by the rubric. The typical 

estimates are effectively difference-in-differences estimates, where veteran teachers are the 

comparison group. Veterans provide a plausible counterfactual estimate for several often-stated 

threats, including for example, leniency bias from raters, manipulation by teachers, changes in the 

evaluation system, and changes in teachers’ job assignments. Our estimates are robust to changes 

in the rubric, different rater types, and controlling for student baseline achievement, among other 

things. Still, there are reasons to remain cautious about a causal interpretation. We find, in one 

setting, a weakening correlation between teacher observation scores and student test scores as 

teacher experience grows. That weakening is consistent with some threats to the identifying 

assumptions, but it would also be consistent with changes in optimal teaching strategies as 

experience increases.  

Finally, our primary focus is on inferences about returns to experience as measured by 

classroom observation used in two settings. Our analyses should be interpreted carefully. We focus 

on the performance of the input tasks covered by the rubric. Stronger assumptions are required for 

inferences about teacher performance measured by contributions to student outcomes. Taking 

differences in scores over time addresses several concerns which are left unaddressed in results 

based on score levels at a single point in time. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 1—Returns to experience measured in classroom observation scores 
 

Note: The solid line reports estimates using the two-way fixed effects approach described in Section 1.2. The dashed 
line reports estimates using the alternative diff-in-diff strategy described in Section 2.3. The vertical lines mark the 95 
percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome variable is teacher 
𝑗𝑗’s classroom observation score, 𝑠𝑠�̅�𝑗𝑗𝑗 , which is an average of several item-level scores recorded during a given school 
year 𝑡𝑡. Observation scores are standardized (mean 0, st.dev. 1) by school year using the distribution of all teachers in 
the jurisdiction, Tennessee or DCPS respectively. For the solid line estimates we fit a  single two-way fixed effects 
regression, with teacher 𝑗𝑗 and school year 𝑡𝑡 fixed effects. The specification includes indicators for years of experience 
1 through 9 individually, with ≥ 10 years the omitted category, but no other controls. The plotted points are the 
coefficients on the experience indicators. The dashed line estimates are the difference between two means: (a) The 
average first-difference, �𝑠𝑠�̅�𝑗𝑗𝑗 − 𝑠𝑠�̅�𝑗,𝑗𝑗−1�, among “treated” teachers—those with 𝑒𝑒 years of experience (x-axis) in school 
year 𝑡𝑡, and 𝑒𝑒 − 1 years in school year 𝑡𝑡 − 1. (b) The average first-difference, �𝑠𝑠�̅�𝑗𝑗𝑗 − 𝑠𝑠�̅�𝑗,𝑗𝑗−1�, among “comparison” 
teachers—those with ≥ 10 years of experience in both year 𝑡𝑡 and 𝑡𝑡 − 1. The (a) minus (b) second-difference is 
calculated separately for each unique combination of 𝑒𝑒 and 𝑡𝑡 in the data. Then the plotted points are the weighted 
average across 𝑡𝑡 for a  given 𝑒𝑒, where the weights are the number of “treated” teachers. The sample size for the solid 
line in Tennessee is 375,072 teacher-by-year observations for 81,847 unique teachers; and similarly 349,920 and 
66,156 for dashed line Tennessee, 33,484 and 7,268 for solid line DCPS, and 33,040 and 7,201 for dashed line DCPS.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 2—Returns to experience for contributions to student achievement 
 

Note: The solid line reports estimates using the two-way fixed effects approach described in Section 1.2. The dashed 
line reports estimates using the alternative diff-in-diff strategy described in Section 2.3. The vertical lines mark the 95 
percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome variable is student 
𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 , in subject 𝑠𝑠 and school year 𝑡𝑡. Test scores are standardized (mean 0, s.d. 1) within each grade-by-
subject-by-year cell using the distribution for all students in the jurisdiction, Tennessee or DCPS respectively. For the 
solid line estimates we fit a  single two-way fixed effects regression, with teacher 𝑗𝑗 and school year 𝑡𝑡 fixed effects. The 
specification includes indicators for years of experience 1 through 9 individually, with ≥ 10 years the omitted 
category. Additional controls are a quadratic in prior-year test score, where the parameters are allowed to differ across 
grade-by-subject-by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�. The plotted points are the coefficients on the experience indicators. For 
the dashed line estimates, we begin by estimating teacher contributions to student test scores, �̂�𝜇𝑗𝑗𝑗𝑗 . We fit a  regression  
of student scores 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗  on the same prior score controls, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�, and teacher fixed effects; and then obtain the 
residuals 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 − 𝑏𝑏��𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�. Our estimate �̂�𝜇 𝑗𝑗𝑗𝑗 is the average residual for teacher 𝑗𝑗 in year 𝑡𝑡. The dashed line estimates 
are the difference between two means: (a) The average first-difference, ��̂�𝜇 𝑗𝑗𝑗𝑗 − �̂�𝜇𝑗𝑗,𝑗𝑗−1�, among “treated” teachers—
those with 𝑒𝑒 years of experience (x-axis) in school year 𝑡𝑡, and 𝑒𝑒 − 1 years in school year 𝑡𝑡 − 1. (b) The average first-
difference, ��̂�𝜇𝑗𝑗𝑗𝑗 − �̂�𝜇𝑗𝑗,𝑗𝑗−1� , among “comparison” teachers—those with ≥ 10 years of experience in both year 𝑡𝑡 and 
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𝑡𝑡 − 1. The (a) minus (b) second-difference is calculated separately for each unique combination of 𝑒𝑒 and 𝑡𝑡 in the data. 
Then the plotted points are the weighted average across 𝑡𝑡 for a  given 𝑒𝑒, where the weights are the number of “treated” 
teachers. The sample size for the solid line in Tennessee is 4,222,939 student-by-subject-by-year observations and 
92,403 teacher-by-year observations for 34,395 unique teachers; and similarly 71,474 and 20,954 for dashed line 
Tennessee, 247,005, 5,413 and 2,268 for solid line DCPS, and 4,249 and 1,280 for dashed line DCPS. 
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Figure 3—Returns to experience measured in scores from student surveys (DCPS) 
 

Note: The solid line reports estimates using the two-way fixed effects approach described in Section 1.2. The dashed 
line reports estimates using the alternative diff-in-diff strategy described in Section 2.3. The vertical lines mark the 95 
percent confidence intervals which are corrected for clustering (teacher). The details of estimation are identical to 
Figure 1 except that the outcome variable in Figure 3 is based on student survey responses to the Tripod survey. The 
dependent variable is the teacher 𝑗𝑗’s Student Surveys of Practice (SSoP) score for school year 𝑡𝑡. SSoP scores are 
standardized (mean 0, s.d. 1) by school year using the distribution for all teachers in DCPS. The survey was 
administered to all DCPS students in grade 3 and above from 2016-17 to 2018-19. The sample size for the solid line 
is 4,406 teacher-by-year observations for 1,687 unique teachers, and similarly 4,312 and 1,640 for the dashed line.  
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Figure 4—Illustrating 2x2 difference-in-differences components (Tennessee) 
 

Note: Each plotted point is the average observation score for a  group of teachers, measured in original rubric units 
without any adjustments. Consider the solid blue line at the far left. The filled circle markers are teachers whose first 
year teaching was 2012, and the two marker points are mean observation scores for those teachers in their first year, 
2012, and second year, 2013. The dashed blue line at far left, with unfilled circle markers, are teachers with 10 or 
more years of experience as of 2012. Each pair of lines, matched by color and marker shape, replicates this for cohorts 
hired in 2013-2018.  

 
 
  



42 
 

Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 5—Predicting student test scores with teacher observation scores  
by years of teacher experience 

 
Note: The solid and dashed lines each report estimates from a separate linear regression. The vertical lines mark the 
95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome variable is 
student 𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 , in subject 𝑠𝑠 (maths or English language arts pooled) and school year 𝑡𝑡. Test scores are 
standardized (mean 0, s.d. 1) within each grade-by-subject-by-year cell using the distribution for all students in the 
jurisdiction, Tennessee or DCPS respectively. In both cases the specification includes (a) indicators for years of 
experience 1 through 9 individually, with ≥ 10 years the omitted category; (b) classroom observation score, 𝑠𝑠�̅�𝑗𝑗𝑗; and 
(c) the interactions of (a) and (b). Each plotted point is sum of the coefficient on the (a)*(b) interaction for 𝑒𝑒 years of 
experience (x-axis) plus the main-effect coefficient on (b). Additional controls are a quadratic in prior-year test score, 
where the parameters are allowed to differ across grade-by-subject-by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖 (𝑗𝑗−1)�. The solid line 
specification includes year and teacher fixed effects. The dashed line includes only year fixed effects, omitting the 
teacher fixed effects. The sample size the same for the two lines; in Tennessee 4,222,939 student-by-subject-by-year 
observations and 92,403 teacher-by-year observations for 34,395 unique teachers, and similarly in DCPS 252,400, 
5,429, and 2,274. 
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Figure 6—Estimates using different rubrics and rater types (DCPS)  
 
Note: Each of the three lines reports estimates from a separate linear regression. The vertical lines mark the 95 percent 
confidence intervals which are corrected for clustering (teacher). The details of estimation are identical to the solid 
line in Figure 1 with the following exceptions. First, the estimation sample is limited by the type of rater: external 
“Master Educators” for the solid line, and school administrators for the dashed and long dashed lines. Second, the 
estimation sample is limited by the rubric used: TLF from 2010-2016 and EP from 2017-2019. The sample size for 
the solid line is 18,715 teacher-by-year observations for 5,118 unique teachers; and similarly 21,080 and 5,380 for 
dashed line, and 10,190 and 3,726 for the long dash line. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 7—Event study of a change in school principal 
 

Note: All estimates are from a single linear regression. The vertical lines mark the 95 percent confidence intervals 
which are corrected for clustering (teacher). The dependent variable is teacher 𝑗𝑗’s classroom observation score, 𝑠𝑠̅𝑗𝑗𝑗𝑗, 
which is an average of several item-level scores recorded during a given school year 𝑡𝑡. Observation scores are 
standardized (mean 0, st.dev. 1) by school year using the distribution of all teachers in the jurisdiction, Tennessee or 
DCPS respectively. The specification includes (a) indicators for year relative to a change in school principal; (b) an 
indicator = 1 if teacher 𝑗𝑗 has ≤ 5 years of experience, and = 0 if teacher 𝑗𝑗 has ≥ 10 years; and the interaction of (a) 
and (b). The new principal’s first year, x-axis = 0, is omitted for both groups defined by (b). The specification also 
includes indicators for years of experience, with ≥ 10 years omitted, plus teacher and year fixed effects. If a  teacher 
experiences two (or more) principal changes, we stack the data to include each teacher-by-event-study case in the 
data. DCPS observation scores in Panel B represent administrator-assigned scores only, but can include multiple 
administrators (i.e., principals and assistant principals) within a given teacher-year. The sample size for the solid line 
in Tennessee is 72,850 teacher-by-year observations for 29,193 unique teachers; and similarly 136,443 and 32,244 for 
dashed line Tennessee, 6,927 and 2,511 for solid line DCPS, and 9,597 and 2,406 for dashed line DCPS.  
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Figure 8—Incidence of consequential performance ratings (DCPS) 
 

Note: Each plotted series reports the percentage of teachers scoring at the relevant consequential rating level. In DCPS, 
teachers who receive their first Minimally Effective rating must improve the following year or risk dismissal. 
Beginning in 2012-13, teachers who have earned a second consecutive Developing rating are likewise subject to 
dismissal if they fail to improve. Through spring 2012, Highly Effective teachers were conversely eligible for large 
financial rewards. The share of teachers facing each performance incentive are estimated only within the respective 
years in which the incentive was in place. The sample for the solid line includes 35,672 teachers-by-year and 9,455 
unique teachers; and similarly for the dashed line 22,344 and 6,936, and for the long dashed line 10,004 and 4,755. 
.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 9—Estimates controlling for student baseline test scores 
 

Note: The solid and dashed lines each report estimates from a separate linear regression, but with the same estimation 
sample. The vertical lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). For 
the dashed line “controlling for baseline student scores” estimates, the specification is identical to the two-way fixed 
effects regression in Figure 2 but the dependent variable is different. The dependent variable is the teacher observation 
score (the dependent variable in Figure 1) for the student 𝑖𝑖’s teacher 𝑗𝑗 in subject 𝑠𝑠 and year 𝑡𝑡. Just as in Figure 2, the 
observations are student-by-subject-by-year; and the controls are teacher experience indicators, student prior test 
scores 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖 (𝑗𝑗−1)�, and teacher and year fixed effects. For the solid line “teachers with student test scores” estimates, 
all details are identical to the dashed line except that the solid line omits the prior test score controls 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�. The 
sample size the same for the two lines; in Tennessee 3,076,946 student-by-subject-by-year observations and 65,750 
teacher-by-year observations for 25,017 unique teachers, and similarly in DCPS 250,377, 5,369 and 2,258. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 10—Estimates by year of exit 
 
Note: Each panel reports estimates from two separate linear regressions, but with the same estimation sample. The 
vertical lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The first regression  
is shown in the circles and dashed lines. For this “average trend” the details of estimation are identical to Figure 1, 
with one exception. The top code indicator is for experience ≥ 6 years (instead of ≥ 10 years). The second regression 
is shown in the five series that use squares and solid lines. For these “trends by exit year” the details of estimation are 
identical to the “average trend” regression, with the following exceptions: We divide teachers into five sub-samples 
defined by when they exited the state (district). We then interact the experience indicators with indicators for exit year. 
The sample size the same for the two series; in Tennessee 27,853 teacher-by-year observations for 6,613 unique 
teachers, and similarly in DCPS 31,785 and 8,931. 
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Table 1—Characteristics of the two samples 
    
 Tennessee DCPS 
 (1) (2) 

(A) Students 
At or above proficiency on NAEP   
   Math, grade 4 0.39 0.31 
   Math, grade 8 0.30 0.18 
   Reading, grade 4 0.34 0.27 
   Reading, grade 8 0.32 0.20 
Race/ethnicity   
   Black 0.22 0.64 
   Hispanic 0.09 0.18 
   White 0.64 0.13 
   Other or multiple race or ethnicity 0.05 0.04 
Urbanicity   
   City 0.34 1.00 
   Suburb 0.25 0.00 
   Town 0.14 0.00 
   Rural 0.27 0.00 
Share of school-age population in poverty 0.22 0.28 
English language learner 0.04 0.10 
Special Education 0.13 0.17 

    
(B) Teachers 

Observation score (original units) 3.94 3.17 
 (0.57) (0.47) 

   Observation score, administrators 3.94 3.22 
 (0.57) (0.49) 

   Observation score, master educators   3.02 
  (0.53) 

In student test score sample 0.23 0.15 
Female 0.79 0.74 
Race/ethnicity    
   Black 0.06 0.51 
   Hispanic 0.00 0.05 
   White 0.86 0.32 
   Other or multiple race or ethnicity 0.08 0.04 
Graduate degree 0.55 0.69 
Years of experience   
   Mean 11.83 10.86 
   Standard deviation (9.61) (8.25) 
   Categorical   
      1st year teaching 0.06 0.07 
      2nd 0.06 0.07 
      3rd 0.06 0.07 
      4th 0.05 0.06 
      5th 0.05 0.06 
      6th 0.05 0.05 
      7th 0.04 0.05 
      8th 0.04 0.04 
      9th  0.04 0.04 
     10th or more 0.55 0.48 
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Note: Panel A: National Assessment of Educational Progress (NAEP) scores are the simple mean of NAEP tests which 
occurred during the years in our analysis sample. Descriptive statistics for students are form the from National Center 
for Education Statistics’ Common Core of Data. The exception is the “in poverty” statistic which comes from US 
Census Bureau Small Area Income and Poverty Estimates. Panel B: Authors calculations using administrative data. 
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Appendix A. Additional figures and tables 
 
 

Panel A. Tennessee, all scores Panel B. DCPS, all scores 

  
Panel C. DCPS, master-educator scores Panel D. DCPS, administrator scores 

  
 

Appendix Figure A1—Distribution of observation scores  
 

Note: Histograms of teacher-by-year observations. The x-axis is a  teacher’s annual observation score, which is an 
average of scores for different items or tasks, in the original rubric-scale units. Data are from the Tennessee TEAM 
rubric 2011-12 through 2018-19, and DCPS TLF rubric 2009-10 through 2015-16. The sample size for Tennessee in 
Panel A is 375,072 teacher-by-year observations; and similarly for DCPS 35,672 in Panel B, 34,898 in Panel C, and 
21,086 in Panel D.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Appendix Figure A2—Distribution of teacher experience over time 
 

Note: Each line measures the proportion of teachers (y-axis) in a given school year (x-axis) who are in their 𝑒𝑒th year 
of teaching. The estimation sample is the same as Figure 1. The estimation sample for Tennessee includes 375,072 
teacher-by-year observations for 81,847 unique teachers, and similarly for DCPS 35,672 and 9,455. 
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Panel A. School years 2013-14 to 2015-16, TLF rubric 

 
 

Panel B. School years 2016-17 to 2018-19, EP rubric 

 
 

Appendix Figure A3—Estimates when the distribution of experience is relatively stable (DCPS) 
 

Note: The solid line reports estimates using the two-way fixed effects approach described in Section 1.2. The dashed 
line reports estimates using the alternative diff-in-diff strategy described in Section 2.3. The vertical lines mark the 95 
percent confidence intervals which are corrected for clustering (teacher). The details of estimation are identical to 
Figure 1 except that the estimation samples here are each a subset of Figure 1’s estimation sample. Panel A uses only 
data from 2013-14 to 2015-16, and panel B only 2016-17 to 2018-19. Starting in 2016-17 DCPS switched from the 
TLF rubric to the new EP rubric. The sample size for the solid line in panel A is 24,125 teacher-by-year observations 
for 7,726 unique teachers; and similarly 21,558 and 5,452 for dashed line in panel A, 11,547 and 5,083 for solid line 
in panel B, and 10,116 and 3,689  for dashed line panel B. 
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Appendix Figure A4—Predicting student survey scores with teacher observation scores  
by years of teacher experience (DCPS) 

 
Note: The solid and dashed lines each report estimates from a separate linear regression. The vertical lines mark the 
95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome variable is 
teacher 𝑗𝑗’s Student Surveys of Practice (SSoP) score for school year 𝑡𝑡. SSoP scores are standardized (mean 0, s.d. 1) 
by school year using the distribution for all teachers in DCPS. In both cases the specification includes (a) indicators 
for years of experience 1 through 9 individually, with ≥ 10 years the omitted category; (b) classroom observation 
score, 𝑠𝑠�̅�𝑗𝑗𝑗; and (c) the interactions of (a) and (b). Each plotted point is sum of the coefficient on the (a)*(b) interaction 
for 𝑒𝑒 years of experience (x-axis) plus the main-effect coefficient on (b). The solid line specification includes year and 
teacher fixed effects. The dashed line includes only year fixed effects, omitting the teacher fixed effects. The sample 
size for both lines is 5,362 teacher-by-year observations for 2,643 unique teachers. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Appendix Figure A5—Estimates by definition of comparison group 
 

Note: Each of the three lines reports estimates from a separate linear regression. The vertical lines mark the 95 percent 
confidence intervals which are corrected for clustering (teacher). The solid line is identical to the solid line in Figure 
1. For the two dashed lines, the details of estimation are identical to the solid with one exception. For the solid line, 
the comparison group is teachers with ≥ 10 years of experience, �̅�𝑒 = 10. The two dashed lines show �̅�𝑒 = 15 and �̅�𝑒 =
20 respectively. The sample size the same for all three lines; in Tennessee 375,072 teacher-by-year observations for 
81,847 unique teachers, and similarly in DCPS 33,484 and 7,267. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Appendix Figure A6—Returns to experience for contributions to student achievement 
controlling for classroom observation score 

 
Note: The solid and dashed lines each report estimates from a separate linear regression, but with the same estimation 
sample. The vertical lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). For 
the solid line “teachers with observation scores” estimates, the details of estimation identical to solid line in Figure 2 
(the two-way fixed effects estimates) except that the estimation sample here is a  subset of the Figure 2 sample. For 
the solid line here, the estimation sample is limited to teacher-by-year cases where we have an observation score. For 
the dashed line “controlling for observation scores” estimates, we add a control for observation score. The sample size 
the same for the two lines; in Tennessee 3,076,946 student-by-subject-by-year observations and 65,750 teacher-by-
year observations for 25,017 unique teachers, and similarly in DCPS 244,696, 5,350 and 2,249. 
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Appendix Figure A7—Estimates by rater type (DCPS)  
 

Note: Estimates are from a single linear regression. The vertical lines mark the 95 percent confidence intervals which 
are corrected for clustering (teacher). The details of estimation are identical to the solid line in Figure 1 with the 
following exceptions. First, the estimation sample is limited to the TLF years in DCPS from 2010-2016. Second, the 
experience indicators are interacted with an indicator for rater type: master educator or administrator. The omitted 
category is master educator and ≥ 10 years of experience. The sample size for the solid line is 18,715 teacher-by-year 
observations for 5,118 unique teachers; and similarly 21,080 and 5,380 for dashed line. 
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Appendix Table A1—Predicting student test scores  
with teacher observation scores  

      
 (1) (2) (3) (4) 

(A) Tennessee 
Observation score (st.dev.) 0.166 0.081 0.009 0.005 

 (0.003) (0.001) (0.002) (0.002) 
(B) DCPS 

Observation score (st.dev.) 0.196 0.098 0.029 0.025 
 (0.012) (0.006) (0.007) (0.008) 
      

Student prior test score controls  √ √ √ 
Teacher experience controls    √ 
Teacher fixed effects   √ √ 
               

 
Note: Each column within panels reports results of a  separate least-squares regression. Standard errors in parentheses 
are corrected for clustering (teacher). The dependent variable is student 𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗 , in subject 𝑠𝑠 (maths or 
English language arts pooled) and school year 𝑡𝑡. Test scores are standardized (mean 0, s.d. 1) within each grade-by-
subject-by-year cell using the distribution for all students in the jurisdiction, Tennessee or DCPS respectively. The 
key independent variable is teacher 𝑗𝑗’s classroom observation score, 𝑠𝑠�̅�𝑗𝑗𝑗, which is an average of several item-level 
scores recorded during a given school year 𝑡𝑡. Observation scores are standardized (mean 0, st.dev. 1) by school year 
using the distribution of all teachers in the jurisdiction, Tennessee or DCPS respectively. The “student prior test score 
controls” are a quadratic in prior-year test score, where the parameters are allowed to differ across grade-by-subject-
by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑗𝑗−1)�. The “teacher experience controls” are a set of indicators for years of experience 1 through 
9 individually, with ≥ 10 years the omitted category. The sample size the same across columns; in Tennessee 
4,222,939 student-by-subject-by-year observations and 92,403 teacher-by-year observations for 34,395 unique 
teachers, and similarly in DCPS 252,400, 5,429, and 2,274. 




